
Chapter 2
Components of ML

This book portrays ML as combinations of three components (see Fig. 2.1):

• data as collections of individual data points that are characterized by features (see
Sect. 2.1.1) and labels (see Sect. 2.1.2)

• a model or hypothesis space that consists of computationally feasible hypothesis
maps from feature space to label space (see Sect. 2.2)

• a loss function (see Sect. 2.3) to measure the quality of a hypothesis map.

AMLproblem involves specific design choices for data points, its features and labels,
the hypothesis space and the loss function to measure the quality of a particular
hypothesis. Similar to ML problems (or applications), we can also characterize ML
methods as combinations of the three above components.

We detail in Chap. 3 how some of the most popular MLmethods, including linear
regression (see Sect. 3.1) as well as deep learning methods (see Sect. 3.11), are
obtained by specific design choices for the three components. This chapter discusses
in some depth the role of and the individual components ofML and their combination
in ML methods.

2.1 The Data

Data as Collections of Data points. Maybe the most important component of any
ML problem (and method) is data. We consider data as collections of individual data
points which are atomic units of “information containers”. Data points can represent
text documents, signal samples of time series generated by sensors, entire time series
generated by collections of sensors, frames within a single video, random variables,
videos within a movie database, cows within a herd, individual trees within a forest,

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
A. Jung, Machine Learning, Machine Learning: Foundations, Methodologies,
and Applications, https://doi.org/10.1007/978-981-16-8193-6_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8193-6_2&domain=pdf
https://doi.org/10.1007/978-981-16-8193-6_2

20 2 Components of ML

Fig. 2.1 ML methods fit a
model to data via minimizing
a loss function model

lossdata

Fig. 2.2 Snapshot taken at
the beginning of a mountain
hike

individual forests within a collection of forests. Mountain hikers might be interested
in datapoints that represent different hiking tours (see Fig. 2.2).

We use the concept of datapoints in a very abstract and therefore highly flexible
manner. Datapoints can represent very different types of objects that arise in funda-
mentally different application domains. For an image processing application it might
be useful to define datapoints as images.When developing a recommendation system
we might define datapoints to represent customers. In the development of new drugs
we might use data points to represent different diseases. The view in this book is
that the meaning of definition of datapoints should be considered as a design choice.
We might refer to the task of finding a useful definition of data points as “data point
engineering”.

One practical requirement for a useful definition of data points is that we should
have access to many of them. Many ML methods construct estimates for a quantity
of interest (such as a prediction or forecast) by averaging over a set of reference
(or training) datapoints. These estimates become more accurate for an increasing
number of datapoints used for computing the average. A key parameter of a dataset
is the numberm of individual datapoints it contains. The number of datapoints within
a dataset is also referred to as the sample size. Statistically, the larger the sample size

2.1 The Data 21

m the better. However, there might be restrictions on computational resources (such
as memory size) that limit the maximum sample size m that can be processed.

For most applications, it is impossible to have full access to every single micro-
scopic property of a data point. Consider a datapoint that represents a vaccine. A
full characterization of such a datapoint would require to specify its chemical com-
position down to level of molecules and atoms. Moreover, there are properties of a
vaccine that depend on the patient who received the vaccine.

We find it useful to distinguish between two different groups of properties of a
data point. The first group of properties is referred to as features and the second
group of properties is referred to as labels. Depending on the application domain, we
might refer to labels also as a target or the output variable. The features of a data
point are sometimes also referred to as input variables.

The distinction between features and labels is somewhat blurry. The same property
of a data point might be used as a feature in one application, while it might be used as
a label in another application. As an example, consider feature learning for datapoints
representing images. One approach to learn representative features of an image is
to use some of the image pixels as the label or target pixels. We can then learn new
features by learning a feature map that allows us to predict the target pixels.

To further illustrate the blurry distinction between features and labels, consider
the problem of missing data. Assume we have a list of data points each of which is
characterized by several properties that could be measured easily in principles (by
sensors). These properties would be first candidates for being used as features of the
datapoints. However, few of these properties are unknown (missing) for a small set
of datapoints (e.g., due to broken sensors). We could then define the properties which
are missing for some datapoints as labels and try to predict these labels using the
remaining properties (which are known for all data points) as features. The task of
determining missing values of properties that could be measured easily in principle
is referred to as imputation [1].

Figure 2.3 illustrates two key parameters of a dataset. The first parameter is the
sample size m, i.e., the number of individual data points that constitute the dataset.
The second key parameter is the number n of features that are used to characterize
an individual data point. The behaviour of ML methods often depends crucially on
the ratio m/n. The performance of ML methods typically improves with increasing
m/n. As a rule of thumb, we should use datasets for which m/n � 1. We will make
the informal condition m/n � 1 more precise in Chap. 6.

2.1.1 Features

Similar to the definition of datapoints, also the choice of which properties to be
used as their features is a design choice. In general, features are properties of a
datapoint that can be computed ormeasured easily. However, this is a highly informal
characterization since there no universal criterion for the difficulty of computing of
measuring a property of datapoints. The task of choosing which properties to use

22 2 Components of ML

Fig. 2.3 Twomain parameters of a dataset are the number (sample size)m of individual data points
that constitute the dataset and the number n of features used to characterize individual datapoints.
The behaviour of ML methods typically depends crucially on the ratio m/n

as features of data points might be the most challenging part in the application of
ML methods. Chapter 9 discusses feature learning methods that automate (to some
extend) the construction of good features.

In some application domains there is a rather natural choice for the features of
a data point. For data points representing audio recording (of a given duration) we
might use the signal amplitudes at regular sampling instants (e.g., using sampling
frequency 44 kHz) as features. For data points representing images it seems natural
to use the colour (red, green and blue) intensity levels of each pixel as a feature (see
Fig. 2.4).

The feature construction for images depicted in Fig. 2.4 can be extended to other
types of data points as long as they can be visualized efficiently. As a case in point,
we might visualize an audio recording using an intensity plot of its spectrogram (see
Fig. 2.5). We can then use the pixel RGB intensities of this intensity plot as the
features for an audio recording. Using this trick we can transform any ML method
for image data to an ML method for audio data. We can use the scatterplot of a data
set to use ML methods for image segmentation to cluster the dataset (see Chap. 8).

Many important ML application domains generate data points that are charac-
terized by several numeric features x1, . . . , xn . We represent numeric features by
real numbers x1, . . . , xn ∈ R which might seem impractical. Indeed, digital com-
puters cannot store a real number exactly as this would require an infinite number
of bits. However, numeric linear algebra soft- and hardware allows to approximate
real numbers with sufficient accuracy. The majority of MLmethods discussed in this
book assume that data points are characterized by real-valued features. Section 9.3
discusses methods for constructing numeric features of data points whose natural
representation is non-numeric.

We assume that data points arising in a given ML application are characterized
by the same number n of individual features x1. . . . , xn . It is convenient to stack the
individual features of a data point into a single feature vector

x = (
x1, . . . , xn

)T
.

2.1 The Data 23

snapshot z(i)

512 × 512 pixels
(red-green-blue bitmap)

feature vector x(i)

pixel 1

pixel 2

pixel 512 × 512

n

255
0
0
0

255
0
0
0

255
......

r[1]
g[1]
b[1]
r[2]
g[2]
b[2]

Fig. 2.4 If the snapshot z(i) is stored as a 512 × 512RGBbitmap,we could use as features x(i) ∈ R
n

the red-, green- and blue component of each pixel in the snapshot. The length of the feature vector
would then be n = 3 · 512 · 512 ≈ 786000

Each data point is then characterized by its feature vector x. Note that stacking the
features of a data point into a column vector x is pure convention. We could also
arrange the features as a row vector or even as a matrix, which might be even more
natural for features obtained by the pixels of an image (see Fig. 2.4).

We refer to the set of possible feature vectors of datapoints arising in some ML
application as the feature space and denote it as X . The feature space is a design
choice as it depends on what properties of a datapoint we use as its features. This
design choice should take into account the statistical properties of the data as well as
the available computational infrastructure. If the computational infrastructure allows
for efficient numerical linear algebra, then using X = R

n might be a good choice.
The Euclidean spaceRn is an example of a feature space with a rich geometric and

algebraic structure [2]. The algebraic structure of Rn is defined by vector addition
and multiplication of vectors with scalars. The geometric structure of Rn is obtained
by the Euclidean norm as a measure for the distance between two elements of Rn .
The algebraic and geometric structure of Rn often enables an efficient search over
R

n to find elements with desired properties. Section 4.3 discusses examples of such
search problems in the context of learning an optimal hypothesis.

Modern information-technology, including smartphones or wearables, allows
us to measure a huge number of properties about datapoints in many application
domains. Consider a datapoint representing the book author “Alex Jung”. Alex uses
a smartphone to take roughly five snapshots per day (sometimes more, e.g., during
a mountain hike) resulting in more than 1000 snapshots per year. Each snapshot
contains around 106 pixels whose greyscale levels we can use as features of the data-
point. This results in more than 109 features (per year!). If we stack all those features
into a feature vector x, its length n would be of the order of 109.

As indicated above, many important ML applications involve datapoints repre-
sented by very long feature vectors. To process such high-dimensional data, modern

24 2 Components of ML

ML methods rely on concepts from high-dimensional statistics [3, 4]. One such
concept from high-dimensional statistics is the notion of sparsity. Section 3.4 dis-
cusses methods that exploit the tendency of high-dimensional data points, which are
characterized by a large number n of features, to concentrate near low-dimensional
subspaces in the feature space [5].

At first sight it might seem that “the more features the better” since using more
features might convey more relevant information to achieve the overall goal. How-
ever, as we discuss in Chap. 7, it can be detrimental for the performance of ML
methods to use an excessive amount of (irrelevant) features. Computationally, using
too many features might result in prohibitive computational resource requirements
(such as processing time). Statistically, each additional feature typically introduces
an additional amount of noise (due to measurement or modelling errors) which is
harmful for the accuracy of the ML method.

It is difficult to give a precise and broadly applicable characterization of the
maximum number of features that should be used to characterize the datapoints. As
a rule of thumb, the number m of (labeled) datapoints used to train a ML method
should be much larger than the number n of numeric features (see Fig. 2.3). The
informal condition m/n � 1 can be ensured by either collecting a sufficiently large
number m of data points or by using a sufficiently small number n of features. We
next discuss implementations for each of these two complementary approaches.

