
Chapter 8
Small Object Detection of Remote
Sensing Images Based on Residual
Branch of Feature Fusion

Xiaoling Feng

Abstract In recent years, the detection of remote sensing images has been developed
widely, and small objects have been paidmore andmore attention. The existing small
object detection methods fuse the multi-scale features of different layers directly
when using the feature pyramid network. However, due to the decrease of chan-
nels in feature fusion, the top-level feature of pyramid will lose information of the
object, which is disadvantageous to detect small object ion. In order to fuse multi-
scale features more effectively, we propose an object detection method based on
the residual branch of feature fusion (RBFF), which is specially used to detect small
objects. Our approach improves the network structure of the feature pyramid.We also
recalculated the weights to reduce the semantic gap in feature fusion. In addition, we
also introduce sub-pixel convolution to reconstruct the low-frequency information
of the feature map accurately, to obtain the feature map with more information. The
experimental results show that our method has a good effect.

8.1 Introduction

With the advance of deep learning, object detection can be divided into two groups:
two-stage detectors and one-stage detectors. Two-stage detectors such as [1, 2] first
generate some RoIs in the first stage and make an object classification and RoI-wise
bounding box regression next. One-stage detectors, e.g., YOLO [3] and SSD [4], do
not generate theRoIs and directly detect objects.Owing to extreme imbalance of fore-
ground–background class, the performance of two-stage detectors is usually better
than one-stage detectors. Anchor-free detectors are used to address this problem,
such as [2, 5, 6]. It alternatively transforms object detection into a points detection
problem to avoid complex computations of anchors and run faster.

To recognize and locate objects in remote sensing images more effectively, the
research of remote sensors detection is urgent. In recent years, the research on object
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detection is mostly based on Convolution Neural Network (CNN). For example,
Region-based Convolutional Neural Networks [7] (R-CNN), known as a pioneering
method, first generated region proposals using selective search and then refined
them by extracting regional features from a convolution network. A region proposal
network and an end-to-end trainable detector have been proposed to improve perfor-
mance, which is named Faster R-CNN [8]. The Feature Pyramid Networks [9] (FPN)
constructed a feature pyramid and predicted different objects at different pyramid
feature maps by the scales of the region proposal. RetinaNet [10] chose a feature
pyramid network likely FPN as its backbone and introduced a new focal loss to
alleviate the imbalance between easy and hard examples. In aerial images, however,
since the objects are mostly very small, these methods do not have good results in
detecting them. This presents us with great challenges.

In recent years, manymethods based on feature pyramid have been proposed. This
is because FPN can combine low-level high-resolution information with higher-
level strong semantic information, and simultaneously predict at different levels
using lower-level features and higher-level features. As a result, targets in remote
sensing images are not too small to be ignored by the detectors. Mou et al. [11]
proposed a method to establish a feature pyramid network at all scales with strong
semantic feature maps, which use a top-down pathway and horizontal connection.
The feature map of different layers was responsible for detecting objects of different
sizes. A dense feature pyramid network (DFPN) has been proposed by Yang et al.
[12] to achieve automatic detection of ships: each feature map was closely linked
and combined by concatenation.

With the improvement of the above methods, the ability of FPN network to recog-
nize small objects has been improved, but some problems still exist. FPN proposes
different features at each layer of the image pyramids, and then makes corresponding
predictions. The shallow networks in the feature pyramid are more concerned with
details and location information, while the upper layers focus more on semantics,
which helps locate objects. First, featuremaps of higher levels contributed to enhance
the semantic information of lower levels. Second, the topmost convolution layer
losses some information due to a few feature channels and is not compatible with
other feature levels since it only has single-scale context information. So, the feature
map on the top layer is very important to detect. To improve this shortcoming, we
propose a method to enrich the top-level feature information. We use a five-layer
feature pyramid network (C1−C5), and our method uses residual branch to get a new
convolution layer C6. Residual branch is used to indoctrinate the original branches
with different spatial background information. Generation of a new convolution layer
C6 is used to alleviate the loss of information due to reduced channel convergence.

In addition to the above method, we also introduce super-resolution (SR) tech-
nology to enrich some detailed information of feature maps. Image super-resolution
refers to make recovery in images or image sequences from low-resolution (LR) to
high-resolution (HR). In general, the higher the resolution of an image themore detail
and information it contains. However, the resolution is not the same as the pixel size.
For example, an image that is multiplied by five by an interpolation does not tell you
howmuch detail it contains. Image super-resolution is concerned with recovering the
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Fig. 8.1 The figure is an example of the SR technique, a is the ground truth, b is the low-resolution
image, and c is the recovered high-resolution image

missing details in the image, that is high-frequency information. Figure 8.1 shows
an example of SR technology, where a is the clear image, b is an image that needs to
be restored to high resolution, and c is the result of the restoration. As you can see
from the image, the restored image with SR contains more details and information.
We use sub-pixel convolution to enrich the detail in the case of high-level details so
that C5 has more information. We hope this method can reduce the information loss
and improve the performance of generated feature pyramids.

