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Abstract

Our lifestyle and dietary structure have changed significantly due to rapid eco-
nomic growth and improvement of living standards, accelerating occurrence of
metabolic disorders such as type II diabetes and other non-communicable
diseases. In recent decades, T2DM and its complications have increased dramati-
cally worldwide. As per the recent report, 463 million peoples are living with
diabetes, and it has been estimated that the number will rise to 700 million by
2045. T2DM is inferred from multifactorial sources, including genetic and
environmental factors. Different therapeutic strategies have adopted, and several
medicines developed that work in various ways to promote glycemic manage-
ment in T2DM, current treatments for T2DM have some drawbacks. Nowadays,
the role of microbiota in T2DM pathogenesis has taken into consideration. Some
earlier evidences suggest that even the composition of the gut microbiome may
lead to T2DM. Since then, tremendous efforts have made to explore the relation
between the composition of gut microbiota and T2DM, as well as the role of
probiotics in the modulation of gut microbiota. Our current food habits will
disturb the gut microbiota composition. Ingestion of probiotics maintain the
dysbiosis and produce some secondary metabolites like bacteriocins, short-
chain fatty acids (SCFAs), and other organic compounds. These compounds are
acting at various levels in controlling metabolic disorders. A recent study has also
reported that the dead cells can also be working by maintaining the permeability
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of intestine barriers. In this chapter, we summarized the relevant results and
addressed the close association between intestinal microbiota and T2DM. In
this chapter, we summarized the beneficial effects of probiotics on improving
glycemic control of T2DM with relevant results and addressed the close associa-
tion between intestinal microbiota and T2DM in detail.
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7.1 Introduction

Currently significant scientific evidence is available regarding the effects of
microbiota on glucose metabolism in T2DM subjects. In this chapter, we briefly
discuss disbiotic microbiome of T2DM patients and summarize the most reliable
findings for use of probiotic for glycemic control. Probiotics not only control the
glucose hemostasis but it also play a significant role in regulating the comorbidities
associated with diabetes like obesity, hypertension, inflammation, oxidative stress
lipid abnormality, and some brain disorder. All this diseases/ disorders are
non-communicable and very much interlinked with the center point of gut environ-
ment; once the gut system is maintained properly all other abnormalities can be
significantly controlled or improved. Here we also brief the benefits of probiotics in
improving glycemic control in T2DM and its associated complication.

7.2 Brief of Gut Microbiota in Type 2 Diabetes (Dysbiosis
and T2DM)

Dysbiosis do not directly cause diabetes but it can induce oxidative stress and
inflammation, two most common factors in pathophysiology of diabetes.

Earlier, it is believed that the mammal’s gastrointestinal tract is sterile at birth and
gut microbial flora colonization in infants start during delivery and further develop
during breastfeeding. (Abdul-Ghani and DeFronzo 2010). However, this belief has
recently revised that original colonization usually starts during gestation (Walker
2017). Evidence suggests that bacteria of the maternal intestine are generally
transferred through the blood circulation of the mothers and later travel into the
placenta, and eventually enter the amniotic fluid (Aagaard et al. 2014; Cao et al.
2014). In the human gut, there are mainly five phyla present, and their composition
varies based on age and food habits. Newborn intestinal microbial flora generally
exhibits low diversity and has a comparatively large concentration of phyla
proteobacteria and actinobacteria (Turroni et al. 2008; Rodríguez et al. 2015) and
it slowly shifts into a more complex form in adults (Rajilić-Stojanović et al. 2007;
Zoetendal et al. 2008). Metagenomics studies have shown that approximately 90%
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of the bacterial phyla in the adult gut belonged to the phyla of Bacteroidetes and
Firmicutes (Blaut and Clavel 2007; Ravel et al. 2014; Rinninella et al. 2019).