The acquisition of (labeled) datapoints might be costly, requiring human expert
labour. Instead of collecting more raw data, it might be more efficient to generate
new artificial (synthetic) data via data augmentation techniques. Section 7.3 shows
how intrinsic symmetries in the data can be used to augment the raw data with
synthetic data. As an example for an intrinsic symmetry of data, consider datapoints
representing an image.We assign each image the label y = 1 if it shows a cat and y =
−1 otherwise. For each image with known label we can generate several augmented
(additional) images with the same label. These additional images might be obtained
by simple image transformation such as rotations or re-scaling (zoom-in or zoom-
out) that do not change the depicted objects (the meaning of the image). Chapter 7
shows that some basic regularization techniques can be interpreted as an implicit
form of data augmentation.

The informal condition m/n � 1 can also be ensured by reducing the number n
of features used to characterize data points. In some applications, we might use some
domain knowledge to choose the most relevant features. For other applications, it
might be difficult to tell which quantities are the best choice for features. Chapter 9
discusses methods that learn, based on some given dataset, to determine a small
number of relevant features of datapoints.

Beside the available computational infrastructure, also the statistical properties of
datasets must be taken into account for the choices of the feature space. The linear
algebraic structure of Rn allows us to efficiently represent and approximate datasets
that are well aligned along linear subspaces. Section 9.2 discusses a basic method
to optimally approximate datasets by linear subspaces of a given dimension. The
geometric structure of Rn is also used in Chap. 8 to decompose a dataset into few
groups or clusters that consist of similar data points.

2.1 The Data 25

Fig. 2.5 Two visualizations of an audio recording obtained from a line plot of the signal amplitudes
and by the spectrogram of the audio recording

Throughout this book we will mainly use the feature space Rn with dimension n
being the number of features of a datapoint. This feature space has proven useful in
manyMLapplications due to availability of efficient soft- and hardware for numerical
linear algebra. Moreover, the algebraic and geometric structure of Rn reflect the
intrinsic structure of the data generated in many important application domains.
This should not be too surprising as the Euclidean space has evolved as a useful
mathematical abstraction of physical phenomena.

In general there is no mathematically correct choice for which properties of a data
point to be used as its features. Most application domains allow for some design free-
dom in the choice of features. Let us illustrate this design freedomwith a personalized
health-care applications. This application involves data points that represent audio
recordings with the fixed duration of three seconds. These recordings are obtained
via smartphone microphones and used to detect coughing [6].

Audio recordings are typically available a sequence of signal amplitudes at col-
lected regularly at time instants t = 1, . . . , n with sampling frequency ≈ 44 kHz.
From a signal processing perspective, it seems natural to directly use the signal
amplitudes as features, x j = a j for j = 1, . . . , n. However, another choice for the
features would be the pixel RGB values of some visualization of the audio recording.
Figure 2.5 depicts two possible visualizations of an audio signal obtained from a line
plot of the signal amplitudes (as a function of time index t) or an intensity plot of
the spectrogram [7, 8].

26 2 Components of ML

2.1.2 Labels

Besides its features, a data point might have a different kind of properties. These
properties represent a higher-level fact or quantity of interest that is associated with
the data point. We refer to such properties of a data point as its label (or “output”
or “target”) and typically denote it by y (if it is a single number) or by y (if it is
a vector of different label values, such as in multi-label classification). We refer to
the set of all possible label values of data points arising in a ML application is the
label space Y . In general, determining the label of a data point is more difficult (to
automate) compared to determining its features. Many ML methods revolve around
finding efficient ways to predict (estimate or approximate) the label of a data point
based solely on its features.

As already mentioned, the distinction of data point properties into labels and
features is blurry. Roughly speaking, labels are properties of datapoints that might
only be determined with the help of human experts. For datapoints representing
humans we could define its label y as an indicator if the person has flu (y = 1) or not
(y = 0). This label value can typically only be determined by a physician. However,
in another application we might have enough resources to determine the flu status of
any person of interest and could use it as a feature that characterizes a person.

Consider a datapoint that represents some hike, at the start of which the snapshot
in Fig. 2.2 has been taken. The features of this datapoint could be the red, green and
blue (RGB) intensities of each pixel in the snapshot in Fig. 2.2. We stack these RGB
values into a vector x ∈ R

n whose length n is three times the number of pixels in
the image. The label y associated with a datapoint (which represents a hike) could
be the expected hiking time to reach the mountain in the snapshot. Alternatively, we
could define the label y as the water temperature of the lake visible in the snapshot.

Numeric Labels (Regression). For a given ML application, the label space Y
contains all possible label values of data points. In general, the label space is not
just a set of different elements but also equipped (algebraic or geometric) structure.
To obtain efficient ML methods, we should exploit such structure. Maybe the most
prominent example for such a structured label space are the real numbers Y = R.
This label space is useful for ML applications involving data points with numeric
labels that can be modelled by real numbers. ML methods that aim at predicting a
numeric label are referred to as regression methods.

Categorical Labels (Classification). Many important ML applications involve
data points whose label indicate the category or class to which data points belongs
to. ML methods that aim at predicting such categorical labels are referred to as
classification methods. Examples for classification problems include the diagnosis
of tumours as benign or maleficent, the classification of persons into age groups or
detecting the current floor conditions (“grass”, “tiles” or “soil”) for a mower robot.

The most simple type of a classification problems is a binary classification prob-
lem. Within binary classification, each datapoint belongs to exactly one out of two
different classes. Thus, the label of a data point takes on values from a set that contains
two different elements such as {0, 1} or {−1, 1} or {shows cat, shows no cat}.

2.1 The Data 27

We speak of amulti-class classification problem if data points belong to exactly
one out of more than two categories (e.g., image categories “no cat shown” vs. “one
cat shown” and “more than one cat shown”). If there are K different categories we
might use the label values {1, 2, . . . , K }.

There are also applications where data points can belong to several categories
simultaneously. For example, an image can be cat image and a dog image at the
same time if it contains a dog and a cat. Multi-label classification problems and
methods use several labels y1, y2, . . . , for different categories to which a data point
can belong to. The label y j represents the j th category and its value is y j = 1 if the
data point belongs to the j-th category and y j = 0 if not.

Ordinal Labels. Ordinal label values are somewhat in between numeric and
categorical labels. Similar to categorical labels, ordinal labels take on values from
a finite set. Moreover, similar to numeric labels, ordinal labels take on values from
an ordered set. For an example for such an ordered label space, consider data points
representing rectangular areas of size 1 kmby1km.The features x of such a data point
can be obtained by stacking the RGB pixel values of a satellite image depicting that
area (see Fig. 2.4). Beside the feature vector, each rectangular area is characterized
by a label y ∈ {1, 2, 3} where
• y = 1 means that the area contains no trees.
• y = 2 means that the area is partially covered by trees.
• y = 3 means that the area is entirely covered by trees.

Thus we might say that label value y = 2 is “larger” than label value y = 1 and label
value y = 3 is “larger” than label value y = 2.

The distinction between regression and classification problems and methods is
somewhat blurry. Consider a binary classification problem based on data points
whose label y takes on values −1 or 1. We could turn this into a regression problem
by using a new label y′ which is defined as the confidence in the label y being
equal to 1. On the other hand, given a prediction ŷ′ for the numeric label y′ ∈ R we
can obtain a prediction ŷ for the binary label y ∈ {−1, 1} by thresholding, ŷ := 1
if ŷ′ ≥ 0 whereas ŷ := −1 otherwise. A prominent example for this link between
regression and classification is logistic regression which is discussed in Sect. 3.6.
Despite its name, logistic regression is a binary classification method.

We refer to a data point as being labeled if, besides its features x, the value of
its label y is known. The acquisition of labeled data points typically involves human
labour, such as handling a water thermometer at certain locations in a lake. In other
applications, acquiring labelsmight require sending out a teamofmarine biologists to
the Baltic sea [9], running a particle physics experiment at the European organization
for nuclear research (CERN) [10], running animal testing in pharmacology [11].

Let us also point out online market places for human labelling workforce [12].
These market places, allow to upload data points, such as collections of images or
audio recordings, and then offer an hourly rate to humans that label the datapoints.
This labeling work might amount to marking images that show a cat.

Many applications involve datapoints whose features can be determined easily,
but whose labels are known for few datapoints only. Labeled data is a scarce resource.

28 2 Components of ML

Some of the most successful ML methods have been devised in application domains
where label information can be acquired easily [13]. ML methods for speech recog-
nition and machine translation can make use of massive labeled datasets that are
freely available [14].

In the extreme case, we do not know the label of any single datapoint. Even in
the absence of any labeled data, ML methods can be useful for extracting relevant
information from features only. We refer to ML methods which do not require any
labeled datapoints as unsupervised ML methods. We discuss some of the most
important unsupervised ML methods in Chaps. 8 and 9).

As discussed next, many ML methods aim at constructing (or finding) a “good”
predictor h : X → Y which takes the features x ∈ X of a datapoint as its input and
outputs a predicted label (or output, or target) ŷ = h(x) ∈ Y . A good predictor should
be such that ŷ ≈ y, i.e., the predicted label ŷ is close (with small error ŷ − y) to the
true underlying label y.

2.1.3 Scatterplot

Consider datapoints characterized by a single numeric feature x and single numeric
label y. To gain more insight into the relation between the features and label of
a datapoint, it can be instructive to generate a scatterplot as shown in Fig. 1.2. A
scatterplot depicts the datapoints z(i) = (x (i), y(i)) in a two-dimensional plane with
the axes representing the values of feature x and label y.

The visual inspection of a scatterplot might suggest potential relationships
between feature x (minimum daytime temperature) and label y (maximum daytime
temperature). From Fig. 1.2, it seems that there might be a relation between feature
x and label y since data points with larger x tend to have larger y. This makes sense
since having a larger minimum daytime temperature typically implies also a larger
maximum daytime temperature.

To construct a scatterplot for data points with more than two features we can use
feature learning methods (see Chap. 9). These methods transform high-dimensional
datapoints, having billions of raw features, to three or two new features. These new
features can then be used as the coordinates of the datapoints in a scatterplot.

2.1.4 Probabilistic Models for Data

A powerful idea in ML is to interpret each datapoints as the realization of a random
variable (RV). For ease of exposition let us consider datapoints that are characterized
by a single feature x . The following concepts can be extended easily to datapoints
characterized by a feature vector x and a label y.

One of themost basic examples of a probabilisticmodel for datapoints inML is the
i.i.d. assumption. This assumption interprets datapoints x (1), . . . , x (m) as realizations

2.1 The Data 29

of statistically independent random variables with the same probability distribution
p(x). It might not be immediately clear why it is a good idea to interpret data
points as realizations of random variables with the common probability distribution
p(x). However, this interpretation allows us to use the properties of the probability
distribution to characterize overall properties of entire datasets, i.e., large collections
of data points.

