
Chapter 7
Regularization

Keywords Data Augmentation · Robustness · Semi-Supervised Learning ·
Transfer Learning · Multitask Learning

Many ML methods use the principle of ERM (see Chap. 4) to learn a hypothesis
out of a hypothesis space by minimizing the average loss (training error) on a set of
labeled data points (training set). Using ERM as a guiding principle for MLmethods
makes sense only if the training error is a good indicator for its loss incurred outside
the training set.

Figure 7.1 illustrates a typical scenario for a modern ML method which uses a
large hypothesis space. This large hypothesis space includes highly non-linear maps
which can perfectly resemble any dataset of modest size. However, there might
be non-linear maps for which a small training error does not guarantee accurate
predictions for the labels of data points outside the training set.

Chapter 6 discussed validation techniques to verify if a hypothesis with small
training error will predict also well the labels of data points outside the training set.
These validation techniques, including Algorithms 5 and 6, probe the hypothesis
ĥ ∈ H delivered by ERM on a validation set. The validation set consists of data
points which have not been used for the training set of ERM (4.3). The validation
error, which is the average loss of the hypothesis on the data points in the validation
set, serves as an estimate for the average error or risk (4.1) of the hypothesis ĥ.

This chapter discusses regularization as an alternative to validation techniques.
In contrast to validation, regularization techniques do not require having a separate
validation set which is not used for the ERM (4.3). This makes regularization attrac-
tive for applications where obtaining a separate validation set is difficult or costly
(where labelled data is scarce).

Instead of probing a hypothesis ĥ on a validation set, regularization techniques
compute estimate the loss increasewhen applying ĥ to data points outside the training
set. The loss increase is estimated by adding a regularization term to the training error
in ERM (4.3).

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
A. Jung, Machine Learning, Machine Learning: Foundations, Methodologies,
and Applications, https://doi.org/10.1007/978-981-16-8193-6_7

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8193-6_7&domain=pdf
https://doi.org/10.1007/978-981-16-8193-6_7

136 7 Regularization

Fig. 7.1 The non-linear
hypothesis map ĥ perfectly
fits the training set and has
vanishing training error.
Despite perfectly fitting the
training set, the hypothesis ĥ
delivers the trivial (and
useless) prediction
ŷ = ĥ(x) = 0 for any
datapoint that is not in the
vicinity of the data points in
the training set

label y

feature x

(x(i), y (i))

ĥ(x)

Section 7.1 discusses the resulting regularized ERM, which we will refer to as
structural risk minimization (SRM). It turns out that the SRM is equivalent to ERM
using a smaller (pruned) hypothesis space. The amount of pruning depends on the
weight of the regularization term relative to the training error. For an increasing
weight of the regularization term, we obtain a stronger pruning resulting in a smaller
effective hypothesis space.

Section 7.2 constructs regularization terms by requiring the resulting ML method
to be robust against (small) random perturbations of the data points in a training set.
Here, we replace each data point of a training set by the realization of a RV that
fluctuates around this data point. This construction allows to interpret regularization
as a (implicit) form of data augmentation.

Section 7.3 discusses data augmentation methods as a simulation-based imple-
mentation of regularization. Data augmentation adds a certain number of perturbed
copies to each data point in the training set. One way to construct perturbed copies
of a data point is to add (the realization of) a random vector to its features.

Section 7.4 analyzes the effect of regularization for linear regression using a
simple probabilistic model for data points. This analysis parallels our previous study
of the validation error of linear regression in Sect. 6.4. Similar to Sect. 6.4, we reveal
a trade-off between the bias and variance of the hypothesis learnt by regularized
linear regression. This trade- off was traced out by a discrete model parameter (the
effective dimension) in Sect. 6.4. In contrast, regularization offers a continuous trade-
off between bias and variance via a continuous regularization parameter.

Semi-supervised learning (SSL) uses (large amounts of) unlabeled data points to
support the learning of a hypothesis from (a small number of) labeled data points
[1]. Section 7.5 discusses SSLmethods that use the statistical properties of unlabeled
data points to construct useful regularization terms. These regularization terms are
then used in SRM with a (typically small) set of labeled data points.

Multitask learning exploits similarities between different but related learning tasks
[2].We can formally define a learning task by a particular choice for the loss function
(loss function) (see Sect. 2.3). The primary role of a loss function is to score the
quality of a hypothesis map. However, the loss function also encapsulates the choice

7 Regularization 137

for the label of a data point. For learning tasks defined for a single underlying data
generation process it is reasonable to assume that the same subset of features is
relevant for those learning tasks. One example for such related learning tasks is a
multi-label classification problem (see Section) where each individual label of a data
point represents an separate learning task. Section 7.6 shows how multitask learning
can be implemented using regularization methods. The loss incurred in different
learning tasks serves mutual regularization terms in a joint SRM for all learning
tasks.

