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Abstract

The bacteria in the gastrointestinal tract which forms the gut microbiome plays a
vital role in maintaining body homeostasis and health of the host. Any change in
the normal gut microbiome composition and function imposes gut dysbiosis,
defined as an imbalance of the bacteria in the gut. The central nervous system
(CNS) and the gut microbiome are in constant bidirectional communication
involving endocrine, neuronal, and immunological mechanisms forming the
gut–brain axis (GBA). Emerging preclinical studies suggest that gut dysbiosis
may result in GBA dysfunction leading to neurodegenerative and
neurodevelopmental diseases, as well as age-related cognitive decline. Therefore,
modulation of gut microbiota composition and functionality offers a promising
tool for treating or managing gut dysbiosis and in turn achieving a healthy gut–
brain axis. Use of prebiotics is gaining attention as the most robust and safe
method of achieving such modulation. Prebiotics refer to non-digestible food
ingredients predominately some fermentable carbohydrates that can selectively
modulate the composition and/or activity of the microbiota of the gut, thus
conferring beneficial physiological effects on the host. The metabolism of
prebiotics by the gut microbiome induces changes in the gut barrier integrity
and promotes the release of metabolites (mainly SCFAs) contributing to the
improvement of host health, particularly in the context of GBA. In this chapter,
we discuss the concept of prebiotics, microbiota modulation by prebiotics, and
the impact prebiotics on GBA.
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11.1 Introduction

The gut-brain crosstalk has garnered the attention of researchers in the past few
decades as studies very clearly indicate the overpowering role of the gut microbiome
not only in the modulation and regulation of metabolism and immunity, but also in
the functioning of the central nervous system (CNS). The gut microbiome plays a
key role in influencing the development and function of the nervous system through
its constant bidirectional communication with the CNS (Carabotti et al. 2015; Liu
et al. 2019). Microbial metabolites are also known to transmit signals to the brain
directly or through the autonomic neurons establishing the gut–brain axis (GBA)
(Clapp et al. 2017). Given the enormous sharing of function between host and
microbiome, the concept of the holobiont has emerged, which regard eukaryotes
as a composite structure in which neither the host nor the microbiome can be
considered as functioning independently (Zilber-Rosenberg and Rosenberg 2008).
Dysbiosis typically occurs when the microbes that are resident in our gastrointestinal
tract (GIT) are disrupted triggering an imbalance in the gut microbiome and disrup-
tion in the microbiome–gut–brain axis (Carding et al. 2015; Noble et al. 2017).
Conventionally, gut dysbiosis has been implicated in several chronic gastrointestinal
tract related diseases and disorders, such as irritable bowel syndrome (IBS) (Menees
and Chey 2018), colorectal cancer (Sobhani et al. 2013), celiac disease (Marasco
et al. 2016), and also in metabolic disorders such as type 2 diabetes (T2D) and
obesity (Belizário et al. 2018). However, gut microbiome dysbiosis has also been
observed to impact the GBA, ultimately affecting the CNS and functions related to
behaviour and cognition (Carding et al. 2015), clearly suggesting the microbial
control of the GBA.

11.2 Microbial Control of the Gut–Brain Axis (GBA)

The gut–brain axis is inclusive of the central nervous system (CNS), autonomic
nervous system (ANS), enteric nervous system (ENS), the gut microbiota, and the
endocrine and immune systems (Carabotti et al. 2015). This bidirectional interaction
also includes the modulation of gut physiology by the CNS and its influence on
functions of the gut such as motility, nociception, and immune function (Fung et al.
2017). The vagus nerve connects the ENS to the CNS, thus providing a direct
communication pathway between the gut microbiome and the CNS facilitating the
modulation of the CNS by neurotransmitters or other metabolites produced by the
bacteria of the gut (Forsythe et al. 2014). Neurotransmitters are endogenous chemi-
cal messengers which diffuse signals across a chemical synapse from one neuron to
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another neuron, gland cell, or muscle cell (Lodish et al. 2000). The ability of specific
bacterial species of the gut microbiota to produce and modulate neurotransmitters
and related receptors has been demonstrated by a number of studies (Strandwitz
2018; Wu et al. 2020). In a study with normal mice, ingestion of Lactobacillus
rhamnosus JB-1 induced region-dependent changes in the expression of gamma
aminobutyric acid (GABA) receptor levels in the brain and reduced anxiety and
depression related behaviour, with the vagus nerve identified as the major commu-
nication pathway between the gut and the brain (Bravo et al. 2011). Studies in gem
free mice have shown increased activity related to transcriptional pathways in the
amygdala (Stilling et al. 2015), increase in levels of noradrenaline and dopamine and
5-hydroxytryptamine (5-HT) in the striatum (Diaz Heijtz et al. 2011), and decrease
in levels of 5-HT and 5-HT1A receptor expression in the hippocampus and amyg-
dala (Neufeld et al. 2011; Diaz Heijtz et al. 2011). Studies have also thrown light on
the ability of gut bacteria to produce several neuroactive compounds, for example,
serotonin by Candida, Streptococcus, Escherichia and Enterococcus species, nor-
epinephrine by Escherichia,
Saccharomyces, and Bacillus species, acetylcholine by Lactobacillus species,
GABA by Bacillus and Bifidobacterium, and dopamine by Bacillus and Serratia
species (Lyte 2011). The neurotransmitters that are unable to cross the blood–brain
barrier exert their action by stimulating the vagus nerve, consequently affecting brain
functions (Barrett et al. 2012).

