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Abstract. Matching lists of addresses is an increasingly common task
executed by business and governments alike. However, due to secu-
rity issues, this task cannot always be performed using cloud comput-
ing. Moreover, addresses can arrive with spelling errors that can cause
non-matches or ‘false negatives’ to occur. Our proposed framework,
PostMatch, provides a locally-executed method for address-matching
that combines the open-source ‘Libpostal’ address-parsing library with
our ‘postparse’ post-processor code and machine-learning. PostMatch
provides improved parsing accuracy compared with Libpostal alone,
approaching 96.9%. The matching process features the Jaro-Winkler edit
distance algorithm together with XGBoost machine-learning to achieve
very high accuracy on public data. PostMatch is open-source (GPL3
licensed) and available as R script code on Github.
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1 Introduction

The need to match two lists of addresses can be a common occurrence in
many organisations. For example, it could be to link or merge two customer
databases from different retail store records or to identify fraud by matching
addresses entered into application forms with those on a known ‘black list’.
However, address matching is often more complex due to the nature of the data
itself. Address components, such as street name and town/suburb name, can be
swapped or misaligned. This complexity can be the result of clients or customers
c© Springer Nature Singapore Pte Ltd. 2021
Y. Xu et al. (Eds.): AusDM 2021, CCIS 1504, pp. 136–151, 2021.
https://doi.org/10.1007/978-981-16-8531-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8531-6_10&domain=pdf
https://doi.org/10.1007/978-981-16-8531-6_10


PostMatch: A Framework for Efficient Address Matching 137

from different regional, cultural and/or language backgrounds entering address
components differently into the same form. Added complexity can also arise from
address components that have been misspelt or are incomplete. Moreover, the
larger the address lists that are to be matched, the more system resources and
search performance become a concern. Cloud computing services can be used to
overcome many of these issues, however, there are many applications, such as law
enforcement, where a locally-executed solution is required. This local-processing
requirement could be due to the nature of the address lists or cyber security
concerns with using online resources. As a result, matching the addresses from
two large lists both accurately and efficiently can create significant challenges.

Other methods have been suggested previously to tackle some of these issues.
For example, Christen and Belacic [6] developed an automated probabilistic
solution employing Hidden Markov Models (HMMs) to guide the normalisation
and parsing process. Address matching is a specific application of ‘record linkage’
theory pioneered by Fellegi and Sunter [8]. More recently, Koumarelas, Kroschk,
Mosley and Naumann [11] investigated methods for combining address geocoding
with a similarity measure to maximise address matching accuracy.

This paper introduces a machine-learning based address-matching framework
called ‘PostMatch’1 to address these issues using locally-executed methods. The
framework, shown in Fig. 1, consists of three key sections: parsing, normalisation
and matching. The parsing process identifies and separates various address com-
ponents, normalisation modifies those address components to fit in with agreed
standard identifiers and features, and matching detects addresses common to
both lists.

The research contributions of this paper include:

– identification of eight key address fields that summarise Australian addresses,
– a post-processing method called ‘postparse’ that improves the accuracy of the

Libpostal open-source address parsing and normalisation library,
– the combination of machine-learning and string edit-distance measures to

deliver high address-matching accuracy, and
– experimental evaluation of the proposed framework on public address data.

Although Australia is the example focus of this work, the methods used here
could be applied to other national address formats following similar principles.

2 Related Work

Modern address matching can be traced back to work into ‘record linkage’ theory
by Fellegi and Sunter [8], who applied a mathematical approach to the problem
of matching two records using the records’ components by comparing them as a
vector of element pairs. The approach determined three possible matching labels.
The first two are ‘link’ (indicating the two records match) and ‘non-link’ (do not
match). Both of these were considered as definitive or ‘positive’ decisions. The

1 https://github.com/darrenyatesau/postmatch.
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third level, ‘possible link’, occurs when the match fails to meet the preconditions
for either of the two positive outcomes. The aim is to increase the likelihood of
a ‘link’ or ‘no link’ result, whilst minimising a ‘possible link’ outcome, which
would require more expensive resources to link manually.

