
Parallel Nonlinear Dimensionality Reduction
Using GPU Acceleration

Yezihalem Tegegne1(B), Zhonglin Qu1, Yu Qian2, and Quang Vinh Nguyen3

1 School of Computer, Data and Mathematical Sciences, Western Sydney University, Penrith,
Australia

{19201971,18885806}@student.westernsydney.edu.au
2 J. Craig Venter Institute, La Jolla, CA, USA

mqian@jcvi.org
3 MARCS Institute and School of Computer, Data and Mathematical Sciences,

Western Sydney University, Penrith, Australia
q.nguyen@westernsydney.edu.au

Abstract. Dimensionality reduction is usually an essential step in data mining
and classical machine learning from high-dimensional data. Uniform Manifold
Approximations Projections (UMAP) is a recently developed nonlinear dimen-
sionality reduction method that is being widely applied in biomedical informat-
ics. However, the UMAP implementation is still not efficient enough for pro-
cessing the recent big omics data from biomedicine. This paper proposes and
implements a method that reduces UMAP runtime using GPU-acceleration on the
GPU-RAPIDS platform. Our experiments showed that the parallel UMAP imple-
mentation performed hundred times faster than the original UMAP implemen-
tation on a cluster computer, while maintaining the effectiveness on identifying
leukemic cells from clinical flow cytometry data.

Keywords: Dimensionality reduction · UMAP · GPU-RAPIDS · GPU · cuML ·
Flow cytometry ·Machine learning

1 Introduction

Classical data pre-processing techniques [1] have become slow for big data generated in
biomedicine and real world applications, due to both increasing data volume and high
data dimensionality. Extracting and visualizing patterns from high-dimensional big data
through traditional pairwise comparisons using scatterplots or dot plots can be inefficient
and sometimes even infeasible due to curse of dimensionality.

Dimensionality reduction methods project high-dimensional data to low-
dimensional data, usually 2D or 3D for straightforward analysis and interpretation of
patterns such as data clusters. Linear projection methods, such as Principle Compo-
nent Analysis (PCA), have been recognized as a basic yet effective method to support
high throughput cell biology [2, 3]. While the linear projection approach does not usu-
ally capture non-linear relationships which may exist in omics data [4], it can be used

© Springer Nature Singapore Pte Ltd. 2021
Y. Xu et al. (Eds.): AusDM 2021, CCIS 1504, pp. 3–15, 2021.
https://doi.org/10.1007/978-981-16-8531-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8531-6_1&domain=pdf
https://doi.org/10.1007/978-981-16-8531-6_1


4 Y. Tegegne et al.

as an early process before applying more advanced dimensionality reduction methods
[5]. Non-linear dimensionality reduction methods have recently gained popularity in
biomedical data analysis due to their ability to identify novel non-linear patterns. T-
distributed Stochastic Neighbour Embedding t-SNE [6] (or viSNE [7]) and Uniform
Manifold Approximations Projections (UMAP) [8, 9] are among the most commonly
used techniques [4, 5]. For example viSNE has been used to identify abnormal T-cell
populations in routine clinical flow cytometry data [10]. The recently introduced UMAP
has gained popularity due to its fast run time to scale to handle large numbers of cells
and dimensions [5, 9].

The non-linear dimensionality reduction methods, such as UMAP are normally
implemented to run on Central Processing Units (CPUs) and they are not optimized
for parallelization. For example, the UMAP method was originally designed to be com-
patible with Scikit-learn, NumPy, and Pandas on the CPUs to transfer and visualize data
[8]. Scikit-learn [11] is a python module integrating a wide range of state-of-the-art
supervised and unsupervised machine learning algorithms that also support data pro-
cessing and manipulation, such as classification, regression, clustering, model selection.
NumPy [12] is an open python module that provides mathematical computation on large
multi-dimensional matrices and arrays. And Pandas [13] is an open-source library for
data analysis such as reading and writing data between in-memory data structure and
different formats such as CSV, text files, and database.