In order to realize the above method, we first improve the network structure of the
traditional feature pyramid and propose a module to add a convolution layer before
multi-scale feature fusion. The module also recalculates the fusion weight to fuse the
extracted multi-scale feature layers more effectively. Finally, we introduce sub-pixel
convolution to improve the semantic richness of the feature map to reduce the loss
of detail.

8.2 Methods

Previous methods cannot solve the problem of incompatibility between high-level
featuremap and other level featuremap.We propose a newRBFF network consisting
of residual branches and sub-pixel convolution which is to detect small objects in
aerial images. Figure 8.2 shows the framework of our method. The module we
designed performs several operations on the tensor in order to fuse feature maps
more efficiently. In addition, we use the sub-pixel convolution to enrich the high-
frequency information of the feature map. Our method is described in detail below.

Fig. 8.2 The figure shows the RBFF network architecture
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Our method adds a residual branch to generate a new feature map C6 and recalculate
weights. These features are then fused with recalculated weights. The ACARmodule
consists of the anchor classification branch and the anchor regression branch. Then
we sent the anchor box and input feature maps into the deformable convolution [6]
to extract aligned features. Finally, the active rotating filter [13] (ARF) is used to
extract invariant directional features and produce the final detection results.

8.2.1 Sub-pixel Convolution

Most remote sensing images are very large. For example, the size of images in the
DOTA dataset is about 4000 × 4000, and small objects like vehicles have very little
information in the image. In addition, when the image is extracted by the feature
pyramid network, there is less detail left, making it impossible to fully identify small
objects in the image. The appearance of image super-resolution technology solves
this problem.

In general, both I LR and I H R can have C color channels, thus they are represented
as real-valued tensors of size rH× rW×C and rH× rW×C, respectively. There is a
way to realize image super resolution is convolution that uses fractional stride of 1

r in
the LR space. But this way will increase the computational cost because that process
happens in the HR space. So, we use a convolution with stride of 1

r in LR space
filters Wa of size ka with weight spacing 1

r , which do not active all Wa convolution.
And we do not need to activate weights and do not need to calculate the weights

which are between pixels. The activated pattern has activated at most � ka
r �2 weights.

These patterns are activated periodically throughout the convolution, relying on the
different sub-pixel positions: mod (a, r), mod (b, r) where a, b is the coordinates of
output pixel in HR space. In this paper, we use a more effective way called sub-pixel
convolution to achieve the above process when mod (ka, r ) = 0:

USR = t K
(
ULR

) = V B(SK × t K−1
(
ULR

) + cK ) (8.1)

where VB is a periodic shuffle operator that ranges the elements of the H×W×C ·r2
tensor again into a tensor of the size r H×rW×C . This operation canmathematically
be described as follows:

PS(T )x, y, c = T�x/r�,�y/r�, c · r · mod(y, r) + c · mod(x, r) (8.2)
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Fig. 8.3 The diagram shows the detailed structure of the residual branch that we propose. First of
all, the topmost feature map has to go through three scales of adaptive pooling. Then the feature is
amplified by sub-pixel convolution and then horizontally concatenated

8.2.2 Residual Branches

In the feature pyramid network, the top-down feature fusion process in the pyramids
loses information at the top level due to fewer channels. To this end, we use a ratio-
invariant adaptive pooling on the topmost layer of the feature pyramid to produce
feature pyramid with different scales (a1×S, a2×S, ., an×S) of multiple contextual
features. To avoid the aliasing effects caused by interpolation, we have set three
different scales to fit these contextual functions rather than simply summarizing
them. Next sub-pixel convolution is used to scale up to the scale of S for subsequent
fusion. Each context feature then independently passes through a 1× 1 convolution
layer, to reduce the channel dimension to 256 of the feature maps. Finally, in order
to construct a feature pyramid, we use a 3× 3 convolution layer at each feature map,
as shown in Fig. 8.3.

8.3 Methods

8.3.1 Data Set

Our experiments were running primarily on the DOTA [14] dataset, which contains
2,806 aerial images of approximately 4000 × 4000 in size and 188,282 instances.
And the dataset has 15 categories: plane (PL), ship (SH), storage tank (ST), baseball
diamond (BD), tennis court (TC), basketball court (BC), ground track field (GTF),
harbor (HA), bridge (BR), large vehicle (LV), small vehicle (SV), helicopter (HC),
roundabout (RA), soccer ball field (SBF), and swimming pool (SP). It is marked as a
quadrilateral with an arbitrary shape and orientation determined by four points rather
than a traditional horizontal box. Specifically, first mark an initial point (x1, y1) and
then mark 2, 3, and 4 in clockwise order. The initial point is usually selected at the
head of the object. If it is an object such as a port with no obvious visual shape,
choose the upper-left corner as the first point, as shown in Fig. 8.4.
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Fig. 8.4 The figure shows
how the dataset labels are
defined

Function of Loss. The loss function of our method consists of two parts. The loss
function is defined as follows:

L = 1

NR

(
∑

i

Lc
(
cRi , l∗i

) +
∑

i

1l∗i ≥1Lr
(
x R
i , g∗

i

)
)

