
Chapter 13
Density Calculation of Pseudo Breast
MRI Based on Adversarial Generative
Network

Yuanzhen Liu, Wei Lin, and Yujia Cheng

Abstract In this paper is proposed a method for mammographic percentage density
(PD%) calculation from reconstructed pseudo MRI from real breast MRI. Firstly,
the mammography and real breast MRI data were collected from the same women
in one year. Then, a direct mapping model was constructed from mammographic to
another breast MRI by Gan, and we called the generated MRI pseudo breast MRI.
Secondly, a U-Net was used to segment the ROI on the pseudo breast MRI, so that
the PD% can be obtained. Finally, DSC was used to evaluate the mapping model
and the U-Net, and linear regression and Pearson correlation coefficient were used
to evaluate the PD%. The results showed that the average DSC in the breast region
and fibro-glandular tissues were 0.937 and 0.853, respectively. In addition, the PD%
of the pseudo breast MRI was 2.576%, and the average accuracy between real and
pseudo breast MRI images was 0.987.

13.1 Introduction

Mammography is the first major means of breast cancer screening and plays an
important role in reducing the mortality of female breast cancer. As early as 1976,
Wolfe [1, 2] proposed that Mammographic breast density (MBD) can be used as an
independent risk factor for breast cancer. Later, studies by scholars Park and Eriksson
[3, 4] showed that gland density was a major risk factor for new and recurrent breast
cancer. Gland density is described and recorded as an important sign in ACRBI-
RADS (Breast imaging reporting and data system) classification. It is obvious that
it is very important to accurately evaluate the density of female breast glands.

In the 2017 China Cancer report, China revealed that the incidence of female
breast cancer is also the first among malignant tumors, and the risk of breast cancer
among women in big cities is nearly twice as high as that in small cities [5], and the
mortality rate is much higher than that in the United States. Although the relationship
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between gland density and the molecular and biological mechanism of breast cancer
is still being studied, breast gland density is an important factor affecting breast cancer
screening sensitivity and prevention risk prediction. Literature [6] reported that the
sensitivity of breast X-ray to detect lesions in fatty and dense glands decreased from
87 to 62.9%.Women with dense glands have a 4.64 times higher risk of breast cancer
during their lifetime than women with low gland density due to the increased density
of glands and due to their rich glandular matrix [7].

The clinical evaluation of the density of female glands has always been observed
by doctors with the naked eye, and the four grades of ABCD of glands have been
quantitatively evaluated according to the BI-RADS standard based on experience.
In the past, it was difficult to evaluate accurately and quantitatively on the two-
dimensional image of mammography. Lehman and Fieselmann [8, 9] have shown
that the quantitative evaluation of gland content by computer on breast X-ray images
is highly consistent with that by doctors’ naked eyes, which indicates that it is reliable
to use a computer to quantify glands in a clinic. Quantitative calculation of glands
is more accurate. Studies by Ng and Lau et al. [10] confirmed that no matter what
equipment was used to examine the glands of the same woman in one year, the
physical quantity of the glands was the same. Bonmat et al. [11] used the same
female breast X-ray and breast MRI examination to register 2D and 3D gland images
obtained by the two examination modes, so as to obtain accurate quantification of
glands on conventional breastX-ray images,whichmakes it possible to quantitatively
evaluate glands on breast X-ray images. The advantage of measuring breast density
by breast X-ray image lies in its low cost and wide use. Lu [12] comparing breast
MRI with breast X-ray images stated that the quantitative evaluation of glands in the
samewoman has a high consistency within a certain period of time. In order to obtain
accurate gland content, segmentation is very important. This study attempts to find
the mapping relationship between mammography and breast MRI and to establish a
mapping model between mammography and breast MRI. At present, there is little
similar work in the literature; firstly, the breast x-ray image is mapped to the pseudo
breast MRI image through the mapping model.

13.2 Material and Methods

The proposed method for calculating mammographic PD% consists of the following
core steps:

a. Preprocessing of mammographic images about the breast;
b. Reconstruction of mammographic image based on real breast MRI.
c. ROI segmentation and PD% calculation.

MRI data were taken from more than 500 patients at different times in a year,
with an average of more than two times per patient. The mammography data used
in this experiment were synthesized by breast MRI images mentioned above. Real
breast MRI data in this study were all obtained from open source. Breast MRI was
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performed on 1.5-T scanner (signa, GE Healthcare, Milwaukee, WI) with a bilateral
phased array breast coil. Approximately 120 + cases were sorted out from the data
collected, each of which contained 60 slices.

