
Chapter 9
Meta-learning with Logistic Regression
for Multi-classification

Wenfeng Wang, Jingjing Zhang, and Bin Hu

Abstract The current classifiers and basic learners for few-shot meta-learning is
based on distance rules and a series of linear classifiers, such as ridge regression,
and linear support vector machine. This study introduces a nonlinear basic learner-
logistic regression to improve meta-learning through fast convergence in learning
downstream tasks and obtaining the global optimal solution. The Woodbury identity
is utilized to express our advantages in a small number of samples. This helps to
reduce the consumption in the process of matrix operation. The prototype network
and residual network are employed as embedding models. The performance on data
sets CIFAR-FS, FC100 and MiniImagenet demonstrate the competitiveness of our
method.

9.1 Introduction

Meta-learning has been widely used in various fields [1]. Particularly, the model-
agnostic meta-learning can be combined into unsupervised learning, few-shot
learning and reinforcement learning [2]. These learning systems can adopt tasks
to train and test and achieve the objective of meta-learning that minimize the gener-
alization error loss [3–5]. The goal of meta-learning is to learn a function through
a set of learning algorithms, as model-agnostic meta-learning which is widely used
recently [6]. Maximum likelihood estimation is a method for us to find the maximum
value of the log-likelihood function to form an unconstrained optimization problem.
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In this paper, we also use the way of task training and we mainly focus on the
maximum likelihood estimation of our model [3–5]. We mainly use it to update
parameters, so that our objective function can find its global optimal solution, which
can greatly reduce the training time of themodel and themodel achieve better training
effect within the allowable range. And we adopt residuals network as our embedding
model [7, 8].

The goal of the present study is to achieve the stability of the algorithm, minimize
the training error in the training process, and at the same time achieve good general-
ization ability through test. For the parameter trajectories of logistic regression, we
mainly form an unconstraint convex optimization problem, it is unlike SVM which
adapts a constraint convex optimization problem [4].We can use iterative reweighted
least square method (IRLS) to get the solver of model [5].

9.2 Proposed Method

9.2.1 Problem Formulation

We have mainly undertaken the experiment on two data set—CIFAR-FS and FC100
and experiment on three forms of K ways N shot (5-way-5-shot, 5-way-1-shot, 5-
way-2-shot) for classification. On the one hand, our method is mainly divided into
two stages. One is the basic learner stage, which is mainly about learning how to
calculate the value of wi completed by logistic regression differentiation. As shown
in Fig. 9.1,wi are the weights of the linear classifier. The second is the meta-learning
stage, which needs to improve the learning ability through back propagation error.

Wemainly usemeta-learning for few-shot learning gradient-basedmethods, using
gradient descent methods to adapt new tasks [9, 10]. Meta-learning enables a few
steps of gradient descent to obtain good parameters in parameter space. In logistic
regression, the maximum likelihood estimation can be transformed into a minimum
unconstrained optimization problem [11]. Meanwhile, logical regression has closed
solution like ridge regression [5].Ourmethod requires a large amount of computation,
which requires GPU to calculate the gradient and the solution of the model. As
shown in the following Fig. 9.1, we have depicted the overview of our method; it
illustrates 1-way 3-shot classification tasks and we adapt logistic regression method
as our classifier. The embedding features of the training samples can be learned and
obtaining the corresponding weights and testing examples are same. A task is a tuple
for fewshot. Finally, the errors are minimized by the meta-learner.

We have traced back to the previous work of the meta-learning framework,
explored the convex base learner again, and proposed the base learner [12] of logistic
regression. And we compare it with other convex base learners, such as linear SVM
and ridge regression.

According to the twocomponents of the previousmeta-learning algorithm, namely
the base learner and the meta-learner [12], meta-learning is learning to learn, and it
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is a good way to improve learning skills [13]. The goal of meta-learning is to make
the base learning algorithm adapt well to new episodes.

