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Abstract In this paper, a new method known to be Shehu-Adomian decomposition
method is proposed to solve homogeneous and non-homogeneous dispersive KdV-
type equations. The Shehu-Adomian decomposition method is a combination of
Shehu’s transform and Adomian Decomposition method. Some illustrative problems
of dispersive KdV-type equations are solved to check the validity of the method. The
approximate solutions are given in series form and the proposed method is a reliable
and powerful technique to solve numerous physical problems in applications.
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1 Introduction

The famous Korteweg-de Vries (KdV) equation is a nonlinear dispersive PDE that
describes mathematical modeling of traveling wave solution, known to be solitary
water waves (also called solitons) in a shallow water domain. This equation is given
by the PDE [1]

ut + 6uux + uxxx = 0. (1)

In 1895, Korteweg and de Vries in [1] derived this equation while studying water
waves. Numerical study of KdV equations was pioneered by Zabusky and Kruskal
[2] and some recent modifications of the numerical schemes were studied in [3, 4].

There are numerous methods for solving linear/nonlinear partial differential
equations. One of these methods is Semi-analytical methods, which can provide
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approximate-analytical solutions for problem considered. Among these methods,
we can mention Adomian decomposition method [5–7], Variational iteration method
[8–10], and Homotopy perturbation method [11–14]. A literature summary of some
semi-analytical methods is given as follows:

(I) Adomian decompositionmethod (ADM) can be applied to solve linear as well as
nonlinear functional equations in [5, 6, 15–17], works by dissecting the equation
into linear and nonlinear parts. Themethod produces series solutionwhose terms
are computed from a recursive relation involving Adomian polynomials. Various
modifications of ADM were given in the works of Wazwaz [18].

(II) Homotopy perturbationmethod (HPM) is used to determine accurate asymptotic
solutions of a nonlinear problem. This method is also used effectively to solve
PDEs in modeling flows in porous media [19].

Different variants of KdV equation have been investigated in literature [8] (see also
[20]). This paper addresses the following problems using some semi-analytic meth-
ods [15] and their modifications [21]:

(i) The homogeneous linear KdV equation [18]

{
ut + 2ux + uxxx = 0, (x, t) ∈ [0, 2π ] × [0, 4.0],
u(x, 0) = sin(x).

(2)

Exact solution for Eq. (2) is given by

u(x, t) = sin(x − t). (3)

(ii) The non-homogeneous linear KdV equation with some source term

{
ut − uxxx = 2et−x , (x, t) ∈ [0, 1.0] × [0, 2.0],
u(x, t) = 1 + et−x .

(4)

Exact solution for Eq. (4) is given by

u(x, t) = 1 + et−x . (5)

(iii) Homogeneous nonlinear dispersive KdV equation

ut + uux + uxxx = 0, (6)

with (x, t) ∈ [0, 2π ] × [0, 0.50], and initial condition u(x, 0) = x and the time
dependent boundary conditions are

u(0, t) = 0, ux (0, t) = 1

1 + t
, uxx (0, t) = 0. (7)
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Exact solution is u(x, t) = x

1 + t
.

(iv) Inhomogeneous nonlinear dispersive KdV equation [22]

ut − uux + uxxxxx = cos(x) − t sin(x) + t2 sin(2x)

2
, (8)

with (x, t) ∈ [0, 2π ] × [0, 0.10) and initial condition u(x, 0) = 0, Exact solu-
tion is u(x, t) = t cos(x).

We see that the first term in Eq. (2) refers to time evolution and the third term refers
to the dispersion term. Equation (2) is sometimes known as the ‘weak dispersion’
wave equation. Equation (2) can be represented as the kinematic wave equation, with
a dispersive perturbation term of the third order in space. We note that exact solution
for the above numerical experiments can be obtained using Ansatz method. (The
same also holds for other KdV-type equations considered above).

The objective of this study is to integrate two powerful methods, Shehu transform
method and Adomian decomposition method to obtain a better method for solving
partial differential equations; in particular on dispersive linear as well as nonlinear
KdV-type equations.

2 Adomian Decomposition Method (ADM)

This section recaps some key points of the method ADM to solve linear as well as
nonlinear dispersive PDEs.

Let us take the general form of a differential equation as given in [23]:

{
∂u
∂t (x, t) = G(u, ux , uxx , . . . , uxn ) + s(x),

u(x, 0) = h(x), (x, t) ∈ R × R,
(9)

where ut = ∂u
∂t , uxi = ∂ i u

∂xi , G(·) is a polynomial function of its arguments and s is
source term.

Following ADM procedures, by splitting the LHS of Eq. (9) into two parts, we
have that

G[u] = LG[u] + NG[u],

where LG[u] is a linear operator with respect to u, ux , . . . , uxn while NG[u] is non-
linear part of G[u]. Then the operator

L−1(.) =
∫ t

0
(.) dt,

can be introduced to express the solution of Eq. (9) in the form:
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u = f0(x) + s(x) t +
∫ t

0
(LG[u] + NG[u]) dt.

Let’s suppose that

u(x; t) =
∞∑
n=0

Vn(x; t), (10)

and LG[u] = ∑
i≥0 LG[Vi ] and NG[u] = NG

[∑
i≥0 Vi

] = ∑
i≥0 Ai , where the

newly introduced terms Ai are Adomian polynomials [5, 6, 24]. These polynomials
are obtained by using following formulae [10, 24]

Ai = 1

n!
dn

dλn

[
G

(
n∑

i=0

λi Vi

)]
λ=0

, (11)

and some of the first few terms of these polynomials takes the form

A0 = N (V0),

A1 = V1N
′(V0),

A2 = V2N
′(V0) + 1

2
V 2
1 N

′′(V0),

A3 = V3N
′(V0) + V1V2N

′′(V0) + 1

3!V
3
1 N

(3)(V0),

A4 = V4N
′(V0) +

(
1

2
V 2
2 + V1V3

)
N ′′(V0) + 1

2!V
2
1 V2N

(3)(V0) + 1

4!V
4
1 N

(4)(V0).