However, these libraries are only support of a portion of their CPU equivalents and
work with the data sets that fit in the device memory [14]. For example, running a big
data set with Pandas and applying a massive matrix computation with NumPy are time
taking. This makes CPU-based dimensionality reduction methods relatively ineffective
to process data sets with millions or more items, which limits their capability for real-
time or near real-time analysis. Therefore, it is required a new and better mechanism
to perform UMAP much faster than the current implementation system to handle such
huge omics data sets.

We introduce a new method that optimises the implementation of UMAP algorithm
with parallel processing onGPU-RAPIDS platform. Graphical ProcessingUnits (GPUs)
are more effective and powerful for parallel processing thanks to their high number of
cores per unit in comparison with CPUs. We improve the computational speed signifi-
cantly which is a hundred times faster or more. While UMAP is a random process and
each time the layout is slightly different, our method also preserves similar outputs in
comparison with the original CPU-based algorithm.

2 GPU-RAPIDS Platform for UMAP

2.1 GPU-RAPIDS Platform

The advancement of GPU computing is Nvidia’s CUDA solution which provides both
the CUDA programming language and the enabled hardware computational engine.
This platform has a highly parallel architecture with hundreds of cores and very high
memory bandwidth, which enables the parallel computation of machine learning mod-
els [15]. RAPIDS [16] is an open-source developed by Nvidia and contains APIs and
python libraries that allow for executing algorithms python jobs on GPU to speed up



Parallel Nonlinear Dimensionality 5

machine learning algorithms. And for this, GPU acceleration has becomemore andmore
important. In addition, to execute and accelerate tasks using GPU, RAPIDS provides
interoperability with other open-source tools for machine learning and deep learning
workflows [17]. We use cuDF [18] instead of Pandas, and cuML [19] instead of Scikit-
learn to implement UMAP on the GPU-RAPIDS. CuDF is a Python GPU DataFrames
for data handling and manipulation. CuML is a Python GPU machine learning library
that contains machine learning algorithms that Scikit-Learn has, all in a very similar
format but on GPU.

2.2 Constructing k-NN Graph: UMAP-Learn vs CuML-UMAP

Most dimension reduction algorithms can be categorized as either matrix factorization or
graph layout. The current implementation system UMAP-Learn uses the nearest neigh-
bours descent algorithm for the construction of an approximate nearest neighbours graph
and stochastic gradient descent (SGD) algorithm for optimization. Within our knowl-
edge, UMAP-Learn is only implemented on a single core without the GPU-accelerated
version. Tree-based approximate variants, such as algorithms available in Scikit-Learn,
also do not have a straightforward port to the GPUs. This is due to the bottleneck of
computing extraction of k-NN graph for a large data sample. In order to construct the
initial high-dimensional graph, UMAP builds a “fuzzy simplicial complex” graph which
represents a weighted graph [8]. The edge weight reflects the likelihood that two nodes
are connected to form an edge.

2.3 Get the Nearest Neighbours

A value in a data set is mathematically a vector, and most of the time the rows are made
up of numerical values. We calculate the distance between two rows or two vectors to
draw a straight line. The straight-line distance between two vectors can be calculated
by using Euclidean distance formula, which is the square root of the sum of the squared
difference between two vectors using the following formula:

√
√
√
√

N
∑

i

(x1i − x2i)2

Where x1 and x2 are the first and the second rows of the data respectively, and i is
the index to a specific column as we sum across all the columns in the data set and N is
the total number of dimensions.

From the distance computation process above, we determine the k-closest instances
for the data. We next identify the nearest neighbours in the algorithm. Firstly, we extend
a radius outward from each data point to connect other points. When the radii overlap,
a weighted k-nearest neighbour (k-NN) graph is constructed. The construction of the
graph can be performed via a nearest neighbour or approximate nearest neighbour search
algorithm. The computational time for this k-NN graph may take up to 26% of the total
time of UMAP-learn [20], which is claimed the second-largest computational bottleneck
of the UMAP algorithm, next to the optimization of the embedding process.