Given a data set S = {xi , yi }ni=1, which includes a meta-training set and a meta-
test set, the meta-training set and a meta-test set also include a training set and
a test set, but we named it support set and query set. The support set is used for
training, and the query set is used for testing so that they construct a task for training.
In this paper, there are a group of tasks that is used as a meta-training set I =
{(Dtrain

i , Dtest
i )}Ii=1, D

train
i ∩ Dtest

i = ∅. The embedded model is parameterized
mainly through ∅ that mainly uses the support set of the meta-training set. Given J
tasks for meta-test J = {(Dtrain

i , Dtest
i )}Jj=1. As we have shown that Fig. 9.2 explains

the partition process of data set. The data set is mainly composed of two parts, one
is the test set, the other is the training set. At the same time, the test and training set
includes support set and query set.

In this paper, the base learner is to estimate the parameter θ of f (x; θ), here we
use the method of university function approximation [14] y = f (x; θ), and base
learner B is used to achieve better generalization ability. We write it as:

θ = B(
Dtrain; ∅

) = argmin
θ
Lbase

(
Dtrain; θ, ∅

) + R(θ) (9.1)

where Lbase is the loss function which is computed by the base learner, such as
the negative log-likelihood function. As we all know, R(θ) is a regularization of a
function which plays a great important to generalize the loss [15]. As with most
meta-learning methods, we regard the training program as episodes, so each episode
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can be regarded as a small sample classification problem. Usually, the classification
of small samples adopts the classificationmethod of K-way and n-shot [16]. Here, we
need to consider the values of K and N. Generally, N = {1, . . . , n}. In the above, we
have described the tasks, a task (or episode) �i = (Dtrain

i , Dtest
i ). Simultaneously,

Dtrain
i ∩ Dtest

i = ∅ and Dval
i also disjoint with them.

9.2.2 Efficient Logistic Regression Convex Optimization

The base learner is mainly based on the principle of logistic regression, which is an
unconstrained optimization problem. Therefore, we need to discuss the first-order
and second-order optimality condition [17, 18], and we first give the unconstrained
optimization problem:

θ = B(
Dtrain; ∅

) = argmin −
N∑

i=1

lnp(Yi |Xi , w1, . . . , wM) + λ

2
wTw (9.2)

where λ is the regularization and Dtrain = {(xn, yn)}, Yi is the labels of dataset,
θ = {wk}Kk=1. Because our objective function is differentiable and convex and there
is the quality that if the objective function is continuously differentiable, a practical
optimality judgment condition can be obtained by virtue of the property of continuous
differentiable function.

Theorem 9.1 (The necessary condition of first order) If x∗ is the local optimal
solution of the unconstrained optimization problem [19], then ∇ f (x∗) = 0.

Theorem 9.2 (The sufficient condition of second order) When you suppose that
point x∗ is the local optimal solution of the unconstrained optimization problem,
and if f(x) is continuously differentiable for second order in the neighborhood of
point x∗, then

∇ f
(
x∗) = 0 and ∇2 f

(
x∗) > 0 (9.3)

where ∇2 f (x∗) represents Hessian matrix is positive defined, then x∗ is a strictly
local optimal solution of f(x).

Nowwe consider the logistic regression multi-class classification problem. Given
data have a total of M classes, and each sample xi corresponds to a vector (or one-hot
label) yi = [yi1, . . . , yiM ]T of M dimension. Each element of yi is 0 or 1: If xi
belongs to m-th class, then yim = 1, and all other elements are 0. The multinomial
logistic regression model uses the following soft-max function as the sample x of
the conditional probability belongs to the m class [20].
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p(ym = 1|x) = exp(wT
mx)∑M

j=1 exp((w
T
j x))

(9.4)

where w1, . . . ., wM are the parameters of our model.
We use the following distribution:

p(ym = 1|x) = σ
(
wT

mx
) = exp(wT

mx)