Section 7.7 shows how regularization can be used for transfer learning. Like
multitask learning also transfer learning exploits relations between different learning
tasks. In contrast to multitask learning, which jointly solves the individual learning
tasks, transfer learning solves the learning tasks sequentially. The most basic form
of transfer learning is to fine tune a pre-trained model. A pre-trained model can be
obtained via ERM (4.3) in a (“source”) learning task for which we have a large
amount of labeled training data. The fine-tuning is then obtained via ERM (4.3) in
the (“target”) learning task of interest for which we might have only a small amount
of labeled training data.

7.1 Structural Risk Minimization

Section 2.2 defined the effective dimension deff (H) of a hypothesis space H as the
maximum number of data points that can be perfectly fit by some hypothesis h ∈ H.
As soon as the effective dimension of the hypothesis space in (4.3) exceeds the
number m of training data points, we can find a hypothesis that perfectly fits the
training data. However, a hypothesis that perfectly fits the training data might deliver
poor predictions for data points outside the training set (see Fig. 7.1).

Modern MLmethods typically use a hypothesis space with large effective dimen-
sion [3, 4]. Two well-known examples for such methods is linear regression (see
Sect. 3.1) using a large number of features and deep learning with ANNs using a
large number (billions) of artificial neurons (see Section 3.11). The effective dimen-
sion of these methods can be easily on the order of billions (109) if not larger [5]. To
avoid overfitting during the naive use of ERM (4.3) we would require a training set
containing at least as many data points as the effective dimension of the hypothesis
space. However, in practice we often do not have access to training sets containing
billions of labeled data points.

It seems natural to combat overfitting of a ML method by pruning its hypothesis
spaceH. We pruneH by removing some of the hypothesis inH to obtain the smaller
hypothesis spaceH′ ⊂ H. We then replace ERM (4.3) with the restricted (or pruned)
ERM

ĥ = argmin
h∈H′

̂L(h|D) with pruned hypothesis spaceH′ ⊂H. (7.1)

138 7 Regularization

The effective dimension of the pruned hypothesis spaceH′ is typically much smaller
than the effective dimension of the original (large) hypothesis spaceH, deff

(

H′) �
deff (H). For a given size m of the training set, the risk of overfitting in (7.1) is much
smaller than the risk of overfitting in (4.3).

Example.Consider linear regression which the hypothesis space (3.1) constituted
by linear maps h(x) = wT x. The effective dimension of (3.1) is equal to the number
of features, deff (H) = n. The hypothesis space H might be too large if we use a
large number n of features, leading to overfitting. We prune (3.1) by retaining only
linear hypotheses h(x) = (

w′)T xwithweight vectorsw′ satisfyingw′
3 = w′

4 = . . . =
w′

n = 0. Thus, the hypothesis space H′ is constituted by all linear maps that only
depend on the first two features x1, x2 of a data point. The effective dimension ofH′
is dimension is deff

(

H′) = 2 instead of deff (H) = n.
Pruning the hypothesis space is a special case of a more general strategy which

we refer to as SRM [6]. The idea behind SRM is to modify the training error in ERM
(4.3) to favour hypotheses which are more smooth or regular in a specific sense.
By enforcing a smooth hypothesis, a ML methods becomes less sensitive, or more
robust, to small perturbations of the training data points. Section 7.2 discusses the
intimate relation between the robustness (against perturbations of the training set) of
a ML method and its ability to generalize to data points outside the training set.

We measure the smoothness of a hypothesis using a regularizer R(h) ∈ R+.
Roughly speaking, the valueR(h) measures the irregularity or variation of a predic-
tor map h. The (design) choice for the regularizer depends on the precise definition
of what is meant by regularity or variation of a hypothesis. Section 7.3 discusses
how a particular choice for the regularizerR(h) arises naturally from a probabilistic
model for data points.

We obtain SRM by adding the scaled regularizer λR(h) to the ERM (4.3),

ĥ = argmin
h∈H

[

̂L(h|D) + λR(h)
]

(2.16)= argmin
h∈H

[

(1/m)

m
∑

i=1

L((x(i), y(i)), h) + λR(h)
]

. (7.2)

We can interpret the penalty termλR(h) in (7.2) as an estimate (or approximation) for
the increase, relative to the training error on D, of the average loss of a hypothesis ĥ
when it is applied to data points outsideD. Another interpretation of the term λR(h)

will be discussed in Sect. 7.3.
The regularization parameter λ allows us to trade between a small training error

̂L(h(w)|D) and small regularization term R(h), which enforces smoothness or reg-
ularity of h. If we choose a large value for λ, irregular or hypotheses h, with large
R(h), are heavily “punished” in (7.2). Thus, increasing the value of λ results in the
solution (minimizer) of (7.2) having smaller R(h). On the other hand, choosing a
small value for λ in (7.2) puts more emphasis on obtaining a hypothesis h incurring
a small training error. For the extreme case λ = 0, the SRM (7.2) reduces to ERM
(4.3).

