
Chapter 9
Feature Learning

“Solving Problems By Changing the Viewpoint.”

Chapter 2 discussed features as those properties of a data point that can be measured
or computed easily. Sometimes the choice of features follows naturally from the
available hard and software. For example, we might use the numeric measurement
z ∈ R delivered by a sensing device as a feature. However, we could augment this
single feature with new features such as the powers z2 and z3 or adding a constant
z + 5. Each of these computations produces a new feature. Which of these additional
features are most useful?

Feature learning methods automate the choice of finding good features. These
methods learn a hypothesis map that reads in some representation of a data point
and transforms it to a set of features. Feature learning methods differ in the precise
format of the original data representation as well as the format of the delivered
features. The focus of this chapter in on feature learning methods that require data
points being represented by d numeric raw features and deliver a set of n new numeric
features. We will denote the set of raw and new features by z = (

z1, . . . , zd
)T ∈ R

d

and x = (
x1, . . . , xn

)T ∈ R
n , respectively.

Many ML application domains generate data points for which can access a huge
number of raw features. Consider data points being snapshots generated by a smart-
phone. It seems natural to use the pixel colour intensities as the raw features of the
snapshot. Since modern smartphone have Megapixel cameras, the pixel intensities
would provide us with millions of raw features. It might seem a good idea to use
as many (raw) features of a data point as possible since more features should offer
more information about a data point and its label y. There are, however, two pitfalls
in using an unnecessarily large number of features. The first one is a computational
pitfall and the second one is a statistical pitfall.

Computationally, using very large feature vectors x ∈ R
n (with n being billions),

might result in excessive resource requirements (bandwidth, storage, time) of the

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
A. Jung, Machine Learning, Machine Learning: Foundations, Methodologies,
and Applications, https://doi.org/10.1007/978-981-16-8193-6_9

173

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8193-6_9&domain=pdf
https://doi.org/10.1007/978-981-16-8193-6_9

174 9 Feature Learning

resultingMLmethod. Statistically, using a large number of features makes the result-
ing ML methods more prone to overfitting. For example, linear regression will typi-
cally overfit when using feature vectors x∈R

n whose length n exceeds the number
m of labeled data points used for training (see Chap. 7).

Both from a computational and a statistical perspective, it is beneficial to use
only the maximum necessary amount of features. The challenge is to select those
features which carry most of the relevant information required for the prediction of
the label y. Finding the most relevant features out of a huge number of (raw) features
is the goal of dimensionality reduction methods. Dimensionality reduction methods
form an important sub-class of feature learning methods. Formally, dimensionality
reduction methods learn a hypothesis h(z) that map a long raw feature vector z ∈ R

d

to a short new feature vector x ∈ R
n with d � n.

Beside avoiding overfitting and coping with limited computational resources,
dimensionality reduction can also be useful for data visualization. Indeed, if the
resulting feature vector has lengthn = 2,wedepict data points in the two-dimensional
plane in form of a scatterplot.

We will discuss the basic idea underlying dimensionality reduction methods in
Sect. 9.1. Section9.2 presents one particular example of a dimensionality reduction
method that computes relevant features by a linear transformation of the raw feature
vector. Section9.4 discusses a method for dimensionality reduction that exploits the
availability of labelled data points. Section9.6 shows how randomness can be used
to obtain computationally cheap dimensionality reduction.

Most of this chapter discusses dimensionality reduction methods that determine
a small number of relevant features from a large set of raw features. However, some-
times it might be useful to go the opposite direction. There are applications where it
might be beneficial to construct a large (even infinite) number of new features from
a small set of raw features. Section9.7 will showcase how computing additional
features can help to improve the prediction accuracy of ML methods.

9.1 Basic Principle of Dimensionality Reduction

The efficiency of ML methods depends crucially on the choice of features that are
used to characterize data points. Ideally we would like to have a small number of
highly relevant features to characterize data points. If we use too many features
we risk to waste computations on exploring irrelevant features. If we use too few
features we might not have enough information to predict the label of a data point.
For a given number n of features, dimensionality reduction methods aim at learning
an (in a certain sense) optimal map from the data point to a feature vector of length n.

Figure9.1 illustrates the basic idea of dimensionality reduction methods. Their
goal is to learn (or find) a “compression” map h(·) : Rd → R

n that transforms a
(long) raw feature vector z ∈ R

d to a (short) feature vectorx = (x1, . . . , xn)T := h(z)
(typically n � d).

