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Abstract In this paper, we report on the development and the implementation of 
the mesoscopic approach based on the Lattice Boltzmann method (LBM) in order to 
simulate three-dimensional coupled modes of thermal and fluid flows. First the lattice 
Boltzmann method (LBM) has been used to solve transient heat conduction problems 
in 3D Cartesian geometries. To study the suitability of the LBM, the problem has also 
been extended to deal with a coupled conduction-radiation heat transfer problem in a 
three-dimensional cavity containing an absorbing, emitting, and scattering medium. 
In this case, the radiative information is obtained by solving the radiative transfer 
equation (RTE) using the control volume finite element method (CVFEM). Second, a 
3D incompressible thermal lattice Boltzmann model is proposed to solve 3D incom-
pressible thermal flow problems. A D3Q19 particle velocity model is incorporated in 
our thermal model where the density, velocity, and temperature fields are calculated 
using the two double population lattice Boltzmann equation (LBE). It is indicated 
that the present thermal model is simple and easy for implementation. It is validated 
by its application to simulate the 3D natural convection of fluid in a cubical enclo-
sure, which is heated differentially at two vertical side walls. In order to test the 
efficiency of the developed method, comparisons are made for the effect of Rayleigh 
number on the temperature and velocity distributions in the medium. Validation and 
the analysis of numerical results of flow and thermal fields in the cubic cavity are 
at Rayleigh numbers of 103–106. In all studied cases, it is found that the numer-
ical results agree well with the results reported in previous studies. The 3D LBGK 
algorithm presented here can also be extended for a convective radiative problem in 
a three-dimensional grey participating medium in the presence of computers with 
sufficient memory and computational power to perform well-resolved calculations 
of the hybrid 3D-proposed model.
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1 Introduction 

Numerical modelling of the coupled steady conduction or convection and radiation 
heat transfer problem has been an area of great interest because of its broad applica-
tions in engineering. It has numerous applications in the area of fire protection, glass 
processing, industrial furnaces, Fuel cell, and optical textile fibre processing [1]. 

Nowadays, solutions of multidimensional transient conductive and radiative 
transfer are an active research subject because of their practical and interesting engi-
neering applications. Several works are available dealing with combined conduction 
and radiation heat transfer in 1D and 2D geometries [2–6]. Interaction of transient 
conduction radiation was found to be interesting, and ignoring one of these modes 
could result considerable deviation from real situation. The LBM-CVFEM [6] shows  
very successful results from the viewpoint of accuracy, grid, and CPU time compat-
ibility. It is proved to be a reliable future numerical tool for combined heat transfer 
problems in engineering applications. 

2 Numerical Analysis 

Lattice Boltzmann method appears as a powerful mesoscopic tool for solving Energy 
problems in complex geometries. Modelling different transport phenomena that 
occur inside energetic systems have been gaining interest during the last years. The 
most realistic model has to be a 3-dimensional, non-steady state and with the coupling 
of the different transport phenomena over all the range of scales from the micro- to 
the macroscale. When modelling energetic systems at micro or macro scale, it is 
important to deeply understand the behaviour of the fluids throughout the media 
present in the different layers of the energetic configuration geometry. Then solving 
transport phenomena in more realistic complex geometries is considered one of the 
problems to deal with. Lattice Boltzmann method (LBM) can handle with problems 
at different scales and has proven to be suitable for solving problems in wide range 
of energetic configurations media, and modelling different transport phenomena in 
such complex area of energy research. The aim of this work is to show the solution 
of physical problems using the LBM. 

3 Conduction Radiation 

The unsteady energy conservation equation consisting of conduction and radiation 
can be expressed as
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ρcp 
dT 

dt 
= ∇.(k∇T − −→qR ) (1) 

It is assumed that the thermal conductivity k of the emitting, absorbing, and 
scattering medium is independent of temperature. ρ is the density, cp is the specific 
heat, and −→qR represents the radiative heat flux given by: 

−→q R =
∫
4π 

I 
−→
Ω dΩ (2) 

where I is the radiative intensity which can be obtained by solving the Radiative 
Transfer Equations (RTE). 

The divergence of radiative heat flux is given by 

−→∇ .−→q R = ka(4π Ib − G) (3) 

Ib = σ T 4/π is the blackbody intensity, G is the incident radiation and ka is the 
absorption coefficient. 

