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P-GP P-glycoprotein
SAC Spindle Assembly Checkpoint

1 Introduction

Oxazole is a heterocycle of the five-membered ringwhich is composed of oxygen and
nitrogen atoms at first and third positions, respectively, whereas for isoxazole oxygen
and nitrogen atoms are at 1 and 2 positions. In the last few years, reports of biolog-
ically active compounds containing heterocyclic rings have drawn great attention
from medicinal chemists. Oxazole is one of the major biologically active scaffolds
found so far [1]. Surprisingly, a wide range of biological actions is associated with
oxazole containing compounds, including anticancer, antibacterial, anticonvulsant,
anti-allergic, anthelmintic, antiviral, antidepressant, analgesic and antioxidant prop-
erties [2]. Synthetic derivatives of oxazoles are imperative in the drug research port-
folio as a result of good anti-inflammation potential [3], TRPV1 antagonist activity
[4], antitubercular [5] and anti-HIV [6] activities. Additionally, oxazoles are also
found to be used as fluorescent dyes, agrochemicals, corrosion inhibitors [7, 8] in
polymer industries [9–11] and photography [12]. This chapter highlights the modern
advancements in the progress of oxazole-based biologically active compounds.

Isoxazoles are also an essential class of heterocycles, which are generally active in
the area of therapeutics and pharmaceuticals such as anticancer, insecticidal, antibac-
terial, antituberculosis, antifungal, antibiotic, antitumour and ulcerogenic.Moreover,
marketed anti-inflammatory drugs as well as COX-2 inhibitors contain molecular
scaffolds of Isoxazole. Isoxazole derivatives such as oxacillin, sulfamethoxazole,
acivicin, cycloserine and sulfisoxazole have been in commercial use for the previous
40 years. In another, Cycloserine is a well-known antibiotic drug that has antibac-
terial, antitubercular activities, and also in medication of leprosy. Acivicin is an
anti-leishmanial, antitumour drug, whilst isoxaflutole is used as an herbicidal drug
[13].

Oxadiazole (known as furadiazoles) is one of the important scaffolds having
a N-heterocyclic five-membered ring consists of two nitrogen and one oxygen
atom. Oxadiazoles could arise in four distinct isomeric forms: 1,2,3-oxadiazole,
1,2,4-oxadiazole, 1,2,5-oxadiazole and 1,3,4-oxadiazole; depends on the position of
nitrogen atoms. Amongst the isomers, 1,2,4-oxadiazole, one of the important five-
membered N-heterocycles, received significant attention due to its excellent bioisos-
teric properties and the broad spectrumof biological andpharmaceutical applications.
The fused and pendant 1,2,4-oxadiazole scaffolds have been traced in several well
recognized, commercially accessible drugs. After a few decades since the chem-
istry of 1,2,4-oxadiazole was invented, the unique potential involved researchers
around the globe, giving rise to the recognition of currently available drugs possessing
1,2,4-oxadiazole scaffolds. Nevertheless, the attention in the biological application
of 1,2,4-oxadiazoles and their derivatives have been enlarged in the past twenty years
[14].
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1.1 Biologically Active Oxazole Related Pharmaceutical
Drugs

Oxazole compounds [15–17] as the bioisostere of imidazoles [18, 19], thiazoles
[18, 19], triazoles [20, 21], benzimidazoles [20, 21] as well as tetrazoles [22], have
fascinated progressive consideration. Moreover, several scientists and researchers
over the globe have been affording oxazole-based compounds as pharmacophore
and conceivably discover novel scaffolds with excellent pharmacokinetic property,
low toxicity and a wide spectrum of bioactivity (Fig. 1) [23–25].

Several oxazole-embellished natural products are known to be isolated from
numerous microorganisms and marine invertebrates [26–28], which assist as core
structural motifs for several pharmaceuticals that exhibit various biological activities
such as antifungal, antibacterial, antiproliferative [29–33], analgesic, antileukemic,
antiviral, anticancer and enzyme inhibitory activities [34–43]. The phenomenal

Fig. 1 Biologically active oxazole related pharmaceutical drugs [15–25]
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biological functions and ubiquity of oxazoles in synthetic drugs and natural prod-
ucts have generated remarkable attention in the synthesis and biological evolution
of functionalized cyclic oxazole scaffold.

Few of the FDA-approved oxazole containing drugs are listed in Table 1 [43].

