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Preface

Welcome to the Proceedings of the International Conference on Mathematical Anal-
ysis and Applications (MAA 2020). This international conference was organized
by the Department of Mathematics, National Institute of Technology Jamshedpur,
India, during November 02–04, 2020. The main objective of this event was to bring
together mathematicians and researchers who work in the fields of mathematical
analysis and its applications in various aspects of science and engineering and to
encourage collaboration and exchange of interdisciplinary ideas among the partic-
ipants. The main focus of the conference was to demonstrate the versatility, the
applicability, and the inherent beauty of mathematical analysis and its applications.
The primary aim of this event was to bring together different speakers who could
deliver talks in their field of expertise. Another important point that is different from
other events is to concentrate on a specific direction in mathematics (mathematical
analysis and its applications) instead of diverting the topic to other directions, which
added value in comparison to similar events.

The theme of MAA 2020 included the following topics:
Approximation theory, operator theory, fixed point theory, generalized metric

spaces, function spaces, differential topology, geometric and univalent function
theory, potential theory, value distribution theory, control theory, fractional calculus,
orthogonal polynomials, special functions, operation research, theory of inequali-
ties, equilibrium problem, Fourier andwavelet analysis, mathematical physics, graph
theory, stochastic orders, and asymptotic analysis.

Internationally reputed speakers and researchers were invited to deliver their talks
in this event. Selected list of keynote and invited speakers is given below.

1. Prof. Ram N. Mohapatra, University of Central Florida, USA
2. Prof. P. D. Srivastava, Indian Institute of Technology Bhilai, India
3. Prof. Henrik L. Pedersen, University of Copenhagen, Denmark
4. Prof. G. K. Srinivasan, Indian Institute of Technology Bombay, India
5. Prof. A. Swaminathan, Indian Institute of Technology Roorkee, India
6. Dr. Armin Straub, University of South Alabama, USA
7. Dr. Bappaditya Bhowmik, Indian Institute of Technology Kharagpur, India
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8. Dr. Khaled Mehrez, Université de Tunis El Manar, Tunisia
9. Dr. Ratikanta Behera, University of Central Florida, USA
10. Dr. Kanailal Mahato, Institute of Science, BHU, India

Nearly 120 researchers participated from the United States of America, Denmark,
Tunisia, Turkey, South Africa, Philippines, Oman, and many other reputed institu-
tions from India. Eighty researchers contributed their research papers for presen-
tation from Institutes of Excellence in India and abroad. The substantial number
of abstracts for paper presentation indicates implicitly the success of the confer-
ence. A total number of 68 manuscripts were received during call for papers for the
proceedings of the conference. Each manuscript was sent to at least three referees,
carefully chosen by the Editorial Board of the proceedings of MAA 2020. Based
on the comments, suggestions, and recommendations of the referees, our Editorial
Board has selected only 22 manuscripts for inclusion in the proceedings.

Mathematical analysis has applications in various fields of science and engi-
neering. In fact, it is the foundation for several applications involving mathematical
concepts. It serves as a bridge between pure and applied mathematics. The papers
included in this volume explain the recent theory and techniques of mathematical
analysis and its applications. Some papers discuss the applications to real-life situ-
ations. This proceeding will be beneficial for the researchers and research students
working in the field of pure and applied mathematics.

While talking about the success of the conference, it would be incomplete if we
forget to thank National Institute of Technology Jamshedpur, India, for its immense
support and encouragement to organize this conference.Wewould like to express our
sincere thanks to Prof. Karunesh Kumar Shukla, Director NIT Jamshedpur, India, for
his continuous support, and cooperation.We extend our grateful thanks to our keynote
speakers and the invited speakers, who in spite of their busy schedules accepted our
invitation to share their valuable knowledges with us.

A total number of 76 referees from around the world contributed to the peer
review process. We extend our sincere gratitude to the referees for spending their
valuable time to review the manuscripts carefully and send their reports within the
due date. Our special thanks are due to our participants who have attended this
conference. Without their helping hand it would have been impossible to complete
this conference. We owe our heartfelt thanks to our organizing committee members,
advisory committee members, supporting staffs, students, and faculty members for
their support and tireless effort to manage the conference successfully. Once again,
we thank everyone who supported directly or indirectly to make this conference a
reality.
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Our aim will be achieved if the readers find this volume helpful and useful for
their further studies and future research. We are grateful to Springer for publishing
the proceedings of the conference.

Agadir, Morocco
Jamshedpur, India
Orlando, USA
Roorkee, India
February 2021

Ouayl Chadli
Sourav Das

Ram N. Mohapatra
A. Swaminathan
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A Note on Isolated Removable
Singularities of Harmonic Functions

Gopala Krishna Srinivasan

Abstract A proof of the removable singularities theorem for harmonic functions
is presented which seems to be different from existing proofs in the literature. This
is an important result in analysis with applications to many areas of mathematics.
Weyl’s lemma which is used in the course of the argument is also proved in a special
case to make the note self-contained.

Keywords Harmonic functions · Subharmonic functions · Weyl’s lemma

2010 AMS Subject Classification Primary 31-03

1 Introduction

Thepresent note arose as a by-product of an intensive course onRiemann surfaces and
complex geometry delivered to a small group of students. The motivation arises from
an attempt at constructing harmonic functions on Riemann surfaces with prescribed
singularities. These results are needed in the proofs of the uniformization theorem
and the Riemann Roch theorem [7]. Although the main result proved in this note is
folk-lore, it appears that the result is not as commonly found in books as it ought to
be. We provide here an alternate argument which we believe is different from known
proofs and is not devoid of interest. Thus the present note is in the main an expository
one. We shall make use of Weyl’s lemma in the course of the proof. To make this
note self-contained we shall give a proof of Weyl’s lemma in the special case that
we need. We begin by recalling the classical and well-known result in the theory of
functions of one complex variable:

Theorem 1 Assume that f is holomorphic and bounded in the punctured disc 0 <

|z − a| < R. Then f extends as a holomorphic function on the full open disc of
radius R centered at a.

G. K. Srinivasan (B)
Department of Mathematics, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
e-mail: gopal@math.iitb.ac.in

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
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The usual argument proceeds by looking at the Laurant expansion of f at a and
showing that the coefficients of the negative powers of z − a all vanish. It would then
seem natural to ask the corresponding question for harmonic functions and prove it
along similar lines. Such an approach is carried out in the classic work of O. D.
Kellogg [4, pp. 269–270] using Fourier expansions in terms of spherical harmonics.

The result can be reformulated but before doing so we introduce some nota-
tions. The set of all holomorphic functions on a domain � is denoted by A(�) and
Ap(�) denotes A(�) ∩ L p(�) where 1 ≤ p ≤ ∞. The above theorem may then be
expressed as

A∞(B ′
R(0)) = A∞(BR(0)).

One can of course try formulating Riemann’s removable singularities theorem for
the spaces Ap(�) and also look for multi-variable analogues. We shall remain silent
on these matters except for citing a couple of good references. The classical cases
are dealt with in [3] and the L p version is available in [5].

In a different direction, the class Ap(�) could be replaced by other function spaces
such as the class of harmonic functions on � that lie in L p or the kernel of a more
general linear differential operator L . For sure, the nature of the hypothesis involved
will then depend on the nature of the operator L as well as the number of space
dimensions. The results are often expressed in terms of capacity theory. Here we
shall look at the case when L is the Laplace’s operator namely, the class of harmonic
functions for which a great deal is already known and the main theorem proved here
is available in [1, p. 92] as well as in Kellogg’s book [4] cited above. The result also
holds for subharmonic functions and is available in [2].

2 The Removable Singularities Theorem

We shall prove the theorem in the general n−dimensional setting (n ≥ 2) and begin
by recalling that the fundamental solution E(x) of the Laplace’s operator in R

n

(n ≥ 2) is given by

E(x) = cn|x |2−n, n ≥ 3 and E(x) = log |x | when n = 2.

Lemma 1 If u is smooth and harmonic in B ′
R(0), and u = o(E(x)) in a neighbor-

hood of the origin, then the function

Ĩ (r) =
∫

|ω|=1
u(rω)dω

is constant with respect to r . In particular, denoting by dS(x) the area measure on
the sphere of radius r ,
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∫
|x |=r

u(x)dS(x) = αrn−1.

Proof We first obtain a differential equation for Ĩ . Apply the Gauss divergence
theorem to �u on the shell r1 < |x | < r2 and we get

0 =
∫
r1<|x |<r2

�u(x)dx =
∫

|x |=r2

∂u

∂ν
dS(x) −

∫
|x |=r1

∂u

∂ν
dS(x),

where ν denotes the unit normal to the boundary of the shell and pointing outside
the shell. We get immediately,

rn−1
2

∫
|ω|=1

ω · ∇u(r2ω)dω = rn−1
1

∫
|ω|=1

ω · ∇u(r1ω)dω.

We see that the function rn−1 Ĩ ′(r) is constant whereby differentiation gives the
Cauchy Euler equation

r2 Ĩ ′′(r) + (n − 1)r Ĩ ′(r) = 0.

This immediately gives

Ĩ (r) = α + βr2−n, if n ≥ 3, Ĩ (r) = α + β log r, if n = 2. (1)

So far we have not used any hypothesis on u regarding the growth of u aswe approach
the origin and so (1) holds in general. Now the hypothesis u = o(E(x)) gives

Ĩ (r) =
∫
|ω|=1

u(rω)dω = o(r2−n) (when n ≥ 3) and Ĩ (r) = o(− log r) (when n = 2)

according as n ≥ 3 or n = 2. This forces β = 0 and the result follows. �

Comments:
Note that without the hypothesis u = o(E(x)), Lemma1 says that Ĩ (r) is linear in
E(r). If instead of being harmonic, if u were merely subharmonic namely �u ≥ 0
then we would get the differential inequality

r2 Ĩ ′′ + (n − 1)r Ĩ ′ ≥ 0.

Setting log r = s in case of n = 2 we get that

d2 Ĩ

ds2
≥ 0.

Thismeans Ĩ (r) is a convex function of log r in two dimensionswhich is the analogue
of Hadamard’s three circles theorem known in complex analysis. In dimensions
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three and higher one puts r2−n = s and again Ĩ (r) is a convex function of r2−n in
dimensions higher than two and this is Hadamard’s three sphere’s theorem [6, p.
131].

Theorem 2 (Removable singularities theorem) If u is harmonic in B ′
R(0) and u =

o(E(x)) in a neighborhood of the origin then the origin is a removable singularity
of u.

Proof We apply Cauchy’s estimate to the derivative
∂u

∂x j
at a point p such that

|p| = ε. Taking a sphere of radius1 ε centered at p, we get

∣∣∣ ∂u

∂x j
(p)

∣∣∣ ≤ ε1−no(1) n ≥ 3; (2)

whereas, ∣∣∣ ∂u

∂x j
(p)

∣∣∣ ≤ ε−1| log(ε)|o(1) if n = 2. (3)

We now show that �u = 0 in the sense of distributions which suffices since Weyl’s
lemma then says that u is smooth. So letφ be a smooth functionwith compact support
in BR(0).

〈�u, φ〉 = 〈u,�φ〉 =
∫
BR(0)

u�φdx,

since u is locally integrable. Hence, since u is harmonic and smooth on the punctured
ball,

〈�u, φ〉 = lim
ε→0

∫
ε<|x |<R

(u�φ − φ�u)dx,

= lim
ε→0

∫
|x |=ε

(
u

∂φ

∂ν
− φ

∂u

∂ν

)
dS(x),

where ν denotes the unit normal pointing in the direction of the origin. Now,
udS(x) = εo(1) if n ≥ 3 and udS(x) = ε| log ε|o(1) when n = 2, we see that

lim
ε→0

∫
|x |=ε

u
∂φ

∂ν
dS(x) = 0.

We need to now examine the limit:

1 Technically one should use a ball of radius ε′ centered at p where 0 < ε′ < ε. Now use the fact
that as ε −→ 0

sup
Bε′(p)

|u(x)/(2ε)n | −→ 0.
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lim
ε→0

∫
|x |=ε

φ
∂u

∂ν
dS(x),

and show that it goes to zero as ε → 0. Observe that along the sphere,

φdS(x) = εn−1O(1),

whereas by (2) we get, for n ≥ 3,

φ
∂u

∂ν
dS(x) = o(1)

and the limit is zero as ε → 0. Thus we see directly in case n ≥ 3 that �u = 0 in
the sense of distributions on the ball BR(0) and Weyl’s lemma now implies that u is
infinitely differentiable there. There remains the case n = 2 which is more delicate
since we only have | log ε|o(1) estimate for φ ∂u

∂ν
dS(x). We modify the integral as

∫
|x |=ε

φ
∂u

∂ν
dS(x) =

∫
|x |=ε

(φ(x) − φ(0))
∂u

∂ν
dS(x) + φ(0)

∫
|x |=ε

∂u

∂ν
dS(x)

= ε

∫
|x |=ε

O(1)
∂u

∂ν
dS(x) + εφ(0)

∫
|ω|=1

∇u(εω) · ωdω

= ε| log ε|o(1) + εφ(0) Ĩ ′(r),

where we have used the estimate (3). Since Ĩ ′(r) = 0 by Lemma1, we are left with
ε| log ε|o(1) which goes to zero with ε and the proof is complete. �

Proof of a special case of Weyl’s lemma:
For convenience we include a proof of Weyl’s lemma in the special case that is
relevant to us namely, when u is smooth on B ′

R(0) and is a distributional solution
of �u = 0 on BR(0) then u is smooth on BR(0). Well, let φ be a smooth function
with support in B2R/3(0) and such that φ is identically one in a neighborhood of the
origin say BR/3(0).

�(φu) = φ�u + u�φ + 2∇u · ∇φ = u�φ + 2∇u · ∇φ = f.

Since ∇φ and �φ both vanish in a neighborhood of the origin, f is smooth with
compact support and vanishes in a neighborhood of the origin. Further, φu also
vanishes on the boundary of the ball, so φu is the solution of the Poisson’s equation
with zero boundary data thereby leading to the integral representation:

φ(x)u(x) =
∫
R/3<|ξ |<2R/3

G(x, ξ) f (ξ)dξ,

where G(x, ξ) denotes the Green’s function for the ball. Hence,
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u(x) =
∫
R/3<|ξ |<2R/3

G(x, ξ) f (ξ)dξ, |x | < R/3.

Now sinceG(x, ξ) is infinitely differentiable on the set x �= ξ , we see from the above
integral representation that u is infinitely differentiable on |x | < R/3 as asserted.
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1 Introduction

Suppose V is a reflexive Banach space which is densely and continuously imbedded
in H . Here H is a real Hilbert space, that is identified with its dual. Thus we get
V ⊂ H ⊂ V ∗, where V ∗ denotes the dual of V . Let p, q, and T be constants such that
T is positive , p ≥ 1 and p, q together satisfy 1/p + 1/q = 1. We consider the fol-
lowing spaces X = L p(0, T ; V ), X∗ = Lq(0, T ; V ∗) and W = {u ∈ X : u′ ∈ X∗}
where u′ = du

dt is the generalized derivative of u on ]0, T [, i.e. ∫ T
0 u′(t)φ(t)dt =

− ∫ T
0 u(t)φ′(t)dt for all φ ∈ C∞

0 ([0, T ]). We consider the problem: Find u ∈ W
such that

u′(t) + A(t)u(t) = f (t), a.e. t ∈ (0, T ) (1)

with
u(0) = u0, (2)

whereA(t) is a nonlinear operator fromV toV ∗ and f : [0, T ] → V ∗ is ameasurable
functional. When the condition (2) is replaced with u(0) = u(T ), then we deal with
periodic solutions of the problem (1); and when it is replaced with u(0) = −u(T )

then we deal with anti-periodic solutions of the problem (1).
A particular form of the problem (1) has been widely considered in literature, it

consists in the following problem: Find u ∈ W such that

u′(t) + Au(t) + Gu(t) = f (t), a.e. t ∈ (0, T ) (3)

with
u(0) = u0, (4)

where A : V → V ∗ is a monotone operator and G : V → V ∗ is not. Such issues
have been addressed by many authors. The problem (3) was investigated by Browder
[2], Pavel [3], Pavel and Vrabie [4] and Pazy [5] for linear operator A, whereas the
nonlinear scenario was investigated by Attouch and Damlamian [6], Crandall and
Nohel [7],Gutman [8],Hirano [9, 10], andVrabie [11, 12]. Barbu [13] established the
existence of solutions for the Cauchy problem (3)–(4) forG = 0, utilizing the theory
of monotone operators. Ahmed and Xiang [14], and Liu in [15, 16] studied (3) with
zero-initial valued condition (4) using the concept of pseudomonotone operators.

Along with periodic solutions, solvability of anti-periodic solutions to nonlinear
evolution equation in the framework of Hilbert spaces has been equally focused and
studied by various authors in the last decades. The motivation to study anti-periodic
problem mainly comes from physical problems. One may refer to [17–19] to see
how the mathematical modeling of a variety of physical processes gives rise to anti-
periodic solutions. The first study in this regard was carried out by Okochi [20].
Here the author studied the anti-periodic solutions for evolution equations using
the time-independent operator in the framework of Hilbert spaces [21, 22]. Conse-
quently, Haraux [23] established some results on existence as well as uniqueness
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of solutions to anti-periodic problems using Brouwer’s or Schauder’s fixed point
theorem. Further, Aizicovici and Pavel [24] investigated anti-periodic solutions for
second-order evolution equations in the framework of Hilbert and Banach spaces
utilizing the theory of monotone and accretive operators, while the nonmonotone
cases are considered in [25]. Chen [26] and Chen et al. [27] continued to investi-
gate the anti-periodic solutions with respect to the first-order evolution equations by
involving theorems on fixed point in a real Hilbert space H, which is separable. In
this study, the evolution equations are connected to a self-adjoint operator A, which
is both linear and dense. The domain of A is compactly embedded into H . Recently,
Liu [28] investigated the solvability of anti-periodic solutions of evolution equation
which is time-independent and nonlinear and involves perturbations of nonmonotone
type. utilizing a Browder’s surjectivity result on pseudomonotone perturbations of
maximal monotone operators in the framework of Banach spaces, that are real and
reflexive.

Implicit nonlinear evolution equation consists in the problem below:

d

dt
(Bu(t)) + A(t)u(t) = f (t), a.e. t ∈ (0, T ), (5)

B(u(0)) = B(u0), (6)

where the operator B from V to V ∗ is symmetric,linear, and positive, f is a measur-
able functional on V ∗ with domain in [0, T ], and A(tbounded) from V to V ∗ is a
nonlinear time-dependent operator, with t varying over [0, T ]. Andrews, Kuttler and
Schillor [29], Barbu [13], Barbu and Favini [30], Favini and Yagi [31], Liu [32], and
Showalter [33] studied implicit evolution equations dealing the Cauchy problem. The
operatorA involved in these works was time-invariant and maximal monotone. One
may refer to [34, 35] to gain insight on implicit evolution equations dealing with the
periodic or anti-periodic problem. Here the resolution technique relies on a conver-
gent approximation procedure and the concept of pseudomonotone perturbations for
maximal monotone mappings. We cite also Barbu and Favini [36] and DiBenedetto
and Showalter [37], dealing the case where B is nonlinear and monotone. In this
context the techniques and the hypotheses vary.

In this paper, we present some recent results on the solvability of nonlinear evo-
lution equations of implicit type by a Ky Fan minimax inequality approach. In 1972,
Ky Fan [1] investigated the similar existential results for the solutions of an inequality
that has been regarded as a remarkable outcome for nonlinear analysis. We recreate
this result in its dual form:

Theorem 1 Suppose X is a Hausdorff topological vector space with K as a
nonempty compact convex subset. Let the following conditions hold for the map
� defined from K × K to R:

(i) �(u, u) ≥ 0 for all u ∈ K;
(ii) � is quasi-convex in the second variable for each u ∈ K;
(iii) � is upper semicontinuous in the first variable for each v ∈ K;.
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Then, there exists ū ∈ K for which �(ū, v) ≥ 0 for each v ∈ K.

Ky Fan named the problem asminimax inequality, which is popularly known as equi-
librium problem, in brief (EP) nowadays in literature. This concept has a significant
role in unifying the complexmodels in the areas of variational inequalities, game the-
ory, mathematical economics, optimization, and fixed point theory to simpler form.
The appellation “equilibrium problems” appeared in the pioneering work by Blum
and Oettli [38] where they mentioned the unifying aspect of (EP) and provided var-
ious basic notions and results. This model has gained much interest in the past as it
has been utilized in various contexts as physics, chemistry, economics, engineering,
and so on; see [40] for a recent survey.

Suppose K is a nonempty set and � is bifunction from K × K to R. The Ky Fan
minimax inequality (or equilibrium problem) is formulated, in a more general way,
in the following manner:

ū ∈ K : �(ū, v) ≥ 0, for every v in K . (7)

A general formulation of equilibrium problem, known as “implicit variational prob-
lem,” that includes as special cases, fixed point problems, equilibrium problems,
Nash equilibria, variational and quasi-variational inequalities was introduced by
Mosco [41], Joly and Mosco [42] toward 1975 and later in 1979. This form of
EP is expressed as the addition of two bifunctions and was consequently named as
mixed EP. Further the authors introduced monotonicity in the context bifunctions
being motivated by the monotonicity for operator in the sense ofMinty. They derived
certain results on solvability for this type of EP. These results were established in
view of some weaker kind of assumption as compared to the results of Ky Fan [1].
The mixed equilibrium problem takes the following form,

ū ∈ K : �(ū, v) + �(ū, v) ≥ 0, for all v ∈ K , (8)

where �,� are defined from K × K to R, and K a nonempty set.
In this paper, we establish some existential results for nonlinear (implicit) evolu-

tions equations (1) and (5) by using some recent outcomes on the solution existence
of the mixed equilibrium problem (8) where � is monotone as well as maximal
monotone and the bifunction � is both pseudomonotone, quasimonotone from the
topological point of view. Here we consider the problems (1) and (5) with their
respective initial value conditions, periodic and anti-periodic conditions. The con-
cept of maximal monotonicity of bifunctions may be considered as an extended
version to equilibrium problems of the related one for nonlinear operators. Gwin-
ner [43, 44] first introduced the notion of pseudomonotonicity in the context of
bifunctions in the sense of topology and consequently the concept is inspired by a
pseudomonotone operator of topological type as per Brézis [45]. In the present work,
we adopt the notion of quasimonotonocity for bifunctions in the sense of topology.
This gives a further modification to equilibrium bifunctions of the widely known
related notions of nonlinear mappings [33, 46, 47]. In these papers quasimonotone
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mappings defined as per topological view point are considered for certain subclasses
of particular category. Further it may be noticed that there have been studies related
to pseudomonotonicity and quasimonotonicity from an algebraic point of view. The
studies in this regard have been initiated byKaramardian [48] and considered later by
many authors for analyzing problems related to equilibrium and variational inequal-
ities. One may refer to [49, 50] and the references therein for more information.

2 Preliminaries and Basic Mathematical Tools

Consider a reflexive Banach space X with X∗ as the dual. Let the space X have been
renormed in a manner such that X and its dual are locally uniformly convex. We list
some standard notations to be used in the sequel as follows,

(i) ‖ · ‖ : norms of both X and X∗,
(ii) conv(E) : the convex hull of E, for each subset E of X ,
(iii) cl(E) : closure of E in X,

(iv) F (E) : family of all finite subsets of E,

(v) 2E : family of all subsets of E,

(vi) 〈u∗, u〉 : value of u∗ at u for u ∈ X and u∗ ∈ X∗,
(vii) un → u : sequence {un}n∈N in X converges strongly to u in weak topology

σ(X, X∗) of X,

(viii) un ⇀ u : sequence {un}n∈N in X converges weakly to u in σ(X, X∗),
(ix) D(T ) := {u ∈ X : T (u) �= ∅} : domain of a multivalued mapping T : X →

2X
∗
,

(x) G(T ) := {(u, u∗) : u ∈ D(T ) and u∗ ∈ T (u)} : graph of T .

Definition 1 T : X → 2X
∗
is

(a) monotone if, 〈u∗ − v∗, u − v〉 ≥ 0 for any u, v ∈ D(T ), and for all u∗ ∈ T (u)

and v∗ ∈ T (v);
(b) maximal monotone if, 〈u∗ − v∗, u − v〉 ≥ 0 for all (v, v∗) in G(T ) implies u in

D(T ) and u∗ in T (u).

Consider J : X → 2X
∗
to be the duality mapping, which is defined as

J (x) := {
x∗ ∈ X∗ : 〈x∗, x〉 = ‖x∗‖2 and ‖x∗‖ = ‖x‖} .

It follows from Hahn-Banach theorem that, J (x) is nonempty for any x in X . We
may predict that the duality mapping J is continuous, single-valued, monotone and
satisfies the (S+) condition as we have initially assumed that both X and X∗ are
locally uniformly convex, see e.g. [51, Proposition 32.22].

Definition 2 The mapping T : X ⊃ D(T ) → X∗ is,
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(i) pseudomonotone as per Brézis (in brief B-PMO) if,

lim inf〈T (un), un − v〉X ≥ 〈T (u), u − v〉X , for all v in X;

where the sequence {un}n∈N inD(T ) satisfiesun ⇀ u in X and lim sup〈T (un), un −
u〉 ≤ 0,

(ii) quasimonotone as per topological point of view (in brief T-QMO) if,

lim sup
n→∞

〈T (un), un − u〉X ≥ 0;

where the sequence {un}n∈N inD(T ) satisfies un ⇀ u in X ,
(iii) demicontinuous if, for un → u in X, T (un) ⇀ Tu in X∗;
(iv) hemicontinuous (or, upper hemicontinuous) if, t �→ 〈T (u + tv),w〉X is contin-

uous (or, upper semicontinuous) on [0, 1], for all u, v, w in X ,;
(v) bounded if, bounded sets are mapped into bounded sets by T ;
(vi) fulfills the (S+) condition if, for any {un}n∈N inD(T ) with un ⇀ u ∈ X having

the property, lim sup〈T (un), un − u〉 ≤ 0, we have un → u.

Remark 1 Consider T : X ⊃ D(T ) → X∗ to be single-valued

(i) T is T-QMO, if it is monotone.
(ii) T is T-QMO, if it is B-PMO, but in general the converse may not be true. Infact,

for the operator T : X −→ X∗ given by

T (u) =
{
0, ‖u‖ < 1,
J (u), ‖u‖ = 1,

we prove that T is monotone. For u, v in X , we have the following choices:

– If ‖u‖ < 1 and ‖v‖ < 1, it is obvious that T is monotone.
– If ‖u‖ = 1, ‖v‖ < 1, we get

〈T (u) − T (v), u − v〉 = 〈J (u), u − v〉 = ‖u‖2 − 〈J (u), v〉
≥ ‖u‖2 − ‖u‖‖v‖ = 1 − ‖v‖ > 0.

– If both the norms become equal to 1, then 〈T (u) − T (v), u − v〉 = 〈J (u) −
J (v), u − v〉 ≥ 0.

Thus, T is monotone and as a consequence it is T-QMO. Next, we proceed
to show that T is not B-PMO. Take u in D(T ) with norm equal to 1 be fixed
and consider un = n−1

n u, n ≥ 1. Then un → u, therefore un ⇀ u. But, we have
〈T (un), un − u〉 = 0. Thus, lim sup〈T (un), un − u〉 = 0 ≤ 0. Now, suppose v

to be 0, then lim inf〈T (un), un − v〉 = 0, ahd hence

0 = lim inf〈T (un), un − v〉 < 1 = 〈T (u), u − v〉.
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So T is not B-PMO.

Now let us revisit generalized pseudomonotonicity with reference to the domain of
a linear maximal monotone operator, see [52, Definition 2.151].

Definition 3 Consider L : D(L) ⊂ X −→ X∗ to be maximal monotone mapping,
that is densely defined, and linear. Amapping T from X to X∗ is called L-generalized
pseudomonotone (or L-GPMO) if for a sequence {un}n∈N in D(L) satisfying un ⇀

u, L(un) ⇀ L(u), lim sup〈T (un), un − u〉X ≤ 0, we have

lim inf〈T (un), un − v〉X ≥ 〈T (u), u − v〉X for every v in X.

The L-generalized quasimonotonicity for a mapping T follows similarly.
Next, we recollect some concepts regarding bifunctions, studied earlier [38, 44].

Definition 4 Consider ∅ �= K ⊂ X to be closed as well as convex. The bifunction
� defined from K × K to R is,

(i) monotone if, �(x, y) + �(y, x) ≤ 0, for all x, y in K ;
(ii) pseudomonotone as per of Brézis (in short B-PMB) if, for any sequence (un)n∈N

in K satisfying un ⇀ u in X and lim inf �(un, u) ≥ 0, we obtain
lim sup �(un, v) ≤ �(u, v) for each v in K ;

(iii) quasimonotone in the topological sense (in short T -QMB) if, for {un}n∈N in K
satisfying un ⇀ u ∈ K , we have

lim inf
n→∞ �(un, u) ≤ 0.

(iv) hemicontinuous (respectively upper hemicontinuous) if, t �→ �(tu + (1 − t)v,w)

is continuous (respectively upper semicontinuous) on [0, 1] for every u, v, w in
K ,

(v) fulfills the (S+) condition whenever, for {un}n∈N in K satisfying un ⇀ u ∈ K
and lim inf �(un, u) ≥ 0 we get un → u.

Remark 2 (i) If the real-valued bifunction �(·, v) defined on X × X is upper
semicontinuous for the weak topology σ(X, X∗), then the bifunction is B-PMB.

(ii) If the operator T from X to X∗ is B-PMO (resp., satisfies the (S+) condition,
T -QMO), then the � : X × X −→ R defined by �(u, v) = 〈T (u), v − u〉X is
B-PMB (resp., satisfies the (S+) condition, T -QMB).

(iii) If the bifunctions �1,�2 defined from K × K to R are B-PMB for which
�1(u, u) ≤ 0 and�2(u, u) ≤ 0 for all u in K , with X ⊃ K is closed and convex,
then, �1 + �2 is B-PMB, see [53].

(iv) If � is T -QMB, then for {un}n∈N in K satisfying un ⇀ u ∈ X , we get
lim sup�(un, u) ≤ 0. In fact, there exists a subsequence {unk }k∈N of {un}n∈N
for which lim sup�(un, u) = lim�(unk , u). Since unk ⇀ u and � is T -QMB,
we obtain lim�(unk , u) = lim inf �(unk , u) ≤ 0. Hence, lim sup�(un, u) ≤ 0.
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(v) The theory of pseudomonotone operators as per Brézis and its extension to
bifunctions combines the monotonicity with the arguments on compactness, for
example the prototype of a pseudomonotone mapping as per Brézis is the sum
of a monotone hemicontinuous operator and a strongly continuous operator. The
novelty of pseudomonotonicity and the (S+) condition lies in the fact that these
conditions are invariant with regard to compact perturbations, see [51, Chapter
27], [54, p. 365].

Now we note the interesting properties as follows.

Proposition 1 Suppose K ⊂ X is nonempty and closed and the real-valued bifunc-
tion � defined on K × K satisfies �(u, u) = 0 for every u in K . Consider ε greater
than 0 and J from X to X∗ to be the duality mapping. If � is B-PMB, then the
bifunction �ε from K × K to R defined as

�ε(u, v) := �(u, v) + ε〈J (u), v − u〉

fulfills the (S+) condition.

Proof Consider {un}n∈N in K satisfying un ⇀ u in K and lim inf �ε(un, u) ≥ 0.
Next to show that un → u in K . Since

lim inf �ε(un, u) ≥ 0,

it follows that
lim inf[�(un, u) + ε〈J (un), u − un〉] ≥ 0.

Thus,
lim inf �(un, u) + lim sup ε〈J (un), u − un〉 ≥ 0. (9)

Since, J is monotonicity, we obtain,

〈J (un), u − un〉 ≤ 〈J (u), u − un〉.

Therefore,
lim sup〈J (un), u − un〉 ≤ lim sup〈J (u), u − un〉 = 0.

Hence, from relation (9), we obtain

lim inf �(un, u) ≥ 0.

As � is B-PMB, we have

lim sup�(un, v) ≤ �(u, v), for each v in K .

Specifically, putting v = u in the above step, we get



Nonlinear Evolution Equations by a Ky Fan Minimax Inequality Approach 15

lim sup�(un, u) ≤ 0. (10)

Now, since
lim inf[�(un, u) + ε〈J (un), u − un〉] ≥ 0,

we have
lim sup�(un, u) + ε lim inf〈J (un), u − un〉 ≥ 0.

Considering the relation (10), we obtain

lim inf〈J (un), u − un〉 ≥ 0.

Therefore,
lim sup〈J (un), un − u〉 ≤ 0.

As J fulfills the (S+) condition, we have un → u, which proves the result. �

Proposition 2 Suppose ∅ �= K ⊂ X is closed and both the bifunctions �, � are
defined from K × K to R. If � is T-QMB and � fulfills the (S+) condition, then the
same condition is satisfied by the sum of both the bifunctions, that is � + �.

Proof Consider a sequence {un} in K satisfyingun ⇀ u in K and lim inf[�(un, u) +
�(un, u)] ≥ 0. Let {unk }k∈N be a subsequence of {un}, then unk ⇀ u and
lim inf[�(unk , u) + �(unk , u)] ≥ 0. Therefore,

lim inf �(unk , u) + lim sup�(unk , u) ≥ 0. (11)

Since lim inf �(unk , u) ≤ 0, it can be deduced from (11) that lim sup�(unk , u) ≥ 0.
Thus, we obtain lim�(unki , u) ≥ 0 for a subsequence {unki }i∈N of {unk }. The (S+)

condition of �, leads to the fact that unki → u. As a consequence, we can guarantee
that each {unk } admits a subsequence that converges strongly to u. Hence un → u,
which completes the proof. �

Definition 5 Suppose L : D(L) ⊂ X −→ X∗ is a maximal monotone operator
which is linear, and densely defined, and K ⊂ X is closed and convex. A bifunc-
tion � from K × K to R is L-generalized pseudomonotone (for short, L-GPMB)
if for any sequence {un}n∈N in D(L) ∩ K satisfying un ⇀ u, Lun ⇀ Lu and
lim inf �(un, u) ≥ 0, we get

lim sup�(un, v) ≤ �(u, v), for each v ∈ K .

Following a similar manner, wemay define L-generalized quasimonotone bifunction
(for short, L-GQMB).

In the definition, given below, we recollect the notion of maximal monotonicity
as studied in Blum and Oettli [38] for bifunctions.
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Definition 6 Suppose K ⊂ X is nonempty closed and convex and� is a real-valued
bifunction on K × K , such that �(u, u) = 0, for all u in K . � is considered as
maximal monotone (for short, BO-maximal monotone) if, for each u in K and for
each real-valued convex function ϕ on K with ϕ(u) = 0 one has,

�(v, u) ≤ ϕ(v) for all v in K =⇒ 0 ≤ �(u, v) + ϕ(v) for all v in K .

Remark 3 In an attempt to broaden the concept of maximal monotonicity of opera-
tors to bifunctions, themaximalmonotonicity concept for bifunctionswas introduced
by Blum and Oettli [38]. A different notion for monotone bifunction of maximal type
has been adopted in [39]. In order to have an idea for the two different perceptions
and some other associated properties, one may see [39].

The following propositions present some characteristics of maximal monotone
bifunctions.

Proposition 3 Suppose T is an operator defined from X to X∗ and �T is a real-
valued bifunction defined from X × X toR such that �T (u, v) := 〈T (u), v − u〉 for
all u, v in X. We obtain the characterizations as follows

(a) �T is monotone, BO-maximal monotone, when T is hemicontinuous and mono-
tone.

(b) If the functions ϕ in Definition 6, which are convex get confined to ϕ(v) =
〈−ξ, v − u〉; ξ ∈ X∗, then

Maximal monotonicity of T implies monotonicity and BO-maximal monotonicity of�T

(c) For �T to be BO-maximal monotone and monotone, the operator T is maximal
monotone.

Proof (a) Since T is hemicontinuous as well as monotone, �T is both hemicon-
tinuous and monotone. Suppose u is in X and ϕ is a real-valued convex function
satisfying ϕ(u) = 0 and �T (v, u) ≤ ϕ(v) for each v in X . For t ∈ (0, 1], assign
vt := tv + (1 − t)u.

Now,
0 = �T (vt , vt ) ≤ t�T (vt , v) + (1 − t)�T (vt , u)

≤ t�T (vt , v) + (1 − t)ϕ(vt )

≤ t�T (vt , v) + (1 − t)tϕ(v).

(12)

Thus,�T (vt , v) + (1 − t)ϕ(v) ≥ 0. As t tends to 0, we get�T (u, v) + ϕ(v) ≥ 0 for
each v in X . The statement (b) can be proved easily. For proving (c), monotonicity of
T follows from that of �T . Suppose (u∗, u) in X∗ × X is such that 〈T (v) − u∗, v −
u〉 ≥ 0. We proceed to prove that u∗ = T (u). As 〈T (v) − u∗, v − u〉 ≥ 0, we get
〈T (v), u − v〉 ≤ 〈−u∗, v − u〉. Now put ϕ(v) = 〈−u∗, v − u〉, then ϕ(u) = 0 and
�T (v, u) ≤ ϕ(v) for each v in X . As �T is BO-maximal monotone, �T (u, v) +
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ϕ(v) ≥ 0 for each v in X . Thus, 〈T (u) − u∗, v − u〉 ≥ 0 for each v in X , that gives
u∗ = T (u). �

Proposition 4 Suppose K is both closed and convex and for � : K × K → R

�(u, u) ≥ 0, for each u in K . Let �(u, ·) be upper hemicontinuous and convex
for all u ∈ K, then � is BO-maximal monotone.

Proof Consider u ∈ K and a convex function ϕ : K → R be such that ϕ(u) = 0
and �(v, u) ≤ ϕ(v) for each v ∈ K . Let us assign vt := tv + (1 − t)u ∈ K for t in
(0, 1]. By proceeding in a similar manner as in (12), we get �(u, v) + ϕ(v) ≥ 0 for
each v in K . �

We give the following theorems which are key tools for the study presented in
this paper.

Theorem 2 [55] Suppose ∅ �= K ⊂ X is convex and closed, where X is a Banach
space and �,� are two real-valued bifunctions on K × K that satisfy �(u, u) =
�(u, u) = 0 for each u in K . Let J : X −→ X∗ be the duality mapping. We assume
the following

(i) � is monotone, BO-maximal monotone and weakly lower semicontinuous in the
second argument;

(ii) both � and � are convex in the second argument;
(iii) � is B-PMB;
(iv) For each N ∈ F (K ) and v in K , u �−→ �(u, v) is upper semicontinuous on

conv(N );
(v) (Coercivity) ∃ a nonempty weakly compact subset W , and for each ε > 0 (small

enough), ∃ a convex and weakly compact subset Bε of K such that for all u in
K \ W, one obtains,

∃v ∈ Bε : �(u, v) + ε〈J (u), v − u〉 < �(v, u).

Then, ū ∈ K satisfies �(ū, v) + �(ū, v) ≥ 0, for each v in K .

Theorem 3 [55] Suppose ∅ �= K ⊂ X is convex and closed, where X is a Banach
space,�,�,� : K × K → Rarebifunctions satisfying�(u, u) = �(u, u) = �(u, u) =
0 for all u in K . Consider J : X −→ X∗ to be the duality mapping. Let us assume
the following

(i) � is monotone, BO-maximal monotone and weakly lower semicontinuous in the
second argument;

(ii) �, � and � are convex in the second argument;
(iii) � is T-QMB;
(iv) For every fixed v in K , � is upper semicontinuous in the first argument;
(v) � is B-PMB;
(vi) For each N inF (K ) and v in K ,� is upper semicontinuous in the first argument

on conv(N );
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(vii) (coercivity) ∃ a nonempty weakly compact subset W , and for every ε > 0 (small
enough), ∃ a convex and weakly compact subset Bε of K such that for every u
in K \ W, ∃ v in Bε satisfying

�(u, v) + �(u, v) + ε〈J (u), v − u〉 < �(v, u).

Then, ∃ ū in K such that �(ū, v) + �(ū, v) + �(ū, v) ≥ 0, for all v in K .

Remark 4 The coercivity condition (v) in Theorem 2 and the coercivity condition
(vii) in Theorem 3 can be removed, when K is compact. If X is a reflexive Banach
space with the weak topology σ(X, X∗), these coercivity conditions are satisfied
with the assumption that ∃v0 in K such that �ε(u, v0)/‖u − v0‖ → −∞, when
‖u − v0‖ → +∞ uniformly in ε > 0, where the bifunction �ε takes respectively
the following forms: �ε(u, v) := �(u, v) + ε〈J (u), v − u〉 for Theorem 2, and
�ε(u, v) := �(u, v) + �(u, v) + ε〈J (u), v − u〉 for Theorem 3, see [55, Remark
2.5] for details.

3 Existence Results for Nonlinear Evolution Equations

We now present some existential results for the solutions of the nonlinear evolution
problem (1) by an approach involving the equilibrium problem theory.We emphasize
on the anti-periodic solution existence of the evolution problem (1), where respec-
tivelyA(t) is a time-dependent pseudomonotone and quasimonotone operators from
the topological point of view. Adopting a similar type approach one may analyze
problem (1) with zero-initial condition as well as the periodic problem.

The problem under consideration is as follows

u′(t) + A(t)u(t) = f (t), a.e. t ∈ [0, T ], u(0) = −u(T ). (13)

Here the framework of study is the space V , which is a real reflexive Banach space.
In the given problem u′ represents the generalized derivative of u on ]0, T [, where
T > 0 andA(t) is defined from V to its dual V ∗, where as f is defined from [0, T ]
to V ∗. Along with the reflexivity property, another property that is imposed on V is
that it is densely and continuously embedded into H, which is a separable Hilbert
space.

Consequently, one may be able to observe the evolution triple, formed as follows
V ⊂ H ⊂ V ∗, see [51, p.416].

Next we proceed to reformulate the problem as a mixed equilibrium problem
on a set of suitable type. In order to carry out the reformulation, we put forward
the required notations and preliminaries in connection to the nonlinear evolution
equations, see e.g. [51, Chapter 30], [10, 28, 52] and the references therein.
Let us consider X = L p(0, T ; V ), X∗ = Lq(0, T ; V ∗), where 1 < p < +∞,
and 1/p + 1/q = 1. We denote the norms of V and H by ‖ · ‖V and ‖ · ‖H ,
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respectively. Moreover, the notion 〈x, y〉 refers the duality pairing between x in
V ∗ and y in V , and in the case, where x, y are in H , 〈x, y〉 is the usual inner
product in H, which is a Hilbert space. Now the pairing between X = L p(0, T ; V )

and X∗ = Lq(0, T ; V ∗) is given as 〈〈·, ·〉〉. Here J from X∗ to X denotes the
duality mapping, that is, for v in X∗, J (v) = {u ∈ X : 〈〈u, v〉〉 = ‖u‖2X = ‖v‖2X∗ }.
Next utilizing the Asplund’s renorming theorem [56, Theorem 1.105], let us
suppose J to be both single-valued demicontinuous and monotone mapping,
[13, Theorem 1.2]. We define W = {u ∈ X : u′ ∈ X∗}. Here u′ denotes the gen-
eralized derivative. Taking L(u) = u′ and restricting the generalized derivative
to D(L) = {u ∈ X : u′ ∈ X∗ and u(0) = −u(T )} = {u ∈ W : u(0) = −u(T )}
we define a linear operator L : D(L) ⊂ X → X∗ as 〈〈L(u), v〉〉 =∫ T
0 〈u′(t), v(t)〉 dt for all v in X . It may be observed that W is a Banach
space with norm ‖u‖W = ‖u‖X + ‖u′‖X∗ and is real, separable and reflexive.
Further the embedding W ⊂ C([0, T ];H) is continuous and the subset D(L) of
W is closed and linear. D(L) is a reflexive Banach space with the graph norm
‖u‖L = ‖u‖X + ‖u′‖X∗ (see [52]). In this connection, Liu [28] established that the
operator L defined from D(L) ⊂ X to X∗ is a closed, maximal monotone operator
which is densely defined.

Now consider the operator Â associated with A as

Â(u)(t) = A(t)u(t), t in [0, T ],

It can be connected to the corresponding Nemytskij operator which is generated
by the operator-valued function t �→ A(t). Hence, the problem under consideration
(13) is as follows

u ∈ D(L) : L(u) + Â(u) = f in X∗. (14)

We now assume the following in the context of the time-dependant operator A(t)
defined from V to V ∗.

[H1] ‖A(t)(u)‖V ∗ ≤ k0[ ‖u‖p−1
V + α0(t) ] for all u in V and t ∈ [0, T ] with some

positive constant k0 and α0 ∈ Lq(]0, T [);
[H2] For t ∈ [0, T ] and v in V , the mapping u �→ 〈A(t)(u), v − u〉 is upper semi-

continuous on conv(D) for every finite subset D inD(L);
[H3] The function t �→ 〈A(t)(u), v〉 is measurable on the closed interval [0, T ] for

all u, vin V ;
[H4] 〈A(t)(u), u〉 ≥ k1[ ‖u‖p

V − α1(t) ] for all u in V and t in [0, T ] with some pos-
itive constant k1 and some function α1 in L1([0, T ]).

We focus here to investigate problem (14) by the equilibrium problem given below:

Find ū ∈ D(L) satisfying �(ū, v) + �(ū, v) ≥ 0, for all v ∈ D(L), (15)

where � and � are defined for u, v inD(L) by

�(u, v) = 〈〈L(u), v − u〉〉 and �(u, v) = �1(u, v) + �2(u, v)
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with

�1(u, v) = 〈〈Â(u), v − u〉〉 and �2(u, v) = 〈〈 f, u − v〉〉.

The bifunction�1 is given by:�1(u, v) = ∫ T
0 ψt (u(t), v(t))dt hereψt is the bifunc-

tion defined for z, w ∈ V byψt (z, w) = 〈A(t)(z), w − z〉. According to assumption
[H3], the function t �→ ψt (z, w) is measurable on [0, T ].

From Definition 3, let us recall that for a bifunction � : D(L) × D(L) → R,
here D(L) is equipped with the graph norm ‖u‖L = ‖u‖X + ‖u′‖X∗ , the concept
of pseudomonotonicity in the sense of Brézis (or that � is B-PMB) with respect
to D(L) is traduced as the following: If for any {un}n∈N ⊂ D(L) with un ⇀ u in
X , Lun ⇀ Lu in X∗ and lim inf �(un, u) ≥ 0, then lim sup�(un, v) ≤ �(u, v) for
every v ∈ D(L). The concept of T-QMB along with the condition (S+) for a bifunc-
tion is defined with regard toD(L) in a comparatively similar manner.

Next, we first establish the existence of solutions to (15), followed by the study
on the existence of solutions to (14) from the density of D(L) in X .

We proceed by deriving some preliminary theoretical results in this regard.

Lemma 1 Let the assumptions [H1] and [H4] hold. Then for each z, w ∈ V and
t ∈ [0, T ], there exists θ ∈ L1([0, T ]) independent from z such thatψt (z, w) ≤ θ(t).

Proof By [H1] and [H4], it follows that for each z, w in V and t in [0, T ]

ψt (z, w) ≤ ‖A(t)z‖V ∗‖w‖V + k1(α1(t) − ‖z‖p
V )

≤ k0(‖z‖p−1
V + α0(t))‖w‖V + k1(α1(t) − ‖z‖p

V )

≤ ‖z‖p−1
V (k0‖w‖V − k1‖z‖V ) + k0α0(t)‖w‖V + k1α1(t).

• For k0‖w‖V − k1‖z‖V ≤ 0, we get ψt (z, w) ≤ k0α0(t)‖w‖V + k1α1(t),
• For k0‖w‖V − k1‖z‖V > 0, we get

‖z‖p−1
V < (k0/k1)

p−1‖w‖p−1
V

and
‖w‖V ‖z‖p−1

V < (k0/k1)
p−1‖w‖p

V .

It follows

ψt (z, w) ≤ k0(k0/k1)p−1‖w‖p
V + k0α0(t)‖w‖V + k1α1(t) − k1‖z‖p−1

V

≤ k0(k0/k1)p−1‖w‖p
V + k0α0(t)‖w‖V + k1α1(t),

and hence follows the result. �

Lemma 2 Let the assumption [H2] hold. Then, u → �1(u, v) is upper semicontin-
uous on conv(D) for every D ⊂ D(L), where D is finite.
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Proof Suppose D ⊂ D(L) is finite. Now we may deduce that if for a sequence
{un}n∈N in conv(D) un ⇀ u ∈ X , then un → u in conv(D) as the weak and strong
convergence coincide on conv(D). This leads to the fact that, lim

∫ T
0 ‖un(t) −

u(t)‖pdt = 0. Thus, there is a subsequence {unk }k∈N such that unk (t) → u(t) for
a.e. t ∈ [0, T ]. Now by the assumption [H2] we get that for all z in X ,

lim supψt (unk (t), z(t)) ≤ ψt (u(t), z(t)).