For the RTE, an absorbing, emitting, and scattering grey medium can be written 
as 

−→∇ .(I (s, −→Ω).
−→
Ω)  = −(ka + kd )I (s, 

−→
Ω)  + ka Ib(s) 

+ (kd /4π)

∫
Ω

′=4π 
I (s, 

−→ 
Ω

′
)ϕ  ( 

−→ 
Ω

′ → −→Ω)dΩ
′

(4) 

where I (s, −→Ω)  is the radiative intensity, which is a function of position s and direction 
−→
Ω ; kd is the scattering coefficient, and ϕ  (

−→
Ω

′ − −→Ω)  is the scattering phase function 
from the incoming 

−→
Ω

′
direction to the outgoing direction 

−→
Ω . 

The term on the left-hand side represents the gradient of the intensity in the 
direction. The three terms on the right-hand side represent the changes in intensity 
due to absorption and out-scattering, emission, and in-scattering, respectively [6–9]. 
The radiative boundary condition for Eq. (4), when the wall bounding the physical 
domain is assumed grey and emits and reflects diffusely, can be expressed as 

Iw(
−→
Ω)  = (εwσ T 4 w /π ) 

+ ((1 − εw)/π )
∫

−→ 
Ω

′
.
−→n w<0 

Iw( 
−→ 
Ω

′
)

∣∣∣∣
−→ 
Ω

′
.
−→n w

∣∣∣∣dΩ
′
if 

−→ 
Ω

′
.
−→n w > 0 (5)  

−→n w is the unit normal vector on the wall, and εw represents the wall emissivity 
[10, 11]. 

In the LBM, the equation describing transient conduction-radiation heat transfer 
[12–19] is:
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fi (
−→r + −→ci  ∆t, t +  ∆t) = fi (−→r , t) −  ∆t 

τ 
[ fi (−→r , t) − f (0) i (

−→r , t)] 

− (
 ∆t 

ρcp 
)wi (∇.

−→qR (−→r , t)) i = 0, .., 18 (6) 

τ = 
3α∣∣−→ei ∣∣2 

+  ∆t 

2 
(7) 

The velocities −→ei and their corresponding weights ωi in the D3Q19 (Fig. 1) lattice 
are the following:

−→e 0 = (0, 0, 0), −→e 1,2 = (±1, 0, 0).C, −→e 3,4 = (0, ±1, 0).C, 
−→e 5,6 = (0, 0, ±1).C, −→e 7...10 = (±1, ±1, 0).C, 

3D LBM lattice XZ plane 

YZ plane XY plane 

Fig. 1 D3Q19 LBM projection discretisation scheme
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−→e 11...14 = (±1, 0, ±1).C, −→e 15...18 = (0, ±1, ±1).C (8)

ω0 = 
1 

6 
, ω1...6 = 

1 

18 
, ω7....18 = 

1 

36 
(9) 

In the present problem, temperature is computed from 

T (−→r , t) = 
b∑

i=0 

fi (
−→r , t) (10) 

To process Eq. (6), the required equilibrium distribution f (0) i is given by 

f (0) i (
−→r , t) = ωi T (

−→r , t) (11) 

The energy equation is subjected to Dirichlet boundary condition. To express this 
condition, the bounce-back concept in the LBM in which particle fluxes are balanced 
at any point on the boundary was used. For 1D and 2D geometries, implementations 
of the temperature boundary conditions in the LBM have been explained in the 
literature [12]. In the present work, procedures described in [12] have been followed. 

4 Free Convection 

The geometry and the coordinate system are illustrated in Fig. 2. The enclosure is 
simply represented by a rectangular prism with the height H, width, and length L.

Fig. 2 The geometry and 
the coordinate system of 
cubic enclosure



420 R. Chaabane et al.

The left and right lateral walls, as shown in Fig. 12, are kept at uniform Th and Tc, 
respectively. Other walls are assumed to be adiabatic. The temperature difference 
between the hot and cold surfaces promotes the buoyancy driven flow inside the 
enclosure. The temperature difference is also assumed to be small enough so that the 
Boussinesq approximation is valid.

The known CFD steady state equations for a Newtonian fluid for continuity, the 
momentum equations, and the energy equation will be simulated by the mesoscopic 
approach (LBM). 

For computation of density and velocity fields, the governing lattice Boltzmann 
equation is given by [1, 16, 17]. 

fk(
−→r + −→ck  ∆t, t +  ∆t) = fk(−→r , t) 
−  ∆t 

τv 
[ fk(−→r , t) − f eq k (

−→r , t)] +  ∆t F  , k = 0, .., 8 (12)  

where fk are the particle distribution function defined for the finite set of the discrete 
particle velocity vectors −→ck . The collision term Ωk on the right-hand side of Eq. (12) 
uses the so-called BGK approximation [18]. 