Table 1 FDA-approved oxazole-containing drugs [43]

Structure of the drug name of the
drug (Drug bank id)

Category/Indication Mechanism of action

Chlorzoxazone 

It is recommended for the
reliever of pain related to
acute painful musculoskeletal
conditions

Inhibits degranulation of
mast cells, eventually
suppressing the liberation
of histamine and
anaphylaxis (SRS-A), a
slow reacting substance,
acts as type-I allergic
reactions regulator

Oxaprozin 

Recommended for edoema,
inflammation, joint
discomfort and stiffness
which arises from
osteoarthritis and rheumatoid
arthritis

Anti-inflammatory
activities of oxaprozin
referred to the suppression
of cyclooxygenase within
the platelets which results
towards the hindrance in
the synthesis of
prostaglandin. Shows
antipyretic activities which
is associated to the
reactivity on the
hypothalamus, leading
towards enhanced
peripheral blood flow,
vasodilation, as well as
consequent heat dissipation

Benoxaprofen 

Withdrawn application Withdrawn application

(continued)
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Table 1 (continued)

Structure of the drug name of the
drug (Drug bank id)

Category/Indication Mechanism of action

Tafamidis 

STreatment for stage-1
symptomatic polyneuropathy,
which may result to postpone
peripheral neurologic
impairment in Europe and
cardiomyopathy in wild type
or hereditary
transthyretin-mediated
amyloidosis

the specific stabilizer of
TTR, and its inhibition of
TTR tetramer dissociation
forms the rationale for its
use as a treatment to slow -
but not cure - the disease
progression of TTR-FAP

Dalfopristin 

For the treatment of bacterial
infections (usually in
combination with
quinupristin)

Inhibits the early phase of
protein synthesis

Suvorexantore 

Approved for the treatment of
insomnia

A dual antagonist of orexin
receptors OX1R and OX2R
that indorses sleep by
dipping wakefulness and
arousal

1.2 SAR (Structure–Activity Relationship)
of 1,2,4-Oxadiazole Compounds

The 1,2,4-oxadiazoles showcased various essential pharmacokinetic characteristics
and share decent activity in murine models of Methicillin-resistant Staphylococcus
aureus (MRSA) infection (Fig. 2) [44, 45]. They are usually embrace of four cyclic
ring system, assigned asA,B,CandD.The subsequent structure–activity relationship
(SAR) recognized some significant explanations:

• The H-bond donor of the ring A is important, whereas for antibacterial activity,
H-bond acceptors at ring A are unfavoured.

• Structural distinctions on ring C are recognized for the biological activity.



384 R. Gujjarappa et al.

Fig. 2 SAR studies of oxadiazole compounds [44, 45]

• When othermoieties are present, substitution of an oxygen atomby a sulphur atom
at the connecting moiety between rings C and D can ordinarily be reinforced; but,
when other moieties are present, it is unfavourable.

• Ring C and D fusions with phenol are permitted.

The structural differences on the ring C can exhibit bioactivity but, whilst the A
ring is either indole or pyrazole, and the activity would be overturned (Fig. 2).

2 Antibacterial Activity of Oxazole Derivatives

The appearance of carbapenemase forming bacteria, particularlyNewDelhiMetallo-
β-lactamase known as NDM-1 and its alternates, has elevated a major worry to the
human health. NDM-1 and its variants hydrolyze a broad variety of β-lactam antibi-
otics, as well as carbapenemase. In this context, methyl oxazole amide, compound 1
was a comparatively potent inhibitor against NDM-1 [46–52]. The amide and thiol-
groups are also essential for correlating to the active site of the NDM-1 protein [47].
In addition, Benzamide-based oxazole moieties 2 (a–d) displayed decent activity
against Staphylococcus aureus ATCC (Fig. 3).