7.1 Structural Risk Minimization 139

λ = 0

H(λ=0)

λ = 1

H(λ=1)

λ = 10

H(λ=10)

Fig. 7.2 Adding the scaled regularizer λR(h) to the training error in the objective function of SRM
(7.2) is equivalent to solving ERM (7.1) with a pruned hypothesis space H(λ)

The pruning approach (7.1) is intimately related to the SRM (7.2). They are, in a
certain sense,dual to each other. First, note that (7.2) reduces to the pruning approach
(7.1) when using the regularizerR(h) = 0 for all h ∈ H′ , andR(h) = ∞ otherwise,
in (7.2). In the other direction, for many important choices for the regularizerR(h),
there is a restriction H(λ) ⊂ H such that the solutions of (7.1) and (7.2) coincide
(see Fig. 7.2). The relation between the optimization problems (7.1) and (7.2) can
be made precise using the theory of convex duality (see [7, Ch. 5] and [8]).

For a hypothesis space H whose elements h ∈ H are parameterized by a weight
vector w ∈ R

n , we can rewrite SRM (7.2) as

ŵ(λ) = argmin
w∈Rn

[

̂L(h(w)|D) + λR(w)
]

= argmin
w∈Rn

[

(1/m)

m
∑

i=1

L((x(i), y(i)), h(w)) + λR(w)
]

. (7.3)

For the particular choice of squared error loss (2.8), linear hypothesis space (3.1)
and regularizer R(w) = ‖w‖22, SRM (7.3) specializes to

ŵ(λ) = argmin
w∈Rn

[

(1/m)

m
∑

i=1

(

y(i) − wT x(i)
)2 + λ‖w‖22

]

. (7.4)

The special case (7.4) of SRM (7.3) is known as ridge regression [9].
Ridge regression (7.4) is equivalent to (see [8, Ch. 5])

ŵ(λ) = argmin
h(w)∈H(λ)

(1/m)

m
∑

i=1

(

y(i) − h(w)(x(i))
)2

(7.5)

with the restricted hypothesis space

140 7 Regularization

H(λ) := {h(w) : Rn → R : h(w)(x) = wT x,

with some weights (weights) w satisfying ‖w‖22 ≤ C(λ)} ⊂ H(n). (7.6)

For any given value λ of the regularization parameter in (7.4), there is a number
C(λ) such that solutions of (7.4) coincide with the solutions of (7.5). Thus, ridge
regression (7.4) i is equivalent to linear regression using a pruned version H(λ) of
the linear hypothesis space (3.1). The pruned hypothesis space H(λ) (7.6) depends
varies continuously with the regularization parameter λ.

Another popular special case of ERM (7.3) is obtained for the regularizerR(w) =
‖w‖1 and known as the Lasso [10]

ŵ(λ) = argmin
w∈Rn

[

(1/m)

m
∑

i=1

(

y(i) − wT x(i)
)2 + λ‖w‖1

]

. (7.7)

Ridge regression (7.4) and the Lasso (7.7) have fundamentally different computa-
tional and statistical properties. Involving a smooth and convex objective function,
ridge regression (7.4) can be implemented using efficient GD methods. The objec-
tive function of Lasso (7.7) is also convex but non-smooth and therefore requires
advanced optimization methods. The increased computational complexity of Lasso
(7.7) comes at the benefit of typically delivering a hypothesis with a smaller risk than
those obtained from ridge regression [4, 10].

7.2 Robustness

Section 7.1 motivates regularization as a soft variant of model selection. Indeed,
the regularization term in SRM (7.2) is equivalent to ERM (7.1) using a pruned
(reducing) hypothesis space. We now discuss an alternative view on regularization
as a means to make ML methods robust.

The ML methods discussed in Chap. 4 rest on the idealizing assumption that we
have access to the true label values and feature values of labeled data points (the
training set). These methods learn a hypothesis h ∈ H with minimum average loss
(training error) incurred for data points in the training set. In practice, the acquisition
of label and feature values might be prone to errors. These errors might stem from
the measurement device itself (hardware failures or thermal noise) or might be due
to human mistakes such as labelling errors.

Let us assume for the sake of exposition that the label values y(i) in the training
set are accurate but that the features x(i) are a perturbed version of the true features
of the i th data point. Thus, instead of having observed the data point

(

x(i), y(i)
)

we could have equally well observed the data point
(

x(i) + ε, y(i)
)

in the training
set. Here, we have modelled the perturbations in the features using a RV ε. The
probability distribution of the perturbation ε is a design parameter that controls

7.2 Robustness 141

robustness properties of the overall ML method. We will study a particular choice
for this distribution in Sect. 7.3.

A robust ML method should learn a hypothesis that incurs a small loss not only
for a specific data point

(

x(i), y(i)
)

but also for perturbed data points
(

x(i) + ε, y(i)
)

.
Therefore, it seems natural to replace the loss L(

(

x(i), y(i)
)

, h), incurred on the i th
data point in the training set, with the expectation

E
{

L(
(

x(i) + ε, y(i)
)

, h)
}

. (7.8)

The expectation (7.8) is computed using the probability distribution of the pertur-
bation ε. We will show in Sect. 7.3 that minimizing the average of the expectation
(7.8), for i = 1, . . . ,m, is equivalent to the SRM (7.2).