One can refer to [25, 26] for detailed discussion on Adomain polynomials.

2.1 ADM Applied to Eq. (2)

Let’s first rewrite Eq. (2) as

{
Lt u + 2ux + uxxx = 0,

u(x, 0) = sin(x),
(12)

where the differential operator is Lt = ∂

∂t
. By assuming L−1

t exists; that is, L−1
t (·) =∫ t

0 (·) dτ , and applying L−1
t on both sides of Eq. (12), we have
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L−1
t Lt u + L−1

t (2ux ) + L−1
t (uxxx ) = L−1

t (0),

which is equivalently given by

u(x, t) = u(x, 0) −
{
L−1
t (2ux ) + L−1

t (uxxx )

}
. (13)

By employing the decomposition series given in Eq. (10) (cf. [5, 6]), the following
recursive approximate values are given as

V0(x) = sin(x), (14)

V1(x; t) = −
{
L−1
t

(
2
∂V0(x; t)

∂x

)
+ L−1

t

(
∂3V0(x; t)

∂x3

)}
, (15)

...

Vn+1(x; t) = −
{
L−1
t

(
2
∂Vn

∂x

)
+ L−1

t

(
∂3Vn(x; t)

∂x3

)}
, n ≥ 2. (16)

For numerical purpose, ψn(x, t) = ∑n
i=0 Vi (x, t) denotes the n-term approximation

to u. The exact solution is u(x, t) = lim
n→∞ ψn(x, t). The number of terms required to

obtain an exact solution is considerably small, which will be shown later using the
proposed method in this work.

By using the recursive relations in Eqs. (15)–(16) and the linearity property of the
operator Lt , we have the first few terms of Vn(x, t):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V1(x; t) = −
{
L−1
t

(
2
∂V0(x; t)

∂x

)
+ L−1

t

(
∂3V0(x; t)

∂x3

)}
= −t cos(x),

V2(x; t) = −
{
L−1
t

(
2
∂V1(x; t)

∂x

)
+ L−1

t

(
∂3V1(x; t)

∂x3

)}
= − t2

2! sin(x),

V3(x; t) = −
{
L−1
t

(
2
∂V2(x; t)

∂x

)
+ L−1

t

(
∂3V2(x; t)

∂x3

)}
= t3

3! cos(x),

V4(x; t) = −
{
L−1
t

(
2
∂V3(x; t)

∂x

)
+ L−1

t

(
∂3V3(x; t)

∂x3

)}
= t4

4! sin(x),

V5(x; t) = −
{
L−1
t

(
2
∂V4(x; t)

∂x

)
+ L−1

t

(
∂3V4(x; t)

∂x3

)}
= − t5

5! cos(x),

V6(x; t) = −
{
L−1
t

(
2
∂V5(x; t)

∂x

)
+ L−1

t

(
∂3V5(x; t)

∂x3

)}
= − t6

6! sin(x),

V7(x; t) = −
{
L−1
t

(
2
∂V6(x; t)

∂x

)
+ L−1

t

(
∂3V6(x; t)

∂x3

)}
= t7

7! cos(x)

(17)

and higher order Vj values are obtained from iteration formula Eq. (16). The ADM
solution up to seventh order terms is
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ψ7(x, t) =
7∑
j=0

Vj (x, t) =
(

−t cos(x) + t3

3! cos(x) − t5

5! cos(x) + t7

7! cos(x)
)

+
(
sin(x) − t2

2! sin(x) + t4

4! sin(x) − t6

6! sin(x)
)

. (18)

ByusingTaylor’s expansion andEq. (18),we haveV2n(x; t) = (−1)nt2n

(2n)! sin(x), n ∈
N0, and applying the principle of Mathematical Induction gives

V2n+1(x; t) = −
{
L−1
t (2V2n,x ) + L−1

t (V2n,xxx )

}

= (−1)n+1

(2n)! cos(x)
∫ t

0
τ 2n dτ = − (−1)nt2n+1

(2n + 1)! cos(x), n ∈ N0.

Thus, from the convergence of ADM in [27], we have that

u(x; t) =
∞∑
n=0

V2n(x; t) +
∞∑
n=0

V2n+1(x; t)

= sin(x)

(∑
n≥0

(−1)nt2n

(2n)!

)
− cos(x)

(∑
n≥0

(−1)nt2n+1

(2n + 1)!

)
= sin(x − t).

We note that same approximate-analytical solution for Eq. (2) via LADM have
been obtained in [28] and the result coincides with the results of ADM. See Fig. 1
for the graphical illustration and Table1 for the numerical results of experiment 1.

2.2 ADM Applied to Eq. (4)

We now rewrite Eq. (4) as

Lt u − uxxx = 2et−x , (19)

with Lt = ∂

∂t
, the linear differential operator, which is assumed to be invertible; i.e.,

L−1
t (·) = ∫ t

0 (·) dτ . By applying L−1
t on both sides of Eq. (19),

L−1
t Lt u = 2L−1

t (et−x ) − L−1
t (uxxx ),

which is equivalently
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Fig. 1 Plots for Exact solution and ADM (LADM) using ten terms versus x at times 0.1, 2.0 and
4.0

u(x, t) = u(x, 0) + 2L−1
t (et−x ) − L−1

t (uxxx ). (20)

By employing the decomposition series given in Eq. (10) together with Eq. (20), we
get

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
V0(x; t) = u(x, 0) + 2L−1

t (et−x ) = 1 + e−x + 2e−xL−1
t (et ) = 1 + 2et−x − e−x ,

V1(x; t) = −L−1
t (V0,xxx ) = −2et−x + te−x + 2e−x ,

V2(x; t) = −L−1
t (V1,xxx ) = 2et−x + e−x t2

2! − 2te−x − 2e−x ,

V3(x; t) = −L−1
t (V2,xxx ) = −2et−x + 2te−x + 2e−x + t2e−x + t3

3!e
−x ,

(21)

and so on.
We see the self-cancelling ‘noise’ terms in Eq.( 21) gives the exact solution

u(x, t) = 1 + e−x

(
1 + t + t2

2! + t3

3! + · · ·
)