1 + ∑M−1
j=1 exp(wT

j x)
,m = 1, . . . , M − 1 (9.5)

p(yM = 1|x) = 1 − σ
(
wT

mx
) = 1

1 + ∑M−1
j=1 exp(wT

j x)
(9.6)

The likelihood function of a single sample is:

p(Yi |Xi , w1, . . . , wM) =
M∏

m=1

p(yim = 1|xi )yim (9.7)

Therefore, the likelihood function for the meta-training set is:

p(Yi |Xi , w1, . . . , wM) =
N∏

i=1

M∏

m=1

p(yim = 1|xi )yim (9.8)

And we can get the log-likelihood function:

lnp(Yi |Xi , w1, . . . , wM) =
N∑

i=1

M∑

m=1

yimlnp(yim = 1|xi ) (9.9)

Newton’s-Method and Solving Unconstrained Optimization Problems

Newton’s method is a descent method. The difference between Newton’s method
and gradient descent method lies in the choice of descent direction [21, 22]. For
unconstrained optimization problem:

min f (x) (9.10)

Assuming that f is a convex function and second-order differentiable (the domain
is an open set), then the second-order Taylor approximation of f(x) near x is:

f
∧

(x + v) = f (x) + g(x)T v + 1

2
vT H(x)v (9.11)
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where g(x) = ∇ f (x) is a gradient, H(x) = ∇2 f (x) is a Hessian matrix. Must
be noted that the above is only a quadratic approximation, not a complete Taylor
expansion.

If x is regarded as a constant, then the above expression is a quadratic function of
v, minimized with respect to v, making the gradient zero:

g + Hv = 0 → v = −H−1g (9.12)

It is the Newton step. Since H is positive definite, its inverse is also positive
definite,

gT�xnt = −gH−1g (9.13)

Unless g=0,�xnt is the descent direction.When f is a quadratic function, x+�xnt
is its minimum point; As f approaches quadratic, x + �xnt is a good estimate of its
minimum point [23]; Since f is quadratic differentiable, the quadratic approximation
is very accurate around the minimum value, and x + �xnt is a good estimate of the
minimum point [24]. The steps of Newton’s method are similar to those of gradient
descent, except that the direction of descent is �xnt = −H−1g.

There’s an objective function (9.2). We should judge whether our goal function
is positive definite or not. So let’s calculate the gradient:

λw +
N∑

i=1

−yi xi exp(−yiwT xi )

1 + exp(−yiwT xi )
= λw +

N∑

i=1

−yi xi [1 − σ(yiw
T x)] (9.14)

gk = λwk +
N∑

i=1

−yi xik[1 − σ(yiw
T xi )] (9.15)

where wl is the lth element of w, and xik is the kth element of sample xi , σ(yiwT x)
is sigmoid function. To calculate the Hessian matrix, we need:

∂σ(yiwT xi )

∂wl
= exp

(−yiwT xi
)

[
1 + exp

(−yiwT xi
)]2 (yi xil) = σ

(
yiw

T xi
)[1 − yiw

T xi ](yi xil)
(9.16)

Let’s calculate the elements in k row of the Hessian matrix, k, l= 0, 1…, K.When
k �= l,

Hkl = ∂gk
∂wl

=
N∑

i=1

yi xil
σ
(
yiwT xi

)

∂wl

=
N∑

i=1

σ
(
yiw

T xi
)[1 − σ

(
yiw

T xi
)
(yi xil)(yi xil)]
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=
N∑

i=1

σ
(
wT xi

)[1 − σ
(
wT xi

)]xil xik (9.17)

When k = l,

Hkl = ∂gk
∂wl

= λ +
N∑

i=1

N∑

i=1

σ
(
wT xi

)[1 − σ
(
wT xi

)]xil xik (9.18)

Noting the matrix X = [x1, x2, . . . , xN ], Aii = σ
(
wT xi

)[
1 − σ

(
wT xi

)]
, the

Hessian matrix of (9.2) is

H = λI +
N∑

i=1

σ
(
yiw

T xi
)[
1 − σ

(
yiw

T xi
)]
xi x

T
i = λI +

N∑

i=1

Aii xi x
T
i = λI + X AXT

(9.19)

where A is a diagonal matrix of order N, whose elements in i row and i column are
Aii , Aii > 0.