Using the expected loss (7.8) is not the only possible approach to make a ML
method robust. Another approach to make aMLmethod robust is known as bagging.
The idea of bagging is to use the bootstrap method (see Sect. 6.5 and [9, Chap. 8]) to
construct a finite number of perturbed copies D(1), . . . ,D(B) of the original training
set D.

We then learn (e.g, using ERM) a separate hypothesis h(b) for each perturbed
copy D(b), b = 1, . . . , B. This results in a whole ensemble of different hypotheses
h(b) which might even belong to different hypothesis spaces. For example, one the
hypotheis h(1) could be a linear map (see Sect. 3.1) and the hypothesis h(2) could be
obtained from an ANN (see Sect. 3.11).

Thefinal hypothesis delivered by bagging is obtained by combining or aggregating
(e.g., using the average) the predictions h(b)

(

x
)

delivered by each hypothesis h(b),
for b = 1, . . . , B in the ensemble. The ML method referred to as random forest
uses bagging to learn an ensemble of decision trees (see Sect. 3.10). The individual
predictions obtained from the trees in a random forest are combined (e.g., using an
average in regression or a majority vote in binary classification) to obtain a final
prediction [9].

7.3 Data Augmentation

MLmethods using ERM (4.3) are prone to overfitting as soon as the effective dimen-
sion of the hypothesis spaceH exceeds the numberm of training data points. Sections
6.3 and 7.1 approached this by modifying either the model or the loss function by
adding a regularization term. Both approaches prune the hypothesis spaceH under-
lying a ML method to reduce the effective dimension deff (H). Model selection does
this reduction in a discrete fashionwhile regularization implements a soft “shrinking”
of the hypothesis space.

Instead of trying to reduce the effective dimension we could also try to increase
the number m of training data points used in ERM (4.3). We now discuss how to
synthetically generate new labeled data points by exploiting known structures that
are inherent to a given application domain.

142 7 Regularization

The data arising in manyML applications exhibit intrinsic symmetries and invari-
ances at least in some approximation. The rotated image of a cat still shows a cat. The
temperature measurement taken at a given location will be similar to another mea-
surement taken 10 milliseconds later. Data augmentation exploits such symmetries
and invariances to augment the raw data with additional synthetic data.

Let us illustrate data augmentation using an application that involves data points
characterized by features x ∈ R

n and number labels y ∈ R. We assume that the
data generating process is such that data points with close feature values have the
same label. Equivalently, this assumption is requiring the resulting MLmethod to be
robust against small perturbations of the feature values (see Sect. 7.2). This suggests
to augment a data point

(

x, y
)

by several synthetic data points

(

x + ε(1), y
)

, . . . ,
(

x + ε(B), y
)

, (7.9)

with ε(1), . . . , ε(B) being realizations of independent and identically distributed
(i.i.d.) (i.i.d.) random vectors with the same probability distribution p(ε).

Given a (raw) dataset D = {(

x(1), y(1)
)

, . . . ,
(

x(m), y(m)
)} we denote the associ-

ated augmented dataset by

D′ = {(

x(1,1), y(1)
)

, . . . ,
(

x(1,B), y(1)
)

,
(

x(2,1), y(2)
)

, . . . ,
(

x(2,B), y(2)
)

,

. . .
(

x(m,1), y(m)
)

, . . . ,
(

x(m,B), y(m)
)}. (7.10)

The size of the augmented dataset D′ is m ′ = B × m. For a sufficiently large aug-
mentation parameter B, the augmented sample size m ′ is larger than the effective
dimension n of the hypothesis spaceH. We then learn a hypothesis via ERM on the
augmented dataset,

ĥ = argmin
h∈H

̂L(h|D′)

(7.10)= argmin
h∈H

(1/m ′)
m

∑

i=1

B
∑

b=1

L((x(i,b), y(i,b)), h)

(7.9)= argmin
h∈H

(1/m)

m
∑

i=1

(1/B)

B
∑

b=1

L((x(i) + ε(b), y(i)), h). (7.11)

We can interpret data-augmented ERM (7.11) as a data-driven form of regu-
larization (see Sect. 7.1). The regularization is implemented by replacing, for
each data point

(

x(i), y(i)
) ∈ D, the loss L((x(i), y(i)), h) with the average loss

(1/B)
∑B

b=1 L((x(i) + ε(b), y(i)), h) over the augmented data points that accompany
(

x(i), y(i)
) ∈ D.

7.3 Data Augmentation 143

Note that in order to implement (7.11) we need to first generate B realizations
ε(b) ∈ R

n of i.i.d. random vectors with common probability distribution p(ε). This
might be computationally costly for a large B, n. However, when using a large aug-
mentation parameter B, we might use the approximation

(1/B)

B
∑

b=1

L((x(i) + ε(b), y(i)), h) ≈ E
{

L((x(i) + ε, y(i)), h)
}

. (7.12)

This approximation is made precise by a key result of probability theory, known as
the law of large numbers. We obtain an instance of ERM by inserting (7.12) into
(7.11),

ĥ = argmin
h∈H

(1/m)

m
∑

i=1

E
{

L((x(i) + ε, y(i)), h)
}

. (7.13)

The usefulness of (7.13) as an approximation to the augmented ERM (7.11)
depends on the difficulty of computing the expectationE

{

L((x(i) + ε, y(i)), h)
}

. The
complexity of computing this expectation depends on the choice of loss function and
the choice for the probability distribution p(ε).