On the other hand, fromLemma 1, ∃ θ ∈ L1([0, T ]) satisfyingψt (u(t), z(t)) ≤ θ(t).
Hence, we get by Fatou’s lemma

lim sup
∫ T

0
ψt (unk (t), z(t))dt ≤

∫ T

0
lim supψt (unk (t), z(t))dt

≤
∫ T

0
ψt (u(t), z(t))dt.

The inequality results by using a contradiction argument. �

Lemma 3 Let the assumptions [H1] and [H4] hold. Suppose the operator A(t)
defined from V to V ∗ is demicontinuous for all t in the interval [0, T ], then u →
�1(u, v) is upper semicontinuous.

Proof Suppose un → u ∈ X , i.e., lim
∫ T
0 ‖un(t) − u(t)‖pdt = 0. So we will have a

subsequence {unk }k∈N such that unk (t) → u(t) for almost all t in [0, T ]. The demicon-
tinuity of A(t) implies, A(t)unk (t) ⇀ A(t)u(t) a.e. t in [0, T ]. Thus, for arbitrary
v ∈ X

ψt (unk (t), v(t)) → ψt (u(t), v(t)) a.e. t in [0, T ].

As per Lemma 1, applying the dominated convergence theorem, we may obtain
�1(unk , v) → �1(u, v).Weprove the convergence for all the sequencebyproceeding
through contradiction method. Thus, the bifunction �1 is continuous with respect to
the first argument and hence upper semicontinuous. �

We give the following Hirano’s type lemma.

Lemma 4 Let the assumptions [H1], [H3] and [H4] hold. If A(t) from V to V ∗ is
B-PMO for all t in [0, T ], then � is B-PMB with respect toD(L).

Proof Consider u, v in D(L). Then we can write, �(u, v) = �1(u, v) + �2(u, v).
Here u → �2(u, v) is weakly upper semicontinuous, then it becomes B-PMB. In
addition, as the two B-PMB bifunctions also add up to a B-PMB bifunction (see
Remark 2 (iii)), we have only to prove that �1 is B-PMB with reference to D(L).
Now consider, {un}n∈N ⊂ D(L) such that un ⇀ u in X , L(un) ⇀ L(u) in X∗ and
lim inf �1(un, u) ≥ 0. Next, we prove that

lim sup�1(un, v) ≤ �1(u, v), for all v ∈ D(L).
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Now, in view of the evolution triple (see [51]) we may write for any n in N, un(t) =∫ t
0 u

′
n(s)ds, where un : [0, T ] → V is absolutely continuous. Also for every z in V ,

which is a subset of H , we obtain

〈un(t), z〉 =
〈∫ t

0
u′
n(s)ds, z

〉

=
∫ t

0

〈
u′
n(s), z

〉
ds.

As L(un) ⇀ L(u) in X∗, that is, u′
n ⇀ u′ in X∗, this gives

lim〈un(t), z〉 = lim
∫ t

0
〈u′

n(s), z〉ds =
∫ t

0
〈u′(s), z〉ds

=
〈∫ t

0
u′(s)ds, z

〉

= 〈u(t), z〉,

thus, un(t) ⇀ u(t) in V for each t in [0, T ].
Now we set hn(t) := ψt (un(t), u(t)) for t ∈ [0, T ]. We proceed to establish that

lim sup
∫ T

0
hn(t)dt ≤ 0. (16)

Lemma 1 implies that, there is a non negative function θ in L1(]0, T [) for which

hn(t) ≤ θ(t), for all t in [0, T ]. (17)

Next, using Fatou’s lemma, we have

lim sup
∫ T

0
hn(t)dt ≤

∫ T

0
lim sup hn(t)dt. (18)

Suppose on the contrary that∃ t0 ∈ [0, T ] such that lim sup hn(t0) > 0. Then,we have
lim hnk (t0) > 0 for a subsequence hnk . Using [H1] and [H4], we prove that {unk (t0)}
remains bounded in V . Hence, ∃ unk , such that unk (t0) ⇀ η for some η in V . Further,
utilizing the concept of evolution triple (see [51]) we may have un(t) = ∫ t

0 u
′
n(s)ds

for any n in N, where un defined from [0, T ] to V ∗ is absolutely continuous. For
every v in V which further is a subset of H , we have

〈un(t), v〉 =
〈∫ t

0
u′
n(s)ds, v

〉

=
∫ t

0

〈
u′
n(s), v

〉
ds.

As L(un) ⇀ L(u), that is, u′
n ⇀ u′ in X∗, we get
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lim〈un(t), v〉 = lim
∫ t

0

〈
u′
n(s), v

〉
ds =

∫ t

0

〈
u′(s), v

〉
ds

=
〈∫ t

0
u′(s)ds, v

〉

= 〈u(t), v〉.

Thus, un(t) ⇀ u(t) for every t in [0, T ], it follows that η = u(t0). As A(t0) is B-
PMO, we get

lim supψt0(unk (t0), v) ≤ ψt0(u(t0), v), for every v in V .

Specifically, for v = ut0 , we get lim sup hnk (t0) ≤ 0, which results in a contradiction.
Hence,

lim sup hn(t) ≤ 0, for all t in [0, T ], (19)

and relation (18) implies (16). Thus, from both (18) and the fact that
lim inf �1(un, u) ≥ 0, we have

lim�1(un, u) = lim
∫ T

0
ψt (un(t), u(t))dt = lim

∫ T

0
hn(t)dt = 0.

Now setting z+(t) = max{z(t), 0} and z−(t) = z+(t) − z(t), we get

lim sup
∫ T
0 |hn(t)|dt = lim sup

∫ T
0 h+

n (t) + h−
n (t)dt

= lim sup
∫ T
0 2h+

n (t) − hn(t)dt

= 2 lim sup
∫ T
0 h+

n (t)dt.

Again (17) implies that 0 ≤ h+
n (t) ≤ θ(t) for all t in [0, T ] and from (19) we have,

lim h+
n (t) = 0 for all t in [0, T ]. Thus, we have lim

∫ T
0 h+

n (t)dt = 0, as per the

dominated convergence theorem and hence, lim sup
∫ T
0 |hn(t)|dt = 0, that is, hn →

0 in L1(]0, T [). Hence, ∃ a subsequence {hnk } and Q ⊂ [0, T ] with meas(Q) = 0
satisfying hnk (t) → 0 for every t in [0, T ] \ Q. Let t0 ∈ [0, T ] \ Q, then hnk (t0) =
ψt0(unk (t0), u(t0)) → 0, and as before using [H1] and [H4] we prove that {unk (t0)}
becomes bounded and unk (t0) ⇀ u(t0). Since A(t0) is B-PMO, it follows that

lim supψt0(unk (t0), z) ≤ ψt0(u(t0), z), for all z ∈ V .

As a consequence, for an arbitrary v in X , we have

�1(u, v) =
∫ T

0
ψt (u(t), v(t))dt ≥

∫ T

0
lim supψt (unk (t), v(t))dt.

From Lemma 1, we may use Fatou’s lemma to have
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�1(u, v) ≥ lim sup
∫ T

0
ψt (unk (t), v(t))dt.

Hence, �1(u, v) ≥ lim sup�1(un, v) and the result follows. �

Lemma 5 Assume [H1], [H3] and [H4] hold. If A(t) : V → V ∗ is T-QMO for all
t in [0, T ], then � is T-QMB with reference to D(L).

Proof We have to show that �1(u, v) = ∫ T
0 ψt (u(t), v(t))dt is T-QMB with refer-

ence toD(L). Now consider, {un}n∈N inD(L) satisfying un ⇀ u ∈ X and L(un) ⇀

L(u) ∈ X∗. We have from the proof of Lemma 4 that un(t) ⇀ u(t) in V for all t in
[0, T ]. Further, from Lemma 1, we have, ∃ a non negative function θ ∈ L1([0, T ])
for which

ψt (un(t), u(t)) ≤ θ(t), for all t ∈ [0, T ].

Thus, using Fatou’s lemma, we get

lim sup
∫ T

0
ψt (un(t), u(t))dt ≤

∫ T

0
lim supψt (un(t), u(t))dt. (20)

Suppose ∃ t0 ∈ [0, T ] for which

lim supψt0(un(t0), u(t0)) > 0.

Thus, for a subsequence {unk } we obtain

limψt0(unk (t0), u(t0)) > 0. (21)

We obtain from [H1] and [H4] that {unk (t0)} is bounded in V . Thus, for a further
subsequence unk (t0) ⇀ u(t0) ∈ V . As A(t0) T-QMO, we get

lim inf ψt0(unk (t0), u(t0)) ≤ 0,

which contradicts (21). Thus, lim supψt (un(t), u(t)) ≤ 0 for all t in [0, T ]. There-
fore, from (20) we get that

lim sup
∫ T

0
ψt (un(t), u(t))dt ≤ 0.

Hence, lim inf �1(un, v) = lim inf
∫ T
0 ψt (un(t), u(t))dt ≤ 0 and the proof is com-

plete. �

By applying Theorem 2 and using Lemmas 2, 3 and 4, one has the following
result.
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Theorem 4 [55] Suppose the previous assumptions [H1]-[H4] hold and that
A(t) : V → V ∗ is B-PMO for each t ∈ [0, T ]. Then, (15) has at least one solu-
tion.

As a consequence, one has the following result on the solvability of the nonlinear
evolution equation (13).

Theorem 5 [55] Suppose that [H1]-[H4] are satisfied and the operator A(t) from
V to V ∗ is B-PMO for all t in [0, T ]. Then for f in X∗, ∃ a solution u to the problem
(13), satisfying u ∈ C([0, T ]; H) ∩ X and u′ ∈ X∗.

Proof This may be obtained as an immediate corollary of Theorem 4, as D(L) is
dense in X and W is continuously embedded in C([0, T ]; H) (see [52]). �

For the situation, whereA(t) is T-QMO for each t in [0, T ], the following result
gives an approximated solution of the nonlinear evolution equation (13). It is obtained
by applying [55, Theorem 2.2] and using Lemma 5.

Theorem 6 [55] Let the assumptions [H1], [H3] and [H4] hold andA(t) : V → V ∗
beT-QMOanddemicontinuous for each t ∈ [0, T ]. Then for f ∈ X∗ and ε > 0, there
exists uε ∈ C([0, T ]; H) such that u′

ε ∈ X∗ and

u′
ε(t) + A(t)(uε)(t) + εJ (uε(t)) = f (t) for a.e. t ∈ [0, T ], uε(0) = −uε(T ).

By relaxing the assumptions in the previous theorem, one has the following result.

Theorem 7 [55] Let the assumptions [H1], [H3] and [H4] hold andA(t) : V → V ∗
be T-QMO and weakly continuous for each t ∈ [0, T ]. Then for f ∈ X∗, there exists
u ∈ C([0, T ]; H) such that u′ ∈ X∗ and

u′(t) + A(t)u(t) = f (t) for a.e. t ∈ [0, T ], u(0) = −u(T ).

By applying Theorem 3, one has the following existence result.

Theorem 8 [55] Let the operatorA(t) from V to V ∗ be B-PMO for each t in [0, T ]
and satisfy the conditions [H1]-[H4]. Suppose G(t) from V to V ∗ is T-QMO, weakly
continuous for each t in [0, T ] and satisfies [H1], [H3]. Furthermore, assume that
the following condition holds

[H5] 〈G(t)u, u〉 ≥ −k2‖u‖p
V − α2(t), for all u ∈ V, t ∈ [0, T ]

with some k2 > 0 and α2 ∈ L1(0, T ). Then, the evolution equation

{
u′(t) + A(t)u(t) + G(t)u(t) = f (t), for a.e. t ∈ [0, T ],
u(0) = −u(T ),

admit a solution u ∈ D(L) for any given f ∈ X∗.
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Remark 5 Consider the two linear operators Li : D(Li ) ⊂ X → X∗, i = 1, 2
defined by

L1(u) = u′, D(L1) = {u ∈ X : u′ ∈ X∗ and u(0) = 0},
L2(u) = u′, D(L2) = {u ∈ X : u′ ∈ X∗ and u(0) = u(T )}.

From [51, Proposition 32.10], L1 and L2 aremaximalmonotone operators. It follows,
from a characterization of linear maximal monotone operators due to Brézis (see [51,
Theorem 32.L]), thatD(Li ) is dense in X and Li is graph closed, i = 1, 2. Therefore,
the approach developed in this section may be used for studying the existence of
solutions of the nonlinear evolution problem (1) with zero-initial condition as well
the periodic problem.

4 Results on Solvability for Nonlinear Implicit Evolution
Equations

In this section,we assumeV to be a realHilbert spacewithV ∗ topological dual,where
B : V → V ∗ is a positive linear operator, which is both bounded and symmetric,
A(t) : V → V ∗ is a time-dependent operator of nonlinear type, and f : [0, T ] → V ∗
is a functional operator. We consider the implicit Cauchy problem as follows

{
d
dt (Bu(t)) + A(t)(u(t)) = f (t), a.e. t ∈ (0, T ),

B(u(0)) = B(u0).
(22)

We always assume the existence of a real Hilbert space H for which V ⊂ H ⊂
V ∗, the embeddings being continuous and dense. Thus we get an evolution triple
V ⊂ H ⊂ V ∗ (see [51, Chapter 13]). The inner product in H and the norm in a
Banach spaceU are denoted by the symbols (·, ·) and ‖ · ‖U respectively. The symbol
〈·, ·〉U corresponds to the duality pairing between U and U ∗. Let p, q, and T be
constants such that T > 0, p ≥ 2 and 1/p + 1/q = 1. Let X = L p(0, T ; V ) and
X∗ = Lq(0, T ; V ∗).

Let T be the canonical isomorphism from V to V ∗. Now using the assumptions
on B, we may find that (εT + B) : V → V ∗ will be an isomorphism, where ε >

0 is given. The symmetricity of B leads us to state the inner product on V ∗ as:
〈u, v〉 := 〈u, (εT + B)−1v〉V for all u, v ∈ V ∗. Now V ∗ with this inner product is
denoted by W := (V ∗, 〈·, ·〉W ) where 〈u, v〉W := 〈u, v〉. It is obvious that W is a
Hilbert space where the norm is given by ‖ · ‖W . It may be observed that the two
norms on V ∗ are equivalent, that is,

‖(εT + B)−1‖−1/2‖v‖W ≤ ‖v‖V ∗ ≤ ‖(εT + B)‖1/2‖v‖W , for all v ∈ V ∗.
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Let Z = L p(0, T ;W ). Now W being a Hilbert space, identifying W with its dual,
we have Z∗ = Lq(0, T ;W ). For ε > 0, consider the auxiliary equation as follows:

{
((εT + B)u(t))′ + A(t)(u(t)) = f (t), a.e. t ∈ (0, T ),

u(0) = u0.
(23)

Define Aε(t) : W → W ∗ as

Aε(t)(v) = A(t)((εT + B)−1(v) + u0), for all v ∈ W.

By considering v(t) = (εT + B)(u(t)) − (εT + B)(u0), that is v(0) = 0, (23) can
be rewritten in the following manner,

{
v(t)′ + Aε(t)(v(t)) = f (t), a.e. t ∈ (0, T ),

v(0) = 0.
(24)

Define L(v) = v′ andD(L) = {v ∈ Z : v′ ∈ Z∗, v(0) = 0}, here v′ denotes the gen-
eralized derivative of v. Let us define Âε related to Aε as

Âε(v)(t) = Aε(t)(v(t)), t ∈ [0, T ],

which may be regarded as the related Nemytskij operator generated by the operator-
valued function t �→ Aε(t).Using the operator L ,wemaywrite the auxiliary problem
(24) as the following

Find v ∈ D(L) such that L(v) + Âε(v) = f. (25)

The approach developed in this section consists first to analyze the solvability
of the auxiliary problem (25) using a mixed equilibrium problem (in brief, (MEP))
formulation:

Find ū ∈ K satisfying �(ū, v) + �ε(ū, v) ≥ 0, for all v ∈ K ,

where K is a closed convex set and �,�ε : K × K → R are two bifunctions. In
a second stage, based on the results established for the auxiliary problem (25) we
present some results on the solvability of (22).

4.1 Solvability for the Auxiliary Evolution Problem

We present some results on the solvability of the auxiliary problem (25) by using an
equilibrium problem approach.

We denote the pairing between Z = L p(0, T ;W ) and Z∗ = Lq(0, T ;W ) by
〈〈·, ·〉〉. Let W = {v ∈ Z : v′ ∈ Z∗}. The generalized derivative Lv = v′ restricted
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to the subset D(L) = {v ∈ Z : v′ ∈ Z∗ and v(0) = 0} = {v ∈ W : v(0) = 0}
denotes a linear mapping L : D(L) ⊂ Z → Z∗ given as 〈〈Lv, z〉〉 =∫ T
0 〈v′(t), z(t)〉W dt for all v, z ∈ Z . One may note here that W is a real reflexive
Banach space which is separable with the norm ‖v‖W = ‖v‖Z + ‖v′‖Z∗ , the
embedding W ⊂ C([0, T ];W ) is continuous and D(L) ⊂ W is a linear subspace.
D(L) equipped with the graph norm ‖v‖L = ‖v‖Z + ‖v′‖Z∗ is a reflexive Banach
space. L : D(L) ⊂ Z → Z∗ is a maximal monotone operator which is densely
defined, and closed. The map J : Z∗ → Z is called as the duality map, that is, for
each v ∈ Z∗, J (v) = {z ∈ Z : 〈〈z, v〉〉 = ‖z‖2Z = ‖v‖2Z∗ }. It may be assumed that J
is a single-valued mapping which is monotone and demicontinuous, [13, Theorem
1.2], using the Asplund’s renorming theorem [56, Theorem 1.105].

Next, we assume the following.

[A1] B ∈ L(V, V ∗), 〈Bu, u〉V ≥ 0 for every u ∈ V and B is symmetric. Here
L(V, V ∗) is the set of all bounded linear mappings from V to V ∗;

[A2] ‖A(t)u‖V ∗ ≤ k0[ ‖u‖p−1
V + α0(t) ] for all u ∈ V and t ∈ [0, T ] with some

positive constant k0 and α0 ∈ Lq(]0, T [);
[A3] For t ∈ [0, T ] and w ∈ V , the mapping u �→ 〈A(t)u, w − u〉 is upper semi-

continuous on conv(N ) for each finite subset N of V , here conv(N ) denotes
the convex hull of N ;

[A4] The function t �→ 〈A(t)u, w〉V is measurable on [0,T] for all u, w ∈ V ;
[A5] 〈A(t)u, u〉V ≥ k1[ ‖u‖p

V − α1(t) ] for all u ∈ V and t ∈ [0, T ] with some
constant k1 > 0 and some function α1 ∈ L1([0, T ]).

Our purpose in this section is to investigate the solvability of the auxiliary problem
(25) using the equilibrium problem formulation, given below:

Find v̄ ∈ D(L) such that �(v̄, v) + �ε(v̄, v) ≥ 0, for all v ∈ D(L), (26)

where � and �ε are defined for v, z ∈ D(L) by

�(v, z) = 〈〈L(v), z − v〉〉 and �ε(v, z) = �ε(v, z) + �(v, z),

with �ε(v, z) = 〈〈Âε(v), z − v〉〉 and �(v, z) = 〈〈 f, v − z〉〉. The bifunction �ε

can be written as the following: �ε(v, z) = ∫ T
0 ψε

t (v(t), z(t))dt where ψε
t is the

bifunction defined for x, y ∈ W by ψε
t (x, y) = 〈Aε(t)(x), y − x〉W . Note that from

[A4], the function t �→ ψε
t (x, y) is measurable on [0, T ].

From Definition 3, the concept of pseudomonotonicity in the sense of Brézis for a
bifunctions � : D(L) × D(L) → R, where D(L) is endowed with the graph norm
‖v‖L = ‖v‖Z + ‖v′‖Z∗ , is traduced as: If for {vn}n∈N in D(L) such that vn ⇀ v ∈
Z , L(vn) ⇀ L(v) in Z∗ and lim inf �(vn, v) ≥ 0, we have that lim sup�(vn, z) ≤
�(v, z) for all z ∈ D(L). Similarly, one can define the (S+) condition and theT-QMB
notion with respect to D(L) for a bifunction.
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One has the following existence result for the mixed equilibrium problem (26). It
is obtained by application of Theorem 2, see [57, Theorem 4.1] for the details of the
proof.

Theorem 9 [57] Let [A1]-[A5] be satisfied and A(t) : V → V ∗ is B-PMO for all
t ∈ [0, T ]. Then, for each ε > 0 the problem (26) has at least one solution.

One has the following result for the solvability of the auxiliary evolution problem
(25).

Theorem 10 [57] If the conditions [A1]-[A5] are satisfied and the operator
A(t) : V → V ∗ is B-PMO for each t ∈ [0, T ]. Then for f ∈ X∗ and ε > 0, ∃ vε

of the auxiliary problem (25), such that vε ∈ C([0, T ];W ) ∩ Z and v′
ε ∈ Z∗.

Proof The result follows directly from Theorem 9, asD(L) is dense in Z andW is
continuously embedded in C([0, T ];W ). �

Now, whenA(t) is T-QMO for each t ∈ [0, T ], one has the approximated result
on the existence of solutions of the auxiliary problem (25) as follows.

Theorem 11 [57] Let [A1], [A2], [A4] and [A5] be satisfied. Furthermore, suppose
that A(t) : V → V ∗ is T-QMO and demicontinuous for every t ∈ [0, T ]. Then, we
have, for f ∈ X∗, ε > 0, λ > 0, ∃ v ∈ C([0, T ];W ) such as v′ ∈ Z∗ and

v′ + Âε(v) + λJ (v) = f with v(0) = 0.

Proof The proof is obtained by using a Tikhonov regularization procedure of the
mixed equilibrium problem (26) and by application of [55, Theorem 2.2]; see [57,
Theorem 4.4] for the details of the proof. �

By relaxing the assumptions of Theorem 11, we deduce the existence result as
mentioned below for the auxiliary problem (25) when A(t) is T-QMO for each
t ∈ [0, T ].
Theorem 12 [57] Assume that [A1], [A2], [A4] and [A5] hold. Moreover, suppose
thatA(t) : V → V ∗ is weakly continuous and T-QMO for each t ∈ [0, T ]. Then for
f ∈ X∗ and ε > 0, ∃ v ∈ C([0, T ];W ) such as v′ ∈ Z∗ and

v′(t) + Âεv = f with v(0) = 0.

The next theorem gives the solvability condition for the auxiliary evolution
problem (25) when A(t) = M(t) + N(t) with M(t) : V → V ∗ is B-PMO and
N(t) : V → V ∗ is T-QMO. The definitions of the operators M̂ε and N̂ε follow
the same way as Âε.

Theorem 13 [57] Assume thatM(t) : V → V ∗ isB-PMO for all t ∈ [0, T ] and ful-
fils the conditions [A2]-[A5], and thatN(t) : V → V ∗ is T-QMO and satisfies weak
continuity for each t ∈ [0, T ], satisfies the conditions [A2], [A4] and the condition
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[A6] 〈N(t)(u), u〉 ≥ −k2‖u‖p
V − α2(t), for all u ∈ V, t ∈ [0, T ]

with some k2 > 0 and α2 ∈ L1(0, T ). Then, the auxiliary problem

v′ + M̂ε(v) + N̂ε(v) = f (27)

has a solution v ∈ D(L) for any f ∈ X∗.

Proof The result is obtained by applying Theorem 3 with
�(v, z) = 〈〈L(v), z − v〉〉, �(v, z) = 〈〈N̂εv, z − v〉〉 and �(v, z) = �1(v, z) +
�2(v, z),
where �1(v, z) = 〈〈M̂εv, z − v〉〉 and �2(v, z) = 〈〈 f, v − z〉〉. �

4.2 Solvability Criteria for Implicit Nonlinear Evolution
Equations

This subsection presents some results on the solvability for the nonlinear implicit
evolution equation (22) using the existence results derived for the auxiliary problem
(25).

Theorem 14 [57] Given f in X∗ and u0 in V , assume that [A1]-[A5] hold and
A(t) : V → V ∗ is B-PMO for each t ∈ [0, T ]. Then there exists at least one solution
u ∈ X to (22), such that B(u) ∈ L p(0, T ; V ∗), (B(u))′ ∈ Lq(0, T ; V ∗).

Proof By Theorem 10, we deduce that there exists a solution vε in D(L) for the
auxiliary problem (25) for any ε > 0. This shows that ∃ uε ∈ X with u′

ε ∈ X∗ and

{
((εT + B)uε(t))′ + A(t)(uε(t)) = f (t), a.e. t ∈ (0, T ),

uε(0) = u0.
(28)

We write Eq. (28) as

εT (u′
ε(t)) + B(u′

ε(t)) + A(t)(uε(t)) = f (t), a.e. t ∈ (0, T ). (29)

Multiplying (29) by uε we get

ε
2

d
dt 〈T (uε(t)), uε(t)〉V + 1

2
d
dt 〈B(uε(t)), uε(t)〉V

+〈A(t)(uε(t)), uε(t)〉V = 〈 f (t), uε(t)〉V a.e. t ∈ (0, T ).
(30)

Integrating the inequality (30) on (0, T ), we obtain from [A5] and Hölder inequality
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ε
2‖uε(T )‖2V − ε

2‖u0‖2V + 1
2 〈B(uε(T )), uε(T )〉V − 1

2 〈B(u0), u0〉V + k1

∫ T

0
‖uε(t)‖p

V dt

≤
(∫ T

0
‖ f (t)‖qV ∗dt

)1/q (∫ T

0
‖uε(t)‖p

V dt

)1/p

+ k1‖α1‖L1(0,T ).

By Young’s inequality, we obtain

‖uε‖p
X ≤ C, (31)

where C is a constant depending on ‖ f ‖X∗ , ‖u0‖V .
Define Â : X → X∗ related toA by

Â(u)(t) = A(t)(u(t)), t ∈ [0, T ].

By the assumption [A2] and (31) we have {uε} is a bounded sequence in X and
{Â(uε)} is a bounded sequence in X∗. Thus, for {uε}, we obtain

uε ⇀ u in X
Â(uε) ⇀ θ in X∗
B(uε) ⇀ B(u) in X∗

((εT + B)uε)
′ ⇀ (B(u))′ in X∗.

(32)

In view of (32), to complete the proof on existence, we need only to derive that
θ = Â(u). Hence, we proceed by scalar multiplying relation (28) by u − uε and
integrating on (0, T ), we have

〈〈Â(uε), u − uε〉〉X = 〈〈 f, u − uε〉〉X + 〈〈[(εT + B)(uε − u)]′, uε − u〉〉X+
〈〈[(εT + B)u]′, uε − u〉〉X .

(33)
Now, let us consider the bifunction �1(u, v) := 〈〈Â(u), v − u〉〉X . As A(t) is B-
PMO, it may be shown by repeating the similar process utilized in the proof of
Lemma 4 that �1 is B-PMO. Using (33) and the fact that uε ⇀ u in X (relation
(32)), we obtain

lim inf �1(uε, u) ≥ lim inf[ ε
2‖uε(T ) − u(T )‖2V+

1
2 〈B(uε(T ) − u(T )), uε(T ) − u(T )〉V ]

≥ 0.
(34)

Since �1 is B-PMO, it follows that

lim sup�1(uε, v) ≤ �1(u, v), for all v ∈ X. (35)

By using relations (34) and (35), we easily get

〈〈Â(u), v − u〉〉X ≥ 〈〈θ, v − u〉〉X , for all v ∈ X,
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Hence, θ = Â(u). �

In the case where the nonlinear implicit evolution equation (22) is driven by an
operator A(t) which is T-QMO for all t ∈ [0, T ], one has the following existence
result.

Theorem 15 [57] Let f ∈ X∗ and u0 ∈ V be given. Let the assumptions [A1],
[A2], [A4] and [A5] hold. Furthermore, suppose thatA(t) : V → V ∗ is T-QMO and
weakly continuous for each t ∈ [0, T ]. Then (22) has at least one solution u ∈ X
satisfying B(u) ∈ L p(0, T ; V ∗), (Bu)′ ∈ Lq(0, T ; V ∗).

Proof By Theorem 12, it is obvious that for any ε > 0 ∃ vε ∈ D(L) solution of the
auxiliary problem (25). It follows that ∃ uε ∈ X with u′

ε ∈ X∗ and

{
((εT + B)uε(t))′ + A(t)(uε(t)) = f (t), a.e. t ∈ (0, T ),

uε(0) = u0.
(36)

Repeating the similar process as in the above theorem we get {uε} and {Â(uε)} as
bounded in X and X∗ respectively. Thus, for {uε}, it follows

uε ⇀ u in X
Â(uε) ⇀ θ in X∗
B(uε) ⇀ B(u) in X∗

((εT + B)uε)
′ ⇀ (Bu)′ in X∗.

(37)

To complete the proof, it is now to be proved that θ = Â(u). Now considering
[H2] and utilizing the dominated convergence theorem, we have, Â satisfies weak
continuity. Thus, uε ⇀ u implies that θ = Â(u). �

We conclude with the existence result as follows, for the implicit nonlinear evolu-
tion equation (22) when A(t) = M(t) + N(t), where both M(t) and N(t) defined
from V to V ∗ are B-PMO and T-QMO respectively.

Theorem 16 [57] Let f ∈ X∗, u0 ∈ V be given and the condition [A1] hold. Assume
that M(t) : V → V ∗ is B-PMO for all t ∈ [0, T ] and satisfies the conditions [A2]-
[A5], and that N(t) : V → V ∗ is T-QMO, weakly continuous for all t ∈ [0, T ] and
satisfies the conditions [A2], [A4]. Moreover, assume that

[A6] 〈N(t)(u), u〉 ≥ −k2‖u‖p
V − α2(t), for all u ∈ V, t ∈ [0, T ]

where k2 > 0 and α2 ∈ L1(0, T ). Then there exists at least u ∈ X such that
B(u) ∈ L p(0, T ; V ∗), (Bu)′ ∈ Lq(0, T ; V ∗) and

{
d
dt (B(u(t))) + M(t)(u(t)) + N(t)(u(t)) = f (t), a.e. t ∈ (0, T ),

B(u(0)) = B(u0).
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Proof Using Theorem 13, we obtain that for any ε > 0 ∃ vε ∈ D(L) satisfying
v′

ε + M̂ε(vε) + N̂ε(vε) = f . This leads to the fact that there exists uε in X with
u′

ε ∈ X∗ and

{
((εT + B)uε(t))′ + M(t)(uε(t)) + N(t)(uε(t)) = f (t), a.e. t ∈ (0, T ),

uε(0) = u0.
(38)

Following the same way as Theorem 14, it can be proved that {uε} is bounded in
X , and {M̂(uε)} and {N̂(uε)} are bounded in X∗. Thus, for a subsequence, {uε}, we
obtain

uε ⇀ u in X
M̂(uε) ⇀ θ in X∗
N̂(uε) ⇀ τ in X∗
B(uε) ⇀ B(u) in X∗

((εT + B)(uε))
′ ⇀ (B(u))′ in X∗.

(39)

Weak continuity of N̂ implies that, τ = N̂(u). Next we have to show that θ = M̂(u).
For this purpose, we proceedwhilemultiplying relation (38) and integrating on (0,T).
Thus we have

〈〈M̂(uε), u − uε〉〉X + 〈〈N̂(uε), u − uε〉〉X = 〈〈 f, u − uε〉〉X+
〈〈[(εT + B)(uε − u)]′, uε − u〉〉X + 〈〈[(εT + B)(u)]′, uε − u〉〉X .

(40)
Now consider�1(u, v) = 〈〈M̂(uε), u − uε〉〉X and�2(u, v) = 〈〈M̂(uε), u − uε〉〉X
on X × X . Note that both �1 and �2 are B-PMO and T-QMO respectively. Now the
relation (40) implies,

lim inf[�1(uε, u) + �2(uε, u)] ≥ lim inf[ ε
2‖uε(T ) − u(T )‖2V+

1
2 〈B(uε(T ) − u(T )), uε(T ) − u(T )〉V ]

≥ 0.
(41)

Hence,
lim inf �1(uε, u) + lim sup�2(uε, u) ≥ 0. (42)

As�2 isT-QMO, it is deduced fromRemark 2(iv) that lim sup�2(uε, u) ≤ 0. There-
fore, from (42), we conclude that lim inf �1(uε, u) ≥ 0. Since �1 is B-PMO, we
obtain that

lim sup�1(uε, v) ≤ �1(u, v), for all v ∈ X,

which leads us to obtain that θ = M̂(u). �
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Sufficient Conditions Concerning
the Unified Class of Starlike and Convex
Functions

Lateef Ahmad Wani and A. Swaminathan

Abstract Let An be the family of analytic functions f (ξ) = ξ + ∑∞
j=n+1 a jξ

j ,
defined in the open unit disk D. We use differential subordinations to establish suf-
ficient conditions involving third-order differential inequalities for f ∈ An to be in
the unified class of starlike and convex functions

S∗Cn(α, β) :=
{

f ∈ An : �
(

ξ f ′(ξ) + βξ 2 f ′′(ξ)

βξ f ′(ξ) + (1 − β) f (ξ)

)

> α

}

,

where α ∈ [0, 1) and β ∈ [0, 1]. As applications, we construct certain members of
S∗Cn(α, β) involving triple-integrals and also derive conditions for the Pascu class
of functions. Apart from obtaining new results, some of the already known results
concerning starlikeness of f ∈ An are obtained as special cases.

Keywords Starlikeness · Convexity · Differential subordination · Pascu class

1 Introduction

Let H denotes the set of all analytic functions defined in D := {ξ : |ξ | < 1}. Let
ς ∈ C and n ∈ N. Define

Hn(ς):=
⎧
⎨

⎩
f ∈ H : f (ξ) = ς +

∞∑

j=n

a jξ
j , a j ∈ C

⎫
⎬

⎭

and

An:=
⎧
⎨

⎩
f ∈ H : f (ξ) = ξ +

∞∑

j=n+1

a jξ
j , a j ∈ C

⎫
⎬

⎭
.
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Particularly, for n = 1 we write A := A1. As usual, let S∗
n(α) and Cn(α) denote,

respectively, the classes of starlike and convex functions of order α ∈ [0, 1), in D.
Analytically,

S∗
n(α):=

{

f ∈ An : �
(

ξ f ′(ξ)

f (ξ)

)

> α

}

and

Cn(α) :=
{

f ∈ An : �
(

1 + ξ f ′′(ξ)

f ′(ξ)

)

> α

}

.

Moreover, S∗ := S∗
1(0) and C := C1(0) are, respectively, the well-known classes of

starlike and convex functions. For more details, one could refer [4].
For 0 ≤ α < 1 and 0 ≤ β ≤ 1, define the class of functions S∗Cn(α, β) as

S∗Cn(α, β):=
{

f ∈ An : �
(

ξ f ′(ξ) + βξ 2 f ′′(ξ)

βξ f ′(ξ) + (1 − β) f (ξ)

)

> α

}

.

Equivalently, S∗Cn(α, β) can also be defined as

S∗Cn(α, β) =
{

f ∈ An : �
(

ξF ′
β(ξ)

Fβ(ξ)

)

> α

}

,

where

Fβ(ξ) = Fβ[ f ](ξ) = βξ f ′(ξ) + (1 − β) f (ξ) = ξ +
∞∑

j=n+1

(
1 + ( j − 1)β

)
a jξ

j .

By way of explanation, S∗Cn(α, β) is the totality of f ∈ An for which the operator
Fβ(ξ) is starlike of order α. It is clear that Fβ(ξ) converges in D as the convex com-
bination of functions analytic in D. For n = 1, this class was considered by Altıntaş
[1]. Since S∗Cn(α, 0) = S∗

n(α) and S∗Cn(α, 1) = Cn(α), the class S∗Cn(α, β) is a
unification of S∗

n(α) and Cn(α). To be explicit, as β varies from 0 to 1, S∗Cn(α, β)

provides a transition from the starlike class S∗
n(α) to the convex class Cn(α).

In univalent function theory, one of the important research areas is to establish con-
ditions that sufficiently ensure the starlikeness (or convexity) of an analytic function.
These include the conditions in terms of the coefficients an (n ∈ N), for example,
see [10, 14, 19], and the conditions in terms of differential inequalities, see, [3, 5, 6,
8, 9, 11, 17, 18]. As, in this paper, we are dealing with the later one, it is imperative
to make mention of the historical background and some recent developments in this
direction. In 1992, Mocanu [9] considered the problem: For ξ ∈ D, find

sup
{
ρ : {

f ∈ A s.t. | f ′′(ξ)| ≤ ρ
} ⊂ S∗} .
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The author [9] proved that ρ = 2/3 is sufficient to ensure the starlikeness of f .
Later, some more authors worked in this direction to improve the result, and finally
in 1997, Obradović [11] settled down this problem completely by proving that the
result is sharp for ρ = 1. Fournier and Mocanu [5] also determined some sufficient
conditions for starlikeness, and some of their results were extended by Miller and
Mocanu [8] by replacing A with An . Kuroki and Owa [6] and Verma et al. [17]
obtained conditions involving differential inequalities that are sufficient to imply the
starlikeness of order α. In 2014, Chandrashekar et al. [3] used the results of Kuroki
andOwa [6] to establish third-order differential inequalities sufficient for starlikeness
of order β. Recently, in 2017, Supramaniam et al. [15] developed second-order and
third-order differential inequalities sufficient for the convexity of f ∈ H .

Motivated by the ideas explored by the aforecited papers, here we determine
sufficient conditions in terms of differential inequalities which ensure that f ∈ An

is in S∗Cn(α, β). Besides obtaining new conditions concerning the convexity of
f ∈ An , some of the already known results for starlikeness are derived as special
cases. As applications, we construct functions of the form

f (ξ) =
∫ 1

0

∫ 1

0

∫ 1

0
J(s, t, u, ξ)dsdtdu,

and establish certain conditions onJ(ξ) in order that f ∈ S∗Cn(α, β). Similar results
for a class of starlike functions satisfying a differential inequality have been proved
by the authors in [16].

2 Sufficient Conditions

Definition 1 (Subordination) Let f1, f2 ∈ H . Then we say that f1 is subordinate to
f2, written as f1 ≺ f2, if there exists ω ∈ H satisfying w(0) = 0 and |w(ξ)| < 1,
s.t.

f1(ξ) = f2(ω(ξ)) (ξ ∈ D).

Furthermore, if f2 is univalent, then

f1 ≺ f2 ⇐⇒ f1(0) = f2(0) and f1(D) ⊂ f2(D). (1)

Definition 2 (Differential Subordination [2, 7]) Let � : C2 × D → C be analytic,
and let u ∈ H be univalent. If ℘ ∈ H satisfies

�(℘(ξ), ξ℘ ′(ξ); ξ) ≺ u(ξ) (ξ ∈ D), (2)

then ℘ is called a solution of the first-order differential subordination (2). If 
 ∈ H
is univalent and ℘≺
 for all solutions ℘ of (2), then 
(ξ) is said to be a dominant
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of (2). A dominant 
1 satisfying 
1 ≺ 
 for all dominants 
 of (2) is called the best
dominant of (2).

Lemma 1 ([7, p. 71]) Let u be convex in D satisfying u(0) = ς . Let τ = 0 and
�(τ ) ≥ 0. If ℘ ∈ Hn(ς) and

℘(ξ) + ξ℘ ′(ξ)

τ
≺ u(ξ),

then
℘(ξ) ≺ 
(ξ) ≺ u(ξ),

where


(ξ) = τ

nξ τ/n

∫ ξ

0
u(η)ητ/n−1dη.

Moreover, 
(ξ) is convex and is the best dominant.

Lemma 2 ([7, p. 383]) Let n ∈ N and let τ be real with τ ∈ [0, n). Let 
(ξ) ∈ Hn(0)
with 
′(0) = 0 and

�
(

1 + ξ
′′(ξ)


′(ξ)

)

>
τ

n
.

If ℘ ∈ Hn(0) satisfies

ξ℘ ′(ξ) − τ℘ (ξ) ≺ nξ
′(ξ) − τ
(ξ),

then ℘(ξ) ≺ 
(ξ) and the result is best possible.

Theorem 1 Let α ∈ [0, 1), β ∈ [0, 1], and δ ∈ [0, n). If f ∈ An satisfies

∣
∣βξ 2 f ′′′(ξ) + (1 + β(1 − δ)) ξ f ′′(ξ) − δ

(
f ′(ξ) − 1

)∣
∣ <

(1 − α)(n − δ)(n + 1)

n + 1 − α
,

(3)
then f ∈ S∗Cn(α, β). The result is best possible.

Proof In terms of subordination, the differential inequality (3) can be rewritten as

βξ 2 f ′′′(ξ) + (1 + β(1 − δ)) ξ f ′′(ξ) − δ( f ′(ξ) − 1) ≺ (1 − α)(n − δ)(n + 1)

n + 1 − α
ξ.

(4)
On taking

℘(ξ) = βξ f ′′(ξ) + (1 − β(1 + δ)) f ′(ξ) − (1 − β)(1 + δ)
f (ξ)

ξ

= −δ + (nβ + 1)(n − δ)an+1ξ
n

+ ((n + 1)β + 1) (n + 1 − δ)an+2ξ
n+1 + · · · ∈ Hn(−δ),
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the expression (4) takes the form

℘(ξ) + ξ℘ ′(ξ) ≺ −δ + (1 − α)(n − δ)(n + 1)

n + 1 − α
ξ =: 
(ξ). (5)

The function 
(ξ) is convex, as � (
1 + ξ
′′(ξ)/
′(ξ)

) = 1 > 0, and 
(0) = −δ.
Therefore, Lemma 1 is applicable to (5) with τ = 1. Hence, we have

℘(ξ) ≺ 1

nξ
1
n

∫ ξ

0

(

−δ + (1 − α)(n − δ)(n + 1)

n + 1 − α
t

)

t
1
n −1dt

= −δ + (1 − α)(n − δ)

n + 1 − α
ξ.

Or, equivalently

βξ f ′′(ξ) + (1 − β(1 + δ)) f ′(ξ) − (1 − β)(1 + δ)
f (ξ)

ξ
≺ −δ + (1 − α)(n − δ)

n + 1 − α
ξ,

(6)
so that

∣
∣
∣
∣βξ f ′′(ξ) + (1 − β(1 + δ)) f ′(ξ) − (1 − β)(1 + δ)

f (ξ)

ξ

∣
∣
∣
∣ <

n(1 + δ − α)

n + 1 − α
. (7)

Next, if we set

℘0(ξ) = Fβ(ξ)

ξ
− 1 = β f ′(ξ) + (1 − β)

f (ξ)

ξ
− 1

= (n + 2 − β)an+1ξ
n + (n + 3 − β)an+2ξ

n+1 + · · · ∈ Hn(0)

and


(ξ) = 1 − α

n + 1 − α
ξ,

then from the subordination (6), a computation yields

ξ℘ ′
0ξ − δ℘0(ξ) ≺ (1 − α)(n − δ)

n + 1 − α
ξ = nξ
′(ξ) − δ
(ξ).

Since 
 ∈ Hn(0), 
′(0) = 0, and � (
1 + ξ
′′(ξ)/
′(ξ)

) = 1 > δ/n, it follows from
Lemma 2 that

℘0(ξ) ≺ 
(ξ), or
Fβ(ξ)

ξ
≺ 1 + 1 − α

n + 1 − α
ξ.

This further gives
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∣
∣
∣
∣
Fβ(ξ)

ξ

∣
∣
∣
∣ >

n

n + 1 − α
. (8)

In view of (7) and (8), we have

n
∣
∣
∣
ξF ′

β (ξ)

Fβ (ξ)
− (1 + δ)

∣
∣
∣

n + 1 − α
<

∣
∣
∣
∣
Fβ(ξ)

ξ

∣
∣
∣
∣ ×

∣
∣
∣
∣
ξF ′

β(ξ)

Fβ(ξ)
− (1 + δ)

∣
∣
∣
∣

=
∣
∣
∣
∣F

′
β(ξ) − (1 + δ)

Fβ(ξ)

ξ

∣
∣
∣
∣

=
∣
∣
∣
∣βξ f ′′(ξ) + (1 − β + βδ) f ′(ξ) − (1 − β)(1 + δ)

f (ξ)

ξ

∣
∣
∣
∣

<
n(1 + δ − α)

n + 1 − α
.

That is ∣
∣
∣
∣
ξF ′

β(ξ)

Fβ(ξ)
− (1 + δ)

∣
∣
∣
∣ < 1 + δ − α.

On using the fact that |ω| ≤ r implies−r ≤ �(ω) ≤ r , the above inequality gives us

that �
(
ξF ′

β(ξ)/Fβ(ξ)
)

> α, and hence f ∈ S∗Cn(α, β). This completes the proof.

For sharpness of the above result, we supply the following example.

Example 1 For α ∈ [0, 1) and β ∈ [0, 1], consider the function

fμ(ξ) = ξ + (1 − α)μ

(n + 1 − α)(nβ + 1)
ξ n+1, |μ| = 1. (9)

Clearly, fμ ∈ An and

∣
∣βξ 2 f ′′′

μ (ξ) + (1 + β(1 − δ)) ξ f ′′
μ(ξ) − δ

(
f ′
μ(ξ) − 1

)∣
∣

=
∣
∣
∣
∣
(
βn(n − 1) + (1 + β(1 − δ)) n − δ

) × (n + 1)(1 − α)μ

(n + 1 − α)(nβ + 1)
ξ n

∣
∣
∣
∣

<
(n + 1)(1 − α)(n − δ)

(n + 1 − α)
.

That is fμ satisfies the condition of Theorem 1, hence fμ ∈ S∗Cn(α, β) for every μ

satisfying |μ| = 1. Indeed, for ξ ∈ D,
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Fig. 1 Boundary curves of f1(ξ) = ξ + ξ2/2(β + 1), ξ ∈ D, as β varies from 0 to 1

�
(

ξF ′
β[ fμ](ξ)

Fβ[ fμ](ξ)

)

= �
(

ξ f ′
μ(ξ) + βξ 2 f ′′

μ(ξ)

βξ f ′
μ(ξ) + (1 − β) fμ(ξ)

)

= �
(

ξ + (1 + nβ)
(n+1)(1−α)μ

(n+1−α)(nβ+1) ξ
n+1

ξ + (β(n + 1) + (1 − β))
(1−α)μ

(n+1−α)(nβ+1) ξ
n+1

)

>
1 − (n+1)(1−α)

(n+1−α)

1 − 1−α
(n+1−α)

= α.

In Fig. 1,we show the transition of a starlike domain into a convexone asβ varies from
0 to 1.We have taken the function f ∈ S∗Cn(α, β) as f1(ξ) = ξ + ξ 2/2(β + 1) (ξ ∈
D), which is obtained by taking α = 0 and n = 1 = μ in (9).

On giving particular values to α, β, δ, and n in Theorem 1, a number of previous,
as well as new, results are obtained. Allowing β = 0 in Theorem 1, we obtain the
following starlikeness condition established by Kuroki and Owa [6].

Corollary 1 Let α ∈ [0, 1) and δ ∈ [0, n). If f ∈ An satisfies

∣
∣ξ f ′′(ξ) − δ

(
f ′(ξ) − 1

)∣
∣ <

(n + 1)(1 − α)(n − δ)

n + 1 − α
,

then f is starlike of order α.

The following result established byMiller andMocanu [8] is attained for β = α = 0
in Theorem 1.

Corollary 2 Let f ∈ An satisfies

∣
∣ξ f ′′(ξ) − δ( f ′(ξ) − 1)

∣
∣ < n − δ, δ ∈ [0, n).

Then f ∈ S∗ and the result is best possible for f (ξ) = ξ + ξ n+1/(n + 1).
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If we set β = 1 in Theorem 1, we arrive at the following sufficient condition for
convexity of order α.

Corollary 3 Let α ∈ [0, 1) and δ ∈ [0, n). If f ∈ An satisfies

∣
∣ξ 2 f ′′′(ξ) + (2 − δ)ξ f ′′(ξ) − δ( f ′(ξ) − 1)

∣
∣ <

(n + 1)(1 − α)(n − δ)

n + 1 − α
,

then f is convex of order α. The result is best possible.

Further, if we take n = 3, δ = 2 and α = 0 in Corollary 3, we obtain

Corollary 4 Let f ∈ A3 satisfies

∣
∣ξ 2 f ′′′(ξ) − 2

(
f ′(ξ) − 1

) ∣
∣ < 1.

Then f is convex and the result is best possible for f (ξ) = ξ + ξ 4/16.

Theorem 2 Let α ∈ [0, 1), β ∈ [0, 1], and ν ∈ [1, n + 1). If f ∈ An satisfies

∣
∣βξ 2 f ′′′(ξ) + (1 + β)ξ f ′′(ξ) − ν(ν − 1)

(
Fβ(ξ)

ξ
− 1

)∣
∣
∣
∣

<
(n + 1 − ν)(1 − α)(n + ν)

n + 1 − α
, (10)

then f ∈ S∗Cn(α, β). The result is sharp for fμ(ξ) given by (9).