6 Y. Tegegne et al.

2.4 k-NN Graph Optimisation on GPU

The first phase of UMAP algorithm is the construction of a weighted k-NN graph. The
bottleneck of a k-NN implementation on a single core is the distance calculation and
the selection of k nearest neighbour observation. This problem could be addressed by
changing a sequential program into a parallel process, which increases the speed of com-
putation. Implementing k-NN on GPU enables a dramatic computational performance
improvement due to the high parallelization nature of the arithmetic operation. Under
UMAP-learn k-NN is set to automatically chooses the algorithm based on the size and
structure types of the input data set, such as either a brute force search or k-d tree or ball
tree search. However, this process is slow and time taking.

The distance calculation process can be fully parallelized on GPU-RAPIDS, hence
every thread can involve in the computation of finding the distance between the nearest
data points. For large data points, many threads and blocks are launched to perform
the computation simultaneously. Once the distance is calculated, the distance kernel is
invoked, and the results are stored in shared memory.

The next task is to find the best k-nearest neighbours based on the calculated distance.
Then each thread considers one distance simultaneously to calculate and to find the k-
nearest neighbours. This first step process saves a significant amount of time when
running the UMAP algorithm.

2.5 Embedding Optimisation

Embeddings are robust representations of data modalities like text, images, sound, etc.
Essentially, they are vectors of relatively lower dimensions, that can capture original
information and it gets a lot easier if we operate on the data using their embeddings rep-
resentations. The curse of dimensionality complicates research and development works
such as in Omics data analytics [21]. UMAP is very efficient at identifying subpop-
ulations in large high dimensional data sets. It scales well with both input dimension
and embedding dimension. As mentioned in previous sections, UMAP is comprised of
two important steps including first computing a graph representing our data, and second
learning an embedding for the graph. The UMAP algorithm uses a binary cross-entropy
as a cost function and utilises a stochastic gradient descent to minimise the cost function
to optimise the step performance.

The first step of the embedding optimization stage is to initialise the array of output
embedding which can follow both random and spectral initialisation strategies. The
current implementation uses a spectral embedding of the fuzzy union through the nearest-
neighbours variant of the Laplacian eigenmaps algorithm. Our new RAPIDS UMAP
method uses spectral clustering implementation from cuGraph, a RAPIDS library that
collects GPU accelerated graph algorithms [22]. Overall, we enable parallel processing
to perform different UMAP computation steps simultaneously.

UMAP uses binary cross-entropy (CE) as a cost function associated with the model,
which can measure how well a model performs on the training data with an aim to
minimize the cost function in a way that it comes as close to zero as possible. Gradient
descent is an optimization algorithm used to find the values of parameters (coefficients)
of a function that minimizes a cost function. Hence gradient descent can be slow to run



Parallel Nonlinear Dimensionality 7

on very large datasets due to one iteration of the gradient descent algorithm requires a
prediction for each instance in the training dataset, it can take a long time when we have
many millions of instances. To overcome this problem UMAP uses a modified version
of gradient decent called stochastic gradient descent, which calculate the gradient using
just a random small part of the observations instead of all of them using batch and this
approach can reduce computation time. UMAP computation and update operations have
been fused into a single kernel and parallelized so that each thread processes one edge of
the fuzzy union. The CUDA kernel is scheduled iteratively for n_epochs which means
n times of complete passes of the entire training dataset passing through the training
or learning process of the algorithm to compute and apply the gradient updates to the
embeddings in each epoch. The dependencies between the vertices in the updating of the
gradients make this step non-trivial to parallelize efficiently. This decreases the potential
for coalesced memory access and creates the need for atomic operations when applying
gradient updates. When the k-NN graph is pre-computed, this step can comprise up to
50% [23] of the remaining time spent in the computation. Therefore, the parallelization
of the k-NN graph construction process can speed up the performance of the UMAP
algorithm significantly.