The probability distribution p(x) underlying the data points within the i.i.d.
assumption is either known (based on some domain expertise) or estimated from
data. It is often enough to estimate only some parameters of the distribution p(x).
Section 3.12 discusses a principled approach to estimate the parameters of a probabil-
ity distribution from datapoints. This approach is sometimes referred to as maximum
likelihood and aims at finding (parameter of) a probability distribution p(x) such that
the probability (density) of actually observing the available data points is maximized
[15–17].

Two of the most basic and widely used parameters of a probability distribution
p(x) are the expected value or mean [18]

μx = E{x} :=
∫

x ′
x ′ p(x ′)dx ′

and the variance
σ 2
x := E

{(
x − E{x})2}.

These parameters can be estimated using the sample mean (average) and sample
variance,

μ̂x := (1/m)

m∑

i=1

x (i) , and

σ̂ 2
x := (1/m)

m∑

i=1

(
x (i) − μ̂x

)2
. (2.1)

The sample mean and sample variance (2.1) are the maximum likelihood estimators
for the mean and variance of a normal (Gaussian) distribution p(x) (see [19, Chap.
2.3.4]).

Most of theMLmethods discussed in this book aremotivated by the i.i.d. assump-
tion. It is important to note that this i.i.d. assumption is merely a modelling assump-
tion. There is no means to verify if an arbitrary set of data points are “exactly” real-
izations of i.i.d. random variables. However, there are principled statistical methods
(hypothesis tests) if a given set of data point can be well approximated as realiza-
tions of i.i.d. random variables [20]. The only way to ensure the i.i.d. assumption is to
generate synthetic data using a random number generator. Such synthetic i.i.d. data
points could be obtained by sampling algorithms that incrementally build a synthetic
dataset by adding randomly chosen raw data points [21].

30 2 Components of ML

Fig. 2.6 A hypothesis (predictor) h maps features x∈X , of an on-board camera snapshot, to the
prediction ŷ=h(x)∈Y for the coordinate of the current location of a cleaning robot. ML methods
use data to learn predictors h such that ŷ≈ y (with true label y)

2.2 The Model

Consider some ML application that generates data points, each characterized by
features x ∈ X and label y ∈ Y . The informal principle of most (if not every) ML
method is to learn a hypothesis map h : X → Y such that

y ≈ h(x)︸︷︷︸
ŷ

for any data point. (2.2)

The informal goal (2.2) will be made precise in several aspects throughout the rest
of our book. First, we need to quantify the approximation error (2.2) incurred by a
given hypothesis map h. Second, we need to make precise what we actually mean by
requiring (2.2) to hold for “any” data point. We solve the first issue by the concept
of a loss function in Sect. 2.3. The second issue is then solved in Chap. 4 by using a
simple probabilistic model for data.

Let us assume for the time being that we have found a reasonable hypothesis h
in the sense of (2.2). We can then use this hypothesis to predict the label of any
data point for which we know its features. The prediction ŷ = h(x) is obtained by
evaluating the hypothesis for the features x of a data point (see Fig. 2.6. and Fig. 2.7).
It seem natural to refer to a hypothesis map as a predictor map since it is used to
compute predictions for the label.

For ML problems using a finite label space Y (e..g, Y = {−1, 1}, we refer to
a hypothesis also as a classifier. For a finite Y , we can characterize a particular
classifier map h using its different decision regions

R(a) := {x ∈ R
n : h = a} ⊆ X . (2.3)

Each label valuea ∈ Y is associatedwith a specific decision regionR(a) := {x ∈ R
n :

h = a}. For a given label value a ∈ Y , the decision regionR(a) := {x ∈ R
n : h = a}

is constituted by all feature vectors x ∈ X which are mapped to this label value,
h(x) = a.

2.2 The Model 31

Table 2.1 A look-up table defines a hypothesis map h. The value h(x) is given by the entry in the
second column of the row whose first column entry is x . We can construct a hypothesis spaceH by
using a collection of different look-up tables

feature x prediction h(x)

0 0

1/10 10

2/10 3
.
.
.

.

.

.

1 22.3

In principle, ML methods could use any possible map h : X → Y to predict the
label y ∈ Y via computing ŷ = h(x). The set of all maps from the feature space X
to the label space is typically denoted as YX .1 In general, the set YX is way too
large to be search over by a practical ML methods. As a point in case, consider data
points characterized by a single numeric feature x ∈ R and label y ∈ R. The set of
all real-valued maps h(x) of a real-valued argument already contains uncountably
infinite many different hypothesis maps [22].

Practical ML methods can search and evaluate only a (tiny) subset of all possible
hypothesis maps. This subset of computationally feasible (“affordable”) hypothesis
maps is referred to as the hypothesis space or model underlying a ML method. As
depicted in Fig. 2.10, ML methods typically use a hypothesis space H that is a tiny
subset of YX . Similar to the features and labels used to characterize data points,
also the hypothesis space underlying a ML method is a design choice. As we will
see, the choice for the hypothesis space involves a trade-off between computational
complexity and statistical properties of the resulting ML methods.

The preference for a particular hypothesis space often depends on the available
computational infrastructure available to a ML method. Different computational
infrastructures favour different hypothesis spaces. ML methods implemented in a
small embedded system, might prefer a linear hypothesis space which results in algo-
rithms that require a small number of arithmetic operations. Deep learning methods
implemented in a cloud computing environment typically usemuch larger hypothesis
spaces obtained from deep neural networks.

ML methods can also be implemented using a spreadsheet software. Here, we
might use a hypothesis space consisting of maps h : X → Y that are represented by
look up tables (see Table 2.1). If we instead use the programming language Python to
implement a ML method, we can obtain a hypothesis class by collecting all possible
Python subroutines with one input (scalar feature x), one output argument (predicted
label ŷ) and consisting of less than 100 lines of code.

1 The notation YX is to be understood as a symbolic shorthand and should not be understood
literately as a power such as 45.

32 2 Components of ML

Broadly speaking, the design choice for the hypothesis spaceH of a ML method
has to balance between two conflicting requirements.

• It has to be sufficiently large such that it contains at least one accurate predictor
map ĥ ∈ H. A hypothesis spaceH that is too small might fail to include a predictor
map required to reproduce the (potentially highly non-linear) relation between
features and label.
Consider the task of grouping or classifying images into “cat” images and “no
cat image”. The classification of each image is based solely on the feature vector
obtained from the pixel colour intensities. The relation between features and label
(y ∈ {cat, no cat}) is highly non-linear. Any ML method that uses a hypothesis
space consisting only of linear maps will most likely fail to learn a good predictor
(classifier). We say that a ML method is underfitting if it uses a hypothesis space
that does not contain any hypotheses maps that can accurately predict the label of
any data points.

• It has to be sufficiently small such that its processing fits the available com-
putational resources (memory, bandwidth, processing time). We must be able to
efficiently search over the hypothesis space to find good predictors (see Sect. 2.3
and Chap. 4). This requirement implies also that the maps h(x) contained in H
can be evaluated (computed) efficiently [23]. Another important reason for using a
hypothesis spaceH that is not too large is to avoid overfitting (see Chap. 7). If the
hypothesis spaceH is too large, then just by luck wemight find a hypothesis which
(almost) perfectly predicts the labels of data points in a training set which is used
to learn a hypothesis. However, such a hypothesis might deliver poor predictions
for labels of data points outside the training set. We say that the hypothesis does
not generalize well.

2.2.1 Parametrized Hypothesis spaces

Awide range of current scientific computing environments allow for efficient numer-
ical linear algebra. This hard and software allows to efficiently process data that is
provided in the form of numeric arrays such as vectors, matrices or tensors [24].
To take advantage of such computational infrastructure, many ML methods use the
hypothesis space

H(n) :={h(w) :Rn →R :h(w)(x)=xTw with some weight vector w∈R
n}. (2.4)

The hypothesis space (2.4) is constituted by linear maps (functions)

h(w)
(
x
) : Rn → R : x 	→ wT x. (2.5)

The function h(w) (2.5) maps, in a linear fashion, the feature vector x ∈ R
n to the

predicted label (or output) h(w)(x) = xTw ∈ R. For n=1 the feature vector reduces

2.2 The Model 33

Fig. 2.7 A hypothesis h : X → Y takes the feature vector x(t) ∈ X (e.g., representing the snapshot
taken by Rumba at time t) as input and outputs a predicted label ŷ(t) = h(x(t)) (e.g., the predicted
y-coordinate of Rumba at time t). A key problem studied within ML is how to automatically learn
a good (accurate) predictor h such that y(t) ≈ h(x(t))

1

1 h(1)(x)=x

h(0.2)(x)=0.2x

h(0.7)(x)=0.7x

feature x

h(w)(x)

Fig. 2.8 Three particular members of the hypothesis spaceH = {h(w) : R → R, h(w)(x) = w · x}
which consists of all linear functions of the scalar feature x . We can parametrize this hypothesis
space conveniently using the weight w ∈ R as h(w)(x) = w · x

a single feature x and the hypothesis space (2.4) consists of all maps h(w)(x) = wx
with some weight w ∈ R (see Fig. 2.8).

The elements of the hypothesis spaceH in (2.4) are parameterized by the weight
vector w ∈ R

n . Each map h(w) ∈ H is fully specified by the weight vector w ∈ R
n .

This parametrization of the hypothesis space H allows to process and manipulate
hypothesis maps by vector operations. In particular, instead of searching over the
function space H (its elements are functions!) to find a good hypothesis, we can
equivalently search over all possible weight vectors w ∈ R

n .
The search space Rn is still (uncountably) infinite but it has a rich geometric and

algebraic structure that allows us to efficiently search over this space. Chapter 5
discusses methods that use the concept of gradients to implement an efficient search
for good weights w ∈ R

n .

34 2 Components of ML

h(x) < 0, ŷ = −1

decision boundary

h(x) ≥ 0, ŷ = 1

w

Fig. 2.9 A hypothesis h : X →Y for a binary classification problem, with label spaceY = {−1, 1}
and feature spaceX = R

2, can be represented conveniently via the decision boundary (dashed line)
which separates all feature vectors xwith h(x) ≥ 0 from the region of feature vectors with h(x) < 0.
If the decision boundary is a hyperplane {x : wT x = b} (with normal vector w ∈ R

n), we refer to
the map h as a linear classifier

The hypothesis space (2.4) is also appealing because of the broad availability
of computing hardware such as graphic processing units. Another factor boosting
the widespread use of (2.4) might be the offer for optimized software libraries for
numerical linear algebra.

The hypothesis space (2.4) can also be used for classification problems, e.g., with
label space Y = {−1, 1}. Indeed, given a linear predictor map h(w) we can classify
data points according to ŷ=1 for h(w)(x) ≥ 0 and ŷ=−1 otherwise. We refer to
a classifier that computes the predicted label by first applying a linear map to the
features as a linear classifier.