These complex microorganism and their metabolites interact differently, in the
small and large intestines, with the intestinal epithelial cells (Hsiao et al. 2008).
Mucus layers serve as a bacterial insulator at the level of the intestinal barrier. Still, it
does not entirely inhibit the diffusion of bacterial fragments across the intestinal
barrier and its binding to pattern recognition receptors. This mechanism not only
contribute significantly to the defence of the intestinal barrier, but also to an innate
and adaptive immune response (Wells et al. 2011).

Diet is essential for intestinal microbiota regulation. Due to our modern lifestyle,
we are consuming mainly processed food with excess nutrients such as saturated
(De La Serre et al. 2010) and polyunsaturated fatty acids (Kankaanpa et al. 2001) or
less oligosaccharide (Shoaf et al. 2006) and phytochemicals (Carrera-Quintanar et al.
2018). These food patterns can alter the bacterial metabolic activity. High fat diets
affect the gut microbiota resulting in greater intestinal permeability and vulnerability
to microbial antigens. Reports have shown that decreased bifidobacterium due to
high-fat dietary consumption has been linked with higher LPS concentrations in
serum, one of the features of metabolic endotoxemia (Cani et al. 2012). (Metabolic
endotoxemia elaborated in Chap. 9). In addition, this typical diet enhances the
oxidation of fatty acids in the liver and adipose tissue. Research findings indicate
that the reactive oxygen species (ROS) lead oxidative stress because of polyunsatu-
rated fatty acid oxidation and it reduces mucous development. This directly damage
the epithelial cell membranes, enhancing the permeability of the intestinal tight
junction by stimulating proinflammatory signaling cascades (Muccioli et al. 2010)
and indirectly via increasing barrier-disrupting cytokines [TNFα, interleukin
(IL) 1B, IL6, and interferon γ (IFNγ)] and decreasing barrier-forming cytokines
(IL10, IL17, and IL22) (Rohr et al. 2019). Mild chronic inflammation is one of the
characteristic features of metabolic diseases such as obesity and T2DM, which may
occur due to the activation of toll-like receptors by LPS, which are present in the cell
wall of gram �ve bacteria. Toll-like receptors 4 (TLR4) are present in insulin
targeted tissues (Boulangé et al. 2016; Rogero and Calder 2018).

Through activating cytokine-signaling cascades alongside the increased concen-
tration of reactive oxygen species (ROS), these actions may be compromised upon
stimulation of TLR4.

Inflammation levels are a key element in the development of insulin resistance,
contributing to a deficiency in the action of insulin (Boulangé et al. 2016). Extending
the duration of defects in insulin action causes the overproduction of insulin, which
leads to a defect in the pancreatic cells, leading to a defect in insulin secretion
(Boulangé et al. 2016). It is resulting in T2DM.

The Intestinal tight junction is a multi-protein complex that forms a selective
permeable seal between adjacent epithelial cells and demarcates the boundary
between apical and basolateral membrane domains.
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7.3 Therapeutics for T2DM

Nowadays, T2DM management has become a worldwide epidemic, many therapeu-
tic techniques have been adopted and a wide variety of drugs have been produced to
enhance glycemic regulation through improved insulin production and utilization,
decrease sugar production and absorption, inhibit glucose re-sorption, and enforce
urinary glucose excretion. These are achieved by mainly 5 type of drugs, namely
biguanides, sulfonylureas, a-glucosidase inhibitors, and thiazolidinediones (TZDs),
which are used to treat hyperglycemia (Chaudhury et al. 2017). Generally, it is
commonly accepted that new T2DM therapies have some adverse side effects such
as liver disorders, lactic acidosis, and gastrointestinal issues (Manandhar Shrestha
et al. 2017). Therefore, alternate methods focused on intestinal microbiota were
investigated, indicating promising prospects for the future T2DM intervention
(Gérard and Vidal 2019).

7.4 Studies on the Glycemic Control of Gut Microbiota
in T2DM

In the last two decades, numerous studies reported the beneficial effects of
gut microbiota on metabolic diseases, including T2DM. Meta-analysis of the
reports suggest that effect of probiotics on glycemic control is stain specific.
Among the widely published findings, the genes of Bifidobacterium, Bacteroides,
Faecalibacterium, Akkermansia, and Roseburia have been identified as being
negatively associated with T2DM and Ruminococcus, Fusobacterium, and Blautia
were positively associated with T2DM. Although Lactobacillus genus is most fre-
quently identified and reported still, most discrepancies in their effect in T2DM
were reported (Gurung et al. 2020). Some of recent probiotic clinical trials
conducted on T2DM given in Table 7.1.