Moreover, compound 2c was more potent than clinical Linezolid or Vancomycin.
Additionally, Coumarin-based isoxazole 3, isoxazole moiety bearing -Cl substitu-
tion at -o and -p positions of aromatic ring showed higher activity against Pseu-
domonas aeruginosa and Bacillus cereus. It is might specify that coumarin scaf-
fold with isoxazoles is obviously important for the medicinal implication [48]. In
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Fig. 3 Oxazole and Isoxazole as antibacterial compounds [46–52]

continuation, bisbenzyl substituted oxazoles 4 (a-c) were studied for antibacterial
activity and compound 4c displayed supreme antibacterial activity against P. aerug-
inosa as well as compounds 4a and 4c displayed comparable inhibition against
E. coli [49]. In addition, the carbonyl group of curcumin, attached with isoxazole
sulfonamide which provided compound 5 and displayed robust antibacterial activity.
Again, when both carbonyl groups were involved with two isoxazole sulfonamide
molecules, the activity would decline faintly [50]. In another, Enterococci are the
significant pathogens for resistance, and mainly Enterococcus faecium, associated
with the group of “ESKAPE” pathogens which presently originate from nosocomial
infections. In continuation, D-aspartate ligase from E. faecium (Aslfm) as a promi-
nent object for advancement of narrow-spectrum antibacterial agents which is active
against multi-drug-resistant E. faecium. In addition, amino oxazole 6 resulting from
the bacterial biotin-dependent carboxylase inhibitors exhibited little micro molar
activity, and specifically, compound 8 prevents Aslfm with good activity [51]. In
addition, isoxazole 7 bearing tosyloxy phenyl group was screened by the agar cup
plate process for antibacterial activity, utilizing Ampicillin as a classic drug, the
compound shown potential anti-P. Aeruginosa activity [52].

The 2-amino oxazole/4-substituted-phenyl oxazole was synthesized and assessed
for antibacterial and antifungal potency. Some of the molecules have shown greater
activity, i.e. zone of inhibition of 18 mm to 22 mm in Gram-positive bacteria, 16 mm
to 18 mm in Gram-negative bacteria, and 16 mm to 19 mm in Fungi. It indicates that
the oxazole moieties exhibit a strong antibacterial and antifungal activity [53].

Various substituted oxazoles were synthesized and assessed for antibacterial
activity for various strains like S. aureus, E. coli, P. vulgaris, K. pneumonia and
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compared with the various standards like Ampicillin and Ciprofloxacin. Some of the
compounds have shown more potent activity than Ampicillin. The zone of inhibition
of the new compounds was found to be 25 mm, whereas Ampicillin is 20 mm in S.
aureus. One compound exhibited a 21 mm inhibition zone, whereas Ampicillin was
22 mm in E. coli which indicates comparable activity. The third compound exhib-
ited an inhibition zone of 22 mm, whereas Ampicillin was 20 mm in P. vulgaris
and others exhibited 23 mm, whereas Ampicillin was 21 mm in K. pneumonia. But
all the newly synthesized compounds have not exhibited comparable activity with
Ampicillin. They exhibited good to moderate antibacterial activity [54].

3 Oxazoles and Their Clinical Drugs

Plenty of medicinal drugs containing oxazole-containing scaffolds have been widely
used in the clinic, for example; Sulfisoxazole 9, Furazolidone 10, Toloxatone 11 and
Linezolid 13 (Fig. 4) [55].

4 Antifungal Activity of Oxazole Derivatives

The installation of the oxazole motif into the indole frame, compound 15,
exhibited good activity against Alternaria brassicicola. Nevertheless, compound
14 comprising the oxadiazolyl group comparatively gave faint inhibitory action [56].
Streptochlorin 18wasoriginally synthesized from lipophilic extracts of Streptomyces
sp. mycelium and a series of improved streptochlorin analogues such as 16, 17, 19
and 21 were tested for potency against seven phytopathogenic fungi. All of the
compounds, on the other hand, demonstrated reasonable activity [57]. Additionally,
2-(4-ethyl-2-pyridyl)-1H-imidazole based 1,3,4-oxadiazole scaffolds (compounds
21, 22, 23, and 24) were verified against several fungal strains and compounds 22, 23

Fig. 4 Clinical oxazole drugs [55]
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Fig. 5 Oxazole related antifungal agents [56-58]

and 24 showcased respectable antifungal activity in contrast with fluconazole (Fig. 5)
[58].