13.2.1 Preprocessing of Images About the Breast

During preprocessing of medical images, low-quality images were manually elimi-
nated, so that the adverse impact brought by the original image on themappingmodel
could be evaded. The breastMRI imageswere denoised byCBDNet, designed byKai
Zhang’s team for real photograph denoising in 2019 [13–15]. It is mainly composed
of two parts, one is the noise generation network, which generates an estimated
noise image from the input; and the other is a U-Net denoising network (Fig. 13.1).
In CBDNet, the original image and noise image predicted by the noise generation
network were sent into the second network for denoising.

In order to achieve CBDnet denoising, it was necessary to denoise the original
breast MRI manually to create a dataset. In our study, a professional software to
view and process medical images (Radiant DICOMViewer) was used to denoise the
original breast MRI images. The prepared dataset was then substituted into CBDNet
inputting, and the denoising outcome was shown in Fig. 13.2.

There were 60 slices in the breast MRI dataset, containing information about
the entire breast. The mapping model between mammography and breast MRI was
implemented byGenerativeAdversarial Networks (GAN).Only 12 breastMRI slices

Fig. 13.1 The structure of a CBDNet
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Fig. 13.2 Denoising
outcome of CBDNet: a
original breast MRI image
and b the same MRI images
denoised by CBDNet

(a)                                          (b)

Fig. 13.3 An example of mammography image constructed with breast MRI: a 12 slices of breast
MRI and b the constructed mammography image

were selected for one MRI sample, and they must be physically continuous and as
close to the breast center as possible, which was set to exhibit a linear decrease along
with its slice number, so as to imitate the attenuation of X-ray energy inside human
body during medical X-ray imaging. Breast MRI slices and a sample mammography
image are shown in Fig. 13.3.

13.2.2 Construction of the Mapping Model
from Mammography to MRI

In this study, we try to generate several breast MRI slices from one mammography
image by a mapping model, and GAN was a good tool to realize that [16]. In our
model, we planned to set mammography images as inputs, and the output (target) was
designed to be 12 breast MRI slices. For GAN, pix-to-pix was a typical one-to-one
correlation in previous researches [17], which successfully tackles the problem of
realized one-to-one image transformations.

Parameters to generate our GAN went as follows: input dimension was one (for
mammography), the output dimension was 12 (for 12 breast MRI slices). When
generating DCGan [18], the input was a small dimension of the noise data, and the
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Fig. 13.4 Generator network

target image was output by sampling and increasing dimensions on the convolution
layer. Procedures of dimensional reduction and increase correspond to encoding and
decoding in the encoder [19], and the generator network is demonstrated in Fig. 13.4.

For the discriminator network, its parameters went as follows: input dimension
was 24 (12 real or pseudo breast MRI plus 12 real MRI images), and the output
dimension was one, which represented the probability of all the current input. The
structure of our discriminator network is shown in Fig. 13.5.

Based on the GAN structures, binary cross-entropy loss function was selected
to describe the generator and discriminator networks. The prepared mammography
and breast MRI images were put into the GAN network for training, and Fig. 13.6
illustrates the outcome after 20,000 times of alternating training between the two
networks.

Fig. 13.5 Discriminator network
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Fig. 13.6 Outcome of applying mapping model on breast MRI: a real breast MRI and b pseudo
breast MRI generated by mapping model

13.2.3 ROI Segmentation and PD% Calculation

In this study, U-Net was used to segment breast regions and fibro-glandular tissue
from breast MRI for further PD% calculations. Mask data was needed for training U-
Net to automatically achieve such operations, and we used a software called Labelme
to create mask datasets (Fig. 13.7). The K-means algorithm was used to realize
binarization for the fibro-glandular region, which were implemented as follows [20]:

a. K cluster centers were randomly initialized.
b. While the centers of K clusters moved:

I. Calculate their distances to reach all samples.
II. Separate the samples by their nearest clusters.
III. Recalculate cluster centers.

Repeat this process until centers didn’t move anymore.

c. And the results were output.

Fig. 13.7 Structure of the U-Net
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Fig. 13.8 Outcome of U-net segmentation: a original breastMRI, b breast region, c fibro-glandular
tissue region, and d binarization result from

The region reflecting the fibro-glandular tissuewas separated from the background
withK-means algorithm, andK= 2. The segmentation outcome is shown in Fig. 13.8.

FGT% is defined as the relative volume percentage of fibro-glandular tissuewithin
the breast, and it is calculated as:

PD% = FGT% = |FGT |
|Breast| × 100 (13.1)

13.2.4 Validation

The effect of U-Net segmentation on breast and fibro-glandular tissue was evaluated
by the DSC difference between regions obtained by manual definitions and U-Net,
which was a common parameter for this application. It will directly affect the PD%
and the evaluation results of our mapping model, taking U-Net segmentation results
on breast region as an example.

s = 2|A ∩ B|
|A| + |B| (13.2)

where A was the manually defined breast region and B was the breast region after
U-Net segmentation. The closer the DSC is to 1, the better effect U-Net segmentation
produces.