Where f eq k is the local equilibrium distribution function that has an appropriately 
prescribed functional dependence on the local hydrodynamic properties and τv is the 
relaxation time defined as: 

τv = 
1 

2 
+ 

3ν 
c2 ∆t 

(13) 

F represents the external force term given by: 

F =
[

(ρβT g(T − Tm)
−→
j ).(−→ck − −→u ) 

RT

]
f eq k (14) 

where the unit vector 
−→
j is in a direction opposite to gravity, Tm is the mean tempera-

ture, g is the gravity acceleration, βT is the volumetric thermal expansion coefficient 
and ρ is the density of the fluid at the mean temperature. 

The macroscopic density ρ and the velocity −→u are calculated as follow: 

ρ(
−→r , t) =

∑
k 

fk(
−→r , t) (15) 

−→u (−→r , t) =
∑
k 

−→c k fk(−→r , t)/ρ(
−→r , t) (16)
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5 Results and Discussions 

5.1 Validation with Pure 3D Transient Conductive Case 

In a pure transient heat conduction transfer problems, a 3D cubical enclosure of unit 
length is considered. With a D3Q19 lattice Boltzmann method, steady state conditions 
were assumed to have been achieved when the temperature difference between two 
consecutive time levels at each lattice centre did not exceed 10−6. Non-dimensional 
time was defined as (ξ = αβ2t), and  ∆ξ was taken as 10−4. To check the accuracy 
of the present D3Q19 LBM algorithm, results are compared with results of literature 
using a D3Q15 LBM algorithm [19]. In this case, initially the initial condition is 
T (x, y, z, 0) = T0. 

The imposed boundaries conditions are T (x, y, Z , t) = T (0, y, z, t) = 
T (0, y, z, t) = T (0, y, z, t) = T (X, y, z, t) = T (x, 0, z, t) = T (x, Y, z, t) = T0 
and T (x, y, 0, t) = Thot. 

In the present D3Q19 LBM algorithm, boundary temperatures Thot = Tref and 
other walls are at Ti = 0.25Tref. In Fig.  3, results are generated for 31 × 31 × 31 
lattices. 

In Fig. 3, the  T/Tref results of the steady state D3Q19 LBM algorithm and the 
reference’s ones have been compared along the centreline (y/Y = 1/2) in the  y − z 
plane at (x/ X = 1/2). A good agreement is found as seen from the transient non-
dimensional temperature plots at different instants ξ = 0.001, ξ = 0.01, ξ = 0.05, 
and ξ = ∞. A given semi-transparent medium (SMT) can have a volumetric heat 
generation source, so effects of heat generation are compared and shown in Fig. 4.

Fig. 3 Centreline 
temperature along (z/Z) 
direction, validation with 
[19] 
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Fig. 4 Effect of heat 
generation on centreline 
non-dimensional 
temperature distribution in a 
3D enclosure 

Results are plotted for the case of unity value of the non-dimensional heat generation 
for different time ξ levels including the transient and the steady state. Results were 
compared with literature [19]. It can be seen that the proposed algorithm presents an 
accurate result.

5.2 Validation with Pure 3D Radiative Case 

In order to assess the CVFEM algorithm with basic reliable cases, the numerical 
approach was implemented for a cubical enclosure in which the medium is absorbing-
emitting with an emissive power of unity. All the walls are black and cold (0 K). 
Solutions were obtained with (11 × 11 × 11) control volumes and (8 × 6) control 
angles. Figure 5 shows the non-dimensional surface radiative flux along the centreline 
of a wall. It compare the predicted flux distribution with that of the exact solution in 
literature [11] and their benchmark code for ke = 1 m−1 and ke = 10 m−1. It can 
be seen that the proposed algorithm presents good results. 

The second test case is made of a black-walled square box–shaped furnace 
enclosure (1 m  × 1 m  × 1 m). The walls are cold and the medium is grey with 
β = 1 m−1,ω = 0.5. The results were obtained with (11 ×11× 11) control volumes 
and (8×6) control angles. The wall heat flux for absorbing-emitting and isotropically 
scattering medium in the cubic enclosure is shown in Fig. 4b. The obtained results 
are in good agreement with the reference result [19]. 