The suppressors of the dual-specificity protein phosphataseCDC25Cwere discov-
ered to be benzo[d]oxazsole-4,7-diones. Antifungal action of these moieties must
be evaluated. Presence of arylamino, arylthio, or halogen groups will improve the
antifungal activity. So, 5-arylamin-6-bromo-2-ethylbenzo[d]oxazole-4,7-diones and
other compounds by several substituent were considered and evaluated for the anti-
fungal activity. Two compounds were found to be more effective when associated
with the standard drug, 5-Fluorocytosine. The MIC of two compounds was found to
be 1.6μg/ml and 0.8μg/ml in Candida albicans Berkhout KCCM 50,235, 3.2μg/ml
and 3.2μg/ml inCandida tropicalis BerkoutKCCM50,662, 3.2μg/ml and 3.2μg/ml
in Candida krusei Berkhout KCCM 11,655, 1.6 μg/ml and1.6 μg/ml in Crypto-
coccus neoformans KCCM 50,564, 1.6 μg/ml and 0.8 μg/ml in Aspergillus niger
KCTC 1231, 3.2μg/ml and 1.6μg/ml in Aspergillus flavus KCCM 11,899, whereas
5-Fluorocytosine was found to be 3.2 μg/ml, 3.2 μg/ml, 3.2 μg/ml, 3.2 μg/ml,
1.6μg/ml and1.6μg/ml, respectively. This indicates that theBenzoxazole derivatives
are highly potent antifungal agents [59].

Phenyl thiazolemoiety is an insecticide. It contains phenyl thiazole in its structure.
Replacement of thiswith its biosphere like oxazole/thiazole ring enhances the activity
of the drug transforming the insecticide into fungicide. This indicates the role of
oxazole in the antifungal activity exhibiting compounds [60].
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5 Anticancer Activity of Oxazole Derivatives

Cytochrome P-450 enzymes (CYPs) were the major catalysts for the development of
target-selective suppressor due to the wide homology range of common heme–iron
scaffolds. Moreover, adrenal and intra tumoural androgen biosynthesis was found to
be reduced by the orally active CYP17A1 inhibitor abiraterone acetate. Thus, it is
found to be an active molecule for the treatment of prostate cancer. In continuation,
oxazole 255 well-found satisfactory lyase effectiveness in inhibiting Rat CYP17
lyase activity and showed adequate inhibitory activity against human CYP3A4 [61].
In addition, several 2,4-diphenyloxazole derivatives (compounds 26, 27 and 28) were
appraised for their anticancer affectivity and as the results displayed that compounds
26 and 27 exhibited auspicious activity on theHepG2cell line.Whereas compound 28
showed noteworthy growth inhibition on HeLa cells. Researchers found that substi-
tuted phenyl ring at the second position was positive for the anticancer potency of
scaffold [62]. Compounds 29, 30 and 32which replaced the phenolic hydroxyl group
with naphthalene, pyridine, or quinoline moieties, demonstrated strong inhibitory
effect against three cell lines: A549 (Human lung carcinoma), MCF-7 (Human
breast carcinoma) and Hela (Human cervical carcinoma). Compound 29 exhibited
exceptional inhibitory movement over MCF-7 (Human breast carcinoma) cell lines.
Furthermore, structure–activity relationships (SAR) revealed that the C-5 position of
the oxazole ring is linked to naphthalen-2-yl and quinolin-3-yl, which is important for
5-aryl-2-methyloxazole potency and selectivity [63]. In another, mono-substituted
oxazole 33 afforded reduced activity in contrastwith furan derivatives of transcription
in transfectedPC-3 cells,whereas 3,5-bis(trifluoromethyl)benzoyl aniline substituted
compound 34 showed better activity (Fig. 6) [64].

In addition, MPS1 (protein kinase monopolar spindle 1) is a critical component
of the spindle assembly checkpoint (SAC) signal, which is improperly expressed in
a variety of human malignancies. Moreover, MPS1 is the topmost 25 genes which
are over-expressed in tumours with chromosomal uncertainty. PTEN-deficient breast
tumour cells are mainly reliant on MPS1 for survival, which makes it the remark-
able target in oncology. In addition, the 1H-pyrrolo[3, 2-c]-pyridine moiety-based
oxazoles (compounds 35 and 36) verified potent as well as ligand-efficient binding to
MPS1. The crystal structures of MPS1 with oxazoles 35 and 36 further revealed that
the oxazole scaffold maintained connection with the active site Lys553 side chain
[65]. In addition, a new 2,5-disubstituted oxazole 37 was isolated from Aspongopus
chinensis (an insect from the Pentatomidae family) and exhibited noteworthy activity
against various tumour cell lines. Multidrug resistance (MDR) is a complicated
abnormality caused by the overexpression of transmembrane proteins from the ATP
binding holder transporter family. P-glycoprotein (P-GP), one of these transporters,
is frequently intertwined with MDR. In another, substituted naphthalenyl oxazole
derivatives (compounds 31, 38, 39, 40 and 41) were measured as P-glycoprotein
(P-GP) substrate as it encouraged ATP cell reduction. The SAR studies has shown
that existence of F, H or OH substituents were encouraging for bioactivity, whereas
Br was found to be contrary in the ATPase assay (Fig. 6) [66].
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Fig. 6 Mono and bis-substituted oxazoles as anticancer agents [61–64]