Let us study (7.13) for the special case linear regression with squared error loss
(2.8) and linear hypothesis space (3.1),

ĥ = argmin
h(w)∈H(n)

(1/m)

m
∑

i=1

E
{(

y(i) − wT
(

x(i) + ε
))2}

. (7.14)

We use perturbations ε drawn a multivariate normal distribution with zero mean and
covariance matrix σ 2I,

ε ∼ N (0, σ 2I). (7.15)

We develop (7.14) further by using

E{(y(i) − wT x(i)
)

ε} = 0. (7.16)

The identity (7.16) uses that the data points
(

x(i), y(i)
)

are fixed and known (deter-
ministic) while ε is a zero-mean random vector. Combining (7.16) with (7.14),

E
{(

y(i) − wT
(

x(i) + ε
))2} = (

y(i) − wT x(i)
)2+∥

∥w
∥

∥

2
2 E

{∥

∥ε
∥

∥

2
2

}

= (

y(i) − wT x(i)
)2 + n

∥

∥w
∥

∥

2
σ 2. (7.17)

where the last step used E
{∥

∥ε
∥

∥

2
2

} (7.15)= nσ 2. Inserting (7.17) into (7.14),

144 7 Regularization

ĥ = argmin
h(w)∈H(n)

(1/m)

m
∑

i=1

(

y(i) − wT x(i)
)2 + n

∥

∥w
∥

∥

2
σ 2. (7.18)

We have obtained (7.18) as an approximation of the augmented ERM (7.11) for the
special case of squared error loss (2.8) and the linear hypothesis space (3.1). This
approximation uses the law of large numbers (7.12) and becomes more accurate for
increasing augmentation parameter B.

Note that (7.18) is nothing but ridge regression (7.4) using the regularization
parameter λ = nσ 2. Thus, we can interpret ridge regression as implicit data aug-
mentation (7.10) by applying random perturbations (7.9) to the feature vectors in the
original training set D.

The regularizer R(w) = ‖w‖22 in (7.18) arose naturally from the specific choice
for the probability distribution (7.15) of the random perturbation ε(i) in (7.9) and
using the squared error loss. Other choices for this probability distribution or the loss
function result in different regularizers.

Augmenting data points with random perturbations distributed according (7.15)
treat the features of a data point independently. For application domains that generate
data points with highly correlated features it might be useful to augment data points
using random perturbations ε (see (7.9)) distributed as

ε ∼ N (0,C). (7.19)

The covariance matrixC of the perturbation ε can be chosen using domain expertise
or estimated (see Sect. 7.5). Inserting the distribution (7.19) into (7.13),

ĥ = argmin
h(w)∈H(n)

[

(1/m)

m
∑

i=1

(

y(i) − wT x(i)
)2 + wTCw

]

. (7.20)

Note that (7.20) reduces to ordinary ridge regression (7.18) for the choice C = σ 2I.

7.4 Statistical and Computational Aspects
of Regularization

The goal of this section is to develop a better understanding for the effect of the
regularization term in SRM (7.3). We will analyze the solutions of ridge regression
(7.4) which is the special case of SRM using the linear hypothesis space (3.1) and
squared error loss (2.8). Using the feature matrix X=(

x(1), . . . , x(m)
)T

and label
vector y=(y(1), . . . , y(m))T , we can rewrite (7.4) more compactly as

ŵ(λ) = argmin
w∈Rn

[

(1/m)‖y − Xw‖22 + λ‖w‖22
]

. (7.21)

7.4 Statistical and Computational Aspects of Regularization 145

The solution of (7.21) is given by

ŵ(λ) = (1/m)((1/m)XTX + λI)−1XT y. (7.22)

For λ=0, (7.22) reduces to the formula (6.17) for the optimal weights in linear
regression (see (7.4) and (4.5)). Note that for λ > 0, the formula (7.22) is always
valid, evenwhenXTX is singular (not invertible). Forλ > 0 the optimization problem
(7.21) (and (7.4)) has the unique solution (7.22).

To study the statistical properties of the predictor h(ŵ(λ))(x) = (

ŵ(λ)
)T
x (see

(7.22)) we use the probabilistic toy model (6.13), (6.15) and (6.16) that we used
already in Sect. 6.4. We interpret the training data D(train) = {(x(i), y(i))}mi=1 as real-
izations of i.i.d. RVs whose distribution is defined by (6.13), (6.15) and (6.16).

