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Hierarchical Decomposition
of Third-Order Tensor Through
Adaptive Branched Inverse Difference
Pyramid Based on 3D-WHT

Roumen Kountchev and Roumiana Kountcheva

Abstract New approach is presented for adaptive decomposition of large-size
tensors in the spectrum domain, based on the Three-Dimensional Adaptive Branched
Inverse Difference Pyramid (3D-ABIDP). For this, the processed third-order tensor
is divided into cubical sub-tensors of size 2n and then each sub-tensor is transformed
through 3D Inverse Difference Pyramid (3D-IDP) of n hierarchical levels, based on
the 3D Walsh-Hadamard Transform (3D-WHT). The spectrum coefficients of same
spatial frequency, calculated in the same hierarchical level of all pyramids, build new
sub-tensors whose size is reduced 2n times, compared to that of the initial tensor. In
the next level, each new tensor is divided again into cubical sub-tensors of size 2n,
which are transformed into n-level 3D-IDP/WHT. The coefficients of same spatial
frequency build new sub-tensors of size 22n times smaller than that of the initial
tensor, and the processing continues in a similar way. The division of each sub-
tensor stops when the so obtained new sub-tensors have at least one dimension equal
to 2, or when all their coefficients are equal to zero. In this case, the initial tensor
is represented as a tree-like graph, and the length and the number of its branches
depend on the tensor contents. In general, this graph is an incomplete branched tree,
whose low-information branches (i.e. the branches, whose coefficients are equal or
close to zero), are cut-off. The offered method for hierarchical tensor decomposi-
tion has lower computational complexity, compared to well-known orthogonal 3D
decompositions: Discrete Fourier Transform, Discrete Cosine Transform, Discrete
Wavelet Transform, Contourlet Discrete Transform, etc. The presented decompo-
sition is based on the use of 3D-WHT with frequency-ordered transform matrices,
which enhances the concentration of the tensor energy into small number of coef-
ficients and in result are defined faster than the branches, suitable to be retained.
These qualities of the new decomposition open many possibilities for its practical
application.
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3.1 Introduction

Tensor decompositions became recently the object of numerous research works
[1]. The main kinds of the tensor decompositions could be divided into two basic
groups: statistical and deterministic. In the group of the statistical methods for
tensor decomposition are various multilinear extensions of the matrix-SVD, called
Multilinear SVD (MSVD), or generalizations of the SVD matrix for higher-order
tensors, called Higher-Order SVD (HOSVD) [2–4]. In [5] is offered a version of
HOSVD, namely the multi-way tensor SVD. Such are also the famous methods:
CANDECOMP/PARAFAC or Canonical Polyadic Decomposition (CPD) where the
tensor is represented as a sum of rank-one tensors; the Tucker Decomposition (TD)
[3]; the Tensor Train Decomposition (TTD) [6]; the Kruskal decomposition, etc.
The statistical methods are implemented through applying various algorithms for
calculation of the tensors eigen vectors, which have relatively high computational
complexity. The tensor decomposition components are usually calculated by using
iterative methods whose iterations stop, when the predefined accuracy is achieved.
Such are: the tensor power iteration; the QR-factorization followed by the House-
holder transforms (or the Gram-Schmidt process), the Givens rotations; the Jacobi
method; the Higher-Order Eigenvalue Decomposition (HOEVD); the SVD calcula-
tion based on its relation to PCA, etc. The tensor decomposition based on the use
of iterative SVD methods needs significant number of computational operations. To
overcome the problem, various hierarchical methods are already developed, based
on the Hierarchical Tucker Decomposition (HTD) [7], the Sequentially Truncated
HOSVD(ST-HOSVD) [8], the SequentialUnfoldingSVD (SUSVD) [9] andCompo-
sitional Hierarchical Tensor Factorization [10]. To same group also belongs the non-
iterative Hierarchical SVD algorithm for tensor decomposition offered in [11]. It has
lower computational complexity and is based on SVD for elementary tensor of size
2 × 2 × 2.