One of the systems known for its close interaction with the gut microbiota is the
hypothalamic–pituitary–adrenal (HPA) axis, the major neuroendocrine system of the
body. The communication between the HPA axis and gut microbiota is closely
associated with the immune system, gut hormones, as well as the autonomic nervous
systems (Mayer 2000). In response to stress, paraventricular neurons of the hypo-
thalamus release corticosterone-releasing factor (CRF), which then induces the
anterior pituitary gland to release of adrenocorticotropic hormone (ACTH) (Foster
et al. 2017). The release of ACTH will induce the release of catecholamines,
glucocorticoids, or mineralocorticoids which can influence both behaviour and
intestinal microenvironment (Farzi et al. 2018). Various studies have been published
that have demonstrated the influence of stress on gut microbiome composition
(Bailey and Coe 1999; Bailey et al. 2011). In addition, gut microbiota can modulate
the expression of CRF in the hypothalamus (Crumeyrolle-Arias et al. 2014) and the
expression of 2A subtype Of N-methyl-D-aspartic acid (NMDA) receptor, brain-
derived neurotrophic factor (BDNF), and 5-HT1a receptors in the cortex and hippo-
campus (Ka et al. 2016), thus influencing the function of the HPA axis.

The host gut microbiome can modulate the maturation and function of microglia
(Erny et al. 2015) and influence the activation of peripheral immune cells (Fung et al.
2017). Pathogen-associated molecular patterns (PAMPs), for example,
lipopolysaccharides (LPS), can stimulate host immune cells to produce various
peripheral various proinflammatory cytokines such as TNF-α, IL-1α, IL-1β, and
IL-6 (Dantzer 2009). PAMPs and peripheral cytokines stimulate the macrophage
like cells in the circumventricular organs (CVOs) and choroid plexus, to produce
brain proinflammatory cytokines that diffuse by volume propagation into the brain
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parenchyma (Sherry et al. 2010). The peripheral cytokines can also activate the vagal
afferents providing a rapid signalling pathway. In both these events, the activity of
brain proinflammatory cytokines can be mediated by either prostaglandins that
diffuse to brain targets or by activation of neural pathways within the brain bringing
about alteration in neurological functions (Dantzer et al. 2000; Dantzer 2009)

Microbial fermentation of complex polysaccharides/prebiotics in the intestine
may increase the production of short-chain fatty acids (SCFAs), such as butyric,
acetic, and propionic acid which are capable of crossing the blood–brain barrier
(BBB) and able to elicit neurological response (Silva et al. 2020). SCFAs interact
with their receptors on enteroendocrine cells and indirectly signal the brain via either
the systemic circulation or through vagal pathways by stimulating the secretion of
neurotransmitters such as GABA and 5-HT (Sherwin et al. 2018) and gastrointesti-
nal tract (GIT) hormones such as glucagon-like peptide 1 (GLP-1) and peptide YY
(PYY) (Cherbut et al. 1998). SCFAs can cross the BBB and upregulate the expres-
sion of tight junction proteins, ultimately influencing integrity of the BBB (Silva
et al. 2020). In the CNS, SCFAs contribute to the biosynthesis of serotonin (Reigstad
et al. 2015), increase neurogenesis, (Kim et al. 2009) and impact neuroinflammation
by influencing glial cell morphology and function and moderating the levels of
neurotrophic factors (Savignac et al. 2013). Thus, interaction of SCFAs can indi-
rectly or directly influence the pathophysiology of brain disorders as well as emotion
and cognition.

11.3 Dysbiosis and Disorders Related to Gut–Brain Axis

Gut microbiota can affect neurological functions via many complex pathways
evident by the fact that many neurological disorders are associated with dysbiosis
in the gut. In addition, the rate of psychiatric disorders (especially depressive and
anxiety disorders) has been found to be considerably high among patients with
functional gastrointestinal disorders (Lydiard and Falsetti 1999). There a number
of studies that support the hypothesis that gut dysbiosis can result in altered gut–
brain axis resulting in neurobiological disorders (Griffiths and Mazmanian 2018),
neurodevelopmental disorders (Stilling et al. 2015; Lacorte et al. 2019), and
impaired cognitive function (Novotný et al. 2019). Increased gut permeability is
also speculated to be strongly correlated with behavioural changes. In fact, many of
the functional GI disorders such as IBS, functional dyspepsia are associated with
increased gut permeability, chronic inflammation, and anxiety and depressive
disorders (Barry and Dinan 2006; Jones et al. 2017). Further, a clinical study of
patients with alcohol addiction reinforced the link between increased gut permeabil-
ity and depression and anxiety (Leclercq et al. 2014). A few representative studies
related to the involvement of gut dysbiosis in various neurological and psychiatric
disorders are discussed below.

Alzheimer’s disease (AD), a neurodegenerative disorder, is characterized by a
progressive decline in behaviour, cognitive function, and social skills. AD is
associated with the formation of amyloid beta (Aβ) plaques and neurofibrillary
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tangles (DeTure and Dickson 2019). The bacteria of the GIT are source of a
significant amount of amyloids. In the gut, the exposure to bacterial amyloid may
result in the activation of immune cells which subsequently enhances formation of
neuronal amyloid in the brain (Kowalski and Mulak 2019). The role of bacterial
amyloid in triggering AD is evident from a number of studies. Rats exposed to
E. coli that produced curli (bacterial amyloid) displayed increase in deposition of
neuronal alpha-synuclein (α-syn) in both the brain and gut, and augmented
astrogliosis and microgliosis compared to rats exposed to mutant bacteria lacking
the ability to produce curli (Chen et al. 2016). Similarly, α-syn expressing C. elegans
fed on curli-producing bacteria displayed greater α-syn aggregation (Chen et al.
2016). The prevalence of bacterial components such as E. coli pili protein (Zhan
et al. 2016) or nucleic acids (Emery et al. 2017) is greater in the brain of AD patients.
H. pylori infection is also linked with AD. It has been reported that AD patients with
H. pylori infection have low Mini-Mental State Examination scores corresponding
with serious cognitive dysfunction (Kountouras et al. 2009). Vogt et al. (2017)
reported gut microbiota alterations in AD patients characterized by lower microbial
diversity, decreased abundance of Bifidobacterium and Firmicutes, and increased
abundance of Bacteroidetes.