3 Benchmark Experimental Comparison

We run our new UMAP algorithm on the RAPIDS-GPU platform using various MINST
data sets to evaluate its output quality and its computational time. Our experiments
indicated that the newRAPIDS-GPUUMAPmethod has outperformed the CPUmethod
which is over a hundred times faster while producing comparable outputs (see Table 1).

We present two experiments on the F-MNIST [24] and MNIST [25] digits data
sets (collected fromhttps://github.com/zalandoresearch/fashion-mnist) in this paper.Our
experiments were carried in the Comet platform, an eXtreme Science and Engineering
Discovery Environment (XSEDE) cluster with 24 nodes (https://www.sdsc.edu/support/
user_guides/comet.html). Each node uses Intel Xeon E5-2680v3 processors, 128 GB
DDR4 DRAM, and 320 GB of SSD local scratch memory. The GPU nodes contain four
NVIDIA GPUs each. We only use one node in our computational experiment.

Table 1. Datasets used in experiment and computational time for UMAP methods.

Dataset Rows Columns Running time (in
seconds) CPU
UMAP

Running time (in
seconds)
RAPIDS UMAP

Improvement

Fashion Minst 70,000 784 260 1.9 >135 times

Minist (Digits) 70,000 784 240 2.3 >104 times

Omics data sets 1.5 million 16 4000 30 >130 times

5 million 16 too long 960

https://github.com/zalandoresearch/fashion-mnist
https://www.sdsc.edu/support/user_guides/comet.html


8 Y. Tegegne et al.

3.1 F-MNIST Data Set

F-MNIST (or Fashion MNIST) [24] is a 10-class dataset of 70,000 28 × 28 pixels
grayscale images of fashion items (clothing, footwear, and bags), i.e., 70,000 items with
784 dimensions for classification into 10 categories.

We run the experiments on the existing UMAP method on the CPU and on the
new GPU-RAPIDS UMAPmethod respectively. The UMAP projection aims to identify
groups of garments in the two-dimensional space. The vectors of pixels for each image
are used as input and theUMAPmaps them to the two-dimensional space for each image.
Here we can see clearly, the important structural properties of the data have been retained
while the known classes have been cleanly pulled apart and isolated. For example, the
pants, t-shirts and bags are both retained their shape and internal structure (see blue and
red items respectively in Fig. 1).

Figures 1a and 1b show the output from the standard UMAP and from the newGPU-
enabled UMAP-RAPIDS methods, respectively. The colours are coded according to the
clothing category of the original input (e.g. boots are blue, sneakers are green, sandals are
yellow, and trousers are red colours). The visualisation clearly shows that a similar output
between the existing UMAP and the new GPU enabled UMAP methods. However, the
run time on the GPU method is much faster than the current implementation of UMAP
on the CPU. Particularly, the running time of UMAP under GPU-RAPID (Fig. 1b) is
1.9 s in comparison to over 260 s on the original CPU platform.

a b

Fig. 1. The two-dimensional visualisations of UMAPmethods on FashionMNIST dataset, where
(a) shows the existing UMAP output (run on CPU) and (b) shows the new UMAP output (run on
RAPIDS-GPU platform). It takes over 260 s to generate the output in Fig. 1(a) in comparison with
just 1.9 s to generate the output in Fig. 1(b). (Color figure online)



Parallel Nonlinear Dimensionality 9

3.2 MNIST Digits Data Set

The MNIST [25] digits data set contains handwritten digits (from 0 to 9) with 70,000
images of digits with 784 dimensions. We use UMAP to identify digits in the data set.
After applying UMAP on the data, we find that without any labels, UMAP manages
to separate well the data. The outputs are similar between UMAP-learn and UMAP-
RAPIDS. Figure 2 shows there are clear 10 clusters that are colour-coded by digit types
(0 to 9). However, the performance is much faster for UMAP-RAPIDS (2.3 s) which is
more than 100 times faster than the original UMAP (240 s).