We can then define the average prediction error of ridge regression as

E (λ)
pred := E

{(

y − h(ŵ(λ))(x)
)2}

. (7.23)

As shown in Sect. 6.4, the error E (λ)
pred is the sum of three components: the bias, the

variance and the noise variance σ 2 (see (6.27)). The bias of ŵ(λ) is

B2 = ∥

∥(I − E{(XTX + mλI)−1XTX})w∥

∥

2
2. (7.24)

For sufficiently large size m of the training set, we can use the approximation

XTX ≈ mI (7.25)

such that (7.24) can be approximated as

B2 ≈ ∥

∥(I−(I+λI)−1)w
∥

∥

2
2

=
n

∑

l=1

λ

1 + λ
w2

l . (7.26)

Let us compare the (approximate) bias term (7.26) of regularized linear regression
with the bias term (6.23) of ordinary linear regression (which is the extreme case of
ridge regression with λ = 0). The bias term (7.26) increases with increasing regular-
ization parameter λ in ridge regression (7.4). In many relevant settings, the increase
in bias is outweighed by the reduction in variance. The variance typically decreases
with increasing λ as shown next.

The variance of ridge regression (7.4) satisfies

V = (σ 2/m2)×
tr
{

E{((1/m)XTX+λI)−1XTX((1/m)XTX+λI)−1}}. (7.27)

146 7 Regularization

Fig. 7.3 The bias and
variance of regularized linear
regression depend on the
regularization parameter λ in
an opposite manner resulting
in a bias-variance trade-off

bias of ŵ(λ)

variance of ŵ(λ)

regularization parameter λ

Inserting the approximation (7.25) into (7.27),

V ≈ σ 2(1/m)(n/(1+λ)). (7.28)

According to (7.28), the variance of ŵ(λ) decreases with increasing regularization
parameter λ of ridge regression (7.4). This is the opposite behaviour as observed for
the bias (7.26), which increases with increasing λ. The approximate variance formula
(7.28) suggests to interpret the ratio (n/(1+λ)) as the effective number of features
used by ridge regression. Increasing the regularization parameter λ decreases the
effective number of features.

Figure 7.3 illustrates the trade-off between the bias B2 (7.26) of ridge regression,
which increases for increasing λ, and the variance V (7.28) which decreases with
increasing λ. Note that we have seen another example for a bias-variance trade-off in
Sect. 6.4. This trade-off was traced out by a discrete (model complexity) parameter
r ∈ {1, 2, . . .} (see (6.14)). In stark contrast to discrete model selection, the bias-
variance trade-off for ridge regression is traced out by the continuous regularization
parameter λ ∈ R+.

The main statistical effect of the regularization term in ridge regression is to
balance the bias with the variance to minimize the average prediction error of the
learnt hypothesis. There is also a computational effect or adding a regularization
term. Roughly speaking, the regularization term serves as a pre-conditioning of the
optimization problem and, in turn, reduces the computational complexity of solving
ridge regression (7.21).

The objective function in (7.21) is a smooth (infinitely often differentiable) convex
function.We can therefore useGD to solve (7.21) efficiently (seeChap. 5). Algorithm
8 summarizes the application of GD to (7.21). The computational complexity of
Algorithm 8 depends crucially on the number of GD iterations required to reach a
sufficiently small neighbourhood of the solutions to (7.21). Adding the regularization
term λ‖w‖22 to the objective function of linear regression speeds up GD. To verify
this claim, we first rewrite (7.21) as the quadratic problem

7.4 Statistical and Computational Aspects of Regularization 147

min
w∈Rn

(1/2)wTQw − qTw
︸ ︷︷ ︸

= f (w)

with Q = (1/m)XTX + λI,q = (1/m)XT y. (7.29)

This is similar to the quadratic optimization problem (4.9) underlying linear regres-
sion but with a different matrix Q. The computational complexity (number of itera-
tions) required by GD (see (5.4)) applied to solve (7.29) up to a prescribed accuracy
depends crucially on the condition number κ(Q) ≥ 1 of the psd matrix Q [11]. The
smaller the condition number κ(Q), the fewer iterations are required byGD.Amatrix
with small condition number is also referred to as being “well-conditioned”.

The condition number of the matrix Q in (7.29) is given by

κ(Q) = λmax((1/m)XTX) + λ

λmin((1/m)XTX) + λ
. (7.30)

According to (7.30), the condition number tends to one for increasing regularization
parameter λ,

lim
λ→∞

λmax((1/m)XTX) + λ

λmin((1/m)XTX) + λ
= 1. (7.31)

Thus, the number of required GD iterations in Algorithm 8 decreases with increasing
regularization parameter λ.

Algorithm 8 Regularized Linear regression via GD

Input: dataset D = {(x(i), y(i))}mi=1; GD step size α > 0.
Initialize:set w(0) :=0; set iteration counter k :=0
1: repeat
2: r := r + 1 (increase iteration counter)
3: w(r) := (1 − αλ)w(r−1) + α(2/m)

∑m
i=1(y

(i) − (

w(r−1))T x(i))x(i) (do a GD step (5.4))
4: until stopping criterion met
Output: w(r) (which approximates ŵ(λ) in (7.21))

7.5 Semi-Supervised Learning

Consider the task of predicting the numeric label y of a data point z = (

x, y
)

based

on its feature vector x=(

x1, . . . , xn
)T ∈ R

n . At our disposal are two datasets D(u)

and D(l). For each data point in D(u) we only know the feature vector. We therefore
refer to D(u) as “unlabelled data”. For each data point in D(l) we know both, the
feature vector x and the label y. We therefore refer to D(l) as “labeled data”.