9.1 Basic Principle of Dimensionality Reduction 175

Fig. 9.1 Dimensionality reduction methods aim at finding a map h which maximally compresses
the raw datawhile still allowing to accurately reconstruct the original data point from a small number
of features x1, . . . , xn

The new feature vector x = h(z) serves as a compressed representation (or code)
for the original raw feature vector z. We can reconstruct the raw feature vector using
a reconstruction map r(·) : Rn → R

d . The reconstructed raw features ẑ := r(x) =
r(h(z)) will typically by different from the original raw feature vector z. Thus, we
will obtain a non-zero reconstruction error

ẑ︸︷︷︸
=r(h(z)))

−z. (9.1)

Dimensionality reduction methods learn a compression map h(·) such that
the reconstruction error (9.1) is minimized. In particular, for a dataset D ={
z(1), . . . , z(m)

}
, we measure the quality of a pair of compression map h and recon-

struction map r by the average reconstruction error

L̂
(
h, r |D) := (1/m)

m∑

i=1

L(z(i), r
(
h
(
z(i)

))
). (9.2)

Here, L(z, r
(
h
(
z(i)

)
)denotes a loss function that is used tomeasure the reconstruction

error r
(
h
(
z(i)

))

︸ ︷︷ ︸
ẑ

−z. Different choices for the loss function in (9.2) result in different

dimensionality reductionmethods. Onewidely-used choice for the loss is the squared
Euclidean norm

L(z, g
(
h
(
z
))
) := ∥∥z − g

(
h
(
z
))∥∥2

2. (9.3)

Practical dimensionality reduction methods have only finite computational
resources. Any practical method must therefore restrict the set of possible compres-
sion and reconstruction maps to small subsetsH andH∗, respectively. These subsets
are the hypothesis spaces for the compressionmap h ∈ H and the reconstructionmap
r ∈ H∗. Feature learning methods differ in their choice for these hypothesis spaces.

Dimensionality reduction methods learn a compression map by solving

176 9 Feature Learning

ĥ = argmin
h∈H

min
r∈H∗ L̂

(
h, r |D)

(9.2)= argmin
h∈H

min
r∈H∗(1/m)

m∑

i=1

L(z(i), r
(
h
(
z(i)

))
). (9.4)

We can interpret (9.4) as a (typically non-linear) approximation problem. The optimal
compression map ĥ is such that the reconstructionr(ĥ(z)), with a suitably chosen
reconstruction map r , approximates the original raw feature vector z as good as
possible. Note that we use a single compression map h(·) and a single reconstruction
map r(·) for all data points in the dataset D.

We obtain variety of dimensionality methods by using different choices for the
hypothesis spaces H,H∗ and loss function in (9.4). Section9.2 discusses a method
that solves (9.4) for H,H∗ constituted by linear maps and the loss (9.3). Deep
autoencoders are another family of dimensionality reduction methods that solve
(9.4) withH,H∗ constituted by non-linear maps that are represented by deep neural
networks [1, Chap. 14].

9.2 Principal Component Analysis

Wenow consider the special case of dimensionality reductionwhere the compression
and reconstruction map are required to be linear maps. Consider a data point which
is characterized by a (typically very long) raw feature vector z ∈ R

d of length d.
The length d of the raw feature vector might be easily of the order of millions. To
obtain a small set of relevant features x = (

x1, . . . , xn
)T ∈ R

n , we apply a linear
transformation to the raw feature vector,

x = Wz. (9.5)

Here, the “compression” matrixW ∈ R
n×d maps (in a linear fashion) the (long) raw

feature vector z ∈ R
d to the (shorter) feature vector x ∈ R

n .
It is reasonable to choose the compression matrix W ∈ R

n×D in (9.5) such that
the resulting features x ∈ R

n allow to approximate the original data point z ∈ R
d as

accurate as possible. We can approximate (or recover) the data point z ∈ R
d back

from the features x by applying a reconstruction operatorR ∈ R
d×n , which is chosen

such that
z ≈ Rx

(9.5)= RWz. (9.6)

The approximation error L̂
(
W,R | D)

resulting when (9.6) is applied to each
data point in a dataset D = {z(i)}mi=1 is then

L̂
(
W,R | D) = (1/m)

m∑

i=1

‖z(i) − RWz(i)‖2. (9.7)

9.2 Principal Component Analysis 177

One can verify that the approximation error L̂
(
W,R | D)

can only by minimal if
the compression matrix W is of the form

W = WPCA := (
u(1), . . . ,u(n)

)T ∈ R
n×d , (9.8)

with n orthonormal vectors u(j), for j = 1, . . . , n. The vectors u(j) are the eigenvec-
tors corresponding to the n largest eigenvalues of the sample covariance matrix

Q := (1/m)ZTZ ∈ R
d×d . (9.9)

Here we used the data matrix Z=(
z(1), . . . , z(m)

)T ∈R
m×d .1 It can be verified eas-

ily, using the definition (9.9), that the matrix Q is psd. As a psd matrix, Q has an
eigenvalue decomposition (EVD) of the form [2]

Q = (
u(1), . . . ,u(d)

)
⎛

⎜
⎝

λ(1) . . . 0

0
. . . 0

0 . . . λ(d)

⎞

⎟
⎠

(
u(1), . . . ,u(d)

)T

with real-valued eigenvalues λ(1) ≥ λ(2) ≥ . . . ≥ λ(d) ≥ 0 and orthonormal eigen-
vectors {ur }dr=1.