Combrestatin A-4 (CA-4) exhibits an effective antitumour activity but the solu-
bility issues limited its use in anticancer therapy. These drawbacks were resolved by
the addition of imidazole and oxazole rings. In various cell lines, including human
518A2melanoma, humanHT-29 colon carcinomaandEA.HY926endothelial hybrid
cells, the substitution of a halogen atom on the oxazole ring improved anticancer
activity [67]. Oxazole ring plays prominent role in anticancer activity.

Pongamol, a chalcone derivative isolated from Derris indica, has many pharma-
cological activities. One of the activities exhibited by it is the antitumour activity.
There is no documented evidence of this traditional medicine. The oxazole ring addi-
tion to this natural drug enhances its antitumour activity. So pongamol derivatives
of Oxazole and Pyrazole were synthesized and antitumour activity was estimated
over three different human cancer cell lines, HeLa, IMR-32 and Jurkat. The oxazole
derivative and the pyrazole derivative have shown increased activity compared to the
natural drug Pongamol [68].

6 Antitubercular Activity of Oxazole Derivatives

Through the establishment of strains of drug-resistant of Mycobacterium tuber-
culosis, several attempts were made for the improvement of antitubercular agents
possessing higher potency, less adverse effects/toxicity and less multi-drug resis-
tances [69, 70]. Fascinated by the aminothiazole compounds showing excellent
therapeutic index and dominant activity, amino oxazole compound 42 (Fig. 7) was
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Fig. 7 Oxazoles, isoxazoles and oxadiazoles as antitubercular agents [71–73]

screened for biological evolution and found that compound 42 exhibited reasonable
potency against Mycobacterium tuberculosis H37Rv. The replacement of oxazole
scaffold through oxadiazole might lead into a 2-to-fourfold recovery in strength
comparative to oxazole 42 [71]. In addition, the tri-substituted oxazole 43 with
a thiazole ring was used, and equivalent action against inert Mycobacterium TB
H37Ra and Mycobacterium bovis BCG strains was observed when compared to the
conventional antibiotic Rifampicin. Additionally, Isoxazole 44 containing pyridine
and thiazole rings was initiate to own high-inhibitory potency against vulnerable
strains of M. tuberculosis. In another, Phenylisoxazoles (compounds 45, 46, 47, 48,
49 and 50) bearing pyrrole rings were screened. The antitubercular action of these
moieties displayed that compound 47 with electron-rich isopropyl group exhibited
the notable potency for M. tuberculosis H37Rv strain, whereas moieties containing
methyl & methoxy (compounds 46 & 48) provided comparatively abridged activity.
Nevertheless, unsubstituted compound 45 and electron-poor group substituted ones
49 and 50 displayed minimum bioactivity. Precisely, the most potent compound 47
exhibited a good safety profile against the A549 cell line [72].

2-Pyridinyl functionalized thiazolyl-5-aryl-1,3,4-oxadiazoles (compounds 51-
57)were evaluated in the search formore safe and effective anti-tubercularmedicines.
In addition, 2-phenyl substituted compounds 52, 54, 55 and 57 showed auspicious
activity against Mycobacterium bovis BCG, and additionally, these compounds also
exhibited little cytotoxicity over four human cancer cell lines (THP-1, HeLa, PANC-
1, HCT116). Nevertheless, compound 51 with no substitution and other position
substituted compounds 53 and 56 gave extremely reduced antitubercular activity
[73].