a b

Fig. 2. The two-dimensional visualisations of UMAP methods on the MNIST digits dataset,
where Fig. 2a shows the output of UMAP on CPU) and Fig. 2b shows the output of the new
UMAP on the RAPIDS-GPU platform. The visualisation shows 10 groups shown in different
colours representing 10 digits. It took 240 s to generate the output in Fig. 2a in comparison with
just 2.3 s to generate the output in Fig. 2b. (Color figure online)

4 A Case Study on Leukemia Diagnostic Data Analysis

We applied our method to generate UMAP visualization of high-dimensional clinical
flow cytometry data for diagnosis of Chronic Lymphocytic Leukemia (CLL). The dataset
we used is downloaded from FlowRepository (http://flowrepository.org/) as used and
published in a previous study [26]. The goal is to demonstrate the effectiveness of the
UMAP dimensionality reduction for supporting visual identification of CLL leukemic
cells so that the CLL cases can be visually separated from the non-CLL cases. Each sam-
ple contains 10 protein molecule markers and 6 scatter parameters (16 dimensions in
total) measured on approximate 100,000 cells (rows). The markers in the reagent panel
included CD3, CD5, CD10, CD19, CD22, CD38, CD43, CD45, CD79b and CD81.
The scatter attributes include area/height/width for both forward scatter and side scat-
ter parameters (FSC-A/W/H and SSC-A/H/W). To identify CLL cases, we focused on

http://flowrepository.org/


10 Y. Tegegne et al.

identifying cells with the leukemic phenotype CD5+, CD19+, CD10−, and CD79bdim

from the flow cytometry data as defined in the study in [27]. Our analytical workflow of
the CLL case studies is illustrated in Fig. 3.

Fig. 3. The flow diagram of the analytics process in the CLL case study includes A) the data
processing and merging, B) creating training model(s) with UMAP, C) produce the transforma-
tion on the new sample(s) using the saved model, and D) provide interactive visualisation with
scatterplots for better comprehension, analysis and verification of the outcome.

We first merged a set of selected CLL samples into one large template for training
purpose, resulting in amatrixwith the samenumber of dimensions and the concatenations
of millions of rows, with each row representing a cell. We next applied the UMAP non-
linear dimensionality reduction method to the merged data. This process projected the
16-dimensional data to a two-dimensional data space for visualization. The template
together with UMAP parameters used is then saved for supervised projection of new
samples. We repeated this process on different sets and sizes of training samples to
generate multiple projection models. This process took most of the computation time
since it each time processed a big set of merged data.

For each new diagnostic sample in the analysis, we applied the saved UMAP model
as a supervised machine learning process to classify the cellular events onto the 2D
UMAP space. A data clustering method, such as DBSCAN [28], is optionally applied
to the 2D output for identifying and color-coding of the cell subpopulations. Finally,
we implemented interactive visualisation to provide 2D plotting visual presentation on
both the UMAP-transformed space and the pairwise combination of original markers
with biological meaning side by side for visual pattern recognition and verification. The
visualisation utilises the TabuVis tool [29, 30] to provide multiple scatterplots, visual
mapping, filtering and interaction enabling effective visual analysis of the data.



Parallel Nonlinear Dimensionality 11

We have run the experiments on different sizes of pooled data and training samples.
In the first experiment, we carried out the training experiment with 15 CLL samples.
After merging all training samples into one large data set (i.e. 1.5 million rows and 16
dimensions), we have applied theUMAPmethod into the processed data set. The running
time on our newUMAPmethod on theGPU-RAPIDSplatform takes approximately 30 s.
This is more than a hundred times faster in comparison with over 4000 s when running
the same process on a regular CPU system.