The exact mechanisms used by probiotics for their advantages were uncertain.
Nevertheless, a number of hypothesized processes describe many of their favorable
effects. Probiotics control the T2DM in various ways, such as modulate the inflam-
mation (Shen et al. 2018; Maldonado Galdeano et al. 2019), interact with dietary
constituents, affect gut permeability (Tian et al. 2016) and lipid metabolism. Mainly
the short-chain fatty acids (SCFAs) (acetate, butyrate, propionate) are the major
anions in the colon and are largely produced by probiotic bacteria from indigestible
polysaccharides (Geirnaert et al. 2017). SCFAs stimulate improvement of intestinal
barrier function and upregulation of glucagon-like peptide-1 (GLP-1) (Macfarlane
and Macfarlane 2003). GLP-1 is a gut incretin hormone that induces insulin produc-
tion from the ß cells and inhibits the secretion of glucagon that contribute to glucose
homeostasis (Lovshin and Drucker 2009). Probiotic improves the gut physiology
and promotes epithelial cell growth by producing vitamins and hormones (Mach and
Fuster-Botella 2017; Indira et al. 2019).
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Table 7.1 Clinical trials on probiotic glycemic control in T2DM

Probiotic used

Design control
Dose/
Duration

Participants,
Age (year),
Gender,
Case/control
(n) Outcomes References

Probiotic yogurt:
L. acidophilus La5,
Bifidobacterium lactis
Bb12

DB-RCT.
300 g daily/
6 week
Conventional
yogurt

T2DM,
30–60 years
Both,
30/30

#FBS, HbA1C,
"FSI,
Improved
oxidative stress
Biomarkers

Ejtahed et al.
(2011)

Symbiotic shake
containing
L. acidophilus
B. bifidum and
fructooligosaccharides

DB-RCT
200 ml daily/
15 days
Placebo

50–60 years
Both
10/10

#FBS, HbA1C,
"HDL-
Cholesterol,
TC & TG
non-significant
reduction

Moroti et al.
(2012)

Capsule:
L. acidophilus,
L. casei,
L. rhamnosus,
L. bulgaricus,
Bifidobacterium
breve,
B. longum,
Streptococcus
thermophiles
FOS

Cross-over
DB-RCT
One capsule
daily/
8 week
Placebo

T2DM,
35–70 years
Both,
27/27

#FBS, HOMA-IR,
HbA1C, hs-CRP,
"FSI,
Improved
oxidative stress
biomarkers

Asemi et al.
(2013)

L. acidophilus,
L. bulgaricus,
L. bifidum,
L. casei

SB-RCT
One capsule
twice
Daily
6 week
Placebo

T2DM
25–65 years.
Both
16/18

#FBS, HOMA-IR
#inflammatory
markers hs-CRP
"FSI,
Improved
oxidative stress
biomarkers and
lipid profile.

Asemi et al.
(2013)

Synbiotic food
Lactobacillus
sporogenes,
Inulin

Cross-over
DB-RCT
3 times daily/
6 w
Same food
without
probiotic
bacteria
& prebiotic
inulin

T2DM,
35–70 years.
Both,
62/62

#FBS, HOMA-IR,
HbA1C, hs-CRP
"FSI,
Improved
oxidative stress
biomarkers

Asemi et al.
(2014)

Probiotic fermented
milk (kefir) containing
L. casei,
L. acidophilus and
Bifidobacteria

DB-RCT
8 week
Milk

T2DM
35–65 years
Both
30/30

#FPG, HbA1c,
Improved lipid
profile.