In the group of the deterministic tensor decomposition methods are the pyramidal
3D transforms: the 3DDiscreteWavelet Transform (3D-DWT) [12], the 3DCurvelet
and the 3D Contourlet Discrete Transform (3D-CDT) [13, 14] and the 3D Shearlet
Discrete Transform (SDT) [15]. The methods from the first group overcome these
from the second in respect of the decomposition components’ decorrelation degree,
but these in the second group have much lower Computational Complexity (CC).
The deterministic methods for tensor decomposition are usually executed by using
various kinds of 3D orthogonal transforms. In publications [12, 14] are proposed
algorithms for cubical decomposition based on the 3D separable discrete transforms:
the 3D Discrete Fourier Transform (3D-DFT), the 3D Discrete Hartley Transform
(3D-DHT), the 3D Discrete Cosine Transform (3D-DCT), etc.; the algorithm for
hierarchical third-order tensor decomposition with low CC, based on the multi-level
3D Inverse Difference Pyramid (3D-IDP) and the 3D Walsh-Hadamard Transform
(3D-WHT), presented in [16, 17]. The last-mentioned decomposition is not able to
ensure sufficient decorrelation degree for its elements in the high hierarchical levels
for high number of levels, i.e., for tensors of large size.
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In this work is generalized the 3D-IDP tensor decomposition, called 3D Adaptive
Branched IDP (3D-ABIDP). It is aimed at the achievement of high efficiency in the
decomposition of large-size tensors (for example, sequences of 4K images) without
significant increase of its CC.

3.2 Hierarchical Tensor Decomposition Through 3D
Adaptive Branched IDP

The building unit in the offered decomposition is the n-level 3D-IDP, based on
the 3D-WHT. The 3D-IDP/WHT pyramid is explained through an example for the
hierarchical decomposition of the tensor X of size 8 × 8 × 8, for n = 3.

3.2.1 Hierarchical Decomposition for a Tensor of Size 8 × 8
× 8, Through 3D-IDP/WHT

The tensor X with elements x(i, j, k) and of size 8 × 8 × 8 could be represented
through the 3-level 3D-IDP based on the Truncated 3D-WHT (3D-TWHT) for levels
p = 0, 1, 2, as shown in Fig. 3.1.

In this case, the decomposed tensor X is presented as a sum of three tensors,
X̃ , Ẽ0,E1, each of size 8 × 8 × 8 [15]:

X = X̃ + Ẽ0 + E1 (3.1)

where:

X̃ = (1/83)
1∑

u=0

1∑

v=0

1∑

l=0
s(u,v,l)Wu,v,l is the tensor which is the first approximation

of the input tensor;
E0 = X − X̃—the difference tensor, which represents the error of the first

approximation;

Ẽ0 =
8⋃

t=1
Ẽt
0—tensor, which is the first approximation of the tensor E0, after

uniting the sub-tensors Ẽt
0 each of size 4 × 4 × 4, for t = 1, 2, …, 8. All they are

obtained through dividing the difference sub-tensor E0 into 8 sub-tensors. Here, each
tensor Ẽt

0 is defined by the relation:

Ẽt
0 = (

1
/
43

) 1∑

u=0

1∑

v=0

1∑

l=0

st0(u,v,l)W
t
u,v,l for t = 1, 2, . . . 8 (3.2)
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Fig. 3.1 3D-IDP for a tensor X of size 8 × 8 × 8

Here st0(u,v, l) are the coefficients of the direct 3D-WHT, applied on the elements
of the tensor Ẽt

0.