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by
neuroinflammation

and loss of midbrain dopaminergic neurons and manifested by motor symptoms
such as rigidity, tremors, and bradykinesia (Poirier et al. 2016). Growing evidence
suggests that motor impairments are usually preceded by nonmotor symptoms
mainly constipation, depression, sleep behaviour disorder, and olfactory deficit,
sometimes by up to a decade (Chaudhuri and Schapira 2009). A recent study
reported significant decrease in the abundance of Prevotellaceae in PD patients
and a positive association between the abundance of Enterobacteriaceae and the
severity of instability of posture and gait difficulty, strongly implying the role of the
bacteria of the gut in the PD phenotype (Scheperjans et al. 2015). Interestingly,
abnormally aggregated Lewy bodies (α-synuclein) which are the pathohistological
hallmark of PD are reported to be observed in the ENS before it appears in the CNS
(Braak et al. 2006). In addition, experiments have demonstrated the spread of
α-synuclein from the intestinal wall to the vagus nerve and hence the CNS (Goehring
et al. 2014). Another study reported significant decrease in the concentration of
SCFA in the faeces of PD patients compared to controls. This was accompanied by
reduction in abundance of bacterial phylum Bacteroidetes and the bacterial family
Prevotellaceae and increase in abundance of Enterobacteriaceae (Unger et al.
2016). These studies provide direct evidence of the spread of PD pathology from
GIT to CNS via the gut–brain axis.

Autism spectrum disorder (ASD) is a neurodevelopmental disorder which
includes repetitive patterns of behaviour that influences how a person perceives
and socializes with others, causing problems in communication and social interac-
tion (Faras et al. 2010). ASD has been reported to be associated with GIT problems,
such as overgrowth of intestinal pathogenic bacteria, abnormal gastrointestinal
fistula, indigestion, and poor absorption in children (Fond et al. 2015). Alterations
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in the composition of the gut microbiota and its metabolites have been demonstrated
both in ASD children and animal models of ASD (De Angelis et al. 2015; Kushak
et al. 2016). Fine gold and colleagues reported higher levels of Desulfovibrio species
and Bacteroides vulgatus in faeces of severely autistic children compared to control
(Finegold et al. 2010). Bacteroidetes produce propionic acid which may influence
CNS and autism behaviour. Kang et al. (2013) reported lower levels of
carbohydrate-degrading and/or metabolizing bacteria of the genera Prevotella,
Coprococcus, and unclassified Veillonellaceae in autistic children. Gastrointestinal
Candida albicans, a fungus which is known to release autistic behaviour inducing
ammonia and other toxins, was reported to be two times more abundant in toddlers
with ASD compared to normal individuals (Iovene et al. 2017).

Multiple sclerosis (MS) is a common neurological disease typified by an auto-
immune inflammatory response in which immune cells affect brain and spinal cord
cells resulting in demyelination and damage to the axon (Tremlett et al. 2016a).
Studies have shown that MS patients have lower proportion of Faecalibacterium
(Cantarel et al. 2015). This dysbiosis is significant because reduction in the popula-
tion of Faecalibacterium spp. results in decrease in levels of its metabolite butyrate
leading to decrease of Treg cells and proinflammatory cytokines (Sokol et al. 2008).
In a study with 18 relapsing-remitting MS cases and 17 controls, it was noted that
MS subjects had a significant augmentation in relative abundance of members of the
Desulfovibrionaceae (Bilophila,Desulfovibrio, and Christensenellaceae) and reduc-
tion in Lachnospiraceae and Ruminococcaceae. In addition various other studies
provide evidence on the prominence of the changes in composition of gut microbiota
in MS (Tremlett et al. 2016a; Adamczyk-Sowa et al. 2017).

Major Depressive Disorder (MDD) also referred to as clinical depression is a
psychological state characterized by persistent feeling of sadness and loss of interest,
accompanied by several psychophysiological changes, such as loss of appetite, or
sexual desire, disturbances in sleep pattern and constipation (Verduijn et al. 2015).
Over the past decade, increasing number of studies have reported altered gut
microbiota constitution in major depressive disorder (MDD) patients. Aizawa et al.
(2016) reported reduction in Bifidobacterium and/or Lactobacillus counts in patients
with MDD compared with normal individuals. Remarkably, attenuation of depres-
sion related behaviours could be achieved by intervention using probiotic
Bifidobacterium (Desbonnet et al. 2008; Savignac et al. 2014) and Lactobacillus
(Messaoudi et al. 2011; Bravo et al. 2011) and prebiotic fructooligosaccharides and
galactooligosaccharides (Burokas et al. 2017). Furthermore, the counts of bacteria
such as Prevotella, Klebsiella, Streptococcus, and Clostridium XI were found to be
higher in MDD patients (Lin et al. 2016).

The gut microbiota has also emerged as a vital influencer of cognitive health
(Desbonnet et al. 2008; Noble et al. 2017). Fröhlich et al. (2016) reported that
recognition of novel objects was compromised in mice with antibiotic treatment
induced dysbiosis. This cognitive deficit was correlated with alteration in the
expression of cognition-relevant signalling molecules of the brain such as serotonin
transporter, neuropeptide Y system, brain-derived neurotrophic factor, and
N-methyl-D-aspartate receptor subunit. Additionally, Lee et al. (2019) reported that
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suppression of gut dysbiosis by Bifidobacterium longum can alleviate cognitive
decline in mouse model. Studies investigating the link between gut dysbiosis and
neurological and psychiatric disorders are summarized in Table 11.1.