Ostadrahimi
et al. (2015)

(continued)
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Table 7.1 (continued)

Probiotic used

Design control
Dose/
Duration

Participants,
Age (year),
Gender,
Case/control
(n) Outcomes References

Synbiotic food:
L. sporogenes, inulin,
beta-carotene

Cross-over
DB-RCT
3 times daily/
6 w
Same food
without
probiotic,
inulin,
and beta-
carotene

T2DM,
35–70,
both, 51/51

#FBS, FSI,
HOMA-IR,
hs-CRP,
Improved
oxidative stress
biomarkers

Asemi et al.
(2016)

L. acidophilus,
L. casei,
L. lactis, B. bifidum,
B. longum B. infantis

DB-RCT
12 week
Placebo

T2DM,
30–70,
both, 48/53

#FBG, insulin,
HOMA-IR,
HbA1c,
Improved lipid
profile

Firouzi et al.
(2017)

Fermented milk:
L. acidophilus La5,
Bifidobacterium
animalis
subsp. lactis Bb12

DB-RCT
120 g daily/6
w
Conventional
fermented
milk

T2DM,
35–60,
both, 23/22

#FBS, HOMA-IR,
HbA1C,
Improved
oxidative stress
biomarkers and
and inflammatory
markers

Tonucci
et al. (2017)

Probiotic capsule:
L. acidophilus,
Bifidobacterium
bifidum, L. reuteri,
L. fermentum

Parallel
DB-RCT
One capsule
daily/12 w
Placebo

DN (T1DM
& T2DM),
45–85, NA,
30/30

#FBS, HOMA-IR,
HbA1C, hs-CRP,
BUN, Creatinine,
Improved
inflammatory
markers and
oxidative stress
biomarkers

Mafi et al.
(2018)

Probiotic capsule:
L. acidophilus,
Bifidobacterium
bifidum, L. casei,
L. fermentum

Parallel
DB-RCT
One capsule
daily/12 w

DF (T1DM
& T2DM),
45–85, both,
30/30

#FBS, HOMA-IR,
hs-CRP, HbA1C,
Improved lipid
profile,
inflammatory
Markers and
oxidative stress
biomarkers

Mohseni
et al. (2018)

Probiotic capsule:
L. acidophilus,
Bifidobacterium
bifidum, L. casei,
L. fermentum

Parallel
DB-RCT
One capsule
daily/12 w
Placebo

T2DM,
40–85,
Both,
30/30

#FBS, HOMA-IR,
hs-CRP,
Inflammatory
markers,
Improved lipid
profile and
oxidative stress
biomarkers

Mohseni
et al. (2018)

(continued)
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Based on the reports, probiotics supplementation is not only reducing the glucose
level, but also improving the other metabolic abnormalities linked with diabetes such
as hypertension, BMI, lipid profile, oxidative stress markers. Some research has also

Table 7.1 (continued)

Probiotic used

Design control
Dose/
Duration

Participants,
Age (year),
Gender,
Case/control
(n) Outcomes References

Lactobacillus spp
Bifidobacterium spp
Propionibacterium
spp
Acetobacter spp

Parallel
DB-RCT
One capsule
daily/8 w
Placebo

T2DM,
18–75,
Both,
31/22

#HOMA-IR,
HbA1C,
#Inflammatory
markers

Kobyliak
et al. (2018)

Probiotic honey:
Bacillus coagulansT4

Parallel
DB-RCT
25 g daily/
12 w
Honey

DN (T1DM
& T2DM),
45–85, NA,
30/30

#FBS, HOMA-IR,
hs-CRP, BUN,
Creatine,
Improved lipid
profile,
inflammatory
markers, and
oxidative stress
biomarkers.