While record linkage has been well researched since then [9,10,14,16], Fellegi
and Sunter identified initially that the accuracy of record matching would be
directly affected by the completeness and accuracy of the initial records [8].
Within the specific area of address matching, these two issues noted by Fellegi
and Sunter appear as missing or misspelt address fields. Thus, research has
focused on achieving high matching accuracy in applications where address data
is incomplete or contains errors that would ordinarily compromise that accuracy.

Christen and Belacic [6] tackled these issues of address cleaning and stan-
dardisation or ‘normalisation’ through hidden Markov Models (HMMs). They
used this type of finite state machine in an attempt to identify various compo-
nents from address strings. It also featured the Australian Geocoded-National
Address File (G-NAF) database [6] as a verification source to determine that
addresses being matched were genuine. More broadly, their approach features a
four-step process involving 1) address cleaning or normalisation, 2) tagging of
address component fields, such as street, town, state and so on, 3) segmenting
the tag lists into appropriate output fields using the HMM and 4) verification
against the G-NAF database.

A popular open-source software solution for address parsing and normalisa-
tion on a global scale is ‘Libpostal’ [1]. This library executes within Linux-based
computer systems and supports application programming interfaces (APIs) for
several programming languages, including Python and R. Libpostal authors
claim it can support addresses from around the world. The Libpostal library
offers two essential functions: 1) normalisation, to standardise an address using
commonly-agreed and region-specific descriptors and features, and 2) parsing,
to separate the address into individual components.

Even with address records parsed and normalised, the issues remain of how
to accurately determine whether a pair of addresses are ‘matched’, ‘not matched’
or ‘maybe matched’. In particular, there has been notable research into quantita-
tive methods for determining the extent of matching between pairs of text-based
records or ‘strings’, with numerous string-similarity measures developed, includ-
ing Levenshtein [12] and Jaro-Winkler [15]. String-similarity measures quantify
the steps or ‘cost’ required to transform one text string to another and are
commonly used in record linkage applications.

By contrast, Arasu, Ganti and Kaushik developed a more generalised alter-
native [2]. Their work builds upon a concept of ‘similarity join’, whereby two
databases are tested by each combination of record pairs against a similarity mea-
sure function, with those pairs that exceed a preset threshold being recorded.
They acknowledged that despite the availability of numerous similarity or ‘dis-
tance’ functions, no one measure excels in every application. Their solution
expanded the similarity join into a more extensive set of joins featuring mul-
tiple similarity functions to boost accuracy.
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Practical applications of similarity measures have included matching health
records. Bell and Sethi [3] developed a matching framework that also covers pars-
ing and normalisation. A crucial part of the normalisation process was incorpo-
rating the ethnic origins of patients, to account for how patients from different
backgrounds enter their name details. Their record-matching process features a
composite matching formula that included string similarity and phonetic match-
ing.

Cohen, Ravikumar and Fienburg [7] experimentally tested a number of com-
mon string distance measures available in an open-source Java programming
language toolkit called ‘SecondString’. One of these distance measures tested
was the Levenshtein string distance function [12]. In broad terms, the function
counts up the number of character transitions to move from one string to another.
These transition options include insertion, deletion and substitution. Unlike the
standard Hamming distance measure, the Levenshtein function handles strings
of different length, an important factor for address matching.

We also draw attention to other experimental results in [7]. A test of 11
datasets comparing a series of distance measures revealed that, on average, the
standard Levenshtein distance measure performed lower than the other measures
on ten of those datasets. However, the one dataset it did excel on among these
tests was a synthetic ‘Census’ dataset, consisting of names and addresses. More-
over, the results were further improved by applying the Winkler variation [15]
to the Levenshtein measure. This variation aims to take into account common
prefixes in strings by weighting them more favourably.