E1 =
8⋃

t=1

Et
1. (3.3)

where

Et
1 = Et

0 − Ẽt
0 for t = 1, 2, . . . 82 (3.4)

In the relations above, Wu,v,l is the basic tensor with frequency (u, v, l), which
could be represented as the outer product of the vectors �wu , �wv, �wl :

Wu,v,l = �wu ◦ �wv ◦ �wl . (3.5)

Here the vectors �wu , �wv, �wl , which represent the tensorWu,v,l, are defined by the
relations below (Fig. 3.2):
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Fig. 3.2 Examples for the
basic tensorsWu,v,l of size 4
× 4 × 4

�wu = [(−1)

2∑

r=0
qr(0)ur

, (−1)

2∑

r=0
qr(1)ur

, ..., (−1)

2∑

r=0
qr(7)ur ]T; (3.6)

�wv = [(−1)

2∑

r=0
qr(0)vr

, (−1)

2∑

r=0
qr(1)vr

, ..., (−1)

2∑

r=0
qr(7)vr ]T; (3.7)

�wl = [(−1)

21∑

r=0
qr(0)lr

, (−1)

2∑

r=0
qr(1)lr

, ..., (−1)

2∑

r=0
qr(7)lr ]T. (3.8)

The size of the basic tensors Wu,v,l in Eq. (3.5) is 8 × 8 × 8, and of tensors
Wt

u,v,l in Eq. (3.2) when t = 1, 2, …, 8, it is 4 × 4 × 4, respectively. The 3D-WHT
coefficients in levels p = 0, 1, 2 of 3D-IDP/WHT are defined by the relations:

s(u,v,l) =
7∑

i=0

7∑

j=0

7∑

k=0

x(i,j,k)wal(i,u, 8)wal(j,v, 8)wal(k,l, 8) for p = 0; (3.9)

stp(u,v,l) =
23 - p−1∑

i=0

23−p−1∑

j=0

23 - p−1∑

k=0

ẽtp(i,j,k)wal(i,u,2
3 - p)wal(j,v,23 - p)wal(k,l,23 - p)

(3.10)

for t = 1, 2, …, 8p+1 and p = 1, 2,
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where ẽtp(i,j,k) are the elements of the sub-tensors Ẽt
0. The Walsh-Hadamard (WH)

functions which correspond to the frequency-ordered transform WH matrices, are
defined in accordance with the relations:

wal(i,u, 8)wal(j,v,8)wal(k, l,8) = (−1)

2∑

r=0
[qr(i)ur+qr(j)vr+qr(k)lr]

, (3.11)

where

i =
2∑

r=0
ir2r, u =

2∑

r=0
ur2r; j =

2∑

r=0
jr2

r, v =
2∑

r=0
vr2r; k =

2∑

r=0
kr2r, l =

2∑

r=0
lr2r;

q0(i) = i2, q1(i) = i2 ⊕ i1, q2(i) = i1 ⊕ i0;
q0(j) = j2, q1(j) = j2 ⊕ j1, q2(j) = j1 ⊕ j0;
q0(k) = k2, q1(k) = k2 ⊕ k1, q2(k) = k1 ⊕ k0.
In result of the 3-level 3D-IDP/WHT transform, the tensor X is represented as

an inverse pyramid in the spectral domain. In the lowest pyramid level (p = 0), it is
represented by the spectrum tensor S̃ of size 2 × 2 × 2; in the next level (p = 1)—by
the spectrum tensor S̃0 of size 4× 4× 4, and in the last level (p= 2)—by the spectrum
tensor S1, of size 8 × 8 × 8. The tensors S̃ and S̃0 are the spectrum approximations

of tensors X̃ and Ẽ0 =
8⋃

t=1
Ẽt
0, and the tensor S1 is the spectrum transform of the

tensor E1. The elements of the spectrum tensors are the coefficients s(u,v, l) and
stp(u,v,l), calculated in accordance with Eqs. (3.9) and (3.10). Each spectrum tensor

S̃ , S̃0, S1 is of size 2 × 2 × 2, 22 × 22 × 22, and 23 × 23 × 23 respectively.
In the general case, the number of coefficients in the levels p = 1, 2, …, n −1 of

the n-level 3D-IDP/WHT could be reduced on the basis of the next relation [16, 17]:

s1p(0, 0, 0) = −
8∑

t=2

stp(0, 0, 0) for t − 1, 2, . . . 8p+1. (3.12)

Then, the number of the retained coefficients for the pyramid shown in Fig. 3.1
in the level p = 1 is 56, and in the level p = 2 it is 448, respectively. The so obtained
pyramid with reduced coefficients s1p(0,0,0) is called 3D Reduced IDP/WHT (3D-
RIDP/WHT) [16]. The number of operations, O (additions and multiplications),
needed for the calculation, is defined by the relation [17]:

O3D−RIDP/WHT(n) ≈ 8n × 2.5n. (3.13)

The detailed comparison of theCCof 3D-RIDP/WHTwith these of the orthogonal
3D transforms DFT, DCT, DWT and CDT, given in [17], proves its lower value. For
the same value of n, the CC of 3D-FFT is minimum and is defined by the relation
O3D−FFT(n) = 8n × 7.5 n. Hence, the CC of 3D-RIDP/WHT is three times lower
than that of 3D-FFT.
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3.2.2 Hierarchical Decomposition of a Tensor of Size M × N
× P Through 3D Adaptive Branched IDP

The principle of the hierarchical decomposition of a 3D tensor of size M × N × P
through branched IDP is shown in Fig. 3.3 for the case, when M = N = P = 16, and
the 3D-IDP is built for sub-tensors of size 8 × 8 × 8 (n = 3). For the building of
the 3D branched spectrum pyramid (3D-BIDP) should be defined the way used to
calculate its branches. The process is illustrated for the tensor X of size 16 × 16 ×
16. This tensor is divided into 8 sub-tensors of size 8× 8× 8, and each is represented
as a 3D-IDP pyramid of n = 3 levels. In the initial level (p = 0) of each pyramid are
calculated 8 spectral coefficients with frequencies (0, 0, 0) to (1, 1, 1), whose basic
functions are shown in Fig. 3.2. From the group of coefficients of same frequency
(u, v, l) for u, v, l = 0, 1, are created 8 tensors of size 2 × 2 × 2.

In Fig. 3.4 is shown the graph of the full tree for the level p = 0 in all 3D-IDP,
which represents the tensor of size 16 × 16 × 16. This graph corresponds to the
hierarchical tensor decomposition, shown in Fig. 3.3. From the tree branches 1, ..., 8,
which correspond to sub-tensors of size 8× 8× 8, are obtained 64 branches (tensors),
each of size 2 × 2 × 2. Then, the total number of branches of the full 3D-BIDP tree
for the level p = 0 is S0 = 64 × 8; for the level p = 1 it is S1 = 64 × 82; and for the
level p = 2, it is S2 = 64 × 83. Then, the total number of the branches in the full tree
is:

NB = 64(8 + 82 + 83) = 37376. (3.14)

Fig. 3.3 Hierarchical decomposition for a tensor of size 16 × 16 × 16 through 3D branched IDP,
based on the spectral coefficients in IDP level p = 0, using sub-tensors of size 8 × 8 × 8
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Fig. 3.4 The 3D-BIDP graph of the full tree-like representation for a tensor of size 16 × 16 × 16

In the general case, for a tensor of size M × N × P, divided into sub-tensors
of size 2n × 2n × 2n, the number of the branches of the full tree in the level k of

the hierarchical tensor decomposition, taking into account the sum S =
n∑

k=1
8k =

(8/7)(8n − 1), is:

NBk = ⌊
2−knM

⌋⌊
2−knN

⌋⌊
2−knP

⌋ × 8 × S ≈ (
82

/
7
)⌊
MNP × 8−nk

⌋
(8n − 1)

(3.15)

for k= 1, 2,…, s; s—the number of the levels in the branched tensor decomposition.
Hence, the number of branches in the full tree for a tensor of size M × N × P

built on the basis of the s-level 3D-BIDP taking into account that
s∑

k=1
8−kn = 1−8−sn

8n−1 ,

is defined by the relation:

NB =
s∑

k=1

NBk =
s∑

k=1

⌊
MNP × 8−kn

⌋ × 8 × S ≈ [(82/7)(1 − 8−sn)]MNP

(3.16)
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For example, for M = N = P = 16 and n = s = 3, from Eq. (3.16) it follows that
for the full tree NB ≈ 37,449.