PD% values were calculated for both pseudo and real breast MRI images to eval-
uate the pseudo’s effectiveness. Linear regression and Pearson’s correlation coeffi-
cients were used to evaluate the correlation of PD%, and the calculation was carried
out by the following equation:

r = N
∑

xi yi − ∑
xi

∑
yi

√
N

∑
x2i − (

∑
xi )2

√
N

∑
y2i − (

∑
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(13.3)



182 Y. Liu et al.

where x is the PD content of real breast and Y is the gland content calculated by the
algorithm.

In order to evaluate the stability of our method of calculation, identical procedures
were carried out on the same patient at different times in a year. The smaller the
numerical changes of breast PD% obtained were, the more stable the calculation
method was.

13.3 Experiments and Results

13.3.1 Evaluation of the Mapping Model
from Mammography to Breast MRI Images

DSC was used to evaluate the spatial consistency between real and pseudo breast
MRI images as a reflection of the mapping model’s performance. In one experiment,
breast and fibro-glandular tissue regionswere segmented from30 random real images
of their corresponding pseudo ones, followed by subsequent calculations for mean
DSC. A total of ten experiments were conducted, and the results are shown in Table
13.1. The overall mean DSC was 0.937 with a mean standard deviation of 0.0069
(mean standard deviation) for the breast region in real and pseudo MRI images. For
real and pseudo fibro-glandular tissue regions, the overall mean DSC was 0.8509,
and the mean standard deviation of 0.039. Therefore, we could conclude that our
mapping model is significantly less effective for the fibro-glandular tissue.

Table 13.1 DSC calculations of breast and fibro-glandular tissue in real and pseudo MRI images

No Breast region Breast fibro-glandular tissue

Average Max Min Standard
Deviation

Average Max Min Standard
Deviation

1 0.938 0.956 0.929 0.008 0.836 0.904 0.761 0.049

2 0.938 0.950 0.928 0.007 0.839 0.883 0.773 0.032

3 0.936 0.956 0.921 0.010 0.871 0.924 0.797 0.035

4 0.937 0.948 0.928 0.006 0.851 0.911 0.755 0.047

5 0.936 0.954 0.919 0.012 0.839 0.885 0.773 0.037

6 0.941 0.956 0.931 0.006 0.844 0.884 0.791 0.030

7 0.935 0.950 0.924 0.009 0.857 0.911 0.777 0.044

8 0.938 0.953 0.925 0.008 0.857 0.899 0.796 0.035

9 0.938 0.955 0.924 0.008 0.870 0.924 0.815 0.036

10 0.936 0.953 0.924 0.008 0.845 0.911 0.764
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Table 13.2 PD% calculations of breast and fibro-glandular tissue in real and pseudo MRI

No Real PD% Pseudo PD% |Error| (%) Max error (%) Min error (%) Average error
(%)

1 57.01 53.64 3.37 5.97 0.28 2.576

2 66.49 66.21 0.28

3 20.10 17.37 2.73

4 36.36 35.39 0.97

5 31.65 27.72 3.93

6 10.45 9.87 0.58

7 25.80 23.41 2.39

8 68.38 67.17 1.21

9 13.70 9.37 4.33

10 36.91 31.12 5.97

Fig. 13.9 Linear regression
results for PD% between real
and pseudo MRI

13.3.2 Evaluation of the Breast PD%

Table 13.2 showed the breast PD% of ten data in the test dataset, and the maximum,
minimum, and average errors of PD% were 5.97%, 0.28%, and 2.576% between
real and pseudo MRI images, respectively. In order to further explore the stability
for PD% calculation, 20 patients were randomly selected from the data set, and
their breast PD% values were calculated based on the method mentioned with linear
regression and the results are shown in Fig. 13.9.

13.4 Discussion

In this study, a GAN-based mapping model between mammography and breast MRI
was constructed, providing a new way to calculate PD%. It can directly transform
mammography images into pseudo breast MRI, and then segment the breast and
fibro-landular tissue regions, enabling easy calculations for the breast PD%.
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Calculation results for DSC verify the effectiveness of our model. In terms of
breast PD% calculation, the breast density and error analysis show that real and
pseudo breast MRI images are highly consistent and correlated, suggesting actual
feasibility for 3D reconstruction results from mammography to be applied as MRI
images in actual practice.

Further efforts could focus on building a more promising mapping model to
generate pseudo breast MRI images with higher quality, so that a more accurate
fibro-glandular tissue segmentation could be achieved.
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