A more common non-scaled variation of the Levenshtein measure is the
Damerau-Levenshtein (DL) function [13], which, in addition to insertion, dele-
tion and substitution, includes the option of character transposition, or swapping
of two adjacent characters, as part of the edit distance calculation. Each trans-
formation carries an equal penalty or weight of one and the series of transforma-
tions that converts a string to the other string with the fewest steps becomes the
edit distance for those two strings. However, work by Christen [5] on matching
personal names showed that while the DL measure generally performed well in
testing, alternatives, including the Jaro-Winkler (JW) algorithm [15], outper-
formed DL, confirming earlier results [7]. The JW measure has similarities with
DL in that it accounts for insertion, deletion and transposition on characters.
However, it differs by taking into account the number of characters in common
between the two strings in addition to the number of transpositions relative to
the length of the longer string. The tests [5] show that not only did the JW
algorithm outperform DL in terms of matching accuracy in all tests, JW also
processed the same number of tests at approximately twice to three times the
speed of DL.

Thus, as noted, there may well be numerous distance measures, but it is
apparent that no one measure is perfect for every application. However, while this
might appear to strengthen the case for incorporating multiple edit measures,
such as a set-similarity join, to cover all eventualities, the extra cost in time
required to process these measures all but ensures there can be no gains without
losses.
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The research reported here shows that machine-learning techniques can be
used to either enhance or replace the traditional rule-based solutions that are
commonly applied to record linkage. One of the more recent machine-learning
developments is XGBoost [4]. It is a gradient tree-boosting algorithm boasting
high scalability, making it well suited to tasks such as address matching, where
the number of addresses required to be checked may be considerable. It also offers
high performance in single-machine use. To our knowledge, no research has yet
been published into the efficacy of XGBoost in address-matching applications.
Moreover, the combination of distance measures and XGBoost machine-learning
forms one of the novel contributions of our PostMatch framework, which we will
now cover in depth in the next section.

3 The PostMatch Framework

Our proposed PostMatch framework for efficient address matching is shown in
Fig. 1. It consists of three key sections: 1) parsing, using the Libpostal open-
source library, 2) normalisation, provided by our ‘postparse’ post-processing
method, and 3) list-matching, involving set-similarity calculations based on edit
distance and machine-learning algorithms.

Fig. 1. The PostMatch address-matching framework

The framework begins with two separate address lists in the form of text
files, where each address is a single string of text, one address per line. At first,
the two lists are processed separately by parsing each address into component
fields and then by normalising to reduce variations of values within fields. After
that, address pairs from the two lists are compared using a combination of Jaro-
Winkler edit-distance [15] and XGBoost machine-learning [4] algorithms. If an
address pair is classed as ‘matched’ (class value of ‘1’) or ‘maybe-matched’ (2),
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the class value and two addresses are combined to form a new record in the
results matrix. After all address pair combinations have been tested, the results
matrix can be displayed to the user.

3.1 ‘Site’ and ‘Locality’ Fields in Addresses

With Australian postal addresses as a focus, our research has identified eight
descriptor fields that can summarise all postal addresses within Australia’s states
and territories. These descriptors and their abbreviations are shown in Table 1.
Moreover, these eight fields can be divided into two groups. The ‘site’ group,
consisting of Fields 1 to 4, indicate an individual site, such as a building or
subsection of a building (as in a level or unit/apartment, or even a post office
box). The ‘locality’ group, featuring the four remaining fields, covers progres-
sively larger groups of sites, from streets to towns and regions. A fundamental
differentiator between the two groups is that while the ‘site’ group fields are, in
some respects, optional (and generally mutually exclusive, in the case of PBox
and HseNo fields in Australian addresses), the final three fields of the ‘locality’
group - Town, State and PCode - are essential to ensure accurate postal location
identification. This can be seen in the three fictitious but standards-compliant
Australian addresses examples shown in Fig. 2.

Table 1. The eight descriptor fields for identifying all Australian postal addresses,
including abbreviations, content type and assigned group in our research.