= 1 + et−x . (22)

Remark 1 An approximate series solution terms given in Eq. (21) for the inhomo-
geneous KdV-type equation obey self-cancelling behavior; which are also known in
the literature as ‘noise terms’ [29, 30]. A necessary condition for the appearance
of noise terms for inhomogeneous problems is that the zeroth component V0 must
possess the exact solution u among other terms [24]. One can refer to [29] for more
on noise terms.
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Table 1 Absolute/relative errors between ADM (LADM) and exact solution
t x Exact Numerical Absolute error Relative error

0.314 0.212370 0.212370 0.000000 0.000000

0.942 0.745977 0.745977 1.110223 ×10−16 1.488281 ×10−16

1.570 0.994924 0.994924 1.110223 ×10−16 1.115887 ×10−16

t = 0.1 2.826 0.403732 0.403732 1.110223 ×10−16 2.749900 ×10−16

3.454 −0.210814 −0.210814 8.326673 ×10−17 3.949777 ×10−16

4.082 −0.744915 −0.744915 0.000000 0.000000

4.710 −0.994763 −0.994763 0.000000 0.000000

5.966 −0.405189 −0.405189 2.775558 ×10−16 6.850036 ×10−16

6.280 −0.103002 −0.103002 3.608225 ×10−16 3.503053 ×10−15

0.314 −0.993371 −0.993422 5.015442 ×10−5 5.048909 ×10−5

0.942 −0.871376 −0.871412 3.618402 ×10−5 4.152515 ×10−5

1.570 −0.416871 −0.416879 8.406101 ×10−6 2.016476 ×10−5

t = 2.0 2.826 0.735226 0.735271 4.494898 ×10−5 6.113628 ×10−5

3.454 0.993187 0.993237 5.016629 ×10−5 5.051041 ×10−5

4.082 0.872156 0.872193 3.624056 ×10−5 4.155283 ×10−5

4.710 0.418318 0.418326 8.485738 ×10−6 2.028538 ×10−5

5.966 −0.734146 −0.734190 4.491153 ×10−5 6.117524 ×10−5

6.280 −0.907967 −0.908017 4.998895 ×10−5 5.505590 ×10−5

0.314 0.517911 0.417558 1.003528 ×10−1 1.937646 ×10−1

0.942 −0.083495 −0.165409 8.191365 ×10−2 9.810567 ×10−1

1.570 −0.653041 −0.685258 3.221691 ×10−2 4.933369 ×10−2

t = 4.0 2.826 −0.922304 −0.841901 8.040265 ×10−2 8.717588 ×10−2

3.454 −0.519273 −0.418922 1.003508 ×10−1 1.932525 ×10−1

4.082 0.081908 0.163914 8.200590 ×10−2 0.1001194 ×101

4.710 0.651834 0.684202 3.236825 ×10−2 4.965722 ×10−2

5.966 0.922918 0.842611 8.030689 ×10−2 8.701410 ×10−2

6.280 0.758881 0.663909 9.497124 ×10−2 1.251465 ×10−1

3 A New Laplace-Type Transform: Shehu’s Transform
Method for Solving PDEs

AnewLaplace-type integral transform, known to be Shehu’s transform, is introduced
in [21] to solve both ODEs and PDEs. This method is efficient in the sense that it has
great mathematical simplicity and ease of formulations as it is also generalization of
many of the well-known integral transforms. Some of the advantages of this method
are its simple application to a class of ordinary or partial differential equations; for
instance, for some of the dispersive KdV-type equations.

Generally speaking, Shehu’s transform can be perceived as a corner stone to the
Sumudu transform, the natural transform, the Elzaki transform, and the Laplace
transform [21].

Definition 1 The Shehu transform of the function v(t) of exponential order is
defined over the set of functions,
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A =
{
v(t) : ∃ N , η1, η2 > 0, |v(t)| < N exp

(
|t |
ηi

)
, if t ∈ (−1)i × [0,∞)

}
,

by the following integral

S [v(t)] = V (s, ρ) =
∫ ∞

0
exp

(−st

ρ

)
v(t)dt

= lim
α→∞

∫ α

0
exp

(−st

ρ

)
v(t)dt; s > 0, ρ > 0. (23)

Equation (23) converges when the limit value of the above integral is finite and
diverges if this is not the case.

Let’s denote the inverse Shehu transform, for t ≥ 0, by

S
−1 [V (s, ρ)] = v(t). (24)

Equation (24) is equivalently expressed as

v(t) = S
−1 [V (s, ρ)] = 1

2π i

∫ α+i∞

α−i∞
1

ρ
exp

(
st

ρ

)
V (s, ρ) ds, (25)

where α ∈ R, s and u are Shehu variables [21] and the integral in Eq. (25) is taken
along s = α in the complex plane s = x + iy.

Theorem 1 ([21]) If v(t) is piecewise continuous on t ∈ [0, β] and of exponential
order α for t > β, then Shehu’s transform exists.

Theorem 2 ([21]) Let v(n)(t) denotes the nth derivative of the function v(t) ∈ A
with respect to t . The Shehu transform of v(n)(t) is given by

S
[
v(n)(t)

] = sn

ρn
· V (s, ρ) −

n−1∑
k=0

(
s

ρ

)n−(k+1)

v(k)(0). (26)

Fpr n = 1, 2, and 3 in Eq. (26), we have the following derivatives with respect to t :

S
[
v′(t)

] = s

ρ
· V (s, ρ) − v(0),

S
[
v′′(t)

] = s2

ρ2
· V (s, ρ) − s

ρ
v(0) − v′(0),

S
[
v′′′(t)

] = s3

ρ3
V (s, ρ) − s2

ρ2
v(0) − s

ρ
v′(0) − v′′(0).