In addition to the studies mentioned above one can find myriad studies relating
gut dysbiosis and neurological and psychiatric disorders (Douglas-Escobar et al.
2013; Rogers et al. 2016; Clapp et al. 2017). While the mechanistic details still
remain to be determined, these recent advances suggest that modulating the compo-
sition of the microbiota appears to be a viable therapeutic option for modulating
neurological and psychiatric disorders and may improve quality of life. This can be
achieved in part by effective prebiotic intervention. The following section highlights
different types of prebiotics that can be effectively used for addressing gut dysbiosis
and consequently achieving healthy gut–brain axis.

11.4 The Concept of Prebiotics

Several therapeutic strategies have been employed to re-establish and/or to maintain
the equilibrium in the microbial ecosystem of the intestine. These include the
consumption of probiotics, prebiotics, and synbiotics (Gagliardi et al. 2018),
phage therapy (Scarpellini et al. 2015), bacterial consortium transplantation
(BCT), and faecal microbiota transplantation (FMT) (Li et al. 2015). In the recent
years, use of prebiotics is becoming increasingly popular as a safe dietary approach
for overcoming gut dysbiosis. Prebiotics and the metabolites formed by their fer-
mentation in the gut play a vital role in management of gut dysbiosis and hence
modulate the gut–brain axis (Franco-Robles et al. 2019).

The concept of prebiotics was introduced in 1995 by Glenn Gibson and Marcel
who first defined prebiotics as ‘nondigestible food ingredients that beneficially affect
the host by selectively stimulating the growth and/or activity of one or a limited
number of bacteria in the colon, thus improving host health’ (Gibson and Roberfroid
1995). Accordingly to classify a compound as prebiotic it should be resistant to the
acidic pH of stomach; should not be digested/hydrolysed by mammalian enzymes
nor be absorbed in the gastrointestinal tract; should be fermented by intestinal
microbiota and should selectively stimulate the growth and/or activity of the intesti-
nal bacteria that confer health benefits on the host (Gibson et al. 2010). Most of the
first prebiotics evaluated in humans and used commercially were shown to enrich
Lactobacillus and/or Bifidobacterium specifically (Didari et al. 2014). Over the last
two decades, prebiotics and the concept around it have constantly been debated and
the definition of prebiotics has seen an evolution to include all perspectives. In
December 2016, a panel of experts in nutrition, biochemistry, microbiology, and
clinical research convened by International Scientific Association of Probiotics and
Prebiotics (ISAPP) updated the definition of a prebiotic to ‘a substrate that is
selectively utilized by host microorganisms conferring a health benefit’ thus
expanding the beneficiary role of prebiotics to body sites other than the GIT, and
provide inclusion of diverse classes of food and non-food categories. It recognizes
the health benefits derived from prebiotic stimulation of not only Lactobacillus and
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Table 11.1 Studies investigating the link between gut dysbiosis and neurological and psychiatric
disorders

Neurological
disease/
disorder

Study design and
sample

Gut dysbiosis-Altered gut
microbiota and / or metabolites
(As compared to control) Reference

Alzheimer’s
disease

AD patients with
dementia and
non-demented control
participants.
Sample: Faecal sample

Bifidobacterium and Firmicutes #
Bacteroidetes "

Vogt et al.
(2017)

Parkinson’s
disease

PD patients and
age-matched control
Sample: Faecal sample

Enterobacteriaceae "
Bacteroidetes #
Prevotellaceae #
SCFA#

Unger et al.
(2016)

Parkinson’s
disease

PD patients and
healthy control
Sample: Mucosa and
Faecal sample

Faecal Sample
Putative ‘anti-inflammatory’
butyrate producing bacteria from
the genera Blautia, Coprococcus,
and Roseburia #
Mucosa Sample
Faecalibacterium #
Putative, ‘proinflammatory’
proteobacteria of the genus
Ralstonia "

Keshavarzian
et al. (2015)

Autism Neurotypical and
autistic children
Sample: Faecal sample

Prevotella, Coprococcus, and
unclassified Veillonellaceae #

Kang et al.
(2013)

Autism Autistic subjects and
non-autistic control
(sibling and
non-sibling)
Sample: Faecal sample

Bacteroidetes "
Desulfovibrio species and
Bacteroides vulgatus"
Firmicutes #

Finegold et al.
(2010)

Major
depressive
disorder

MDD patients and
Control
Sample: Faecal sample

Bifidobacterium and
Lactobacillus #

Aizawa et al.
(2016)

Major
depressive
disorder

MDD patients and
Control
Sample: Faecal sample

Bacteroidetes, Proteobacteria,
and Actinobacteria "
Firmicutes #

Jiang et al.
(2015)

Major
depressive
disorder

MDD patients and
Control
Sample: Faecal sample

Prevotella, Klebsiella,
Streptococcus, and Clostridium
XI "

Lin et al.
(2016)

Multiple
sclerosis

MS patients and
Control
Sample: Faecal sample

Ruminococcus "
Faecalibacterium and
Bacteroidaceae #

Cantarel et al.
(2015)

Multiple
sclerosis

MS patients and
Control
Sample: Faecal sample

Desulfovibrionaceae (Bilophila,
Desulfovibrio, and
Christensenellaceae) "
Lachnospiraceae and
Ruminococcaceae #

Tremlett et al.
(2016b)

Abbreviations: AD Alzheimer’s Disease, PD Parkinson’s Disease, MDD Major Depressive
Disorder; MS Multiple Sclerosis, SCFA Short Chain Fatty acids
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Bifidobacterium but also of other beneficial taxa which include (but not limited to)
Eubacterium, Roseburia, or Faecalibacterium spp. (Gibson et al. 2017). Substrates
that influence gut microbiota composition through mechanisms different from selec-
tive utilization by host microorganisms are excluded from the prebiotic bracket, for
example, antibiotics, minerals, vitamins, and bacteriophages (Gibson et al. 2017).
Another term of interest in the context of prebiotics is Dietary fibre. Codex
Alimentarius Commission in 2009, defined Dietary fibre as ‘carbohydrate polymers
with 10 or more monomeric units, which are neither digested nor absorbed in the
human small intestine’. They include naturally occurring edible carbohydrate
polymers in food; edible carbohydrate polymers extracted (physically, enzymati-
cally, or chemically) from food raw material, and edible synthetic carbohydrate
polymers with beneficial physiological effect (Codex Alimentarius Committee
2010). The flexibility in the definition of dietary fibre is evident by the fact that
many countries include non-digestible carbohydrates with greater than three mono-
meric units under the bracket of dietary fibre (Jones 2014).