Proof Inequality (10) in subordination form can be expressed as

βξ 2 f ′′′(ξ) + (1 + β)ξ f ′′(ξ) − ν(ν − 1)

(
Fβ(ξ)

ξ
− 1

)

≺ (1 − α)(n + ν)(n + 1 − ν)

n + 1 − α
ξ,

which takes the form

νp(ξ) + ξp′(ξ) ≺ −ν(ν − 1) + (1 − α)(n + ν)(n + 1 − ν)

n + 1 − α
ξ,

for

℘(ξ) = βξ f ′′(ξ) + (1 − βν) f ′(ξ) − (1 − β)ν
f (ξ)

ξ

= 1 − ν + (n + 1 − ν)(nβ + 1)an+1ξ
n

+(n + 2 − ν)[(n + 1)β + 1]an+2ξ
n+1 + · · · ∈ Hn(1 − ν).

A simple verification shows that ℘ satisfies the constraints of Lemma 1 and hence,
we have
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℘(ξ) ≺ 1

nξ
ν
n

∫ ξ

0

(

−ν(ν − 1) + (1 − α)(n + ν)(n + 1 − ν)

n + 1 − α
t

)

t
ν
n −1dt

= −(ν − 1) + (1 − α)(n + 1 − ν)

n + 1 − α
ξ. (11)

The subordination (11) can be further rewritten as

ξ℘ ′
0(ξ) − (ν − 1)℘0(ξ) ≺ (1 − α)(n + 1 − ν)

n + 1 − α
ξ, (12)

where

℘0(ξ) = Fβ(ξ)

ξ
− 1

= (n + 2 − β)an+1ξ
n + (n + 3 − β)an+2ξ

n+1 + · · · ∈ Hn(0).

If we take


(ξ) = (1 − α)

n + 1 − α
ξ

satisfying


 ∈ Hn(0), 
′(0) = 0, and �
(

1 + ξ
′′(ξ)


′(ξ)

)

= 1 >
ν − 1

n
,

then, after simplification, the subordination (12) takes the form

ξ℘ ′
0(ξ) − (ν − 1)℘0(ξ) ≺ nξ
′(ξ) − (ν − 1)
(ξ).

Applying Lemma 2 yields ℘0(ξ)≺
(ξ) i.e.,

Fβ(ξ)

ξ
− 1 ≺ (1 − α)

n + 1 − α
ξ.

This further implies

∣
∣
∣
∣
Fβ(ξ)

ξ

∣
∣
∣
∣ > 1 − (1 − α)

n + 1 − α
= n

n + 1 − α
(13)

Also, from (11), we obtain

|℘(ξ)| <
n(ν − α)

n + 1 − α
. (14)

Making use of (13) and (14), we have
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n

n + 1 − α

∣
∣
∣
∣
ξF ′

β(ξ)

Fβ(ξ)
− ν

∣
∣
∣
∣ <

∣
∣
∣
∣
Fβ(ξ)

ξ

∣
∣
∣
∣

∣
∣
∣
∣
ξF ′

β(ξ)

Fβ(ξ)
− ν

∣
∣
∣
∣

=
∣
∣
∣
∣F

′
β(ξ) − ν

Fβ(ξ)

ξ

∣
∣
∣
∣

= |p(ξ)|
<

n(ν − α)

n + 1 − α
.

Or, ∣
∣
∣
∣
ξF ′

β(ξ)

Fβ(ξ)
− ν

∣
∣
∣
∣ < ν − α.

This further implies �
(
ξF ′

β(ξ)/Fβ(ξ)
)

> α, and hence f ∈ S∗Cn(α, β). �

Taking β = 0 and ν(ν − 1) = ϑ, ν ∈ [1, n + 1) in Theorem 2, we obtain the fol-
lowing result established by Verma et al. [17].

Corollary 5 Let ϑ ∈ [0, n + 1) and α ∈ [0, 1). If f ∈ An satisfies

∣
∣
∣
∣ξ f

′′(ξ) − ϑ

(
f (ξ)

ξ
− 1

)∣
∣
∣
∣ <

(1 − α)(n2 + n − ϑ)

n + 1 − α
,

then f ∈ S∗(α).

In Corollary 5, if we fix n = 1 and α = 0, we obtain Theorem 4 of Fournier and
Mocanu [5], and if we fix ϑ = α = 0 and n = 1, we obtain the following result first
introduced by Obradović [11].

Corollary 6 Let f ∈ A satisfies |ξ f ′′(ξ)| < 1 in D. Then f ∈ S∗ and the result is
sharp.

Now lettingβ = 1 inTheorem2,we have the following result regarding the convexity
of order α.

Corollary 7 Let α ∈ [0, 1) and ν ∈ [1, n + 1). If f ∈ An satisfies

∣
∣ξ 2 f ′′′(ξ) + 2ξ f ′′(ξ) − ν(ν − 1)

(
f ′(ξ) − 1

)∣
∣ <

(n + 1 − ν)(1 − α)(n + ν)

n + 1 − α
,

then f (ξ) is convex of order α. The result is sharp for

f (ξ) = ξ + (1 − α)μ

(n + 1 − α)(n + 1)
ξ n+1, |μ| = 1.
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3 Applications

In this section, we use Theorems 1 and 2 to construct functions involving triple inte-
grals, and obtain conditions which are sufficient to ensure that these functions are in
the class S∗Cn(α, β). Consequently, the earlier known results regarding starlikeness
are obtained by setting β = 0.

Theorem 3 Let α ∈ [0, 1), δ ∈ [0, n), and let J ∈ H satisfies

|J(ξ)| ≤ (n + 1)(1 − α)(n − δ)

n + 1 − α
. (15)

Then the function

f (ξ) =

⎧
⎪⎪⎨

⎪⎪⎩

ξ + ξ n+1

β

∫∫∫ 1

0
J(stuξ)sntn−1−δun+ 1−β

β dsdtdu, for 0 < β ≤ 1

ξ + ξ n+1

∫∫ 1

0
J(stξ)sntn−1−δdsdt, for β = 0

(16)
belongs to the class S∗Cn(α, β). Furthermore, if equality holds in (15), then the
function (16) is

fμ(ξ) = ξ + (1 − α)μ

(n + 1 − α)(nβ + 1)
ξ n+1, |μ| = 1,

which indeed is in the class S∗Cn(α, β) (see Example 1).

Proof Let us suppose that f ∈ An satisfies the third-order differential inequality

βξ 2 f ′′′(ξ) + (1 + β(1 − δ)) ξ f ′′(ξ) − δ( f ′(ξ) − 1) = ξ nJ(ξ). (17)

In view of (15), it is clear that

∣
∣βξ 2 f ′′′(ξ) + (1 + β(1 − δ))ξ f ′′(ξ) − δ( f ′(ξ) − 1)

∣
∣ <

(1 − α)(n − δ)(n + 1)

n + 1 − α
,

and hence, from Theorem 1, we conclude that the solution of (17) belongs to
S∗Cn(α, β). Thus, in order to establish the desired result, it is sufficient to verify
that the solution of (17) is the function defined in (16). For

φ(ξ) = βξ f ′′(ξ) + (1 − β(1 + δ)) f ′(ξ) − (1 − β)(1 + δ)
f (ξ)

ξ
,

the Eq. (17) takes the form

ξφ′(ξ) + φ(ξ) = ξ nJ(ξ).
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This, on solving, gives

ξφ(ξ) =
∫ ξ

0
ζ nJ(ζ )dζ,

or

φ(ξ) = ξ n
∫ 1

0
J(sξ)snds. (18)

Taking

ψ(ξ) = β f ′(ξ) + (1 − β)
f (ξ)

ξ
− 1,

the Eq. (18) can be simplified to

ξψ ′(ξ) − δψ(ξ) = ξ n
∫ 1

0
J(sξ)snds.

The solution ψ of the above differential equation is given by

ψ(ξ) = ξ n
∫∫ 1

0
J(stξ)sntn−1−δdsdt.

This gives

β f ′(ξ) + (1 − β)
f (ξ)

ξ
= 1 + ξ n

∫∫ 1

0
J(stξ)sntn−1−δdsdt. (19)

Case 1 If β = 0, then (19) yields

f (ξ) = ξ + ξ n+1
∫∫ 1

0
J(stξ)sntn−1−δdsdt.

Case 2 If 0 < β ≤ 1, then (19) is a first-order differential equation with

f (ξ) = ξ + ξ n+1

β

∫∫∫ 1

0
J(stuξ)sntn−1−δun+ 1−β

β dsdtdu.

as its solution. Moreover, if equality holds in (15), then

J(ξ) = (n + 1)(1 − α)(n − δ)

n + 1 − α
μ.

for some μ ∈ Cwith |μ| = 1. Substituting this in (16) and integrating, we obtain the
function fμ(ξ). �
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Remark 1 Setting β = 0 in Theorem 3, we obtain Theorem 2.6 of Kuroki and Owa
[6].

Remark 2 The case, β = α = 0 in Theorem 3, was considered by Miller and
Mocanu [8, Theorem 2.1].

On taking β = 1 in Theorem 3, we obtain:

Corollary 8 Let 0 ≤ α < 1 and 0 ≤ δ < n. If J(ξ) ∈ H satisfies

|J(ξ)| ≤ (1 − α)(n − δ)(n + 1)

n + 1 − α
,

then

f (ξ) = ξ + ξ n+1
∫∫∫ 1

0
J(stuξ)tn−1−δ(su)ndsdtdu

is convex of order α.

Further, if we letα = 0 and δ = n − 1 inCorollary 8, then the following important
result is established.

Corollary 9 If J(ξ) ∈ H satisfies |J(ξ)| ≤ 1, then the function

f (ξ) = ξ + ξ n+1
∫∫∫ 1

0
J(stuξ)(su)ndsdtdu

is convex in D.

The following theorem is an application of Theorem 2.

Theorem 4 Let ν ∈ [1, n + 1) and α ∈ [0, 1). Also, let J ∈ H satisfies

|J(ξ)| ≤ (n + 1 − ν)(1 − α)(n + ν)

n + 1 − α
. (20)

Then, for β ∈ (0, 1],

f (ξ) = ξ + ξ n+1

β

∫∫∫ 1

0
J(stuξ)sn+ν−1tn−νun+ 1−β

β dsdtdu

is a member of the family S∗Cn(α, β). Furthermore, the function

f (ξ) = ξ + ξ n+1
∫∫ 1

0
J(stξ)sn+ν−1tn−νdsdt

is a member of S∗(α).
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Proof Consider f ∈ An that satisfies

βξ 2 f ′′′(ξ) + (1 + β)ξ f ′′(ξ) − ν(ν − 1)

(
Fβ(ξ)

ξ
− 1

)

= ξ nJ(ξ). (21)

In the light of (20), it is clear that

∣
∣
∣
∣βξ 2 f ′′′(ξ) + (1 + β)ξ f ′′(ξ) − ν(ν − 1)

(
Fβ(ξ)

ξ
− 1

)∣
∣
∣
∣

<
(n + 1 − ν)(1 − α)(n + ν)

n + 1 − α
.

Therefore, it follows fromTheorem 2 that the solution of (21) must lie inS∗Cn(α, β).
We now proceed to solve (21). Let us take

ϕ(ξ) = βξ f ′′(ξ) + (1 − βν) f ′(ξ) − (1 − β)ν
f (ξ)

ξ
,

so that (21) becomes

ϕ′(ξ) + ν

ξ
ϕ(ξ) = ξ n−1J(ξ) − ν(ν − 1)

ξ
.

This on further simplification gives

(ξ νϕ(ξ))
′ = ξ n+ν−1J(ξ) − ν(ν − 1)ξ ν−1,

or

ϕ(ξ) = ξ n
∫ 1

0
J(sξ)sn+ν−1ds − (ν − 1).

The above equation is equivalent to

βξ f ′′(ξ) + (1 − βν) f ′(ξ) − (1 − β)ν
f (ξ)

ξ
+ (ν − 1) = ξ n

∫ 1

0
J(sξ)sn+ν−1ds,

which, after simple calculations, can be rewritten as

ξ

(
Fβ(ξ)

ξ
− 1

)′
− (ν − 1)

(
Fβ(ξ)

ξ
− 1

)

= ξ n
∫ 1

0
J(sξ)sn+ν−1ds. (22)

Solving (22), we obtain

Fβ(ξ)

ξ
= 1 + ξ n

∫∫ 1

0
J(stξ)sn+ν−1tn−νdsdt. (23)
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Case I. If β = 0, then (23) gives

f (ξ) = ξ + ξ n+1
∫∫ 1

0
J(stξ)sn+ν−1tn−νdsdt,

and this function is starlike of order α.
Case II. If β ∈ (0, 1], then the solution of (23) is

f (ξ) = ξ + ξ n+1

β

∫∫∫ 1

0
J(stuξ)sn+ν−1tn−νun+ 1−β

β dsdtdu.

and this is a member of S∗Cn(α, β). �

Again, Theorem 4 has many consequences, some have been already proved and
some are completely new. For example, taking β = 0 gives us Theorem 4.1 of Verma
et al. [17] and β = 1 gives us results regarding convexity that are not available in the
literature.

4 Pascu Class

In this section, we find the differential inequalities sufficient to imply that a function
is in the Pascu classM(α, β) of β-convex functions of order α. For details and other
related results about this class of functions, we refer to [12, 13].

Definition 3 Let α ∈ [0, 1), β ∈ [0, 1], and f ∈ A. Then f is said to belong to the
Pascu class M(α, β) if

�
(

βξ
(
ξ f ′(ξ)

)′ + (1 − β)ξ f ′(ξ)

βξ f ′(ξ) + (1 − β) f (ξ)

)

> α.

Clearly,M(α, 0) = S∗(α) andM(α, 1) = C(α). Thus, like S∗C(α, β), this class
also gives a smooth passage between the classes of starlike and convex functions of
order α. Observe that f ∈ M(α, β) if

βξ f ′(ξ) + (1 − β) f (ξ) ∈ S∗(α), β ∈ [0, 1].

For β ∈ (0, 1], this condition can be further written as

f ∈ M(α, β) if βξ
2− 1

β

(
ξ

1
β
−1 f (ξ)

)′ ∈ S∗(α).

We now use Corollaries 1 and 5 to prove our results. Note that for f ∈ An , we denote
this class byMn(α, β)
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Theorem 5 Let α ∈ [0, 1), β ∈ (0, 1] and δ ∈ [0, n). Further, for f ∈ An, let

g(ξ) = ξ
1
β
−1 f (ξ) satisfies

∣
∣
∣
∣ξ

3− 1
β g′′′(ξ) +

(

4 − δ − 2

β

)

ξ
2− 1

β g′′(ξ) + (
2 − 1

β

)
(

1 − δ − 1

β

)

ξ
1− 1

β g′(ξ) + δ

∣
∣
∣
∣

<
(n + 1)(1 − α)(n − δ)

β(n + 1 − δ)
.

Then f belongs to the Pascu class Mn(α, β).

Proof Replacing f (ξ) by

βξ
2− 1

β

(
ξ

1
β
−1 f (ξ)

)′

in Corollary 1, and doing some calculations yields the desired result. �

Theorem 6 Let α ∈ [0, 1), β ∈ (0, 1] and μ ∈ [0, n + 1). Further, for f ∈ An, let

g(ξ) = ξ
1
β
−1 f (ξ) satisfies

∣
∣
∣
∣ξ

3− 1
β g′′′(ξ) + (4 − 2

β
)ξ

2− 1
β g′′(ξ)+ (2 − 3

β
+ 1

β2
)ξ

1− 1
β g′(ξ) − μ

(
ξ
1− 1

β g(ξ) − 1
) ∣

∣
∣
∣

<
(1 − α) [n(n + 1) − μ]

β(n + 1 − α)
.

Then f ∈ Mn(α, β).

Proof The result is obtained on replacing f (ξ) by βξ
2− 1

β

(
ξ

1
β
−1 f (ξ)

)′
in

Corollary 5. �
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One Dimensional Parametrized Test
Functions Space of Entire Functions

Sheila M. Menchavez and Irene Mae Y. Antabo

Abstract Inspired by the construction ofKondratiev test functions in infinite dimen-
sional analysis, this paper constructs a nuclear space of entire test functions of min-
imal type, endowed with the projective limit topology.

Keywords White noise theory · Topological spaces of test functions · Special
classes of entire functions and growth estimates

2010 Mathematics Subject Classification: 60H40 · 46F05 · 30D15

1 Introduction

In the 1970s, the theory of generalized functionals of infinitely many variables with
a dual pairing between spaces of test and generalized functions generated by Gaus-
sian measures was introduced independently by Yu. G. Kondratiev in [1] and series
of papers [2–7]; and by T. Hida in [9–11]. On the other hand, at the same time in
[12, 13], Yu. M. Berezansky and coauthors have developed a more general theory
of generalized functionals of infinitely many variables with the pairing generated
by non-Gaussian measures. The underlying principle for this kind of analysis is the
construction of suitable Gelfand triples of test and generalized functions (see e.g., [1,
7, 11, 14]). As stated in [15], the fundamental approach is to embed polynomials into
a countably Hilbert space, depending on the specific choice of these Hilbert spaces
one thus obtains the spaces of Hida or the Kondratiev test functions. The latter extend
the polynomials to a topological space of entire functions [7]. The explicit form of
Kondratiev spaces of test functions in infinite dimensional analysis is given in [16],
as a Hilbert space of formal power series. From the norm used to construct the Kon-
dratiev spaces, the parametrized Kondratiev spaces of test functions can be defined
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analogously. Specifically, when the norm is parametrized with (n!)1+β , β ∈ [0, 1]
instead of (n!)2 in the definition of the Kondratiev spaces, or by analogy with [17],
more general spaces of test functions can be obtained. But the consequence of gener-
alizing deteriorates the properties of the mentioned spaces and of the corresponding
dual spaces in comparison with the case of the non parametrized spaces. Studies on
this area may involve a characterization of the spaces considered in terms of analytic
and growth properties of the corresponding S-transforms, which is established in [8].
Kondratiev test and generalized functions of one complex variable were studied in
[18]. The one dimensional Kondratiev space of test functions is studied in [15] with
norm given by the sum

∞∑

n=0

|an|2epn(n!)2 < ∞, p ∈ N0. (1)

This paper constructs the one dimensional parametrized Kondratiev spaces of
test functions. More precisely, we use (n!)1+β and β ∈ [0, 1], instead of (n!)2 in the
definition of the norm in (1) to define a countable system of nondecreasing Hilbertian
norms and construct a countable family of Hilbert spaces {Hp}p≥0 of entire functions
such that their intersectionEβ = ⋂

p≥0
Hp is a spaceof entire functions ofminimal type,

endowed with the projective limit topology. To this end, in Sect. 2, we shall collect
necessary concepts regarding properties of entire functions. Please see [19–21] on
the notion of countably Hilbert spaces. Section3 is dedicated to the construction of
parametrized Kondratiev test functions space.

2 Preliminaries

In this section, we recall some facts and notations on order of growth and type of the
entire functions that are essential in this paper (see e.g., [22, 23]).

Theorem 1 [22] Let f (z) = ∑∞
n=0 anzn be an entire function of order

ρ := inf

{
K : max|z|=r

| f (z)| as
< exp(r K )

}
,

where
as
< means “for sufficiently large argument.” Then

ρ = lim sup
n→∞

n ln n

ln(1/|an|) . (2)

Moreover, if f (z) is an entire function of order of growth ρ and type
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τ := inf

{
A : max|z|=r

| f (z)| as
< exp(Arρ)

}

then

τ = 1

ρe
lim sup

n→∞

(
n n
√|an|ρ

)
. (3)

Lemma 1 [23] If the asymptotic inequality

max|z|=r
| f (z)| as

< exp(Arρ)

is fulfilled, then

|an| as
<

(
eAρ

n

) n
ρ

. (4)

Furthermore, if the asymptotic inequality (4) is fulfilled, then

max|z|=r
| f (z)| as

< exp((A + ε)rρ), ∀ε > 0.

3 Main Results and Proofs

In this section, we first consider an inner product space of entire functions that
contains polynomials and the space of polynomials forms its dense subset.Moreover,
its completion with respect to increasing sequence of norms produces a chain of
Hilbert spaces such that their intersection is a nuclear space of entire test functions
of minimal type.

Definition 1 For 0 ≤ β ≤ 1 and p ∈ N0. We define a linear space of power series

F =
{

f (z) =
∞∑

n=0

anzn :
∞∑

n=0

|an|2epn(n!)1+β < ∞
}
. (5)

Lemma 2 The space F given in (5) is a complete inner product space of entire
functions with inner product defined by

(·, ·) : F × F → C defined by ( f, g)p,β =
∞∑

n=0

anb̄nepn(n!)1+β (6)

where f (z) =
∞∑

n=0
anzn, an ∈ C and g(z) =

∞∑
m=0

bm zm, bm ∈ C.
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Proof First, we show that ( f, g)p,β =
∞∑

l=0
al b̄lepl(l!)1+β < ∞. Let f (z) =

∞∑
n=0

anzn

and g(z) =
∞∑

m=0
bm zm are in F . Then corresponding to 0 < ε < 1, there exist nat-

ural numbers N1, N2 such that
∣∣∣

∞∑
n=N1+1

|an|2epn(n!)1+β

∣∣∣ < ε
2 for all n ≥ N1 and

∣∣∣
∞∑

m=N2+1
|am |2epn(m!)1+β

∣∣∣ < ε
2 for all n ≥ N2.Now, choose N = max{N1, N2} such

that for all l > N , we get

∣∣∣
∞∑

l=N+1

al b̄le
pl(l!)1+β

∣∣∣ ≤
∣∣∣

∞∑

l=N+1

|al |2epl(l!)1+β
∣∣∣
∣∣∣

∞∑

l=N+1

|bl |2epl(l!)1+β
∣∣∣ < ε.

Also, ( f, f )p,β is positive-definite, since |an|2epn(n!)1+β > 0 for all n ∈ N0. More-

over, by definition of f, we have |an|2 ≤ ε

(n!)1+βepn
, for all n ≥ N1. By the Stirling

formula, lim
n→∞ |an|1/n = 0. Thus it can be verified that F is an inner product space

of entire functions. To this end, we show that F is complete. For 0 ≤ β ≤ 1 and
p ∈ N0, define

‖x − y‖p,β =
⎛

⎝
∞∑

j=0

|x j − y j |2epj ( j !)1+β

⎞

⎠

1
2

,

where x = (
x j

)∞
j=0 and y = (

y j
)∞

j=0 ∈F . Let
(

f (n)
)∞

n=0 be a Cauchy sequence inF ,

where f (n) = { f (n)
1 , f (n)

2 , . . . }. Then there exists N ∈ N such that for all m, n ≥ N ,

‖ f (m) − f (n)‖p,β < ε.

Thus for any j ∈ N, we get

∣∣∣ f (m)
j − f (n)

j

∣∣∣
2

epj ( j !)1+β ≤
∞∑

j=0

∣∣∣ f (m)
j − f (n)

j

∣∣∣
2

epj ( j !)1+β < ε2,

which implies that all m, n ≥ N ,

∣∣∣ f (m)
j − f (n)

j

∣∣∣ < ε. That is for any j ∈ N, the

sequence
(

f (n)
j

)∞
n=0

is Cauchy. SinceC is complete, for all j ∈ N, there exists f j ∈ C

such that
lim

n→∞ f (n)
j = f j .

Next, define f = { f1, f2, . . . } and show that f ∈ F and f (n) converges to f. Fix
k ∈ N, so that for all m, n ≥ N , we have
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k∑

j=0

∣∣∣ f (m)
j − f (n)

j

∣∣∣
2

epj ( j !)1+β ≤
∞∑

j=0

∣∣∣ f (m)
j − f (n)

j

∣∣∣
2

epj ( j !)1+β < ε2. (7)

Letting n → ∞ in Eq. (7), we get

k∑

j=0

∣∣∣ f (m)
j − f j

∣∣∣
2

epj ( j !)1+β < ε2 (8)

for all m ≥ N . Now, as k → ∞ we obtain all m ≥ N ,

∞∑

j=0

∣∣∣ f (m)
j − f j

∣∣∣
2

epj ( j !)1+β < ε2. (9)

Thus we have shown that f (n) − f ∈ F . Moreover, using Minkowski’s inequality,

⎛

⎝
∞∑

j=0

∣∣ f j
∣∣2 e pj ( j !)1+β

⎞

⎠

1
2

=
⎛

⎝
∞∑

j=0

∣∣∣ f (m)
j − f j + f (m)

j

∣∣∣
2

e pj ( j !)1+β

⎞

⎠

1
2

≤
⎛

⎝
∞∑

j=0

∣∣∣ f (m)
j − f j

∣∣∣
2

e pj ( j !)1+β

⎞

⎠

1
2

+
⎛

⎝
∞∑

j=0

∣∣∣ f (m)
j

∣∣∣
2

e pj ( j !)1+β

⎞

⎠

1
2

Hence, f ∈ F . Again letting k → ∞ in Eq. (8), we obtain

‖ f (m) − f ‖p,β =
∞∑

j=0

∣∣∣ f (m)
j − f j

∣∣∣
2

epj ( j !)1+β < ε2.

Hence, f (m) converges to f. �

The inner product given in Eq. (6) defines a Hilbertian norm on F . In what follows,
we introduce a countable system of nondecreasing Hilbertian norms . . . ≤ ‖·‖p,β ≤
‖·‖p+1,β ≤ ‖·‖p+2,β . . . with parameter p = 0, 1, 2, . . . and 0 ≤ β ≤ 1 correspond-
ing to countable family of Hilbert spaces.

Definition 2 For 0 ≤ β ≤ 1 and p = 0, 1, 2, . . . , we define Hilbert spaces

Hβ
p :=

{
f (z) =

∞∑

n=0

anzn
∣∣∣‖ f ‖2p,β :=

∞∑

n=0

|an|2epn(n!)1+β < ∞
}
.

Since ‖·‖p,β ≤ ‖·‖p+1,β for all p ∈ N0, we have Hβ

p+1 ⊂ Hβ
p for all p ∈ N0.

Lemma 3 The monomials
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e(p)
n (z) = e

−pn
2 (n!) 1+β

−2 zn with n = 0, 1, 2, . . . (10)

are an orthonormal basis in Hβ
p . Moreover, the set

{
e(p)

n (z) : n ∈ N0

}
is total in

Hβ
p .

Proof Let f ∈ Hβ
p , p = 0, 1, 2, . . . and 0 ≤ β ≤ 1. If n = m, we have

(
e(p)

n , e(p)
m

) = ∥∥e(p)
n

∥∥2

p,β
= 1.

Suppose n 
= m then with

ai =
{
0, if i 
= n

e
−pn
2 (n!)− 1+β

2 , if i = n

and

b j =
{
0, if j 
= m

e
−pm
2 (m!) 1+β

2 , if j = m
.

we have

(
e(p)

n , e(p)
m

) =
⎛

⎝
∞∑

i=0

ai z
i ,

∞∑

j=0

b j z
j

⎞

⎠ =
∞∑

k=0

akb̄kepk(k!)1+β.

Since n 
= m, akb̄k = 0, for all k ≥ 0. Hence
(
e(p)

n , e(p)
m

) = 0 if n 
= m. Moreover,

the completeness ofHβ
p is sufficient to conclude that

{
e(p)

n (z) : n ∈ N0

}
is total in

Hβ
p , that is, span {e(p)

n (z) : n ∈ N0} = Hβ
p . �

The above result implies that for 0 ≤ β ≤ 1, Hβ
p is separable Hilbert space for

any p = 0, 1, 2, . . . .

Lemma 4 The Hilbert spaces form a chain of dense continuous embedded spaces

. . . ⊂ Hβ

p+1 ⊂ Hβ
p ⊂ Hβ

p−1 . . . .

Proof Clearly, we can define the identity map from Hβ

p+1 to Hβ
p as the inclusion

map. Next, let Np(0, ε) be a neighborhood of zero inHβ
p defined by

Np(0, ε) = {g ∈ Hβ
p : ‖g‖p,β < ε}

and let i p,p−1 : Hβ
p → Hβ

p−1 be the inclusion map. Then
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i−1
p,p−1Np−1(0, ε) = {g ∈ Hβ

p : i p,p−1(g) = g ∈ Np−1(0, ε)}
= {g ∈ Hβ

p : ‖g‖p−1,β < ε}

and

Np(0, ε) ⊂ i−1
p,p−1Nβ

p−1(0, ε) = {g ∈ Hβ
p : ‖g‖p−1,β < ε}.

Hence, i p,p−1 is continuous. Finally, let f ∈ Hβ

p−1, and let ε > 0. Since

span {e(p−1)
n (z) : n ∈ N0} = Hβ

p−1, there exists g ∈ span {e(p−1)
n (z) : n ∈ N0} for

which ‖ f − g‖p−1,β < ε. Note that for any k, e(p−1)
k (z) = e

−(p−1)k
2 (k!) 1+β

2 zk =
e

k
2 e(p)

k (z) so that for some n and constants a0, a1, a2, . . . , an , g =
n∑

k=0

ake
k
2 e(p)

k (z).

Moreover, ‖g‖2p,β =
n∑

k=0
|ak |2ek < ∞. Thus g ∈ Hβ

p , and hence Hβ
p is dense in

Hβ

p−1.

Lemma 5 For p > q, the corresponding norms of the Hilbert spaces Hβ
p and Hβ

q

are compatible.

Proof Clearly, from Lemma 4, the embeddingHβ
p ⊂ Hβ

q for p > q is injective and
since the inclusion map from Hβ

p onto Hβ
q is continuous, the corresponding norms

are compatible.

Proposition 1 For p = 2, 3, . . . and 0 ≤ β ≤ 1. The functions f in Hβ
p are of at

most 2
1+β

order of growth and type τ ≤ (1+β)

2 e
−p
1+β .

Proof Let f ∈ Hβ
p . Then take 0 < ε < 1. Thus, by the Stirling formula we obtain

|an|2 ≤ ε
(√

2π nn+1/2e−n
)1+β

epn

(11)

for sufficiently large n. Now using (11) to get

2 ln |an| ≤ ln ε − (1 + β) ln
√
2π − (1 + β)(n + 1

2 ) ln n − (p − (1 + β))n

≤ −(1 + β)n ln n for some 0 < ε < 1.

It follows from (2) that f has order of growth at most 2
1+β

. Now, for p > 1, we have
the bound

|an|ρ/n ≤ ε1/(1+β)n

(
√
2π nn+1/2e−n)1/nep/(1+β)

.

Thus using (3)
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τ ≤ (1+β)

2e lim
n→∞ sup n

ε1/(1+β)n

(
√
2π)1/n ne(1/2n) ln ne−1ep/(1+β)

= (1+β)

2 e
−p

(1+β) .

This means that f is of order at most 2
1+β

and type no more than (1+β)

2 e
−p
1+β for

that corresponding order. �

Definition 3 Define the space Eβ

Eβ := proj lim
p→∞

Hβ
p =

⋂

p≥0

Hβ
p ,

called the projective limit of the spaces Hβ
p .

In the projective limit topology a neighborhood basis for the linear space Eβ is
given by

Up,ε = { f ∈ Eβ : ‖ f ‖p,β < ε}, p ∈ N, ε > 0. (12)

Lemma 6 The set Up,ε given in (12) is convex, balanced and absorbing local base
of Eβ .

Proof Let h ∈ tUp,ε + (1 − t)Up,ε and 0 ≤ t ≤ 1, then there exists f, g ∈ Up,ε such
that h = t f + (1 − t)g. Thus, for all t ∈ [0, 1],

‖h‖p,β = ‖t f + (1 − t)g‖p,β ≤ ‖t f ‖p,β + ‖(1 − t)g‖p,β < ε.

Next, let λ be a scalar such that |λ| ≤ 1 and f ∈ Up,ε . Then

‖λ f ‖p,β = |λ| ‖ f ‖p,β ≤ ‖ f ‖p,β < ε.

Lastly, let f ∈ Eβ and ‖ f ‖p,β < sε for some s > 0. Then

∥∥s−1 f
∥∥

p,β
= s−1 ‖ f ‖p,β < ε.

This means that s−1 f ∈ Up,ε . Thus f ∈ sUp,ε . Hence, the assertion follows. �

Moreover, the space Eβ is a locally convex topological linear space. For more
detail on such topological linear spaces see [19–21], and for a related construction
see Chap.3 and Appendix A5 of [11].

Theorem 2 The space Eβ is countably Hilbert and Fréchet space.

Proof From the compatibility of the above norms, Eβ is countably Hilbert and com-
plete. Now, the topology in Eβ generated by the metric defined by
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d( f, g) =
∞∑

p=0

1

2p

‖ f − g‖p,β

1 + ‖ f − g‖p,β

,

which is identical with the original topology generated by the neighborhood basis
given in Eq. (12). Thus, Eβ is a metrizable space. Since, Eβ is locally convex, it
follows that it is a Fréchet space. �

Theorem 3 The linear space Eβ is a nuclear space.

Proof It suffices to show that for all p ∈ N0 the embedding

ir,p : Hβ
r → Hβ

p

is of Hilbert-Schmidt type for some r ∈ N0. Let p ∈ N0 then for some q ∈ N, define
the embedding by the inclusion map

i p+q,p : Hβ
p+q → Hβ

p .

Now,

i p+q,pe(p+q)
n (z) =

∑

m

(
i p+q,pe(p+q)

n (z), e(p)
m (z)

)
pe(p)

m (z)

= e−qn/2e(p)
n (z).

Thus

‖i p+q,p‖2p,β =
∑

n

e−qn < ∞.

�

Theorem 4 The spaceEβ = proj lim
p→∞

Hβ
p = ⋂

p≥0
Hβ

p is the spaceE
2

1+β

min of entire func-

tions of order at most ρ = 2
1+β

and minimal type.

Proof Let f (z) ∈ ⋂
p≥0

Hβ
p . Then f (z) ∈ Hβ

p for all p. By Proposition 1, for each p,

there exists r0(p) > 0 such that the asymptotic inequality holds

max|z|=r
| f (z)| < exp

(1 + β

2
e

−p
1+β |z| 2

1+β

)

for all |z| > r0(p).Given ε > 0, choose p such that 1+β

2 e
−p
1+β < ε.Then the following

asymptotic inequality holds,

max|z|=r
| f (z)| < exp

(
ε|z| 2

1+β

)
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for all |z| > r0(p). Conversely, consider now f (z) =
∞∑

n=0
anzn, an entire function of

order growth at most ρ = 2
1+β

and minimal type. Let p ≥ 0. The first part of Lemma
1 implies that for any A > 0

|an| as
<

(
2eA

n(1 + β)

) n(1+β)

2

.

Hence, using Stirling’s formula

enp(n!)1+β |an|2 as
< enp(nne−n

√
2πn)1+β

(
2eA

n(1 + β)

)(1+β)n

and
‖ f ‖2p =

∑

n

enp(n!)1+β |an|2 <
∑

n

(2πn)
1+β

2 (ep(2A)1+β)n.

Choose A for which ep(2A)1+β < 1. Hence f ∈ Hβ
p . �

The reader may find it interesting to explore the dual spaces of the family of
Hilbert spaces {Hβ

p }p≥0, which can be easily deduced from the above construction.
Also, the inductive limit of the dual spaces is straightforward to obtain.
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Extremal Mild Solutions of Hilfer
Fractional Impulsive Systems

Divya Raghavan and N. Sukavanam

Abstract The well-established monotone iterative technique that is used to study
the existence and uniqueness of fractional impulsive system is extended to Hilfer
fractional order in this paper. The results are derived by using the method of upper
and lower solution and Gronwall inequality. Also, conditions on non-compactness
of measure are used effectively to prove the main result.

Keywords Upper and lower solutions · Hilfer fractional derivative ·
Non-compactness measure

1 Literature Motivation

Over the years, the urge of finding the extremals of a function evolved in many
problems, especially in, geometry, history and mechanics. Du and Lakshmikantham
[5] investigated the initial value problem given as,

x ′ = g(t, x); x(0) = x0

in the Banach space E with norm ‖ · ‖, where x0, x , g ∈ E and developed amonotone
iterative technique to find the existence of the extremal solutions. Ladde et al. [12]
rendered a substantial theory of monotone method using upper and lower solutions
for nonlinear equations in their monograph. The basic discussion in this monograph
focused on the first-and second-order partial differential equation. The authors of this
monograph constructed two monotone sequences on the basis of quasi-monotone
property. Further they claim that the converging limits x̄ and x of the two sequences
are same for the parabolic system and left an open problem regarding elliptic systems.
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Nieto and Cabada [19] studied in detail the existence of extremal solution of periodic
boundary value second-order system with boundary conditions,

−x ′′ = g(t, x); x(0) = x(2π); x ′(0) = x ′(2π).

Here the authors utilized monotone iterative procedures without the usual required
boundary conditions α′(0) ≥ α′(2π), β ′(0) ≤ β ′(2π), where α and β are lower and
upper solutions. For both initial value problem and boundary value problem, the
impulsive system finds itself a significant role in the past as well as in the present.
Almost in all physical problems, the movement of the state of the system is dis-
continuous. Hence, widening the idea of monotone iterative technique to impulsive
systemwas unavoidable. Liz andNieto [15] extended this approach to impulsive peri-
odic boundary value second-order system. The authors had put forward a maximum
principle exclusively for impulsive functions.

Due to the advantage over integer order in many practical problems, fractional
calculus ismore appreciated in the past few decades. Basic theory related to fractional
calculus and its applications are available in the literature in numerous research
articles, books, and monographs. For interested readers, [21] by Podlubny, [11] by
Kilbas et al. and [22] by Stamova and Stamov for impulsive systems can be referred.
Due to the fact that the systems with fractional order is inevitable, the study of
existence and uniqueness of extremals of differential systemusingmonotone iterative
method for fractional system is vital. Lakshmikantham and Vatsala [13] enhanced
the monotone iterative theory to fractional order initial value problem given by

Dμ(x − x(0)) = f (t, x); x(0) = x0,

where 0 < μ < 1, f ∈ C[R0,R]. Here, R0 = (t, x) : 0 ≤ t ≤ α and |x − x0| ≤ β.
Here α and β are lower and upper solutions. Subsequently, many researchers focused
their interest in finding the extremals using upper and lower solution method along
with monotone iterative technique for both initial value and boundary value problem
of fractional order differential equations. McRae [16] discussed the existence result
using fractional monotone iterative method exclusively for differential system with
Riemann-Liouville fractional order. Several authors including Denton and Vatsala
[4] on finite fractional system, Liu et al. [14] on fractional integral systems with
advanced arguments and Wang [27] on boundary value fractional system with devi-
ating arguments studied the existence and uniqueness using this method. Recently
Agarwal et al. [1] analyzed various cases of upper and lower solutions with initial
time differences and discussed the different algorithms for distinct cases, some cases
using Mittag-Leffler functions and some cases using mathematical software. The
work of Mu cannot be excluded. His solitary work [17] and the work along with Li
[18] on monotone iterative technique for impulsive fractional system given by

⎧
⎨

⎩

Dαx(t) + Ax(t) = g(t, x(t)), t ∈ J, t �= tk,
�x |t=tk = Jk(x(tk)), k = 1, 2, . . . n,

x(0) = x0,
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using non-compactness measure and generalized Gronwall inequality is noteworthy.
Here Dα is the Caputo fractional derivative of order 0 < α < 1, −A an infinitesimal
generator of an analytic semigroup T (t), t ≥ 0 and g and Jk are continuous functions.
Zhang and Liang [29] employed monotone iterative technique in the presence of
coupled lower and upper L-quasi solution and Sadovskii’s fixed point theorem.

In this regard, Gou and Li [8] investigated the existence of extremal solution with
the aid of lower and upper solution method for Hilfer fractional differential system.
Driven by the fact that the monotone technique has not reached the impulsive Hilfer
fractional differential system, this paper is projected to bridge the void. Therefore,
in this paper an impulsive system with Hilfer fractional derivative is considered as
follows: ⎧

⎨

⎩

t0D
μ,ν
t x(t) + Ax(t) = g(t, x(t)), t ∈ J, t �= tk

�I (1−λ)
tk x(tk) = φk(x(tk)), k = 1, 2, . . . l

I (1−λ)
t0+ [x(t)]t=0 = x0.

(1)

Here, Dμ,ν
0 denotes the Hilfer fractional derivative of order 0 < μ < 1, type 0 ≤

ν ≤ 1 and λ = μ + ν − μν. −A is the infinitesimal generator of an analytic-
semigroup of uniformly bounded linear operators Q(t)(t ≥ 0) on a Banach space
E , and for M ≥ 1, supt∈[0,∞) |Q(t)| ≤ M . If the impulse effect occurs at t = tk ,
for (k = 1, 2, . . . , l), then φk : E → E is the mapping of the solution before the
impulse effect, x(t−k ), to after the impulse effect, x(t+k ). It determines the size
of the jump at time tk . In other words, the impulsive moments meet the relation
�I 1−λ

tk x(tk) = I 1−λ

t+k
x(t+k ) − I 1−λ

t−k
x(t−k ), where I 1−λ

t+k
x(t+k ) and I 1−λ

t−k
x(t−k ) denotes the

right and the left limit of I 1−λ
tk x(t) at t = tk with 0 = t0 < t1 . . . < tl < tl+1 = T . In

the given impulsive system, let J = [0, T ] and J ′ = J\{t1, t2, t3, . . . , tl}, for T > 0
and g is a continuous nonlinear operator such that g : J × E → E .

The rest of the paper is framed as follows: Sect. 2 gives a revisit to definitions
on fractional calculus and certain necessary basic theorems. Section3 includes the
proof of the main theorem and few other results related to the existence of extremal
solutions and Sect. 4 gives the conclusion of the paper.

2 Essential Notions

This section covers the basic results, definitions, and theorems that are essential
throughout this paper.

Definition 1 [5] In an ordered Banach space E , let N be a proper subset of E . Then
N is said to be a cone if for η ≥ 0, ηN ⊂ N , N + N ⊂ N , N ∩ (−N ) = {0} and
N = N where N denotes the closure of N .

Definition 2 [5] A cone N is said to be normal if there exists a real number D > 0
such that for 0 ≤ y ≤ z implies ‖ · ‖ ≤ D‖z‖. Here D is independent of y and z.
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For detailed definition and explanation regarding positive cone of an ordered Banach
space the reader may refer to [5]. Let the space of all continuous functions from J to
E be denoted by C(J, E), where E is an ordered Banach space with partial order ≤,
norm ‖ · ‖ and whose positive cone N = {x ∈ E : x(t) ≥ θ} is normal with normal
constant D, where θ is the zero element of E .C(J, E) is also an orderedBanach space
with normstated as‖x‖C = max ‖x(t)‖. Apparently, PC(J, E) is an orderedBanach
Space along with the norm ‖x‖PC = supt∈J ‖x(t)‖. Also, PC1−λ is an ordered
Banach space with partial order ≤, defined as PC1−λ(J, E) = {x ∈ PC(J, E) :
(t − tk)1−λx(t) ∈ PC(J, E)} with norm ‖x‖PC = supt∈J ‖(t − tk)1−λx(t)‖ whose
positive cone NPC1−λ

= {x ∈ PC1−λ(J, E) : x ≥ θ} is normal with the same nor-
mal constant D. From the defined system (1), x(t) is continuous in each Jk , where
Jk = (tk, tk+1], for k = 1, 2, . . . , l with t0 = 0 and tl+1 = T .

The fractional integral of orderμ and for an integrable function g is given as [21],

Iμ
t g(t) = 1

�(μ)

∫ t

0
(t − s)μ−1g(s)ds, 0 < μ < 1.

Here �(·) is the gamma function. Also, the fractional derivative of the two classical
derivatives, Caputo and Riemann-Liouville of order μ, respectively is given by [21],

C Dμ
0+g(t) = 1

�(1 − μ)

∫ t

0

g′(s)
(t − s)μ

ds, t > 0, 0 < μ < 1,

and
L Dμ

0+g(t) = 1

�(1 − μ)

(
d

dt

)∫ t

0

g(s)

(t − s)μ
ds, t > 0, 0 < μ < 1.

The Hilfer fractional derivative of order 0 < μ < 1 and type 0 ≤ ν ≤ 1 of function
g(t) is defined by Hilfer [10],

Dμ,ν
0+ g(t) = I ν(1−μ)

0+ DI (1−ν)(1−μ)
0+ g(t)

where D := d
dt . The existence of solution for fractional systemwith Hilfer fractional

derivative which was established by Furati et al. in [6] and Gu and Trujillo in [7]
unlatched the flow of research on differential systemwith Hilfer fractional derivative.
Riemann-Liouville and Caputo can be regarded as a special case of Hilfer fractional
derivative, respectively as

Dμ,ν
0+ =

{
DI 1−μ

0+ = L Dμ
0+, ν = 0

I 1−μ
0+ D = C Dμ

0+, ν = 1.

The parameter λ satisfies λ = μ + ν − μν, 0 < λ ≤ 1.
For y, z ∈ PC1−λ(J, E), the interval [y, z] = {x ∈ PC1−λ(J, E)|y ≤ x ≤ z} is

ordered in PC1−λ(J, E) for y ≤ z and [y(t), z(t)] = {w ∈ E |y(t) ≤ w ≤ z(t), t ∈
J }. Fix Cμ,ν(J, E) = {x ∈ C(J, E)|Dμ,νx exists and Dμ,νx ∈ C(J, E)}. The
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graph norm or the A-norm of the Banach space denoted by EA, dom(A) is defined
as ‖ · ‖A = ‖ · ‖E + ‖A(·)‖E . If any x ∈ PC1−λ(J, E) ∩ Cμ,ν(J ′, E) ∩ C(J ′, EA)

satisfies all the equalities of (1), then such an abstract function is said to be the
solution of (1).

Definition 3 [8] If z0 ∈ PC1−λ(J, E) ∩ Cμ,ν(J ′, E) ∩ C(J ′, EA) satisfies all the
inequalities of

⎧
⎨

⎩

t0D
μ,ν
t z0(t) + Az0(t) ≥ g(t, z0(t)), t ∈ J, t �= tk

�I (1−λ)
tk z0(t)|t=tk ≥ φk(x(tk)), k = 1, 2, . . . l

I (1−λ)
t0+ [z0(t)]t=0 ≥ x0

then z0 is called the upper solution of the problem (1).

Remark 1 [8] If all the inequalities of Definition 3 are satisfied by y0 in the reverse
order, then it is a lower solution of the problem (1).

Definition 4 [18]
An operator family Q(t) : E → E for t ≥ 0 is supposedly positive if, for any

u ≥ N and t ≥ 0, the inequality Q(t)u ≥ θ holds.

It can be referred [9] that the Kuratowski measure of non-compactness measure
denoted by α(·) is defined on a bounded set. For any t ∈ J and B ⊂ C(J, E), define
B(t) = {x(t) : x ∈ B}. If B is bounded in C(J, E), then B is bounded in E . Also,
α(B(t)) ≤ (B).

The following two lemmas are imperative for the proof of the main theorem in
the next section.

Lemma 1 [9] Let Bp = {xp} ⊂ C(J, E), (p = 1, 2, . . .) be a bounded and count-
able set. Then, α(Bp(t)) is Lebesgue integral on J . And

α

({ ∫

J
xp(t)dt |p=1,2,...,

})

≤ 2
∫

J
α(Bp(t))dt.

The subsequent lemma is with reference to the generalized Gronwall inequality for
fractional differential equation.

Lemma 2 [28] Suppose b ≥ 0, β > 0 and a(t) is a nonnegative function locally
integrable on 0 ≤ t < T (some T ≤ +∞), and suppose x(t) is nonnegative and
locally integrable on 0 ≤ t < T with

x(t) ≤ a(t) + b
∫ t

0
(t − s)β−1x(s)ds

on this interval; then

x(t) ≤ a(t) +
∫ t

0

[ ∞∑

n=1

(b�(β))n

�(nβ)
(t − s)nβ−1a(s)

]
ds, 0 ≤ t < T .
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Definition 5 [3] A function x ∈ PC1−λ(J, E) is called the mild solution of system
(1), if for t ∈ J it satisfies the following integral equation

x(t) = Sμ,ν(t)x0 +
k∑

i=1

Sμ,ν(t − ti )φi (x(ti )) +
∫ t

0
(t − s)μ−1Pμ(t − s)g(s, x(s))ds

(2)
where,

Sμ,ν(t) = I ν(1−μ)
0+ Pμ(t), Pμ(t) =

∫ ∞

0
μθξμ(θ)Q(tμθ)dθ,

μ(θ) = 1

π

∞∑

n=1

(−1)n−1θ−nμ−1�(nμ + 1)

n! sin(nπμ), θ ∈ (0,∞)

and ξμ(θ) = 1
μ
θ

−1− 1
μ μ(θ

− 1
μ ) is a probability density function defined on (0,∞),

that is

ξμ(θ) ≥ 0 and
∫ ∞

0
ξμ(θ)dθ = 1.

Remark 2 1. From [6], when ν = 0, the solution reduces to the solution of classical
Riemann-Liouville fractional derivative, that is, Sμ,0(t) = Pμ(t).

2. Similarly when ν = 1, the solution reduces to the solution of classical Caputo
fractional derivative, that is Sμ,1(t) = Sμ(t).

Lemma 3 [3] If the analytic semigroup Q(t)(t ≥ 0) is bounded uniformly, then the
operator, Pμ(t) and Sμ,ν(t) satisfies the following bounded and continuity conditions.
Sμ,ν(t) and Pμ(t) are linear bounded operators and for any x ∈ E

‖Sμ,ν(t)x‖E ≤ Mtλ−1

�(λ)
‖x‖E and ‖Pμ(t)x‖E ≤ M

�(μ)
‖x‖E .