Mycobacterial infections are the most common infectious disease globally.
Furthermore, tuberculosis (TB) is witnessed amongst the top ten reasons of death
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worldwide. This is also the dominating fact of death from a single-infectious agent.
The emergence of drug-resistant mycobacterial strains, which need the use of more
toxic and less effective medications as well as therapy prolonging, is a source of
particular concern. However, 4-methyl-2-aryl-5-(2-aryl/benzyl thiazol-4-yl) oxazole
was synthesized and antitubercular activity was evaluated against various strains
of M. tuberculosis HA37Ra (MTB, ATCC 25,177) and M. bovi s BCG (BCG,
ATCC 35,743) in liquid medium using Rifampicin as a standard drug. In these
series of compounds, five active compounds were found. It has been found that
3-Cl and 4-F substituted benzyl rings increased the antitubercular potency and some
compounds exhibited comparable activity with Rifampicin. One of the molecules
possess excellent antibacterial activity [69].

Oxazoles with carboxylic group substituents exhibit antitumour activity against
Mycobacterium tuberculosiswith low toxicity. One of the compounds exhibited anti-
TB activity showing MIC of 0.07 & 0.14 mM against Mycobacterium tuberculosis
and multi-drug-resistant Mycobacterium tuberculosis [74].

7 Anti-inflammatory and Analgesic Activity of Oxazole
Derivatives

There is growing interest in the progress of specific inhibitors for FAAH (fatty acid
amide hydrolase) that point to the cytosolic port Cys269 in medication for inflamma-
tory, pain, or sleep disorders, due to the therapeutic potency of specific inhibitors for
FAAH (fatty acid amide hydrolase) that point to the cytosolic port Cys269 inmedica-
tion for inflammatory, pain, or sleep disorders. Oxazole bromide 58 (Fig. 8) showed
noteworthy potency in inhibition of FAAH, whereas the compound 59 having nitrile
gave slightly weak activity [75–83]. The irretrievable inhibitors of FAAH exhib-
ited that predictable compassion to the position of the electrophile starter, but those
were successfully showed amazing drifts in specious sensitivity towards Cys269
that would not be simply projected [76]. In continuation, tri-substituted oxazole
compound 60 displayed excellent efficiency in frequent preclinical models together
with the spinal nerve ligation (SNL) pain models and complete Freund’s adjuvant
(CFA). Moreover, no insightful properties were detected for this brain penetrant
FAAH inhibitor, and compound 60 is found to be potent, specific reversible non-
covalent modifying FAAH inhibitor [77]. In addition, Mofezolac 63 bearing isoxa-
zole scaffoldwas an effective and selectiveCOX-1 inhibitor andwas broadly active in
medication. Several considerations were focussed on its analogues to explore novel
COX-1 inhibitors to overthrown its side effects [78]. In further, indole containing
isoxazole 62 showed similar ormore Secretory phospholipaseA2 (sPLA2) inhibitory
activitywhen compared to positive controlUrsolicAcid.Additionally, this compound
can bind the proximity of active site amino acid residues; HIS-47, TYR-21, GLY-22,
PHE-5, GLY-29, CYS-44, CYS-28, PHE-98, ASP-48 and TYR-51. Furthermore,
compound 62 is significant for correlations and binding capabilities with sPLA2
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could be liable for its sPLA2-inhibitory effect [79]. In addition, in animal models
of nonspecific inflammatory responses or Th1-type immune responses, isoxazole
compound 61 proved an efficient anti-inflammatory drug. The use of compound 61 in
the form of ointment is the added value in themanagement of skin inflammation [80].
On the other hand, compound 64, 4,5-Diaryl-isoxazole-3-carboxylic acid, inhibits
leukotriene biosynthesis and acts as an effective anti-inflammatory agent [81]. Tri-
substituted indole derivative of isoxazole 65 [82], and 3,5-disubstituted isoxazole
furfuryl derivative 66 [83], have also exhibited significant effect as anti-inflammatory
agent.

Oxazole derivatives were synthesized, their anti-inflammatory effect was tested,
and they were compared to the standard medicine nimesulide using the HRBC
membrane stabilization technique. The percentage protection of the newly synthe-
sized compoundwas in the values of 55.1, 50, 59 and 60%, and the nimesulide protec-
tion percentage was found to be 61% at 50 μg/ml. These compounds have exhibited
comparable activity with the standard drug, nimesulide. But these compounds don’t
exhibit any increased anti-inflammatory or analgesic activity upon increasing the
concentration to 100 μg/ml [84].