The feature vectors x(i) are obtained by applying the compression matrix WPCA

(9.8) to the raw feature vectors z(i). We refer to the entries of the vector x(i), obtained
via the eigenvectors of Q (see (9.2)), as the principal components (PC) of the raw
feature vectors z(i). Algorithm 15 summarizes the overall procedure of determining
the compression matrix (9.8) and computing the vectors x(i) whose entries are the PC
of the raw feature vectors. This procedure is known asprincipal component analysis
(PCA). Note that the length n(≤ d) of the mew feature vector x, which is also the
number of PCs used, is an input (or hyper) parameter of Algorithm 15. The number
n can be chosen between the two extreme cases n = 0 (maximum compression)
and n = d (no compression). We finally note that the choice for the orthonormal
eigenvectors in (9.8) might not be unique. Depending on the sample covariance
matrix Q, there might different sets of orthonormal vectors that correspond to the
same eigenvalue of Q. Thus, for a given length n of the new feature vectors, there
might be several different matricesW that achieve the same (optimal) reconstruction
error L̂(PCA).

From a computational perspective, Algorithm 15 essentially amounts to perform-
ing an EVD of the sample covariance matrix Q (see (9.9)). Indeed, the EVD of Q
provides not only the optimal compression matrixWPCA but also the measure L̂(PCA)

for the information loss incurred by replacing the original data points z(i) ∈ R
d

with the smaller feature vector x(i) ∈ R
n . In particular, this information loss is mea-

sured by the approximation error (obtained for the optimal reconstruction matrix
Ropt = WT

PCA)

1 Some authors define the datamatrix asZ=(
z̃(1), . . . , z̃(m)

)T ∈R
m×D using “centered” raw feature

vectors z̃(i) − m̂ obtained by subtracting the average m̂ = (1/m)
∑m

i=1 z
(i).

178 9 Feature Learning

Algorithm 15 Principal Component Analysis (PCA)

Input: dataset D = {z(i) ∈ R
d }mi=1; number n of PCs.

1: compute the EVD (9.2) to obtain orthonormal eigenvectors
(
u(1), . . . ,u(d)

)
corresponding to

(decreasingly ordered) eigenvalues λ(1) ≥ λ(2) ≥ . . . ≥ λ(d) ≥ 0

2: construct compression matrixWPCA := (
u(1), . . . ,u(n)

)T ∈ R
n×d

3: compute feature vector x(i) = WPCAz(i) whose entries are PC of z(i)

4: compute approximation error L̂(PCA) = ∑d
r=n+1 λ(r) (see (9.10)).

Output: x(i), for i = 1, . . . ,m, and the approximation error L̂(PCA).

Fig. 9.2 Reconstruction
error L̂(PCA) (see (9.10)) of
PCA for varying number n
of PCs

d

0

2

4

6

8

n

̂ L
(P

C
A
)

L̂(PCA) := L̂
(
WPCA, Ropt︸︷︷︸

=WT
PCA

| D) =
d∑

r=n+1

λ(r). (9.10)

As depicted in Fig. 9.2, the approximation error L̂(PCA) decreases with increasing
number n of PCs used for the new features (9.5). For the extreme case n=0, where
we completely ignore the raw feature vectors z(i), the optimal reconstruction error
is L̂(PCA) = (1/m)

∑m
i=1 ‖z(i)‖2. The other extreme case n=d allows to use the raw

features directly as the new features x(i)=z(i), which amounts to no compression at
all, and trivially results in a zero reconstruction error L̂(PCA)=0.

9.2.1 Combining PCA with Linear Regression

One important use case of PCA is as a pre-processing step within an overall ML
problem such as linear regression (see Sect. 3.1). As discussed in Chap.7, linear
regressionmethods are prone to overfittingwhenever the data points are characterized
by feature vectors whose length D exceeds the numberm of labeled data points used

9.2 Principal Component Analysis 179

for training. One simple but powerful strategy to avoid overfitting is to preprocess
the original feature vectors (they are considered as the raw data points z(i) ∈ R

d) by
applying PCA in order to obtain smaller feature vectors x(i) ∈ R

n with n < m.

9.2.2 How to Choose Number of PC?

There are several aspects which can guide the choice for the number n of PCs to be
used as features.

• for data visualization: use either n = 2 or n = 3
• computational budget: choose n sufficiently small such that the computational
complexity of the overall MLmethod does not exceed the available computational
resources.

• statistical budget: consider using PCA as a pre-processing step within a linear
regression problem (see Sect. 3.1). Thus, we use the output x(i) of PCA as the
feature vectors in linear regression. In order to avoid overfitting, we should choose
n < m (see Chap.7).

• elbow method: choose n large enough such that approximation error L̂(PCA) is
reasonably small (see Fig. 9.2).