By employing Leibniz’s rule, some properties are noted as follows:
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S

[
∂v(x, t)

∂x

]
=

∫ ∞

0
exp

(−st

ρ

)
∂v(x, t)

∂x
dt = ∂

∂x

∫ ∞

0
exp

(−st

ρ

)
v(x, t) dt

= ∂

∂x
[V (x, s, ρ)] ⇒ S

[
∂v(x, t)

∂x

]
= d

dx
[V (x, s, ρ)] ,

S

[
∂2v(x, t)

∂x2

]
=

∫ ∞

0
exp

(−st

ρ

)
∂2v(x, t)

∂x2
dt = ∂2

∂x2

∫ ∞

0
exp

(−st

ρ

)
v(x, t) dt

= ∂2

∂x2
[V (x, s, ρ)] ⇒ S

[
∂2v(x, t)

∂x2

]
= d2

dx2
[V (x, s, ρ)] .

Some important properties of this transform are given as follows:

(i) Linearity property of Shehu transform:

S [αv(t) + βw(t)] = αS [v(t)] + βS [w(t)] .

(ii) Scaling property of Shehu transform:

S [v(βt)] = ρ

β
· V

(
s

β
, ρ

)
.

Proposition 1 ([21]) Suppose ∂v(x,t)
∂t and ∂2v(x,t)

∂x2 exist, then

S

[
∂v(x, t)

∂t

]
= s

ρ
· V (x, s, ρ) − v(x, 0),

S

[
∂2v(x, t)

∂x2

]
= s2

ρ2
· V (s, ρ) − s

ρ
· v(0) − ∂v(x, 0)

∂t
.

Our next section introduces SADM, which is a combination of ADM and Shehu’s
transform, and some illustrative examples are also provided.
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Table 2 Some essential properties of Shehu’s transform for SADM

Function form f (X̃ , t) Transformed form Fk(X̃)

1 ρ
s

tn

n!
(ρ

s

)n+1

eat
ρ

s − aρ

teat
ρ2

(s − aρ)2

tneat

n!
ρn+1

(s − aρ)n+1

sin(at)
aρ2

s2 + a2

cos(at)
ρs

s2 + a2ρ2

ebt cos(at)
ρ(s − aρ)

(s − bρ)2 + a2ρ2

eat

b − a

ρ2

(s − aρ)(s − bρ)

bebt − aeat

b − a

ρs

(s − aρ)(s − bρ)

3.1 Outline of the Method: SADM

To illustrate the basic concepts of SADM, let’s us consider the following equation

{
Lt u(x, t) + Mu(x, t) + Nu(x, t) = g(x, t),

u(x, 0) = h(x),
(27)

where N is a nonlinear operator, Lt = ∂
∂t is the linear operator, M is a linear operator

w.r.t x and g is the source term, which doesn’t rely on u. By first applying Laplace
transform on both sides of Eq. (27), we get

S

{
Lt u(x, t)

}
= S

{
g(x, t) − Mu(x, t) − Nu(x, t)

}
(28)

and by rewriting Eq. (28) equivalently as

s

ρ
· S

{
u(x, t)

}
− u(x, 0) = S

{
g(x, t) − Mu(x, t) − Nu(x, t)

}
. (29)

In the homogeneous case, g(x, t) = 0, and therefore we have that
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u(x, s) = ρ

s
· h(x) − ρ

s
· S

{
Mu(x, t) + Nu(x, t)

}
.

Employing inverse Shehu’s transform to Eq. (29) gives

u(x, t) = h(x) − S
−1

[
ρ

s
· S

{
Mu(x, t) + Nu(x, t)

}]
. (30)

Let us consider SADM decomposition series by

u(x, t) =
∞∑
n=0

Vn(x, t), (31)

and the nonlinear term by

Nu(x, t) =
∞∑
n=0

An(V0, V1, . . . , Vn), (32)

where the sequence {An}∞n=0 are the well-known Adomian polynomials (see [5, 6,
30]). Using Eqs. (31) and (32) into Eq. (30), we obtain

∞∑
n=0

Vn(x, t) = h(x) − S
−1

[ρ

s
· S{M

∞∑
n=0

Vn(x, t) +
∞∑
n=0

An(V0, V1, . . . , Vn)}
]
.

(33)
The following recursive formulae follows from Eq. (33) as follows.

{
V0(x, t) = h(x),

Vn+1(x, t) = −S
−1

[
ρ

s · S
{
MVn(x, t) + An(V0, V1, . . . , Vn)

}]
, n = 0, 1, 2, . . . .

(34)
Using Eq. (34), an approximate solution of Eq. (27) takes the form

u(x, t) ≈
n∑

r=0

Vr (x, t), where lim
n→∞

n∑
r=0

Vr (x, t) = u(x, t). (35)

The following Shehu’s transformation results are given in [21].
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4 Some Applications: SADM

In this section, SADM is applied to dispersive linear and nonlinear KdV-type equa-
tions to show the reliability of the method.

4.1 Implementation of SADM for Eq. (2)

The linearized homogeneous equation in [18] takes the form

{
ut + 2ux + uxxx = 0, (x, t) ∈ [0, 2π ] × [0, 2.75],
u(x, 0) = sin(x).

(36)

By applying Shehu’s transform S in given Eqs. (23)–(36), we have

S{ut } = s

ρ
· S

{
u(x, t)

}
− u(x, 0) = −2S{ux } − S{uxxx }, t > 0. (37)

By employing inverse Shehu’s transform to Eq. (37), we obtain

u(x, t) = u(x, 0) − S
−1

[
ρ

s
· [
S{2ux } − S{uxxx }

]]
. (38)

By using SADM’s series given in Eq. (31) into Eq. (38), the following recursive
values are given as follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V0(x, t) = sin(x),

V1(x; t) = −S
−1

[
ρ

s ·
[
S{−2V0,x } − S{V0,xxx }

]]

V2(x; t) = −S
−1

[
ρ

s ·
[
S{−2V1,x } − S{V1,xxx }

]]
...