3 Main Results

To prove the main theorem of this paper, an equivalent system given below is dis-
cussed. The perturbed equivalent system is valid as the constant C ≥ 0.

⎧
⎨

⎩

t0D
μ,ν
t x(t) + (A + C I )x(t) = g(t, x(t)) + Cx(t), t ∈ J, t �= tk

�I (1−λ)
tk x(tk) = φk(x(tk)), k = 1, 2, . . . l

I (1−λ)
t0+ [x(t)]t=0 = x0.

(3)

Remark 3 1. With reference to [20], for any C ≥ 0, −(A + C I ) generates an ana-
lytic semigroup R(t) = e−Ct Q(t) and for t ≥ 0, R(t) is positive and supt∈[0,∞)

‖R(t)‖ ≤ M∗ for M∗ ≥ 1.
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2. Let S∗
μ,ν(t) and P∗

μ(t) for t ≥ 0 be two families of operators defined by

S∗
μ,ν(t) = I ν(1−μ)

0+ P∗
μ(t), P∗

μ(t) =
∫ ∞

0
μθξμ(θ)R(tμθ)dθ.

3. The above two operators are positive for (t ≥ 0) and for any x ∈ E ,

‖S∗
μ,ν(t)‖ ≤ M∗tλ−1

�(λ)
and ‖P∗

μ(t)‖ ≤ M∗

�(μ)
.

Definition 6 A function x ∈ PC1−λ(J, E) is said to be a mild solution of the prob-
lem (3) if for any x ∈ PC1−λ(J, E), the integral equation

x(t) = S∗
μ,ν(t)x0

+
k∑

i=1

S∗
μ,ν(t − ti )φi (x(ti )) +

∫ t

0
(t − s)μ−1P∗

μ(t − s)
[
g(s, x(s)) + Cx(s)

]
ds.

The following theorem guarantees the existence of the extremal mild solution of the
impulsive system (1).

Theorem 1 Let E be an orderedBanach spacewith the positive cone N. Assume that
Q(t) ≥ 0 and the impulsive system (1) has both lower and upper solution, given by
y0 and z0 respectively, where y0, z0 ∈ PC1−λ and y0 ≤ z0. By adopting themonotone
iterative procedure and presuming the following conditions, the impulsive system (1)
has the extremal solution between y0 and z0.

• [A(1)]:- For x ∈ [y0(t), z0(t)] the function g(t, x) + Cx is increasing in x, pre-
cisely, there exists a constant C ≥ 0 such that

g(t, x2) − g(t, x1) ≥ −C(x2 − x1)

and y0(t) ≤ x1 ≤ x2 ≤ z0(t) for any t ∈ J .
• [A(2)]: For x ∈ [y0(t), z0(t)], the impulsive function is increasing. It implies

φk(x1) ≤ φk(x2), k = 1, 2, . . . , l.

• [A(3)]: The sequence {xp} ⊂ [y0(t), z0(t)], for t ∈ J is either decreasing or
increasing monotonic sequence, in particular, there exists a constant L ≥ 0 such
that

α
(
{g(t, xp)}

)
≤ Lα

(
{xp}

)
, p = 1, 2, . . . , .

Proof As C > 0, the problem (1) can be presented in the form of problem (3). So,
it is sufficient to prove the existence of a unique solution of the problem (3). For a
fixed x0, define the operator G : [y0, z0] → PC1−λ(J, E) by
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(Gx)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗
μ,ν(t)x0 +

∫ t

0
(t − s)μ−1P∗

μ(t − s)
[
g(s, x(s)) + Cx(s)

]
ds, t ∈ [0, t1]

S∗
μ,ν(t)x0 +

k∑

i=1

S∗
μ,ν(t − ti )φi (x(ti ))

+
∫ t

0
(t − s)μ−1P∗

μ(t − s)
[
g(s, x(s)) + Cx(s)

]
ds,

t ∈ (tk , tk+1], k = 1, 2, . . . l.
(4)

The map G(x)(t) is continuous since g is continuous. By the Definition 5, the fixed
points of the operator G are equivalent to the mild solution of the system given in
(2). It means,

Gx(t) = x(t). (5)

Now it is to be proved that the operator G is an increasing monotonic operator. The
following steps lead to the completion of the proof.
Step1:- To show G(x1) ≤ G(x2):- The condition A(1), can be presented in the fol-

lowing ways, which can be directly used in the proof. That is ∀t ∈ J
′
,

y0(t) ≤ x1(t) ≤ x2(t) ≤ z0(t).

g(t, x1(t)) + Cx1(t) ≤ g(t, x2(t)) + Cx2(t). (6)

Considering the case for t ∈ J
′
0, for J

′
0 = [0, t1]:- As the operators S∗

μ,ν(t) and P∗
μ(t)

are positive operators, when themild solutions are compared, using (6), the following
inequality is obtained.∫ t

0
(t − s)μ−1P∗

μ(t − s)
[
g(s, x1(s)) + Cx1(s)

]
ds ≤

∫ t

0
(t − s)μ−1P∗

μ(t − s)
[
g(s, x2(s)) + Cx2(s)

]
ds.

Inwhich case, for∀t ∈ J
′
k , with J

′
k = (tk, tk+1], k = 1, 2, . . . l , applying the condition

A(2) yields

S∗
μ,ν(t)x1(0) +

k∑

i=1

S∗
μ,ν(t − ti )φi (x1(ti ))

+
∫ t

0
(t − s)μ−1P∗

μ(t − s)
[
g(s, x1(s)) + Cx1(s)

]
ds ≤

S∗
μ,ν(t)x2(0) +

k∑

i=1

S∗
μ,ν(t − ti )φi (x2(ti ))

+
∫ t

0
(t − s)μ−1P∗

μ(t − s)
[
g(s, x2(s)) + Cx2(s)

]
ds.
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Eventually, G(x1) ≤ G(x2).
Step2:- To show y0 ≤ G(y0) ; G(z0) ≤ z0:-

For the case for which t ∈ J
′
0:-

Let Dμ,νz0(t) + Az0(t) + Cz0(t) = ξ(t). By the Definition 3 of the upper solu-
tion, the mild solution of the system (1) can be written as

z0(t) = S∗
μ,ν(t)z0(0) +

∫ t

0
(t − s)μ−1P∗

μ(t − s)ξ(s)ds

≥ S∗
μ,ν(t)x0 +

∫ t

0
(t − s)μ−1P∗

μ(t − s)
[
g(s, z0(s)) + Cz0(s)

]
ds

From (4), it can be observed that z0(t) ≥ G(z0).
For t ∈ J

′
1:-

z0(t) = S∗
μ,ν(t)z0(0) + S∗

μ,ν(t − t1)φ1(z0(t1)) +
∫ t

0
(t − s)μ−1P∗

μ(t − s)ξ(s)ds

≥ S∗
μ,ν(t)x0 + S∗

μ,ν(t − t1)φ1(z0(t1))

+
∫ t

0
(t − s)μ−1P∗

μ(t − s)
[
g(s, z0(s)) + Cz0(s)

]
ds.

Hence z0(t) ≥ G(z0). Progressing in the same way, for every J
′
k , yields, in general

z0(t) ≥ G(z0). In the same manner, it can be proved that y0(t) ≤ G(y0). Altogether,
it can be deduced that

y0(t) ≤ G(y0) ≤ G(x) ≤ G(z0) ≤ z0(t).

Whereby the conclusion may be drawn that G : [y0, z0] → PC1−λ(J, E) is an
increasing monotonic operator. Through the iterative pattern, two sequence {yp}
and {z p} can be defined as,

yp = G(yp−1); z p = Gz p−1; p = 1, 2, . . . . (7)

Eventually, due to the monotonicity property ofG, an increasing sequence is derived
as,

y0 ≤ y1 ≤ y2 ≤ . . . ≤ yp ≤ . . . ≤ z p ≤ . . . ≤ z2 ≤ z1 ≤ z0. (8)

Step3:- Convergence of sequences {yp} and {z p} in J
′
:-

Let Bp = {yp|p ∈ N} and Bp−1 = {yp−1|p ∈ N}. The pattern (7) gives the rela-
tion Bp = G(Bp−1) and as Bp−1 can bewritten as Bp−1 = Bp ∪ {y0} for t ∈ J

′
, it fol-

lows that α(Bp−1(t)) = α(Bp(t)). Let ψ(t) := α(Bp(t)). By proving that ψ(t) ≡ 0
on every interval J

′
k , it means that α(B(tk)) ≡ 0 for k = 1, 2, . . . , l, and hence {yp}
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is precompact in E for every t ∈ J . Ultimately, by the definition of precompact,{yp}
has a converging subsequence in E . Thus it is necessary to prove that ψ(t) ≡ 0.

For t ∈ J
′
0 for J

′
0 = (0, t1]:-

ψ(t) = α(Bp(t)) = α(GBp−1(t))

= α

({ ∫ t

0
(t − s)μ−1P∗

μ(t − s)
[
g(s, yp−1(s)) + Cyp−1(s)

]
ds

}
: p = 1, 2, . . .

)

By using Lemma 1 gives

ψ(t) ≤ 2
∫ t

0
α

({
(t − s)μ−1P∗

μ(t − s)
[
g(s, yp−1(s)) + Cyp−1(s)

]
ds

}
: p = 1, 2, . . .

)

Applying the presumed conditions along with Lemma 3 results in

ψ(t) ≤ 2M∗

�(μ)

∫ t

0
(t − s)μ−1

[
(L + C)α(Bp−1(s))

]
ds

= 2M∗

�(μ)
(L + C)

∫ t

0
(t − s)μ−1ψ(s)ds.

By Lemma 2, ψ(t) ≡ 0 on J
′
0. Since this holds true for all t ∈ J

′
0, in particular it

holds for t = t1. Hence α(Bp(t1)) = α(Bp−1(t1)) = ψ(t1) = 0. Therefore BP(t1)
and Bp−1(t1) are precompact and subsequently φ(Bp−1(t1)) = 0. Now for t ∈ J

′
1,

for J
′
1 = (t1, t2]:-

ψ(t) = α(Bp(t)) = α(GBp−1(t))

= α

({
S∗

μ,ν(t)yp−1(t1) + S∗
μ,ν(t)φ1(yp−1(t1))

+
∫ t

0
(t − s)μ−1P∗

μ(t − s)
[
g(s, yp−1(s)) + Cyp−1(s)

]
ds

}
: p = 1, 2, . . .

)

≤ M∗b1−λ

�(λ)
[αBp−1(t1)] + 2M∗

�(μ)
(L + C)

∫ t

0
(t − s)μ−1ψ(s)ds

ψ(t) ≤ 2M∗

�(μ)
(L + C)

∫ t

0
(t − s)μ−1ψ(s)ds.

By Lemma 2ψ(t) ≡ 0 on J
′
1. Proceeding the same process interval by interval, it can

be proved thatψ(t) ≡ 0 on every interval J
′
k , k = 1, 2, . . . l. Thus {yp} is precompact

and eventually for p = 1, 2, . . . , {yp} has a converging subsequence and from (8),
it can be observed that {yp} is itself is a converging sequence and hence there exists
x(t) ∈ E such that {yp} → x(t) as p → ∞, for every t ∈ J . By the Definition (4)
the operator G and the fact that yp = Gyp−1, it can be written as
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yp(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗
μ,ν(t)x0 +

∫ t

0
(t − s)μ−1P∗

μ(t − s)
[
g(s, yp−1(s)) + Cyp−1(s)

]
ds,

for t ∈ [0, t1]
S∗

μ,ν(t)x0 +
k∑

i=1

S∗
μ,ν(t − ti )φi (yp−1(ti ))

+
∫ t

0
(t − s)μ−1P∗

μ(t − s)
[
g(s, yp−1(s)) + Cyp−1(s)

]
ds,

for t ∈ (tk, tk+1], k = 1, 2, . . . l.

Using Lebesgue dominated convergence theorem, as p → ∞

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗
μ,ν(t)x0 +

∫ t

0
(t − s)μ−1P∗

μ(t − s)
[
g(s, x(s)) + Cx(s)

]
ds, t ∈ [0, t1]

S∗
μ,ν(t)x0 +

k∑

i=1

S∗
μ,ν(t − ti )φi (x(ti ))

+
∫ t

0
(t − s)μ−1P∗

μ(t − s)
[
g(s, x(s)) + Cx(s)

]
ds,

for t ∈ (tk, tk+1], k = 1, 2, . . . l.

It can be observed that x ∈ PC1−λ and x = Gx . In a similar manner, it can be proved
that ∃ x ∈ PC1−λ such that x = Gx . With the monotonicity property of G, it can be
concluded that y0 ≤ x ≤ x ≤ z0. This proves that there exists minimal and maximal
solutions x and x respectively in [y0, z0] for the given impulsive system (1).

Remark 4 The above proved theorem holds for the case when the positive cone N
which is normal is replaced with positive cone which is regular. For detailed proof
[18, Corollary 3.3] may be referred.

Corollary 1 In an ordered Banach space E, let N be the positive cone with normal
constant D. Supposing that the operator Q(t) is positive for t ∈ J . If the conditions
A(1) and A(2) are satisfied combinedwith the following condition, then the condition
A(3) is automatically true.

1. [A(4)]:- There exists a constant C∗ such that

g(t, x2) − g(t, x1) ≤ C∗(x2 − x1)

and y0(t) ≤ x1 ≤ x2 ≤ z0(t) for any t ∈ J .

Proof Let {xp} and {xq} be two increasing sequences such that {xp}, {xq} ⊂ [y0(t),
z0(t)], for t ∈ J and p ≤ q. By the condition A(1) and A(4),

θ ≤ g(t, xq) − g(t, xp) + C(xq − xp) ≤ (C∗ + C)(xq − xp).

Using the normality constant of the positive cone N , it reduces to,
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‖g(t, xq) − g(t, xp)‖ ≤ (DC∗ + DC + C)‖xq − xp‖.

Let L = (DC∗ + DC + C). By the definition of measure of non-compactness the
above equation reduces to, α

({g(t, xp)}
) ≤ Lα({xp}). Thus the condition A(3) is

reduced. �
Now it is necessary to prove the uniqueness of the mild solution that lies in [y0, z0].
Theorem 2 An impulsive fractional system (1) is said to have an unique mild solu-
tion that lies between [y0, z0], where y0 ∈ PC1−λ and z0 ∈ PC1−λ are the lower and
upper solution with y0 ≤ z0, if the conditions A(1), A(2) and the Corollary 1 holds.

Proof If x and x are the maximal and the minimal solution of the impulsive system
(1), then to prove the uniqueness, it has to be proved that x = x . Like in the previous
proof, the theorem is proved interval by interval. Let t ∈ J

′
0. Using (5) for both the

solutions results in,

θ ≤ x(t) − x(t) = Gx(t) − Gx(t)
=

∫ t

0
(t − s)μ−1P∗

μ(t − s)
[
(g(s, x(t)) − g(s, x(t))) + C(x(t) − x(t))

]
ds

≤
∫ t

0
(t − s)μ−1P∗

μ(t − s)(C∗ + C)(x(t) − x(t))ds.

Using the normality of the positive cone N ,

‖x(t) − x(t)‖ ≤ DM∗

�(μ)
(C∗ + C)

∫ t

0
(t − s)μ−1‖x(t) − x(t)‖ds.

ByGronwall inequality, ‖x(t) − x(t)‖ = 0.Which implies x(t) ≡ x(t). Calculating
in the similar way results in x(t) ≡ x(t) for t ∈ J

′
k , for k = 1, 2, . . . , l, that is for

every interval J
′
k . The uniqueness is thus proved. �

4 Conclusion

The study of existence of upper and lower solution of impulsive fractional system
with Hilfer fractional derivative is not yet done so far. The objective of this paper
is to study the existence of the mild solutions for an impulsive Hilfer fractional
evolution equation where the operator generates positive analytic semigroup. This
paper is expected to give rise to many open problems. A few problems listed below
for further scope in this direction.

• In practical problems the impulse experienced by the system is not necessarily
always instantaneous. Hence it is much necessary to study the extremal solutions
of such non-instantaneous system also. Sousa et al. [26] and [2] can be referred
for system with non-instantaneous impulses with Hilfer fractional derivative.
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• The existence can be further studied when the operator A generates a C0-
semigroup.

• The results can be further extended and studied forψ-Hilfer operator. For detailed
work on ψ-Hilfer, the authors may refer to [23–25].
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On Integral Solutions for a Class of
Mixed Volterra-Fredholm Integro
Differential Equations with Caputo
Fractional Derivatives

Bandita Roy and Swaroop Nandan Bora

Abstract This work studies the existence of integral solution for a class of neutral
integro-differential equation of mixed type involving Caputo fractional derivative
under the assumption that the associated operator A is not dense. Utilizing semigroup
theory, fractional calculus, Darbo-Sadovskii’s fixed point theorem and measure of
noncompactness, we have established some sufficient conditions which ensure the
existence of integral solutions of our problem.

Keywords Volterra Fredholm integrodifferential equation · Hille Yosida
condition · Integral solution · Fixed point theorem · Measure of noncompactness

1 Introduction

Fractional differential equation has garnered a lot of attention due to its growing num-
ber of applications in various areas of applied sciences and engineering [1, 2]. It is
mainly because of the fact that the differential equations involving fractional deriva-
tives are more realistic for describing many physical phenomena than the classical
derivatives. Fractional differential equation provides

a powerful tool for modeling numerous real life dynamic processes as it can
describe their behavior more accurately. One can find its applications in signal and
image processing, atmospheric diffusion of pollution, transmission of ultrasound
waves, cellular diffusion processes, feedback amplifiers, the effect of speculation on
the profitability of stocks in financial markets, and many more. For more details on
this topic, we refer the reader to [3, 4] and the references therein.
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There are various ways of interpolating the definition of integer order to non-
integer order. Among them, the most widely known are Riemann-Liouville and
Caputo derivatives. There are several works in literature, involving themild solutions
of various differential equations with fractional derivatives. However, many authors
defined the mild solution of fractional evolution equation by generalizing the mild
solution definition of integer order evolution equations [5, 6], which is not appro-
priate [7]. A suitable concept of mild solution for fractional evolution equations of
order α ∈ (0, 1), is given by Zhou et al. [8, 9], wherein they used Laplace transform
and probability density function Mα(ϕ) (defined only for α ∈ (0, 1)). Subsequently,
many authors have used this approach in their study of fractional evolution equations
of order α ∈ (0, 1). For mild solutions of order α ∈ (1, 2), we refer to [10–12].

The fractional evolution equation

C Dα
0+ y(υ) = Ay(υ) + f (υ, y(υ)), υ ∈ [0, b], α ∈ (0, 1),

y(0) = y0,

has been extensively studied, for the case when A is densely defined. The study of
initial value problems with nondense domain was initiated by Da Prato and Sines-
trari [13]. They introduced the concept of integral solutions of the abstract Cauchy
problem

y′(υ) = Ay(υ) + f (υ), υ ∈ [0, b],
y(0) = y0.

For more details, the readers are referred to [14–17]. The following fractional semi-
linear equation was considered by Gu et al. in [18] :

C Dα
0+ y(υ) = Ay(υ) + f (υ, y(υ)), υ ∈ (0, b], α ∈ (0, 1),

y(0) = y0.

They studied the existence of integral solutions by usingmeasure of noncompactness.
Motivated by theworks carried out in [18] and [19], we consider the following neutral
fractional integro-differential equation of mixed type :

C Dα
0+[y(υ) − u(υ, y(υ))] = A[y(υ) − u(υ, y(υ))] + f (υ, y(υ), (Hy)(υ), (Gy)(υ)),

υ ∈ [0, b],
y(0) = y0,

⎫
⎪⎬

⎪⎭

(1)
where

(Hy)(υ) =
∫ υ

0
h(υ, ε, y(ε))dε and (Gy)(υ) =

∫ b

0
g(υ, ε, y(ε))dε,
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withα ∈ (0, 1), J = [0, b], A : D(A) ⊆ Y → Y a closed linear operator onY , which
is not necessarily densely defined.The state y(.) takes values in aBanach spaceY with
norm ‖.‖Y , u : J × Y → Y is a function satisfying some assumptions which will be
specified later. h : � × Y → Y , g : J × J × Y → Y and f : J × Y × Y × Y → Y
are given abstract functions and here � = {(υ, ε) ∈ J × J |ε ≤ υ}.

The rest of this paper is organized as follows : In Sect. 2, we recall some defi-
nitions, theorems, and lemmas, which are used throughout our work. The existence
theorems for the integral solution of our problem (1) are stated in Sect. 3.

2 Preliminaries

We use the following notations :
C(J,Y ) denote the collection of all continuous functions from J to Y which is a

Banach space with respect to the norm ‖y‖C = supυ∈J ‖y(υ)‖Y . B(Y ) denotes the
Banach space of all bounded linear operators on Y and �Y , the set of all bounded
subsets of Y .

Definition 1 [3] The Caputo derivative of order α is defined as

C Dα
0+ f (υ) = 1

�(n − α)

∫ υ

0
(υ − ε)n−α−1 f (n)(ε)dε, υ > 0,

where n is the least integer ≥ α.

If f is an abstract function then the above integral is taken in Bochner’s sense.

Definition 2 [20] The Kuratowski measure of noncompactness β is a non-negative
real-valued function defined on �Y by

β(D) = inf{ε > 0|D ⊆ ∪m
i=1Di and diam(Di ) ≤ ε for i = 1, . . . ,m},

where D ∈ �Y and diam(Di ) = sup{‖y1 − y2‖ : y1, y2 ∈ Di }.
Theorem 1 [20] β satisfies the following properties :
1. β(D) = 0 iff D̄ is compact,
2. D1 ⊂ D2 =⇒ β(D1) ≤ β(D2),
3. β(D1 + D2) ≤ β(D1) + β(D1).

Theorem 2 [21] Let D ∈ �Y . Then ∃ a countable set D0 ⊂ D such that

β(D) ≤ 2β(D0).

Theorem 3 [22]Let D ⊂ C(J,Y )be equicontinuousandbounded, thenβ(D(υ)) ∈
C(J, [0,∞)) and

β(D) = max
υ∈J

β(D(υ)).
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Theorem 4 [23] Let {yn}∞n=1 be Bochner integrable functions from J into Y with

‖yn(υ)‖ ≤ j (υ) for almost all υ ∈ J and ∀ n ∈ N,

where j ∈ L(J, [0,∞)). Then φ(υ) = β
(
{yn}∞n=1

)
∈ L(J, [0,∞)) and satisfies

β

({∫ υ

0
yn(ε)dε

∣
∣
∣n ∈ N

})

≤ 2
∫ υ

0
φ(ε)dε.

Theorem 5 [24] Let S be a closed, convex, and bounded subset of a Banach space
W. If Q : S → S is a condensing map, which means that β(Q(S)) ≤ β(S). Then Q
has a fixed point in S.

Theorem 6 (Darbo-Sadovskii’s fixed point theorem) [25] If S is a closed, convex,
and bounded subset of a Banach space W and Q : S → S is continuous mapping
and a β-contraction, then Q has atleast one fixed point in S.

Assume that A : D(A) ⊂ Y → Y satisfies the Hille-Yosida condition, i.e., ∃ P ≥
0 and a constant w ∈ R such that (w,+∞) ⊆ ρ(A) and

sup
{
(λ − w)n‖R(λ : A)n‖B(Y )

∣
∣
∣n ∈ N, λ > w

}
≤ P,

where ρ(A) = {λ : λI − A is invertible} is the resolvent set of A, and R(λ : A) =
{(λI − A)−1 : λ ∈ ρ(A)} denotes the resolvent of A.

Let A0 be the part of A in D(A) defined by

D(A0) =
{
y ∈ D(A)

∣
∣
∣Ay ∈ D(A)

}
,

A0y = Ay.

Then A0 generates a C0-semigroup {P(υ)}υ≥0 on D(A). Assume that ∃ P > 1 such
that supυ∈[0,∞) ‖P(υ)‖B(Y ) < P .

Taking cue from [18], we present the following definition and results :
Assuming f to be continuous and y0 ∈ D(A), the integral solution of our problem
(1) is defined as follows :
Definition 3 A function y : J → Y is said to be an integral solution of (1) if

y ∈ C(J,Y ), I α
0+[y(υ) − u(υ, y(υ))] ∈ D(A) for υ ∈ [0, b],

and

y(υ) = y0 − u(0, y(0)) + u(υ, y(υ)) + A
1

�(α)

∫ υ

0
(υ − ε)α−1[y(ε) − u(ε, y(ε))]dε

+ 1

�(α)

∫ υ

0
(υ − ε)α−1 f (ε, y(ε), (Hy)(ε), (Gy)(ε))dε, υ ∈ [0, b].
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Note. If y is an integral solution of our problem (1), it can be shown that y(υ) −
u(υ, y(υ)) ∈ D(A) for υ ∈ J .

Now, consider the auxiliary problem

C Dα
0+[y(υ) − u(υ, y(υ))] = A0[y(υ) − u(υ, y(υ))] + f (υ, y(υ), (Hy)(υ), (Gy)(υ)),

υ ∈ [0, b],
y(0) = y0.

⎫
⎪⎬

⎪⎭

(2)
The integral solution of (2) can be written as

y(υ) = y0 − u(0, y(0)) + u(υ, y(υ)) + A0 I
α
0+[y(υ) − u(υ, y(υ))]

+ I α
0+ f (υ, y(υ), (Hy)(υ), (Gy)(υ)). (3)

Theorem 7 The integral solution of (3) can be written as

y(υ) = u(υ, y(υ)) + Sα(υ)[y0 − u(0, y(0))] +
∫ υ

0
Kα(υ − ε)

× f (ε, y(ε), (Hy)(ε), (Gy)(ε))dε,

where

Sα(υ) = I 1−α
0+ Kα(υ), Kα(υ) = υα−1Pα(υ), Pα(υ) =

∫ ∞

0
αϕMα(ϕ)P(υαϕ)dϕ.

Here

Mα(ϕ) = 1

α
ϕ−1− 1

α ψα(ϕ− 1
α ),

ψα(ϕ) = 1

π

∞∑

i=0

(−1)i−1ϕ(−αi−1) �(αi + 1)

i ! sin(iπα), ϕ ∈ (0,+∞).

The probability density function Mα(ϕ) defined on (0,+∞) satisfies

Mα(ϕ) ≥ 0,
∫ ∞

0
Mα(ϕ)dϕ = 1,

∫ ∞

0
ϕMα(ϕ)dϕ = 1

�(1 + α)
.

Let Bλ = λ(λI − A)−1. Then, since Bλy → y as λ → +∞ for y ∈ D(A), there-
fore (4) can be written as

y(υ) = u(υ, y(υ)) + Sα(υ)[y0 − u(0, y(0))]
+ lim

λ→∞

∫ υ

0
Kα(υ − ε)Bλ f (ε, y(ε), (Hy)(ε), (Gy)(ε))dε, υ ∈ [0, b].
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Theorem 8 [18] For any fixed t > 0, {Kα(υ)}υ>0 and {Sα(υ)}υ>0 are linear oper-
ators, and for any y ∈ D(A),

‖Kα(υ)y‖Y ≤ Pυα−1

�(α)
‖y‖Y and ‖Sα(υ)y‖Y ≤ P‖y‖Y .

Theorem 9 [18] {Kα(υ)}υ>0 and {Sα(υ)}υ>0 are strongly continuous, i.e., for any
y ∈ D(A) and 0 < υ1 < υ2 ≤ b,

‖Kα(υ2)y − Kα(υ1)y‖Y −→ 0 and ‖Sα(υ2)y − Sα(υ1)y‖Y −→ 0,

as υ2 → υ1.

Theorem 10 [25] For any fixed υ > 0, Pα(υ) is a linear and bounded operator, and

‖Pα(υ)y‖Y ≤ P

�(α)
‖y‖Y for any y ∈ D(A).

Theorem 11 [17]Assume that {P(υ)}υ>0 is compact. Then {P(υ)}υ>0 is continuous
in the uniform operator topology.

3 Existence Results

First, we introduce the following assumptions :
(H1) {P(υ)}υ>0 is compact.
(H2)(i) for each υ ∈ [0, b], f (υ, ., ., .) : Y × Y × Y → Y is continuous; and for

each (y1, y2, y3) ∈ Y × Y × Y , f (., y1, y2, y3) : J → Y is strongly measurable.
(ii) ∃ a function l ∈ L∞(J, [0,∞)) such that

‖ f (υ, y1, y2, y3)‖Y ≤ l(υ), for all y1, y2, y3 ∈ Y and for υ ∈ [0, b].

(iii) ∃ a constant α1 ∈ (0, α) and a function l ∈ L
1

α1 (J, [0,∞)) such that

‖ f (υ, y1, y2, y3)‖Y ≤ l(υ)(‖y1‖Y + ‖y2‖Y + ‖y3‖Y ),

for all y1, y2, y3 ∈ Y and for υ ∈ [0, b].
(iv) there exist l1, l2, l3 ∈ C(J, [0,∞)) such that

β( f (υ, D1, D2, D3)) ≤ l1(υ)β(D1) + l2(υ)β(D2) + l3(υ)β(D3)

for any D1, D2, D3 ∈ �Y and υ ∈ J . Let l∗i = supυ∈J |li (υ)|, i = 1, 2, 3.
(H3)(i) for each (υ, ε) ∈ �, h(υ, ε, .) : Y → Y is continuous; and for each y ∈ Y ,

h(., ., y) : � → Y is strongly measurable.
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(ii) ∃ a function mh(υ, ε) ∈ C(�, [0,∞)) such that

‖h(υ, ε, y)‖Y ≤ mh(υ, ε)‖y‖Y , for (υ, ε) ∈ �, y ∈ Y

and H∗ = supυ∈J

∫ υ

0 mh(υ, ε)dε < ∞.
(iii) for any D ∈ �Y , and (υ, ε) ∈ �, ∃ a function m : � → [0,∞) such that

β(h(υ, ε, D)) ≤ m(υ, ε)β(D) (4)

with m∗ = supυ∈J

∫ υ

0 m(υ, ε)dε < ∞.
(H4)(i) for each (υ, ε) ∈ J × J , g(υ, ε, .) : Y → Y is continuous; and for each

y ∈ Y , g(., ., y) : J × J → Y is strongly measurable.
(ii) ∃ a function mg(υ, ε) ∈ C(J × J, [0,∞)) such that

‖g(υ, ε, y)‖Y ≤ mg(υ, ε)‖y‖Y , for (υ, ε) ∈ J × J, y ∈ Y

and G∗ = supυ∈J

∫ b
0 mg(υ, ε)dε < ∞.

(iii) for any D ∈ �Y , and (υ, ε) ∈ J × J , ∃ a function n : J × J → [0,∞) such
that

β(g(υ, ε, D)) ≤ n(υ, ε)β(D) (5)

with n∗ = supυ∈J

∫ b
0 n(υ, ε)dε < ∞.

(H5) for the function u : J × Y → Y , ∃ a constant L1 > 0 such that

‖u(υ1, y1) − u(υ2, y2)‖Y ≤ L1(|υ1 − υ2| + ‖y1 − y2‖Y ), (6)

for all υ1, υ2 ∈ [0, b] and all y1, y2 ∈ Y . Further, let P0 = supυ∈J ‖u(υ, 0)‖Y .
(H6) for each {P(υ)}υ>0 is equicontinuous.
Our first result is based on Darbo-Sadovskii’s fixed point theorem.

Theorem 12 Suppose that (H1), (H2)(i), (H2)(ii), (H3)(i), (H3)(ii), (H4)(i), (H4)(ii)
and (H5) are satisfied. Then (1) has an integral solution in C(J, D(A)) provided

L1 < 1.

Proof Let Br = {y ∈ C(J, D(A))|‖y‖C ≤ r} where r = ξ3
1−L1

, ξ3 = P0 + P‖y0‖Y
+ P‖u(0, y(0))‖Y + PP

�(α+1)b
α‖l‖L∞ . Define Q : C(J, D(A)) → C(J, D(A)) by

(Qy)(υ) = (Q1y)(υ) + (Q2y)(υ),

where
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(Q1y)(υ) = Sα(υ)[y0 − u(0, y(0))] + lim
λ→∞

∫ υ

0
Kα(υ − ε)

× Bλ f (ε, y(ε), (Hy)(ε), (Gy)(ε))dε,

(Q2y)(υ) = u(υ, y(υ)).

Step 1: To show Q : Br → Br .
It follows from the fact that

‖(Qy)(υ)‖Y ≤ L1‖y‖C + P0 + P‖y0‖Y + P‖u(0, y(0))‖Y + PP

�(α + 1)
bα‖l‖L∞ ≤ r.

Step 2: To show Q1 is completely continuous.
Q1 is equicontinuous on Br : Let y ∈ Br and 0 ≤ υ1 < υ2 ≤ b, then

‖(Q1y)(υ2) − (Q1y)(υ1)‖Y ≤ I1 + I2,

where

I1 = ‖Sα(υ2)[y0 − u(0, y(0))] − Sα(υ1)[y0 − u(0, y(0))]‖Y ,

I2 = ‖ lim
λ→∞

∫ υ2

0
Kα(υ2 − ε)Bλ f (ε, y(ε), (Hy)(ε), (Gy)(ε))dε

− lim
λ→∞

∫ υ1

0
Kα(υ1 − ε)Bλ f (ε, y(ε), (Hy)(ε), (Gy)(ε))dε‖Y .

For I1, by Lemma 9 we have I1 → 0 as υ2 → υ1. For υ1 = 0, 0 < υ2 ≤ b, we
get I2 ≤ PP

�(α)
υα
2 ‖l‖L∞ −→ 0,as υ2 → 0. And for 0 < υ1 < υ2 ≤ b, we have I2 ≤

I ∗
1 + I ∗

2 + I ∗
3 , where

I ∗
1 = PP

�(α)

∫ υ2

υ1

(υ2 − ε)α−1l(ε)dε,

I ∗
2 = PP

�(α)

∫ υ1

0
[(υ1 − ε)α−1 − (υ2 − ε)α−1]l(ε)dε,

I ∗
3 = P

∫ υ1

0
(υ1 − ε)α−1‖Pα(υ2 − ε) − Pα(υ1 − ε)‖B(Y )l(ε)dε.

Also,

I∗1 ≤ PP

�(α)
‖l‖L∞(υ2 − υ1)

α −→ 0, I∗2 ≤ PP

�(α)
‖l‖L∞(υ2 − υ1)

α −→ 0 as υ2 → υ1.

Next,

I ∗
3 = P

∫ υ1

0
(υ1 − ε)α−1‖Pα(υ2 − ε) − Pα(υ1 − ε)‖B(Y )l(ε)dε.
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For ε > 0 small enough,

I ∗
3 ≤ P

∫ υ1

0
(υ1 − ε)α−1l(ε)dε sup

ε∈[0,υ1−ε]
‖Pα(υ2 − ε) − Pα(υ1 − ε)‖B(Y )

+ 2PP

�(α + 1)
‖l‖L∞εα = I ∗

31 + I ∗
32.

From (H1), it follows that I ∗
31 → 0 as υ2 → υ1 and also I ∗

32 → 0 as ε → 0. Thus,
‖(Q1y)(υ2) − (Q1y)(υ1)‖Y → 0 asυ2 → υ1, independent of y ∈ Br , which implies
that {Q1y|y ∈ Br } is equicontinuous.

Q1 is continuous on Br : Let (yn) ⊂ Br such that yn → y in Br .
Using (H2)(i), (H3), (H4) and Dominated convergence theorem, it follows that

f (ε, yn(ε), (Hyn)(ε), (Gyn)(ε)) −→ f (ε, y(ε), (Hy)(ε), (Gy)(ε)), as n → ∞.

Now for each υ ∈ J , using (H2)(ii), we have

(υ − ε)α−1‖ f (ε, yn(ε), (Hyn)(ε), (Gyn)(ε)) − f (ε, y(ε), (Hy)(ε), (Gy)(ε))‖Y
≤ 2(υ − ε)α−1l(ε) ∈ L1(J, [0,∞)), for ε ∈ [0, υ], υ ∈ J.

Therefore, by Lebesgue’s dominated convergence theorem, we obtain

∫ υ

0
(υ − ε)α−1‖ f (ε, yn(ε), (Hyn)(ε), (Gyn)(ε))

− f (ε, y(ε), (Hy)(ε), (Gy)(ε))‖Y dε −→ 0 as n → ∞.

Therefore, Q1 is continuous.
For any υ ∈ J , {Q1y(υ)|y ∈ Br } is relatively compact in Y : For υ = 0, it is

obvious. So, fix υ ∈ (0, b] then for ε ∈ (0, υ) and ∀ δ > 0, define

(Qε,δ
1 y)(υ) = α

�(1 − α)

∫ υ−ε

0

∫ ∞

δ

ϕMα(ϕ)(υ − ε)−αεα−1P(εαϕ)

× [y0 − u(0, y(0))]dϕdε + αP(εαδ) lim
λ→∞

∫ υ−ε

0

∫ ∞

δ

ϕ(υ − ε)α−1

× Mα(ϕ)P((υ − ε)αϕ − εαδ)Bλ f (ε, y(ε), (Hy)(ε), (Gy)(ε))dϕdε.

From the compactness of T (εαδ), (εαδ > 0), we obtain that {(Qε,δ
1 y)(υ)|y ∈ Br }

is relatively compact in Y ∀ ε ∈ (0, υ) and ∀ δ > 0. Moreover, for any y ∈ Br , we
have
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‖(Q1y)(υ) − (Qε,δ
1 y)(υ)‖Y

≤ Pα

�(1 − α)
B(α, 1 − α)[‖y0‖Y + ‖u(0, y(0))‖Y ]

∫ δ

0
ϕMα(ϕ)dϕ + P

�(1 − α)�(α)

× [‖y0‖Y + ‖u(0, y(0))‖Y ]
∫ υ

υ−ε

(υ − ε)−αεα−1dε + αPP
∫ υ

0
(υ − ε)α−1l(ε)dε

×
∫ δ

0
ϕMα(ϕ)dϕ + αPP

∫ υ

υ−ε

(υ − ε)α−1l(ε)dε

∫ ∞

0
ϕMα(ϕ)dϕ.

Therefore,
‖(Q1y)(υ) − (Qε,δ

1 y)(υ)‖Y ≤ J1 + J2 + J3 + J4.

Using the inequality
∫ ∞
0 ϕMα(ϕ)dϕ = 1

�(1+α)
, we conclude that J1, J3 and J4 tend to

0 as ε, δ → 0. Also, applying the absolute continuity of Lebesgue integral, J2 → 0 as
ε, δ → 0. Therefore, {(Q1y)(υ)|y ∈ Br },υ > 0 is relatively compact. Consequently,
{Q1y|y ∈ Br } is a relatively compact set in Y .
Step 3: To show Q is continuous on Br .

Proceeding similarly as in Step 2, it can be shown that Q is continuous on Br .
Step 4: To show Q2 is a contraction on Br .

For any y1, y2 ∈ Br , we have ‖(Q2y1)(υ) − (Q2y2)(υ)‖Y ≤ L1‖y1(υ) − y2(υ)‖Y .
Thus,

‖Q2y1 − Q2y2‖C ≤ L1‖y1 − y2‖C ,

which implies that β(Q2Br ) ≤ L1β(Br ). Also, Q1Br is relatively compact in Y
whichgivesβ(Q1Br ) = 0.Therefore,β(QBr ) ≤ β(Q1Br ) + β(Q2Br ) ≤ L1β(Br ).
As L1 < 1, Q is an β-contraction on Br . Hence, from Theorem 6, it follows that Q
has atleast one fixed point on Br . �

Our next result for problem (1) is for the case where the associated C0-semigroup
is not compact.

Theorem 13 Assume that (H2)(i),(iii),(iv), (H3)(i),(ii),(iii), (H4)(i),(ii),(iii), (H5)
and (H6) hold. Then (1) has an integral solution provided

ξ4 = L1 + PP

�(α)
(1 + H∗ + G∗)‖l‖

L
1

α1

bα−α1

( α−α1
1−α1

)1−α1
< 1

and

2L1(1 + P) + 4PP

�(α + 1)
bα(l∗1 + 2l∗2m

∗ + 2l∗3n
∗) < 1.

Proof Choose r = φ

1−ξ4
, where φ = P0 + P‖y0‖Y + P‖u(0, y(0))‖Y and let Br =

{y ∈ C(J, D(A)) | ‖y‖C ≤ r}. Define Q : C(J, D(A)) → C(J, D(A)) by
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(Qy)(υ) = u(υ, y(υ)) + Sα(υ)[y0 − u(0, y(0))] + lim
λ→∞

∫ υ

0
Kα(υ − ε)

× Bλ f (ε, y(ε), (Hy)(ε), (Gy)(ε))dε, υ ∈ J.

Then proceeding similarly as in Theorem 12, it can be shown that Q : Br → Br is
continuous as well as equicontinuous. Now, it remains to show that Q : Br → Br is
a condensing operator.

For all D ⊂ Br , Q(D) is bounded and equicontinuous. Hence, by Lemma 2, there
exists a countable set D0 = {yn}∞n=1 ⊂ D such that

β(Q(D)) ≤ 2β(Q(D0)). (7)

Since Q(D0) ⊂ Q(Br ) is equicontinuous, so by using Lemma 3, we get

β(Q(D0)) = max
υ∈J

β(Q(D0(υ))). (8)

Now, let
(Qy)(υ) = (Q1y)(υ) + (Q2y)(υ),

where

(Q1y)(υ) = u(υ, y(υ)) + Sα(υ)[y0 − u(0, y(0))],
(Q2y)(υ) = lim

λ→∞

∫ υ

0
Kα(υ − ε)Bλ f (ε, y(ε), (Hy)(ε), (Gy)(ε))dε.

For y1, y2 ∈ D0, we have ‖Q1y1 − Q1y2‖C ≤ L1(1 + P)‖y1 − y2‖C . Therefore, it
follows that β(Q1(D0)) ≤ L1(1 + P)β(D0). Next, for υ ∈ J , we get

β({Q2yn(υ)}∞n=1) = β
({

lim
λ→∞

∫ υ

0
Kα(υ − ε)Bλ f (ε, y(ε), (Hy)(ε), (Gy)(ε))dε

}∞
n=1

)

≤ 2PP

�(α)

∫ υ

0
(υ − ε)α−1β

(
{ f (ε, y(ε), (Hy)(ε), (Gy)(ε))}∞n=1

)
dε

≤ 2PP

�(α + 1)
β(D)bα(l∗1 + l∗22m∗ + l∗32n∗).

Therefore,

β(Q(D0)(υ)) ≤ β(Q1(D0)(υ)) + β(Q2(D0)(υ))

≤
[
L1(1 + P) + 2PP

�(α + 1)
bα(l∗1 + l∗22m

∗ + l∗32n
∗)

]
β(D).

From Eqs. (7) and (8), we have
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β(QD) ≤ 2
[
L1(1 + P) + 2PP

�(α + 1)
bα(l∗1 + l∗22m

∗ + l∗32n
∗)

]
β(D) < β(D).

Thus Q : Br → Br is a condensing operator and therefore from Lemma 5, we con-
clude that Q has a fixed point on Br . �

4 Examples

Consider the following fractional partial differential system

C Dα
0+[y(υ, x) − u(υ, y(υ, x))] = ∂2

∂x2
[y(υ, x) − u(υ, y(υ, x))]

+ f
(
υ, y(υ, x),

∫ υ

0
h(υ, ε, y(ε, x))dε,

∫ b

0
g(υ, ε, y(ε, x))dε

)
,

υ ∈ [0, b], x ∈ � = [0, π ],
y(υ, 0) = 0 = y(υ, π), υ ∈ [0, b],
y(0, x) = y0(x), x ∈ �,

where b > 0 is finite and y0 ∈ C(�,R) with y0(0) = 0 = y0(π).
Next, let Y = C(�,R) and consider A : D(A) ⊂ Y → Y defined by

Aw = ∂2w

∂x2

with its domain of definition,

D(A) = {
w ∈ Y : ∂2w

∂x2
∈ Y and w = 0 on ∂�

}
.

Then,
D(A) = {w ∈ Y : w = 0 on ∂�} �= Y.

Also, from [13], it is known that A satisfies Hille-Yosida condition with (0,∞) ⊂
ρ(A), ‖R(λ : A)‖ ≤ λ−1 and P = 1 and generates a compact C0-semigroup
{P(υ)}υ>0 on D(A) with P = 1.

Set,

y(υ)(x) = y(υ, x),

f (υ, y(υ), (Hy)(υ), (Gy)(υ))(x)

= f
(
υ, y(υ, x),

∫ υ

0
h(υ, ε, y(ε, x))dε,

∫ b

0
g(υ, ε, y(ε, x))dε

)
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for υ ∈ [0, b], x ∈ � then (1) is the abstract formulation of the above considered
problem.

Also, take

h(υ, ε, y(ε, x)) = υ sin y(ε, x) and g(υ, ε, y(ε, x)) = ε sin y(ε, x),

then h and g satisfies (H3)(i), (ii) and (H4)(i), (ii) respectively with H∗ = b2 and
G∗ = b2

2 .
Consider

f
(
υ, y(υ, x),

∫ υ

0
h(υ, ε, y(ε, x))dε,

∫ b

0
g(υ, ε, y(ε, x))dε

)

= exp(−υ) cos

( |y(υ, x)|
1 + |y(υ, x)| +

∫ υ

0
h(υ, ε, y(ε, x))dε +

∫ b

0
g(υ, ε, y(ε, x))dε

)

.

Here, choose l(υ) = exp(−υ) and assuming u to be a suitable function satisfying
(H5), Theorem 12 implies the existence of integral solution of our problem.

5 Conclusion

This paper is concerned with the existence of integral solution of a class of neutral
fractional integro-differential equation of mixed type when the operator A is not
dense. Here, we have used fixed point theorems, fractional calculus, and measure of
noncompactness, to obtain some sufficient conditions which ensure the existence of
integral solutions of our problem, when the associated C0-semigroup is generated
by the part of A in D(A) is compact or non-compact.
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Trajectory Controllability of
Integro-Differential Systems of
Fractional Order γ ∈ (1, 2] in a Banach
Space with Deviated Argument
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Abstract In this paper, the fractional integro-differential control system of order
γ ∈ (1, 2] in a Banach space with deviated argument is considered. In order to study
the trajectory controllability for the proposed control problem, the theory of fractional
calculus, Gronwall’s inequality, and fractional order cosine family are used. Finally,
we provide an example to illustrate our main results.

Keywords Integro-differential equation · Trajectory controllability · Gronwall’s
inequality · Fractional order cosine family · Deviated argument

2010 AMS Subject Classification: 34A08 · 34K30 · 93B05

1 Introduction

Controllability is a crucial concept in mathematical control theory. Particularly, it
has importance in the classical theory of dynamical control systems. There are var-
ious types of controllability such as exact controllability, approximate controlla-
bility, null controllability, complete controllability and trajectory controllability/T-
controllability. Many authors (see [1–6]) investigated the trajectory controllability
which is a stronger notion of controllability. On the other hand, fractional calculus
has gained great interest from researchers and many authors worked on it (for more,
see [7–11]).
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M. Muslim et al. [5] studied exact and trajectory controllability with deviated
argument of second-order nonlinear systems in a Banach space. Exact controllability
of fractional integro-differential systems with deviated argument was investigated in
[12]. Motivated by the above observation, we consider fractional integro-differential
equation in a Banach Space V with deviated argument as follows:

⎧
⎨

⎩

cDγ
t ϑ(t) = A ϑ(t) + W (t) + L (t,ϑ(t),ϑ[H (ϑ(t), t)])

+G (t,ϑ(t),
∫ t
0 Y (t,�,ϑ(�))d�), t ∈ (0, T ],

ϑ(0) = y0, ϑ′(0) = y1,
(1)

where cDγ
t , γ ∈ (1, 2] is the Caputo fractional derivative, ϑ : I(= [0, T ]) → V is

the state function, A is the infinitesimal generator of a strongly continuous γ-order
cosine family (Cγ(t))t≥0 on V and the control function W (·) ∈ L2(I,W), W is a
Hilbert space of control functions known as control space. Continuous functionsL ,
H , G and Y are to be specified later.

2 Preliminaries

In this section, we introduce a few notations, definitions and assumptions needed to
establish the results. Let V be a Banach space with norm ||.||, and L(V) denote the
space of all bounded linear operators form V into V . L p([0, T ],V), 1 ≤ p < ∞ be
the space of V-valued functions L̃ : [0, T ] → V in the Bochner sense endowed with
the norm

||L̃ ||L p =
( ∫ T

0
||L̃ (t)||pdt

) 1
p
.

The spaces C([0, T ],V), and C1([0, T ],V) are the space of continuous and contin-
uously differentiable functions, respectively, endowed with the norms

||L̃ ||C = sup
t∈I

||L̃ (t)||, ||L̃ ||C1 = sup
t∈I

1∑

k=0

||L̃ k(t)||.

Now, we define the set CL(I,V) = {ϑ ∈ C([0, T ],V)} endowed with supremum
norm

||ϑ(t) − ϑ(�)|| ≤ L|t − �|,∀ t, � ∈ I ,L > 0.