Figure 2.9 illustrates the decision regions (2.3) of a linear classifier for binary
labels. The decision regions are half-spaces and, in turn, the decision boundary is a
hyperplane {x : wT x = b}. Note that each linear classifier corresponds to a particular
linear hypothesis map from the hypothesis space (2.4). However, we can use differ-
ent loss functions to measure the quality of a linear classifier. Three widely-used
examples for ML methods that learn a linear classifier are logistic regression (see
Sect. 3.6), the support vector machine (see Sect. 3.7) and the naive Bayes classifier
(see Sect. 3.8).

In some application domains, the relation between features x and label y of a data
point is highly non-linear. As a case in point, consider data points representing images
of animals. The map that relates the pixel intensities of image to the label indicating
if it is a cat image is highly non-linear. For such applications, the hypothesis space
(2.4) is not suitable as it only contains linear maps. The second main example for a
parametrized hypothesis space studied in this book also contains non-linear maps.
This parametrized hypothesis space is obtained from a parametrized signal flow
diagram which is referred to as an artificial neural network. Section 3.11 will discuss
the construction of non-linear parametrized hypothesis spaces using an artificial
neural network.

2.2 The Model 35

Upgrading a Hypothesis Space via Feature Maps. Let us discuss a simple but
powerful technique for enlarging (“upgrading”) a given hypothesis space H to a
larger hypothesis space H′ ⊇ H that offers a wider selection of hypothesis maps.
The idea is to replace the original features x of a data point with new (transformed)
features z = �(x). The transformed features are obtained by applying a feature map
�(·) ot the original features x. This upgraded hypothesis space H′ consists of all
concatenations of the feature map � and some hypothesis h ∈ H,

H′ := {
h′(·) : x 	→ h

(
�(x)

) : h ∈ H}
. (2.6)

The construction (2.6) used for arbitrary combinations of a feature map �(·) and a
“base” hypothesis spaceH. The only requirement is that the output of the featuremap
can be used as input for a hypothesis h ∈ H. More formally, the range of the feature
mapmust belong to the domain of the maps inH. Examples forMLmethods that use
a hypothesis space of the form (2.6) include polynomial regression (see Sect. 3.2),
Gaussian basis regression (see Sect. 3.5) and the important family of kernal methods
(see Sect. 3.9). The feature map in (2.6) might also be obtained from clustering or
feature learning methods (see Sects. 8.4 and 9.2.1).

For the special case of the linear hypothesis space (2.4), the resulting enlarged
hypothesis space (2.6) is given by all linear maps wT z of the transformed features
�(x). Combining the hypothesis space (2.4) with a non-linear feature map results in
a hypothesis space that contains non-linear maps from the original feature vector x
to the predicted label ŷ,

ŷ = wT z = wT�(x). (2.7)

Non-Numeric Features. The hypothesis space (2.4) can only be used for data-
points whose features are numeric vectors x = (x1, . . . , xn)T ∈ R

n . In some applica-
tion domains, such as natural language processing, there is no obvious natural choice
for numeric features.However, sinceMLmethods based on the hypothesis space (2.4)
are well developed (using numerical linear algebra), it might be useful to construct
numerical features even for non-numeric data (such as text). For text data, there has
been significant progress recently on methods that map a human-generated text into
sequences of vectors (see [25, Chap. 12] for more details). Moreover, Sect. 9.3 will
discuss an approach to generate numeric features for data points that have an intrinsic
notion of similarity.

2.2.2 The Size of a Hypothesis Space

The notion of a hypothesis space being too small or being too large can be made
precise in different ways. The size of a finite hypothesis space H can be defined as
its cardinality |H|which is simply the number of its elements. For example, consider
datapoints represented by 100 × 10=1000 black-and-white pixels and characterized
by a binary label y ∈ {0, 1}. We can model such datapoints using the feature space

36 2 Components of ML

X = {0, 1}1000 and label space Y = {0, 1}. The largest possible hypothesis space
H = YX consists of all maps from X to Y . The size or cardinality of this space is
|H| = 22

1000
.

ManyMLmethods use a hypothesis spacewhich contains infinitelymanydifferent
predictor maps (see, e.g., (2.4)). For an infinite hypothesis space, we cannot use the
number of its elements as a measure for its size. Indeed, for an infinite hypothesis
space, the number of elements is not well-defined. Therefore, we measure the size
of a hypothesis space H using its effective dimension deff (H).

Consider a hypothesis space H consisting of maps h : X → Y that read in the
features x ∈ X and output an predicted label ŷ = h(x) ∈ Y . We define the effective
dimension deff (H) of H as the maximum number D ∈ N such that for any set D ={(
x(1), y(1)

)
, . . . ,

(
x(D), y(D)

)} of D data pointswith different features,we can always
find a hypothesis h ∈ H that perfectly fits the labels, y(i) = h

(
x(i)

)
for i = 1, . . . , D.

The effective dimension of a hypothesis space is closely related to the Vapnik–
Chervonenkis (VC) dimension [26]. The Vapnik–Chervonenkis (VC) dimension is
maybe the most widely used concept for measuring the size of infinite hypothe-
sis spaces [19, 26–28]. However, the precise definition of the Vapnik–Chervonenkis
(VC) dimension are beyond the scope of this book.Moreover, the effective dimension
captures most of the relevant properties of the Vapnik–Chervonenkis (VC) dimen-
sion for our purposes. For a precise definition of the Vapnik–Chervonenkis (VC)
dimension and discussion of its applications in ML we refer to [27].

Let us illustrate our concept for the size of a hypothesis space with two examples:
linear regression and polynomial regression. Linear regression uses the hypothesis
space

H(n) = {h : Rn → R : h(x) = wT x with some vector w ∈ R
n}.

Consider a dataset D = {(x(1), y(1)
)
, . . . ,

(
x(m), y(m)

)} consisting of m data points.
We refer to this number also as the sample size of the dataset. Each data point is
characterized by a feature vector x(i) ∈ R

n and a numeric label y(i) ∈ R.
Let us assume that data points are realizations of realizations of continuous i.i.d.

random variables with a common probability density function. Under this assump-
tion, the matrix

X = (
x(1), . . . , x(m)

) ∈ R
n×m,

which is obtained by stacking (column-wise) the feature vectors x(i) (for i =
1, . . . ,m), is full rank with probability one. Basic results of linear algebra allow
to show that the data points in D can be perfectly fit by a linear map h ∈ H(n) as
long as m ≤ n. As soon as the number m of data points is not strictly larger than
the number of features characterizing each data point, i.e., m ≤ n, we can find (with
probability one) a weight vector ŵ such that y(i) = ŵT x(i) for all i = 1, . . . ,m. The
effective dimension of the linear hypothesis space H(n) is therefore D = n.

As a second example, consider the hypothesis spaceH(n)
poly which is constituted by

the set of polynomials with maximum degree n. The fundamental theorem of algebra
tells us that any set of m data points with different features can be perfectly fit by
a polynomial of degree n as long as n ≥ m. Therefore, the effective dimension of

2.2 The Model 37

YX

H

Fig. 2.10 The hypothesis space H is a (typically very small) subset of the (typically very large)
set YX of all possible maps from feature space X into the label space Y

the hypothesis spaceH(n)
poly is D = n. Section 3.2 discusses polynomial regression in

more detail.

2.3 The Loss

Every ML method uses a (more of less explicit) hypothesis space H which consists
of all computationally feasible predictor maps h. Which predictor map h out of
all the maps in the hypothesis space H is the best for the ML problem at hand? To
answer this questions, ML methods use the concept of a loss function. Formally, a
loss function is a map

L : X × Y × H → R+ : ((
x, y

)
, h

) 	→ L((x, y), h)

which assigns a pair consisting of a data point, with features x and label y, and a
hypothesis h ∈ H the non-negative real number L((x, y), h).

hypothesis h

L((x, y), h)

Fig. 2.11 Some loss function L((x, y), h) for a fixed data point, with features x and label y, and
varying hypothesis h. ML methods try to find (learn) a hypothesis that incurs minimum loss

38 2 Components of ML

The loss value L((x, y), h) quantifies the discrepancy between the true label y
and the predicted label h(x). A small (close to zero) value L((x, y), h) indicates a
low discrepancy between predicted label and true label of a data point. Figure 2.11
depicts a loss function for a given data point, with features x and label y, as a function
of the hypothesis h ∈ H. The basic principle of ML methods can then be formulated
as: Learn (find) a hypothesis out of a given hypothesis spaceH that incurs aminimum
loss L((x, y), h) for any data point (see Chap. 4).

Much like the choice for the hypothesis space H used in a ML method, also
the loss function is a design choice. We will discuss some widely used examples
for loss function in Sects. 2.3.1 and 2.3.2. The choice for the loss function should
take into account the computational complexity of searching the hypothesis space
for a hypothesis with minimum loss. Consider a ML method that uses a hypothesis
space parametrized by a weight vector and a loss function that is a convex and
differentiable (smooth) function of the weight vector. In this case, searching for a
hypothesis with small loss can be done efficiently using the gradient-based methods
discussed in Chap. 5. The minimization of a loss function that is either non-convex
or non-differentiable is typically computationally much more difficult. Section 4.2
discusses the computational complexities of different types of loss functions in more
detail.

Beside computational aspects, the choice of loss function should also take into
account statistical aspects. Some loss functions result in ML methods that are more
robust against outliers (see Sects. 3.3 and 3.7). The choice of loss function might
also be guided by probabilistic models for the data generated in an ML application.
Section 3.12 details how the maximum likelihood principle of statistical inference
provides an explicit construction of loss functions in terms of an (assumed) proba-
bility distribution for data points.

The choice for the loss function used to evaluate the quality of a hypothesis might
also be influenced by its interpretability. Section 2.3.2 discusses loss functions for
hypotheses that are used to classify data points into two categories. It seems natural to
measure the quality of such a hypothesis by the average number of wrongly classified
data points, which is precisely the average 0/1 loss (2.9) (see Sect. 2.3.2). Thus, the
average 0/1 loss can be interpreted as a misclassification (or error) rate. However,
using the average 0/1 loss to learn an accurate hypothesis results in computationally
challenging problems. Section 2.3.2 introduces the logistic loss as a computationally
attractive alternative choice for the loss function in binary classification problems.

The above aspects (computation, statistic, interpretability) result typically in con-
flicting goals for the choice of a loss function. A loss function that has favourable
statistical properties might incur a high computational complexity of the resulting
ML method. Loss functions that result in computationally efficient ML methods
might not allow for an easy interpretation (what does it mean if the logistic loss of a
hypothesis in a binary classification problem is 10−1?). It might therefore be useful
to use different loss functions for the search of a good hypothesis (see Chap. 4) and
for its final evaluation. Figure 2.12 depicts an example for two such loss functions,
one of them used for learning a hypothesis by minimizing the loss and the other one
used for the final performance evaluation.