Vn(x; t) = −S
−1

[
ρ

s ·
[
S{−2Vn−1,x } − S{Vn−1,xxx }

]]
. (39)

By using Eq. (39) and some of properties of Shehu’s transform given in Table2, we
have that
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V0(x, t) = sin(x),

V1(x; t) = −S
−1

[
ρ

s ·
[
S{−2V0,x } − S{V0,xxx }

]]
= −t cos(x),

V2(x; t) = −S
−1

[
ρ

s ·
[
S{−2V1,x } − S{V1,xxx }

]]
= − t2

2! sin(x),

V3(x; t) = −S
−1

[
ρ

s ·
[
S{−2V2,x } − S{V2,xxx }

]]
= − t3

3! cos(x),

V4(x; t) = −S
−1

[
ρ

s ·
[
S{−2V3,x } − S{V3,xxx }

]]
= t4

4! sin(x),

V5(x; t) = −S
−1

[
ρ

s ·
[
S{−2V4,x } − S{V4,xxx }

]]
= − t5

5! cos(x),

V6(x; t) = −S
−1

[
ρ

s ·
[
S{−2V5,x } − S{V5,xxx }

]]
= − t6

6! sin(x),

V7(x; t) = −S
−1

[
ρ

s ·
[
S{−2V6,x } − S{V6,xxx }

]]
= − t7

7! cos(x).

(40)

The rest of the components can be obtained from Eq. (40) in a similar way. The
7-term approximate SADM solution is

�7(x, t) =
7∑

i=0

Vi (x, t) =
(
sin(x) − t2

2! sin(x) + t4

4! sin(x) − t6

6! sin(x)
)

+
(

−t cos(x) + t3

3! cos(x) − t5

5! cos(x) + t7

7! cos(x)
)

.

(41)

In view of Eq. (41) and using Taylor’s expansion, we have

V2n(x; t) = (−1)nt2n

(2n)! sin(x), for n ∈ N0,

and thus

V2n+1(x; t) = −S
−1

[
ρ

s
·
[
S{−2V2n,x } − S{V2n,xxx }

]]

= −S
−1

[
ρ

s
·
[
S

(
2
(−1)nt2n

(2n)! cos(x) − (−1)nt2n

(2n)! cos(x)

) ]]

= cos(x)(−1)n+1 t2n+1

(2n + 1)! .
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4.2 Implementation of SADM for Eq. (6)

Applying Shehu transform on both sides of Eq. (6), we get

S(u(x, t)) = x −
[
ρ

s
· S

(
uux + uxxx

)]
. (42)

Taking inverse Shehu transform on both sides of Eq. (42), we obtain

u(x, t) = x − S
−1

[
ρ

s
· S

(
uux + uxxx

)]
. (43)

By applying the aforesaid decomposition method, we have

∞∑
n=0

un(x, t) = x − S
−1

[
ρ

s
· S

{ ∞∑
n=0

An(u0, u1, . . . , un) +
∞∑
n=0

(un)xxx

}]
. (44)

Comparing both sides of Eq. (44) gives

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0(x, t) = x,

u1(x, t) = −S
−1

[
ρ

s · S
{
A0(u0) + (u0)xxx

}]
,

u2(x, t) = −S
−1

[
ρ

s · S
{
A1(u0, u1) + (u1)xxx

}]
,

u3(x, t) = −S
−1

[
ρ

s · S
{
A2(u0, u1, u2) + (u2)xxx

}]
,

...

(45)

The first few components of Adomain polynomials An(u0, u1, . . . , un) (cf. [25, 26])
are given by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A0(u0) = u0u0,x = x,

A1(u0, u1) = u0u1,x + u1u0,x = −xt,

A2(u0, u1, u2) = u0u2,x + u2u0,x + u1u1,x = xt2,

A3(u0, u1, u2, u3) = u3u0,x + u1u2,x + u2u1,x + u0u3,x = −4xt3,
....

(46)

Using the iteration formulae (45) and Adomian polynomials in (46), we obtain

u0(x, t) = x, u1(x, t) = −xt, u2(x, t) = xt2, u3(x, t) = −xt3, u4(x, t) = xt4. (47)
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Fig. 2 Error plots versus x at times t = 0.1, 2.0, 4.0 (LADM)

Fig. 3 Plot for Exact solution and SADM at 0 ≤ x ≤ 2π and times t = 0.1, 2.0, 2.75, respectively,

Thus, an approximate-analytical solution for u(x, t) is given by

u STADM(x, t) = x − xt + xt2 − xt3 + xt4 + · · · , (48)

which gives the exact solution u(x, t) = x

1 + t
with | − t | < 1 (Table3).
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Table 3 Absolute/relative errors at some values of x and at times 0.1, 2.0, 2.75 using 7-terms of
SADM
t values of