Field no Address descriptor Abbrev’n Content type Group

1 Post Office (PO) Box PBox Alpha-numeric Site

2 Apartment/Unit number Unit Alpha-numeric Site

3 Building Level number Level Alpha-numeric Site

4 House/Site number HseNo Alpha-numeric Site

5 Street name Street Alpha-numeric Locality

6 Suburb/Town name Town Alpha-numeric Locality

7 State name State Alpha-numeric Locality

8 Postal code PCode Numeric (4-digit) Locality

3.2 Address Parsing

Addresses can be described as region-specific location descriptors that follow
local conventions or customs. Thus, it is not only important to identify the key
address components, but also to identify where those components occur within
an address. The general order for Australian addresses is in increasing order of
scale, that is, building or ‘site’, street, town, region/state. The ‘postal code’ field
is usually associated with the ‘town/suburb’ field, though in Australia, these two
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Fig. 2. An example of three (fictitious) compliant Australian-standard addresses. Each
line in black is an address and the text in blue shows various fields in addresses.eps

do not always form exclusively distinct pairs and it is not uncommon for smaller
localities to share a common postal code. By contrast, some towns may also
have more than one post code. Examples of valid (albeit fictitious) addresses
and their fields are shown in Fig. 2. The task of separating these components
into identifiable fields is referred to as ‘parsing’. The complexity of this task
arises from the need to be able to recognise the various fields simply from the
address format itself. The role of parsing within the PostMatch framework is to
separate the address components appropriately into the eight component address
fields (see Table 1), using Libpostal [1], an open-source address normalisation and
parsing library.

3.3 Normalisation

Once the address fields have been identified and separated, each field has to be
normalised for common extensions and abbreviations to improve matching accu-
racy. The normalisation process firstly reduces redundant information, such as
‘PO Box 123’ to simply the PO Box number itself. This removes the potential
for post office prefixes to causes non-matches for matched fields. However, in
Australia, normalisation should also handle a common forward-slash ‘/’ abbre-
viation typically used to separate apartment/unit from building site descriptors.
For example, ‘12/34 qwerty st’ is a common short-form representing ‘Unit 12,
site or building number 34, Qwerty Street’. Another example is the ‘street’ field,
where the word ‘street’ itself is often abbreviated to ‘st’, ‘avenue’ to ‘ave’ or ‘av’,
and ‘road’ to ‘rd’. Moreover, Australia’s eight states also have common abbrevi-
ations, such as ‘NSW’ for New South Wales, ‘QLD’ for Queensland and so on. A
common approach is to turn the name-based fields into lower-case and expand
all abbreviations to their root form. This normalisation can be achieved through
look-up tables or simple rule-based substitutions.

Thus, the task of normalisation is to process abbreviations and other common
short-forms back into a set of consistent alphanumeric site descriptors to simplify
the matching process and improve matching accuracy. This is the task of our
‘postparse’ post-processing method (see Sect. 3.4) that is applied to the address
records after parsing is complete.
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3.4 The ‘Postparse’ Post-Processing Method

While Libpostal is capable of handling a wide array of address formats from
countries around the world, a number of issues were observed during testing
with regards to incorrect normalisation of certain Australian-specific address
components. For example, the Australian state abbreviation ‘WA’, commonly
used for ‘Western Australia’, would expand to ‘Washington’, one of the United
States. It also incorrectly handled addresses for Northern Territory, the Libpostal
normalisation expanding the short-form ‘NT’ to ‘Intermediary’, as well as the
‘street’ reduction, ‘st’, to ‘saint’. Further, it did not recognise the forward-slash
‘/’ short-form for unit or apartment, instead replacing it with a space character.
Similar issues with Libpostal have also been identified by Koumarelas et al. [11].

Our method for overcoming parsing and normalisation issues in Libpostal is
to identify patterns of inconsistency and to correct them through a separate pro-
cess after the event, commonly referred to as ‘post-processing’. The PostMatch
framework achieves this through an R script called ‘postparse’ that slots into
the PostMatch framework following completion of address parsing by Libpostal.