2.3 The Loss 39

hypothesis h

loss for learning a good h

loss (metric) for final evaluation

Fig. 2.12 Two different loss functions for a given data point and varying hypothesis h. One loss
function (solid curve) is used to learn a good hypothesis by minimizing the loss. Another loss
function (dashed curve) is used for the final performance evaluation of the learnt hypothesis. The
loss function used for the final performance evaluation is referred to as a metric

For example, in a binary classification problem, we might use the logistic loss to
search for (learn) an accurate hypothesis using the optimization methods in Chap.
4. The logistic loss is appealing for this purpose as it allows to efficient gradient-
basedmethods (see Chap. 5) to search for an accurate hypothesis. After having found
(learnt) an accurate hypothesis, we use the average 0/1 loss for the final performance
evaluation. The 0/1 loss is appealing for this purpose as it can be interpreted as
an error or misclassification rate. The loss function used for the final performance
evaluation of a learnt hypothesis is sometimes referred to as metric.

2.3.1 Loss Functions for Numeric Labels

ForMLproblems involving data points with numeric labels y ∈ R, i.e., for regression
problems (see Sect. 2.1.2), a widely used (first) choice for the loss function can be
the squared error loss

L((x, y), h) := (
y − h(x)︸︷︷︸

=ŷ

)2
. (2.8)

The squared error loss (2.8) depends on the features x only via the predicted label
value ŷ = h(x). We can evaluate the squared error loss solely using the prediction
h(x) and the true label value y. Besides the prediction h(x), no other properties of
the features x are required to determine the squared error loss. We will slightly abuse
notation and use the shorthand L(y, ŷ) for any loss function that depends on the
features x only via the predicted label ŷ = h(x). Figure 2.13 depicts the squared
error loss as a function of the prediction error y − ŷ.

The squared error loss (2.8) has appealing computational and statistical proper-
ties. For linear predictor maps h(x) = wT x, the squared error loss is a convex and

40 2 Components of ML

−2 −1 1 2

1

2

prediction error y − h(x)

squared error loss L

Fig. 2.13 A widely used choice for the loss function in regression problems (with data points
having numeric labels) is the squared error loss (2.8). Note that, for a given hypothesis h, we can
evaluate the squared error loss only if we know the features x and the label y of the data point

differentiable function of the weight vector w. This allows, in turn, to efficiently
search for the optimal linear predictor using efficient iterative optimization methods
(see Chap. 5). The squared error loss also has a useful interpretation in terms of a
probabilistic model for the features and labels. Minimizing the squared error loss is
equivalent to maximum likelihood estimation within a linear Gaussian model [28,
Sect. 2.6.3].

Another loss function used in regression problems is the absolute error loss
|ŷ − y|. Using this loss function to guide the learning of a predictor results in meth-
ods that are robust against few outliers in the training set (see Sect. 3.3). However,
this improved robustness comes at the expense of increased computational com-
plexity of minimizing the (non-differentiable) absolute error loss compared to the
(differentiable) squared error loss (2.8).

2.3.2 Loss Functions for Categorical Labels

Classification problems involve data points whose labels take on values from a dis-
crete label space Y . In what follows, unless stated otherwise, we focus on binary
classification problems. Moreover, without loss of generality we assume that labels
values are Y = {−1, 1}. Classification methods aim at learning a classifier that maps
the features x of a data point to a predicted label ŷ ∈ Y .

We implement a classifier by thresholding the value h(x) ∈ R of a hypothesis
that can deliver arbitrary real numbers. We then classify a data point as ŷ = 1 if
h(x) > 0 and ŷ = −1 otherwise. Thus, the predicted label is obtained from the sign
of the value h(x). While the sign of h(x) determines the classification result, i.e.,
the predicted label ŷ, we interpret the absolute value |h(x)| as the confidence in this
classification.

2.3 The Loss 41

(1,−1)
(2,−1)

(5, 1) (x=7, y=1)

feature x

predictor h(2)(x) = 2(x−3)

predictor h(1)(x) = 1

label y

Fig. 2.14 A training set consisting of four data points with binary labels ŷ(i) ∈ {−1, 1}.Minimizing
the squared error loss (2.8) would prefer the (poor) classifier h(1) over the (reasonable) classifier
h(2)

In principle, we can measure the quality of a hypothesis when used to classify
data points using the squared error loss (2.8). However, the squared error is typically
a poor measure for the quality of a hypothesis h(x) that is used to classify a data point
with binary label y ∈ {−1, 1}. Figure 2.14 illustrates how the squared error loss of a
hypothesis can be misleading in a binary classification problem.

Figure 2.14 depicts a dataset consisting of m = 4 data points with binary labels
y(i) ∈ {−1, 1}, for i = 1, . . . ,m. The figure also depicts two candidate hypotheses
h(1)(x) and h(2)(x) that can be used for classifying data points. The classifications
ŷ obtained with the hypothesis h(2)(x) would perfectly match the labels of the four
training data points since h(2)

(
x (i)

) ≥ 0 if and if only if y(i) = 1. In contrast, the
classifications ŷ(i) obtained by thresholding h(1)(x) are wrong for data points with
y = −1. Thus, based on the training data, we would prefer using h(2)(x) over h(1)

to classify data points. However, the squared error loss incurred by the (reasonable)
classifier h(2) is much larger than the squared error loss incurred by the (poor) clas-
sifier h(1). The squared error loss is typically a bad choice for assessing the quality
of a hypothesis map that is used for classifying data points into different categories.

Generally speaking, we want the loss function to punish (deliver large values
for) a hypothesis that is very confident (|h(x)| is large) in a wrong classification
(ŷ �= y). Moreover, a good loss function should not punish (deliver small values for)
a hypothesis is very confident (|h(x)| is large) in a correct classification (ŷ = y).
However, by its very definition, the squared loss yields large values if the confidence
|h(x)| is large, no matter if the resulting classification is correct or wrong.

We now discuss some loss functions which have proven useful for assessing
the quality of a hypothesis used to classify data points. Unless noted otherwise, the
formulas for these loss functions are valid only if the label values are the real numbers
−1 and 1, i.e., when the label space isY = {−1, 1}. These formulas need to modified
accordingly if one prefers to use different label values for a binary classification

42 2 Components of ML

problem. For example, instead of the label space Y = {−1, 1}, we could equally
well use the label space Y = {0, 1}, or Y = {�,} or Y = { “Class 1”, “Class 2”}.

The first loss function that we discuss is direct formalization of the natural require-
ment for a hypothesis to result on correct classifications, i.e., ŷ = y for any data point.
This suggests to learn a hypothesis h(x) by minimizing the 0/1 loss

L((x, y), h) :=
{
1 if y �= ŷ

0 else,
with ŷ = 1 for h(x) ≥ 0, and ŷ = −1 for h(x) < 0.

(2.9)
Figure 2.15 illustrates the 0/1 loss (2.9) for a data point with features x and label
y=1 as a function of the hypothesis value h(x). The 0/1 loss is equal to zero if the
hypothesis yields a correct classification ŷ = y. For a wrong classification ŷ �= y,
the 0/1 loss yields the value one.

The 0/1 loss (2.9) is conceptually appealing when data points are interpreted as
realizations of i.i.d. random variables with the same probability distribution p(x, y).
Given m realizations (x(i), y(i))

}m
i=1 of such i.i.d. random variables,

(1/m)

m∑

i=1

L((x(i), y(i)), h) ≈ p(y �= ŷ) (2.10)

with high probability for sufficiently large sample size m. A precise formulation of
the approximation (2.10) can be obtained from the law of large numbers [18, Section
1]. We can apply the law of large numbers since the loss values L((x(i), y(i)), h) are
realizations of i.i.d. random variables. The average 0/1 loss on the left-hand side of
(2.10) is referred to as the accuracy of the hypothesis h.

In view of (2.10), the 0/1 loss seems a very natural choice for assessing the
quality of a classifier if our goal is to enforce correct classification (ŷ = y). This
appealing statistical property of the 0/1 loss comes at the cost of high computational
complexity. Indeed, for a given data point (x, y), the 0/1 loss (2.9) is neither convex
nor differentiable when viewed as a function of the classifier h. Thus, using the
0/1 loss for binary classification problems typically involves advanced optimization
methods for solving the resulting learning problem (see Sect. 3.8).

To avoid the non-convexity of the 0/1 loss we can approximate it by a convex
loss function. One popular convex approximation of the 0/1 loss is the hinge loss

L((x, y), h) := max{0, 1 − y · h(x)}. (2.11)

Figure 2.15 depicts the hinge loss (2.11) as a function of the hypothesis h(x). While
the hinge loss avoids the non-convexity of the 0/1 loss it still is a non-differentiable
function of the classifier h. Non-differentiable loss functions are typically harder
to minimize, implying a higher computational complexity of the ML method using
such a loss.

Section 3.6 discusses the logistic loss which is a differentiable loss function that
is useful for classification problems. The logistic loss

2.3 The Loss 43

−2 −1 1 2

1

2

hypothesis h(x)

loss L

very confident in ŷ=1 ⇒

logistic loss (for y=1)

squared error (for y=1)

hinge loss (for y=1)

0/1 loss (for y=1)

⇐ very confident in ŷ=−1

Fig. 2.15 The solid curves depict three widely-used loss functions for binary classification prob-
lems. A data point is classified as ŷ = 1 if h(x) ≥ 0 and classified as ŷ = −1 if h(x) < 0. We can
interpret the absolute value |h(x)| as the confidence in the classification. The more confident we are
in a correct classification (ŷ=1), i.e., the more positive h(x), the smaller the loss. Note that each of
the three loss functions for binary classification tends monotonically to 0 for increasing h(x). The
dashed curve depicts the squared error loss (2.8), which increases for increasing h(x)

L((x, y), h) := log(1 + exp(−yh(x))), (2.12)

is used within logistic regression to measure the usefulness of a linear hypothesis
h(x) = wT x.

Consider a specific data point with the feature vector x ∈ R
n and a binary label

y ∈ {−1, 1}. We use a linear hypothesis h(w)(x) = wT x, with some weight vector
w ∈ R

n , to predict the label based on the features x according to ŷ = 1 if h(w)(x) =
wT x > 0 and ŷ = −1 otherwise. Then, both the hinge loss (2.11) and the logistic loss
(2.12) are convex functions of the weight vector w ∈ R

n . The logistic loss (2.12)
depends smoothly on w. It is a differentiable function in the sense of allowing to
define a gradient with respect to w. In contrast, the hinge loss (2.11) is nonsmooth
which makes it more difficult to minimize [29, Chap. 3].