In the second experiment, we carried out the training experiment with much larger
data sets of 50 CLL samples. We hypothesise that having a much larger number of
samples in the training would potentially produce more consistent outcomes and expose
better subpopulations in the testing samples. After merging all training samples into a
large data set (i.e. 5 million rows and 16 dimensions), we applied the UMAP method
into the processed data set. The running time on our new UMAP method on the GPU-
RAPIDS platform takes approximately 16 min. Unfortunately, the same process on the
CPU system takes multiple days to run so that we had to abort this experiment.

From the saved trainingmodels, we can run a new sample independently on a selected
model to identify the cancer cells in the data set. This step is much quicker than the
training process because we do not need to compute on the much larger merged data. We
were able to carry out the computational analysis within a few seconds, which is crucial
to enable the real-time diagnostics and analysis of the CLL cancel data. Particularly,
our experiments show that the running time GPU-RAPIDS on reading the saved model
is 0.4 s for reading a UMAP model with 15 merged samples and less than 1 s for the
UMAP model with 50 merged samples respectively. It also takes approximately 3 s for
transforming a new CLL data set (100,000 rows and 16 dimensions). The running time
for DBSCAN is also less than 1 s. Therefore, the whole computational analysis process
takes less than 5 s.

The outcomes of our new UMAP method on GPU-RAPIDS are consistent with the
UMAP by CPU method, while the processing time using GPU is more than a hundred
times faster than the latter.We can identify quickly the CLL cases as well as the non-CLL
cases from the whole dataset in a fewminutes. Further from the study in [27], our results
are also validated by an domain expert to ensure the accuracy in the diagnosis outcomes
of CLL cases.

Figure 4 illustrates the outputs of the projection methods using the training model
with 15 CLL samples. We use pairwise scatterplots to show the UMAP output and the
selected markers and scatters, where Fig. 4a uses the regular UMAP and Fig. 4b uses our
new UMAPmethod on GPU-RAPIDS. In each figure, the first plot shows the projection
output (x-axis and y-axis) and DBSCAN clustering (colours) of the new CLL sample,
and other plots show pairwise scatterplots of selected markers and scatter parameters of
the new sample, particularly (FSC-A, SSC-A), (SSC-H, CD45), (CD5, CD19), (CD10,
CD79b), (CD38, CD22), (CD3, CD81), (CD3, CD19) and (CD79b, CD81) on each x-
axis and y-axis respectively. The visualization also highlights the identified CLL cancer
cells in red (CD5+, CD19+, CD10−, CD79bdim). The cancer cells are also highlighted
simultaneously on other pairwise scatterplots for complete verification and analysis.
Both UMAP implementations, as shown in Figs. 4a and 4b, support visual identification
of the CLL cells for the new patients effectively.



12 Y. Tegegne et al.

Figure 5 presents another example of our projection methods using the same training
model as in Fig. 4 with 15 CLL samples on a CLL case with high tumour burden, com-
paring the original UMAP (Fig. 5a) and the GPU-accelerated UMAP implementation
on GPU-RAPIDS (Fig. 5b). Both methods can consistently identify the CLL cells for
the testing sample. The detailed views show clearly the CLL cells in the 3 pairwise 2D
plots (CD5, CD19), (CD10, CD79b) and (CD38, CD22).

Fig. 4. An example of scatterplots visualizations showing the UMAP projection outcome using
the training model with 15 CLL samples. The UMAP outputs are shown in the first panel, and the
selected markers and scatters are shown in the other panels. Figures 4a and 4b present the results
from the UMAP algorithms on CPU and GPU-RAPIDS respectively.

Fig. 5. An example scatterplot visualization showing the UMAP projection on a sample with a
large number of cancer cells.

Figure 6 presents the outputs of our UMAP implementation when more training
samples were used for the UMAP-based classification. 50 CLL samples were merged to
create a UMAP template. The original UMAP implementation was too slow to process
such a big input file. Figure 6a indicated 8.9% of CLL cells were found in the testing
sample. In Fig. 6b, only a few cells were seen in the UMAP cancer cell region. The



Parallel Nonlinear Dimensionality 13

results are consistent with the clinical diagnosis labels where the case in Fig. 6a is CLL
positive and the case in Fig. 6b non-CLL.