In general, the traditional workflow process would be to use Libpostal to first
normalise the address to ensure consistent field values, then parse the address
into its component fields. However, due to the normalisation inconsistencies with
Libpostal, experiments in Sect. 4 will show that it is possible to achieve greater
levels of matching accuracy by using Libpostal as a parsing agent only and apply-
ing a targeted normalisation technique afterwards. As a result of those exper-
iments, the ‘postparse’ post-processing method applies a number of corrective
procedures to a parsed address, as follows.

Searching Libpostal ‘suburb’ and ‘city’ Output Fields. During our exper-
iments on the parsing process, it was noted that Libpostal outputs the parsed
Australian town/suburb value in either the ‘suburb’ or ‘city’ fields, but not in
both. The results of experiments in Sect. 4 show that overall parsing accuracy
is improved by searching both of these output fields for the PostMatch ‘Town’
field value, regardless of whether the value is misspelt or not.

Unit/Building Number Deciphering. On testing with addresses featuring
the forward-slash unit/building number abbreviation, it was also noted that
Libpostal’s normalisation process would simply replace the forward-slash with
a space, for example, ‘12/34’ (i.e., unit 12 of building/house no. 34) would
become ‘12 34’ and this value would be incorrectly assigned to the Libpostal
‘house number’ output field. However, in contrast, bypassing Libpostal normali-
sation for parsing only resulted in the original forward-slash notation value being
assigned to the ‘house number’ output field. As a result of this behaviour, ‘post-
parse’ checks the house-number field for a forward-slash character, splitting the
values either side and assigning them to the appropriate fields. In this way, both
unit number and house/building number can be identified correctly.
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Misspelt Town Field-Parsing Correction. As will also be noted in Sect. 4,
Libpostal loses accuracy when the ‘town’ name in an address is misspelt. Further,
if the ‘town’ name is misspelt and contains two words, such as ‘North Strathfield’,
Libpostal can mis-parse both the town and street fields, adding all but the last
word of the ‘town’ name to the end of the ‘street’ field value. For example, ‘123
railway parade clareview heghts’ would be parsed with {street = ‘railway parade
clareview’} and {suburb = ‘heghts’}. The postparse post-processor handles this
by determining if a known street suffix (e.g. street, parade, drive etc.) is the last
word in the ‘street’ field value. If not, the ‘street’ field is searched for a known
suffix, with all words following the suffix removed and added to the start of the
‘suburb’ field.

Normalising State Names. It has been observed that Libpostal can randomly
alternate between the full Australian state names and their common abbrevia-
tions depending on the condition of the address, for example, ‘victoria’ becomes
‘vic’ or vice versa. However, in the many examples seen, the state is always cor-
rect, even if the value is not consistent between full and short names. Neverthe-
less, the difference between full and short names technically constitutes different
strings and would be seen as ‘not matched’ by strict edit distance measures.
To cater for this behaviour, PostMatch checks for inconsistencies in parsing and
reverts any full state names back to their three-letter standardised abbreviations
for Australian states and territories.

State Field Value Spelling Correction. Given that Australia only has eight
states and territories, PostMatch provides spelling correction using a combina-
tion of n-grams and the Damerau-Levenshtein (DL) edit distance [13]. If Lib-
postal fails to provide a valid ‘state’ output value, the entire address string is
searched as a series of n-grams (n = 1,2,3). The state name that has the lowest
edit distance to one of the address n-grams is then chosen. The need to allow
for values up to n = 3 in n-grams is to allow for the state names ‘australian
capital territory’ and ‘new south wales’ as possible address ‘state’ field values.
An example of this is shown in Fig. 3.