After validation with pure 3D conductive case (Figs. 3 and 4) and radiative 
case (Figs. 5 and 6), the 3D transient conduction-radiation heat transfer problems 
considered in the present work is highlighted based on the variation of the transient 
and the steady temperature for various extinction coefficients (Fig. 7), conduction-
radiation parameters (Fig. 8), and scattering albedos (Fig. 9). One hot boundary is
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Fig. 5 Wall heat flux for 
absorbing-emitting in the 
cubic enclosure 
β = 0.1, β  = 1, β  = 10 
[11] 

Fig. 6 Wall heat flux for 
absorbing-emitting and 
isotropically scattering 
medium in the cubic 
enclosure 
β = 0.1, β  = 1, β  = 10 
[11] 

at θ = T /Thot = 1, and others are at the same lower temperature θ = 1/2. Results 
of temperature distributions along z/Z direction at x/ X = 1/2 and y/Y = 1/2 are 
presented in Figs. 7, 8, and 9. A  15×15×15 grid points and 8×6 rays are considered 
for all the cases. Results are presented in graphical form rather than tabular form so 
as to explain the physical trend more effectively. 

In those figures, at different time levels, centreline (x/ X = 1/2 and y/Y = 1/2) 
temperature distributions along the z/Z direction obtained from LBM-CVFEM have 
been highlighted for the effects of different radiative parameters.
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Fig. 7 Transient (a–c) and steady state (d) centreline (x/X = y/Y = 1/2) temperature: effect of the 
extinction coefficient 

For black boundaries and for no scattering (ω = 0), the effect of the extinction 
coefficient β is shown in Fig. 7 for N = 0.01. The temperature profile (Fig. 7a) for 
lower β = 0.1 approaches the pure conduction profile. 

The influence of the conduction to radiation parameter N = kβ/4σ T 3 hot that 
characterizes the relative importance of conduction in regard to radiation is presented 
for temperature response in Fig. 8 for black boundaries and for no scattering. 

It is shown (Fig. 8c) that the temperature profile is near to a pure conduction 
profile for N = 1 because it display a conduction-dominated situation showing 
higher temperature gradient. For N = 0.01(Fig. 8a), a comparatively flat profile is 
seen as medium temperature increases with lower temperature gradient.
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Fig. 8 Transient (a–c) and steady state (d) centreline (x/X = y/Y = 1/2) temperature: effect of the 
conduction-radiation parameter coefficient 

For N = 0.01, β = 1, and perfectly black boundaries, the parametric study for 
the effect of the scattering albedo ω is highlighted in Fig. 9. The medium temperature 
comparatively increases for an absorbing-emitting medium (ω = 0). 

The computer code for the present 3D problem has been extended for transient 
convection and validated against the results given in literature [20] (Fig. 10); unsteady 
convection problem in a 3D real cubical enclosure has been considered. The conti-
nuity, momentum, and the energy equations are solved using the Lattice Boltzmann 
mesoscopic approach. 

In Fig. 11, with Ra = 103 – Ra  = 106 along z/Z and x/X direction at y/Y = 0.5 the 
centreline non-dimensional temperature has been highlighted. For a cubical medium 
undergoing transient convection, grid independence results are studied and Figs. 8,
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Fig. 9 Transient (a–c) and steady state (d) centreline (x/X = y/Y = 1/2) temperature: effect of the 
scattering albedo coefficient 

9, and 10, respectively, show centreline temperature along z/Z direction at x/X = 0.5 
and y/Y = 0.5 of the cubical medium for 155 * 155 * 155 lattices and iso-surfaces 
of temperature for Ra = 106 (Figs. 12 and 13). 

6 Conclusions 

LBM-CVFEM was used for the solution of unsteady combined conduction-radiation 
problems in a 3D cubical absorbing, emitting, and isotropically enclosure. Centre-
line temperature distributions were obtained for various parameters. The convective 
results presented in this study highlight the efficiency and the robustness of LBM and
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Fig. 10 Isotherms for Ra = 103 a [20] b present work 

Fig. 11 The predicted temperature contours on the plane of symmetry at different values of Ra: a 
103, b 104, c 105, d 106
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Fig. 12 The contours of temperature in the x–z plane of y/Y = 0.5 in the cubic cavity for flows of 
Ra = 106 

Fig. 13 Iso-surfaces of temperature for Ra = 106
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allow the expectation that LBM has advantages over conventional energy (convec-
tion) equation solvers, especially for problems with complex geometry in multi-
dimensional enclosures with axisymmetric or non-axisymmetric diffusive-radiative 
problems in different multi-mode engineering areas such as multiphase flow and 
complex fluid phenomena.
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