9.2.3 Data Visualisation

If we use PCA with n = 2, we obtain feature vectors x(i) = WPCAz(i) (see (9.5))
which can be depicted as points in a scatterplot (see Sect. 2.1.3). As an example,
consider data points z(i) obtained from historic recordings of Bitcoin statistics. Each
data point z(i) ∈ R

d is a vector of length d = 6. It is difficult to visualise points in
an Euclidean space Rd of dimension d > 2. Therefore, we apply PCA with n = 2
which results in feature vectors x(i) ∈ R

2. These new feature vectors (of length 2)
can be depicted conveniently as a scatterplot (see Fig. 9.3).

9.2.4 Extensions of PCA

There have been proposed several extensions of the basic PCA method:

• Kernel PCA [3, Chap. 14.5.4]:ThePCAmethod ismost effective if the raw feature
vectors of data points are nearby a low-dimensional linear subspace of Rd . Kernel
PCA extends PCA to handle data points that are located near a low-dimensional
manifold which might be highly non-linear. This is achieved by applying PCA to
transformed feature vectors instead of the original feature vectors. Kernel PCA
first applies a (typically non-linear) feature map to the original feature vectors

180 9 Feature Learning

Fig. 9.3 A scatterplot of
data points with feature

vectors x(i) = (
x (i)1 , x (i)2

)T

whose entries are the first
two PCs of the Bitcoin
statistics z(i) of the i th day

−8,000−6,000−4,000−2,000 2,000 4,000 6,000

−400

−200

200

400

second PC x2

first PC x1

x(i) resulting in new feature vectors z(i) (see Sect. 3.9). We then apply PCA to the
transformed feature vectors z(i), for i = 1, . . . ,m.

• Robust PCA [4]: In its basic form, PCA is sensitive to outliers which are a small
number of data points with fundamentally different statistical properties than the
bulk of data points. This sensitivity might be attributed to the properties of the
squared Euclidean norm (9.3) which is used in PCA to measure the reconstruction
error (9.1). We have seen in Chap.3 that linear regression (see Sect. 3.1 and 3.3)
can bemade robust against outliers by replacing the squared error loss with another
loss function. In a similar spirit, robust PCA replaces the squared Euclidean norm
with another norm that is less sensitive to having very large reconstruction errors
(9.1) for a small number of data points (which are outliers).

• Sparse PCA [3, Chap. 14.5.5]: The basic PCAmethod transforms the raw feature
vector z(i) of a data point to a new (shorter) feature vector x(i). In general each entry
x (i)j of the new feature vectorswill depend on every raw feature.More precisely, the

new feature x (i)j depends on all raw features z(i)j ′ for which the corresponding entry
Wj, j ′ of the matrixW = WPCA (9.8) is non-zero. For most datasets, all entries of
the matrix WPCA will typically be non-zero.
In some applications of linear dimensionality reduction we would like to construct
new features that depend only on a small subset of raw features. Equivalently we
would like to learn a linear compression map W (9.5) such that each row of W
contains only few non-zero entries. To this end, sparse PCA enforces the rows of
the compression matrix W to contain only a small number of non-zero entries.
This enforcement can be implement either using additional constraints on W or
by adding a penalty term to the reconstruction error (9.7).

• Probabilistic PCA [5, 6]: We have motivated PCA as a method for learning an
optimal linear compression map (matrix) (9.5) such that the compressed feature
vectors allows to linearly reconstruct the original raw feature vector withminimum
reconstruction error (9.7). Another interpretation of PCA is that of a method that

9.2 Principal Component Analysis 181

learns a subspace of Rd that best fits the set of raw feature vectors z(i), for i =
1, . . . ,m. This optimal subspace is precisely the subspace spanned by the rows of
WPCA (9.8).
Probabilistic principal component analysis (PPCA) interprets the raw feature
vectors z(i) as realizations of i.i.d. RVs. These realizations are modelled as

z(i) = WT x(i) + ε(i), for i = 1, . . . ,m. (9.11)

Here,W ∈ R
n×d is some unknown matrix with orthonormal rows. The rows ofW

span the subspace around which the raw features are concentrated. The vectors x(i)

in (9.11) are realizations of i.i.d. RVs whose common probability distribution is
N (0, I). The vectors ε(i) are realizations of i.i.d. RVs whose common probability
distribution is N (0,σ2I) with some fixed but unknown variance σ2. Note that
W and σ2 parametrize the joint probability distribution of the feature vectors
z(i) via (9.11). Probabilistic principal component analysis (PPCA) amounts to
maximum likelihood estimation (see Sect. 3.12) of the parametersW and σ2. This
maximum likelihood estimation problem can be solved using computationally
efficient estimation techniques such as EM [6, Appendix B]. The implementation
of PPCA via EM also offers a principled approach to handlemissing data. Roughly
speaking, the EM method allows to use the probabilistic model (9.11) to estimate
missing raw features [6, Sect. 4.1].