BecauseuT Hu = λuT u+(XT u)T A
(
XT u

)
> 0,∀u �= 0, soH is positive definite,

function (9.2) is a convex function, problem min − ∑N
i=1 ln[1 + exp(−yiwT xi )] +

λ
2w

Tw for unconstrained convex optimization problem.

9.2.3 Approach to the Objective of Meta-learning

When we want to solve unconstrained optimization problems [25], before we do
that, we must determine this is a convex optimization problem. The convex function
is determined by the Hessian matrix of the objective function Lbase, for which the
Hessian matrix H = ∂2θ(w)

∂w∂wT is positive defined.

θ = B(
Dtrain; ∅

) = argmin
θ
Lbase

(
Dtrain; θ, ∅

) + R(θ)

= argmin −
N∑

i=1

lnp(Yi |Xi , w1, . . . , wM) + λ

2
wTw (9.20)

We can confirm that the Hessian matrix of our objective function satisfies the
condition of the theorem.

And in order to obtain a closed solution, we must consider using an iterative
method to solve it. In there we adopt iteratively reweighted least squares (IRLS)
method to optimize the problem, the following iteration [26]:

wi = wi−1 − H−1g (9.21)
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H is theHessianmatrix of objective function. The number ofNewton steps related
to the Hessian matrix can be obtained by the second-order Taylor approximation of
the objective function. Among them, the ith iteration updates the parameters

Hi = λI + X AXT , gi = λw − X At (9.22)

ti = yi [1−σ(yiwT xi)]
Ai

, A = σ
(
wT X

)[
1 − σ

(
wT X

)]
, σ is the sigmoid function, gi is

the gradient. So the formula can be obtained by substituting (9.22) into (9.21) that
we can compute:

wi = (X AXT + λI )−1X Az (9.23)

where

z = (
XTwi−1 + t

)
(9.24)

zi = XTwi−1 + ti−1 = XTwi−1 + yi [1 − σ
(
yiwT xi

)]
Ai

(9.25)

Ai = σ
(
wT xi

)[
1 − σ

(
wT xi

)]
(9.26)

min−∑N
i=1 lnp(Yi |Xi , w1, . . . , wM) also called the cross-entropy error function

of logistic regression multi-classification [27].
Although there are many options for measuring losses, here we use a negative log-

likelihood function to measure losses, which are same as in the paper of prototype
network [28, 29]. The negative log-likelihood function can measure the performance
of the meta-test sample, and we think it is very effective way to adopt this function.

Lmeta
(
Dtest ; θ, ∅, α

) =
∑

(x,y)∈Dtest

[−αwi f∅(x) + log
∑

k

exp(αw j f∅(x))]

(9.27)

where θ = B(
Dtrain; ∅

) = {w j }Kj=1 and α is a parameter which can be learned from
the process.

9.3 Results and Discussions

In this paper, we mainly use Resnet and prototypical networks as our embed-
ding model. When experiment on the CIFAR and FC100 data set, the network
architecture: R64-MP-DB(0.9,1)-R160-MP-DB(0.9,1)-R320-MP-DB(0.9,2)-R640-
MP-DB(0.9,2). We initially set the learning rate to 0.1 and change to 0.006 at epoch
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Table 9.1 Comparison of other algorithms on CIFAE-FS and FC100. Average few-shot classifica-
tion accuracies (%) which on the backbone Resnet12. ‘R2D2’ and Ridge stand for ridge regression
but for two different forms. ‘LR’ stands for the logistic regression