Definition 2.1 The Riemann-Liouville fractional integral operator of order γ > 0
is defined by

I γ
t ϑ(t) = 1

�(γ)

∫ t

0
(t − s)γ−1ϑ(�)d�,
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where ϑ(t) ∈ L1([0, T ],V) and �(·) is the gamma function.

Definition 2.2 The Riemann-Liouville fractional derivative of order γ ∈ (1, 2] is
defined as

Dγ
t ϑ(t) = d2

dt2
I 2−γ
t ϑ(t),

where ϑ(t), Dγ
t ϑ(t) ∈ L1([0, T ],V).

Definition 2.3 For γ ∈ (1, 2], the Caputo fractional derivative is defined by

cDγ
t ϑ(t) = I 2−γ

t
d2

dt2
ϑ(t),

where ϑ(t) ∈ L1([0, T ],V) ∩ C1([0, T ],V).

Consider the differential equation of fractional order as follows:

cDγ
t ϑ(t) = A ϑ(t), ϑ(0) = η, ϑ′(0) = 0, (2)

where γ ∈ (1, 2], A : D(A ) ⊂ V → V is a linear operator in Banach space V .
Definition 2.4 ([10]) A family (Cγ(t))t≥0 ⊂ L(V), γ ∈ (1, 2] is called a strongly
continuous cosine family of fractional order for (2) and A is the infinitesimal gen-
erator of Cγ(t), if they hold the following:

(i) Cγ(t) is strongly continuous for t ≥ 0 and Cγ(0) = I, where I is identity oper-
ator;

(ii) Cγ(t)D(A ) ⊂ D(A ) and A Cγ(t)υ = Cγ(t)A υ for all υ ∈ D(A ), t ≥ 0;

(iii) Cγ(t)υ is the solution of ϑ(t) = η + 1
�(γ)

∫ t
0 (t − �)γ−1A ϑ(�)d� ∀ υ ∈

D(A ).

Definition 2.5 The fractional sine familySγ : [0,∞) → L(V) associated with Cγ

is defined as

Sγ(t) =
∫ t

0
Cγ(�)d�, t ≥ 0. (3)

Definition 2.6 The fractional Riemann Liouville family Pγ : [0,∞) → L(V) of
order γ associated with Cγ is defined as

Pγ(t) = I γ−1Cγ(t). (4)

Definition 2.7 The cosine family Cγ(t) of order γ is called exponentially bounded
if ∃ N̂ , δ ≥ 0 such that
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||Cγ(t)|| ≤ N̂ eδt , t ≥ 0. (5)

Infinitesimal generator A belongs to Cγ(X; N̂ , δ), if the problem (2) has an
solution operator Cγ(t) satisfying (4).

Definition 2.8 ([5]) A function ϑ(·) ∈ CL([0, T ],V) is the mild solution of frac-
tional integro-differential control system (1) if ϑ(t) is the solution of the following
equation:

ϑ(t) = Cγ(t)y0 + Sγ(t)y1 + ∫ t
0 Pγ(t − �)

[
L (�,ϑ(�),ϑ[H (υ(�),�)])dϕ

+G
(
�,ϑ(�),

∫ �

0 Y (�, ζ,ϑ(ζ))dζ
) + W (�)

]
d�. (6)

LetT be the set of all feasible trajectories�(·)definedon the intervalI,whereI =
[0, T ] such that �(0) = y0,�′(0) = y1 and �(T ) = ϑT ∀ t ∈ I for the system (1)
and cDγ

t �(t) exists almost everywhere on I.
Definition 2.9 The fractional integro-differential control system (1) is said to be
trajectory-controllable (T-controllable) on I, if for � ∈ T such that (6) satisfies
ϑ(t) = �(t) almost everywhere.

Definition 2.10 The system (1) is said to be exactly controllable on I, if for every
ϑ0, y0,ϑT ∈ V there exists a control W (·) ∈ L2(I,W) such that the mild solution
of (6) satisfies ϑ(T ) = ϑT .

Definition 2.11 The system (1) is said to be totally controllable on I, if for all
subintervals [tk, tk+1] of I, the system (1) is exactly controllable.

Remark: Trajectory controllability ⇒ Total controllability ⇒ Exact controllability.
In order to establish the main result for system (1), we required the following

hypotheses:

(H1) A is the infinitesimal generator of a strongly continuous γ-order cosine fam-
ily ||Cγ(t) on V and there exists a constantN̄C ≥ 1, such that ||Cγ(t)|| ≤
N̄C , N̄C ≥ 1.

(H2) L ,G : I × V × V → V are a continuous function and ∃, K∗,K,M∗
Y ,MG

and NG positive constants, such that
(i)

||L (t, ϑ1, μ1) − L (t, ϑ2, μ2)|| ≤ K∗(||ϑ1 − ϑ2|| + ||μ1 − μ2||), forall ϑ1, ϑ2, μ1, μ2 ∈ V,

and maxt∈I ||L (t, 0,ϑ(0)|| = K.
(ii)

||G (t,ϑ1,μ1) − G (t,ϑ2,μ2)|| ≤ MG ||ϑ1 − ϑ2|| + NG ||μ1 − μ2||).

(iii) ∫ t

0
||Y (t,�,ϑ(�)) − Y (t,�,μ(�))|| ≤ M∗

Y ||ϑ(t) − μ(t)||.
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(H3) H : V × I → I is a uniformly continuous and ∃, CH = CH (t), CH > 0,
such that

|H (ϑ1,�) − H (ϑ2,�)| ≤ CH ||ϑ1 − ϑ2||, ∀ ϑ1,ϑ2 ∈ V whenever 0 ≤ � ≤ t

and hold H (·, 0) = 0 for each t > 0.

3 Trajectory Controllability

Theorem 3.1 Assume that all (H1)–(H3) are satisfied, then the integro-differential
system (1) of order γ ∈ (1, 2] is trajectory-controllable on I.

Proof Let�(t) be any given trajectory in T and the feedback control functionW (t)
as follows:

W (t) = cDγ
t �(t) − A �(t) − L (t, �(t), �[H (�(t), t)]) − G

(

t, �(t),
∫ t

0
Y (t, �,�(�))d�

)

.

(7)

From Eq. (7) in Eq. (1) and we get

cDγ
t ϑ(t) = A ϑ(t) + L (t,ϑ(t),ϑ[H (ϑ(t), t)]) + G

(

t,ϑ(t),
∫ t

0
Y (t,�,ϑ(�))d�

)

+cDγ
t �(t) − A �(t) − L (t,�(t),�[H (�(t), t)]) − G

(

t,�(t),
∫ t

0
Y (t,�,�(�))d�

)

.

Hence, we have

cDγ
t [ϑ(t) − �(t)] = A [ϑ(t) − �(t)] + L (t, ϑ(t), ϑ[H (ϑ(t), t)]) − L (t, �(t), �[H (�(t), t)])

+G

(

t,ϑ(t),
∫ t

0
Y (t, �, ϑ(�))d�

)

− G

(

t, �(t),
∫ t

0
Y (t, �, �(�))d�

)

.

Choose κ(t) = ϑ(t) − �(t) considering the following IVP:

⎧
⎪⎨

⎪⎩

cDγ
t κ(t) = A κ(t) + L (t,ϑ(t),ϑ[H (ϑ(t), t)]) − L (t,�(t),�[H (�(t), t)])

+G
(

t,ϑ(t),
∫ t
0 Y (t,�,ϑ(�))d�

)
− G

(
t,�(t),

∫ t
0 Y (t,�,�(�))d�

)

κ(0) = 0, κ
′(0) = 0.

(8)

The mild solution for system (8) is given by

κ(t) = ∫ t
0 Pγ(t − �)

[
L (t, ϑ(t), ϑ[H (ϑ(t), t)]) − L (t, �(t), �[H (�(t), t)])

+G
(
t,ϑ(t),

∫ �
0 Y (�, ζ, ϑ(ζ))dζ

) − G
(
t, �(t),

∫ �
0 Y (�, ζ, �(ζ))dζ

) ]
ds.
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Hence, we have

‖κ(t)‖ =
∥
∥
∥
∥

∫ t

0
Pγ(t − �)

[
L (t, ϑ(t), ϑ[H (ϑ(t), t)]) − L (t, �(t), �[H (�(t), t)])

+G

(

t,ϑ(t),
∫ �

0
Y (�, ζ, ϑ(ζ))dζ

)

− G

(

t, �(t),
∫ �

0
Y (�, ζ, �(ζ))dζ

) ]
ds

∥
∥
∥
∥

≤
∫ t

0
‖Pγ(t − �)‖‖L (t, ϑ(t), ϑ[H (ϑ(t), t)]) − L (t, �(t), �[H (�(t), t)])‖

+‖G
(

t, ϑ(t),
∫ �

0
Y (�, ζ, ϑ(ζ))dζ

)

− G

(

t, �(t),
∫ �

0
Y (�, ζ, �(ζ))dζ

)

‖
]
ds

≤ N̄C T γ−1

�(γ)

∫ t

0
K∗(2 + L.CH )‖ϑ(t) − �(t)‖ds

+ N̄C T γ−1

�(γ)

∫ t

0
(MG + NG M∗

Y )‖ϑ(t) − �(t)‖ds,

≤ N̄C T γ−1

�(γ)

∫ t

0
[K∗(2 + L.CH ) + (MG + NG M∗

Y )]‖κ(t)‖ds

≤ N̄C T γ−1

�(γ)
�̂

∫ t

0
‖κ(t)‖ds (9)

where �̂ = K∗(2 + L.CH ) + (MG + NG M∗
Y ). By using Gronwall’s inequality

in Eq. (9), we obtain κ(t) = 0. Hence, ϑ(t) = �(t) almost everywhere. Thus, for
γ ∈ (1, 2] fractional integro-differential system (1) is trajectory-controllable. �

4 Application

Let V = L2(0,π). Consider the following system of fractional order:

⎧
⎪⎪⎨

⎪⎪⎩

cDγ
t ℵ(t, ς) = ∂ς(t, ς) + U (t, ς) + Q(ς,ℵ(t, ς)),+R(t, ς,ℵ(t, ς)),

ℵ(t, 0) = ℵ(t,π) = 0, t ∈ [0, T ], 0 < T < ∞,

ℵ(0, ς) = y0, ς ∈ (0,π),

∂tℵ(0, ς) = ς0, ς ∈ (0,π),

(10)

where

γ ∈ (1, 2], R(t, ς, ℵ(t, ς)) =
∫ ς

0
K (ς, �)ℵ(�,J (t)(c1|ℵ(t, �)| + c2|ℵ(t, �)|))d�.

We assume that c1, c2 ≥ 0, (c1, c2) �= (0, 0), J : I → I is locally Hölder contin-
uous in t withJ (0) = 0 andK : [0,π] × [0,π] → R. The operator U is defined
as follows:

A ϑ = ϑ′′ with ϑ ∈ D(A ) = {ϑ ∈ H 1
0 (0,π) ∩ H 2(0,π) : ϑ′′ ∈ V}. (11)
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Then, A is represented as in the following series:

A ϑ =
∞∑

n=1

−n2(ϑ,ϑn)ϑn, ϑ ∈ D(A ),

where the orthonormal set of eigenfunctions of A is ϑn(�) = √
2/π sin n�, n =

1, 2, 3 . . . . Moreover, the operator A is the infinitesimal generator of C (t)t∈R on V
(see [7, 13] for more about cosine family). It is given by

C (t)ϑ =
∞∑

n=1

cos nt (ϑ,ϑn)ϑn, ϑ ∈ V,

and the sine familyS (t)t∈R associated with C (t)t∈R on V is as follows:

S (t)ϑ =
∞∑

n=1

1

n
sin nt (ϑ,ϑn)ϑn, ϑ ∈ V.

For γ = 2, Eq. (10) can be converted into the following in V = L2(0,π):

⎧
⎨

⎩

ϑ′′t) = A ϑ(t) + W (t) + L (t,ϑ(t),ϑ[H (ϑ(t), t)])
+G (t,ϑ(t),

∫ t
0 Y (t,�,ϑ(�)d�), t > 0,

ϑ(0) = y0, ϑ′(0) = y1,

where ϑ(t) = ℵ(t, .), that is, ϑ(t)(ς) = ℵ(t, ς), u(t)(ς) = U (t, ς), ς ∈ (0,π) andA
is the same as in Eq. (11). The functionL : I × V × V → V is given by

L (t, , ξ)(ς) = Q(ς, ξ) + R(t, ς, ),

where Q : [0,π] × V → H 1
0 (0,π) is given by

Q(ς, ξ) =
∫ ς

0
K (ς,ϑ)ξ(ϑ)dϑ,

and

‖R(t, ς, )‖ ≤ V (ς, t)(1 + ‖‖H 2(0,π))

with V (., t) ∈ V being continuous with respect to the second argument (see [14]).
Thus, Theorem(3.1) can be applied in differential system (10).

For γ ∈ (1, 2), A is the infinitesimal generator of C (t)t∈R, form the subordinate
principle (Theorem 3.1, [10]), it follows thatA infinitesimal generator ofCγ(t) such
that Cγ(0) = I, and

Cγ(t) =
∫ ∞

0
σt,γ/2(�)C(�)d�, t > 0,
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where σt,γ/2(�) = t−γ/2φγ/2(�t−γ/2), and

φβ(ς) =
∞∑

n=0

(−ς)n

n!�(−βn + 1 − β)
, 0 < β < 1.

Then Eq. (10) can be reformulated into the following equation of order γ ∈ (1, 2] in
V = L2(0,π):

⎧
⎨

⎩

cDγ
t ϑ(t) = A ϑ(t) + W (t) + L (t,ϑ(t),ϑ[H (ϑ(t), t)])

+G (t,ϑ(t),
∫ t
0 Y (t,�,ϑ(�))d�), t > 0,

ϑ(0) = y0, ϑ′(0) = y1.

Acknowledgements The third author would like to acknowledge CSIR-HRDG, Government of
India, for supporting this research work under Grant 25(0268)/17/EMR-II.

References

1. Kumar, S., Sukavanam, N.: Approximate controllability of fractional order semilinear systems
with bounded delay. J. Differ. Equ. 252(11), 6163–6174 (2012)

2. Muslim,M.,George, R.K.: Trajectory controllability of the nonlinear systems governed by frac-
tional differential equations. Differ. Equ. Dyn. Syst. (2016). https://doi.org/10.1007/s12591-
016-0292-z

3. Chalishajar, D.N., George, R.K., Nandakumaran, A.K., Acharya, F.S.: Trajectory controllabil-
ity of nonlinear integro-differential system. J. Frankl. Inst. 347, 1065–1075 (2010)

4. Kumar, A., Vats, R.K., Kumar, A.: Approximate controllability of second-order non-
autonomous system with finite delay. J. Dyn. Control Syst. 26, 611–627 (2020)

5. Li, K., Peng, J., Gao, J.: Controllability of nonlocal fractional differential systems of order
γ ∈ (1, 2], in Banach spaces. Rep. Math. Phys. Appl. 71(1), 33–43 (2013)

6. Muslim, M., Kumar, A., Agarwal, R.P.: Exact and trajectory controllability of second order
nonlinear systems with deviated argument. Funct. Differ. Equ. 23, 27–41 (2016)

7. Travis, C.C., Webb, G.F.: Cosine families and abstract nonlinear second order differential
equations. Acta Math. Acad. Sci. Hung. 32, 76–96 (1978)

8. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
9. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory andApplications of Fractional Differential

Equations. Elsevier, Amsterdam (2006)
10. Bazhlekova, E.: Fractional Evolution Equations in Banach Spaces. University Press Facilities,

Eindhoven University of Technology (2001)
11. Hernández, E.,O’Regan,D.,Balachandran,K.:On recent developments in the theory of abstract

differential equations with fractional derivatives. Nonlinear Anal. 73, 3462–3471 (2010)
12. Muslim, M., Kumar, A., Agarwal, R.P.: Exact controllability of fractional integro-differential

systems of order α ∈ (1,2] with deviated argument, Analele Universit at, ii Oradea Fasc.
Matematica XXIV, Issue no. 1, 171 (2017)

13. Travis, C.C.,Webb,G.F.: Compactness, regularity and uniformcontinuity properties of strongly
continuous cosine family. Houstan J. Math. 3, 555–567 (1977)

14. Gal C.G.: Nonlinear abstract differential equations with deviated argument. J. Math. Anal.
Appl. 177–189 (2007)

https://doi.org/10.1007/s12591-016-0292-z
https://doi.org/10.1007/s12591-016-0292-z


Shehu-Adomian Decomposition Method
for Dispersive KdV-Type Equations

Abey S. Kelil and Appanah R. Appadu

Abstract In this paper, a new method known to be Shehu-Adomian decomposition
method is proposed to solve homogeneous and non-homogeneous dispersive KdV-
type equations. The Shehu-Adomian decomposition method is a combination of
Shehu’s transform and Adomian Decomposition method. Some illustrative problems
of dispersive KdV-type equations are solved to check the validity of the method. The
approximate solutions are given in series form and the proposed method is a reliable
and powerful technique to solve numerous physical problems in applications.

Keywords Shehu transform · Adomian decomposition method · Dispersive linear
KdV equations

2010 Mathematics Subject Classification: 35A25, 35A22, 34A45

1 Introduction

The famous Korteweg-de Vries (KdV) equation is a nonlinear dispersive PDE that
describes mathematical modeling of traveling wave solution, known to be solitary
water waves (also called solitons) in a shallow water domain. This equation is given
by the PDE [1]

ut + 6uux + uxxx = 0. (1)

In 1895, Korteweg and de Vries in [1] derived this equation while studying water
waves. Numerical study of KdV equations was pioneered by Zabusky and Kruskal
[2] and some recent modifications of the numerical schemes were studied in [3, 4].

There are numerous methods for solving linear/nonlinear partial differential
equations. One of these methods is Semi-analytical methods, which can provide
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approximate-analytical solutions for problem considered. Among these methods,
we can mention Adomian decomposition method [5–7], Variational iteration method
[8–10], and Homotopy perturbation method [11–14]. A literature summary of some
semi-analytical methods is given as follows:

(I) Adomian decompositionmethod (ADM) can be applied to solve linear as well as
nonlinear functional equations in [5, 6, 15–17], works by dissecting the equation
into linear and nonlinear parts. Themethod produces series solutionwhose terms
are computed from a recursive relation involving Adomian polynomials. Various
modifications of ADM were given in the works of Wazwaz [18].

(II) Homotopy perturbationmethod (HPM) is used to determine accurate asymptotic
solutions of a nonlinear problem. This method is also used effectively to solve
PDEs in modeling flows in porous media [19].

Different variants of KdV equation have been investigated in literature [8] (see also
[20]). This paper addresses the following problems using some semi-analytic meth-
ods [15] and their modifications [21]:

(i) The homogeneous linear KdV equation [18]

{
ut + 2ux + uxxx = 0, (x, t) ∈ [0, 2π ] × [0, 4.0],
u(x, 0) = sin(x).

(2)

Exact solution for Eq. (2) is given by

u(x, t) = sin(x − t). (3)

(ii) The non-homogeneous linear KdV equation with some source term

{
ut − uxxx = 2et−x , (x, t) ∈ [0, 1.0] × [0, 2.0],
u(x, t) = 1 + et−x .

(4)

Exact solution for Eq. (4) is given by

u(x, t) = 1 + et−x . (5)

(iii) Homogeneous nonlinear dispersive KdV equation

ut + uux + uxxx = 0, (6)

with (x, t) ∈ [0, 2π ] × [0, 0.50], and initial condition u(x, 0) = x and the time
dependent boundary conditions are

u(0, t) = 0, ux (0, t) = 1

1 + t
, uxx (0, t) = 0. (7)
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Exact solution is u(x, t) = x

1 + t
.

(iv) Inhomogeneous nonlinear dispersive KdV equation [22]

ut − uux + uxxxxx = cos(x) − t sin(x) + t2 sin(2x)

2
, (8)

with (x, t) ∈ [0, 2π ] × [0, 0.10) and initial condition u(x, 0) = 0, Exact solu-
tion is u(x, t) = t cos(x).

We see that the first term in Eq. (2) refers to time evolution and the third term refers
to the dispersion term. Equation (2) is sometimes known as the ‘weak dispersion’
wave equation. Equation (2) can be represented as the kinematic wave equation, with
a dispersive perturbation term of the third order in space. We note that exact solution
for the above numerical experiments can be obtained using Ansatz method. (The
same also holds for other KdV-type equations considered above).

The objective of this study is to integrate two powerful methods, Shehu transform
method and Adomian decomposition method to obtain a better method for solving
partial differential equations; in particular on dispersive linear as well as nonlinear
KdV-type equations.

2 Adomian Decomposition Method (ADM)

This section recaps some key points of the method ADM to solve linear as well as
nonlinear dispersive PDEs.

Let us take the general form of a differential equation as given in [23]:

{
∂u
∂t (x, t) = G(u, ux , uxx , . . . , uxn ) + s(x),

u(x, 0) = h(x), (x, t) ∈ R × R,
(9)

where ut = ∂u
∂t , uxi = ∂ i u

∂xi , G(·) is a polynomial function of its arguments and s is
source term.

Following ADM procedures, by splitting the LHS of Eq. (9) into two parts, we
have that

G[u] = LG[u] + NG[u],

where LG[u] is a linear operator with respect to u, ux , . . . , uxn while NG[u] is non-
linear part of G[u]. Then the operator

L−1(.) =
∫ t

0
(.) dt,

can be introduced to express the solution of Eq. (9) in the form:
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u = f0(x) + s(x) t +
∫ t

0
(LG[u] + NG[u]) dt.

Let’s suppose that

u(x; t) =
∞∑
n=0

Vn(x; t), (10)

and LG[u] = ∑
i≥0 LG[Vi ] and NG[u] = NG

[∑
i≥0 Vi

] = ∑
i≥0 Ai , where the

newly introduced terms Ai are Adomian polynomials [5, 6, 24]. These polynomials
are obtained by using following formulae [10, 24]

Ai = 1

n!
dn

dλn

[
G

(
n∑

i=0

λi Vi

)]
λ=0

, (11)

and some of the first few terms of these polynomials takes the form

A0 = N (V0),

A1 = V1N
′(V0),

A2 = V2N
′(V0) + 1

2
V 2
1 N

′′(V0),

A3 = V3N
′(V0) + V1V2N

′′(V0) + 1

3!V
3
1 N

(3)(V0),

A4 = V4N
′(V0) +

(
1

2
V 2
2 + V1V3

)
N ′′(V0) + 1

2!V
2
1 V2N

(3)(V0) + 1

4!V
4
1 N

(4)(V0).

One can refer to [25, 26] for detailed discussion on Adomain polynomials.

2.1 ADM Applied to Eq. (2)

Let’s first rewrite Eq. (2) as

{
Lt u + 2ux + uxxx = 0,

u(x, 0) = sin(x),
(12)

where the differential operator is Lt = ∂

∂t
. By assuming L−1

t exists; that is, L−1
t (·) =∫ t

0 (·) dτ , and applying L−1
t on both sides of Eq. (12), we have
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L−1
t Lt u + L−1

t (2ux ) + L−1
t (uxxx ) = L−1

t (0),

which is equivalently given by

u(x, t) = u(x, 0) −
{
L−1
t (2ux ) + L−1

t (uxxx )

}
. (13)

By employing the decomposition series given in Eq. (10) (cf. [5, 6]), the following
recursive approximate values are given as

V0(x) = sin(x), (14)

V1(x; t) = −
{
L−1
t

(
2
∂V0(x; t)

∂x

)
+ L−1

t

(
∂3V0(x; t)

∂x3

)}
, (15)

...

Vn+1(x; t) = −
{
L−1
t

(
2
∂Vn

∂x

)
+ L−1

t

(
∂3Vn(x; t)

∂x3

)}
, n ≥ 2. (16)

For numerical purpose, ψn(x, t) = ∑n
i=0 Vi (x, t) denotes the n-term approximation

to u. The exact solution is u(x, t) = lim
n→∞ ψn(x, t). The number of terms required to

obtain an exact solution is considerably small, which will be shown later using the
proposed method in this work.

By using the recursive relations in Eqs. (15)–(16) and the linearity property of the
operator Lt , we have the first few terms of Vn(x, t):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V1(x; t) = −
{
L−1
t

(
2
∂V0(x; t)

∂x

)
+ L−1

t

(
∂3V0(x; t)

∂x3

)}
= −t cos(x),

V2(x; t) = −
{
L−1
t

(
2
∂V1(x; t)

∂x

)
+ L−1

t

(
∂3V1(x; t)

∂x3

)}
= − t2

2! sin(x),

V3(x; t) = −
{
L−1
t

(
2
∂V2(x; t)

∂x

)
+ L−1

t

(
∂3V2(x; t)

∂x3

)}
= t3

3! cos(x),

V4(x; t) = −
{
L−1
t

(
2
∂V3(x; t)

∂x

)
+ L−1

t

(
∂3V3(x; t)

∂x3

)}
= t4

4! sin(x),

V5(x; t) = −
{
L−1
t

(
2
∂V4(x; t)

∂x

)
+ L−1

t

(
∂3V4(x; t)

∂x3

)}
= − t5

5! cos(x),

V6(x; t) = −
{
L−1
t

(
2
∂V5(x; t)

∂x

)
+ L−1

t

(
∂3V5(x; t)

∂x3

)}
= − t6

6! sin(x),

V7(x; t) = −
{
L−1
t

(
2
∂V6(x; t)

∂x

)
+ L−1

t

(
∂3V6(x; t)

∂x3

)}
= t7

7! cos(x)

(17)

and higher order Vj values are obtained from iteration formula Eq. (16). The ADM
solution up to seventh order terms is
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ψ7(x, t) =
7∑
j=0

Vj (x, t) =
(

−t cos(x) + t3

3! cos(x) − t5

5! cos(x) + t7

7! cos(x)
)

+
(
sin(x) − t2

2! sin(x) + t4

4! sin(x) − t6

6! sin(x)
)

. (18)

ByusingTaylor’s expansion andEq. (18),we haveV2n(x; t) = (−1)nt2n

(2n)! sin(x), n ∈
N0, and applying the principle of Mathematical Induction gives

V2n+1(x; t) = −
{
L−1
t (2V2n,x ) + L−1

t (V2n,xxx )

}

= (−1)n+1

(2n)! cos(x)
∫ t

0
τ 2n dτ = − (−1)nt2n+1

(2n + 1)! cos(x), n ∈ N0.

Thus, from the convergence of ADM in [27], we have that

u(x; t) =
∞∑
n=0

V2n(x; t) +
∞∑
n=0

V2n+1(x; t)

= sin(x)

(∑
n≥0

(−1)nt2n

(2n)!

)
− cos(x)

(∑
n≥0

(−1)nt2n+1

(2n + 1)!

)
= sin(x − t).

We note that same approximate-analytical solution for Eq. (2) via LADM have
been obtained in [28] and the result coincides with the results of ADM. See Fig. 1
for the graphical illustration and Table1 for the numerical results of experiment 1.

2.2 ADM Applied to Eq. (4)

We now rewrite Eq. (4) as

Lt u − uxxx = 2et−x , (19)

with Lt = ∂

∂t
, the linear differential operator, which is assumed to be invertible; i.e.,

L−1
t (·) = ∫ t

0 (·) dτ . By applying L−1
t on both sides of Eq. (19),

L−1
t Lt u = 2L−1

t (et−x ) − L−1
t (uxxx ),

which is equivalently
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Fig. 1 Plots for Exact solution and ADM (LADM) using ten terms versus x at times 0.1, 2.0 and
4.0

u(x, t) = u(x, 0) + 2L−1
t (et−x ) − L−1

t (uxxx ). (20)

By employing the decomposition series given in Eq. (10) together with Eq. (20), we
get

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
V0(x; t) = u(x, 0) + 2L−1

t (et−x ) = 1 + e−x + 2e−xL−1
t (et ) = 1 + 2et−x − e−x ,

V1(x; t) = −L−1
t (V0,xxx ) = −2et−x + te−x + 2e−x ,

V2(x; t) = −L−1
t (V1,xxx ) = 2et−x + e−x t2

2! − 2te−x − 2e−x ,

V3(x; t) = −L−1
t (V2,xxx ) = −2et−x + 2te−x + 2e−x + t2e−x + t3

3!e
−x ,

(21)

and so on.
We see the self-cancelling ‘noise’ terms in Eq.( 21) gives the exact solution

u(x, t) = 1 + e−x

(
1 + t + t2

2! + t3

3! + · · ·
)

= 1 + et−x . (22)

Remark 1 An approximate series solution terms given in Eq. (21) for the inhomo-
geneous KdV-type equation obey self-cancelling behavior; which are also known in
the literature as ‘noise terms’ [29, 30]. A necessary condition for the appearance
of noise terms for inhomogeneous problems is that the zeroth component V0 must
possess the exact solution u among other terms [24]. One can refer to [29] for more
on noise terms.
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Table 1 Absolute/relative errors between ADM (LADM) and exact solution
t x Exact Numerical Absolute error Relative error

0.314 0.212370 0.212370 0.000000 0.000000

0.942 0.745977 0.745977 1.110223 ×10−16 1.488281 ×10−16

1.570 0.994924 0.994924 1.110223 ×10−16 1.115887 ×10−16

t = 0.1 2.826 0.403732 0.403732 1.110223 ×10−16 2.749900 ×10−16

3.454 −0.210814 −0.210814 8.326673 ×10−17 3.949777 ×10−16

4.082 −0.744915 −0.744915 0.000000 0.000000

4.710 −0.994763 −0.994763 0.000000 0.000000

5.966 −0.405189 −0.405189 2.775558 ×10−16 6.850036 ×10−16

6.280 −0.103002 −0.103002 3.608225 ×10−16 3.503053 ×10−15

0.314 −0.993371 −0.993422 5.015442 ×10−5 5.048909 ×10−5

0.942 −0.871376 −0.871412 3.618402 ×10−5 4.152515 ×10−5

1.570 −0.416871 −0.416879 8.406101 ×10−6 2.016476 ×10−5

t = 2.0 2.826 0.735226 0.735271 4.494898 ×10−5 6.113628 ×10−5

3.454 0.993187 0.993237 5.016629 ×10−5 5.051041 ×10−5

4.082 0.872156 0.872193 3.624056 ×10−5 4.155283 ×10−5

4.710 0.418318 0.418326 8.485738 ×10−6 2.028538 ×10−5

5.966 −0.734146 −0.734190 4.491153 ×10−5 6.117524 ×10−5

6.280 −0.907967 −0.908017 4.998895 ×10−5 5.505590 ×10−5

0.314 0.517911 0.417558 1.003528 ×10−1 1.937646 ×10−1

0.942 −0.083495 −0.165409 8.191365 ×10−2 9.810567 ×10−1

1.570 −0.653041 −0.685258 3.221691 ×10−2 4.933369 ×10−2

t = 4.0 2.826 −0.922304 −0.841901 8.040265 ×10−2 8.717588 ×10−2

3.454 −0.519273 −0.418922 1.003508 ×10−1 1.932525 ×10−1

4.082 0.081908 0.163914 8.200590 ×10−2 0.1001194 ×101

4.710 0.651834 0.684202 3.236825 ×10−2 4.965722 ×10−2

5.966 0.922918 0.842611 8.030689 ×10−2 8.701410 ×10−2

6.280 0.758881 0.663909 9.497124 ×10−2 1.251465 ×10−1

3 A New Laplace-Type Transform: Shehu’s Transform
Method for Solving PDEs

AnewLaplace-type integral transform, known to be Shehu’s transform, is introduced
in [21] to solve both ODEs and PDEs. This method is efficient in the sense that it has
great mathematical simplicity and ease of formulations as it is also generalization of
many of the well-known integral transforms. Some of the advantages of this method
are its simple application to a class of ordinary or partial differential equations; for
instance, for some of the dispersive KdV-type equations.

Generally speaking, Shehu’s transform can be perceived as a corner stone to the
Sumudu transform, the natural transform, the Elzaki transform, and the Laplace
transform [21].

Definition 1 The Shehu transform of the function v(t) of exponential order is
defined over the set of functions,
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A =
{
v(t) : ∃ N , η1, η2 > 0, |v(t)| < N exp

(
|t |
ηi

)
, if t ∈ (−1)i × [0,∞)

}
,

by the following integral

S [v(t)] = V (s, ρ) =
∫ ∞

0
exp

(−st

ρ

)
v(t)dt

= lim
α→∞

∫ α

0
exp

(−st

ρ

)
v(t)dt; s > 0, ρ > 0. (23)

Equation (23) converges when the limit value of the above integral is finite and
diverges if this is not the case.

Let’s denote the inverse Shehu transform, for t ≥ 0, by

S
−1 [V (s, ρ)] = v(t). (24)

Equation (24) is equivalently expressed as

v(t) = S
−1 [V (s, ρ)] = 1

2π i

∫ α+i∞

α−i∞
1

ρ
exp

(
st

ρ

)
V (s, ρ) ds, (25)

where α ∈ R, s and u are Shehu variables [21] and the integral in Eq. (25) is taken
along s = α in the complex plane s = x + iy.

Theorem 1 ([21]) If v(t) is piecewise continuous on t ∈ [0, β] and of exponential
order α for t > β, then Shehu’s transform exists.

Theorem 2 ([21]) Let v(n)(t) denotes the nth derivative of the function v(t) ∈ A
with respect to t . The Shehu transform of v(n)(t) is given by

S
[
v(n)(t)

] = sn

ρn
· V (s, ρ) −

n−1∑
k=0

(
s

ρ

)n−(k+1)

v(k)(0). (26)

Fpr n = 1, 2, and 3 in Eq. (26), we have the following derivatives with respect to t :

S
[
v′(t)

] = s

ρ
· V (s, ρ) − v(0),

S
[
v′′(t)

] = s2

ρ2
· V (s, ρ) − s

ρ
v(0) − v′(0),

S
[
v′′′(t)

] = s3

ρ3
V (s, ρ) − s2

ρ2
v(0) − s

ρ
v′(0) − v′′(0).

By employing Leibniz’s rule, some properties are noted as follows:
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S

[
∂v(x, t)

∂x

]
=

∫ ∞

0
exp

(−st

ρ

)
∂v(x, t)

∂x
dt = ∂

∂x

∫ ∞

0
exp

(−st

ρ

)
v(x, t) dt

= ∂

∂x
[V (x, s, ρ)] ⇒ S

[
∂v(x, t)

∂x

]
= d

dx
[V (x, s, ρ)] ,

S

[
∂2v(x, t)

∂x2

]
=

∫ ∞

0
exp

(−st

ρ

)
∂2v(x, t)

∂x2
dt = ∂2

∂x2

∫ ∞

0
exp

(−st

ρ

)
v(x, t) dt

= ∂2

∂x2
[V (x, s, ρ)] ⇒ S

[
∂2v(x, t)

∂x2

]
= d2

dx2
[V (x, s, ρ)] .

Some important properties of this transform are given as follows:

(i) Linearity property of Shehu transform:

S [αv(t) + βw(t)] = αS [v(t)] + βS [w(t)] .

(ii) Scaling property of Shehu transform:

S [v(βt)] = ρ

β
· V

(
s

β
, ρ

)
.

Proposition 1 ([21]) Suppose ∂v(x,t)
∂t and ∂2v(x,t)

∂x2 exist, then

S

[
∂v(x, t)

∂t

]
= s

ρ
· V (x, s, ρ) − v(x, 0),

S

[
∂2v(x, t)

∂x2

]
= s2

ρ2
· V (s, ρ) − s

ρ
· v(0) − ∂v(x, 0)

∂t
.

Our next section introduces SADM, which is a combination of ADM and Shehu’s
transform, and some illustrative examples are also provided.
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Table 2 Some essential properties of Shehu’s transform for SADM

Function form f (X̃ , t) Transformed form Fk(X̃)

1 ρ
s

tn

n!
(ρ

s

)n+1

eat
ρ

s − aρ

teat
ρ2

(s − aρ)2

tneat

n!
ρn+1

(s − aρ)n+1

sin(at)
aρ2

s2 + a2

cos(at)
ρs

s2 + a2ρ2

ebt cos(at)
ρ(s − aρ)

(s − bρ)2 + a2ρ2

eat

b − a

ρ2

(s − aρ)(s − bρ)

bebt − aeat

b − a

ρs

(s − aρ)(s − bρ)

3.1 Outline of the Method: SADM

To illustrate the basic concepts of SADM, let’s us consider the following equation

{
Lt u(x, t) + Mu(x, t) + Nu(x, t) = g(x, t),

u(x, 0) = h(x),
(27)

where N is a nonlinear operator, Lt = ∂
∂t is the linear operator, M is a linear operator

w.r.t x and g is the source term, which doesn’t rely on u. By first applying Laplace
transform on both sides of Eq. (27), we get

S

{
Lt u(x, t)

}
= S

{
g(x, t) − Mu(x, t) − Nu(x, t)

}
(28)

and by rewriting Eq. (28) equivalently as

s

ρ
· S

{
u(x, t)

}
− u(x, 0) = S

{
g(x, t) − Mu(x, t) − Nu(x, t)

}
. (29)

In the homogeneous case, g(x, t) = 0, and therefore we have that
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u(x, s) = ρ

s
· h(x) − ρ

s
· S

{
Mu(x, t) + Nu(x, t)

}
.

Employing inverse Shehu’s transform to Eq. (29) gives

u(x, t) = h(x) − S
−1

[
ρ

s
· S

{
Mu(x, t) + Nu(x, t)

}]
. (30)

Let us consider SADM decomposition series by

u(x, t) =
∞∑
n=0

Vn(x, t), (31)

and the nonlinear term by

Nu(x, t) =
∞∑
n=0

An(V0, V1, . . . , Vn), (32)

where the sequence {An}∞n=0 are the well-known Adomian polynomials (see [5, 6,
30]). Using Eqs. (31) and (32) into Eq. (30), we obtain

∞∑
n=0

Vn(x, t) = h(x) − S
−1

[ρ

s
· S{M

∞∑
n=0

Vn(x, t) +
∞∑
n=0

An(V0, V1, . . . , Vn)}
]
.

(33)
The following recursive formulae follows from Eq. (33) as follows.

{
V0(x, t) = h(x),

Vn+1(x, t) = −S
−1

[
ρ

s · S
{
MVn(x, t) + An(V0, V1, . . . , Vn)

}]
, n = 0, 1, 2, . . . .

(34)
Using Eq. (34), an approximate solution of Eq. (27) takes the form

u(x, t) ≈
n∑

r=0

Vr (x, t), where lim
n→∞

n∑
r=0

Vr (x, t) = u(x, t). (35)

The following Shehu’s transformation results are given in [21].
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4 Some Applications: SADM

In this section, SADM is applied to dispersive linear and nonlinear KdV-type equa-
tions to show the reliability of the method.

4.1 Implementation of SADM for Eq. (2)

The linearized homogeneous equation in [18] takes the form

{
ut + 2ux + uxxx = 0, (x, t) ∈ [0, 2π ] × [0, 2.75],
u(x, 0) = sin(x).

(36)

By applying Shehu’s transform S in given Eqs. (23)–(36), we have

S{ut } = s

ρ
· S

{
u(x, t)

}
− u(x, 0) = −2S{ux } − S{uxxx }, t > 0. (37)

By employing inverse Shehu’s transform to Eq. (37), we obtain

u(x, t) = u(x, 0) − S
−1

[
ρ

s
· [
S{2ux } − S{uxxx }

]]
. (38)

By using SADM’s series given in Eq. (31) into Eq. (38), the following recursive
values are given as follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V0(x, t) = sin(x),

V1(x; t) = −S
−1

[
ρ

s ·
[
S{−2V0,x } − S{V0,xxx }

]]

V2(x; t) = −S
−1

[
ρ

s ·
[
S{−2V1,x } − S{V1,xxx }

]]
...

Vn(x; t) = −S
−1

[
ρ

s ·
[
S{−2Vn−1,x } − S{Vn−1,xxx }

]]
. (39)

By using Eq. (39) and some of properties of Shehu’s transform given in Table2, we
have that
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V0(x, t) = sin(x),

V1(x; t) = −S
−1

[
ρ

s ·
[
S{−2V0,x } − S{V0,xxx }

]]
= −t cos(x),

V2(x; t) = −S
−1

[
ρ

s ·
[
S{−2V1,x } − S{V1,xxx }

]]
= − t2

2! sin(x),

V3(x; t) = −S
−1

[
ρ

s ·
[
S{−2V2,x } − S{V2,xxx }

]]
= − t3

3! cos(x),

V4(x; t) = −S
−1

[
ρ

s ·
[
S{−2V3,x } − S{V3,xxx }

]]
= t4

4! sin(x),

V5(x; t) = −S
−1

[
ρ

s ·
[
S{−2V4,x } − S{V4,xxx }

]]
= − t5

5! cos(x),

V6(x; t) = −S
−1

[
ρ

s ·
[
S{−2V5,x } − S{V5,xxx }

]]
= − t6

6! sin(x),

V7(x; t) = −S
−1

[
ρ

s ·
[
S{−2V6,x } − S{V6,xxx }

]]
= − t7

7! cos(x).

(40)

The rest of the components can be obtained from Eq. (40) in a similar way. The
7-term approximate SADM solution is

�7(x, t) =
7∑

i=0

Vi (x, t) =
(
sin(x) − t2

2! sin(x) + t4

4! sin(x) − t6

6! sin(x)
)

+
(

−t cos(x) + t3

3! cos(x) − t5

5! cos(x) + t7

7! cos(x)
)

.

(41)

In view of Eq. (41) and using Taylor’s expansion, we have

V2n(x; t) = (−1)nt2n

(2n)! sin(x), for n ∈ N0,

and thus

V2n+1(x; t) = −S
−1

[
ρ

s
·
[
S{−2V2n,x } − S{V2n,xxx }

]]

= −S
−1

[
ρ

s
·
[
S

(
2
(−1)nt2n

(2n)! cos(x) − (−1)nt2n

(2n)! cos(x)

) ]]

= cos(x)(−1)n+1 t2n+1

(2n + 1)! .
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4.2 Implementation of SADM for Eq. (6)

Applying Shehu transform on both sides of Eq. (6), we get

S(u(x, t)) = x −
[
ρ

s
· S

(
uux + uxxx

)]
. (42)

Taking inverse Shehu transform on both sides of Eq. (42), we obtain

u(x, t) = x − S
−1

[
ρ

s
· S

(
uux + uxxx

)]
. (43)

By applying the aforesaid decomposition method, we have

∞∑
n=0

un(x, t) = x − S
−1

[
ρ

s
· S

{ ∞∑
n=0

An(u0, u1, . . . , un) +
∞∑
n=0

(un)xxx

}]
. (44)

Comparing both sides of Eq. (44) gives

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0(x, t) = x,

u1(x, t) = −S
−1

[
ρ

s · S
{
A0(u0) + (u0)xxx

}]
,

u2(x, t) = −S
−1

[
ρ

s · S
{
A1(u0, u1) + (u1)xxx

}]
,

u3(x, t) = −S
−1

[
ρ

s · S
{
A2(u0, u1, u2) + (u2)xxx

}]
,

...

(45)

The first few components of Adomain polynomials An(u0, u1, . . . , un) (cf. [25, 26])
are given by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A0(u0) = u0u0,x = x,

A1(u0, u1) = u0u1,x + u1u0,x = −xt,

A2(u0, u1, u2) = u0u2,x + u2u0,x + u1u1,x = xt2,

A3(u0, u1, u2, u3) = u3u0,x + u1u2,x + u2u1,x + u0u3,x = −4xt3,
....

(46)

Using the iteration formulae (45) and Adomian polynomials in (46), we obtain

u0(x, t) = x, u1(x, t) = −xt, u2(x, t) = xt2, u3(x, t) = −xt3, u4(x, t) = xt4. (47)
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Fig. 2 Error plots versus x at times t = 0.1, 2.0, 4.0 (LADM)

Fig. 3 Plot for Exact solution and SADM at 0 ≤ x ≤ 2π and times t = 0.1, 2.0, 2.75, respectively,

Thus, an approximate-analytical solution for u(x, t) is given by

u STADM(x, t) = x − xt + xt2 − xt3 + xt4 + · · · , (48)

which gives the exact solution u(x, t) = x

1 + t
with | − t | < 1 (Table3).



Shehu-Adomian Decomposition Method for Dispersive KdV-Type Equations 119

Table 3 Absolute/relative errors at some values of x and at times 0.1, 2.0, 2.75 using 7-terms of
SADM
t values of

x
Exact Numerical Absolute error Relative error

0.000 −0.099833 −0.099833 2.747802 ×10−15 2.752387 ×10−14

0.314 0.212370 0.212370 7.399636 ×10−14 3.484308 ×10−13

0.942 0.745977 0.745977 1.988409 ×10−13 2.665512 ×10−13

1.570 0.994924 0.994924 2.481348 ×10−13 2.494007 ×10−13

2.198 0.864217 0.864217 2.022826 ×10−13 2.340645 ×10−13

t = 0.10 2.826 0.403732 0.403732 7.971401 ×10−14 1.974428 ×10−13

3.454 −0.210814 −0.210814 7.352452 ×10−14 3.487653 ×10−13

4.082 −0.744915 −0.744915 1.987299 ×10−13 2.667820 ×10−13

4.710 −0.994763 −0.994763 2.480238 ×10−13 2.493296 ×10−13

5.338 −0.865018 −0.865018 2.023937 ×10−13 2.339764 ×10−13

5.966 −0.405189 −0.405189 7.965850 ×10−14 1.965960 ×10−13

6.280 −0.103002 −0.103002 3.191891 ×10−15 3.098854 ×10−14

0.000 −0.909297 −0.907937 1.360919 ×10−3 1.496671 ×10−3

0.314 −0.993371 −0.993953 5.820994 ×10−4 5.859837 ×10−4

0.942 −0.871376 −0.875489 4.112929 ×10−3 4.720040 ×10−3

1.570 −0.416871 −0.422945 6.074300 ×10−3 1.457118 ×10−2

2.198 0.196709 0.190991 5.717768 ×10−3 2.906717 ×10−2

t = 2.0 2.826 0.735226 0.732047 3.179384 ×10−3 4.324363 ×10−3

3.454 0.993187 0.993759 5.722263 ×10−4 5.761516 ×10−4

4.082 0.872156 0.876262 4.105480 ×10−3 4.707276 ×10−3

4.710 0.418318 0.424390 6.072117 ×10−3 1.451556 ×10−2

5.338 −0.195147 −0.189425 5.721685 ×10−3 2.931987 ×10−2

5.966 −0.734146 −0.730958 3.187906 ×10−3 4.342335 ×10−3

6.280 −0.907967 −0.906587 1.380264 ×10−3 1.520169 ×10−3

0.000 −0.381661 −0.358498 2.316300 ×10−2 6.068998 ×10−2

0.314 −0.648485 −0.649521 1.035837 ×10−3 1.597318 ×10−3

0.942 −0.971999 −1.018772 4.677316 ×10−2 4.812059 ×10−2

1.570 −0.924606 −0.999268 7.466224 ×10−2 8.075033 ×10−2

2.198 −0.524391 −0.598452 7.406083 ×10−2 1.412320 ×10−1

t = 2.75 2.826 0.075927 0.030728 4.519843 ×10−2 5.952891 ×10−1

3.454 0.647272 0.648183 9.113162 ×10−4 1.407934 ×10−3

4.082 0.971623 1.018297 4.667331 ×10−2 4.803642 ×10−2

4.710 0.925212 0.999837 7.462516 ×10−2 8.065740 ×10−2

5.338 0.525747 0.599847 7.410067 ×10−2 1.409437 ×10−1

5.966 −0.074339 −0.029039 4.529999 ×10−2 6.093728 ×10−1

6.280 −0.378715 −0.355314 2.340076 ×10−2 6.178992 ×10−2
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Table 4 Absolute/relative errors at some values of x and at times 0.1, 2.0, 2.75 using 7-terms of
SADM
t Values of x Exact Numerical Absolute error Relative error

0.000 0.000000 0.000000 0.000000 –

0.628 0.615686 0.615686 1.970196 ×10−9 3.200000 ×10−9

1.256 1.231373 1.231373 3.940392 ×10−9 3.200000 ×10−9

1.884 1.847059 1.847059 5.910588 ×10−9 3.200000 ×10−9

2.512 2.462745 2.462745 7.880784 ×10−9 3.200000 ×10−9

t = 0.02 3.140 3.078431 3.078431 9.850980 ×10−9 3.200000 ×10−9

3.768 3.694118 3.694118 1.182118 ×10−8 3.200000 ×10−9

4.396 4.309804 4.309804 1.379137 ×10−8 3.200000 ×10−9

5.024 4.925490 4.925490 1.576157 ×10−8 3.200000 ×10−9

5.652 5.541176 5.541176 1.773177 ×10−8 3.200000 ×10−9

6.280 6.156863 6.156863 1.970196 ×10−8 3.200000 ×10−9

0.000 0.000000 0.000000 0.000000 –

0.628 0.592453 0.592453 4.606913 ×10−7 7.776000 ×10−7

1.256 1.184906 1.184907 9.213826 ×10−7 7.776000 ×10−7

1.884 1.777358 1.777360 1.382074 ×10−6 7.776000 ×10−7

2.512 2.369811 2.369813 1.842765 ×10−6 7.776000 ×10−7

t = 0.06 3.140 2.962264 2.962266 2.303457 ×10−6 7.776000 ×10−7

3.768 3.554717 3.554720 2.764148 ×10−6 7.776000 ×10−7

4.396 4.147170 4.147173 3.224839 ×10−6 7.776000 ×10−7

5.024 4.739623 4.739626 3.685531 ×10−6 7.776000 ×10−7

5.652 5.332075 5.332080 4.146222 ×10−6 7.776000 ×10−7

6.280 5.924528 5.924533 4.606913 ×10−6 7.776000 ×10−7

0.000 0.000000 0.000000 0.000000 –

0.628 0.570909 0.570915 5.709091 ×10−6 1.000000 ×10−5

1.256 1.141818 1.141830 1.141818 ×10−5 1.000000 ×10−5

1.884 1.712727 1.712744 1.712727 ×10−5 1.000000 ×10−5

2.512 2.283636 2.283659 2.283636 ×10−5 1.000000 ×10−5

t = 0.10 3.140 2.854545 2.854574 2.854545 ×10−5 1.000000 ×10−5

3.768 3.425455 3.425489 3.425455 ×10−5 1.000000 ×10−5

4.396 3.996364 3.996404 3.996364 ×10−5 1.000000 ×10−5

5.024 4.567273 4.567318 4.567273 ×10−5 1.000000 ×10−5

5.652 5.138182 5.138233 5.138182 ×10−5 1.000000 ×10−5

6.280 5.709091 5.709148 5.709091 ×10−5 1.000000 ×10−5

0.000 0.000000 0.000000 0.000000 –

0.628 0.418667 0.431750 1.308333 ×10−2 3.125000 ×10−2

1.256 0.837333 0.863500 2.616667 ×10−2 3.125000 ×10−2

1.884 1.256000 1.295250 3.925000 ×10−2 3.125000 ×10−2

2.512 1.674667 1.727000 5.233333 ×10−2 3.125000 ×10−2

t = 0.50 3.140 2.093333 2.158750 6.541667 ×10−2 3.125000 ×10−2

3.768 2.512000 2.590500 7.850000 ×10−2 3.125000 ×10−2

4.396 2.930667 3.022250 9.158333 ×10−2 3.125000 ×10−2

5.024 3.349333 3.454000 1.046667 ×10−1 3.125000 ×10−2

5.652 3.768000 3.885750 1.177500 ×10−1 3.125000 ×10−2

6.280 4.186667 4.317500 1.308333 ×10−1 3.125000 ×10−2
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Fig. 4 Error plots versus x (SADM) at times t = 0.1, 2.0, 2.75 respectively

Fig. 5 Three-dimensional representation for Exact solution and SADM at 0 ≤ x ≤ 2π and 0 ≤
t ≤ 4.0

Plots of exact and numerical solution vs x are displayed in Fig. 6. We obtain plots
of absolute error vs x at four different values of time in Fig. 2. We also compare the
absolute and relative errors at some values of x at four different times in Table4.
We note that same approximate-analytical solution have been obtained using using
SADM for the considered numerical experiments in this paper as shown in Figs. 3,
4, 5 and 7.
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Fig. 6 Plots of exact solution and approximate solution using SADM (4-terms) versus x at times
0.02, 0.06, 0.10, and 0.50 (The space interval used for these plots is π

10 ≈ 0.314)

Fig. 7 Plots of absolute errors versus x at different values of time (t = 0.02, 0.06, 0.10, 0.50) using
SADM (4-terms)
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4.3 Implementation of SADM for Eq. (8)

By consider the inhomogeneous equation in Eq. (8), we apply Shehu transform on
both sides of Eq. (8) to get

S(u(x, t)) = ρ

s
.u(x, 0) + ρ

s
.