9.3 Feature Learning for Non-numeric Data

We have motivated dimensionality reduction methods as transformations of (very
long) raw feature vectors to a new (shorter) feature vector x such that it allows
to reconstruct z with minimum reconstruction error (9.1). To make this requirement
precisewe need to define ameasure for the size of the reconstruction error and specify
the class of possible reconstructionmaps. PCAuses the squaredEuclidean norm (9.7)
to measure the reconstruction error and only allows for linear reconstruction maps
(9.6).

Alternatively, we can view dimensionality reduction as the generation of new
feature vectors x(i) that maintain the intrinsic geometry of the data points with their
raw feature vectors z(i). Different dimensionality reduction methods using different
concepts for characterizing the “intrinsic geometry” of data points. PCA defines the
intrinsic geometry of data points using the squared Euclidean distances between
feature vectors. Indeed, PCA produces feature vectors x(i) such that for data points
whose raw feature vectors have small squared Euclidean distance, also the new
feature vectors x(i) will have small squared Euclidean distance.

Some application domains generate data points for which the Euclidean distances
between raw feature vectors does not reflect the intrinsic geometry of data points.
As a point in case, consider data points representing scientific articles which can be
characterized by the relative frequencies of words from some given set of relevant

182 9 Feature Learning

words (dictionary). A small Euclidean distance between the resulting raw feature
vectors typically does not imply that the corresponding text documents are similar.
Instead, the similarity between two articles might depend on the number of authors
that are contained in author lists of both papers. We can represent the similarities
between all articles using a similarity graph whose nodes represent data points which
are connected by an edge (link) if they are similar (see Fig. 8.8).

Consider a dataset D = (
z(1), . . . , z(m)

)
whose intrinsic geometry is character-

ized by an unweighted similarity graph G = (V := {1, . . . ,m} E)
. The node i ∈ V

represents the i th data point, with raw feature vector z(i). Two nodes are connected
by an undirected edge if the corresponding data points are similar. We would like to
find short feature vectors x(i), for i = 1, . . . ,m, such that two data points i, i ′, whose
feature vectors x(i), x(i

′) have small Euclidean distance, are well-connected to each
other. To make this requirement precise we need to define a measure for how well
two nodes of an undirected graph are connected. We refer the reader to literature on
network theory for an overview and details of various connectivity measures [7].

Let us discuss a simple but powerful technique to map the nodes i ∈ V of an
undirected graph G to (short) feature vectors x(i) ∈ R

n . This map is such that the
Euclidean distances between the feature vectors of two nodes reflect their connec-
tivity within G. This technique uses the Laplacian matrix LinR(i) which is defined
for an undirected graph G (with node set V = {1, . . . ,m}) element-wise

Li, j :=

⎧
⎪⎨

⎪⎩

−1 , if {i, j} ∈ E
d(i) , if i = j

0 otherwise.

. (9.12)

Here, d(i) := ∣∣{ j : {i, j} ∈ E}∣∣ denotes the degree, or the number of neighbours, of
node i ∈ V . It can be shown that the Laplacian matrix L is psd [8, Proposition 1].
Therefore we can find an orthonormal set of eigenvectors

u(1), . . . ,u(m) ∈ R
m (9.13)

with corresponding (ordered in a non-decreasing fashion) eigenvaluesλ1 ≤ . . . ≤ λm

of L.
It turns out that, for a prescribed number n of numeric features, the entries

u(1)i , . . . , u(n)i of the first n eigenvectors (9.13) result in feature vectors whose
Euclidean distances reflect the connectivities of data points in the similarity graph G.
For a more precise statement of this informal claim we refer to the excellent tutorial
[8]. Thus, we obtain a feature learning method for (non-numeric) data points via
using the eigenvectors of the graph Laplacian associated with the similarity graph
of the data points. Algorithm 16 summarizes this feature learning method which
requires the similarity graph of the dataset and the desired number of new features
as input. Note that Algorithm 16 does not make any use of the Euclidean distances
between raw feature vectors and uses solely the similarity graph G for determining
the intrinsic geometry of D.

9.3 Feature Learning for Non-numeric Data 183

Algorithm 16 Feature Learning for Non-Numeric Data

Input: dataset D = {z(i) ∈ R
d }mi=1; similarity graph G; number n of features to be constructed for

each data point.
1: construct the Laplacian matrix L of the similarity graph (see ((9.12)))
2: compute EVD of L to obtain n orthonormal eigenvectors (9.13) corresponding to the smallest

eigenvalues of L
3: for each data point i , construct feature vector

x(i) := (
u(1)i , . . . , u(n)i

)T ∈ R
n (9.14)

Output: x(i), for i = 1, . . . ,m

9.4 Feature Learning for Labeled Data

We have discussed PCA as a linear dimensionality reduction method. PCA learns a
compression matrix that maps raw features z(i) of data points to new (much shorter)
feature vectors x(i). The feature vectors x(i) determined by PCA depend solely on
the raw feature vectors z(i) of the data points in a given dataset D. In particular,
PCA determines the compression matrix such that the new features allow for a linear
reconstruction (9.6) with minimum reconstruction error (9.7).