To date, prebiotic properties have been ascribed primarily to carbohydrates,
especially non-digestible oligosaccharides (NDO) and a few complex carbohydrates;
however some compounds that are not carbohydrates are also recommended to be
classified as prebiotics, for example, cocoa-derived flavanols (Tzounis et al. 2011);
whey derived protein, glycomacropeptide (GMP) (Sawin et al. 2015), and polyun-
saturated fatty acid (PUFA) (Gibson et al. 2017). Since majority of the substrates
studied for their prebiotic potency are dietary carbohydrates, in the present chapter
we will focus only on the impact of dietary carbohydrates as prebiotics.

11.4.1 Prebiotic Dietary Carbohydrates

Prebiotic dietary carbohydrates are carbohydrates present in food that are
speculated to be able to

11.4.1.1 Oligosaccharides as Prebiotics
Over the past few decades, different types of oligosaccharides have been reported to
possess prebiotic potency, among them inulin-type fructans [inulin, oligofructose,
and fructooligosaccharides (FOS)], lactulose, and galactooligosaccharides (GOS)
are the only dietary carbohydrates that are reported to fulfil all the criteria for
classification as prebiotics (Davani-Davari et al. 2019). An interesting class of
oligosaccharides included in the prebiotic category are the human milk
oligosaccharides (HMOs). HMOs play a very important and crucial role in shaping
infant gut microbiome (Pannaraj et al. 2017). Xylooligosaccharides (XOS),
isomalto-oligosaccharides (IMO), raffinose family oligosaccharides (RFO), lactitol
and a range of other oligosaccharides are included under emerging prebiotics.

Inulin-Type Fructans
Inulin-type fructans (ITF) are polymers of fructose with β-(2 1) fructosyl-fructose
linkages with degree of polymerization (DP) varying from 1–60. Both FpyFn
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[fructopyranosyl-(fructofuranosyl)n-fructose] and GpyFn [glucopyranosyl-
(fructofuransoyl)n-fructose] are included under this nomenclature. ITF include
native inulin (DP, 2–60), inulin HP (DP, 10–60) oligofructose (OF), and fructo-
oligosaccharides (FOS) (DP, 2–8) (Roberfroid 2007). ITF can be extracted from
plants (native chicory inulin), produced from enzymatic hydrolysis of inulin
(e.g. oligofructose), or enzymatically synthesized from sucrose (e.g. FOS)
(Roberfroid 2007). In addition to these, two ITF products; (i) ‘Synergy’ containing
long-chain inulin and short-chain oligofructose and (ii) ‘scFOS’ containing a mix-
ture of three oligosaccharides of DP3–5 are also available commercially (Hidaka
et al. 1986). Owing to β-configuration of the anomeric C2 in its fructose monomers,
ITF can resist digestion/hydrolysis by mammalian digestive enzymes which are
known to be specific for α-glycosidic bonds, making ITF excellent prebiotic
substrates (Roberfroid 2007).

Galactooligosaccharides (GOS)
Galactooligosaccharides (GOS), also known as oligolactose, or
oligogalactosyllactose, are oligosaccharides of β-D-galactopyranosyl units (2–8)
with a terminal (reducing end) D-glucose. Conventionally, GOS are prepared from
lactose by transglycosylation reaction using the enzyme β-galactosidase, which adds
D-galactopyranosyl monomers to the nonreducing end of lactose, forming a family of
oligosaccharides of varying chain length comprising a mixture of (1 ! 4) and
(1! 6) linkages (BeMiller 2019). GOS produced from transglycosylation reaction
are termed as trans-galactooligosaccharides (TOS). β-galactosidases are derived
from various fungal and bacterial sources such as Aspergillus (Vera et al. 2012),
Bifidobacteria (Rabiu et al. 2001), and Lactobacilli (Iqbal et al. 2011). The yield,
degree of polymerization, and glycosidic linkages differ based on the source from
which β-galactosidase is derived (Zárate and López-Leiva 1990). Recently, a unique
second-generation prebiotic GOS was produced using galactosidase enzymes
obtained from Bifidobacterium bifidum NCIMB 41171 (Tzortzis et al. 2005). This
GOS referred to as B-GOS (Bimuno® 52 % GOS content; Clasado Biosciences Ltd)
contains GOS in β-and α-anomeric configuration (Tzortzis 2010).

Human Milk Oligosaccharides (HMOs)
Human milk oligosaccharides are a complex group of glycans found in human milk
at a concentration of 20–25 g/L in colostrum and 10–15 g/L in mature milk (Coppa
et al. 1999). More than 200 different oligosaccharides have been reported in human
milk with their carbohydrate chain containing lactose (Galβ1-4Glc) at the reducing
end, which may be extended by the addition of β1-3- or β1-6-linked lacto-N-biose
(type 1 chain) or N-acetyllactosamine (type 2 chain) (Bode 2012). The principle
monosaccharides of HMOs are D-galactose, D-glucose, L-Fucose,
N-acetylglucosamine, and sialic acid. Based on their structure and substitution,
HMOs are classified as sialylated acidic HMOs, fucosylated neutral HMOs, and
non-fucosylated neutral HMO (Vandenplas et al. 2018). Among the huge repertoire
of soluble glycan structures of HMO, 20-fucosyllactose (20-FL) is reported to be the
most abundant (Erney et al. 2000).
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11.4.1.2 Complex Polysaccharides
Complex polysaccharides which are abundant in plant-based diet reach the intestine
unaltered. Many complex polysaccharides are soluble and are easily fermented by
the intestinal microbiota and thus serve as prebiotics (Flint et al. 2012). Fermentable
complex polysaccharides which are known for their prebiotic potency include
arabinoxylans, beta-glucans, resistant starch, glucomannans, and fucoidan.