3.5 Address Pair Matching

Once the addresses have been parsed and normalised, they are ready to be match-
checked. Taking a leaf from Fellegi and Sunter [8], PostMatch employs a combi-
nation of Jaro-Winkler edit distance [15] and XGBoost machine-learning [4] to
compare addresses in two lists, identifying addresses that appear in both lists as
‘matched’ or ‘maybe matched’. The process involves first taking an address pair
to be checked and converting it into an edit difference record. This is done by
taking a corresponding field from each address and calculating the edit distance
or cost for transitioning from one field value to the other. The edit distance
becomes the attribute value for that field pair in the new record. Thus, the
eight fields of each address are combined to form eight edit-distance attributes



PostMatch: A Framework for Efficient Address Matching 145

Fig. 3. Using n-grams and DL edit distance to correct state spelling errors.

in the new record. Once all eight address field pairs have been processed and the
new record completed, it is tested against a machine-learning model previously
learned from a training dataset of known address pair records. The predicted
result of the model determines whether the current address pair is matched,
not-matched or maybe-matched.

A training dataset containing class-labelled records is required to train the
machine-learning model. In practice, this would be obtained through expert
domain knowledge or from an existing reference dataset, depending on the appli-
cation. However, as an existing labelled training dataset was not available during
research, Sect. 4 will now describe the experimental phase, including the devel-
opment of a synthetic training dataset from a public address data source.

4 Experimental Evaluation

4.1 Data and Experimental Environment

A public dataset, the Australian Geocoded-National Address File (G-NAF) [6],
is used to evaluate the performance of our proposed PostMatch framework. G-
NAF is an Australian government initiative to provide an open database of all
physical addresses in all eight Australian states and territories2. It contains over
15 million addresses and Table 2 shows its statistics.

All experiments reported in this work were conducted on a desktop PC with
a 3GHz Intel quad-core Core i5 CPU and 16GB of RAM, running Xubuntu
16.04.4 operating system and RStudio development environment. The Libpostal
library was locally compiled from source code downloaded in March 2019.

2 G-NAF: https://data.gov.au/data/dataset/19432f89-dc3a-4ef3-b943-5326ef1dbecc.

https://data.gov.au/data/dataset/19432f89-dc3a-4ef3-b943-5326ef1dbecc
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Table 2. Details of the Australian Geocoded-National Address File (G-NAF) version
201908 (August 2019).

Australian state Address count Street count Town count

New South Wales 4,703,553 180,594 4,716

Victoria 3,838,006 190,472 2,997

Queensland 3,188,961 157,900 3,529

Australian Capital Territory 241,000 8,251 142

Tasmania 344,231 18,952 781

Western Australia 1,532,860 82,245 2,041

South Australia 1,153,802 72,590 2,716

Northern Territory 112,877 8,204 1,096

TOTAL 15,115,290 719,208 18,018

4.2 Experiments on Address Parsing

To begin, a set of complete addresses were derived from G-NAF, totalling a
maximum of 200,000 for each state, for a total in excess of 1.5 million. From this,
a test dataset of 100,000 addresses were randomly selected. Excess information
was removed and each address was formed into a record of eight fields noted in
Table 1. After that, eight fields of each address were concatenated into a single
string of text. To test PostMatch’s parsing ability in the face of addresses with
spelling errors, we created a second dataset by injecting spelling errors, e.g., by
swapping a vowel in town name.

We conducted a series of seven tests to compare PostMatch with various
parsing and normalisation combinations of Libpostal. The tests are:

– Test 1: libpostal parsing. This involved using only Libpostal’s parsing routine,
with all suburb/town values being selected from Libpostal’s ‘Suburb’ output
field only.

– Test 2: libpostal parsing with ‘town’ search (libpostal-STC). During testing,
Libpostal was identified to split parsing of suburbs and towns between its
‘Suburb’ and ‘City’ fields. This test is the same as Test 1, except that the
final PostMatch ‘town’ value is selected from either Libpostal’s ‘Suburb’ or
‘City’ output fields.

– Test 3: libpostal normalisation and parsing. This test first normalises each
address using Libpostal’s normalisation routine, then parses it with Libpostal.
This test most mirrors standard Libpostal usage.