Fig. 6. Two examples of scatterplots visualizations showing the UMAP projection using 50 CLL
training samples. Figure 6a show near 8.9% CLL cancer cells in the sample, and Fig. 6b shows a
non-CLL case where it shows no cancer cells in the region.

5 Conclusion

We have designed and implemented the UMAP dimensionality reduction on the GPU-
RAPIDS platform, which significantly improved the speed of the original UMAP.

We optimised the acceleration and parallel processing with GPUs to overcome to
computational bottleneck in the graph construction and distance calculation from the
UMAP algorithm. Using MNIST/F-MNIST benchmark datasets, our experiments show
that the new method can run a hundred times faster or better, and it also produces sta-
ble and consistent outputs in comparison with the original UMAP. We demonstrate the
effectiveness of our work with case studies on identifying the cancer cells for clini-
cal diagnosis of leukemia, which will ultimately help real-time application of machine
learning diagnosis for biomedicine and the results are also meaningful for other graph
and manifold learning algorithms that use GPUs.

References

1. Bendall, S.C., Nolan, G.P., Roederer, M., Chattopadhyay, P.K.: A deep profiler’s guide to
cytometry. Trends Immunol. 33, 323–332 (2012)

2. Haghverdi, L., Buettner, F., Theis, F.J.: Diffusion maps for highdimensional single-cell
analysis of differentiation data. Bioinformatics 31, 2989–2998 (2015)

3. Ringnér, M.: What is principal component analysis? Nat. Biotechnol. 26(3), 303–304 (2008)
4. Konstorum, A., Jekel, N., Vidal, E., Laubenbacher, R.: Comparative analysis of linear and

nonlinear dimension reduction techniques on mass cytometry data. bioRxiv 273862 (2018)



14 Y. Tegegne et al.

5. Luecken, M.D., Theis, F.J.: Current best practices in single-cell RNA-seq analysis: a tutorial.
Mol. Syst. Biol. 15(6), e8746 (2019)

6. Maaten Lvd, Hinton, G.: visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579−2605
(2008)

7. Amir, E.D., et al.: viSNE enables visualization of high dimensional single-cell data and reveals
phenotypic heterogeneity of leukemia. Nat. Biotechnol. 31(6), 545–552 (2013)

8. McInnes, L., Healy, J.,Melville, J.: UMAP:UniformManifoldApproximation and Projection
for Dimension Reduction. arXiv:180203426 [statML] (2018)

9. Becht, E., et al.: Dimensionality reduction for visualizing single-cell data using UMAP. Nat.
Biotechnol. 37(1), 38–44 (2018)

10. DiGiuseppe, J.A., Cardinali, J.L., Rezuke, W.N., Pe’er, D.: PhenoGraph and viSNE facilitate
the identification of abnormal T-cell populations in routine clinical flow cytometric data.
Cytometry B Clin. Cytometry 94(5), 588–601 (2018)

11. Pedregosa, F.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830
(2011)

12. NumPy (2022). https://numpy.org
13. team Tpd: pandas-dev/pandas: Pandas. In: latest edn: Zenodo (2020)
14. Yuan, G., Palkar, S., Narayanan, D., Zaharia,M.: Offload annotations: bringing heterogeneous

computing to existing libraries and workloads. In: Annual Technical Conference (ATC 20),
pp. 293–306 (2020)

15. Adu-Gyamfi, Y.: GPU-enabled visual analytics framework for big transportation datasets.
J. Big Data Anal. Transp. 1(2–3), 147–159 (2019). https://doi.org/10.1007/s42421-019-000
10-y

16. RAPIDS: The Platform Inside and Out (2022). https://developer.download.nvidia.com/video/
gputechconf/gtc/(2019)/presentation/s9577-rapids-the-platform-inside-and-out.pdf