x
Exact Numerical Absolute error Relative error

0.000 −0.099833 −0.099833 2.747802 ×10−15 2.752387 ×10−14

0.314 0.212370 0.212370 7.399636 ×10−14 3.484308 ×10−13

0.942 0.745977 0.745977 1.988409 ×10−13 2.665512 ×10−13

1.570 0.994924 0.994924 2.481348 ×10−13 2.494007 ×10−13

2.198 0.864217 0.864217 2.022826 ×10−13 2.340645 ×10−13

t = 0.10 2.826 0.403732 0.403732 7.971401 ×10−14 1.974428 ×10−13

3.454 −0.210814 −0.210814 7.352452 ×10−14 3.487653 ×10−13

4.082 −0.744915 −0.744915 1.987299 ×10−13 2.667820 ×10−13

4.710 −0.994763 −0.994763 2.480238 ×10−13 2.493296 ×10−13

5.338 −0.865018 −0.865018 2.023937 ×10−13 2.339764 ×10−13

5.966 −0.405189 −0.405189 7.965850 ×10−14 1.965960 ×10−13

6.280 −0.103002 −0.103002 3.191891 ×10−15 3.098854 ×10−14

0.000 −0.909297 −0.907937 1.360919 ×10−3 1.496671 ×10−3

0.314 −0.993371 −0.993953 5.820994 ×10−4 5.859837 ×10−4

0.942 −0.871376 −0.875489 4.112929 ×10−3 4.720040 ×10−3

1.570 −0.416871 −0.422945 6.074300 ×10−3 1.457118 ×10−2

2.198 0.196709 0.190991 5.717768 ×10−3 2.906717 ×10−2

t = 2.0 2.826 0.735226 0.732047 3.179384 ×10−3 4.324363 ×10−3

3.454 0.993187 0.993759 5.722263 ×10−4 5.761516 ×10−4

4.082 0.872156 0.876262 4.105480 ×10−3 4.707276 ×10−3

4.710 0.418318 0.424390 6.072117 ×10−3 1.451556 ×10−2

5.338 −0.195147 −0.189425 5.721685 ×10−3 2.931987 ×10−2

5.966 −0.734146 −0.730958 3.187906 ×10−3 4.342335 ×10−3

6.280 −0.907967 −0.906587 1.380264 ×10−3 1.520169 ×10−3

0.000 −0.381661 −0.358498 2.316300 ×10−2 6.068998 ×10−2

0.314 −0.648485 −0.649521 1.035837 ×10−3 1.597318 ×10−3

0.942 −0.971999 −1.018772 4.677316 ×10−2 4.812059 ×10−2

1.570 −0.924606 −0.999268 7.466224 ×10−2 8.075033 ×10−2

2.198 −0.524391 −0.598452 7.406083 ×10−2 1.412320 ×10−1

t = 2.75 2.826 0.075927 0.030728 4.519843 ×10−2 5.952891 ×10−1

3.454 0.647272 0.648183 9.113162 ×10−4 1.407934 ×10−3

4.082 0.971623 1.018297 4.667331 ×10−2 4.803642 ×10−2

4.710 0.925212 0.999837 7.462516 ×10−2 8.065740 ×10−2

5.338 0.525747 0.599847 7.410067 ×10−2 1.409437 ×10−1

5.966 −0.074339 −0.029039 4.529999 ×10−2 6.093728 ×10−1

6.280 −0.378715 −0.355314 2.340076 ×10−2 6.178992 ×10−2
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Table 4 Absolute/relative errors at some values of x and at times 0.1, 2.0, 2.75 using 7-terms of
SADM
t Values of x Exact Numerical Absolute error Relative error

0.000 0.000000 0.000000 0.000000 –

0.628 0.615686 0.615686 1.970196 ×10−9 3.200000 ×10−9

1.256 1.231373 1.231373 3.940392 ×10−9 3.200000 ×10−9

1.884 1.847059 1.847059 5.910588 ×10−9 3.200000 ×10−9

2.512 2.462745 2.462745 7.880784 ×10−9 3.200000 ×10−9

t = 0.02 3.140 3.078431 3.078431 9.850980 ×10−9 3.200000 ×10−9

3.768 3.694118 3.694118 1.182118 ×10−8 3.200000 ×10−9

4.396 4.309804 4.309804 1.379137 ×10−8 3.200000 ×10−9

5.024 4.925490 4.925490 1.576157 ×10−8 3.200000 ×10−9

5.652 5.541176 5.541176 1.773177 ×10−8 3.200000 ×10−9

6.280 6.156863 6.156863 1.970196 ×10−8 3.200000 ×10−9

0.000 0.000000 0.000000 0.000000 –

0.628 0.592453 0.592453 4.606913 ×10−7 7.776000 ×10−7

1.256 1.184906 1.184907 9.213826 ×10−7 7.776000 ×10−7

1.884 1.777358 1.777360 1.382074 ×10−6 7.776000 ×10−7

2.512 2.369811 2.369813 1.842765 ×10−6 7.776000 ×10−7

t = 0.06 3.140 2.962264 2.962266 2.303457 ×10−6 7.776000 ×10−7

3.768 3.554717 3.554720 2.764148 ×10−6 7.776000 ×10−7

4.396 4.147170 4.147173 3.224839 ×10−6 7.776000 ×10−7

5.024 4.739623 4.739626 3.685531 ×10−6 7.776000 ×10−7

5.652 5.332075 5.332080 4.146222 ×10−6 7.776000 ×10−7

6.280 5.924528 5.924533 4.606913 ×10−6 7.776000 ×10−7

0.000 0.000000 0.000000 0.000000 –

0.628 0.570909 0.570915 5.709091 ×10−6 1.000000 ×10−5

1.256 1.141818 1.141830 1.141818 ×10−5 1.000000 ×10−5

1.884 1.712727 1.712744 1.712727 ×10−5 1.000000 ×10−5

2.512 2.283636 2.283659 2.283636 ×10−5 1.000000 ×10−5

t = 0.10 3.140 2.854545 2.854574 2.854545 ×10−5 1.000000 ×10−5

3.768 3.425455 3.425489 3.425455 ×10−5 1.000000 ×10−5

4.396 3.996364 3.996404 3.996364 ×10−5 1.000000 ×10−5

5.024 4.567273 4.567318 4.567273 ×10−5 1.000000 ×10−5

5.652 5.138182 5.138233 5.138182 ×10−5 1.000000 ×10−5

6.280 5.709091 5.709148 5.709091 ×10−5 1.000000 ×10−5

0.000 0.000000 0.000000 0.000000 –

0.628 0.418667 0.431750 1.308333 ×10−2 3.125000 ×10−2

1.256 0.837333 0.863500 2.616667 ×10−2 3.125000 ×10−2

1.884 1.256000 1.295250 3.925000 ×10−2 3.125000 ×10−2

2.512 1.674667 1.727000 5.233333 ×10−2 3.125000 ×10−2

t = 0.50 3.140 2.093333 2.158750 6.541667 ×10−2 3.125000 ×10−2

3.768 2.512000 2.590500 7.850000 ×10−2 3.125000 ×10−2

4.396 2.930667 3.022250 9.158333 ×10−2 3.125000 ×10−2

5.024 3.349333 3.454000 1.046667 ×10−1 3.125000 ×10−2

5.652 3.768000 3.885750 1.177500 ×10−1 3.125000 ×10−2

6.280 4.186667 4.317500 1.308333 ×10−1 3.125000 ×10−2
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Fig. 4 Error plots versus x (SADM) at times t = 0.1, 2.0, 2.75 respectively

Fig. 5 Three-dimensional representation for Exact solution and SADM at 0 ≤ x ≤ 2π and 0 ≤
t ≤ 4.0

Plots of exact and numerical solution vs x are displayed in Fig. 6. We obtain plots
of absolute error vs x at four different values of time in Fig. 2. We also compare the
absolute and relative errors at some values of x at four different times in Table4.
We note that same approximate-analytical solution have been obtained using using
SADM for the considered numerical experiments in this paper as shown in Figs. 3,
4, 5 and 7.