{
S

[
cos(x) + 2t sin(x) + t2 sin(x)

2

]
− S

[
− uux + uxxxxx

]}
. (49)

Taking inverse Shehu transform on both sides of Eq. (49), we obtain

u(x, t) = u(x, 0) − S
−1

[
ρ

s
· S

[
cos(x) + 2t sin(x) + t2 sin(x)

2

]
− S

[
− uux + uxxxxx

]]
.

(50)
By applying the aforesaid decomposition method, we have

∞∑
n=0

un(x, t) = u(x, 0) − S
−1

[
ρ

s
· S

[
cos(x) + 2t sin(x) + t2 sin(x)

2

]

− S
−1

[
ρ

s
· S

{ ∞∑
n=0

An(u0, u1, . . . , un) +
∞∑
n=0

(un)xxxxx

}]
. (51)

On comparing both sides of Eq. (51), we obtain

u0(x, t) = u(x, 0) + S
−1

[
ρ

s
· S

[
cos(x) + 2t sin(x) + t2

2
sin(x)

] ]
(52)

u1(x, t) = −S
−1

[
ρ

s
· S [(u0)xxxxx − A0(u0)]

]
, (53)

u2(x, t) = −S
−1

[
ρ

s
· S [(u1)xxxxx − A1(u0, u1)]

]
. (54)

...

The first few components of Adomain polynomials An(u) are obtained using formu-
lae (cf. [25, 26])

A0(u0) = u0u0,x

= −t2 cos(x) sin(x) +
(
cos2(x) − sin2(x)

)
t3 +

(
1

6
cos2(x) + cos(x) sin(x) − 1

6
sin2(x)

)
t4

+ 1

3
t5 sin(x) cos(x) + 1

36
t6 sin(x) cos(x), (55)
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A1(u0, u1) = u0u1,x + u1u0,x

=
(

− sin(x)

1512
+ cos2(x) sin(x)

504

)
t10 +

(
− 5 sin(x)

378
+ 5 cos2(x) sin(x)

126

)
t9

+
(
cos3(x)

126
− cos(x)

252
− 1

18
sin(x) + 1

6
cos2(x) sin(x) − cos(x) sin2(x)

252

)
t8

+
(

− cos2(x)

144
+ 7 cos3(x)

36
− 7 cos(x)

72
+ sin2(x)

144
− 2

9
cos(x) sin2(x)

)
t7

+
(
cos(2x)

72
+ 1

18
sin(x) + 1

2
cos3(x) − 1

4
cos(x) − cos(x) sin2(x) − 1

6
cos2(x) sin(x)

)
t6

+
(

− 1

3
sin2(x) + 7 sin(x)

12
+ 1

3
cos2(x) + 1

4
cos(x) sin(x) − 5

2
cos2(x) sin(x)

)
t5

+
(

− 2

3
cos3(x) + 1

3
cos(x) + 1

3
cos(x) sin(x) + 1

3
cos(x) sin2(x)

)
t4 + cos(2x)

2
t3.

(56)

The polynomials A2(u0, u1, u2) and A3(u0, u1, u2, u3) are obtained by

A2(u0, u1, u2) = u0u2,x + u2u0,x + u1u1,x ,

A3(u0, u1, u2, u3) = u3u0,x + u1u2,x + u2u1,x + u0u3,x ,

and the higher order ones are obtained by

An(u0, u1, u2, . . . , un) =
n−1∑
j=0

u j
∂un− j

∂x
. (57)

Employing Eqs. (56), (55) together with Eq. (52) yields

u0(x, t) = t cos(x) + t2 sin(x) + t3

3! sin(x), (58a)

u1(x, t) = 1

2
t2 sin(x) + 1

6
(2 cos (x) − sin (2 x)) t3

+ 1

4

(
cos (2 x) − 1

6
cos(x)

)
t4 + 1

36
sin (2 x) t6 + sin (2 x) t7

504
, (58b)
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u2(x, t) =
(
cos2(x) sin(x)

5544
− sin(x)

16632

)
t11 +

(
− sin(x)

756
+ cos2(x) sin(x)

252

)
t10

+
(

− sin (x)

162
+ cos2(x) sin(x)

54
− cos(x) sin2(x)

2268
+ cos3(x)

1134
− cos(x)

2268

)
t9

+
(
7 cos3(x)

288
− 7 cos(x)

576
+ (sin(x))2

1152
+ 1

126
− 1

36
cos(x) sin2(x) − 15 (cos(x))2

896

)
t8

+
(

− 127 cos2(x)

504
+ 1

14
cos3(x) − 1

28
cos(x) − (sin(x))2

504
+ 8

63
− 1

7
cos(x) sin2(x)

− 1

42
cos2(x) sin(x) + sin(x)

126

)
t7

+
(

1

18
cos2(x) − 1

18
sin2(x) + 7 sin(x)

72
+ 1

24
cos(x) sin(x) − 5 cos2(x) sin(x)

12

)
t6

+
(

− sin(x)

120
+ 49 cos(x) sin(x)

15
+ 1

15
cos(x) sin2(x) − 2

15
cos3(x) + 1

15
cos(x)

)
t5

+
(
67 cos2(x)

24
− 1

8
sin2(x) + 1

12
sin(x) − 4

3

)
t4 − 1

6
t3 cos(x).

Thus, the sum of first three iterates to build an approximate-analytical solution for
u(x, t) of Eq. (8) is given by

u SADM(x, t) = u0(x, t) + u1(x, t) + u2(x, t). (59)

Remark 2 Fig. 8 shows exact and SADM solution whereas Fig. 9 demonstrates
Absolute error at different times. From numerical experiments above, we see that
SADM is a promising semi-analytical method for solving PDEs. Comparison of
SADM with other traditional semi-analytic methods such HPM, VIM, RDTM will
be prominent continuation of this work, as this is not studied yet.



126 A. S. Kelil and A. R. Appadu

Fig. 8 Plots of Exact solution and approximate solution using 3-terms of SADM versus x at times
0.005, 0.02, and 0.06. (The space step size used for these plots is π

10 ≈ 0.314)

Fig. 9 Plots of absolute errors versus x at times t = 0.005, 0.02, 0.06 using SADM
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Table 5 Absolute and relative errors at some values of x obtained at times t = 0.005, 0.02, 0.06
for Numerical Experiment 2
t Values of x Exact solution Numerical

solution
Absolute error Relative error

0.000 0.005000 0.005000 2.286458 ×10−8 4.572917 ×10−6

0.628 0.004046 0.004068 2.206271 ×10−5 5.452940 ×10−3

1.256 0.001548 0.001584 3.568366 ×10−5 2.304976 ×10−2

1.884 −0.001541 −0.001505 3.568926 ×10−5 2.316672 ×10−2

2.512 −0.004041 −0.004019 2.207738 ×10−5 5.462890 ×10−3

t = 0.005 3.140 −0.005000 −0.005000 4.100777 ×10−8 8.201564 ×10−6

3.768 −0.004051 −0.004073 2.201170 ×10−5 5.434056 ×10−3

4.396 −0.001556 −0.001591 3.566489 ×10−5 2.292553 ×10−2

5.024 0.001533 0.001497 3.570741 ×10−5 2.329308 ×10−2

5.652 0.004037 0.004015 2.212304 ×10−5 5.480554 ×10−3

6.280 0.005000 0.005000 9.665089 ×10−8 1.933028 ×10−5

0.000 0.020000 0.020002 1.853337 ×10−6 9.266683 ×10−5

0.628 0.016184 0.016539 3.547192 ×10−4 2.191778 ×10−2

1.256 0.006192 0.006765 5.722393 ×10−4 9.240910 ×10−2

1.884 −0.006162 −0.005590 5.717151 ×10−4 9.277835 ×10−2

2.512 −0.016165 −0.015812 3.533471 ×10−4 2.185830 ×10−2

t = 0.02 3.140 −0.020000 −0.020000 1.577400 ×10−7 7.887008 ×10−6

3.768 −0.016203 −0.016556 3.532682 ×10−4 2.180294 ×10−2

4.396 −0.006223 −0.006795 5.718787 ×10−4 9.190149 ×10−2

5.024 0.006132 0.005560 5.719482 ×10−4 9.327499 ×10−2

5.652 0.016147 0.015793 3.534486 ×10−4 2.189001 ×10−2

6.280 0.020000 0.020000 6.214620 ×10−8 3.107326 ×10−6

0.000 0.060000 0.060078 7.812199 ×10−5 1.302033 ×10−3

0.628 0.048552 0.051803 3.250500 ×10−3 6.694850 ×10−2

1.256 0.018577 0.023761 5.183495 ×10−3 2.790220 ×10−1

1.884 −0.018486 −0.013322 5.164223 ×10−3 2.793513 ×10−1

2.512 −0.048496 −0.045296 3.200081 ×10−3 6.598642 ×10−2

t = 0.06 3.140 −0.060000 −0.059984 1.586109 ×10−5 2.643518 ×10−4

3.768 −0.048608 −0.051797 3.188704 ×10−3 6.559995 ×10−2

4.396 −0.018668 −0.023844 5.175574 ×10−3 2.772400 ×10−1

5.024 0.018396 0.013234 5.161817 ×10−3 2.806014 ×10−1

5.652 0.048440 0.045287 3.152560 ×10−3 6.508212 ×10−2

6.280 0.060000 0.060060 6.080264 ×10−5 1.013382 ×10−3

5 Conclusions

In this paper,wehaveobtained an approximate-analytical solution to homogeneous as
well as non-homogeneous dispersiveKdV equationswith some initial approximation
using modified Adomian decomposition method using Shehu’s transform. For the
homogeneous KdV equation in Eq. (2), results obtained by methods, standard ADM,
LADM, and SADM, are equivalent and therefore give the same results. The LADM
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and ADM are also powerful methods for solving both linear as well as nonlinear
PDEs as these methods do not need any form of transformation, perturbation, or
linearization. However, rigorous computation of Adomian polynomials is one of the
requirement, which can sometimes result in intensive computations for nonlinear
problems.

As our main contribution, we have applied a reliable method, SADM, which
combines Shehu’s transform with Adomian Decomposition Method to both linear as
well as nonlinear homogeneous and non-homogeneous dispersiveKdV-type equation
and the numerical results using SADM are given in Tables3 and 5. The obtained
numerical results in this paper confirm that SADM is an effective method, as it
allows us to know the exact solution after computing first few terms only. Therefore,
this method an be considered as an alternative method to solve numerous linear and
nonlinear problems efficiently.
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Abstract In this paper, monic polynomials orthogonal with deformation of the
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〈ψm, ψk〉w =
∫ d

c
ψm(x)ψk(x)w(x)dx = �mδm,k, m, k = 0, 1, 2, . . . ,

where�m > 0 denotes the normalization constant [7, 29]. This value can be obtained
from the square of the weighted L2-norm of ψm(x) over [c, d]. Monic polynomial
representation takes the form

ψn(x) = xn + p(n)xn−1 + · · ·

It is known that det
(
xi−1
j

)N
i, j=1

= ∏
1≤i< j≤N (xi − x j ) = det

(
ψi−1(x j )

)N
i, j=1 . The

polynomialsψn(x) can be generated by theGram-Schmidt orthogonalization process
[7, 18].

As it is known in [7, 18, 29], classical orthogonal polynomials obey Pearson’s
differential equation

d (λ(x)w(x))

dx
= τ(x)w(x), (1)

where the polynomials λ(x) and τ(x) are of degrees two and one, respectively.
Whereas polynomials for which the weight fulfills Eq. (1) with deg(λ) ≥ 2 or
deg(τ ) �= 1 are said to be Semiclassical orthogonal polynomials [17].

For deformed orthogonality weight, if the moments exist and the correspond-
ing monic orthogonal polynomials ψn(z) for n = 0, 1, 2, . . . obey linear recursive
relation

{
zψn(z) = ψn+1(z) + γnψn−1(z) + αnψn(z),

ψ0(z) = 1, γ0ψ−1(z) = 0.

The following relations in [3] are valid for a semiclassical weight w with w(a) =
w(b) = 0.

Lemma 1 ([3]) Suppose that v(x) = − lnw(x) has a derivative in some Lipschitz
order with a positive exponent [27]. The differential-difference coefficients obey the
following formulas:

ψ ′
n(z) = γnAn(z)ψn−1(z) − Bn(z)ψn(z), (2)

ψ ′
n−1(z) = −An−1(z)ψn(z) + [Bn(z) + v′(z)

]
ψn−1(z), (3)

where

An(z) := 1

�n

∫ b

a

v′(z) − v′(τ )

z − τ
ψ2

n (y)w(τ)dτ, (4)

Bn(z) := 1

�n−1

∫ b

a

v′(z) − v′(τ )

z − τ
ψn(τ )ψn−1(τ )w(τ)dτ. (5)
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Lemma 2 ([3]) The coefficientsAn(z) and Bn(z) defined by Eqs. (4) and (5) obeys

{
Bn+1(z) + Bn(z) = −v′(z) + (z − αn)An(z), (M1)

1 + (z − αn)[Bn+1(z) − Bn(z)] = −γnAn−1(z) + γn+1An+1(z). (M2)

We also mention another supplementary condition, that involves
∑n−1

j=0 A j (z) and
we will denote it by (M ′

2) as this relation helps to obtain recurrence coefficients αn

and γn , as

v′(z)Bn(z) +
n−1∑
j=0

A j (z) + B2
n(z) = γnAn(z)An−1(z). (M ′

2)

Eq. (M ′
2) can be perceived as an equation for

∑n−1
j=0 A j (z). See, for instance, [2, 4].

The differential equation fulfilled byψn(z) is generated by eliminatingψn−1(z) from
ladder operators, and it is given as

ψ ′′
n (z) −

(
v′(z) + A′

n(z)

An(z)

)
ψ ′
n(z) +

⎛
⎝B′

n(z) − Bn(z)
A′

n(z)

An(z)
+

n−1∑
j=0

A j (z)

⎞
⎠ψn(z) = 0,

(7)
where

∑n−1
j=0 A j (z) is obtained from (M ′

2).

Lemma 3 Suppose we have a symmetric semiclassical weight Wσ (x; t) = exp(t x2)
w0(x), with t ∈ R such that the moments of for w0 is finite. The recursive coefficient
γn(t) obeys the Volterra, or the Langmuir lattice, equation [31]

dγn(t)

dt
= γn(t) (γn+1(t) − γn−1(t)) . (8)

Proof See, for example, [31, Theorem 2.4]. �

In this paper, we consider studying semiclassical perturbed Freud-type measure

{
dμσ (x) = Wσ (x; t) dx = |x |2σ+1 exp

(−[cx6 + t (x4 − x2)]) dx,

σ > 0, c > 0, t ∈ R,
(9)

involving parameters t, σ , which will be used to represent the polynomials and in
the L2 norm. For simplicity, we may not sometimes display the parameters in the
polynomials.

The motives for the choice of the perturbed orthogonality measure in (9) is as
follows: First, from some of the classical orthogonal polynomials, a new class of
semiclassical (non-classical) orthogonal polynomials can be obtained by means of
slight modifications on their orthogonality measure [25, 26]. Such measure defor-
mation usually results in some difficulties, most of which have not been handled yet
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as noted in [25, 26]. Motivated by the works of P. Nevai et al. [26], a slight mod-
ification of a new orthogonality measure on non-compact support presents a new
class of orthogonal polynomials if certain characterizing properties associated with
the considered polynomials are successfully obtained. Secondly, the choice of mod-
ified Freud-type measure is reasonable in the sense that this orthogonality measure
emanates from quadratic transformation and Chihara’s symmetrization of the mod-
ified Airy-type measure (cf. [7] for symmetrization process). This also leads to an
investigation of certain fresh properties such as nonlinear differential-recurrence and
differential equations satisfied by the recurrence coefficients as well as the perturbed
polynomials themselves. The results obtained also motivate considerable applica-
tions; for instance, in modeling nonlinear phenomena, Soliton Theory and Random
matrix theory [4] and in the crystal structure in solid-state physics, to mention a few.

2 Semiclassical Perturbed Freud-Type Polynomials

Semiclassical perturbed Freud polynomials {Sn(x; t)}∞n=0 on R are real polynomials
with their orthogonality weight given by

{
dμσ (x) = Wσ (x; t) dx = |x |2σ+1 exp

(−[cx6 + t (x4 − x2)]) dx,

σ > 0, c > 0, t ∈ R,

and the orthogonality condition is given by

〈Sn,Sm〉Wσ =
∫ ∞

−∞
Sn(x; t) Sm(x; t) Wσ (x; t) dx = �̂n δmn, (10)

where δmn denotes the Kronecker delta function. It follows from Eq. (10) that the
recursion relation takes the form

{
Sn+1(x; t) = −γn(t; σ) Sn−1(x; t) + xSn(x; t), n ∈ N,

S0 := 1 and γ0S−1 := 0.
(11)

If we multiply Eq. (11) with Sn−1(x; t)Wσ (x; t) and then integrate with respect to x
and using orthogonality given in Eq. (10), we obtain

γn(t; σ) = 1

�̂n−1(t)
〈xSn,Sn−1〉Wσ = �̂n(t)

�̂n−1
> 0. (12)

Observe that Sn(x; t) comprises the terms xn−r , r ≤ n and is symmetric so that

{
Sn(−x; t) = (−1)nSn(x; t),
Sn(0; t) Sn−1(0; t) = 0,
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as the weight Wσ (x; t) is even on R. Using monic representation of considered
polynomials Sn(x; t), associated with Wσ (x; t), we have that

Sn(x; t) = xn + χ(n; t) xn−2 + . . . + Sn(0; t), (13)

which can be expressed equivalently as [7],

{ S2i (x; t) = x2i + χ(2i; t) x2i−2 + · · · + S2i (0),

S2i+1(x; t) = x2i+1 + χ(2i + 1; t) x2i−1 + · · · + s.x = x
(
x2i + χ(2i + 1; t) x2i−2 + · · · + s

)
,

where s ∈ R. By substituting Eq. (13) into Eq. (11), we obtain

{
γn(t) = χ(n; t) − χ(n + 1; t),
χ(0) := 0.

(14)

Imposing a telescoping iteration of terms of Eq. (14) gives

n−1∑
k=0

γk(t, σ ) = −χ(n; t).

3 Certain Properties of the Considered Semiclassical
Polynomials

In this section, we explore certain characterizing properties for perturbed semiclas-
sical Freud-type polynomials.

3.1 Finite Moments

For certain semiclassical weights, it is known in [8, 9, 21] that the moments make a
link between the weight function and the theory of integrable equations, in particular,
Painlevé-type equations [31].

Theorem 1 Suppose x, t ∈ R and c, σ > 0. The first moment η0(t; σ) associated
with the weight (10) is finite.

Proof For the weight given in Eq. (9), the moment η0(t; σ) takes the form

η0(t; σ) =
∫ ∞

−∞
Wσ (x; t) dx = 2

∫ ∞

0
Wσ (x; t) dx . (15)



136 A. S. Kelil et al.

For σ > 0 and c > 0, the function Wσ (x; t) = x2σ+1 exp
(−[cx6 + t (x4 − x2)]) is

continuous on [0,∞), and hence is integrable on [0,K] for any K > 0. In order to
show

∫∞
K Wσ (x; t) dx is finite, we first note that limx→∞ x2Wσ (x; t) = 0; that is,

there exists an N > 0 such that x2Wσ (x; t) < 1 whenever x > N by definition. As∫∞
N

dx
x2 < ∞, it follows, for N > 0, that

∫∞
N Wσ (x; t) dx < ∞, particularly when

N = K . Hence,
∫∞
0 Wσ (x; t) dx < ∞. �

The following result presents some conditions for differentiation and integration
order for functions of two variables [20].

Lemma 4 [20, Theorem 16.11] Let J = (a, b) ⊂ R be an open interval and g :
R × J → R. Assume that

(i) g(x, t) has a derivative on R with respect to t for almost all x ∈ R,
(ii) for every fixed t ∈ J ,

∫∞
−∞ g(x, t) dx < ∞,

(iii) ∃ an integrable function h : R → R such that ∀t ∈ J ,

∣∣∣∣∂g(x, t)∂t

∣∣∣∣ ≤ h(x), which

is true for almost all x ∈ R.

It then follows that

d

dt

∫ ∞

−∞
g(x, t) dx =

∫ ∞

−∞
∂g(x, t)

∂t
dx .

The following result showshowmoments of highorder behave for theweight function
in Eq. (9).

Theorem 2 For n ∈ N0, the moments associated with the perturbed Freud weight
given in (9) obey the following formulations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η2n(t; σ) = dn

dtn
∫∞
−∞ |x |2σ+1 exp

(−[cx6 + t (x4 − x2)]) dx

= ∑n
k=0(−1)n+k

(n
k

)
η4n−2k(t; σ) = dn

dtn
η0(t; σ),

η2n+1(t; σ) = 0.

(16)

Proof Taking into account the weight in Eq. (9) is even on R, let’s take Freud-type
weight defined on the positive x-axis; that is,

Wσ (x; t) := x2σ+1 exp
(−[cx6 + t (x4 − x2)]) , x ∈ (0,∞), σ > 0, t ∈ J ⊂ R.

One can see that Wσ is a rapidly decreasing function [20].
Using Theorem 1, we can easily see that

∂Wσ (x; t)
∂t

= (x4 − x2) x2σ+1 exp
(−[cx6 + t (x4 − x2)]) , (17)
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is continuous onR+. For t ≤ 0 and x ∈ (1,∞), we have exp
(
t (x4 − x2)

) ≤ 1, since
t y2 ≤ 0 for y ∈ R. Thus,

∣∣∣∣ ∂Wσ (x; t)
∂t

∣∣∣∣ =
∣∣∣x2σ+1(x4 − x2) exp

(
−[cx6 + t (x4 − x2)]

)∣∣∣ ≤ x2σ+k exp
(
−cx6

)
:= G(x),

(18)

for some bounding k ∈ R
+ and σ > 0, with

∫ ∞

0
G(x) dx =

∫ ∞

0
x2σ+k exp

(−cx6
)
dx = 1

6

(
1

c

) σ+4
k

�

(
2σ + 8

6

)
< ∞,

where �(z) denotes the Gamma function.
It then follows from Eq. (17) that

∣∣∣∣ ∂Wσ (x; t)
∂t

∣∣∣∣ =
∣∣∣x2σ+3 exp

(
−[cx6 + t (x4 − x2)]

)∣∣∣ ≤ x2σ+3 exp
(
−cx6 + Ax2

)
:= K (x),

for t ∈ [0, A], A ∈ R
+ and K (x) is integrable for x ∈ R

+. We see that all the con-
ditions of Lemma 4 are fulfilled so that Eq. (16) can be proved using the principles
of mathematical induction. For n = 1, we have

d

dt
η0(t, σ ) = d

dt

∫ ∞

−∞
|x |2σ+1 exp

(−[cx6 + t (x4 − x2)]) dx

= (−1)
∫ ∞

−∞
(x4 − x2)Wσ (x; t) dx = (−1) (η4(t, σ ) − η2(t, σ )) .

We suppose, for inductive assumption, that

dn

dtn
η0(t, σ ) =

n∑
k=0

(−1)n+k

(
n

k

)
η4n−2k(t; σ) := η2n(t, σ ).

We need to show that

η2n+2(t, σ ) = dn+1

dtn+1
η0(t, σ ).

We note that x2n+2σ+1 exp
(−[cx6 + t (x4 − x2)]) , x ∈ R

+, t ∈ J, also obeys the
conditions of Lemma 4. Then, by applying binomial expansion, we have

dn+1

dtn+1 η0(t, σ ) = d

dt

(
dn

dtn
η0(t, σ )

)

= d

dt

∫
R

(−1)n
(
x4 − x2

)n
Wσ (x; t) dx =

∫
R

(−1)n(−1)
(
x4 − x2

)n+1
Wσ (x; t) dx
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=
n∑

k=0

(−1)n+1
(
n + 1

k

)∫ ∞
−∞

(
x4
)n+1−k (−x2

)k
Wσ (x; t) dx

=
n∑

k=0

(−1)n+k+1
(
n + 1

k

)
η4n+4−2k (t; σ) = η2n+2(t, σ ) ≡ η0(t; n + σ + 1).

Besides, moments of odd order vanish; i.e.,

η2n+1(t; σ) =
∫ ∞

−∞
x2n+1 Wσ (x; t)dx = 0, n ∈ N, (12)

as the expression in the above integral is an odd function. �

3.2 Concise Formulation

The following result gives a concise formulation for perturbed Freud-type polyno-
mials Sn(x; t). For a similar result, [19, Lemma 3.2].

Lemma 5 Suppose we have the perturbed Freud-type weight given in (9). Concise
formulation of the corresponding polynomials, in terms of recurrence coefficient
γ j (t; σ), is given by

⎧⎪⎪⎨
⎪⎪⎩

Sq (x; t) =
� q
2 �∑

k=0

k(q) xq−2k ,

0(q) = 1, for k ∈ {1, 2, . . . , � q
2 �}, q ∈ N,

(13a)

where

k(q) = (−1)k
q+1−2k∑
j1=1

γ j1 (t; σ)

q+3−2k∑
j2= j1+2

γ j2 (t; σ)

q+5−2k∑
j3= j2+2

γ j3 (t; σ) · · ·
q−1∑

jk= jk−1+2

γ jk (t; σ).

(13b)

Proof Since the perturbed Freud-type polynomials Sq(x; t) are symmetric and
monic of degree q, and for a fixed t ∈ R, we have Sq (−x) = (−1)qSq (x), so that

S2q(x; t) =
q∑
j=0

g2q−2 j x
2q−2 j ; S2q+1(x; t) =

q∑
j=0

g2q−2 j+1 x
2q−2 j+1, (14)

where gq−2k = k(q) with 0(q) = 1 and k(q) = 0 for k > � q
2 �. If we substitute Eq.

(13a) into Eq. (11) and if we compare the coefficients of x , we obtain

{
k(q + 1) − k(q) = −γq(t; σ)k−1(q − 1),

0(q) = 1.
(15)
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Equation (13b) can be proved by employing induction on k. For k = 1, we see that

1(q) − 1(q − 1) = −γq−1, (16)

By employing a telescoping sum of terms in Eq. (16), we obtain

1(q) = −
q−1∑
j1=0

γ j1 (t; σ), ∀q ≥ 1.

Let’s assume that, for every q ∈ N, Eq. (13b) holds true for values up to k − 1, i.e.,

k−1(n) = (−1)k−1
q+3−2k∑
j1=1

γ j1 (t; σ)

q+5−2k∑
j2= j1+2

γ j2 (t; σ)

q+7−2k∑
j3= j2+2

γ j3 (t; σ) · · ·
q−1∑

jk−1= jk−2+2

γ jk−1 (t; σ).

(17)

Equation (15) can be repeatedly used to obtain

k (q) = k (q − 1) − γq−1k−1(q − 2),

= k (q − 2) − γq−2k−1(q − 3) − γq−1k−1(q − 2),

= k (q − 3) − γq−3k−1(q − 4) − γq−2k−1(q − 3) − γq−1k−1(q − 2),

.

.

.

= −γ2k−1k−1(2k − 2) − γ2kk−1(2k − 1) − · · · − γq−2k−1(q − 3) − γq−1k−1(q − 2).
(18)

Substituting Eq. (17) into Eq. (18) yields Eq. (13b) and hence the required result. �

Lemma 5 is alternately given as follows.

Proposition 1 The following formulation also holds formonic perturbedFreud-type
polynomials Sq(x; t):

Sq (x; t) = xq +
� q
2 �∑

r=1

(−1)r

⎛
⎝ ∑

k∈W (q,r)

γk1γk2 · · · γkr−1γkr

⎞
⎠ xq−2r ,

where W (q, r) = {k ∈ N
r | k j+1 ≥ k j + 2 for 1 ≤ j ≤ r − 1, 1 ≤ k1, kr < q},

and � q
2 � =

{
q
2 , q is even,
q−1
2 , q is odd.

3.3 Normalization Constant

The normalization constant �̂m in Eq. (10) for the weight in Eq. (9) takes the form
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�̂m = 〈Sm,Sm〉Wσ
= ‖Sm‖2Wσ

=
� m
2 �∑

k=0

k(m) η2m−2k(t; σ), (19)

where k(m) is given in Eq. (13b). Equation (19) is equivalently given by

�̂m(t) =
∫ ∞

−∞
S2
m(x, t) Wσ (x; t) dx .

By using variable transformation x2 = ξ , we have different normalization parties as
follows:

�̂2m(t) =
∫ ∞

−∞
S2
2m(x, t) Wσ (x; t)dx

= 2
∫ ∞

0
S2
2m(
√

ξ, t) |ξ |σ+ 1
2 exp

(−[cξ 3 + t (ξ 2 − ξ)]) 1

2
√

ξ
dξ

=
∫ ∞

0
P̃2
m(ξ, t)s− 1

2 |ξ |σ+ 1
2 exp

(−[cξ 3 + t (ξ 2 − ξ)]) dξ =: h̃m(t),

and

�̂2m+1(t) =
∫ ∞

−∞
S2
2m+1(x, t) Wσ (x; t) dx

= 2
∫ ∞

0
S2
2m+1(

√
ξ, t) |ξ |σ+ 1

2 exp
(−[cs3 + t (s2 − s)]) 1

2
√

ξ
dξ

=
∫ ∞

0
P̂2
n (ξ, t) ξ

1
2 |ξ |σ+ 1

2 exp
(−[cξ 3 + t (ξ 2 − ξ)]) dξ =: ĥm(t),

We now see that

S2m(
√

ξ, t) = (
√

ξ)2m + χ(2m, t)(
√

ξ)2m−2 + · · · + S2m(0, t)

= ξ n + p̃(m, t)ξm−1 + · · · + P̃m(0, t) := P̃m(ξ, t),

and

S2m+1(
√

ξ, t) = (
√

ξ)2m+1 + χ(2m, t)(
√

ξ)2m−1 + · · · + k ·√ξ, k ∈ R,

= √
ξ
(
ξm + p̂(m, t)ξm−1 + · · · + k

) := √
ξ P̂m(ξ, t).

The above polynomials P̃m(ξ, t) and P̂m(ξ, t) are recognized as monic semiclassical
Airy-type polynomials with corresponding orthogonality weights

w1(x; t) = ξ− 1
2 |ξ |σ+ 1

2 exp
(−[cξ 3 + t (ξ 2 − ξ)]) , (20a)
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w2(x; t) = ξ
1
2 |ξ |σ+ 1

2 exp
(−[cξ 3 + t (ξ 2 − ξ)]) , (20b)

both defined over (0,∞), respectively. (See [7] for symmetrization process and
quadratic transformation).

The corresponding Hankel determinants for the weights in Eq. (20) can be given
by

D̃m(t) :=det

(∫ ∞

0
ξ i+ j− 1

2 ξσ+ 1
2 exp

(
−[cξ3 + t (ξ2 − ξ)]

)
dξ

)n−1

i, j=0
=

m−1∏
l=0

h̃l (ξ),

D̂m(t) :=det

(∫ ∞

0
ξ i+ j+ 1

2 ξσ+ 1
2 exp

(
−[cξ3 + t (ξ2 − ξ)]

)
dξ

)n−1

i, j=0
=

m−1∏
l=0

ĥl (ξ)

respectively. Hence,

�n(t) =
n−1∏
j=0

� j (t) =
{
D̃k+1 D̂k n = 2k + 1,

D̃k D̂k n = 2k.

It is good tomention here that investigation of asymptotics of theHankel determinants
when n is large has been an interesting subject for many years; for instance, for
Gaussian weight is studied in Chen et al. in [23]. See also the monograph by Szegö
[29] as we will not address this as it goes beyond the scope of the paper.

3.4 Nonlinear Recursion Relation

In this section, we explore certain nonlinear recurrence relations associated with the
semiclassical weight given in (9).

Theorem 3 For the semiclassical weight in (10), the recurrence coefficient γn(t; σ)

fulfills the following difference relations

6c
[
γn (�n−1 + �n + �n+1) + γn−1γnγn+1

]+ 4t�n − 2tγn = n + (2σ + 1)�n,

(21)

with initial conditions given by

⎧⎨
⎩

γ1(t; σ) = ‖x2‖2t
‖1‖2t

= η2(t; σ)

η0(t; σ)
=

∫∞
−∞ x2Wσ (x;t)dx∫∞
−∞ Wσ (x;t) dx

,

γ0 = 0,
(22)

where �n and �n are, respectively, given by
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�n = γn(t; σ)
[
γn−1(t; σ) + γn(t; σ) + γn+1(t; σ)

]
, (23)

and

�n = 1 − (−1)n

2
=
{
1, for n is odd

0, for n is even.
(24)

Proof (i) Applying similar procedure due to Freud as given in [30, Section2] (see
also [26]), let’s consider the following integral

Jn = 1

�̂n

∫ ∞

−∞

[Sn(x; t) Sn−1(x; t)
]′

Wσ (x; t) dx, (25)

where �̂n is given in (19). Equation (25) is equivalently given by

Jn = 1

�̂n

[
〈S′

n,Sn−1〉Wσ + 〈Sn,S
′
n−1〉Wσ

]

= 1

�̂n

∫ ∞

−∞

(
nxn−1 + Vn−2

)
Sn−1(x; t) Wσ (x; t) dx = �̂n−1

�̂n
n, (26)

where Vn−2 ∈ Pn−2. We also see that by evaluating Eq. (25) using technique of
integration, we arrive at

In �̂n = [Sn (x; t) Sn−1(x; t)Wσ (x; t)]∞−∞ −
∫ ∞
−∞

Sn (x; t) Sn−1(x; t) W
′
σ (x; t) dx

= −(2σ + 1)
∫ ∞
−∞

Sn (x; t) Sn−1(x; t)
x

Wσ (x; t) dx + 6c
∫ ∞
−∞

x5Sn (x; t) Sn−1(x; t) Wσ (x; t) dx

+ 4t
∫ ∞
−∞

x3Sn (x; t) Sn−1(x; t) Wσ (x; t) dx − 2t
∫ ∞
−∞

xSn (x; t) Sn−1(x; t) Wσ (x; t) dx, (27)

in consideration of the fact that
[
Sn(x; t) Sn−1(x; t)Wσ (x; t)

]∞
−∞ = 0 as the weight

(10) vanishes at the boundary terms when x → ±∞ due to symmetry property
of the weight Wσ ; hence it follows that

∫ ∞

−∞
Sn(x; t) 1

x
Sn−1(x; t) Wσ (x; t) dx = 0, (28a)

for n is even and, when n is odd, we have that
∫ ∞

−∞
Sn−1(x; t) Sn(x; t)

x
Wσ (x; t) dx = �̂n−1, (28b)

as
Sn(x; t)

x
is a polynomial of degree n − 1. Thus, we have

∫ ∞

−∞
Sn−1(x; t)Sn(x; t)

x
Wσ (x; t) dx = �n�̂n−1, (28c)
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where �n is given in (24). Let us employ the following iterated recurrence
relation from Eq. (11) to obtain

x5Sn(x; t) = Sn+5(x; t) + (γn + γn+1 + γn+2 + γn+3 + γn+4)Sn+3(x; t)
+ [

γn (�n−1 + �n + �n+1) + γn−1γnγn+1
]Sn+1(x; t)

+ [
γnγn−2�n−1 + γn−2γn−1γnγn+1 + γnγn−1γn−2γn−3

]Sn−3(x; t)
+ (γnγn−1γn−2γn−3γn−4)Sn−5(x; t), (29a)

x4Sn(x; t) = Sn+4(x; t) + (γn + γn+1 + γn+2 + γn+3)Sn+2(x; t)
+ [

γn(γn−1 + γn + γn+1) + γn+1(γn + γn+1 + γn+2)
]Sn(x; t)

+ γnγn−1(γn−2 + γn−1 + γn + γn+1)Sn−2(x; t) + (γnγn−1γn−2γn−3)Sn−4(x; t),
(29b)

x3Sn(x; t) = (γn + γn+1 + γn+2)Sn+1(x; t) + Sn+3(x; t)
+ γnγn−1 γn−2Sn−3(x; t) + γn (γn−1 + γn + γn+1)Sn−1(x; t),

(29c)

x2Sn(x; t) = (γn + γn+1)Sn(x; t) + γnγn−1Sn−2(x; t) + Sn+2(x; t). (29d)

By using the identities (29) and Eq. (1) for the weight (9) together with Eqs. (28)
into (27), we obtain

n�̂n−1 = In�̂n = 6c
[
(γn + γn−1)�n + (γn�n+1 + γnγn−1γn−2)

]
�̂n−1

− 2tγn�̂n−1 − (2σ + 1)�n�̂n−1 + 4t
[
γn (γn−1 + γn + γn+1)

]
�̂n−1,

(30)

which simplifies, using the fact that �̂n−1 �= 0, to

n + (2σ + 1)�n = 6c
[
(γn + γn−1)�n + (γn�n+1 + γnγn−1γn−2)

]
+ 4t

[
γn (γn−1 + γn + γn+1)

]− 2tγn, (31)

where �n is given in (24). Note that Eqs. (30) and (26) yield Eq. (21).
�

Remark 1 Quite similar nonlinear discrete equations like Eq. (31) can be obtained
in [13, Eq. (23), p. 5] and we also refer to [1, 9, 31].

The following result gives the differential-recurrence relation for the weight (9).

Theorem 4 For the semiclassical weight in (10), the coefficients γn(t; σ) obey Toda-
type formulation
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dγn

dt
= γn

[
(γn+1 − �n+1) − (γn−1 − �n−1)

]
, (32)

where �n is given in Eq. (23).

Proof In order to prove this result, we first differentiate the normalization constant
�̂n(t) with respect to t as

d�̂n

dt
= 2〈 dSn

dt
,Sn〉Wσ

+ 〈(x2 − x4)Sn,Sn〉Wσ
,

= 2
∫ ∞

−∞
dSn(x; t)

dt
Sn(x; t) Wσ (x; t) dx +

∫ ∞

−∞
x2 S2

n(x; t) Wσ (x; t) dx
(33)

−
∫ ∞

−∞
x4 S2

n(x; t) Wσ (x; t) dx .

We see fromEq. (33) that the first integral vanishes by orthogonality as
dSn

dt
∈ Pn−1.

Using the recursive relation in Eq. (11) and orthogonality fact, we now have

d

dt
�̂n = (γn + γn+1) �̂n − (�n + �n+1) �̂n = [

(γn − �n) + (γn+1 − �n+1)
]
�̂n,

(34)

Besides, if we differentiate Eq. (12) with respect to t , we obtain

d

dt
γn = d

dt

(
�̂n

�̂n−1

)
= γn

[
d

dt
ln �̂n − d

dt
ln �̂n−1

]
= γn

[ (
γn+1 − γn−1

)− [
�n+1 − �n−1

] ]
,

(35)

and substituting Eq. (34) into (35) leads to the required result. �

The following result presents nonlinear differential-recurrence relation of high order
associated with the weight (10); we quote ideas of the proof from [22].

Theorem 5 The coefficients γn(t; σ) for the weight in Eq. (9) fulfills the following
nonlinear differential-recurrence equation
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2γn
dt

= 1
6c [n + (2σ + 1)�n − ϑ(t)] + (−γn−1 − γn+1

)
γ 4n

+
(
−γn−2γn−1 − γ 2n−1 − 6γn−1γn+1 − γ 2n+1 − γn+1γn+2 + 2γn−1 + 2γn+1

)
γ 3n

+
(

γn−3γn−2γn−1 + γ 2n−2γn−1 + 2γn−2γ 2n−1 − 4γn−2γn−1γn+1 + γ 3n−1 − 5γ 2n−1γn+1 − 4γn−1γn+1γn+2

−5γn−1γ 2n+1 + γ 3n+1 + 2γ 2n+1γn+2 + γn+1γ 2n+2 + γn+1γn+2γn+3 + 8γn−1γn+1 − γn−1 − γn+1

)
γ 2n

+
(

γn−4γn−3γn−2γn−1 + γ 2n−3γn−2γn−1 + 2γn−3γ 2n−2γn−1 + 2γn−3γn−2γ 2n−1 + γ 3n−2γn−1

+3γ 2n−2γ 2n−1 + 3γn−2γ 3n−1 − 2γn−2γn−1γ 2n+1 − 2γn−2γn−1γn+1γn+2 + γ 4n−1 − 2γ 2n−1γ 2n+1
−2γ 2n−1γn+1γn+2 + γ 4n+1 + 3γ 3n+1γn+2 + 3γ 2n+1γ 2n+2 + 2γ 2n+1γn+2γn+3 + γn+1γ 3n+2
+2γn+1γ 2n+2γn+3 + γn+1γn+2γ 2n+3 − 2γ 2n−2γn−1 + γn+1γn+2γn+3γn+4 − 2γn−3γn−2γn−1
−4γn−2γ 2n−1 + 2γn−2γn−1γn+1 − 2γ 3n−1 + 2γ 2n−1γn+1 + 2γn−1γ 2n+1 + 2γn−1γn+1γn+2 − 2γ 3n+1

−4γ 2n+1γn+2 − γ 2n − 2γn+1γ 2n+2 − 2γn+1γn+2γn+3 − 2γn−1γn+1 − 2γnγn−1 − 2γnγn+1 − γn+1γn−1

)
γn ,

ϑ(t) = 4t�n − 2γn t = 2tγn
[
2(γn−1 + γn + γn+1) − 1

]
.

where �n and �n are given in Eqs. (24) and (23) respectively.

Proof For the proof, we refer similar ideas in [22]. �

3.5 Differential-Recurrence Relation

Chen and Feigin [6] obtained ladder operators for a semiclassical weight w̃(x)|x −
t |Θ, where x,Θ, t ∈ R and w̃(x) is classical weight function. In Filipuk et al.
[12], it is shown that the recurrence coefficients for the quartic Freud weight
|x |2α+1e−x4+t x2 , x, t ∈ R, α > −1 are related to the solutions of the Painlevé IV and
the first discrete Painlevé equation. Clarkson et al. [9] provided a systematic study
on Freud weights and some generalized work for [6].

Lemma 6 ([22]) The monic orthogonal polynomials Pn(x; t) with respect to the
semiclassical Freud-type weight (9)

wα(x) = |x |αw0(x),

where
w0(x) := e−v0(x) with v0(x) := cx6 + t (x4 − x2).

on R satisfy the differential-difference–recurrence relation

P ′
n(x) = γn(t)An(x)Pn−1(x) − Bn(x)Pn(x),

where

An(x) := 1

�n

∫ ∞

−∞
v′
0(x) − v′

0(τ )

x − τ
P2
n (τ ) w(τ) dτ, (36a)

Bn(x) := 1

�n−1

∫ ∞

−∞
v′
0(x) − v′

0(τ )

x − τ
Pn(τ ) Pn−1(τ ) w(τ) dτ + α

[
1 − (−1)n

]
2x

. (36b)

Proof For the proof, we refer to [22]. See also similar works in [5]. �
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Lemma 7 An(z) and Bn(z) defined by Lemma 6 satisfy the relation:

An(z) = v′
0(z)

z
+ Bn(z) + Bn+1(z)

z
− α

z2
. (37)

Proof Be the definition of An(z), we rewrite it as

An(z) = 1

z�n

{∫ ∞

−∞
v′
0(z) − v′

0(τ )

z − τ
yP2

n (τ )w(τ)dτ +
∫ ∞

−∞
[
v′
0(z) − v′

0(τ )
]
P2
n (τ )w(τ)dτ

}

= 1

z�n

{∫ ∞

−∞
v′
0(z) − v′

0(τ )

z − τ

[
Pn+1(τ ) + γn Pn−1(τ )

]
Pn(τ )w(τ)dτ + v′

0(z)�n

−
∫ ∞

−∞
P2
n (τ )

[α

τ
w(τ) − w′(τ )

]
dτ

}

=1

z

{
Bn+1(z) − α

2z

[
1 − (−1)n+1

]
+ Bn(z) − α

2z

[
1 − (−1)n

]}+ v′
0(z)

z
,

=Bn(z) + Bn+1(z)

z
− α

z2
+ v′

0(z)

z
,

which completes the proof. �

Lemma 8 [18, Chapter 3] The functionsAn(z), Bn(z), and
∑n−1

k=0 Ak(z) satisfy the
identity

B2
n(z) + v′(z)Bn(z) +

n−1∑
k=0

Ak(z) = γnAn(z)An−1(z). (38)

We, next, apply the ladder coefficients to the case of perturbed Freud weight as
follows.

3.5.1 Ladder Operator Relations for the Weight (9)

For the perturbed Freud-type weight (9),

v(x) = − lnWσ (x; t) = −(2σ + 1) ln |x | + cx6 + t (x4 − x2), x ∈ R, (39)

we have

v′(x) = − (2σ + 1)

x
+ 6cx5 + t (4x3 − 2x),

and hence

v′(x) − v′(τ )

x − τ
= 2σ + 1

xτ
+ 6c{x4 + x3τ + x2τ2 + xτ3 + τ4} + 4t (x2 + xτ + τ2) − 2t.
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Theorem 6 The monic orthogonal polynomials Sn(x; t) with respect to the weight
in (9) defined on R obey the relation

S′
n(x; t) = γn(t)An(x; t)Sn−1(x; t) − Bn(x; t)Sn(x; t)

where

An(x; t) = 6cx4 + 6c(γn + γn+1)x
2 + 6c (�n+1 + �n) + 4t x2 + 4t (γn + γn+1) − 2t, (40a)

Bn(x; t) =
(
2σ + 1

x

)
�n + 6cγnx

3 + 6c�nx + 4t xγn, (40b)

where the expressions �n and �n are given in (23) and (24), respectively.