For some application domains we might not only have access to raw feature vec-
tors but also to the label values y(i) of the data points in D. Indeed, dimensionality
reductionmethods might be used as pre-processing step within a regression or classi-
fication problem that involves a labeled training set. However, in its basic form, PCA
(see Algorithm 15) does not allow to exploit the information provided by available
labels y(i) of data points z(i). For some datasets, PCA might deliver feature vectors
that are not very relevant for the overall task of predicting the label of a data point.

Let us now discuss a modification of PCA that exploits the information provided
by available labels of the data points. The idea is to learn a linear construction map
(matrix) W such that the new feature vectors x(i) = Wz(i) allow to predict the label
y(i) as good as possible. We restrict the prediction to be linear,

ŷ(i) := rT x(i) = rTWz(i), (9.15)

with some weight vector r ∈ R
n .

While PCA ismotivated byminimizing the reconstruction error (9.1), we now aim
at minimizing the prediction error ŷ(i) − y(i). In particular, we assess the usefulness
of a given pair of constructionmapW and predictor r (see (9.15)), using the empirical
risk

184 9 Feature Learning

L̂
(
W, r | D) := (1/m)

m∑

i=1

(
y(i) − ŷ(i)

)2

(9.15)= (1/m)

m∑

i=1

(
y(i) − rTWz(i)

)2
. (9.16)

to guide the learning of a compressing matrixW and corresponding linear predictor
weights r (9.15).

The optimal matrix W that minimizes the empirical risk (9.16) can be obtained
via the EVD (9.2) of the sample covariance matrix Q (9.9). Note that we have used
the EVD of Q already for PCA in Sect. 9.2 (see (9.8)). Remember that PCA uses
the n eigenvectors u(1), . . . ,u(n) corresponding to the n largest eigenvalues of Q. In
contrast, to minimize (9.16), we need to use a different set of eigenvectors in the
rows of W in general. To find the right set of n eigenvectors, we need the sample
cross-correlation vector

q := (1/m)

m∑

i=1

y(i)z(i). (9.17)

The entry q j of the vector q estimates the correlation between the raw feature z(i)j
and the label y(i). We then define the index set

S := { j1, . . . , jn} such that
(
q j

)2
/λ j ≥ (

q j ′
)2
/λ j ′ for any j ∈ S, j ′ ∈ {1, . . . , d} /∈ S. (9.18)

It can then be shown that the rows of the optimal compression matrix W are the
eigenvectors u(j) with j ∈ S. We summarize the overall feature learning method in
Algorithm 17.

Algorithm 17 Linear Feature Learning for Labeled Data

Input: dataset
(
z(1), y(1)

)
, . . . ,

(
z(m), y(m)

)
with raw features z(i) ∈ R

d andnumeric labels y(i) ∈ R

; number n of new features.
1: compute EVD (9.10) of the sample covariance matrix (9.9) to obtain orthonormal eigenvec-

tors
(
u(1), . . . ,u(d)

)
corresponding to (decreasingly ordered) eigenvalues λ(1) ≥ λ(2) ≥ . . . ≥

λ(d) ≥ 0
2: compute the sample cross-correlation vector (9.17) and, in turn, the sequence

(
q1

)2
/λ1, . . . ,

(
qd

)2
/λd (9.19)

3: determine indices i1, . . . , in of n largest elements in (9.19)

4: construct compression matrixW := (
u(i1), . . . ,u(in)

)T ∈ R
n×d

5: compute feature vector x(i) = Wz(i)

Output: x(i), for i = 1, . . . ,m, and compression matrix W.

The main focus of this section was on regression problems involving data points
with numeric labels. Given the raw features and labels of the data point in the dataset

9.4 Feature Learning for Labeled Data 185

D, Algorithm 17 determines new feature vectors x(i) that allow to linearly predict
a numeric label with minimum squared error. A similar approach can be used for
classification problems involving data points with discrete labels. The resulting lin-
ear feature learning methods are known as linear discriminant analysis or Fisher
discriminant analysis [3].

9.5 Privacy-Preserving Feature Learning

Many important application domains of ML involve sensitive data that is subject to
data protection law [9]. Consider a health-care provider (such as a hospital) holding
a large database of patient records. From a ML perspective this databases is nothing
but a (typically large) set of data points representing individual patients. The data
points are characterized bymany features including personal identifiers (name, social
security number), bio-physical parameters as well as examination results. We could
apply ML to learn a predictor for the risk of particular disease given the features of
a data point.

Given large patient databases, the MLmethods might not be implemented locally
at the hospital but using cloud computing. However, data protection requirements
might prohibit the transfer of raw patient records that allow to match individuals
with bio-physical properties. In this case we might apply feature learning methods
to construct new features for each patient such that they allow to learn an accurate
hypothesis for predicting a disease but do not allow to identify sensitive properties
of the patient such as its name or a social security number.