148 7 Regularization

SSL methods exploit the information provided by unlabelled dataD(u) to support
the learning of a hypothesis based on minimizing its empirical risk on the labelled
(training) data D(l). The success of SSL methods depends on the statistical proper-
ties of the data generated within a given application domain. Loosely speaking, the
information provided by the probability distribution of the features must be relevant
for the ultimate task of predicting the label y from the features x [1].

Let us design a SSL method, summarized in Algorithm 9 below, using the data
augmentation perspective from Sect. 7.3. The idea is the augment the (small) labeled
dataset D(l) by adding random perturbations for the features vectors of data point in
D(l). This is reasonable for applications where feature vectors are subject to inherent
measurement or modelling errors. Given a data point with vector x we could have
equally well observed a feature vector x + ε with some small random perturbation
ε ∼ N (0,C). To estimate the covariance matrix C, we use the sample covariance
matrix of the feature vectors in the (large) unlabelled dataset D(u). We then learn a
hypothesis using the augmented (regularized) ERM (7.20).

Algorithm 9 A Semi-Supervised Learning Algorithm

Input: labeled dataset D(l) = {(x(i), y(i))}mi=1; unlabeled dataset D(u) = {̃x(i)}m′
i=1

1: compute C via sample covariance on D(u),

C := (1/m′)
m′
∑

i=1

(

x̃(i)−x̂
)(

x̃(i)−x̂
)T with x̂ := (1/m′)

m′
∑

i=1

x̃(i). (7.32)

2: compute (e.g. using GD steps (5.4))

ŵ := argmin
w∈Rn

[

(1/m)

m
∑

i=1

(

y(i) − wT x(i))2 + wTCw
]

. (7.33)

Output: hypothesis ĥ(x) = (

ŵ)T x

7.6 Multitask Learning

We can identify a learning task with the loss function L((x, y), h) that is used to
measure the quality of a particular hypothesis h ∈ H. Note that the loss obtained for
a given data point also depends on the definition for the label of a data point. For
the same data points, we obtain different learning tasks from different choices or
definitions for the label of a data point. Multitask learning exploits the similarities
between different learning tasks to jointly solve them.

Example. Consider a data point z representing a hand-drawing that is collected
via the online game https://quickdraw.withgoogle.com/. The features of a data point
are the pixel intensities of the bitmap which is used to store the hand-drawing. As

https://quickdraw.withgoogle.com/

7.6 Multitask Learning 149

label we could use the fact if a hand-drawing shows an apple or not. This results in
the learning task T (1). Another choice for the label of a hand-drawing could be the
fact if a hand-drawing shows a fruit at all or not. This results in another learning task
T (2) which is similar but different from the task T (1).

The idea of multitask learning is that a reasonable hypothesis h for a learning task
should also do well for a related learning tasks. Thus, we can use the loss incurred
on similar learning tasks as a regularization term for learning a hypothesis for the
learning task at hand. Algorithm 10 is a straightforward implementation of this idea
for a given dataset that gives rise to T related learning tasks T (1), . . . , T (T). For each
individual learning task T (t ′) it uses the loss on the remaining learning tasks T (t),
with t = t ′, as regularization term in (7.34).

Algorithm 10 A Multitask Learning Algorithm

Input: dataset D = {z(1), . . . , z(m)} with T associated learning tasks with loss functions
L(1), . . . , L(T), hypothesis space H

1: learn a hypothesis ĥ via

ĥ := argmin
h∈H

T
∑

t=1

m
∑

i=1

L(t)(z(i), h
)

. (7.34)

Output: hypothesis ĥ

The applicability of Algorithm 10 is somewhat limited as it aims at finding a
single hypothesis that does well for all T learning tasks simultaneously. For certain
application domains it might be more reasonable to not learn a single hypothesis
for all learning tasks but to learn a separate hypothesis h(t) for each learning task
t = 1, . . . , T . However, these separate hypotheses typically might still share some
structural similarities.1 We can enforce different notion of similarities between the
hypotheses h(t) by adding a regularization term to the loss functions of the tasks.

Algorithm 11 generalizes Algorithms 10 by learning a separate hypothesis for
each task t while requiring these hypotheses to be structurally similar. The structural
(dis-)similarity between the hypotheses is measured by a regularization term R.

7.7 Transfer Learning

Regularization is also instrumental for transfer learning to capitalize on synergies
between different related learning tasks [13, 14]. Transfer learning is enabled by
constructing regularization terms for a learning task by using the result of a previous

1 One important example for such a structural similarity in the case of linear predictors h(t)(x) =
(

w(t)
)T x iswhen theweight vectorsw(T) have a small joint support

⋃

t=1,...,T supp(w(t)). Requiring
the weight vectors to have a small joint support is equivalent to requiring the stacked vector w̃ =
(

w(1), . . . ,w(T)
)

to be block (group) sparse [12].