Proof From (36a), we obtain

An(x; t) = 1

�̂n

∫
R

S2
n(τ )

(
v′(x) − v′(τ )

x − τ

)
Wσ (τ ; t)dτ

= 1

�̂n

∫
R

S2
n(τ )

( 2σ + 1

xτ
+ 6c{x4 + x3τ + x2τ 2 + xτ 3 + τ 4} + 4t (x2 + xτ + τ 2) − 2t

)
Wσ (τ ; t)dτ

= 6cx4 + 6c(γn + γn+1)x
2 + 6c (�n+1 + �n) + 4t x2 + 4t (γn + γn+1) − 2t, (41)

and the integral in (41) vanishes due to symmetry of Wσ .
Besides, by using Eq. (36b), orthogonality and Eq. (11), we have that

Bn(x; t) = 1

�̂n−1

∫
R

Sn(τ )Sn−1(τ )
(2σ + 1

xy
+ 6c{x4 + x3y + x2y2 + xy3 + y4}

+ 4t (x2 + xy + y2) − 2t
)
Wσ (y; t) dy

= 6cγnx
3 + 6c�nx + 4t xγn +

(
2σ + 1

x

)
�n, (42)

where �n and �n are given respectively in (23) and (24). �

Remark 2 It is good to mention that there is a similar result in [10] for differential-
recurrence relation for sextic Freud-type weight; whereas our considered weight
in Eq. (9) can be perceived as generalized measure deformation using dμ(x; t) =
et (x

4−x2)dμ(x; 0), For a similar procedure, one can see [16] where the authors
used classical measure deformation via dμ(x; t) = etx

2
dμ(x; 0) for Laguerre-type

weight.

3.6 Shohat’s Quasi-Orthogonality Method

Shohat [28] studied a strategyusingquasi-orthogonality, tofinddifferential-difference
relation for a general semiclassical weight function. Bonan, Freud, Mhaskar, and
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Nevai are renowned experts who used this method in their work [26]. The idea of
quasi-orthogonality is well articulated in [11, 24, 28]). Our goal in this section is to
apply this method to the case of perturbed Freud-type weight in (9) [9, Section4.5].
Following the ideas in [26], we notice that monic perturbed Freud-type polynomials
obey quasi-orthogonality of order m = 7 and therefore

x
dSn(x; τ)

dx
=

n∑
k=n−6

un,k Sk(x; τ), (43)

where the expression un,k is obtained by

un,k = 1

�k

∫ ∞

−∞
x

dSn

dx
(x; τ) Sk(x; t) Wσ (x; τ) dx, (44)

with n − 6 ≤ k ≤ n and �k �= 0. By employing integration techniques, for n − 6 ≤ j ≤
n − 1, we have

�k un,k =
[
x Sk(x; t) Sn(x; t) Wσ (x; t)

]∞
−∞ −

∫ ∞

−∞
d

dx
(xSk(x; t)Wσ (x; t)) Sn(x; t) dx

= −
∫ ∞

−∞

[
Sn(x; t) Sk(x; t) + x Sn(x; t) Sk

x
(x; t)

]
Wσ (x; t) dx

−
∫ ∞

−∞
xSn(x; t) S j (x; t) dWσ (x, t)

dx
(x; t) dx, (45)

= −
∫ ∞

−∞
Sn(x; t) S j (x; t)

(
−6cx6 − 4t x4 + 2t x2 + 2σ + 1

)
Wσ (x; t) dx

=
∫ ∞

−∞
(
6cx6 + 4t x4 − 2t x2 − (2σ + 1)

) Sn(x; t) S j (x; t) Wσ (x; t) dx, (46)

since

x
dWσ (x, t)

dx
= [− 6cx6 − 4t x4 + 2t x2 + 2σ + 1

]
Wσ (x; t).

The following relations follow from iterating the recurrence given in Eq. (11):

x6Sn (x; t) = Sn+6(x; t) + (
γn + γn+1 + γn+2 + γn+3 + γn+4 + γn+5

)Sn+4(x; t)

+
[
γn+3

(
γn + γn+1 + γn+2 + γn+3 + γn+4

)+ γn+2
(
γn + γn+1 + γn+2 + γn+3

)+ �n + �n+1

]
Sn+2(x; t)

+
[
γn+1γn+2

[
γn + γn+1 + γn+2 + γn+3

]+ [
(γn + γn+1)(�n + �n+1)

]

+ γnγn−1
(
γn−2 + γn−1 + γn + γn+1

) ]Sn (x; t)

+ γnγn−1

[
�n−1 + �n + �n+1 + γn−1γn+1 + γn−2

(
γn−3 + γn−2 + γn−1 + γn + γn+1

) ]Sn−2(x; t)

+ γnγn−1γn−2γn−3

[
γn−4 + γn−3 + γn−2 + γn−1 + γn + γn+1

]
Sn−4(x; t)

+ (
γnγn−1γn−2γn−3γn−4γn−5

)Sn−6(x; t), (47a)
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x4Sn(x; t) = Sn+4(x; t) + (γn + γn+1 + γn+2 + γn+3)Sn+2(x; t)
+ [

γn(γn−1 + γn + γn+1) + γn+1(γn + γn+1 + γn+2)
]Sn(x; t)

+ γnγn−1(γn−2 + γn−1 + γn + γn+1)Sn−2(x; t) + (γnγn−1γn−2γn−3)Sn−4(x; t),
(47b)

x2Sn(x; t) = Sn+2(x; t) + (γn + γn+1)Sn(x; t) + γnγn−1Sn−2(x; t), (47c)

By substituting Eq. (47) into Eq. (46), we obtain the coefficients {fn, j }n−1
j=n−4 in Eq.

(43) as:

un,n−6 = 6c

⎛
⎝ 5∏

j=0

γn− j

⎞
⎠ = 6c

[
γnγn−1γn−2γn−3γn−4γn−5

]
, un,n−5 = 0, (48a)

un,n−4 = 6c

⎛
⎝ 3∏

j=0

γn− j

⎞
⎠[γn−4 + γn−3 + γn−2 + γn−1 + γn + γn+1

]
, un,n−3 = 0, (48b)

un,n−2 = γnγn−1

[
6c
{
�n−2 + �n−1 + �n + �n+1 + γn−1γn−2 + γn+1 (γn−2 + γn−1)

}

+ 4t (γn−2 + γn−1 + γn + γn+1) − 2t

]
, (48c)

un,n−1 = 0. (48d)

For the case when k = n, we use integration technique in Eq. (44) to obtain

�nfn,n =
∫ ∞

−∞
x
dSn(x; t)

dx
Sn(x; t)Wσ (x; t) dx = − 1

2

∫ ∞

−∞
S2
n(x; t)

[
Wσ (x; t) + x

dWσ (x; t)
dx

]
dx

= − 1
2�n +

∫ ∞

−∞
S2
n(x; t)

(
3cx6 − 2t x4 + t x2 − σ − 1

2

)
Wσ (x; t) dx

= 3c
∫ ∞

−∞
x6S2

n(x; t)Wσ (x; t) dx − 2t
∫ ∞

−∞
x4S2

n(x; t)Wσ (x; t) dx

+ t
∫ ∞

−∞
x2S2

n(x; t)Wσ (x; t) dx − (σ + 1)�n . (49)

By using the recursive relation given in Eq. (11) for Eq. (49), we have that

x2S2
n = (Sn+1 + γnSn−1)

2 = S2
n+1 + 2γnSn+1Sn−1 + γ 2

n S2
n−1, (50a)

x4S2
n = x2

(S2
n+1 + 2γnSn+1Sn−1 + γ 2

n S2
n−1) = x2S2

n+1 + 2γn(xSn+1)(xSn−1) + γ 2
n x

2S2
n−1

= (Sn+2 + γn+1Sn
)2 + 2γn

(Sn+2 + γn+1Sn
)(Sn + γn−1Sn−2

)+ γ 2
n

(Sn + γn−1Sn−2
)2

= S2
n+2 + 2(γn+1 + γn)Sn+2Sn + (γn+1 + γn)

2S2
n + 2γnγn−1Sn+2Sn−2

+ 2γnγn−1(γn + γn+1)SnSn−2 + γ 2
n γ 2

n−1S2
n−2, (50b)

and so by orthogonality, we have that
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∫ ∞
−∞

x6S2
n (x; t) Wσ (x; t) dx = (�n+3 + γ 2

n+2�n+1) + 2(γn+1 + γn )γn+1γn+2�n + (γn+1 + γn )2(�n+1 + γ 2
n �n−1)

= (γnγn+1γn+2)�n + �n+2γn+1�n + γn+1(�n + �n+1)�n + γn (�n + �n+1)�n

+ γn−1γnγn+1�n + γn�n−1�n , (51a)

∫ ∞

−∞
x2 S2

n(x; t) Wσ (x; t) dx = �n+1 + γ 2
n �n−1 = (γn+1 + γn) �n , (51b)

∫ ∞

−∞
x4S2

n(x; t) Wσ (x; t) dx = �n+2 + (γn+1 + γn)
2�n + γ 2

n γ 2
n−1 �n−2

= [
(γn+1 + γn + γn−1)γn + (γn+2 + γn+1 + γn)γn+1

]
�n

= (�n + �n+1) �n , (51c)

using �n+1 = γn+1�n , the difference equation Eq. (21) and �n is given by Eq. (23).
By rearranging Eq. (21) and taking n → n − 1 in Eq. (21), we have

2t�n − tγn = n + (2σ + 1)�n

2
− 3c

[
γn (�n−1 + �n + �n+1) + γn−1γnγn+1

]
,

(52a)

2t�n+1 − tγn+1 = n + 1 + (2σ + 1)�n+1

2
− 3c

[
γn+1 (�n + �n+1 + �n+2) + γnγn+1γn+2

]
. (52b)

By combining Eqs. (52a) and (52b), we obtain

−2t
∫ ∞

−∞
x4S2

n(x; t) Wσ (x; t) dx + t
∫ ∞

−∞
x2S2

n(x; t) Wσ (x; t) dx

= − (tγn − 2t�n) − (tγn+1 − 2t�n+1)

= −3c

[
γn (�n−1 + �n + �n+1) + γn−1γnγn+1 + γn+1 (�n + �n+1 + �n+2) + γnγn+1γn+2

]

+ 2n + 1 + (2σ + 1) (�n + �n+1)

2

= −3c

[
γn (�n−1 + �n + �n+1) + γn−1γnγn+1 + γn+1 (�n + �n+1 + �n+2) + γnγn+1γn+2

]

+ n + (σ + 1), (53)

Hence from Eq. (51a) and Eq. (53), Eq. (49) becomes
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un,n = 1

�n

{
3c
∫ ∞
−∞

x6S2
n (x; t)Wσ (x; t) dx − (σ + 1)�n − 2t

∫ ∞
−∞

x4S2
n (x; t)Wσ (x; t) dx

+ t
∫ ∞
−∞

x2S2
n (x; t)Wσ (x; t) dx

}

= 3c

[
(γnγn+1γn+2) + �n+2γn+1 + γn+1(�n + �n+1)�n + γn (�n + �n+1) + γn−1γnγn+1�n + γn�n−1

]

− (σ + 1) − 3c

[
γn
(
�n−1 + �n + �n+1

)+ γn−1γnγn+1 + γn+1
(
�n + �n+1 + �n+2

)+ γnγn+1γn+2

]

+ n + (σ + 1)

= n. (54)

Combining Eq. (48) with Eq. (43) gives

x
dSn

dx
= un,n−6 Sn−6(x; t) + un,n−4 Sn−4(x; t) + un,n−2 Sn−2(x; t) + un,n Sn(x; t).

(55a)

Rewriting Sn−4 and Sn−2 into Eq. (55a) in terms of Sn and Sn−1 using Eq. (11), we
obtain

Sn−2(x; t) = xSn−1(x; t) − Sn(x; t)
γn−1

, (55b)

Sn−3(x; t) = xSn−2(x; t) − Sn−1(x; t)
γn−2

= x2 − γn−1

γn−1γn−2
Sn−1(x; t) − x

γn−1γn−2
Sn(x; t), (55c)

Sn−4(x; t) = xSn−3(x; t) − Sn−2(x; t)
γn−3

= x3 − (γn−1 + γn−2)x

γn−1γn−2γn−3
Sn−1(x; t) − x2 − γn−2

γn−1γn−2γn−3
Sn(x; t),
(55d)

Sn−6(x; t) =
{
x5 − (γn−1 + γn−2 + γn−3 + γn−4)x + (γn−1γn−3 + γn−1γn−4 + γn−2γn−4)

γn−1γn−2γn−3γn−4γn−5

}
Sn−1(x; t)

−
{
x4 − (γn−2 + γn−3 + γn−4)x + γn−2γn−4

γn−1γn−2γn−3γn−4γn−5

}
Sn(x; t). (55e)

Substituting Eqs. (48), (54), (55b), (55d), and (55e) into Eq. (55a) yields the required
result.

4 The Differential Equation

Theorem 7 For the semiclassicalweight in (9), the correspondingmonic orthogonal
polynomials Sn(x; t) obey a linear ODE (with rational coefficients) as

d2

dx2
Sn(x; t) + Ũn(x; t) d

dx
Sn(x; t) + W̃n(x; t) Sn(x; t) = 0, (56)

where
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Ũn(x; t) = −6cx5 − t (4x3 − 2x) + (2σ + 1)

x

−
[

24cx3 + 2
[
6c(γn + γn+1) + 4t

]
x

6cx4 + 6c(γn + γn+1)x2 + 6c (�n+1 + �n) − 2t + 4t
(
x2 + γn + γn+1

)
]

(57a)

W̃n(x; t) = 18cγn x
2 + 6c�n − (2σ + 1)�n

x2
+ 4tγn

+ γn

(
6cx4 + 6c(γn + γn+1)x

2 + 6c (�n+1 + �n) − 2t + 4t
(
x2 + γn + γn+1

) )

×
(
6cx4 + 6c(γn + γn−1)x

2 + 6c (�n−1 + �n) − 2t + 4t
(
x2 + γn + γn−1

) )

−
[(

6cx5 + (6cγn + 4t)x3 − 2σ + 1

x
+ (6c�n + 4tγn − 2t) x + (2σ + 1)�n

x

+ 24cx3 + 2
[
6c(γn + γn+1) + 4t

]
x

6cx4 + 6c(γn + γn+1)x2 + 6c (�n+1 + �n) − 2t + 4t
(
x2 + γn + γn+1

) )

×
(
6cγn x

3 + (6c�n + 4tγn) x + (2σ + 1)�n

x

)]

≡ −Bn(x; t)
[
v′(x) + Bn(x; t) + A′

n(x; t)
An(x; t)

]
+ γnAn(x; t)An−1(x; t) + B′

n(x; t), (57b)

where �n and �n are given in Eqs. (24) and (23), respectively.

Proof For the proof, consult similar ideas in [21] and [22]. �

Remark 3 One can expand Eq. (57) via symbolic packages such as Mathematica
(Maple), however the resulting expression may look quite cumbersome.

5 Application of Eq. (56) for Electrostatic Zero Distribution

The authors in [14] considered a perturbation of quartic Freud weight (w(x) =
exp(−x4)) by the addition of a fixed charged point of mass δ at the origin; the corre-
sponding polynomials are Freud-type polynomials (see the recent work in [15]). For
semiclassical orthogonality measure, it was shown in [14] that these polynomials
obey a second-order linear differential equation of the form (7), and the electrostatic
model is in sight as in [18]. Application of Eq. (56) for electrostatic zero distribution
is also mentioned. Following these ideas, a similar work for the perturbed Freud-type
weight in (9) is given in a recent paper [22] using the obtained differential equation
in Sect. 4.
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6 Conclusions

By introducing a time variable to scaled sextic Freud-typemeasure upon deformation
(perturbation), we have found certain fresh characterizing properties: some recursive
relations, moments of finite order, concise formulation and orthogonality relation,
nonlinear difference equation for recurrence coefficients as well as the corresponding
polynomials, and certain properties of the zeros of the corresponding polynomials.
This work derived certain nonlinear difference equations, Toda-like equations, and
differential equations for the recurrence coefficients of the corresponding orthogonal
polynomials under consideration. Special attention, using the method of Shohat’s
quasi-orthogonality and ladder operators, is given to characterize the Freud-type
weight (9). Such semiclassical symmetric weight in Eq. (9) follows from quadratic
transformation and symmetrization as in [7]. By combining the three-term recurrence
relation with the difference–recurrence relation, a second-order differential equation
fulfilled by polynomials associated with the semiclassical weight Eq. (9) is obtained.
Application of the resulting differential equation in Eq. (56) for electrostatic zero
distribution is also noted. Following this work, investigation of these recurrence coef-
ficients in connection with certain (discrete) integrable systems will be a prominent
continuation of this study.
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Complex Chaotic Systems and Its
Complexity

Ajit K. Singh

Abstract This article is deal with an attempt to study the complex chaotic system
and its complexity. Chaos in the dynamical system is very complex pattern with the
real variables and becomes more complex with the complex variables. But due to its
real application in the physical systems, it is very useful to study its behaviour. This
article starts with the Lorenz model of integer order and of real variables and in a
very systematic way it explores to the fractional order to the complex variables and
ends with the fractional order complex chaotic systems. Numerical algorithm and
stability analysis are also presented through the simulation results.

Keywords Chaotic system · Lorenz system · Fractional calculus

1 Introduction

Chaos theory is a branch of mathematical sciences, in particular dynamics, has fur-
nished a new system of estimating the world and is an important technique to recog-
nise the behaviour of the approaches in the universe. Chaotic behaviours of dynamical
systems have been noticed in different parts of science, engineering and technology
such as physics, electronics, mechanics, biology, medicine, ecology, signal process-
ing economy, communication and so on.

Chaotic systems are basically dynamical systems which are highly sensitive to the
small perturbation in initial conditions and systemparameters. Since complex chaotic
systems aremore efficient and feasible, it has been observed in some research articles
that the complex variables are broadly used in a number of non-linear systems, for
instance, secure communications, coupled map lattices, detuned laser systems and
Julia sets, etc. The security of transmitted information is increased due to the state
variables having fifth order. Recently, complex Lorenz system is one of the most
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familiar complex chaotic systems, and has been utilise to express disk dynamos,
rotating fluids, etc. [1–3].

The origin of fractional calculus was close to the time of origination of differential
calculus. The proposal of fractional order derivative is first struck byLeibnitz in 1695.
Even though there was tiny progress in the topic which was almost theoretical. In the
19th century, after the works of Riemann, Liouville, Grunwald and Letnikov, it was
realised that the fractional order differential and integral are more useful than the
integer order in the application of non-linear sciences. One conceivable clarification
of such dishonour might be that there are many different definitions of fractional
derivatives. Then one more problem can be that fractional derivative has no evident
of the geometrical interpretation because of its non-local property.

Last few decades, fractional calculus has become centre of attraction for the
researcher working in the non-linear sciences. It is experienced that many, espe-
cially interdisciplinary applications can be classically expressedwith aid of fractional
derivatives. For instance someone may bring up research on anomalous diffusion,
viscoelastic bodies, quantum evolution of complex systems, phase transitions of
fractional order, polymer physics, quantitative finance and an explanation of frac-
tional kinetics of the chaotic systems [4–6]. However, most of the aforementioned
researches were based on the linear fractional differential equations. This restric-
tion in the main results because of the dynamics of such systems may not remain
chaotic. As stated by the Poincare-Bendixson theorem [7], dimensional of the inte-
ger order system must be at least 3 for chaos to happen. But this is not true in the
fractional order systems. For instance, it has been proved that Chua’s circuit of order
2.7 can reveal the chaotic attractors. Since discrete dynamical system reveals chaotic
behaviour even in one dimension, someone should be emphasised that this theorem
is applicable for the continuous time chaotic systems but not for the discrete maps.
A well known mathematical model of a continuous time dynamical system which
reveals chaos is the Lorenz system [8–11].

Dynamical analysis of fractional order chaotic system is a main attention of
research. But it is primarily based on the bifurcation and phase diagram. After that
the Lyapunov exponent is an important method to study the complexity of a chaotic
system. A system with highest positive Lyapunav exponent means the system is
more complex. Moreover, to choose proper parameters of systems for its practical
applications, it is required to examine complexity of fractional order complex Lorenz
system.

2 Fractional Calculus

2.1 Definition

Fractional order derivative has been studied by many approach. There are two pri-
marily approach namely, frequency domain approach and time domain approach.
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Since a large number of fractional derivative definitions are observed in the litera-
ture surveys [12–14], author discusses only three commonly used definitions by first
considering Caputo’s definition. Since this is based on the time domain approach and
needs the initial conditions on integer which are readily determine. The fractional
order derivative is defined by

dq φ (t)

dt
:= J n−q dn φ (t)

dt
= J n−q φ(n) (t)

where n := �q� is the first integer which is greater that or equal to q and q > 0,
and q is an arbitrary number. φ(n) (t) denotes the n-th order ordinary differential of
the function φ (t) with respect to t, and Jμ is the μ-order the Riemann-Liouville
integral operator defined in the following equation

Jμ ψ (t) = 1

� (μ)

t∫

0

ψ (τ)

(t − τ)1−μ
dτ

where � (μ) means the Gamma value of μ and 0 < μ < 1.
The Caputo (C) definition of the fractional derivative of q-order is written as

C Dq f (t) = 1

� (n − q)

t∫

0

f (n) (τ )

(t − τ)1+q−n dτ. (1)

The Grunwald-Letnikov (GL) definition of q-order is stated as

GL Dq f (t) = lim
h→0

1

hq

[ t
h ]∑

j=0

(−1) j
(
q

j

)
f (t − jh) ,

where [·] represents the integral part.
The Riemann-Liouville (RL) definition of q-order is given as

RL Dq f (t) = 1

� (n − q)

dn

dtn

t∫

0

f (τ )

(t − τ)1+q−n dτ.

Since the Caputo differential operator requires initial conditions on the integer
values, and it is more efficient in the real application as compared to Riemann-
Liouville operator and others. Due to its physical interpenetration, well defined and
computation, the author chooses the Caputo’s definition of the fractional derivatives
throughout the article and writes a convenient notation Dq instead of C Dq .
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2.2 Numerical Algorithm

Numerical algorithmof fractional order differential equation is studied in this section.
Diethelm et al. introduced the Adams-Bashforth-Moulton predictor and corrector
method [15], which is numerically stable and applicable to the both linear and non-
linear fractional differential equations. This algorithm is applied for numerical cal-
culation in this article.

The fractional differential equation with initial conditions in general form is writ-
ten as

Dq y (t) = f (t, y (t)) , 0 ≤ t ≤ T

y(k) = yk0 , k = 0, 1, 2, . . . , �q� − 1. (2)

Equation (2) is analogous to Volterra integral equation

y (t) =
�q�−1∑
k=0

yk0 t
k

k! + 1

� (q)

t∫

0

f (τ, y (τ ))

(t − τ)1−q dτ. (3)

Let h = T
N , tn = nh, n = 0, 1, 2, . . . , N ∈ Z

+, then Eq. (3) is reduced to

yh (tn+1) =
�q�−1∑
k=0

yk0 t
k
n+1

k! + hq

� (q + 2)
f
(
tn+1, y p

h (tn+1)
)

+ hq

� (q + 2)

n∑
j=0

α j, n+1 f
(
t j , yh

(
t j

))
, (4)

where

α j, n+1 =

⎧⎪⎨
⎪⎩
nq+1 − (n − q) (n + 1)q , j = 0

(n + 2 − j)q+1 + (n − j)q+1 − 2 (n + 1 − j)q+1 , 1 ≤ j ≤ n

1, j = n + 1

and predicted values are calculated by the following equation

y p
h (tn+1) =

�q�−1∑
k=0

yk0 t
k
n+1

k! + 1

� (q)

n∑
j=0

β j, n+1 f
(
t j , yh

(
t j

))
,

where

β j, n+1 = hq

q
(n + 1 − j)q − (n − j)q , 1 ≤ j ≤ n.
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Error approximation in this method is

max j=0,1,2,...,N | x (
t j

) − xh
(
t j

) |= O
(
h p

)
,

where p = min {1 + q, 2} .

2.3 Stability

Stability analysis of the equilibrium points to the fractional order chaotic system is
quite complicated and is distinct to the integral order chaotic system. With the aid of
following lemma, it can be answered.

Lemma 1 Equilibrium points of the fractional order system are asymptotically sta-
ble if all the eigenvalues satisfy the following:

| arg (eigen (J )) |=| arg (λi ) |> πq

2
, i = 1, 2, . . . , n,

at the equilibrium E∗.Here J represents the Jacobian matrix of the fractional order
system calculated at the equilibria E∗ [16].

3 Chaotic System

3.1 Lorenz System

The Lorenz system [17] was derived by the E. N. Lorenz in 1963 which is given by
the following set of ordinary differential equations

ẋ = a (y − x)

ẏ = cx − y − xz

ż = xy − bz, (5)

where a dot denotes the derivativewith respect to time. a, b and c are the parameters.
Some basic features of the system (5) are as follows:

1. Evolution is controlled by only values of x, y, and z as the equations have the
first-order time derivative.

2. This is an autonomous system as time does not explicitly emerged in right-hand
side of system (5).

3. This is a non-linear system due to the presence of the xz term in second and xy
term in third of system (5).
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Fig. 1 Chaotic attractor of the Lorenz system

4. This is a dissipative system which means that the following inequality holds

d ẋ

dx
+ d ẏ

dy
+ d ż

dz
= − (a + 1 + b) < 0

as the parameters a and b are positive.
5. This is an invariant system in the sense of coordinate transformation (x, y, z) →

(−x,−y, z) which means that system (5) is symmetric in z-axis.

The Lorenz system (5) is chaotic in the nature for parameters value a = 10,
b = 8/3, and c = 28. The chaotic attractor of the system (5) is shown in Fig. 1.

3.2 Fractional Order Lorenz System

Generalisation of ordinary differential equations to fractional differential equations
can be practical in intentionality explanation of viscoelastic liquids such as human
blood [18]. A fractional generalisation of the Lorenz system is introduced by Grig-
orenko and Grigorenko [19]. The fractional order Lorenz system is given as

Dq x = a (y − x)

Dq y = cx − y − xz

Dq z = xy − bz, (6)

where q-order time fractional derivatives are in the Caputo sense and 0 < q ≤ 1.
When q = 1 the fractional order Lorenz system (6) reduces to the standard Lorenz
system (5). The chaotic attractor of the system (6) is depicted through the Fig. 2 on
the fractional order q = 0.99 and parameters values a = 10, b = 8/3, c = 28.
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Fig. 2 Chaotic attractor of the fractional order Lorenz system

3.3 Complex Lorenz System

The complex Lorenz system was derived from the original Lorenz system (5) by
Fowler et al. [20] which is described by the following set of differential equations:

ẋ = a (y − x)

ẏ = cx − y − xz

ż = 1

2
(x ȳ + x̄ y) − bz, (7)

where x = x1 + i x2, y = x3 + i x4, and z = x5, and bar denotes the complex
conjugate. Separating the complex variables of system (7) into real and imaginary
parts, the following equivalent system is obtained

ẋ1 = a (x3 − x1)

ẋ2 = a (x4 − x2)

ẋ3 = cx1 − x3 − x1x5
ẋ4 = cx2 − x4 − x2x5
ẋ5 = x1x3 + x2x4 − bx5.

Basic characteristic of this complex form of the Lorenz system are similar to
mentioned which means it is non-linear, autonomous, symmetric in z-axis, dissi-
pative with bounded solutions, and appears only first order time derivative. Along
with these, the complex generalisation of the real and third-order Lorenz system
changed to fifth-order system. When a = 10, b = 8/3, c = 28, the system (7) is
chaotic and phase portraits are shown through Fig. 3 in x1(t) − x2(t) − x3(t)-axes
and x3(t) − x4(t) − x5(t)-axes.
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3.4 Fractional Order Complex Lorenz System

The fractional order complex Lorenz system (FOCLS) is seen as a generalisation of
integer order complex Lorenz system (7). Then the FOCLS can be written in the set
of fractional order differential equations as follows:

Dq x = a(y − x)

Dq y = cx − y − xz

Dq z = 1

2
(x ȳ + x̄ y) − bz, (8)

where Dq is the q-order Caputo’s fractional differential operator; x = x1 + i x2,
y = x3 + i x4 and z = x5. When q = 1, system (8) is same as the complex Lorenz
system (7).

4 Analysis of the FOCLS

In this section, analysis of the FOCLS is investigated, namely, real version, symmetry
and invariance, equilibrium points, stability and chaotic attractors of system (8).

4.1 Real Version

Since theCaputo fractional derivative operator (1) is a linear operator, the real version
of the system (8) can be written in the following form
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Dq x1 = a (x3 − x1)

Dq x2 = a (x4 − x2)

Dq x3 = cx1 − x3 − x1x5
Dq x4 = cx2 − x4 − x2x5
Dq x5 = x1x3 + x2x4 − bx5. (9)

4.2 Symmetry and Invariance

Under the transformation (x1, x2, x3, x4, x5) → (−x1, −x2, −x3, −x4, x5) sys-
tem (9) remains the invariance. So the FOCLS is symmetry about x5-axis. At
the result of this, if (x1, x2, x3, x4, x5) is a solution of chaotic system (9), then
(−x1,−x2,−x3,−x4, x5) is also a solution of the same system (9).

4.3 Equilibrium Points

The computation of the equilibriumpoints of system (9) is obtained by the calculation
of the equations

Dq x j = 0, j = 1, 2, 3, 4, 5.

So, the system (9) has an isolated equilibrium point E0 = (0, 0, 0, 0, 0) and non-
trivial equilibrium points Eθ = (r cos θ, r sin θ, r cos θ, r sin θ, x5) where r =√
bx5 , θ ∈ [0, 2π ] , x5 = c − 1, It is clear that the non-trivial equilibrium point

exist when c > 1.

4.4 Stability

Since equilibrium point E0 is stable when b < 1, and unstable when b > 1. For Eθ ,

the characteristic polynomial of the Jacobian matrix for c > 1 is

z (z + a + 1) + (1 + a + b) z2 + (ab + bc) z + 2ab (b − 1) = 0.

Since the Routh-Hurwitz conditions of the fractional order system [21, 22] ensure
that if

(1 + a + b) (ab + bc) > 2ab (c − 1) ,

then Eθ will be stable.
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Fig. 4 Phase portrait of the complex Lorenz system

4.5 Chaotic Attractors

Consider the parameters values as before a = 10, b = 8/3, c = 28 and initial
condition [1 + 3i, 2 + 3i, 5]T for the system (8), phase portraits are shown by Fig. 4
in x1(t) − x3(t) − x5(t)-axes and x2(t) − x3(t) − x4(t)-axes at fractional order
q = 0.99.

5 Numerical Simulation

Numerical solution of the fractional differential equation is not easy as integer order.
Two estimation approaches are often considered to numerical simulation of fractional
differential equations. First is themodified version of theAdams-Bashforth-Moulton
predictor and corrector method [15, 23, 24]. It depends on the time domain approach.
Second is in the frequency domain and also known as frequency domain approach.
Due to long memory effect of the fractional order systems, numerical simulation in
the time domain approach takes a very long simulation time and complicated, but
gives very precise result [25]. Hence, author employs the first approach for fractional
order systems in this article.

6 Concluding Remarks

Dynamical behaviour of the FOCLS is investigated in this article which is the most
important part of the article. It is also shown that the FOCLS of order 2.7 exhibit
the chaotic attractor which is second observation. The third finding of the author
is chaos can be attained with the fractional order system of order as low as 2.7 as
compare to the integer order system of order at least 3. The fourth and last results of
the article are the fractional order bridge oscillator that shows a limit cycle which can
be generated for any fractional order with a proper value of the system parameters
value.
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On the Bertrand Pairs of Open
Non-Uniform Rational B-Spline Curves

Muhsin Incesu, Sara Yilmaz Evren, and Osman Gursoy

Abstract B-spline curves are used basically in Computer-Aided Design (CAD),
Computer-Aided Geometric Design (CAGD), and Computer-Aided Modeling
(CAM). In determining the invariants of curves and surfaces at any point, there
are some difficulties in expressing it analytically and calculating its invariants at the
desired point. For these curves and surfaces the way to overcome these difficulties is
to design them with spline curves and surfaces. In this paper the second- and third-
order derivatives of open Non-Uniform Rational B-Spline (NURBS) curves at the
points t = td , t = tm−d , and arbitrary point in domain of these curves are given. In
addition, the Frenet vector fields and curvatures of these open NURBS curves were
expressed by their control points. The relationships between control points were
expressed when given two open NURBS curves occurred as Bertrand curve pairs at
the points t = td , t = tm−d , and arbitrary point in domain of these curves.

Keywords NURBS curves · Bertrand pairs · Open spline · Frenet frame

1 Introduction

In 1850, J. Bertrand gave the feature that helix curves accept other curves with the
same original normal vector field [1]. The curves that provide this feature are called
Bertrand curves.
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It is possible that the Bertrand curves are defined as their principal normals are
parallel [1]. It is possible to define a curve as the Bertrand curve if this curve is
planar or its curvature κ and its torsion τ in R3 satisfies the condition κ + a τ = b
for nonzero constants a, b [2]. In recent years, Bertrand curves play an important role
in computer-aided geometric design (CAD) and computer-aided modeling (CAM)
[3–5]. Due to this importance, Bertrand curves have been studied by geometers in
different spaces [6–22].

The best examples of points systems are Bezier curves and Bezier surfaces. Bezier
and B-Spline curves have been studied in many different areas of CAD and CAM
system. Some of these studies can be given exemplary in [23–35].

Other studies on B-spline curves and NURBS curves in [36–44, 46–52] can be
given as examples.

NURBS curves are rational B-Spline curves without uniform distribution. Bezier
curves, B-Spline curves, and NURBS curves are curves that are widely used in
computer graphics (CAD) (CAM) systems.

The Frenet vector fields and curvatures of open Non-Uniform B-Spline (NUBS)
(not rational) curves at the points t = td , t = tm−d , and arbitrary point in domain of
these curves were studied in [46]. In addition, the relationships between the control
points when given two open NUBS curves occurred as Bertrand curve pairs were
also studied in [46].

In this paper the second- and third-order derivatives of open Non-Uniform Ratio-
nal B-Spline (NURBS) curves at the points t = td , t = tm−d , and arbitrary point
in domain of these curves have been given. In addition, the Frenet vector fields and
curvatures of these open NURBS curves were expressed by their control points. Sim-
ilarly the relationships between the control points have also been expressed when
given two open NURBS curves occurred as Bertrand curve pairs at the points t = td ,
t = tm−d and arbitrary point in domain of these curves.

2 Preliminaries

Definition 1 The B-spline basis functions of degree d, denoted Ni,d(t), defined by
the knot vector t0, t1, ..., tm are defined recursively as follows:

Ni,0(t) =
{
1, t ∈ [ti , ti+1)

0, otherwise

and

Ni,d(t) = t − ti
ti+d − ti

Ni,d−1(t) + ti+d+1 − t

ti+d+1 − ti+1
Ni+1,d−1(t) (1)

for i = 0, ..., n and d ≥ 1.
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If the knot vector contains a sufficient number of repeated knot values, then a
division of the form Ni,d−1(t)/(ti+d − ti ) = 0/0 (for some i) may be encountered
during the execution of the recursion.Whenever this occurs, it is assumed that 0/0 =
0 [45].

Definition 2 The B-spline curve of degree d with control points b0, ..., bn and knots
t0, ..., tm is defined on the interval [a, b] = [td , tm−d ]

B(t) =
n∑

i=0

bi Ni,d(t) (2)

where Ni,d(t) are the B-spline basis functions of degree d. To distinguish B-spline
curves from their rational form they are often referred to as integral B-splines [45].

Theorem 1 The B-spline basis functions Ni,d(t) satisfy the following properties
[45]

(i) Positivity: Ni,d(t) > 0 for t ∈ (ti , ti+d+1).
(ii) Local Support: Ni,d(t) = 0 for t /∈ (ti , ti+d+1).
(iii) Piecewise Polynomial: Ni,d(t) are piecewise polynomial functions of degree d.

(iv) Partition of Unity:
r∑

i=r−d
Ni,d(t) = 1 for t ∈ [tr , tr+1)

Theorem 2 A B-spline curve defined as (2) of degree d defined on the knot vector
t0, ..., tm satisfies the following properties [45]

(i) Local Control: Each segment is determined by d + 1 control points. If t ∈
[tr , tr+1)(d ≤ r ≤ m − d − 1), then

B(t) =
r∑

i=r−d

bi Ni,d(t).

Thus to evaluate B(t) it is sufficient to evaluate Nr−d,d(t), ..., Nr,d(t).
(ii) Convex Hull: If t ∈ [tr, tr + 1)(d ≤ r ≤ m − d − 1), then B(t) ∈ CH

{br−d , ..., br } .
(iii) Invariance under Affine Transformations: Let T be an affine transformation.

Then

T

(
r∑

i=r−d

bi Ni,d(t)

)
=

r∑
i=r−d

T (bi ) Ni,d(t)

Definition 3 The NURBS curve of degree d with control points b0, ..., bn and knots
t0, ..., td , ..., tm−d , ..., tm is defined on the interval [a, b] = [td , tm−d ] by
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B(t) =

n∑
i=0

biwi Ni,d(t)

n∑
i=0

wi Ni,d(t)
(3)

where Ni,d(t) are the B-spline basis functions of degree d and w0, ..., wn are the
weights of this curve [45].

2.1 Open B-Spline Curves

In general, B-spline curves do not interpolate the first and last control points b0 and
bn . For any curve of degree d, endpoint interpolation and endpoint tangent conditions
are obtained by open B-splines. An open B-spline curve is a B-spline curve in which
exterior knot vectors are the same as the knots td and tm−d , i.e., t0 = t1 = ... = td
and tm−d = tm−d+1 = ... = tm−1 = tm satisfies.

Theorem 3 AnopenB-spline curve B(t)of degree d with control points b0, b1, ..., bn
and knot vectors t0 = t1 = ... = td , td+1, ..., tm−d = tm−d+1 = ... = tm−1 = tm be
given. Then

B(td) = b0 and B(tm−d) = bn

satisfies [45].

Definition 4 A B-spline curve is said to be uniform whenever its knots are equally
spaced, and non-uniform otherwise. A uniform B-spline curve is said to be open
uniform whenever its interior knots are equally spaced, and its exterior knots are
same. Similarly a non-uniformB-spline curve is said to be open non-uniformwhen-
ever its exterior knots are same and its interior knots are not equally spaced.

Theorem 4 AnopenB-spline curve B(t)of degree d with control points b0, b1, ..., bn
and knot vectors t0 = t1 = ... = td , td+1, ..., tm−d = tm−d+1 = ... = tm−1 = tm be
given. Then,

B
′
(td) = d

td+1 − t1
(b1 − b0) (4)

B
′
(tm−d) = d

tm−1 − tm−d−1
(bn − bn−1) (5)

are satisfied [45].

Remark 1 AnopenB-spline curve B(t) of degree d with control points b0, b1, ..., bn
and knot vectors t0 = t1 = ... = td; td+1, ..., tm−d = tm−d+1 = ... = tm−1 = tm be
given. If t0 = t1 = ... = td = 0 and tm−d = tm−d+1 = ... = tm−1 = tm = 1 Then,
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B
′
(0) = d

td+1
(b1 − b0) (6)

B
′
(1) = d

1 − tm−d−1
(bn − bn−1) (7)

are obtained.

Theorem 5 AnopenB-spline curve B(t)of degree d with control points b0, b1, ..., bn
and knot vectors t0 = t1 = ... = td , td+1, ..., tm−d = tm−d+1 = ... = tm−1 = tm be
given. Then,

B ′′(td) = d(d − 1)

(td+1 − t2) (td+2 − t2)
(b2 − b1) − d(d − 1)

(td+1 − t2) (td+1 − t1)
(b1 − b0) (8)

B ′′(tm−d) = d(d − 1)

(tm−2 − tm−d−1) (tm−1 − tm−d−1)
(bn − bn−1) (9)

− d(d − 1)

(tm−2 − tm−d−1) (tm−2 − tm−d−2)
(bn−1 − bn−2)

are satisfied.

Proof see [46]. �

Theorem 6 AnopenB-spline curve B(t)of degree d with control points b0, b1, ..., bn
and knot vectors t0 = t1 = ... = td , td+1, ..., tm−d = tm−d+1 = ... = tm−1 = tm be
given. Then,

B ′′′(td) = d(d − 1)(d − 2)

(td+1 − t3) (td+2 − t3) (td+3 − t3)
(b3 − b2) (10)

− d(d − 1)(d − 2) (td+1 − t2 + td+2 − t3)

(td+1 − t3) (td+2 − t2) (td+2 − t3) (td+1 − t2)
(b2 − b1)

+ d(d − 1)(d − 2)

(td+1 − t3) (td+1 − t2) (td+1 − t1)
(b1 − b0)

B ′′′(tm−d) = d(d − 1)(d − 2)(bn − bn−1)

(tm−3 − tm−d−1) (tm−2 − tm−d−1) (tm−1 − tm−d−1)
(11)

− d(d − 1)(d − 2) (tm−3 − tm−d−2 + tm−2 − tm−d−1) (bn−1 − bn−2)

(tm−3 − tm−d−1) (tm−2 − tm−d−2) (tm−2 − tm−d−1) (tm−3 − tm−d−2)

+ d(d − 1)(d − 2)(bn−2 − bn−3)

(tm−3 − tm−d−1) (tm−3 − tm−d−2) (tm−3 − tm−d−3)
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are satisfied.

Proof see [46]. �

Theorem 7 AnopenB-spline curve B(t)of degree d with control points b0, b1, ..., bn
and knot vectors t0 = t1 = ... = td , td+1, ..., tm−d = tm−d+1 = ... = tm−1 = tm be
given. Then, the Frenet vector fields and curvatures of this curve at the point t = td
are as follows:

T(td) = b1−b0
‖b1−b0‖ B(td) = (b1−b0)×(b2−b1)

‖(b1−b0)×(b2−b1)‖
N(td) = (b2−b1)

‖(b2−b1)‖csc� − (b1−b0)
‖(b1−b0)‖ cot� κ(td) = (d−1)(td+1−t1)

2‖(b2−b1)‖
d(td+1−t2)(td+2−t2)‖(b1−b0)‖2 sin�

(12)
and

τ(td) = (d − 2) (td+1 − t1) (td+1 − t2) (td+2 − t2) ‖(b3 − b2)‖ cosϕ

d (td+1 − t3) (td+2 − t3) (td+3 − t3) ‖(b1 − b0)‖ ‖(b2 − b1)‖ sin�

where � is the angle between the vectors b1 − b0 and b2 − b1 and ϕ is the angle
between the vectors b3 − b2 and (b1 − b0) × (b2 − b1).

Proof see [46]. �

Theorem 8 AnopenB-spline curve B(t)of degree d with control points b0, b1, ..., bn
and knot vectors t0 = t1 = ... = td , td+1, ..., tm−d = tm−d+1 = ... = tm−1 = tm be
given. Then, the Frenet vector fields and curvatures of this curve at the point t = tm−d

are as follows:

T(tm−d) = bn−bn−1

‖bn−bn−1‖ B(tm−d) = − (bn−bn−1)×(bn−1−bn−2)

‖(bn−bn−1)×(bn−1−bn−2)‖
N(tm−d) = − (bn−1−bn−2)

‖bn−1−bn−2‖cscϑ + (bn−bn−1)

‖bn−bn−1‖ cot ϑ
(13)

and

κ(tm−d ) = (d − 1)
(
tm−1 − tm−d−1

)2 ∥∥bn−1 − bn−2
∥∥

d
(
tm−2 − tm−d−1

) (
tm−2 − tm−d−2

) ∥∥bn − bn−1
∥∥2 sin ϑ

τ(tm−d ) = − d − 2

d

(
tm−1 − tm−d−1

) (
tm−2 − tm−d−1

) (
tm−2 − tm−d−2

)
(
tm−3 − tm−d−1

) (
tm−3 − tm−d−2

) (
tm−3 − tm−d−3

)
∥∥(bn−2 − bn−3)

∥∥ cos σ∥∥(bn − bn−1) × (bn−1 − bn−2)
∥∥

where ϑ is the angle between the vectors bn − bn−1 and bn−1 − bn−2 and σ is the
angle between the vectors bn−3 − bn−2 and (bn − bn−1) × (bn−1 − bn−2)

Proof see [46]. �
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2.2 The Rational de Boor Algorithm

Let an open NURBS curve B(t) of degree d with control points and weights
b0, b1, ..., bn , w0, w1, ..., wn , respectively and knot vectors t0 = t1 = ... = td ,
td+1, ..., tm−d = tm−d+1 = ... = tm−1 = tm be given. Suppose t∗ ∈ [tr , tr+1). Then,
the rational De Boor algorithm can be summarized as follows:

α
j
i (t) = t∗−ti

ti+d− j+1−ti

w
j
i =

(
1 − α

j
i (t

∗)
)

w
j−1
i−1 + α

j
i (t

∗)w j−1
i

w
j
i b

j
i (t

∗) =
(
1 − α

j
i (t

∗)
)

w
j−1
i−1 b

j−1
i−1 (t∗) + α

j
i (t

∗)w j−1
i b j−1

i (t∗) for j > 0

(14)

for j = 1, ..., d and i = r − d + 1, ..., r.Where b0i = bi , b−1 = 0 andbm−d+1 = 0.
To summarize, for a givenparameter value t, the rational deBoor algorithm (14) yields
a triangular array of points such that bdr = B(t∗) [45].

3 Main Results

3.1 The Derivatives of the Open Non-Uniform Rational
B-Spline Curves

Theorem 9 Let an open NURBS curve B(t) of degree d with control points
b0, b1, ..., bn and weights w0, w1, ..., wn and the knot vectors t0 = t1 = ... =
td , td+1, ..., tm−d = tm−d+1 = ... = tm−1 = tm be given. Then, the first-order deriva-
tives of this curve at the points t = td and t = tm−d are as follows

B ′(td) = d

td+1 − t1

w1

w0
(b1 − b0) (15)

B ′(tm−d) = d

tm−1 − tm−d−1

wn−1

wn
(bn − bn−1) (16)

Proof Let
n∑

i=0
wi bi Ni,d(t) be denoted as f and

n∑
i=0

wi Ni,d(t) be denoted as g then

an open NURBS curve B(t) can be written as B(t) = f
g . In this case the first-order

derivative of B(t) can be written as B ′(t) = f ′
g − B(t) g

′
g . Here the functions f and g

can be thought of as twoB-spline curveswith control pointswi bi andwi , respectively.
So according to Theorems 3 and 4 the first-order derivatives of B(t) at the points
t = td and t = tm−d are obtained as follows
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B ′(td) =
d

td+1−t1
(w1b1 − w0b0)

w0
− b0

d
td+1−t1

(w1 − w0)

w0

= d

td+1 − t1

w1

w0
(b1 − b0)

and

B ′(tm−d) =
d

tm−1−tm−d−1
(wnbn − wn−1bn−1)

wn
− bn

d
tm−1−tm−d−1

(wn − wn−1)

wn

= d

tm−1 − tm−d−1

wn−1

wn
(bn − bn−1)

�

Theorem 10 Let an open NURBS curve B(t) of degree d with control points
b0, b1, ..., bn and weights w0, w1, ..., wn and the knot vectors t0 = t1 = ... = td ,
td+1, ..., tm−d = tm−d+1 = ... = tm−1 = tm be given. Then, the second-order deriva-
tives of this curve at the points t = td and t = tm−d are as follows

B′′(td ) = d(d − 1)(
td+1 − t2

) (
td+2 − t2

) w2

w0
(b2 − b0)

− d

td+1 − t1

w1

w0

[
(d − 1)

(
td+1 + td+2 − t1 − t2

)
(
td+1 − t2

) (
td+2 − t2

) + 2d(
td+1 − t1

)
(

w1

w0
− 1

)]
(b1 − b0)

and

B′′(tm−d ) = wn−1
wn

[
d(d − 1)

tm−2 − tm−d−1

(
1

tm−1 − tm−d−1
− 1

tm−1 − tm−d−2

)
− 2d2(wn − wn−1)(

tm−1 − tm−d−1
)2

]
(bn − bn−1)

− wn−2
wn

d(d − 1)(
tm−1 − tm−d−2

) (
tm−2 − tm−d−1

) (bn − bn−2)

Proof Similarly as previous theorem, if the NURBS curve is written as B = f
g then

the second-order derivative of B can be written as

B ′′ =
[
f ′

g
− B

g′

g

]′

=
[
f ′′

g
− 2B ′ g

′

g
− B

g′′

g

]

So according to Theorems 3, 4, and 5 the second-order derivatives of B at the
points t = td and t = tm−d are obtained as follows
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B′′(td ) = d(d − 1)(
td+1 − t2

) (
td+2 − t2

) w2

w0
(b2 − b0)

− d

td+1 − t1

w1

w0

[
(d − 1)

(
td+1 + td+2 − t1 − t2

)
(
td+1 − t2

) (
td+2 − t2

) + 2d(
td+1 − t1

)
(

w1

w0
− 1

)]
(b1 − b0)

and

B′′(tm−d ) = wn−1
wn

[
d(d − 1)

tm−2 − tm−d−1

(
1

tm−1 − tm−d−1
− 1

tm−1 − tm−d−2

)
− 2d2(wn − wn−1)(

tm−1 − tm−d−1
)2

]
(bn − bn−1)

− wn−2
wn

d(d − 1)(
tm−1 − tm−d−2

) (
tm−2 − tm−d−1

) (bn − bn−2)

�

Theorem 11 Let an open NURBS curve B(t) of degree d with control points
b0, b1, ..., bn and weights w0, w1, ..., wn and the knot vectors t0 = t1 = ... =
td , td+1, ..., tm−d = tm−d+1 = ... = tm−1 = tm be given. Then, the third-order deriva-
tives of this curve at the points t = td and t = tm−d are as follows

B ′′′(td ) = d(d − 1)(d − 2)

zlm

w3

w0
(b3 − b0) − d(d − 1)

w2

w0

[
d − 2

zlm
+ d − 2

zkly
+ 3d(w1 − w0)

zykw0

]
(b2 − b0)

+d
w1

w0

⎡
⎢⎢⎣

(d−1)(d−2)(y+l)
zkly

+ (d−1)(d−2)
xyz + 3d(w1−w0)

x2w0

(
(d−1)(x+k)

yk + 2d(w1−w0)
xw0

)
+ 3d(d−1)

xyw0

(
w2−w1

k + w1−w0
x

)

⎤
⎥⎥⎦ (b1 − b0)

and

B′′′(tm−d ) = wn−3
wn

d(d − 1)(d − 2)

urh
(bn − bn−3)

+ wn−2
wn

d(d − 1)

[
3d2(wn − wn−1)

evqwn
− (d − 2)

urh
− (d − 2)(h + v)

uqvh

]
(bn − bn−2)

+ wn−1
wn

⎡
⎢⎢⎢⎢⎣

d(d−1)(d−2)
uv

(
1
e + h+v

qh

)

− 3d2
e

⎡
⎢⎣

(d−1)(wn−wn−1)
(
1
e − 1

p

)
vwn

+ (d−1)
vwn

(
wn−wn−1

e − wn−1−wn−2
q )

− 3d
e2

(wn − wn−1)
2

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎦ (bn − bn−1)

where x = td+1 − t1, y = td+1 − t2, z = td+1 − t3, k = td+2 − t2, l = td+2 − t3, m =
td+3 − t3 and u = tm−3 − tm−d−1, v = tm−2 − tm−d−1, e = tm−1 − tm−d−1, p = tm−1

− tm−d−2, q = tm−2 − tm−d−2, h = tm−3 − tm−d−2, r = tm−3 − tm−d−3.