The branches of the full tree which could be cut-off, should satisfy at least one of
the following requirements:

• to correspond to spectral coefficients equal to zero;
• the modules of the spectral coefficients in a given branch must be smaller than a

predefined threshold value;
• the coefficients in a given branch should correspond to the spatial frequencies

in which is concentrated the energy of the noise, contained in the decomposed
tensor.

After applying the above criteria, the number of tree branches could be signifi-
cantly reduced. The further reduction depends on the requirements imposed by the
tensor decomposition application.

3.3 Algorithm for Third-Order Tensor Decomposition
Through 3D ABIDP/WHT

The main steps of the 3D-ABIDP/WHT algorithm for tensor decomposition, are:
Start: input tensor X of size M × N × P, with non-negative elements x(i,j,k)

and defined thresholds for decomposition branches truncation in accordance with
coefficients energy and signal-to-noise relation.

Step 1. Divide the tensor X into sub-tensors Xk of size 2n × 2n × 2n, for k = 1,
2, …, K1.

(K1 = �MNP/8n�—total number of the sub-tensors, Xk );
Step 2. Transform each sub-tensor Xk into the corresponding n-level 3D-

IDP/WHT pyramid which comprises a sequence of spectral sub-tensors, as follows:

– in the level p = 0—the sub-tensor S̃k of size 2 × 2 × 2, which comprises 8
coefficients sk(u, v, l), for u, v, l = 0, 1;

– in the level p = 1—the sub-tensor S̃0,k of size 22 × 22 × 22, which comprises 64
coefficients st0,k(u,v, l), for u, v, l = 0, 1 and t = 1, 2, …, 8;

– in the level p = n-1—the sub-tensor Sn−2,k of size 2n × 2n × 2n, which comprises
8n coefficients stn - 2,k(u,v, l) for u, v, l = 0,1 and t = 1, 2, …, 8n−1;

Step 3. Unite coefficients of same frequency (u, v, l) from each level p = 0, 1,
…, n − 1 from all pyramids into corresponding spectrum sub-tensors Sk(1) of size
�M /2n� × �N/2n� × �P/2n�, for k = 1, 2, …, K1;

Step 4. Transform each sub-tensor Sk(1) into the corresponding n-level 3D-
IDP/WHT pyramid comprising a sequence of spectral sub-tensors in levels p =
0, 1, …, n − 1, in accordance with Step 2;
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Step5.Unite the coefficients of same frequency (u, v, l) from level p of all pyramids
for the corresponding spectral sub-tensors Sk(2) of size

⌊
M /22n

⌋ × ⌊
N/22n

⌋ ×⌊
P/22n

⌋
, for k = 1, 2, …, K2 = ⌊

MNP/82n
⌋
;

Step 6. Divide the sub-tensor Sk(m) which corresponds to a certain branch m,
into sub-tensors Sk(m + 1) of size

⌊
M /2(m+1)n

⌋ × ⌊
N/2(m+1)n

⌋ × ⌊
P/2(m+1)n

⌋
for

k = 1, 2, …, Km+1 = ⌊
MNP/8(m+1)n

⌋
;

Step 7. Stop the dividing of sub-tensors Sk(m+ 1) and cut-off the corresponding
decomposition branches for the cases, when at least one of the following 4 conditions
is satisfied:

– at least one of their dimensions is equal to 2;
– they are built of spectral coefficients, equal to zero;
– they are built of spectral coefficients, whose modules are lower than a predefined

threshold value;
– they are built of coefficients with spectral frequencies, in which is concentrated

the main part of the noise energy, in correspondence with the accepted statistical
model for their distribution (respectively—the value of the relation signal/noise).

Step 8. Go to step 8 after the division of all decomposition branches is finished.
Else, each branch corresponding to the sub-tensor Sk(m+ 1) which does not satisfy
at least one of the conditions from Step 7, is not cut-off and for it are executed
sequentially steps 1–5 by analogy with the processing of the input tensor, X;

Step 9. End.
As a result of the execution of the algorithm, presented above, is obtained a

truncated tensor decomposition in the spectrum domain of 3D-WHT, from which
the input tensor X could be restored with a predefined accuracy. The number of the
3D-AIDP/WHT levels is chosen in the range 2–4 depending on the data, contained
in the input tensor (for example, a video sequence, a group of multispectral images,
X-ray images, etc.). The so described algorithm could be also applied in the cases
when instead of 3D-WHT is used some other famous deterministic 3D transform,
for example, DCT, DST, DHT, etc.