+ λ

NM

(
∑

i

Lc
(
cFi , l∗i

) +
∑

i

1l∗i ≥1lr
(
x F
i , g∗

i

)
)

, (8.3)

where λ is a loss balance parameter, 1 is an indicator function, NR and NM are the
numbers of positive samples in the ACAR and ARF, respectively, i is the index of a
sample in a minibatch. cRi and x R

i are the predicted category and refined locations of
the anchor i in ACAR. cFi and x F

i are the predicted object category and locations of
the bounding box in ARF. l∗i and g

∗
i are the ground-truth category and locations of the

anchor i. The Focal loss [10] and smooth L1 loss are adopted as the classification loss
LC and the regression loss LR, respectively. The hyperparameters of Focal loss Lc
are set to α = 0.25 and γ = 2.0. We use the same training procedure as in Detectron
[15].

8.3.2 Ablation Study

Residual Branches. In our approach, the network is enhanced by changing its struc-
ture and adding a new branch. To comparewith anothermethod, we use ResNet-50 as
the backbone of the two methods. S2A-Net [16] was chosen for comparison with our
method. The result of using and not using residual branch are shown in Table 8.1. We
use S2A-Net to represent the S2A-Net method and RBFF to show our method. Our
method provides better detection results for small objects on the DOTA validation
dataset.

Sub-pixel convolution. To test the impact of adding sub-pixel convolution on
improving the accuracy of small target detection, we work on two tests with our
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Table 8.1 Experimental results with different networks

Network PL BR SV LV SH TC BC ST

S2A-Net 89.64 47.01 66.87 83.26 88.41 90.69 63.09 87.39

RBFF 89.74 47.42 67.91 83.34 88.72 90.72 65.26 88.21

Table 8.2 Comparison of the results of the experiment

Network PL BR SV LV SH TC BC ST

S2A-Net 89.64 47.01 66.87 83.26 88.41 90.69 63.09 87.39

RBFF 89.89 47.42 69.85 83.49 88.82 90.69 65.62 88.29

network, one using sub-pixel convolution and the other not. Here we use sub-pixel to
denote the network using sub-pixel convolution and S2A-Net to denote the method
we did not use. The result of adding sub-pixel convolution or not is shown in Table
8.2. The table shows that the use of sub-pixel convolution has a positive impact on
the detection of small objects in general.

8.3.3 Comparison of Experimental Results

The RBFF method was compared with other popular methods in the DOTA dataset.
The results of the experiment are shown in Table 8.3. In contrast to many previous
works [13, 17] was designed to detect large scale targets, our experimental results
presented in the table show detection results for nine types of objects which is aimed
at evaluating the small objects. The mAP in the last row of the table is also the

Table 8.3 Comparison with other methods on DOTA dataset. FFA-3(M) implies the use of the
multi-stage detector of FFA-3 for experiments

Method Back PL GTF SV LV SH TC ST SBF HA mAP

RetinaNet
[10]

R101 88.82 65.72 67.11 55.82 72.77 90.55 76.30 54.19 63.71 70.05

FFA-3
[18]

R101 88.80 57.90 63.60 75.90 79.60 90.80 82.90 54.30 66.90 71.49

FFA-3(M)
[18]

R101 89.60 58.90 67.20 76.50 81.40 90.01 83.40 55.70 73.20 75.11

R3Det
[19]

R101 89.54 62.52 70.84 74.29 77.54 90.80 83.54 61.97 65.44 75.12

S2A-Net
[16]

R101 89.64 74.13 66.87 83.26 88.41 90.69 87.39 73.53 73.58 80.83

RBFF R50 90.05 67.30 67.83 83.33 88.62 90.61 87.64 70.07 73.34 79.87

RBFF R101 89.91 75.82 70.49 82.99 88.50 90.73 87.92 74.65 75.25 81.81
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average of the detection of these 9 types of objects. From the result, it is clear that
our method outperforms some previous detection methods. With the default input
size, e.g., 1024 × 1024, RBFF can run at 399 ms per image on the RTX2080. A
single-scale test can run at 66 ms per image. Finally, some visualization of detection
results can be seen in Figs. 8.5 and 8.6.

Fig. 8.5 The figure shows visualization results of our method. In the figure, the four pictures on the
left are detection results of the S2A-Net, and the four pictures on the right are the detection results
of our method. Significantly more objects are identified in the red boxes in the four pictures on the
right than on the left

Fig. 8.6 This figure shows part of detection results obtained by our method
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8.4 Conclusion

In this paper, a novel method for remote sensing detection has been proposed based
on the feature pyramid network. Our method uses the residual branch to improve the
network structure and reduce the feature loss that occurs during feature fusion. The
features are then scaled by sub-pixel convolution. Our method uses the focal loss
to better rebalance the variant scales of the bounding box. Multi-scale testing can
significantly improve detection performance. Our RBFF was trained using ResNet-
50-FPN and ResNet-101-FPN, both achieved good performance on DOTA dataset. I
hope that our approach will be useful in the field of remote sensing object detection
or data statistics.
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