i. Arabinoxylans are non-digestible polysaccharides mainly found in the bran
tissues of most cereals (Hopkins et al. 2003). Arabinoxylans consist of
unsubstituted β-(1-4) linked xylose backbone with α-(1-3) arabinofuranosyl or
α-(1-2) L-arabinofuranosyl or a double α-(1-2) and α-(1-3) arabinofuranosyl
linked to the xylose backbone with or without uronic acid (galacturonic acid,
glucuronic acid, and mannuronic acid) and phenolic acid (mainly ferulic acid and
p-coumaric acid) substitution (Bajpai 2014).

ii. Resistant starch is a portion of dietary starch that cannot be digested by amylases
of the GIT and reaches the colon to be fermented by microbiota (Englyst and
Cummings 1985). Currently, 5 types of resistant starch have been identified:
RSI-Physically inaccessible starch, RSII-Granular starch with the B- or
C-polymorph, RSIII-Retrograded starch, RSIV-Chemically modified starches,
and RSV-Amylose-lipid complex (Birt et al. 2013).

iii. Beta-glucans are non-starch polysaccharides consisting of repeating glucose
residues forming either linear chains or branched structures (Lam and
Chi-Keung Cheung 2013). The primary structure, branching pattern and degree
of branching, molecular weight (MW), and solubility are involved in the
biological activity exhibited by beta-glucan and vary according to the source
(Zeković et al. 2005).

iv. Glucomannans are neutral polysaccharides produced by many plants, especially
the Amorphophallus family (e.g. Konjac). These polysaccharides predominately
comprise mannose units with glucose as the second most abundant sugar, and
may contain some acetylated residues and galactose side chains (Al-Ghazzewi
et al. 2007). Konjac glucomannans typically have high molecular weight
(>1 � 106 Da), and are commonly used in the food industry as a gelling and
thickening agent owing to their exceptionally high swelling characteristics when
hydrated (Akesowan 2002).

v. Fucoidan is a fucose-enriched, sulphated polysaccharide that is primarily
extracted from brown algae. Along with L-fucose and sulphate groups, fucoidan
consists of one or more units of mannose, galactose, xylose, glucose, arabinose,
rhamnose, glucuronic acid, and acetyl groups (Luthuli et al. 2019).

11.5 Prebiotics in Management of Dysbiosis

Based on the emerging appreciation of the link between the brain and the gut
microbiota, it is evident that management of gut dysbiosis has direct beneficial
impact on the gut–brain axis, hence restoration of dysregulated microbiota has
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therapeutic consequences. This can be achieved by boosting bacterial growth using
prebiotics. Additionally, the metabolites produced by the intestinal bacteria in the
process of prebiotic fermentation have a positive impact on host physiology (Tsai
et al. 2019). Research over the years has identified specific strains of bacteria whose
abundance in the gut would bring about a positive impact on the microbiome quality
and on health condition and is termed as beneficial bacteria. Some examples of
beneficial bacteria include Lactobacillus reuteri (Gao et al. 2015), Lactobacillus
rhamnosusJB-1 (Bravo et al. 2011), Lactobacillus acidophilus, Bifidobacterium
animalis subsp. lactis, Prevotella (Ou et al. 2013), Faecalibacterium prausnitzii
(Scott et al. 2015), Bacillus subtilis HU58 (Tam et al. 2006), etc. In fact, a host of
bacterial species belonging to the lactobacilli and bifidobacterial genera are consid-
ered beneficial/ probiotic (Fijan 2014). Currently the dysbiosis management
strategies are focussed towards increasing the population of these beneficial
bacteria.

Different approaches are employed to study the ability of dietary carbohydrates
to selectively propagate the growth of beneficial bacteria and induce the production
of specific SCFAs, and thus modulate the gut microbiome. The simplest and the most
widely applied approach is the in vitro studies. There are numerous in vitro studies
on the ability of dietary carbohydrates to enhance the growth of specific strains of
bacteria (Su et al. 2007; Ward et al. 2007; Pastell et al. 2009; Kunová et al. 2012;
Ramnani et al. 2012; Sims et al. 2014; Liu et al. 2016). Additionally, in vitro
fermenters have been employed in an attempt to mimic intestinal conditions using
colon simulators (Gibson and Wang 1994; Macfarlane et al. 1998; Mäkeläinen et al.
2010). In addition to evaluating their prebiotic potency, researchers have also
analysed the ability of dietary carbohydrates to inhibit the growth of selected
human intestinal pathogens (Fooks and Gibson 2002). In vitro studies are helpful
in proposing the prebiotic potency of dietary fibre; however, these studies need to be
validated by in vivo experiments. In vivo studies generally use animal models such as
rats or mice or human clinical trials, to determine the effect of prebiotic supplemen-
tation on host faecal microflora. Rats or mice provide limited representation of the
situation in the human colon, hence the results may not indicate true effect (Shanks
et al. 2009). Therefore, the most efficient approach is the human volunteer
Randomized Controlled Trial (RCT) study. Human trials are usually done by faecal
sampling after diet supplementation with dietary carbohydrates for a fixed experi-
mental period. Various in vivo studies with human volunteers have reported the
ability of dietary carbohydrates to selectively stimulate the growth of bifidobacterial,
lactobacilli, and other genera, inhibit the growth of pathogenic bacteria, and increase
the concentration of specific SCFA (Table 11.2). However, the major drawback of
human trials is that analysis of the different regions of the gut is not possible and only
faecal matter is readily available.
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11.6 Influence of Prebiotics on Gut–Brain Axis