3.4 Analysis of 3D ABIDP/WHT Properties

The main objective at which the 3D-ABIDP is aimed, is to enhance the efficiency
of the use of the correlation between tensor elements, so that to achieve maximum
energy concentration into minimum number of spectrum coefficients. The branched
tree-like decomposition based on the 3D-ABIDP/WHT, differs from 3D-IDP/WHT
in the following:

• it ensures better decomposition efficiency for tensors of large size, due to the low
CC of 3D-RIDP/WHT pyramid for small number of levels (n = 2/4), used to
transform each sub-tensor (decomposition branch);
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• it ensures higher energy concentration in the spectrum sub-tensors of reduced size
(branches of the tree-like structure), built by the spectrum coefficients of same
spatial frequency (u, v, l).

The properties of 3D-ABIDP/WHT depend on the configuration of the truncated
tree, which represents the input tensor. The number of the cut-off tree branches grows
together with the energy concentration in the retained branches (respectively—the
retained spectrum coefficients). The energy concentration is highest in the group of
retained spectrum coefficients with spatial frequency (0, 0, 0) in level p = 0 of each
3D-IDP/WHT which represent the corresponding sub-tensor. The sub-tensors built
of such coefficients, are copies of the input tensor (the root of the tree), but their size
is reduced.

The use of the new 3D-WHT decomposition with frequency-ordered transform
matrices leads to additional concentration of the tensor energy into small number
of spectrum coefficients in the initial levels of each inverse pyramid. The degree
of the tensor energy concentration in selected spectrum coefficients depends on the
correlation between its elements.

One important property of the non-negative tensor decomposition through adap-
tive 3D-BIDP/WHT, is the low computational complexity. The detailed analysis
given in [17] proves that the CC of 3D-RIDP/WHT (which is the basic building unit
of the branched adaptive pyramidal decomposition) is lower than that of the famous
3D orthogonal transforms: DFT, DHT, DCT, DWT, CDT and SDT.

TheCCof 3D-BIDP/WHT is defined by the product of the CC for 3D-RIDP/WHT
in accordance with Eq. (3.13), and the number of the branches in the full tree-like
structure from Eq. (3.16), i.e.:

O3D−BIDP/WHT(n) ≈ 8n × 2.5n × NB = 8n × 22.8 n × MNP. (3.17)

The value of O3D−BIDP/WHT for the case when the 3D-BIDP/WHT is based on the
3D-RIDP/WHT (whose CC is the lowest, compared to the famous deterministic 3D
orthogonal transforms), is minimum too.

The adaptation of 3D-ABIDP/WHT toward the values of the tensor elements and
the reduction of the part of the coefficients of the basic 3D-RIDP/WHT permits
significant reduction of the branches in the tree-like structure after the “truncation”.
In result is achieved lower CC of the decomposition, compared to that of the full
tree, defined by Eq. (3.17).

3.5 Conclusions

In this work is offered a new approach for adaptive hierarchical decomposition of
third-order tensors in the spectrum area of 3D-WHT, which has higher efficiency in
respect of the tensor energy concentration into a small number of spectrum coeffi-
cients, and together with this, ensures lowCC. These advantages of the offered tensor



60 R. Kountchev and R. Kountcheva

decomposition open many possibilities for its application in various areas, such as:
compression of sequences of correlated images, improvement of their quality through
filtration and contrast enhancement, analysis and pattern recognition, accelerated
search in databases of tensor images, analysis of multidimensional tensor signals,
etc.

The future development of the offered decomposition is aimed at the investigation
of the possibilities for its application in the statistical orthogonal transforms (the
tensor KLT, and SVD), and also, in the neural networks with deep learning, for the
optimization of the tree-like structure truncation.
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