ML methods that use the convex and differentiable logistic loss function, such
as logistic regression in Sect. 3.6, can apply simple gradient-based methods such
as gradient descent (GD) to minimize the average loss (see Chap. 5). In contrast,
we cannot use gradient-based methods to minimize the hinge loss since it is not
differentiable. However, we can apply a generalization of GD which is known as
subgradient descent [30] Subgradient descent is obtained from GD by generalizing
the concept of a gradient to that of a subgradient.

2.3.3 Loss Functions for Ordinal Label Values

There are also loss functions particularly suited for predicting ordinal label values
(see Sect. 2.1). Consider data points representing areal images of rectangular areas
of size 1 km by 1 km. We characterize each data point (rectangular area) by the

44 2 Components of ML

feature vector x obtained by stacking the RGB values of each image pixel (see
Fig. 2.4). Beside the feature vector, each rectangular area is characterized by a label
y ∈ {1, 2, 3} where
• y = 1 means that the area contains no trees.
• y = 2 means that the area is partially covered by trees.
• y = 3 means that the area is entirely covered by trees.

Thus we might say that label value y = 2 is “larger” than label value y = 1 and label
value y = 3 is “larger” than label value y = 2. It might be useful to take the ordering
of label values into account when evaluating the quality of the predictions obtained
by a hypothesis h(x).

Consider a data point with feature vector x and label y = 1 as well as two dif-
ferent hypotheses h(a), h(b) ∈ H. The hypothesis h(a) delivers the predicted label
ŷ(a) = h(a)(x) = 2, while the other hypothesis h(b) delivers the predicted label
ŷ(a) = h(a)(x) = 3. Both predictions are wrong, since they are different from the
true label value y = 1. It seems reasonable to consider the prediction ŷ(a) to be less
wrong than the prediction ŷ(b) and therefore we would prefer the hypothesis h(a)

over h(b). However, the 0/1 loss is the same for h(a) and h(b) and therefore does not
reflect our preference for h(a). We need to modify (or tailor) the 0/1 loss to take into
account the application-specific ordering of label values. For the above application,
we might define a loss function via

L((x, y), h) :=

⎧
⎪⎨

⎪⎩

0 , when y = h(x)
10 , when |y − h(x)| = 1

100 otherwise.

(2.13)

2.3.4 Empirical Risk

The basic idea of ML methods (including those discussed in Chap. 3) is to find
(or learn) a hypothesis (out of a given hypothesis space H) that incurs minimum
loss when applied to arbitrary data points. To make this informal goal precise we
need to specify what we mean by “arbitrary data point”. One of the most successful
approaches to define the notion of “arbitrary data point” is by probabilistic models
for the observed data points.

The most basic and widely-used probabilistic model interprets data points(
x(i), y(i)

)
as realizations of i.i.d. random variables with a common probability dis-

tribution p(x, y). Given such a probabilistic model, it seems natural to measure the
quality of a hypothesis by the expected loss or Bayes risk [15]

E
{
L((x, y), h)} :=

∫

x,y
L((x, y), h)dp(x, y). (2.14)

2.3 The Loss 45

The Bayes risk is the expected value of the loss L((x, y), h) incurred when applying
the hypothesis h to (the realization of) a random data point with features x and label
y. Note that the computation of the Bayes risk (2.15) requires the joint probability
distribution p(x, y) of the (random) features and label of data points.

The Bayes risk seems to be reasonable performance measure for a hypothesis
h. Indeed, the Bayes risk of a hypothesis is small only if the hypothesis incurs a
small loss on average for data points drawn from the probability distribution p(x, y).
However, it might be challenging to verify if the data points generated in a particular
application domain can be accurately modelled as realizations (draws) from a prob-
ability distribution p(x, y). Moreover, it is also often the case that we do not know
the correct probability distribution p(x, y).

Let us assume for the moment, that data points are generated as i.i.d. realizations
of a common probability distribution p(x, y) which is known. It seems reasonable
to learn a hypothesis h∗ that incurs minimum Bayes risk,

E
{
L((x, y), h∗)} := min

h∈H
E

{
L((x, y), h)}. (2.15)

A hypothesis that solves (2.15), i.e., that achieves the minimum possible Bayes
risk, is referred to as a Bayes estimator [15, Chap. 4]. The main computational
challenge for learning the optimal hypothesis is the efficient (numerical) solution of
the optimization problem (2.15). Efficientmethods to solve the optimization problem
(2.15) are studied within estimation theory [15, 31].

The focus of this book is on ML methods which do not require knowledge of the
underlying probability distribution p(x, y). One of themost widely used principle for
theseMLmethods is to approximate the Bayes risk by an empirical (sample) average
over a finite set of labeled data D = (

x(1), y(1)
)
, . . . ,

(
x(m), y(m)

)
. In particular, we

define the empirical risk of a hypothesis h ∈ H for a dataset D as

L̂(h|D) = (1/m)

m∑

i=1

L((x(i), y(i)), h). (2.16)

The empirical risk of the hypothesis h ∈ H is the average loss on the data points inD.
To ease notational burden, we use L̂(h) as a shorthand for L̂(h|D) if the underlying
datasetD is clear from the context. Note that in general the empirical risk depends on
both, the hypothesis h and the (features and labels of the) data points in the datasetD.

If the data points used to compute the empirical risk (2.16) are (can be modelled
as) realizations of i.i.d. random variables whose common distribution is p(x, y),
basic results of probability theory tell us that

E
{
L((x, y), h)} ≈ (1/m)

m∑

i=1

L((x(i), y(i)), h) for sufficiently large sample size m.

(2.17)

46 2 Components of ML

The approximation error in (2.17) can be quantified precisely by some of the most
basic results of probability theory. These results are referred to as the law of large
numbers.

Many (if not most) ML methods are motivated by (2.17) which suggests that a
hypothesis with small empirical risk (2.16) will also result in a small expected loss.
The minimum possible expected loss is achieved by the Bayes estimator of the label
y, given the features x. However, to actually compute the optimal estimator wewould
need to know the (joint) probability distribution p(x, y) of features x and label y.

2.3.4.1 Confusion Matrix

Consider a datasetD with data points characterized by feature vectors x(i) and labels
y(i) ∈ {1, . . . , k}. We might interpret the label value of a data point as the index
of a category or class to which the data point belongs to. Multi-class classification
problems aim at learning a hypothesis h such that h(x) ≈ y for any data point.

In principle, we could measure the quality of a given hypothesis h by the average
0/1 loss incurred on the labeled data points in (the training set) D. However, if
the dataset D contains mostly data points with one specific label value, the average
0/1 loss might obscure the performance of h for data points having one of the rare
label values. Indeed, even if the average 0/1 loss is very small, the hypothesis might
perform poorly for data points of a minority category.

The confusion matrix generalizes the concept of the 0/1 loss to application
domains where the relative frequency (fraction) of data points with a specific label
value varies significantly (imbalanced data). Instead of considering only the average
0/1 loss incurred by a hypothesis on a dataset D, we use a whole family of loss
functions. In particular, for each pair of label values p, q ∈ {1, . . . , k}, we define the
loss

L(p→q)
((
x, y

)
, h

) :=
{
1 if y = p and h(x) = q

0 otherwise.
(2.18)

We then compute the average loss (2.18) incurred on the dataset D,

L̂(p→q)(h|D) := (1/m)

m∑

i=1

L(p→q)
(
(x(i), y(i)), h

)
for p, q ∈ {1, . . . , k}. (2.19)

It is convenient to arrange the values (2.19) as a matrix which is referred to as
a confusion matrix. The rows of a confusion matrix correspond to different label
values p of data points. The columns of a confusion matrix correspond to different
values q delivered by the hypothesis h(x). The (p, q)-th entry of the confusionmatrix
is L̂(p→q)(h|D).

2.3 The Loss 47

2.3.4.2 Precision, Recall and F-Measure

Consider an object detection application where data points represent images. The
label of data points might indicate the presence (y = 1)or absence (y = −1) of an
object, it is then customary to define the [32]

recall := L̂(1→1)(h|D), and the precision := L̂(1→1)(h|D)

L̂(1→1)(h|D) + L̂(−1→1)(h|D)
.

(2.20)
Clearly, we would like to find a hypothesis with both, large recall and large precision.
However, these two goals are typically conflicting, a hypothesis with a high recall
will have small precision. Depending on the application, we might prefer having a
high recall and tolerate a lower precision.

It might be convenient to combine the recall and precision of a hypothesis into a
single quantity,

F1 := 2 · precision · recall
precision + recall

(2.21)

The F measure (2.21) is the harmonic mean [33] of the precision and recall of a
hypothesis h. It is a special case of the Fβ-score

Fβ := (
1 + β2

) · precision · recall
β2precision + recall

. (2.22)

The F measure (2.21) is obtained from (2.22) for the choice β = 1. It is therefore
customary to refer to (2.21) as the F1-score of a hypothesis h.

2.3.5 Regret

In someMLapplications,wemight have access to the predictions obtained fromsome
referencemethods or experts. The quality of a hypothesis h can then bemeasured via
the difference between the loss incurred by its predictions h(x) and the loss incurred
by the predictions of the experts [34]. This difference, which is referred to as the
regret, measures by how much we regret to have used the prediction h(x) instead of
using (following) the prediction of the expert. The goal of regret minimization is to
learn a hypothesis with a small regret compared to all considered experts.

The concept of regret minimization is useful whenwe do not make any probabilis-
tic assumptions (see Sect. 2.1.4) about the data. Without a probabilistic model we
cannot use the Bayes risk, which is the risk of the Bayes estimator, as a benchmark.

Regret minimization techniques can be designed and analyzed without any such
probabilistic model for the data [35]. This approach replaces the Bayes risk with the
regret relative to given reference predictors (experts) as the benchmark.

48 2 Components of ML

2.3.6 Rewards as Partial Feedback

Some applications involve data points whose labels are so difficult or costly to deter-
mine that we cannot assume to have any labeled data available. Without any labeled
data, we cannot evaluate the loss function for different choices for the hypothesis.
Indeed, the evaluation of the loss function typically amounts to measuring the dis-
tance between predicted label and true label of a data point. Instead of evaluating a
loss function, we must rely on some indirect feedback or “reward” that indicates the
usefulness of a particular prediction [35, 36].

Consider the ML problem of predicting the optimal steering directions for an
autonomous car. The prediction has to be recalculated for each new state of the
car. ML methods can sense the state via a feature vector x whose entries are pixel
intensities of a snapshot. The goal is to learn a hypothesis map from the feature vector
x to a guess ŷ = h(x) for the optimal steering direction y (true label). Unless the
car circles around in small area with fixed obstacles, we have no access to labeled
datapoints or reference driving scenes for which we already know the optimum
steering direction. Instead, the car (control unit) needs to learn the hypothesis h(x)
based solely on the feedback signals obtained from various sensing devices (cameras,
distance sensors).