Let us formalize the above application by characterizing each data point (patient
in the hospital database) using raw feature vector z(i) ∈ R

d and a sensitive numeric
property π(i). We would like to find a compression map W such that the resulting
features x(i) = Wz(i) do not allow to accurately predict the sensitive property π(i).
The prediction of the sensitive property is restricted to be a linear π̂(i) := rT x(i) with
some weight vector r.

Similar to Sect. 9.4 we want to find a compression matrixW that transforms, in a
linear fashion, the raw feature vector z ∈ R

d to a new feature vector x ∈ R
n . However

the design criterion for the optimal compression matrixW was different in Sect. 9.4
where the new feature vectors should allow for an accurate linear prediction of the
label. In contrast, here we want to construct feature vectors such that there is no
accurate linear predictor of the sensitive property π(i).

As in Sect. 9.4, the optimal compression matrix W is given row-wise by the
eigenvectors of the sample covariance matrix (9.9). However, the choice of which
eigenvectors to use is different andbasedon the entries of the sample cross-correlation
vector

c := (1/m)

m∑

i=1

π(i)z(i). (9.20)

186 9 Feature Learning

We summarize the construction of the optimal privacy-preserving compression
matrix and corresponding new feature vectors in Algorithm 18.

Algorithm 18 Privacy Preserving Feature Learning

Input: dataset
(
z(1), y(1)

)
, . . . ,

(
z(m), y(m)

)
with raw features z(i) ∈ R

d and (numeric) sensitive
property π(i) ∈ R ; number n of new features.

1: compute the EVD (9.10) of the sample-covariance matrix (9.9) to obtain orthonormal eigen-
vectors

(
u(1), . . . ,u(d)

)
corresponding to (decreasingly ordered) eigenvalues λ1 ≥ λ2 ≥ . . . ≥

λd ≥ 0
2: compute the sample cross-correlation vector (9.20) and, in turn, the sequence

(
c1

)2
/λ1, . . . ,

(
cd

)2
/λd (9.21)

3: determine indices i1, . . . , in of n smallest elements in (9.21)
4: construct compression matrixW := (

u(i1), . . . ,u(in)
)T ∈ R

n×d

5: compute feature vector x(i) = Wz(i)

Output: privacy-preserving feature vectors x(i), for i = 1, . . . ,m, and compression matrix W.

Algorithm 18 learns a mapW to extract privacy-preserving features out of the raw
feature vector of a data point. These new features are privacy-preserving as they do
not allow to accurately predict (in a linear fashion) a sensitive property π of the data
point. Another formalization for the preservation of privacy can be obtained using
information-theoretic concepts. This information-theoretic approach interprets data
points, their feature vector and sensitive property, as realizations of RVs. It is then
possible to use the mutual information between new features x and the sensitive
(private) property π as an optimization criterion for learning a compression map
h (Sect. 9.1). The resulting feature learning method (referred to as privacy-funnel)
differs from Algorithm 18 not only in the optimization criterion for the compression
map but also in that it allows it to be non-linear [10, 11].

9.6 Random Projections

Note that PCA involves an EVD of the sample covariance matrixQ (9.9). The com-
putational complexity (e.g., measured by number of multiplications and additions)
for computing this EVD is lower bounded by min{D2,m2} [12, 13]. This compu-
tational complexity can be prohibitive for ML applications with n and m being of
the order of millions (which is already the case if the features are pixel values of a
512 × 512 RGB bitmap, see Sect. 2.1.1).

There is a computationally cheap alternative to PCA (Algorithm 15) for finding a
useful compressionmatrixW in (9.5). This alternative is to construct the compression
matrixW entry-wise

Wi, j := a(i, j) with i.i.d. ai, j ∼ p(a). (9.22)

9.6 Random Projections 187

The entries of the matrix (9.22) are realizations of i.i.d. RVs ai, j with some common
probability distribution p(a). Different choices for the probability distribution p(a)
have been studied in the literature [14]. The Bernoulli distribution is used to obtain
a compression matrix with binary entries. Another popular choice for p(a) is the
multivariate normal (Gaussian) distribution.

Consider data points whose raw feature vectors z are located near a s-dimensional
subspace ofRd . The feature vectors x obtained via (9.5) using a randommatrix (9.22)
allows to reconstruct the raw feature vectors z with high probability whenever

n ≥ Cs log d. (9.23)

The constant C depends on the maximum tolerated reconstruction error η (such that
‖̂z − z‖22 ≤ η for any data point) and the probability that the features x (see)(9.22))
allow for a maximum reconstruction error η [14, Theorem 9.27.].