– Test 4: libpostal-State normalisation and parsing (libpostal-STATE). This
test is the same as Test 3, but allows state values to be either in the full or
short forms. This is to address the issue that, when normalising, Libpostal
inconsistently converts some state abbreviations to their full names.

– Test 5: combines Tests 2 and 3
– Test 6: combines Tests 2 and 4
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– Test 7: PostMatch (our method). This test runs our PostMatch framework,
combining Libpostal parsing with ‘postparse’ post-processing.

Results on Addresses Without Spelling Errors. The results of the seven
tests on the address dataset without spelling errors are shown in Table 3, where
our proposed method is of the highest accuracy (highlighted in bold). As pre-
viously noted, common usage of Libpostal is to enact its normalisation process
on an address first, then apply the results to its parsing engine. Comparing
the results of Test 1 and Test 3, it appears that for Australian addresses at
least, Libpostal works best when its normalisation process is not used and the
addresses are parsed directly. Moreover, the 97.9% accuracy result of Test 2 for
Libpostal-STC (searching ‘suburb’ and ‘city’ fields for the suburb value) shows
that Libpostal is capable of high-accuracy parsing. However, applying Libpostal
parsing followed by our ‘postparse’ post-processing improves the parsing accu-
racy further to 99.4%, albeit at the cost of 1:20 (i.e., 1 min 20 secs) of extra
processing time (3:05 vs 1:45).

Table 3. Experimental results on address data with no spelling errors. The best method
is highlighted in bold.

Test no Parsing Normalisation Records

matched (out

of 100,000)

Percent

matched (%)

Process time

(mins:secs)

1 Libpostal – 61,687 61.6 1:42

2 Libpostal-STC – 97,957 97.9 1:45

3 Libpostal Libpostal 31,966 31.9 2:08

4 Libpostal-

STATE

Libpostal-

STATE

47,076 47.0 N/A

5 Libpostal-STC Libpostal-STC 47,810 47.8 2:09

6 Libpostal-STC-

STATE

Libpostal-STC-

STATE

72,958 72.9 N/A

7 Libpostal postparse (our

method)

99,418 99.4 3:05

Results on Addresses with Spelling Errors. The results of the seven tests
on address data with spelling errors are shown in Table 4. These accuracy levels
are well down compared with those shown in Table 3. Moreover, introducing the
Libpostal normalisation before parsing mis-spelt addresses reduces parsing accu-
racy further still, with all results well below those of the correctly-spelt addresses
tested in Table 3 and at best, reaching only 56.1%. The most successful technique
tested is PostMatch, our combination of Libpostal parsing and ‘postparse’ post-
processing, where parsing accuracy was largely maintained at just under 97%
(Table 4, Test 7), a fall of less than 3% compared with the correctly-spelt result
of Table 3. This is in comparison to the ‘Libpostal-STC’ results, where the fall
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Table 4. Experimental results on address data with spelling errors. The best method
is highlighted in bold.

Test no Parsing Normalisation Records

matched (out

of 100,000)

Percent

matched (%)

Process time

(mins:secs)

1 Libpostal – 13632 13.6 1:50

2 Libpostal-

STC

– 74477 74.4 1:52

3 Libpostal Libpostal 11388 11.3 2:19

4 Libpostal-

STATE

Libpostal-

STATE

12487 12.4 N/A

5 Libpostal-

STC

Libpostal-STC 38303 38.3 2:19

6 Libpostal-

STC-STATE

Libpostal-

STC-STATE

56126 56.1 N/A

7 Libpostal postparse

(our method)

96920 96.9 3:30

Table 5. Experimental results on address data with field swaps. The best method is
highlighted in bold.