2.4 Putting Together the Pieces

The main theme of the book is that ML methods are obtained by different combi-
nations of data, model and loss. We will discuss some key principles behind these
combinates in depth in the following chapters. Let us develop some intuition for
how ML methods operate by considering a very simple ML problem. This problem
involves data points that are characterized by a single numeric feature x ∈ R and a
numeric label y ∈ R. We assume to have access to m labeled datapoints

(
x (1), y(1)

)
, . . . ,

(
x (m), y(m)

)
(2.23)

for which we know the true label values y(i).
The assumption of knowing the exact true label values y(i) for any data point

is an idealization. We might often face labelling or measurement errors such that
the observed labels are noisy versions of the true label. Later on, we will discuss
techniques that allow ML methods to cope with noisy labels in Chap. 7.

Our goal is to learn a (hypothesis) map h : R → R such that h(x) ≈ y for any
data point. In other words, given any datapoint with feature x , the function value
h(x) should be an accurate approximation of its label value y. We require the map
to belong to the hypothesis spaceH of linear maps,

h(w0,w1)(x) = w1x + w0. (2.24)

2.4 Putting Together the Pieces 49

Fig. 2.16 We can evaluate
the quality of a particular
predictor h ∈ H by
measuring the prediction
error y − h(x) obtained for a
labeled datapoint (x, y)

The predictor (2.24) is parameterized by the slope w1 and the intercept (bias
or offset) w0. We indicate this by the notation h(w0,w1). A particular choice for the
weights w1, w0 defines a linear hypothesis h(w0,w1)(x) = w1x + w0.

Let us use the linear hypothesis map h(w0,w1)(x) to predict the labels of training
data points. In general, the predictions ŷ(i) = h(w0,w1)

(
x (i)

)
will not be perfect and

incur a non-zero prediction error ŷ(i) − y(i) (see Fig. 2.16).
We measure the goodness of the predictor map h(w0,w1) using the average squared

error loss (see (2.8))

f (w0, w1) := (1/m)

m∑

i=1

(
y(i) − h(w0,w1)(x (i))

)2

(2.24)= (1/m)

m∑

i=1

(
y(i) − (w1x

(i) + w0)
)2

. (2.25)

The training error f (w0, w1) is the average of the squared prediction errors incurred
by the predictor h(w0,w1)(x) to the labeled datapoints (2.23).

It seems natural to learn a good predictor (2.24) by choosing the weights w0, w1

to minimize the training error

min
w0,w1∈R

f (w0, w1)
(2.25)= min

w1,w0∈R
(1/m)

m∑

i=1

(
y(i) − (w1x

(i) + w0)
)2

. (2.26)

The optimal weights w′
0, w

′
1 are characterized by the zero-gradient condition,2

∂ f (w′
0, w

′
1)

∂w0
= 0, and

∂ f (w′
0, w

′
1)

∂w1
= 0. (2.27)

2 A necessary and sufficient condition for w′ to minimize a convex differentiable function f (w) is
∇ f (w′) = 0 [37, Sec. 4.2.3].

50 2 Components of ML

Inserting (2.25) into (2.27) and by using basic rules for calculating derivatives, we
obtain the following optimality conditions

(1/m)

m∑

i=1

(
y(i) − (w′

1x
(i) + w′

0)
) = 0, and (1/m)

m∑

i=1

x (i)(y(i) − (w′
1x

(i) + w′
0)

) = 0. (2.28)

Any weights w′
0, w

′
1 that satisfy (2.28) define a predictor h(w′

0,w
′
1) = w′

1x + w′
0

that is optimal in the sense of incurring minimum training error,

f (w′
0, w

′
1) = min

w0,w1∈R
f (w0, w1).

We find it convenient to rewrite the optimality condition (2.28) using matrices
and vectors. To this end, we first rewrite the predictor (2.24) as

h(x) = wT x with w = (
w0, w1

)T
, x = (

1, x
)T

.

Let us stack the feature vectors x(i) = (
1, x (i)

)T
and labels y(i) of training datapoints

(2.23) into the feature matrix and label vector,

X = (
x(1), . . . , x(m)

)T ∈ R
m×2, y = (

y(1), . . . , y(m)
)T ∈ R

m . (2.29)

We can then reformulate (2.28) as

XT
(
y − Xw′) = 0. (2.30)

The entries of any weight vector w′ = (
w′

0, w
′
1

)
that satisfies (2.30) are solutions to

(2.28).

2.5 Exercises

Exercise 2.1 Perfect Prediction Consider data points that are characterized by a
single numeric feature x ∈R and a numeric label y∈ R. We use a ML method to
learn a hypothesis map h : R → R based on a training set consisting of three data
points

(x (1) = 1, y(1) = 3), (x (2) = 4, y(2) = −1), (x (3) = 1, y(3) = 5).

Is there any chance for theMLmethod to learn a hypothesis map that perfectly fits the
training data points such that h

(
x (i)

) = y(i) for i = 1, . . . , 3. Hint: Try to visualize
the data points in a scatterplot and various hypothesis maps (see Fig. 1.3).

Exercise 2.2 Temperature Data Consider a dataset of daily air temperatures
x (1), . . . , x (m) measured at the observation station Utsjoki Nuorgam between
01.12.2019 and 29.02.2020. Thus, x (1) is the daily temperature measured on
01.12.2019, x (2) is the daily temperature measure don 02.12.2019, and x (m) is the

2.5 Exercises 51

daily temperature measured on 29.02.2020. You can download this dataset from the
link https://en.ilmatieteenlaitos.fi/download-observations. ML methods often deter-
mine few parameters to characterize large collections of data points. Compute, for
the above temperature measurement dataset, the following parameters

• the minimum A := mini=1,...,m x (i)

• the maximum B := maxi=1,...,m x (i)

• the average C := (1/m)
∑

i=1,...,m x (i)

• the standard deviation D :=
√

(1/m)
∑

i=1,...,m

(
x (i) − C

)2

Exercise 2.3 Deep Learning onRaspberry PIConsider the tiny desktop computer
“RaspberryPI” equipped with a total of 8 Gigabytes memory [38]. On that computer,
we want implement a ML algorithm that learns a hypothesis map that is represented
by a deep neural network involving n = 106 numeric weights (or parameters). Each
weight is quantized using 8 bits (= 1 Byte). How many different hypotheses can
we store at most on a RaspberryPI computer? (You can assume that 1Gigabyte =
109Bytes.)

Exercise 2.4 Ensembles. For some applications it can be a good idea to not
learn a single hypothesis but to learn a whole ensemble of hypothesis maps
h(1), . . . , h(B). These hypotheses might even belong to different hypothesis spaces,
h(1) ∈ H(1), . . . , h(B) ∈ H(B). These hypothesis spaces can be arbitrary except that
they are defined for the same feature space and label space. Given such an ensemble
we can construct a new (“meta”) hypothesis h̃ by combining (or aggregating) the
individual predictions obtained from each hypothesis,

h̃(x) := a
(
h(1)(x), . . . , h(B)(x)

)
. (2.31)

Here, a(·) denotes some given (fixed) combination or aggregation function. One
example for such an aggreation function is the average a

(
h(1)(x), . . . , h(B)(x)

) :=
(1/B)

∑B
b=1 h

(b)(x). We obtain a new “meta” hypothesis space H̃, that consists of all
hypotheses of the form (2.31) with h(1) ∈ H(1), . . . , h(B) ∈ H(B). Which conditions
on the aggregation function a(·) and the individual hypothesis spacesH(1), . . . ,H(B)

ensure that H̃ contains each individual hypothesis space, i.e.,H(1), . . . ,H(B) ⊆ H̃.

Exercise 2.5 HowMany Features? Consider the ML problem underlying a music
information retrieval smartphone app [39]. Such an app aims at identifying a song
title based on a short audio recording of a song interpretation. Here, the feature vector
x represents the sampled audio signal and the label y is a particular song title out of
a huge music database. What is the length n of the feature vector x ∈ R

n if its entries
are the signal amplitudes of a 20-second long recording which is sampled at a rate
of 44 kHz?

Exercise 2.6 Multilabel Prediction. Consider datapoints that are characterized by
a feature vector x ∈ R

10 and a vector-valued label y ∈ R
30. Such vector-valued labels

https://en.ilmatieteenlaitos.fi/download-observations

52 2 Components of ML

arise in multi-label classification problems. We want to predict the label vector using
a linear predictor map

h(x) = Wx with some matrix W ∈ R
30×10. (2.32)

How many different linear predictors (2.32) are there? 10, 30, 40, or infinite?

Exercise 2.7 Average Squared Error Loss as Quadratic Form Consider the
hypothesis space constituted by all linear maps h(x) = wT x with some weight
vector w ∈ R

n . We try to find the best linear map by minimizing the average
squared error loss (the empirical risk) incurred on labeled data points (training
set) (x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m)). Is it possible to represent the result-
ing empirical risk as a convex quadratic function f (w) = wTCw + bw + c? If this
is possible, how are thematrixC, vector b and constant c related to the feature vectors
and labels of the training data?

Exercise 2.8 Find Labeled Data for Given Empirical Risk. Consider linear
hypothesis space consisting of linear maps h(w)(x) = wT x that are parameterized
by a weight vector w. We learn an optimal weight vector by minimizing the aver-
age squared error loss f (w) = L̂

(
h(w)|D)

incurred by h(w)(x) on the training set
D = (

x(1), y(1)
)
, . . . ,

(
x(m), y(m)

)
. Is it possible to reconstruct the datasetD just from

knowing the function f (w)?. Is the resulting labeled training data unique or are there
different training sets that could have resulted in the same empirical risk function?
Hint: Write down the training error f (w) in the form f (w) = wTQw + c + bTw
with some matrix Q, vector b and scalar c that might depend on the features and
labels of the training datapoints.

Exercise 2.9 Dummy Feature Instead of Intercept Show that any hypothesis
map of the form h(x) = w1x + w0 can be obtained as concatenation of a feature
map � : x 	→ z with a map h̃(z) := w̃T z with some weight vector w̃ ∈ R

2.

Exercise 2.10 Approximate Non-Linear Maps Using Indicator Functions for
Feature Maps. Consider an ML application generating datapoints character-
ized by a scalar feature x ∈ R and numeric label y ∈ R. We construct a non-
linear map by first transforming the feature x to a new feature vector z =
(φ1(x), φ2(x), φ3(x), φ4(x)). The components φ1(x), . . . , φ4(x) are indicator func-
tions of intervals [−10,−5), [−5, 0), [0, 5), [5, 10]. In particular, φ1(x) = 1 for
x ∈ [−10,−5) and φ1(x) = 0 otherwise. We construct a hypothesis space H1 by
all maps of the form wT z. Note that the map is a function of the feature x since the
feature vector z is a function of x . Which of the following predictor maps belong to
H1?