CIFAR-FS FC100

Model Backbone 1-shot (%) 5-shot (%) 1-shot (%) 2-shot (%)

R2D2 Resnet12 55.52 71.81 31.18 36.91

Ridge Resnet12 55.19 71.56 31.24 37.03

SVM Resnet12 55.53 71.33 31.35 37.41

LR Resnet12 55.60 71.91 31.14 36.78

20. The use of such parameters here is in full compliance with the criteria of gradient
descent. We referred to the corresponding parameter settings in the Meta-learning
of different- able convex optimization [2]. In order to make full use of the device’s
availability and available memory space, we tried to set epochs as 20 for many times,
which was a wise choice because the GPU often needed to carry out a lot of calcu-
lations in the case of many tasks, which would cost a lot of time. The minibatch
consists of 8 episodes and every epoch consists of 1000 episodes. And Table 9.1
shows the result of our method and make a comparison to other base learners.

As shown in Table 9.1, LR as our base learner can achieve better performance
and be more stable when we use CIFAR-FS data set. As shown in Figs. 9.3 and9.4,
we compare four base learners with the same k-way n-shot(5-way 1-shot; 5-way
2-shot; 5-way 5-shot) on CIFAR-FS data set and FC100 data set, MiniImagent data
set, it depicts our method can stably get the results. But when we use data set FC100,
we find that SVM method will be more efficient to test tasks. In this way, although
logistic regression method in FC100 data set doesn’t get enough good results but it
can confirm that it can be stable for classification. At the same time, it also reflects the
authenticity of experiments, the whole operation process is you don’t know FC100
data gathering in the effect of the LR algorithm accuracy is lower than the other.
It is believed that LR meta-learning has better stability than the other three kinds
of algorithms, so it can be as our further exploration work, we can explore that the
logistic regression meta-learning algorithm better adapts to all of the downstream
tasks. However, when we use MiniImagenet data set to achieve our method, the base
learner of SVM becomes the lowest of accuracy in Table 9.2. And LR as the base
learner will get 62.48% accuracy with 5-way 5-shot. As shown in Table 9.1, the
more samples there are, the higher the accuracy will be. 5-shot means there gives
five samples, and 2-shot means there gives only two samples. Therefore, these two
samples and five samples will be more accurate than one sample; either a 5-way
10-shot or a 5-way 15-shot (Table 9.2).
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Fig. 9.3 Comparison for
four base learners with the
same k-way n-shot on
CIFAR-FS data set

9.4 Conclusion

In this paper, we mainly show that the performance of logistic regression as the base
learner and compare it to other base learners. Our method principally considers the
unconstrained optimization problem, and the closed-form solution can be obtained
through the iterative method. Moreover, experiments have been carried out on all
three data sets, which are fully reflected in the figure above. Finally, we make the
conclusion that logistic regression method can stably run than other base learners
when there are less epochs as you can see in Figs. 9.3, 9.4, and 9.5. And we just
adopt 3 ways to experiment with our convex base learner, it can be seen, our method
performs well in CIFAR-FS. At the running level, we further save the time to run
our process, because data set is great and the process will be long and complex. It is
also an effective way to classification as a base learner after embedding features.
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Fig. 9.4 Comparison for
four base learners with the
same k-way n-shot on FC100
data set

Table 9.2 Comparison of
other algorithms on
MiniImagenet dataset.
Average few-shot
classification accuracies (%)
which on the backbone
64-64-64-64. ‘R2D2’ and
Ridge stand for ridge
regression but for two
different forms. ‘LR’ stands
for the logistic regression

MiniImagenet

Model Backbone 5-way 5-shot (%)

R2D2 64-64-64-64 62.38

Ridge 64-64-64-64 62.18

SVM 64-64-64-64 60.59

LR 64-64-64-64 62.48
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Fig. 9.5 Comparison for
four base learners with the
same 5-way 5-shot on
MiniImagenet data set
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