150 7 Regularization

Algorithm 11 A Multitask Learning Algorithm

Input: dataset D = {z(1), . . . , z(m)} with T associated learning tasks with loss functions
L(1), . . . , L(T), hypothesis space H

1: learn a hypothesis ĥ via

ĥ(1), . . . , ĥ(T) := argmin
h(1),...,h(T)∈H

T
∑

t=1

m
∑

i=1

L(t)(z(i), h(t)) + λR(

h(1), . . . , h(T)
)

. (7.35)

Output: hypotheses ĥ(1), . . . , ĥ(T)

leaning task. While multitask learning methods solve many related learning tasks
simultaneously, transfer learning methods operate in a sequential fashion.

To illustrate the idea of transfer learning consider two learning tasks which differ
in their intrinsic difficulty. We consider a learning task to be easy if it involves if
we can easily gather large amounts of labeled (training) data for that task. Consider
the learning task T (1) of predicting whether an image shows a cat or not. For this
learning task we can easily gather a large training setD(1) using via image collections
of animals. Another (related) learning task T (2) is to predicting whether an image
shows a cat of a particular breed, with a particular body height and with a specific
age, we might not be able to collect many labeled data points.

7.8 Exercises

Exercise 7.1 Ridge Regression is a Quadratic Problem. Consider the linear
hypothesis space consisting of linearmaps parameterized byweightsw.We try to find
the best linear map byminimizing the regularized average squared error loss (empiri-
cal risk) incurred on some labeled data points (x(1), y(1)), (x(2), y(2)), . . ., (x(m), y(m)).
As the regularizer we use ‖w‖2, yielding the following learning problem

min
w∈Rn

f (w) = (1/m)

m
∑

i=1

(

y(i) − wT x(i)
) + ‖w‖22.

Is it possible to rewrite the objective function f (w) as a convex quadratic function
f (w) = wTCw + bw + c? If this is possible, how are the matrix C, vector b and
constant c related to the feature vectors and labels of the training data?

Exercise 7.2 Regularization orModel Selection. Consider data points, each char-
acterized by n = 10 features x ∈ R

n and a single numeric label y. We want to learn a
linear hypothesis h(x) = wT x by minimizing the average squared error on the train-
ing set D of size m = 4. We could learn such a hypothesis by two approaches. The
first approach is to split the dataset into a training set and a validation set. Then we
consider all models that consists of linear hypotheses with weight vectors having at

7.8 Exercises 151

most two non-zero weights. Each of these models corresponds to a different subset
of two weights that might be non-zero. Find the model resulting in the smallest val-
idation errors (see Algorithm 5). Compute the average loss of the resulting optimal
linear hypothesis on some data points that have neither been used for training nor for
validation. Compare this average loss (“test error”) with the average loss obtained
on the same data points by the hypothesis learnt by ridge regression (7.4).

References

1. O. Chapelle, B. Schölkopf, A. Zien (eds.), Semi-Supervised Learning (The MIT Press, Cam-
bridge, MA, 2006)

2. R. Caruana, Multitask learning. Mach. Learn. 28(1), 41–75 (1997)
3. M. Wainwright, High-Dimensional Statistics: A Non-Asymptotic Viewpoint (Cambridge Uni-

versity Press, Cambridge, 2019)
4. P. Bühlmann, S. van deGeer, Statistics for High-Dimensional Data (Springer, NewYork, 2011)
5. S. Shalev-Shwartz, S. Ben-David, Understanding Machine Learning—From Theory to Algo-

rithms (Cambridge University Press, Cambridge, 2014)
6. V.N. Vapnik, The Nature of Statistical Learning Theory (Springer, Berlin, 1999)
7. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge,

UK, 2004)
8. D.P. Bertsekas, Nonlinear Programming, 2nd edn. (Athena Scientific, Belmont, MA, 1999)
9. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning Springer Series in

Statistics. (Springer, New York, 2001)
10. T. Hastie, R. Tibshirani, M. Wainwright, Statistical Learning with Sparsity: The Lasso and Its

Generalizations (CRC Press, Boca Raton, FL, 2015)
11. A. Jung, A fixed-point of view on gradient methods for big data. Frontiers in Applied Mathe-

matics and Statistics 3, 18 (2017)
12. Y.C. Eldar, P. Kuppinger, H. Bölcskei, Block-sparse signals: Uncertainty relations and efficient

recovery. IEEE Trans. Signal Processing 58(6), 3042–3054 (2010). (June)
13. S. Pan, Q. Yang, A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–

1359 (2010)
14. J. Howard, S. Ruder, Universal language model fine-tuning for text classification, in Proceed-

ings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers) (Association for Computational Linguistics, Stroudsburg, 2018), pp. 328–339

	7 Regularization
	7.1 Structural Risk Minimization
	7.2 Robustness
	7.3 Data Augmentation
	7.4 Statistical and Computational Aspects of Regularization
	7.5 Semi-Supervised Learning
	7.6 Multitask Learning
	7.7 Transfer Learning
	7.8 Exercises
	References