2.5 Exercises 53

(a) (b)

Exercise 2.11 Python Hypothesis space. Consider the source codes below for
five different Python functions that read in the numeric feature x , perform some
computations that result in a prediction ŷ. How large is the hypothesis space that is
constituted by all maps that can be represented by one of those Python functions.

1 def func1(x):

2 hat_y = 5*x+3

3 return hat_y

4

1 def func2(x):

2 tmp = 3*x+3

3 hat_y = tmp+2*x

4 return hat_y

5

1 def func3(x):

2 tmp = 3*x+3

3 hat_y = tmp -2*x

4 return hat_y

5

1 def func4(x):

2 tmp = 3*x+3

3 hat_y = tmp -2*x+4

4 return hat_y

5

1 def func5(x):

2 tmp = 3*x+3

3 hat_y = 4*tmp -2*x

4 return hat_y

5

Exercise 2.12 A Lot of Features One important application domain for ML meth-
ods is healthcare. Here, data points represent human patients that are characterized
by health-care records. These records might contain physiological parameters, CT
scans along with various diagnoses provided by healthcare professionals. Is it a good
idea to use every data field of a healthcare record as features of the data point?

Exercise 2.13 Over-Parameterization Consider datapoints characterized by fea-
ture vectors x ∈ R

2 and a numeric label y ∈ R. We want to learn the best predictor
out of the hypothesis space

H = {
h(x) = xTAw : w ∈ S}.

Here, we used the matrix A =
(

1 −1
−1 1

)
and the set

S = {
(1, 1)T , (2, 2)T , (−1, 3)T , (0, 4)T

} ⊆ R
2.

What is the cardinality of the hypothesis spaceH, i.e., how many different predictor
maps does H contain?

Exercise 2.14 Squared Error Loss Consider a hypothesis space H constituted
by three predictors h(1)(·), h(2)(·), h(3)(·). Each predictor h(j)(x) is a real-valued

54 2 Components of ML

function of a real-valued argument x . Moreover, for each j ∈ {1, 2, 3}, h(j)(x) = 0
for all x2 ≤ j and h(j)(x) = j otherwise. Can you tell which of these hypothesis
is optimal in the sense of having smallest average squared error loss on the three
(training) datapoints (x = 1/10, y = 3), (0, 0) and (1,−1).

Exercise 2.15 Classification Loss The Fig. 2.15 depicts different loss functions for
a fixed data point with label y = 1 and varying hypothesis h ∈ H. How would Fig.
2.15 change if we evaluate the same lloss functions for another data point z = (x, y)
with label y = −1?

Exercise 2.16 Intercept Term Linear regression methods model the relation
between the label y and feature x of a datapoint as y = h(x) + e with some small
additive term e. The predictor map h(x) is assumed to be linear h(x) = w1x + w0.
The weight w0 is sometimes referred to as the intercept (or bias) term. Assume we
know for a given linear predictor map its values h(x) for x = 1 and x = 3. Can you
determine the weights w1 and w0 based on h(1) and h(3)?

Exercise 2.17 Picture Classification Consider a huge collection of outdoor pic-
tures you have taken during your last adventure trip. You want to organize these
pictures as three categories (or classes) dog, bird and fish. How could you formalize
this task as a ML problem?

Exercise 2.18 MaximumHypothesis space Consider datapoints characterized by
a single real-valued feature x and a single real-valued label y. How large is the largest
possible hypothesis space of predictor maps h(x) that read in the feature value of a
datapoint and deliver a real-valued prediction ŷ = h(x) ?

Exercise 2.19 A Large but Finite Hypothesis space Consider datapoints whose
features are 10 × 10 black-and-white (bw) pixel images. Each datapoint is also char-
acterized by a binary label y ∈ {0, 1}. Consider the hypothesis space which is con-
stituted by all maps that take a bw image as input and deliver a prediction for the
label. How large is this hypothesis space?

Exercise 2.20 Size of Linear Hypothesis space Consider a training set of m data-
points with feature vectors x(i) ∈ R

n and numeric labels y(1), . . . , y(m). The feature
vectors and label values of the training set are arbitrary except that we assume the
feature matrix X = (

x(1), . . .
)
is full rank. What condition on m and n guarantees

that we can find a linear predictor h(x) = wT x that perfectly fits the training set, i.e.,
y(1) = h

(
x(1)

)
, . . . , y(m) = h

(
x(m)

)
.

References 55

References

1. K. Abayomi, A. Gelman, M.A. Levy, Diagnostics for multivariate imputations. Journal of The
Royal Statistical Society Series C-applied Statistics 57, 273–291 (2008)

2. W. Rudin, Principles of Mathematical Analysis, 3rd edn. (McGraw-Hill, New York, 1976)
3. P. Bühlmann, S. van deGeer, Statistics for High-Dimensional Data (Springer, NewYork, 2011)
4. M. Wainwright, High-Dimensional Statistics: A Non-Asymptotic Viewpoint (Cambridge Uni-

versity Press, Cambridge, 2019)
5. R. Vidal, Subspace clustering. IEEE Signal Processing Magazine, March 2011
6. F. Barata, K. Kipfer, M. Weber, P. Tinschert, E. Fleisch, and T. Kowatsch, Towards device-

agnostic mobile cough detection with convolutional neural networks, in 2019 IEEE Interna-
tional Conference on Healthcare Informatics (ICHI), pp. 1–11 (IEEE, New York, 2019)

7. B. Boashash (ed.), Time Frequency Signal Analysis and Processing: A Comprehensive Refer-
ence (Elsevier, Amsterdam, The Netherlands, 2003)

8. S.G. Mallat, AWavelet Tour of Signal Processing - The Sparse Way, 3rd edn. (Academic Press,
San Diego, CA, 2009)

9. S. Smoliski, K. Radtke, Spatial prediction of demersal fish diversity in the Baltic sea: compar-
ison of machine learning and regression-based techniques. ICES Journal of Marine Science
74(1), 102–111 (2017)

10. S. Carrazza, Machine learning challenges in theoretical HEP (2018)
11. M. Gao, H. Igata, A. Takeuchi, K. Sato, Y. Ikegaya, Machine learning-based prediction of

adverse drug effects: An example of seizure-inducing compounds. Journal of Pharmacological
Sciences 133(2), 70–78 (2017)

12. K. Mortensen, T. Hughes, Comparing amazon’s mechanical Turk platform to conventional
data collection methods in the health and medical research literature. J. Gen. Intern Med.
33(4), 533–538 (2018)

13. A. Halevy, P. Norvig, F. Pereira, The unreasonable effectiveness of data (IEEE Intelligent
Systems, New York, 2009)

14. P. Koehn, Europarl: A parallel corpus for statistical machine translation, in The 10th Machine
Translation Summit, pp. 79–86 (AAMT, 2005)

15. E.L. Lehmann, G. Casella, Theory of Point Estimation, 2nd edn. (Springer, New York, 1998)
16. S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice Hall,

Englewood Cliffs, NJ, 1993)
17. D. Bertsekas, J. Tsitsiklis, Introduction to Probability, 2nd edn. (Athena Scientific, Singapore,

2008)
18. P. Billingsley, Probability and Measure, 3rd edn. (Wiley, New York, 1995)
19. C.M. Bishop, Pattern Recognition and Machine Learning (Springer, Berlin, 2006)
20. H. Lütkepohl, New Introduction to Multiple Time Series Analysis (Springer, New York, 2005)
21. B. Efron, R. Tibshirani, Improvements on cross-validation: The 632+ bootstrapmethod. Journal

of the American Statistical Association 92(438), 548–560 (1997)
22. P. Halmos, Naive Set Theory (Springer, Berlin, 1974)
23. P. Austin, P. Kaski, and K. Kubjas, Tensor network complexity of multilinear maps (2018)
24. F. Pedregosa, Scikit-learn: Machine learning in python. Journal of Machine Learning Research

12(85), 2825–2830 (2011)
25. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, 2016)
26. V.N. Vapnik, The Nature of Statistical Learning Theory (Springer, Berlin, 1999)
27. S. Shalev-Shwartz, S. Ben-David, Understanding Machine Learning-From Theory to Algo-

rithms (Cambridge University Press, New York, 2014)
28. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning Springer Series in

Statistics. (Springer, New York, 2001)
29. Y. Nesterov, Introductory Lectures on Convex Optimization, Vol. 87 of Applied Optimization

(Kluwer Academic Publishers, Boston, 2004)
30. S. Bubeck, Convex optimization: Algorithms and complexity. Foundations and Trends in

Machine Learning 8(3–4), 231–357 (2015)

56 2 Components of ML

31. M.J. Wainwright, M.I. Jordan,Graphical Models, Exponential Families, and Variational Infer-
ence, Foundations and Trends in Machine Learning, vol. 1 (Now Publishers, Hanover, MA,
2008)

32. R. Baeza-Yates, B. Ribeiro-Neto,Modern Information Retrieval (ACMPress, NewYork, 1999)
33. M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions (Dover, New York,

1965)
34. E. Hazan, Introduction to Online Convex Optimization (Now Publishers Inc., Hanover, MA,

2016)
35. N. Cesa-Bianchi, G. Lugosi, Prediction, Learning, and Games (Cambridge University Press,

New York, 2006)
36. R. Sutton, A. Barto, Reinforcement Learning: An Introduction, 2nd edn. (MIT Press, Cam-

bridge, MA, 2018)
37. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge,

UK, 2004)
38. O. Dürr, Y. Pauchard, D. Browarnik, R. Axthelm, and M. Loeser. Deep learning on a raspberry

pi for real time face recognition (2015)
39. A. Wang, An industrial-strength audio search algorithm, in International Symposium on Music

Information Retrieval (2003)

	2 Components of ML
	2.1 The Data
	2.1.1 Features
	2.1.2 Labels
	2.1.3 Scatterplot
	2.1.4 Probabilistic Models for Data

	2.2 The Model
	2.2.1 Parametrized hypospaces
	2.2.2 The Size of a Hypothesis Space

	2.3 The Loss
	2.3.1 Loss Functions for Numeric Labels
	2.3.2 Loss Functions for Categorical Labels
	2.3.3 Loss Functions for Ordinal Label Values
	2.3.4 Empirical Risk
	2.3.5 Regret
	2.3.6 Rewards as Partial Feedback

	2.4 Putting Together the Pieces
	2.5 Exercises
	References