The selective stimulation of beneficial bacteria by prebiotics not only helps in the
management of dysbiosis but may also has a positive impact on the gut–brain axis.
Though the mechanism of action of prebiotics on the gut–brain axis is still not
conclusively determined, SCFAs are speculated to play a vital role. SCFAs are
organic acids (saturated fatty acids) with a chain length ranging from one to six
carbon atoms (Miller and Wolin 1996). The principle SCFAs released by the
microbial fermentation of prebiotic substrates include butyrate, acetate, and propio-
nate with the amalgamated concentration greater than 100 mM in the lumen of the
intestine (Boets et al. 2017). Other SCFAs such as formate, caproate, and valerate are
produced in lesser amounts (Macfarlane and Macfarlane 2003). SCFAs improve the
gut health by exerting a number of local effects which include maintaining intestinal
barrier integrity (Peng et al. 2009), provide protection from intestinal inflammation,
affect mucous production in the gastrointestinal tract (Barcelo et al. 2000), influence
gastrointestinal motility (Cherbut et al. 1998), and reduce the risk of colorectal
cancer (Encarnação et al. 2015). In addition to the local effects, SCFAs are
speculated to play a vital role in the crosstalk along the microbiome gut–brain axis
owing to their effects directly on the CNS or indirectly via the immune and
endocrine signalling pathways (Stilling et al. 2016; Dalile et al. 2019).

Studies conducted in rodent models and a few human trials have contributed
immensely towards our understanding of the effect of prebiotics on neurobiological
processes and consequently on the affective and cognitive functions. Sprague–
Dawley rats administered with FOS, GOS, or water, over 5 weeks, showed increased
expression of hippocampal brain-derived neurotrophic factor (BDNF) and NR1
subunit of N-methyl-D-aspartate receptor (NMDAR), with B-GOS additionally
enhancing hippocampal NR2A subunits, and frontal cortex NR1 and D-serine
(Savignac et al. 2013). The authors noted that GOS displayed superior
neurostimulatory activity in comparison to FOS owing to the greater bifidogenic
capacity of the former. The effect of supplementation of Bimuno formulation of
galactooligosaccharide (B-GOS) has been studied in neonatal male and female
Sprague–Dawley rat pups (Williams et al. 2016). Animals fed with B-GOS showed
increased expression of hippocampal NMDAR subunit GluN2A, synaptophysin,
BDNF, but not MAP2, suggesting that in neonates B-GOS feeding modifies neuro-
transmission rather than synaptic architecture. Based on the suggestion that BDNF
may confer anxiolytic state, and NMDAR subunits may regulate cognitive functions
it proposed that prebiotics can alter mood and cognitive abilities, via the modulation
of microbiota (Savignac et al. 2013; Williams et al. 2016).

Salivary cortisol awakening response (CAR) and a validated test battery of
emotional processing were used to assess neuroendocrine and affective effects
(brain functions concerned with emotions) of prebiotics in healthy male and female
participants (n ¼ 45) who consumed either FOS, B-GOS, or a placebo (Schmidt
et al. 2015). Amplified waking cortisol is a biomarker of psychological stress and
emotional disturbances (Mannie et al. 2007; Shibuya et al. 2014). Results showed
that the intake of B-GOS was linked with reduced waking salivary cortisol reactivity
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and altered attentional bias in comparison with intake of FOS and placebo. Further-
more, B-GOS intake showed attenuated attentional vigilance to negative versus
positive information in a dot-probe task in participants, suggestive of anxiolytic
and antidepressive role of B-GOS. These studies strongly support the key role of gut
microbiota modulating prebiotics in the regulation of affective function. Dietary
intervention with scFOS (5 g/day) vs placebo for 4 weeks to treat IBS in patients is
reported to increase faecal Bifidobacterium count and reduce anxiety scores (Azpiroz
et al. 2017). Silk et al. (2009) evaluated the ability of a novel prebiotic trans-
galactooligosaccharide (T-GOS, at doses 3.5 and 7.5 g/day) in managing colonic
microbiota, improving IBS symptoms including managing anxiety and depression in
patients suffering from IBS. Results indicated that T-GOS significantly improved
anxiety/depression and subjective global assessment (SBA) scores. T-GOS treat-
ment, at doses 3.5 and 7 g/day, resulted in significant increase in relative population
of Bifidobacterium spp. The higher dose (7 g/day) of T-GOS resulted in lower
proportion of Bacteroides-Prevotella spp. and Clostridium perfringens subgroup
histolyticum, whereas lower T-GOS dose (3.5 g/day) resulted in higher proportion of
Eubacterium rectale/Clostridium coccoides spp. Gronier et al. (2018) reported that
rats ingesting B-GOS showed increase in the plasma acetate, and acetyl Co-A
carboxylase mRNA, and cortical GluN2B subunits levels. Additionally, increase
in neuronal responses to iontophoretically applied N-methyl-d-aspartate (NMDA)
and improvement in intra-dimensional to an extradimensional set shifting in B-GOS
fed rats were observed, thereby indicating heightened cognitive flexibility. Overall,
the data demonstrated the association between pro-cognitive effect of B-GOS intake
with an escalation in cortical NMDAR function, however the role of circulating
acetate produced the B-GOS metabolism by the gut bacteria was not addressed. In
another study, co-administration of B-GOS (0.5 g/kg/day) with olanzapine (antipsy-
chotic drug) in adult female Sprague–Dawley rats significantly attenuated
olanzapine-induced weight gain and had a positive effect on cognitive function
(Kao et al. 2018). It was shown that in humans, FOS may modulate appetite by
regulation of hormones such as glucagon-like peptide-1 (GLP-1) and peptide YY
(Cani et al. 2009). Studies suggest that fructooligosaccharides from Morinda
officinalis (OMO) exert effectual memory improvements in Alzheimer disease
(AD)-like animals, and are effective in alleviating AD by affecting the gut–brain
axis (Chen et al. 2013; Chen et al. 2017)