122 A. S. Kelil and A. R. Appadu

Fig. 6 Plots of exact solution and approximate solution using SADM (4-terms) versus x at times
0.02, 0.06, 0.10, and 0.50 (The space interval used for these plots is π

10 ≈ 0.314)

Fig. 7 Plots of absolute errors versus x at different values of time (t = 0.02, 0.06, 0.10, 0.50) using
SADM (4-terms)
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4.3 Implementation of SADM for Eq. (8)

By consider the inhomogeneous equation in Eq. (8), we apply Shehu transform on
both sides of Eq. (8) to get

S(u(x, t)) = ρ

s
.u(x, 0) + ρ

s
.

{
S

[
cos(x) + 2t sin(x) + t2 sin(x)

2

]
− S

[
− uux + uxxxxx

]}
. (49)

Taking inverse Shehu transform on both sides of Eq. (49), we obtain

u(x, t) = u(x, 0) − S
−1

[
ρ

s
· S

[
cos(x) + 2t sin(x) + t2 sin(x)

2

]
− S

[
− uux + uxxxxx

]]
.

(50)
By applying the aforesaid decomposition method, we have

∞∑
n=0

un(x, t) = u(x, 0) − S
−1

[
ρ

s
· S

[
cos(x) + 2t sin(x) + t2 sin(x)

2

]

− S
−1

[
ρ

s
· S

{ ∞∑
n=0

An(u0, u1, . . . , un) +
∞∑
n=0

(un)xxxxx

}]
. (51)

On comparing both sides of Eq. (51), we obtain

u0(x, t) = u(x, 0) + S
−1

[
ρ

s
· S

[
cos(x) + 2t sin(x) + t2

2
sin(x)

] ]
(52)

u1(x, t) = −S
−1

[
ρ

s
· S [(u0)xxxxx − A0(u0)]

]
, (53)

u2(x, t) = −S
−1

[
ρ

s
· S [(u1)xxxxx − A1(u0, u1)]

]
. (54)

...

The first few components of Adomain polynomials An(u) are obtained using formu-
lae (cf. [25, 26])

A0(u0) = u0u0,x

= −t2 cos(x) sin(x) +
(
cos2(x) − sin2(x)

)
t3 +

(
1

6
cos2(x) + cos(x) sin(x) − 1

6
sin2(x)

)
t4

+ 1

3
t5 sin(x) cos(x) + 1

36
t6 sin(x) cos(x), (55)
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A1(u0, u1) = u0u1,x + u1u0,x

=
(

− sin(x)

1512
+ cos2(x) sin(x)

504

)
t10 +

(
− 5 sin(x)

378
+ 5 cos2(x) sin(x)

126

)
t9

+
(
cos3(x)

126
− cos(x)

252
− 1

18
sin(x) + 1

6
cos2(x) sin(x) − cos(x) sin2(x)

252

)
t8

+
(

− cos2(x)

144
+ 7 cos3(x)

36
− 7 cos(x)

72
+ sin2(x)

144
− 2

9
cos(x) sin2(x)

)
t7

+
(
cos(2x)

72
+ 1

18
sin(x) + 1

2
cos3(x) − 1

4
cos(x) − cos(x) sin2(x) − 1

6
cos2(x) sin(x)

)
t6

+
(

− 1

3
sin2(x) + 7 sin(x)

12
+ 1

3
cos2(x) + 1

4
cos(x) sin(x) − 5

2
cos2(x) sin(x)

)
t5

+
(

− 2

3
cos3(x) + 1

3
cos(x) + 1

3
cos(x) sin(x) + 1

3
cos(x) sin2(x)

)
t4 + cos(2x)

2
t3.

(56)

The polynomials A2(u0, u1, u2) and A3(u0, u1, u2, u3) are obtained by

A2(u0, u1, u2) = u0u2,x + u2u0,x + u1u1,x ,

A3(u0, u1, u2, u3) = u3u0,x + u1u2,x + u2u1,x + u0u3,x ,

and the higher order ones are obtained by

An(u0, u1, u2, . . . , un) =
n−1∑
j=0

u j
∂un− j

∂x
. (57)

Employing Eqs. (56), (55) together with Eq. (52) yields

u0(x, t) = t cos(x) + t2 sin(x) + t3

3! sin(x), (58a)

u1(x, t) = 1

2
t2 sin(x) + 1

6
(2 cos (x) − sin (2 x)) t3

+ 1

4

(
cos (2 x) − 1

6
cos(x)

)
t4 + 1

36
sin (2 x) t6 + sin (2 x) t7

504
, (58b)
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u2(x, t) =
(
cos2(x) sin(x)

5544
− sin(x)

16632

)
t11 +

(
− sin(x)

756
+ cos2(x) sin(x)

252

)
t10

+
(

− sin (x)

162
+ cos2(x) sin(x)

54
− cos(x) sin2(x)

2268
+ cos3(x)

1134
− cos(x)

2268

)
t9

+
(
7 cos3(x)

288
− 7 cos(x)

576
+ (sin(x))2

1152
+ 1

126
− 1

36
cos(x) sin2(x) − 15 (cos(x))2

896

)
t8

+
(

− 127 cos2(x)

504
+ 1

14
cos3(x) − 1

28
cos(x) − (sin(x))2

504
+ 8

63
− 1

7
cos(x) sin2(x)

− 1

42
cos2(x) sin(x) + sin(x)

126

)
t7

+
(

1

18
cos2(x) − 1

18
sin2(x) + 7 sin(x)

72
+ 1

24
cos(x) sin(x) − 5 cos2(x) sin(x)

12

)
t6

+
(

− sin(x)

120
+ 49 cos(x) sin(x)

15
+ 1

15
cos(x) sin2(x) − 2

15
cos3(x) + 1

15
cos(x)

)
t5

+
(
67 cos2(x)

24
− 1

8
sin2(x) + 1

12
sin(x) − 4

3

)
t4 − 1

6
t3 cos(x).