Mazruei
Arani et al.
(2019)

Capsule:
L. acidophilus,
L. casei,
L. rhamnosus,
L. bulgaricus,
Bifidobacterium
breve,
B. longum,
Streptococcus
thermophiles
FOS

Parallel
DB-RCT
One capsule
BD
6 week
Placebo

T2DM,
30–75 years.
Both,
30/30

#FBS, HbA1C,
"HDL-
Cholesterol,
no significant
changes HOMA-
IR, TC & TG

Razmpoosh
et al. (2019)

L. casei Parallel
DB-RCT
One capsule
daily
8 week
Placebo

T2DM,
30–60 years.
Both,
20/20

#FBS, HOMA-IR,
Fetuin-A
" insulin Sirtuin1
no significant
changes HbA1C,

Khalili et al.
(2019)

Probiotic capsule:
L. acidophilus,
L. rhamnosus,
B. bifidum, B. longum
S. bouladi, FOS

DB-RCT
One capsule
twice
Daily
12 week
Placebo

T2DM,
30–65,
Both,
30/30

#FBS, HOMA-IR
Improved
oxidative stress
biomarkers, lipid
profile,
kidney and liver
markers

Our
observation
Un
published
data

Note: " ¼ increased, # ¼ decreased, FOS Fructooligosaccharide, DB Double blind, RCT
Randomized clinical trial, FBS Fasting blood glucose, FSI Fasting serum insulin, hs-CRP High
sensitive C-reactive protein, IR Insulin resistance, TC Total cholesterol, TG Triglycerides, BUN
Blood urea nitrogen
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shown their beneficial effects on mental health. None of the studies has reported any
toxic effects on liver and kidney like other synthetic drugs.

7.5 Beneficial Effects of Probiotic for Glycemic Control

Probiotics and their metabolites are involved in various pathways to improve
glycemic control (Fig. 7.1) which is explained in the below sections.

7.5.1 Probiotic on Hypertension Associated with Diabetes

There are mainly two forms of hypertension: primary and secondary. Primary
hypertension occurs mainly because of genetic variables and unspecific lifestyle, it
is characterized as elevated blood pressure, around 95% cases belong to this
category, whereas secondary hypertension is attributed to an identifiable cause
such as Cushing’s syndrome, obesity, and glucose sensitivity. However, it is still
not clear about the etiology of hypertension (Sukor 2011). Indirect involvement of
gut microbiota in the regulation of hypertension has been recognized in recent time.
As we have seen earlier, in dysbiosis the diversity of microbes increases and
Firmicutes/Bacteroidetes ratio changes. These changes accompanied by decrease
in acetate and butyrate producing bacteria (Yang et al. 2015). SCFA plays an
important role in maintaining blood pressure (BP). Short-chain fatty acid
receptors are G-protein coupled receptors GPR41, GPR43, GPR109a, and olfactory
receptor OLF79 in mice and OR51E2 in humans. Short-chain fatty acid receptors,
such as GPR41 and OLF78, have shown to have inverse roles in blood pressure
regulation (Pluznick 2014). Dysbiosis also leads to increased permeability of the
intestinal wall. It is an essential factor that influences the bidirectional flow of
microbes, cells, metabolites, molecules, and hormones that inevitably interfere

Probio�c 

Reduce the BMI

Reduce the 
chronic 

inflamma�on 

Improve the
hypertension 

Improve the
oxida�vestress 

Improve 
lipid profile 

Non toxic to
kidney and liver 

Beneficial effect of probio�c for glycemic control  in T2DM

Fig 7.1 Beneficial effects of probiotic for glycemic control
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with peripheral but also central BP control mechanisms. (Raizada et al. 2017). BP
reduction was observed in the late phase of angiotensin II infused wild-type mice,
suggestive of the favorable effect of propionate on hypertension (Bartolomaeus et al.
2019).

One study stated that the role of the gut microbiota in steroid enterohepatic
circulation and its findings are consistent with the possibility that steroid metabolites
contribute to the physiological response to exogenous steroids when reabsorbed in
the enterohepatic circulation (Honour 1982). Some other studies reported differences
in circulating inflammatory cells in hypertensive individuals compared to controls
due to microbial diversity in hypertensive patients. Dysbiosis also contributes to
increased T-helper 17 cell activation and is mediated by gut-intrinsic pathways (Kim
et al. 2015).