HMOs are reported to be crucial nutrients for neurological development in infants
and essential for optimal development of cognitive abilities (Jacobi et al. 2016). A
study in male rodents (both C57BL/6 mice and Sprague–Dawley rats) showed
heightened associative learning and working memory associated with HMO glycan
20-FL. Chronic administration of 20-FL augmented the expression of phosphorylated
calcium/calmodulin-dependent kinase II (pCaMKII), postsynaptic density protein
95 (PSD-95), and brain-derived neurotrophic factor (BDNF) in cortical and subcor-
tical structures. These molecules are reported to be important in the storage of newly
acquired memories, suggesting that dietary 20-FL can affect cognitive domains and
improve learning and memory in rodents (Vázquez et al. 2015). Another study
revealed that oral supplementation of 20-FL during lactation improved cognitive
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abilities, both in childhood and adulthood (Oliveros et al. 2016). Two possible and
nonexclusive mechanisms of action have been proposed to explain the neuro-
beneficial effects of HMO, a central mechanism according to which 20-FL reaches
the brain via systemic circulation (Goehring et al. 2014) and a local mechanism
involving stimulation of the vagus nerve by 20-FL (Murrey and Hsieh-Wilson 2008).
All in all, whether the mode of action is via direct stimulation of the nervous system
or indirectly via the microbiota, the molecular integrity of 20FL is critical for
induction of its effects.

Complex polysaccharides and polysaccharide-rich extracts modulate cognition,
behaviour, and provide neuroprotective effects. Dietary intervention (14 days) with
breakfast high in wheat bran fibre (3.5 g of wheat bran) in healthy, habitual low-fibre
consumers significantly improved subjective perception of bowel function, digestive
feelings, and general wellbeing (Lawton et al. 2013). Ambrotose Complex
(a proprietary mixture of NSP) was observed to induce significant improvement in
recognition and working memory performance, in healthy middle-aged adults (Best
et al. 2010; Best et al. 2015). Similarly another study demonstrated that intervention
with complex carbohydrates (6.5 g of fibre) is favourable in comparison to a simple
carbohydrate breakfast, because of the higher degree of satiety and lower perception
of fatigue associated with complex carbohydrate consumption (Pasman et al. 2003).
Pectic polysaccharides have been reported to have anti-fatigue activity and improve
the antioxidant status in the hippocampus of treated animals (Klosterhoff et al.
2018). Pectic polysaccharide consumption is also associated with improved intesti-
nal barrier function resulting in prevention of lipopolysaccharide (LPS) entry into
the circulation and reduction of influence of systemic inflammation on the brain.
Supplementation with a Beta 1,3/1,6 glucan (250 mg, commercially available as
Wellmune WGP®) for 4 weeks improved overall health, increased vigour, and
reduced fatigue, tension, anger, and confusion, compared to 250 mg of rice flour
placebo (Talbott and Talbott 2009).

Oral administration of isolichenan (Cetraria islandica derived alpha-glucan) to
ethanol-fed mice reversed the ethanol-induced impairment (Smriga et al. 1999). Oral
or intravenous injection of a new (1–3) (1–4) (3:2) α-glucan, isolated from the lichen
Flavoparmelia caperata, resulted in potent, dose-dependent enhancement in tetani-
cally evoked synaptic short-term potentiation (STP) in the hippocampus of rats
(Smriga et al. 1996). Sherry et al. (2010) noted a basal up-regulation of IL-4
mRNA accompanied by doubling of endotoxin-induced IL-1RA expression in the
brain of mice fed soluble fibre (pectin rich diet) in comparison with the mice fed
insoluble fibre, indicating that the impact of soluble fibre is not limited to the gut and
peripheral immune system but goes beyond and affects the neuroimmune system. In
a neurotoxin (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)) induced
animal model of Parkinson, fucoidan derived from the brown alga Laminaria
japonica resulted in evident increase in tyrosine hydroxylase expression, increased
levels of striatal dopamine and its metabolites, reduced behavioural deficits, and
lowered cell death. In the same study, extended to in vitro model of PD, fucoidan
shielded mouse dopaminergic MN9D cells from MPTP toxicity (Luo et al. 2009). In
another study, intraperitoneal administration of Bladderwrack fucoidan reduced the
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extent of hypoxia-ischemia induced neural damage in the cortex, hippocampus, and
striatum of rat (Uhm et al. 2004). Arabinoxylan from Triticum aestivum (wheat) and
beta-glucan from barely have been reported to have ameliorating effect against
vascular dementia (Han et al. 2010). A uncharacterized polysaccharide fraction of
Panax ginseng has been reported to promote learning and memory (Lyubimov et al.
1997). The impact of consumption of prebiotics on neurological disorders, cogni-
tion, and behaviour is summarized in Table 11.3.

11.7 Conclusion

The relationship demonstrated between the gut microbiome and the brain and the
ability of prebiotics to modulate gut microbiome and thus impact gut–brain axis has
garnered interest of researchers working towards developing diet-based therapies to
manage neurological and psychiatric disorders. Although research in this direction
has been initiated, there is limited understanding on the detailed mechanism of action
of prebiotics. Developing therapeutic formulations using prebiotics requires deeper
research into investigating the right dose, appropriate inclusion of probiotics, dura-
tion of treatment, and knowledge of associated side effects. It is also worthwhile to
note that many dietary carbohydrates not bracketed under prebiotics have an impact
on the CNS via routes that do not involve modulation of gut microbiome. Further,
the involvement of food and pharmaceutical companies is required in terms of
investment for large scale human trials. Prebiotic containing diet-based therapy in
managing neurological and psychiatric disorders has a long road ahead.
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