Thus, the sum of first three iterates to build an approximate-analytical solution for
u(x, t) of Eq. (8) is given by

u SADM(x, t) = u0(x, t) + u1(x, t) + u2(x, t). (59)

Remark 2 Fig. 8 shows exact and SADM solution whereas Fig. 9 demonstrates
Absolute error at different times. From numerical experiments above, we see that
SADM is a promising semi-analytical method for solving PDEs. Comparison of
SADM with other traditional semi-analytic methods such HPM, VIM, RDTM will
be prominent continuation of this work, as this is not studied yet.
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Fig. 8 Plots of Exact solution and approximate solution using 3-terms of SADM versus x at times
0.005, 0.02, and 0.06. (The space step size used for these plots is π

10 ≈ 0.314)

Fig. 9 Plots of absolute errors versus x at times t = 0.005, 0.02, 0.06 using SADM
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Table 5 Absolute and relative errors at some values of x obtained at times t = 0.005, 0.02, 0.06
for Numerical Experiment 2
t Values of x Exact solution Numerical

solution
Absolute error Relative error

0.000 0.005000 0.005000 2.286458 ×10−8 4.572917 ×10−6

0.628 0.004046 0.004068 2.206271 ×10−5 5.452940 ×10−3

1.256 0.001548 0.001584 3.568366 ×10−5 2.304976 ×10−2

1.884 −0.001541 −0.001505 3.568926 ×10−5 2.316672 ×10−2

2.512 −0.004041 −0.004019 2.207738 ×10−5 5.462890 ×10−3

t = 0.005 3.140 −0.005000 −0.005000 4.100777 ×10−8 8.201564 ×10−6

3.768 −0.004051 −0.004073 2.201170 ×10−5 5.434056 ×10−3

4.396 −0.001556 −0.001591 3.566489 ×10−5 2.292553 ×10−2

5.024 0.001533 0.001497 3.570741 ×10−5 2.329308 ×10−2

5.652 0.004037 0.004015 2.212304 ×10−5 5.480554 ×10−3

6.280 0.005000 0.005000 9.665089 ×10−8 1.933028 ×10−5

0.000 0.020000 0.020002 1.853337 ×10−6 9.266683 ×10−5

0.628 0.016184 0.016539 3.547192 ×10−4 2.191778 ×10−2

1.256 0.006192 0.006765 5.722393 ×10−4 9.240910 ×10−2

1.884 −0.006162 −0.005590 5.717151 ×10−4 9.277835 ×10−2

2.512 −0.016165 −0.015812 3.533471 ×10−4 2.185830 ×10−2

t = 0.02 3.140 −0.020000 −0.020000 1.577400 ×10−7 7.887008 ×10−6

3.768 −0.016203 −0.016556 3.532682 ×10−4 2.180294 ×10−2

4.396 −0.006223 −0.006795 5.718787 ×10−4 9.190149 ×10−2

5.024 0.006132 0.005560 5.719482 ×10−4 9.327499 ×10−2

5.652 0.016147 0.015793 3.534486 ×10−4 2.189001 ×10−2

6.280 0.020000 0.020000 6.214620 ×10−8 3.107326 ×10−6

0.000 0.060000 0.060078 7.812199 ×10−5 1.302033 ×10−3

0.628 0.048552 0.051803 3.250500 ×10−3 6.694850 ×10−2

1.256 0.018577 0.023761 5.183495 ×10−3 2.790220 ×10−1

1.884 −0.018486 −0.013322 5.164223 ×10−3 2.793513 ×10−1

2.512 −0.048496 −0.045296 3.200081 ×10−3 6.598642 ×10−2

t = 0.06 3.140 −0.060000 −0.059984 1.586109 ×10−5 2.643518 ×10−4

3.768 −0.048608 −0.051797 3.188704 ×10−3 6.559995 ×10−2

4.396 −0.018668 −0.023844 5.175574 ×10−3 2.772400 ×10−1

5.024 0.018396 0.013234 5.161817 ×10−3 2.806014 ×10−1

5.652 0.048440 0.045287 3.152560 ×10−3 6.508212 ×10−2

6.280 0.060000 0.060060 6.080264 ×10−5 1.013382 ×10−3

5 Conclusions

In this paper,wehaveobtained an approximate-analytical solution to homogeneous as
well as non-homogeneous dispersiveKdV equationswith some initial approximation
using modified Adomian decomposition method using Shehu’s transform. For the
homogeneous KdV equation in Eq. (2), results obtained by methods, standard ADM,
LADM, and SADM, are equivalent and therefore give the same results. The LADM
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and ADM are also powerful methods for solving both linear as well as nonlinear
PDEs as these methods do not need any form of transformation, perturbation, or
linearization. However, rigorous computation of Adomian polynomials is one of the
requirement, which can sometimes result in intensive computations for nonlinear
problems.

As our main contribution, we have applied a reliable method, SADM, which
combines Shehu’s transform with Adomian Decomposition Method to both linear as
well as nonlinear homogeneous and non-homogeneous dispersiveKdV-type equation
and the numerical results using SADM are given in Tables3 and 5. The obtained
numerical results in this paper confirm that SADM is an effective method, as it
allows us to know the exact solution after computing first few terms only. Therefore,
this method an be considered as an alternative method to solve numerous linear and
nonlinear problems efficiently.
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