7.5.2 Probiotic on Obesity Related with Diabetes

Obesity is typically associated with metabolic alterations related to glucose homeo-
stasis and cardiovascular risk factors (Eckel et al. 2005). These metabolic alterations
are associated with low-grade inflammation that contributes to the onset of these
diseases (Olefsky and Glass 2010). Probiotics and prebiotics reduce gut inflamma-
tion, which leads to improvement in metabolic dysfunction in obese-insulin resistant
model (Thiennimitr et al. 2018). Some studies found that gut microbiota conferred
host resistance to high-fat diet-induced obesity through the production of polyunsat-
urated fatty acid metabolites (Miyamoto et al. 2019). Considering the effect of
calorie restriction and weight loss on fetuin-A and SIRT1 levels it can be understood
by reducing the appetite and dietary intake and body weight. Studies also found
that probiotic supplementation significantly decreased total energy, carbohydrate,
fat, and protein intake compared with placebo (Khalili et al. 2019). Other studies
found that higher endogenous GLP-1 and GLP-2 production; prebiotic treatment
increases the number of enteroendocrine cells producing GLP-1 and GLP-2 (L-cells)
in the jejunum and colon (Cani et al. 2012).

7.5.3 Probiotic on Oxidative Stress

In diabetes, free radical formation by non-enzymatic glycation of proteins, glucose
oxidation and increased lipid peroxidation causes the damage of enzymes, cellular
machinery, and increased insulin resistance. (Asmat et al. 2016). SCFA produced by
the probiotic in the digestive system provide nicotinamide adenine dinucleotide
phosphate (NADPH) for the synthesis of GSH, induces apoptosis and increases
the expression of the pathway of oxidative pathogens. Probiotic supplementation
plays a direct role in NO production and reduces the ROS (Asmat et al. 2016;
Heshmati et al. 2018). Studies on beneficial effects of probiotic on oxidative stress
are given in Table 7.1.
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7.5.4 Probiotic on Lipid Management

Glucose and lipid metabolism are related in several ways. Diabetic dyslipidemia,
characterized by high triglycerides, LDL particles, and low HDL-C are the most
important clinical manifestation of this interaction and this is main cause of cardio-
vascular diseases (Parhofer 2015; Eid et al. 2019). Cholesterol is the precursor to bile
acids. Bile acids are metabolized into secondary bile acids by gut microbiota.
Probiotic controls the lipid metabolism by assimilation of cholesterol during growth,
binding of cholesterol to cellular surface, disruption of cholesterol micelle,
deconjugation of bile salt, and bile salt hydrolase activity (Lye et al. 2010; Jones
et al. 2012, 2013; Huang et al. 2014). Gut microbiota regulates bile acid metabolism
by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR
antagonist (Sayin et al. 2013). Mechanisms are explained in more detail in Chap. 8.

7.5.5 Probiotic on Comorbid Brain Disorders Associated
with Diabetes

The most common causes of T2DM and brain disorders are poor sleep, lack of
exercise, and diet habits (Watkins and Thomas 1998; Yoda et al. 2015). There are
numerous studies in the past reporting the effects of diabetes on the brain. Certainly,
high glucose levels can damage blood vessels in the brain and thereby increase the
risk of stroke. However, its effects are more widely felt than that. High glucose and
insulin resistance affect many neuronal processes and contribute to inflammation in
the brain. T2DM also appears to increase the risk of Alzheimer’s disease and other
dementias (Li et al. 2015). The other ways stress stimulates the hypothalamus–
pituitary–adrenal axis (HPA-axis) and the sympathetic nervous system (SNS) are:
increased levels of cortisol in the adrenal cortex, and adrenalin and noradrenalin in
the adrenal medulla (Smith and Vale 2006; Stephens and Wand 2012). Chronic
hypercortisolemia and excessive SNS activity promote insulin resistance, visceral
obesity and contribute to T2DM (Pickup and Crook 1998; Wang et al. 2013).