Test no Parsing Normalisation Records

matched (out

of 100,000)

Percent

matched (%)

Process time

(mins:secs)

1 Libpostal-

STC

– 59030 59.0 1:49

2 Libpostal-

STC

Libpostal-

STC

26793 26.7 2:16

3 Libpostal-

STC-STATE

Libpostal-

STC-STATE

40896 40.8 N/A

4 Libpostal postparse

(our

method)

59833 59.8 6:02

in accuracy from correctly-spelt (Table 3, 97.9%) to misspelt (Table 4, 74.4%) is
in excess of 23%. Thus, the small fall of PostMatch from 99.4% to 96.9% shows
the efficacy of this approach with addresses containing spelling errors.

Results on Addresses with Field Swaps. To test the robustness of different
methods, we randomly changed the order of some fields within addresses and
conducted another experiment. An example of field order change is to push the
‘Town’ field to the end of the string and move the ‘State’ and ‘PCode’ fields
closer to the front of the string. The results are shown in Table 5, which suggests
that in its current form, Libpostal (together with our postparse post-processing)
is only able to correctly parse six out of ten Australian addresses (59.8%) at
best. Moreover, PostMatch (Test 4) shows only a minor improvement in parsing
accuracy, whilst processing time has increased significantly (6:02 vs 3:30 in Test
7, Table 4) as a result of the change in field order.
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4.3 Experiments on Address Matching

Following the same approach used in Sect. 4.2, we created a dataset containing
200,000 address pairs for address matching evaluation. The address pairs are of
three classes:

– Class ‘0’: unmatched address pairs,
– Class ‘1’: matched address pairs, and
– Class ‘2’: matched address pairs with some fields changed using the same

perturbation method used in Sect. 4.2, to test the model’s ability of dealing
with misspellings and field misalignment.

Table 6. Experimental results on address matching.

Actual

Predicted Class = 0 Class = 1 Class = 2

Class = 0 33361 0 6

Class = 1 0 33300 0

Class = 2 0 55 33278

Sensitivity 1.0 0.9984 0.9998

Specifivity 0.9999 1.0 0.9992

Balanced accuracy 1.0 0.9992 0.9995

Each class covers 1/3 of the data. We split the above data into training and
test datasets in a 50:50 ratio.

With our PostMatch framework (see Fig. 1), each record of above data was
first parsed with Libpostal and processed with our postparse processing method.
After that, the Jaro-Winkler (JW) algorithm [15] was used to calculate the edit
distance between the corresponding fields of each address pair. Finally, the edit
distances of the eight address fields, together with the class label, were fed into
a XGBoost [4] model for prediction.

Results of Address Matching. The results of address matching are shown
in Table 6. The speed of the XGBoost algorithm allowed the 100,000 record-
pairs to be processed in 12.91 ms. This would enable one million record-pairs
to be processed every 130 ms, or 0.13µs per record-pair. However, this is one
million address comparisons required to compare two normalised addresses con-
taining only 1,000 addresses each. Thus, since the computational load increases
by O(n2), where n is the number of addresses per list, this task requires reason-
able levels of computing power to execute locally. Still, the XGBoost matching
component of this framework would be able to compare two normalised address
lists, each containing 100,000 records, in less than 22 min on our test quad-core
computer system.
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5 Conclusions

This paper introduced the PostMatch framework for efficient address matching
using a combination of the Libpostal open-source address parsing software and
Jaro-Winkler/XGBoost algorithms. We have identified the issues of Libpostal
and introduced a ‘postparse’ post-processing routine to improve it. Experimen-
ntal results show that the combination of Libpostal and ‘postparse’ routines
can achieve parsing accuracy of 99.4% with correctly-spelt addresses and even
96.9% with addresses featuring misspelt components. Our PostMatch framework
built with a Jaro-Winkler similarity measure and an XGBoost model achieved
near-100% matching accuracy. Nevertheless, we must also outline the areas for
improvement, including greater understanding of Libpostal’s ability to parse
addresses with varying field order, as well as addresses with missing values.

The PostMatch framework is generic, although the proposed method was
evaluated with Australia address data. We plan to confirm that our generic
method can be adapted and applied to addresses from other counties or for
other languages in future work.
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