9.7 Dimensionality Increase

The focus of this chapter is on dimensionality reduction methods that learn a feature
map delivering new feature vectors which are (significantly) shorter than the raw
feature vectors. However, it might sometimes be beneficial to learn a feature map that
delivers new feature vectors which are longer than the raw feature vectors. We have
already discussed two examples for such feature learning methods in Sects. 3.2 and
3.9. Polynomial regression maps a single raw feature z to a feature vector containing
the powers of the raw feature z. This allows to use apply linear predictor maps to
the new feature vectors to obtain predictions that depend non-linearly on the raw
feature z. Kernel methods might even use a feature map that delivers feature vectors
belonging to an infinite-dimensional Hilbert space [15].

Mapping raw feature vectors into higher-dimensional (or even infinite-
dimensional) spacesmight be useful if the intrinsic geometry of the data points is sim-
pler when looked at in the higher-dimensional space. Consider a binary classification
problem where data points are highly inter-winded in the original feature space (see
Fig. 3.7). Loosely speaking, mapping into higher-dimensional feature space might
“flatten-out” a non-linear decision boundary between data points. We can then apply
linear classifiers to the higher-dimensional features to achieve accurate predictions.

9.8 Exercises

Exercise 9.1 Computational Burden of Many Features Discuss the computa-
tional complexity of linear regression. How much computation do we need to com-
pute the linear predictor that minimizes the average squared error on a training set?

188 9 Feature Learning

Exercise 9.2 Power Iteration The key computational step of PCA amounts to an
EVDof the psdmatrix (9.9). Consider an arbitrary initial vector u(r) and the sequence
obtained by iterating

u(r+1) := Qu(r)/
∥∥Qu(r)

∥∥. (9.24)

Under what (if any) conditions for the initialization u(r) can be ensure that the
sequence u(r) converges to the eigenvector u(1) of Q corresponding to its largest
eigenvalue λ1

Exercise 9.3 LinearClassifierswithHigh-Dimensional FeaturesConsider a training
set D consisting of m = 1010 labeled data points

(
z(1), y(1)

)
, . . . ,

(
z(m), y(m)

)
with

raw feature vectors z(i) ∈ R
4000 and binary labels y(i) ∈ {−1, 1}. Assume we have

used a feature learning method to obtain the new features x(i) ∈ {0, 1}n with n = m
and such that the only non-zero entry of x(i) is x (i)i = 1, for i = 1, . . . ,m. Can you
find a linear classifier that perfectly classifies the training set?

References

1. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, 2016)
2. G. Strang, Computational Science and Engineering (Wellesley-Cambridge Press, MA, 2007)
3. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning. Springer Series in

Statistics (Springer, New York, 2001)
4. J. Wright, Y. Peng, Y. Ma, A. Ganesh, S. Rao, Robust principal component analysis: exact

recovery of corrupted low-rank matrices by convex optimization, in Neural Information Pro-
cessing Systems, NIPS 2009 (2009)

5. S. Roweis, EM Algorithms for PCA and SPCA. Advances in Neural Information Processing
Systems (MIT Press, Cambridge, 1998), pp. 626–632

6. M.E. Tipping, C. Bishop, Probabilistic principal component analysis. J. Roy. Stat. Soc. B 21(3),
611–622 (1999)

7. M.E.J. Newman, Networks: An Introduction (Oxford University Press, Oxford, 2010)
8. U. von Luxburg, A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)
9. S. Wachter, Data protection in the age of big data. Nat. Electron. 2(1), 6–7 (2019)
10. A. Makhdoumi, S. Salamatian, N. Fawaz, M. Médard, From the information bottleneck to the

privacy funnel, in 2014 IEEE Information Theory Workshop (ITW 2014), pp. 501–505 (2014)
11. Y.Y. Shkel, R.S. Blum, H.V. Poor, Secrecy by design with applications to privacy and com-

pression. IEEE Trans. Inf. Theory 67(2), 824–843 (2021)
12. Q. Du, J. Fowler, Low-complexity principal component analysis for hyperspectral image com-

pression. Int. J. High Perform. Comput. Appl., pp. 438–448 (2008)
13. A. Sharma, K. Paliwal, Fast principal component analysis using fixed-point analysis. Pattern

Recogn. Lett. 28, 1151–1155 (2007)
14. S. Foucart, H. Rauhut, A Mathematical Introduction to Compressive Sensing (Springer, New

York, 2012)
15. B. Schölkopf, A. Smola, Learning with Kernels: Support Vector Machines, Regularization,

Optimization, and Beyond (MIT Press, Cambridge, 2002)

	9 Feature Learning
	9.1 Basic Principle of Dimensionality Reduction
	9.2 Principal Component Analysis
	9.2.1 Combining PCA with Linear Regression
	9.2.2 How to Choose Number of PC?
	9.2.3 Data Visualisation
	9.2.4 Extensions of PCA

	9.3 Feature Learning for Non-numeric Data
	9.4 Feature Learning for Labeled Data
	9.5 Privacy-Preserving Feature Learning
	9.6 Random Projections
	9.7 Dimensionality Increase
	9.8 Exercises
	References