Quinolyl oxazoles with various substitutions were synthesized, and they are
highly effective inhibitors of phosphodiesterase 4 (PDE4). Some of the compounds

Fig. 8 Anti-inflammatory and analgesic compounds [75–83]
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were considered to be more potent against PDE4 IC50 values of 1 to 1.4 nm. N-
benzylcarboxamide has shown the highest selectivity against phosphodiesterase 4.
Further optimization led to highly selective PDE4 inhibitors with picomolar potency
with the values of 0.05, 0.03, 0.06 and 0.04 nm. This data shows that the oxazole
ring containing compounds exhibit good anti-inflammatory activity [67].

8 Antidiabetic Activity of Oxazole Derivatives

The G-protein coupled receptor 40 (GPR40) is broadly populated in pancreatic
β cells and recognizes endogenous fatty acids, leading in an increase in insulin
output when glucose levels are high [85–87]. Furthermore, compound 67 consisting
of Isoxazole (Fig. 9) showed better impact as GPR40 agonist, exceptional pharma-
cokinetic possessions across species, and minimum central nervous system (CNS)
dispersion. OGTT study in human GPR40 knock-in mice showed this compound
decreases the plasma glucose levels [88]. In continuation, bis-substituted isoxazole
68 containing thiophene moiety increases the assembly of mRNAs encrypting a
select group of β cell proteins vital for glucose detecting and insulin gene tran-
scription [89]. In addition, the tri-substituted oxazole compound 69 was displayed
noteworthy activity on the GPR40 receptor. In continuation, arylsulfonyl 3-(pyridin-
2-yloxy) aniline compound 70 consisting 1,2,4-oxadiazole scaffold showed exciting
activity as GPR119 agonist [90].

PPARs (peroxisome proliferator-activated receptors) are also important thera-
peutic targets for Type 2 Diabetes Mellitus therapy (DMT2). Furthermore, most
existing PPAR ligands comprise a thiazolidinedione (TZD) structure or a carboxylic
acid (CA) that is crucial for activity. Furthermore, the 1,2,4-Oxadiazole compound
71 might bind to Peroxisome proliferator-activated receptors (PPARα and PPARδ)
via an acetamide scaffold and an adjacent methyl group. In addition, skeletal muscle

Fig. 9 Antidiabetic compounds of oxazoles [88–90]
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significantly interesting target tissues are extensively working for the treatment of
insulin resistance. It is worth mentioning that one of the most imperative protein
targets for insulin resistance is fatty acid transport protein 1 (FATP1), a member of
Acyl-CoA synthetase. FATP1 is a transmembrane protein and highly over-expressed
in skeletal muscle. Thus, inhibition of FATP1 could lead to the interruption of free
fatty acid transport in insulin resistant cells. Fascinatingly, compound 71 contains
benzoxazole scaffold has shown significant FATP1 inhibition in mouse and human
thus reflected as a potential candidate for free fatty acid regulator in insulin resistant
condition [91]. In continuation, oxadiazole compounds 74a, 74b and 74cwere found
to be more active with antidiabetic activity in contrast with the typical drug Acarbose
[92]. Furthermore, suppression of the intracellular enzyme 11-beta-hydroxysteroid
dehydrogenase type 1 (11βHSD1) has been proposed as a therapeutic strategy for
the treatment of DMT2. The compound 73 comprising 5-oxazole with piperidyl
ring at fourth position was found to express stimulating inhibitory action against the
11β-HSD1 enzyme [93].

The 1,3-dioxane carboxylic acid derivatives were synthesized and they act as dual
agonists for PPAR α/U. As a lipophilic heterocyclic tail, substituted oxazole must be
incorporated. These compounds were produced and tested in animal models for their
agonistic activity on the PPAR receptor, as well as hypoglycaemic and hypolipidemic
effectiveness. One of the compounds of this series exhibited potent hypoglycaemic,
hypolipidemic and insulin-sensitizing effects [94].

9 Summary/Conclusion

Oxazole-based scaffold and its analogues are well-accepted as promising moieties in
the development and progress of novel drugs revealing immense biological and phar-
maceutical activities. It has been acknowledged from the foregoing deliberations that
various oxazole-embedded molecules can have appreciable attention in the synthesis
and evaluation of new agents effectively employable for the treatment of insomnia,
cancer, Alzheimer’s disease, inflammation, etc. Some of the molecules defined in
this chapter are applicable for medicinal studies, and their appraisal is continuing,
grasping great potential for the identifications of innovative pharmaceutical drugs.
This chapter established the fact that oxazole-based scaffolds as useful templates
for further derivatization or modification to design more effective medicinally active
compounds.
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