17. Aguerzame, A., Pelletier, B., Waeselynck, F.: GPU acceleration of PySpark using RAPIDS
AI. In: DATA (2019)

18. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: NVIDIA tesla: a unified graphics and
computing architecture. IEEE Micro 28(2), 39–55 (2008)

19. Ocsa, A.: SQL for GPU data frames in RAPIDS Accelerating end-to-end data science
workflows using GPUs. In: LatinX in AI Research at ICML (2019)

20. Nolet,C.J., Lafargue,V.,Raff, E.,Nanditale, T.,Oates, T., Zedlewski, J., Patterson, J.:Bringing
UMAPCloser to the Speed of Light with GPUAcceleration. arXiv:200800325 [csLG] (2020)

21. Catchpoole, D., Kennedy, P., Skillicorn,D., Simoff, S.: The curse of dimensionality: a blessing
to personalized medicine. Proc. Am. Soc. Clin. Oncol. 28(34), e723–e724 (2010)

22. Hricik, T., Bader,D.,Green,O.:UsingRAPIDSAI to accelerate graph data scienceworkflows.
In: IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–4. IEEE (2020)

23. Nolet,C.J., Lafargue,V.,Raff, E.,Nanditale, T.,Oates, T., Zedlewski, J., Patterson, J.:Bringing
UMAP Closer to the Speed of Light with GPU Acceleration (2020)

24. Xiao, H., Rasul, K., Vollgraf, R.J.: Fashion-MNIST: a novel image dataset for benchmarking
machine learning algorithms (2017)

25. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proc. IEEE 86(11), 2278–2324 (1998)

26. Ji, D., et al.: machine learning of discriminative gate locations for clinical diagnosis.
Cytometry A 97(3), 296–307 (2020). PMID: 31691488; PMCID: PMC7079150

27. Scheuermann, R.H., Bui, J., Wang, H.-Y., Qian, Y.: Automated analysis of clinical flow
cytometry data: a chronic lymphocytic leukemia illustration. Clin. Lab. Med. 37(4), 931–944
(2017). PMID: 29128077; PMCID: PMC5766345

28. Ester,M.,Kriegel, H.-P., Sander, J., Xu,X.:A density-based algorithm for discovering clusters
in large spatial databases with noise. In: KDD, pp. 226–231 (1996)

http://arxiv.org/abs/180203426
https://numpy.org
https://doi.org/10.1007/s42421-019-00010-y
https://developer.download.nvidia.com/video/gputechconf/gtc/(2019)/presentation/s9577-rapids-the-platform-inside-and-out.pdf
http://arxiv.org/abs/200800325


Parallel Nonlinear Dimensionality 15

29. Nguyen, Q.V., Qian, Y., Huang, M.L., Zhang, J.: TabuVis: a tool for visual analytics
multidimensional datasets. Sci. China Inf. Sci. 56, 052105:052101–052105:052112 (2013)

30. Nguyen, Q.V., Simoff, S., Qian, Y., Huang, M.L.: Deep exploration of multidimensional
data with linkable scatterplots. In: 9th International Symposium on Visual Information
Communication and Interaction, pp. 43–50. ACM, Dallas, Texas (2016)


	Parallel Nonlinear Dimensionality Reduction Using GPU Acceleration
	1 Introduction
	2 GPU-RAPIDS Platform for UMAP
	2.1 GPU-RAPIDS Platform
	2.2 Constructing k-NN Graph: UMAP-Learn vs CuML-UMAP
	2.3 Get the Nearest Neighbours
	2.4 k-NN Graph Optimisation on GPU
	2.5 Embedding Optimisation

	3 Benchmark Experimental Comparison
	3.1 F-MNIST Data Set
	3.2 MNIST Digits Data Set

	4 A Case Study on Leukemia Diagnostic Data Analysis
	5 Conclusion
	References