In addition, constant stress also causes immune dysfunction directly or via the
HPA or SNS axis, enhancing the production of inflammatory cytokines. High levels
of inflammatory cytokines interfere with the regular functioning of pancreatic
β-cells, induce insulin resistance and other consequences. The other studies reported
that pro-inflammatory cytokines have been found to interact with many of the
pathophysiological domains that characterize depression, including neurotransmitter
metabolism, neuroendocrine function, synaptic plasticity, and behavior (Fig. 7.2).

Consumption of diet rich in high fats and refined carbohydrates mainly sugar has
the ability to disturb the healthy microbiota composition, leading to dysbiosis.
Studies showed that dysbiosis increases lipopolysaccharide (LPS) levels, which
triggers the production of proinflammatory cytokines in the gut (Zeevi et al. 2015;
Agus et al. 2016). Dysbiosis imposes regulatory roles on inflammation and oxidative
stress and is a pathogenetic contributor associated with various diseases
characterized by a pro-oxidative and pro-inflammatory disorder mainly AD,
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depression, and T2DM (Luca et al. 2019). The gut–brain axis involves a number of
sophisticated channels of communication among many interconnected systems,
including the CNS, the autonomic nervous system (ANS), the HPA axis, as well
as the GI corticotropin-releasing factor system, and the intestinal immune response
system featuring the intestinal mucosal barrier (Carabotti et al. 2015).

Dysbiosis is also confirmed by the high levels of comorbidity among depression
and T2DM subjects. This may account for the genetic similarities related to these
disorders and contribute to an increase in the risk of dementia. It is strictly associated
with metabolism, cognition, and mood (Rowland and Bellush 1989; Hilakivi-Clarke
et al. 1990; Thakur et al. 2013; Thakur et al. 2016). Gut microorganisms are capable
of producing and delivering neurotransmitters such as serotonin and gamma-
aminobutyric acid, which act in the gut–brain axis and modulate food intake and
energy balance in the system (Cryan and Dinan 2012; Borre et al. 2014).

Cross talk between the brain and the gut involve many interacting pathways,
including the autonomic, neuroendocrine, immune systems as well as bacterial
metabolites and neuromodulatory molecules. Bacterial metabolites (SCFAs) like
acetate and propionate are mainly produced by the bacteroidetes, while Firmicutes
generate most of the butyrate. Butyrate also prevent inflammatory reactions by
inhibition of NF-kappaB (NF-κB) (Segain et al. 2000). Propionate is usually utilized
by the liver and has also been reported to inhibit NF-κB, as well as boost insulin
sensitivity, while acetate is normally released into circulation so that it can enter
peripheral tissues, including the brain (Guarner and Malagelada 2003; Al-Lahham
et al. 2010; Iwanaga and Kishimoto 2015). Both propionate and acetate have been
found to improve insulin sensitivity (Canfora et al. 2015; González Hernández et al.
2020). Acetate and butyrate are structurally related to ketone, acetoacetate, and
d-β-hydroxybutyrate, all of which have positive effects in neurological conditions

Type 2 Diabetes  

Alzheimer’s disease

Depression and other 

neuro disorders 

Neurotransmitters

Neurostimulator 

Acetate  

Propionate

Butyrate

Inflammatory cytokines 

oxidative stress  

Fig. 7.2 Bidirectional interactions between the gut microbiota and the central nervous system
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(Stilling et al. 2016; Courchesne-Loyer et al. 2017). Meta-analysis suggests that
modulating the composition of the gut microbiota using prebiotics and probiotics
may produce beneficial effects on brain disorders associated with diabetes
(Schachter et al. 2018).

7.5.6 Other

The beneficial effect of probiotics also extends to chronic liver and kidney disease
(Lo et al. 2014; Jia et al. 2018). Our lab observation also finds that the probiotic
supplementation has improved the kidney and liver function markers of the diabetic
subjects with metabolic syndrome (unpublished observation). Detailed effect of
probiotic on liver diseases is mentioned in Chap. 10.

7.6 Conclusion

The available evidence from experimental studies and clinical trials supports that the
modulation of the intestinal microbiota by probiotics uptake may be effective
towards prevention and management of T2D and other related complications.
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