Proof Since B = f
g then B ′′′ =

[
f ′′
g − 2B ′ g′

g − B g′′
g

]′
and it can be written as

B ′′′ =
[
f ′′′

g
− 3B ′′ g

′

g
− 3B ′ g

′′

g
− B

g′′′

g

]

So according to Theorems 3, 4, 5, and 6, the third-order derivatives of an open
NURBS curve at the points t = td and t = tm−d are obtained as above. �
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3.2 The Frenet Frame on the Open Non-Uniform Rational
B-Spline Curves

Theorem 12 An open NURBS curve B(t) of degree d with control points b0, b1, ...,
bn and weights w0, w1, ..., wn and knot vectors t0 = t1 = ... = td , td+1, ..., tm−d =
tm−d+1 = ... = tm−1 = tm be given. Then, the Frenet vector fields and curvatures of
this curve at the point t = td are as follows:

T(td) = b1−b0
‖b1−b0‖ B(td) = (b1−b0)×(b2−b0)

‖(b1−b0)×(b2−b0)‖

N(td) = (b2−b0)
‖(b2−b0)‖ csc� − (b1−b0)

‖(b1−b0)‖ cot�
κ(td) = d−1

d
x2

yk
w0w2

w2
1

‖(b2−b0)‖
‖(b1−b0)‖2 sin�

τ(td) = d−2
d

xyk
zlm

w0w3
w1w2

‖(b3−b0)‖ cosϕ

‖(b1−b0)×(b2−b0)‖
(17)

where� is the angle between the vectors b1 − b0 and b2 − b0 and ϕ is the angle
between the vectors b3 − b0 and (b1 − b0) × (b2 − b0). Additionally x = td+1 − t1,
y = td+1 − t2, z = td+1 − t3, k = td+2 − t2, l = td+2 − t3, m = td+3 − t3.

Proof (i) T(td) = B ′(td )
‖B ′(td )‖ =

d
td+1−t1

w1
w0

(b1−b0)∥∥∥ d
td+1−t1

w1
w0

(b1−b0)
∥∥∥ = (b1−b0)

‖(b1−b0)‖

(ii) B(td) = B ′(td )×B ′′(td )
‖B ′(td )×B ′′(td )‖

=
d

td+1−t1

w1
w0

(b1−b0)× d(d−1)
(td+1−t2)(td+2−t2)

w2
w0

(b2−b0)∥∥∥ d
td+1−t1

w1
w0

(b1−b0)× d(d−1)
(td+1−t2)(td+2−t2)

w2
w0

(b2−b0)
∥∥∥ = (b1−b0)×(b2−b0)

‖(b1−b0)×(b2−b0)‖

(iii) N(td) = B(td) × T(td) = (b1−b0)×(b2−b0)
‖(b1−b0)×(b2−b0)‖ × (b1−b0)

‖(b1−b0)‖
= ((b1−b0)×(b2−b0))×(b1−b0)

‖(b1−b0)×(b2−b1)‖‖(b1−b0)‖ = ‖(b1−b0)‖2(b2−b0)−〈b1−b0,b2−b0〉(b1−b0)
‖(b1−b0)×(b2−b1)‖‖(b1−b0)‖

= (b2−b0)
‖b2−b0‖ sin�

− cos�(b1−b0)
sin�‖(b1−b0)‖ = (b2−b0)

‖(b2−b0)‖ csc� − (b1−b0)
‖(b1−b0)‖ cot�

(iv) κ(td) = ‖B ′(td )×B ′′(td )‖
‖B ′(td )‖3 =

∥∥∥ d
td+1−t1

w1
w0

(b1−b0)× d(d−1)
(td+1−t2)(td+2−t2)

w2
w0

(b2−b0)
∥∥∥∥∥∥ d

td+1−t1

w1
w0

(b1−b0)
∥∥∥3

= d−1
d

x2

yk
w0w2

w2
1

‖(b2−b0)‖
‖(b1−b0)‖2 sin�

(v) Let det (b1 − b0, b2 − b0, b3 − b0) be denoted by K . Then

τ(td) = det(B ′(td ),B ′′(td ),B ′′′(td ))
‖B ′(td )×B ′′(td )‖2

=
d

td+1−t1

w1
w0

d(d−1)
(td+1−t2)(td+2−t2)

w2
w0

d(d−1)(d−2)
zlm

w3
w0

K∥∥∥ d
td+1−t1

w1
w0

(b1−b0)× d(d−1)
(td+1−t2)(td+2−t2)

w2
w0

(b2−b0)
∥∥∥2

= d−2
d

xyk
zlm

w0w3
w1w2

‖(b3−b0)‖ cosϕ

‖(b1−b0)×(b2−b0)‖
�

Theorem 13 An open NURBS curve B(t) of degree d with control points b0, b1, ...,
bn and weights w0, w1, ..., wn and knot vectors t0 = t1 = ... = td , td+1, ..., tm−d =
tm−d+1 = ... = tm−1 = tm be given. Then, the Frenet vector fields and curvatures of
this curve at the point t = tm−d are as follows:
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T(tm−d) = bn−bn−1

‖bn−bn−1‖ B(tm−d) = − (bn−bn−1)×(bn−bn−2)

‖(bn−bn−1)×(bn−bn−2)‖
N(tm−d) = (bn−bn−1)

‖bn−bn−1‖ cot ϑ − (bn−bn−2)

‖(bn−bn−2)‖ cscϑ

(18)
and

κ(tm−d) = wnwn−2

w2
n−1

e2

vp

(d − 1)

d

‖bn − bn−2‖
‖bn − bn−1‖2

sin ϑ

τ(tm−d) = −d − 2

d

evp

ruh

wnwn−3

wn−1wn−2

‖(bn − bn−3)‖ cos σ

‖(bn − bn−1) × (bn − bn−2)‖
where ϑ is the angle between the vectors bn − bn−1 and bn − bn−2 and σ is the angle
between the vectors bn − bn−3 and (bn − bn−1) × (bn − bn−2) and u = tm−3 −
tm−d−1, v = tm−2 − tm−d−1, e = tm−1 − tm−d−1, p = tm−1 − tm−d−2, h = tm−3 −
tm−d−2, r = tm−3 − tm−d−3.

Proof (i) T(tm−d) = B ′(tm−d )

‖B ′(tm−d )‖ =
d

tm−1−tm−d−1

wn−1
wn

(bn−bn−1)∥∥∥ d
tm−1−tm−d−1

wn−1
wn

(bn−bn−1)

∥∥∥ = bn−bn−1

‖bn−bn−1‖

(ii) B(tm−d) = B ′(tm−d )×B ′′(tm−d )

‖B ′(tm−d )×B ′′(tm−d )‖

= −
d

tm−1−tm−d−1

wn−1
wn

(bn−bn−1)×
[

wn−2
wn

d(d−1)
(tm−1−tm−d−2)(tm−2−tm−d−1)

(bn−bn−2)
]

∥∥∥ d
tm−1−tm−d−1

wn−1
wn

(bn−bn−1)×
[

wn−2
wn

d(d−1)
(tm−1−tm−d−2)(tm−2−tm−d−1)

(bn−bn−2)
]∥∥∥

= − (bn−bn−1)×(bn−bn−2)

‖(bn−bn−1)×(bn−bn−2)‖
(iii) N(tm−d) = B(tm−d) × T(tm−d) = − (bn−bn−1)×(bn−bn−2)

‖(bn−bn−1)×(bn−bn−2)‖ × bn−bn−1

‖bn−bn−1‖
= (bn−bn−1)

‖bn−bn−1‖ cot ϑ − (bn−bn−2)

‖(bn−bn−2)‖ cscϑ

(iv) κ(tm−d) = ‖B ′(tm−d )×B ′′(tm−d )‖
‖B ′(tm−d )‖3

=
∥∥∥ d
tm−1−tm−d−1

wn−1
wn

(bn−bn−1)×
[

wn−2
wn

d(d−1)
(tm−1−tm−d−2)(tm−2−tm−d−1)

(bn−bn−2)
]∥∥∥∥∥∥ d

tm−1−tm−d−1

wn−1
wn

(bn−bn−1)

∥∥∥3

= wnwn−2

w2
n−1

e2

vp
(d−1)

d
‖bn−bn−2‖
‖bn−bn−1‖2 sin ϑ

(v) Let det (bn − bn−1, bn − bn−2, bn − bn−3) be denoted by J . Then

τ(tm−d) = det(B ′(tm−d ),B ′′(tm−d ),B ′′′(tm−d ))
‖B ′(tm−d )×B ′′(tm−d )‖2

= −
d
e

wn−1
wn

wn−2
wn

d(d−1)
pv

wn−3
wn

d(d−1)(d−2)
urh J∥∥∥ d

e
wn−1
wn

(bn−bn−1)×
[

wn−2
wn

d(d−1)
pv (bn−bn−2)

]∥∥∥2

= − d−2
d

evp
ruh

wnwn−3

wn−1wn−2

‖(bn−bn−3)‖ cos σ

‖(bn−bn−1)×(bn−bn−2)‖
�

In openNURBScurves, in order to express the Frenet frameof the curve {T, N , B}
and the curvatures at any point t∗ ∈ (tr , tr+1), (d ≤ r ≤ m − d − 1), except t∗ =
td and t∗ = tm−d , the subdivision algorithm is applied to the curve by applying
rational de Boor algorithm. Thus the NURBS curve is divided into two segments.
The points

{
bdr , b

d−1
r , bd−2

r , bd−3
r

}
obtained by the algorithm at the given point t∗ will

represent the first 4 control points the new NURBS curve of right side from obtained
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two segments. And the weights
{
wd

r , w
d−1
r , wd−2

r , wd−3
r

}
will also represent the

weights of these control points. So the points b0, b1, b2, b3 can be considered as
control points of the newNURBS curve. And the point t∗ here can also be considered
the point td of the new NURBS curve. Under the consideration if the new NURBS
curve is reparametrized on the interval [td , tm−d ] the knot vectors can be chosen
as initial knots. Thus the differences between the new obtained NURBS curve and
initial NURBS curve are only their control points and their weights. So the following
theorem can be proved similarly as before.

Theorem 14 An open NURBS curve B(t) of degree d with control points b0, b1, ...,
bn and weights w0, w1, ..., wn and knot vectors t0 = t1 = ... = td , td+1, ..., tm−d =
tm−d+1 = ... = tm−1 = tm be given. Then, the Frenet vector fields and curvatures of
this curve at the point t = t∗ ∈ (tr , tr+1) ,(d ≤ r ≤ m − d − 1) are as follows:

T(t∗) = bd−1
r −bdr‖bd−1
r −bdr ‖ B(t∗) = (bd−1

r −bdr )×(bd−2
r −bdr )‖(bd−1

r −bdr )×(bd−2
r −bdr )‖

N(t∗) = bd−2
r −bdr‖bd−2
r −bdr ‖csc� − bd−1

r −bdr‖(bd−1
r −bdr )‖ cot�

(19)

and

κ(t∗) = d − 1

d

x2

yk

wd
r w

d−2
r(

wd−1
r

)2
∥∥(
bd−2
r − bdr

)∥∥∥∥(
bd−1
r − bdr

)∥∥2 sin�

τ(t∗) = d − 2

d

xyk

zlm

wd
r w

d−3
r

wd−1
r wd−2

r

∥∥(
bd−3
r − bdr

)∥∥ cosϕ∥∥(
bd−1
r − bdr

)∥∥ ∥∥(
bd−2
r − bdr

)∥∥ sin�

where � is the angle between the vectors bd−1
r − bdr and bd−2

r − bdr and ϕ is the
angle between the vectors bd−3

r − bdr and
(
bd−1
r − bdr

) × (
bd−2
r − bdr

)
.

3.3 The Bertrand Pairs of Open NURBS Curves

Theorem 15 Let two open NURBS curves γ1(t) and γ2(t) of degree d with
control points b0, b1, ..., bn and c0, c1, ..., cn and the weights w0, w1, ..., wn and
z0, z1, ..., zn, respectively and knot vectors t0 = t1 = ... = td , td+1, ..., tm−d =
tm−d+1 = ... = tm−1 = tm be given. These curves γ1 and γ2 form a Bertrand pair at
the point t = td if and only if there exist θ ∈ [0, 2π ] and k ∈ R such that

c1 = c0 + (b1 − b0) cos θ − (b1 − b0) × (b2 − b0) sin θ

c2 = c1 + k(b1 − b0) + (b2 − b0)

satisfies.

Proof If these curves γ1 and γ2 form a Bertrand pair at the point t = td
then Nγ1(td) = Nγ2(td) satisfies. Thus these vectors ((b1 − b0) × (b2 − b0)) ×
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(b1 − b0) and ((c1 − c0) × (c2 − c0)) × (c1 − c0) be parallel. So The vectors
(c1 − c0) × (c2 − c0) , c1 − c0 , (b1 − b0) × (b2 − b0) , and b1 − b0 must be
coplanar. In addition since the vectors system {c1 − c0 and (c1 − c0) × (c2 − c0)}
and {b1 − b0 and (b1 − b0) × (b2 − b0)} are orthogonal, these systems must be
O+(2)−equivalent. i.e.,

{c1 − c0, (c1 − c0) × (c2 − c0)} O+(2)≈ {b1 − b0, (b1 − b0) × (b2 − b0)} .

This means that there exist θ ∈ [0, 2π ] such that

c1 − c0 = (b1 − b0) cos θ − (b1 − b0) × (b2 − b0) sin θ

(c1 − c0) × (c2 − c0) = (b1 − b0) sin θ + (b1 − b0) × (b2 − b0) cos θ

can be written. From this, c1 = c0 + (b1 − b0) cos θ − (b1 − b0) × (b2 − b0) sin θ

is obtained and if this is substituted to second then
(c1 − c0) × (c2 − c0) = [(b1 − b0) cos θ − (b1 − b0) × (b2 − b0) sin θ ] ×

(c2 − c0)
= (b1 − b0) × (c2 − c0) cos θ − [(b1 − b0) × (b2 − b0)] × (c2 − c0) sin θ

= (b1 − b0) sin θ + (b1 − b0) × (b2 − b0) cos θ can be written. Thus, from the
property of vector product “×” and the linear independence of the functions sinus
and cosinus,

(b1 − b0) × (c2 − c0) = (b1 − b0) × (b2 − b0)

〈(c2 − c0) , (b2 − b0)〉 = 1

〈(b1 − b0), (c2 − c0)〉 = 0

can be obtained. So, the vectors (c2 − c0) − (b2 − b0) and (b1 − b0) must be
parallel. Thus, there exist k ∈ R such that (c2 − c0) − (b2 − b0) = k(b1 − b0) can
be written. So

c2 = c0 + k(b1 − b0) + (b2 − b0)

be obtained. �

Theorem 16 Let two open NURBS curves γ1(t) and γ2(t) of degree d with
control points b0, b1, ..., bn and c0, c1, ..., cn and the weights w0, w1, ..., wn

and z0, z1, ..., zn, respectively and knot vectors t0 = t1 = ... = td , td+1, ..., tm−d =
tm−d+1 = ... = tm−1 = tm be given. These curves γ1 and γ2 form a Bertrand pair at
the point t = tm−d if and only if there exist θ ∈ [0, 2π ] and k ∈ R such that

cn = cn−1 + (bn − bn−1) cos θ − (bn − bn−1) × (bn − bn−2) sin θ

cn = cn−2 + (bn − bn−2) + k(bn − bn−1)

satisfies.

Proof It is proved similarly as previous theorem. �
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Theorem 17 Let two open NURBS curves γ1(t) and γ2(t) of degree d with
control points b0, b1, ..., bn and c0, c1, ..., cn and the weights w0, w1, ..., wn

and z0, z1, ..., zn, respectively and knot vectors t0 = t1 = ... = td , td+1, ..., tm−d =
tm−d+1 = ... = tm−1 = tm be given. These curves γ1 and γ2 form a Bertrand pair
at the point t = t∗ ∈ (tr , tr+1) ,(d ≤ r ≤ m − d − 1) if and only if there exist
θ ∈ [0, 2π ] and k ∈ R such that

cd−1
r = cdr + (bd−1

r − bdr ) cos θ − (bd−1
r − bdr ) × (bd−2

r − bdr )) sin θ

cd−2
r = cdr + k(bd−1

r − bdr ) + (bd−2
r − bdr )

satisfies.

Proof When the rational de Boor algorithm applies to these NURBS curves γ1(t)
and γ2(t) at the point t∗ ∈ (tr , tr+1), the control points

{
bdr , b

d−1
r , bd−2

r , bd−3
r

}
and{

cdr , c
d−1
r , cd−2

r , cd−3
r

}
can be obtained. So if these control points be written in the

theorem as the point t = td , then the proof is completed. �

Theorem 18 Let two open NURBS curves γ1(t) and γ2(t) of degree d with
control points b0, b1, ..., bn and c0, c1, ..., cn and the weights w0, w1, ..., wn

and z0, z1, ..., zn, respectively and knot vectors t0 = t1 = ... = td , td+1, ..., tm−d =
tm−d+1 = ... = tm−1 = tm be given. If ci = bi + p , (∀i = 0, 1, ..., n, p ∈ R3) sat-
isfies then γ1(t) and γ2(t) form a Bertrand pair if and only if the weights of these
NURBS curves are equal mutually or

w
j−1
i−1

z j−1
i−1

= w
j
i

z ji
= w

j−1
i

z j−1
i

satisfies.

Proof Let ci = bi + p , (∀i = 0, 1, ..., n, p ∈ R3) be satisfied. Firstly it is supposed
that the weights of these curves are equal mutually. Then, if t = td or t = tm−d it
can be seen easily that Nγ1 = Nγ2 (by choosing θ = 0 and k = 1 in Theorem 15)
and these curves γ1(t) and γ2(t) form a Bertrand pair. If t = t∗ (t∗ ∈ [tr , tr+1) then
it must be proved c j

i = b j
i + p to complete the proof.

α
j
i = t∗ − ti

ti+d− j+1 − ti

w
j
i =

(
1 − α

j
i

)
w

j−1
i−1 + α

j
i w

j−1
i

let’s prove this by induction. For j = 1, (for every i)
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c1i = (
1 − α1

i

) w0
i−1

w1
i

c0i−1 + α1
i

w0
i

w1
i

= (
1 − α1

i

) wi−1

w1
i

ci−1 + α1
i

wi

w1
i

ci

= (
1 − α1

i

) wi−1

w1
i

(bi−1 + p) + α1
i

wi

w1
i

(bi + p)

= (
1 − α1

i

) wi−1

w1
i

bi−1 + α1
i

wi

w1
i

bi +
((

1 − α1
i

) wi−1

w1
i

+ α1
i

wi

w1
i

)
p

= b1i + p

is obtained. Let us suppose that it is true for j − 1. i.e., let c j−1
i = b j−1

i + p be
satisfied.

c j
i =

(
1 − α

j
i

) w
j−1
i−1

w
j
i

c j−1
i−1 + α

j
i

w
j−1
i

w
j
i

c j−1
i

=
(
1 − α

j
i

) w
j−1
i−1

w
j
i

(
b j−1
i−1 + p

)
+ α

j
i

w
j−1
i

w
j
i

(
b j−1
i + p

)

=
(
1 − α

j
i

) w
j−1
i−1

w
j
i

b j−1
i−1 + α

j
i

w
j−1
i

w
j
i

b j−1
i +

((
1 − α1

i

) wi−1

w1
i

+ α1
i

wi

w1
i

)
p

= b j
i + p

is seen easily. So cdr = bdr + p, cd−1
r = bd−1

r + p, cd−2
r = bd−2

r + p are obtained.
Thus Nγ1 = Nγ2 and γ1(t) and γ2(t) form a Bertrand pair. Secondly it is supposed
that

w
j−1
i−1

z j−1
i−1

= w
j
i

z ji
= w

j−1
i

z j−1
i

be satisfied. So it can be seen easily that the curves γ1(t) and γ2(t) form a Bertrand
pair. �

Example 1 Let γ1(t) be an open NURBS curve of degree 3 with control points
b0 = (4, 2, 2), b1 = (2, 1, 4), b2 = (3, 4, 1), b3 = (3, 5, 5) , weights w0 = 0.5,
w1 = 0.25, w2 = 0.75, w3 = 1 and knot vectors t0 = t1 = t2 = 0; t3 = 2; t4 =
t5 = t6 = 3.

γ2(t) be also an openNURBS curve of degree 3with control points c0 = (5, 6, 4),
c1 = (3, 5, 6), c2 = (4, 8, 3), c3 = (4, 9, 7), weightsw0 = 0.25,w1 = 0.125,w2 =
0.375, w3 = 0.5 and knot vectors t0 = t1 = t2 = 0; t3 = 2; t4 = t5 = t6 = 3.

These curves are cubic NURBS curves and form a Bertrand pair (see Fig. 1). They
can be obtained from the B-spline basis functions as

γ1(t) =

⎧⎪⎪⎨
⎪⎪⎩

(
2 t2

3 −3 t
2 +2,31 t2

48−3 t
4 +1,− t2

24+1
)

7 t2
48− t

4 + 1
2

, t ∈ [0, 2]
(

t2

6 + t
2 ,13 t2

12 −5 t
2 + 11

4 ,13 t2

3 −35 t
2 + 37

2

)
t2
12 + 1

4

, t ∈ [2, 3]
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Fig. 1 Bertrand pair of open non-uniform B-spline curves γ1 and γ2

and

γ2(t) =

⎧⎪⎪⎨
⎪⎪⎩

(
13 t2

32 −7 t
8+ 5

4 ,59 t2

96−7 t
8+ 3

2 , t
2

8 − t
4+1

)

7 t2
96− t

8+ 1
4

, t ∈ [0, 2]
(

t2

8 + t
4 + 1

8 ,17 t2

24−5 t
4 + 15

8 ,9 t2

4 −35 t
4+ 19

2

)
t2
24 + 1

8

, t ∈ [2, 3]

References

1. Bertrand, J.: Latheories de courbes a doublecourbure. Journal de Mathematiques Pures et
Appliquees 15, 332–350 (1850)

2. Do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice Hall, Englewood
Cliffs, New Jersey (1976)

3. Neill, B.O.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press,
New York (1983)

4. Papaioannou, S.G., Kiritsis, D.: An application of Bertrand curves and surface to CAD/CAM.
Comput. Aided Des. 17, 348–352 (1985)
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Convergence Analysis of a Sixth-Order
Method Under Weak Continuity
Condition with First-Order Fréchet
Derivative

Mona Verma, Pooja Sharma, and Neha Gupta

Abstract In this article, a semi-local convergence analysis of a well-established
sixth-order method in Banach spaces is discussed. The analysis has been done under
the Hölder continuity condition with the help of the recurrence relation technique.
The relevance of our study lies in the fact that many examples which do not satisfy the
Lipschitz continuity but satisfy the Hölder continuity. A convergence theorem has
been established for the existence-uniqueness of the solution. A priori error bound
expression is also derived. Finally, the convergence analysis is carried out on various
examples. These examples include Fredholm, Hammerstein integral equation, and a
boundary value problem that validated the theoretical development.

Keywords Banach space · Local convergence · Recurrence relation ·
W-continuity condition

1 Introduction

This article is concerned with the finding of approximate solution x∗ of a nonlinear
equation

P(x) = 0, (1)

where P : � ⊆ X1 → X2 be a Fréchet differentiable operator in an open convex
domain � with X1 and X2 be the Banach spaces. Equation (1) can be found in the
form of a system of nonlinear equations such as integral equations and differen-
tial equations in various areas of science and engineering. One of the well-known
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second-ordermethod, namely, Newton’smethod [1]which iswidely applied for solv-
ing these types of nonlinear equations. Convergence analysis of an iterative method
can be categorized into two parts: local and semi-local convergence analysis. The
local convergence analysis of an iterative method provides the knowledge around
the solutions whereas the semi-local convergence analysis provides the information
around the initial points. Many authors have studied the local and semi-local conver-
gence analysis of the Newton’s-like method in their research articles. The semi-local
convergence of Newton’s method in Banach spaces was initially studied by Kan-
torovich [2] by using the majorizing technique and also under the recurrence relation
method. Later, Rall [3] has done some modifications in it. Many authors have stud-
ied various higher order iterative method under the Lipschitz continuity condition
[4–6], Hölder continuity condition [7–12]. Few experiments have been performed
to analyze the static/dynamic activity of temperature-independent plates and can be
seen in [13, 14].

This article deals with the study of semi-local convergence analysis of the sixth-
order method which is proposed by Madhu [4] and also the author has discussed
the semi-local convergence analysis of this method under the Lipschitz continuity
condition in [15] by using the recurrence relation technique. A step ahead, this
paper discussed the same method under the weaker continuity condition namely,
Hölder continuity condition. The important point to note is that the Hölder continuity
condition generalizes the Lipschitz continuity condition and there aremany examples
forwhich themethods fail to converge under Lipschitz condition but converges nicely
underHölder condition. Since second-order derivatives are difficult to computemany
times or may not even exist hence, we have assumed first-order Fréchet derivative of
the operator.

2 Preliminary Conditions

In this segment, we shall mention some preliminary conditions which will be use-
ful for establishing the semi-local convergence of the well-established sixth-order
iterative method developed by Madhu [15]. For x0 ∈ �, the method is given as

yn = xn − �n P(xn), zn = yn − τ�n P(yn), xn+1 = zn − τ�n P(zn), (2)

where �n = [P ′(xn)]−1, τ = 2I − �n P ′(yn). The semi-local convergence of the
method (2) has been discussed in [4] under the following assumptions:
(A1) ‖�0‖ ≤ �,

(A2) ‖�0P(x0)‖ ≤ �,

(A3) ‖P ′(x) − P ′(y)‖ ≤ K‖x − y‖, x, y ∈ �, K > 0.
But, several nonlinear equations that do not satisfy the (A3) condition. Hence, we
relax this assumption by Hölder condition which is weaker than Lipschitz condition.
Thus, we have weakened the hypothesis (A3) with:
(A4) ‖P ′(x) − P ′(y)‖ ≤ K‖x − y‖q , x, y ∈ �, q ∈ (0, 1].
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Define the auxilliary scalar functions:

φ1(x) = 1

1 − x (1 + φ3(x))q , (3)

φ2(x) = 1

q + 1
x + (x + 1)φ3(x) + 1

q + 1
xφ3(x)q+1, (4)

φ3(x) = 2x + 3x2 + x3

q + 1
+ x(1 + x)

q + 1

(
1 + x + x2

q + 1

)q+1

. (5)

Let j (x) = x(1 + φ3(x))q − 1. Since, j (0) < 0 and j (1) > 0 then it follows that,
there exists a positive real root of j (x) = 0 in (0, 1), say ρ0 and clearly, ρ0 < 1.

To investigate the convergence of the sequence {xn}, we need to prove that {xn}
to be a Cauchy sequence. For this, we shall analyze the characteristics of the real
functionsφ1(x), φ2(x) andφ3(x)described in theEqs. (3)–(5), respectively, and some
technical lemmas have been included which can be used to prove the convergence
theorem.

2.1 Lemma

Let φ1(x), φ2(x) and φ3(x) be the functions mentioned in the Eqs. (3)–(5) and ρ0 is
the minimum root of j (x) = 0 in (0, 1). Then the following holds:
(i) φ1 is an increasing function such that φ1(x) > 1 for x ∈ (0, ρ0);
(i i) φ2 and φ3 are also increasing functions for x ∈ (0, ρ0);
(i i i) For θ ∈ (0, 1), x ∈ [0, 1) we have φ1(θx) < φ1(x), φ3(θx) < φ3(x) and
φ2(θx) < θφ2(x). Define the sequences

�n+1 = dn�n, (6)

�n+1 = φ1(pn)�n, (7)

pn+1 = K�n+1�
q
n+1, (8)

dn+1 = φ1(pn+1)φ2(pn+1), (9)

wheren ≥ 0.Choose�0 = �,�0 = �, p0 = K��q andd0 = φ1(p0)φ2(p0).Then
from the above-mentioned definition it follows that

pn+1 = φ1(pn)d
q
n pn = pnφ1(pn)

q+1φ2(pn)
q . (10)
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2.2 Lemma

Consider the auxiliary function

m(x) =
(

x

q + 1
+ (1 + x)φ3(x) + xφ3(x)q+1

q + 1

)q

− (
1 − x(1 + φ3(x))q

)q+1
,

such that m(0) < 0, m(ρ0) > 0 and m ′(x) > 0. Thus, m(x) is an increasing function
and has a root ρ1 in (0, ρ0).

2.3 Lemma

Let φ1(x), φ2(x) and φ3(x) be the functions defined by (3)–(5), respectively. If
p0 ∈ (0, ρ1), then
(i) φ1(p0)

1+qφ2(p0)
q < 1;

(i i) φ1(p0)φ2(p0) < 1;
(i i i) the sequence {pn} is decreasing for all n ≥ 0;
(iv) pn < 1 for all n ≥ 0;
(v) pn(1 + φ3(pn))

q < 1.

Proof (i) Taking x = p0 in m(x), we get φ1(p0)
q+1φ2(p0)

q < 1 ∀ p0 ∈ (0, ρ1).

(i i) Since, φ1(p0) > 1, this gives (φ1(p0)φ2(p0))
q < 1, and hence, φ1(p0)φ2(p0) <

1.
(i i i) This part can be proved by using mathematical induction on the Eq. (10).
For n = 0, we have p1 = p0φ1(p0)

q+1φ2(p0)
q < p0.

Assume that pk < pk−1, for k ≤ n. Since, φ1 and φ2 are increasing function, we get

pn+1 = pnφ1(pn)
q+1φ2(pn)

q < pn−1φ1(pn−1)
q+1φ2(pn−1)

q < pn,

hence, the sequence {pn} is a decreasing sequence.

(iv) To see this part hold, we have pn < p0 < 1, for all n ≥ 0 and from the fact
that {pn} is strictly decreasing sequence and p0 ∈ (0, ρ1).

(v) Since, pn < pn−1 and φ3(x) is an increasing function, for all p0 ∈ (0, ρ1) we get

pn(1 + φ3(pn))
q < pn−1(1 + φ3(pn−1))

q < p0(1 + φ3(p0))
q < 1.
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2.4 Lemma

Let the conditions of Lemma 2.3 hold, if p0 ∈ (0, ρ1) and let γ = p1
p0

, then

(i) pn < γ [(1+q)n−1]/q p0, f or n ≥ 2;
(i i) φ1(pn)φ2(pn) < γ [(1+q)n−1]/qφ1(p0)φ2(p0) = γ (1+q)n/q

/φ1(p0)
1/q , f or n ≥

1;
and if p0 = ρ1, then

φ1(pn)φ2(pn) = φ1(p0)φ2(p0) = 1/φ1(p0)
1/q ,∀ n ≥ 1.

Proof The case when p0 ∈ (0, ρ1). The proof of (i) can be done by mathematical
induction. For n = 2 in Eq. (10) and by Lemma 2.1 (i i i), we have

p2 = p1φ1(p1)
1+qφ2(p1)

q = γ p0φ1(γ p0)
1+qφ2(γ p0)

q < γ [(1+q)2−1]/q p0.

We suppose now that
pn−1 < γ [(1+q)n−1−1]/q p0.

Then, by using the induction hypotheses, we have

pn = pn−1φ1(pn−1)
1+qφ2(pn−1)

q

< γ [(1+q)n−1−1]/q p0φ1(γ
[(1+q)n−1−1]/q p0)

1+qφ2(γ
[(1+q)n−1−1]/q p0)

q

< γ [(1+q)n−1]/q p0.

To prove (i i), we see that

φ1(pn)φ2(pn) < φ1(γ
[(1+q)n−1]/q p0)φ2(γ

[(1+q)n−1]/q p0)

< γ [(1+q)n−1]/qφ1(p0)φ2(p0)

< γ (1+q)n/q/φ1(p0)
1/q .

The case when p0 = ρ1 follows by analogy.

3 Recurrence Relations

The recurrence relations for the method (2) have established under the hypotheses
(A1), (A2) and (A4) already mentioned in the previous section. By assuming n = 0
in the method (2), we get

‖y0 − x0‖ ≤ �. (11)

Now, from the second sub-step of the method (2) we have
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z0 − x0 = −�0P(x0) − τ�0P(y0). (12)

Using Taylor’s expansion of P(y0) along x0, we get

P(y0) = P(x0) + P ′(x0)(y0 − x0) +
∫ 1

0

[
P ′(x0 + t (y0 − x0)) − P ′(x0)

]
dt (y0 − x0),

and thus,

�0P(y0) = �0

∫ 1

0

[
P ′(x0 + t (y0 − x0)) − P ′(x0)

]
dt (y0 − x0).

By using the norm in the Eq. (12), we have

‖z0 − x0‖ ≤ ‖y0 − x0‖ + �0K

q + 1
‖y0 − x0‖q+1 + �2

0 K 2

q + 1
‖y0 − x0‖2q+1

≤ � + �0K

q + 1
�q+1 + �2

0 K 2

q + 1
�2q+1

≤ �

(
1 + p0 + p0

2

q + 1

)
.

By using triangle inequality, we obtain

‖z0 − y0‖ ≤ 1

q + 1

(
p0 + p2

0

)
�.

Now, from the final sub-step of the Eq. (2), we obtain

‖x1 − x0‖ ≤ ‖z0 − y0‖ + ‖y0 − x0‖ + τ‖�0P(z0)‖. (13)

Further,

τ�0P(z0) = −τ 2�0P(y0) + τ�0

∫ 1

0

[
P ′(x0 + t (z0 − x0)) − P ′(x0)

]
dt (z0 − x0),

On taking norm both sides,

‖τ�0P(z0)‖ ≤ (
1 + �K‖y0 − x0‖q

) �K

q + 1
‖z0 − x0‖q+1 + (

1 + �K‖y0 − x0‖q
)2

×
(

�K

q + 1
‖y0 − x0‖q+1

)
.

On using the above equation in (13), then we have



Convergence Analysis of a Sixth-Order Method Under Weak Continuity Condition … 191

‖x1 − x0‖ ≤
[
1 + p0 + p2

0

q + 1
+ p0 + 2p2

0 + p3
0

q + 1
+ p0 + p2

0

q + 1

(
1 + p0 + p2

0

q + 1

)q+1
]

�

≤ (
1 + φ3(p0)

)
�.

3.1 Lemma

Let all the hypotheses of the Lemma 2.1, 2.2 hold and the assumptions (A1), (A2),
and (A4) are true, then for all n ≥ 0 the following inequalities are hold:
(In) ‖�n‖ ≤ φ1(pn−1)‖�n−1‖,
(I In) ‖yn − xn‖ ≤ ‖�n P(xn)‖ ≤ φ1(pn−1)φ2(pn−1)‖yn−1 − xn−1‖,
(I I In) ‖zn − yn‖ ≤

(
pn+p2

n
q+1

)
‖yn − xn‖,

(I Vn) K‖�n‖‖yn − xn‖q ≤ pn,

(Vn) ‖xn − xn−1‖ ≤ (
1 + φ3(pn−1)

)‖yn−1 − xn−1‖.
Proof (I1) : On assuming that x1, y1, z1 ∈ � and p0 < ρ1 then

‖I − �0P ′(x1)‖ ≤ ‖�0‖‖P ′(x1) − P ′(x0)‖
≤ �K‖x1 − x0‖q

≤ p0
(
1 + φ3(p0)

)q
< 1.

By Banach lemma, one can deduce that �1 exists and

‖�1‖ ≤ 1

1 − p0
(
1 + φ3(po)

)q ‖�0‖ ≤ φ1(p0)‖�0‖. (14)

(I I1): Using Taylor’s expansion, we have

P(x1) =
∫ 1

0

[
P ′(x0 + t (y0 − x0) − P ′(x0)

]
dt (y0 − x0) + P ′(y0)(x1 − y0)

+
∫ 1

0

[
P ′(y0 + t (x1 − y0) − P ′(y0)

]
dt (x1 − y0).

On taking norm both sides, we have

‖P(x1)‖ ≤ ‖P ′(y0)‖‖x1 − y0‖ +
∫ 1

0
tq K‖y0 − x0‖q dt‖y0 − x0‖ +

∫ 1

0
tq K‖x1 − y0‖q dt‖x1 − y0‖

≤
(

K

q + 1
�q + K

q + 1
[φ3(p0)

q+1�q ] + K�qφ3(p0) + φ3(p0)

�

)
‖y0 − x0‖.

Therefore,
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‖y1 − x1‖ ≤ φ1(p0)‖�0P(x1)‖
≤ φ1(p0)

[
p0

q + 1
+ (1 + p0)φ3(p0) + p0

q + 1
φ3(p0)

q+1

]
�

≤ φ1(p0)φ2(p0)‖y0 − x0‖. (15)

(I I I1): From the second sub-step of the method (2), we obtain

‖z1 − y1‖ ≤ (
1 + ‖�0‖Kφ1(p0)‖y1 − x1‖q

)
φ1(p0)‖�0‖ K

q + 1
‖y1 − x1‖q+1

≤ �K

q + 1
(1 + �Kφ1(p0)‖y1 − x1‖q)φ1(p0)‖y1 − x1‖q+1

≤ p1

q + 1
(1 + p1)‖y1 − x1‖. (16)

(I V1): On using (I1) and (I I1), we have

K‖�1‖‖y1 − x1‖q ≤ Kφ1(p0)‖�0‖φ1(p0)
qφ2(p0)

q‖y0 − x0‖q

≤ p0φ1(p0)
q+1φ2(p0)

q ≤ p1. (17)

For n = 1, the recurrence relation (I1) − (I V1) follows from Eqs. (14)–(17).

(V1): From the Eq. (14) we have that

‖x1 − x0‖ ≤ (
1 + φ3(p0)

)‖�0P(x0)‖ ≤ (
1 + φ3(p0)

)‖y0 − x0‖.

Assuming that (In)-(Vn) hold for n = k and xk, yk, zk ∈ �. In a similar manner, it
can be seen that (In)-(Vn) hold for n = k + 1. Hence, recurrence relations hold for
n ≥ 1. �

4 Semi-local Convergence

In this segment, the semi-local convergence theorem of the method (2) with a
(K , q)-Hölder continuity is established by using technical lemmas and value of
the norms defined in the previous section and the error bounds for it are also
obtained. Let us assume, γ = p1/p0 and � = 1

φ1(p0)1/q , U (x, r) = {y ∈ X1 : ‖y −
x‖ < r}, U (x, r) = {y ∈ X1 : ‖y − x‖ ≤ r}. We shall now state the following the-
orem.

Theorem 1 Let X1, X2 be Banach spaces and P : � ⊆ X1 → X2 be a non-
linear Fréchet differentiable operator in an open convex domain �. Let �0 =
[P ′(x0)]−1 exists and (A1), (A2) and (A4) assumptions hold. Let p0 = K��q ,
suppose that po < ρ1, p0(1 + φ3(p0))

q < 1 and U (x0, R�) ⊂ �, where R =
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p0+p2
0

q+1 + 1+φ3(p0)
1−φ1(p0)φ2(p0)

then starting with x0, generates the sequence {xn} defined in (2)
converges to a solution x∗ and it is the unique solution of P(x) = 0 in U (x0, r) ∩ �

with r =
(
1+q
K�

− (R�)q
)1/q

. Furthermore, an error bound expression is given as

‖x∗ − xn‖ ≤ (1 + φ3(p0))γ
[(1+q)n−1]/q2

[
�n

1 − γ (1+q)n/q�

]
�, n ≥ 0. (18)

Proof First of all, we will prove that yn and zn belong to U (x0, R�) ⊂ �. By
recurrence relation (Vn), it is easy to see that

‖xn − x0‖ ≤ ‖xn − xn−1‖ + ‖xn−1 − xn−2‖ + · · · + ‖x1 − x0‖
≤ (1 + φ3(pn−1))‖yn−1 − xn−1‖ + (1 + φ3(pn−2))‖yn−2 − xn−2‖

+ · · · + (1 + φ3(p0))‖y0 − x0‖.

Since, φ3(x) is an increasing function and pn is a decreasing sequence, this gives

‖xn − x0‖ ≤ (1 + φ3(p0))‖y0 − x0‖
n−1∑
k=0

(
φ1(p0)φ2(p0)

)k
. (19)

Now, using recurrence relation (I In) and Eq. (19), we get

‖yn − x0‖ ≤ ‖yn − xn‖ + ‖xn − x0‖

≤ (
φ1(p0)φ2(p0)

)n‖y0 − x0‖ + (1 + φ3(p0))‖y0 − x0‖
n−1∑
k=0

(φ1(p0)φ2(p0))
k

≤ (
1 + φ3(p0)

)1 − (
φ1(p0)φ2(p0)

)n+1

1 − φ1(p0)φ2(p0)
� < R�. (20)

By applying recurrence relations (In) and (I In), we have

‖zn − yn‖ ≤ ‖2I − �n P ′(yn)‖‖�n‖‖P(yn)‖
≤ �K

q + 1
(φ1(p0))

n
(
1 + �K (φ1(p0))

n‖yn − xn‖q
)‖yn − xn‖q+1

≤ p0

q + 1

[
1 + p0(φ1(p0)

q+1φ2(p0)
q)n

](
φ1(p0)

q+2φ2(p0)
q+1

)n‖y0 − x0‖.

Therefore,
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‖zn − x0‖ ≤ ‖zn − yn‖ + ‖yn − x0‖
≤ p0

q + 1

(
1 + p0(φ1(p0)

q+1φ2(p0)
q )n

)(
φ1(p0)

q+2φ2(p0)
q+1)n‖y0 − x0‖

+(
1 + φ3(p0)

)1 − (φ1(p0)φ2(p0))
n+1

1 − φ1(p0)φ2(p0)
‖y0 − x0‖

≤
(

p0 + p20
q + 1

+ (
1 + φ3(p0)

)1 − (
φ1(p0)φ2(p0)

)n+1

1 − φ1(p0)φ2(p0)

)
� < R�.

Hence, yn and zn ∈ U (x0, R�). Now,

‖xn+1 − xn‖ ≤ (1 + φ3(pn))‖yn − xn‖
≤ (

1 + φ3(pn)
)
φ1(pn−1)φ2(pn−1)‖yn−1 − xn−1‖

...

≤ (
1 + φ3(pn)

) n−1∏
j=0

φ1(p j )φ2(p j )‖y0 − x0‖. (21)

For the convergence of the sequence {xn}, we need to prove the sequence {xn} to be
a Cauchy sequence. For this, consider

‖xn+m − xn‖ ≤ ‖xn+m − xn+m−1‖ + ‖xn+m−1 − xn+m−2‖ + · · · + ‖xn+1 − xn‖

≤ (
1 + φ3(pn+m−1)

)
�

n+m−2∏
j=0

φ1(p j )φ2(p j )

+ · · · + (
1 + φ3(pn)

)
�

n−1∏
j=0

φ1(p j )φ2(p j ).

This gives

‖xn+m − xn‖ ≤ (
1 + φ3(p0)

)
�

[ m−1∑
l=0

n+l−1∏
j=0

φ1(p j )φ2(p j )

]

≤ (
1 + φ3(p0)

)
�

m−1∑
l=0

(φ1(p0)φ2(p0))
l+n. (22)

Since, functions, φ1 and φ2 are also increasing, therefore,

‖xn+m − xn‖ ≤ (
1 + φ3(p0)

)(
φ1(p0)φ2(p0)

)n
�

m−1∑
l=0

(
φ1(p0)φ2(p0)

)l

≤ (
1 + φ3(p0)

)(
φ1(p0)φ2(p0)

)n 1 − (
φ1(p0)φ2(p0)

)m

1 − φ1(p0)φ2(p0)
�.
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Therefore, the sequence {xn} is a Cauchy sequence if φ1(p0)φ2(p0) < 1 and hence
convergent. For n = 0 we get

‖xm − x0‖ ≤ (
1 + φ3(p0)

)1 − (
φ1(p0)φ2(p0)

)m

1 − φ1(p0)φ2(p0)
� < R�. (23)

Therefore, xm ∈ U (x0, R�) and taking m → ∞ in (23), we get x∗ ∈ U (x0, R�).

For n ≥ 1, m ≥ 1, invoking (I In) and Lemma 2.3 (i i), in Eq. (22), we have

‖xn+m − xn‖ ≤ (1 + φ3(p0))�

[ m−1∑
l=0

n+l−1∏
j=0

γ [(1+q) j −1]/qφ1(p0)φ2(p0)

]

≤ (1 + φ3(p0))�

[ m−1∑
l=0

n+l−1∏
j=0

γ (1+q) j /q�

]

≤ (1 + φ3(p0))�

[ m−1∑
l=0

γ [(1+q)n+l−1]/q2
�n+l

]
.

By using Bernoulli’s inequality, we have

γ [(1+q)n+l−1]/q2] = γ [(1+q)n−1]/q2
γ [(1+q)n/q2][(1+q)l−1]

≤ γ [(1+q)n−1]/q2
γ [(1+q)n/q]l ,

and consequently,

‖xn+m − xn‖ < (1 + φ3(p0))��n

[ m−1∑
l=0

γ [(1+q)n/q]l�l

]
γ [(1+q)n−1]/q2

< (1 + φ3(p0))��n

[
1 − (γ (1+q)n/q�)m

1 − γ (1+q)n/q�

]
γ [(1+q)n−1]/q2

.

(24)

Finally, let m → ∞ in (24) then we get (18) for all n ≥ 0. Now, it is to be shown,
that x∗ is a solution of P(x). Next, from (2) we have

‖P(xn)‖ ≤ ‖P ′(xn)‖‖yn − xn‖
≤ (

φ1(p0)φ2(p0)
)n‖P ′(xn)‖‖y0 − x0‖, (25)

and
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‖P ′(xn)‖ ≤ ‖P ′(x0)‖ + ‖P ′(xn) − P ′(x0)‖
≤ ‖P ′(x0)‖ + K‖xn − x0‖q

≤ ‖P ′(x0)‖ + K (R�)q . (26)

Therefore, ‖P ′(xn)‖ is bounded and hence, by tending n → ∞ in the Eq. (25) one
can deduce that ‖P(xn)‖ → 0. By continuity of P in �, P(x∗) = 0. Now, for the
uniqueness, let there exists y∗ ∈ U (x0, r) s.t. P(y∗) = 0 and y∗ �= x∗. Then,

0 = P(y∗) − P(x∗) =
∫ 1

0
P ′(x∗ + t (y∗ − x∗)dt (y∗ − x∗) = F

(
y∗ − x∗).

Now, we claim that the inverse of the operator F = ∫ 1
0 P ′(x∗ + t (y∗ − x∗)

)
dt exists

which leads to the conclusion that y∗ = x∗. Consider

‖I − �0F‖ ≤ ‖�0‖
∫ 1

0
‖P ′(x∗ + t (y∗ − x∗) − P ′(x0)‖dt

≤ K�

q + 1

(
‖x∗ − x0‖q + ‖y∗ − x0‖q

)

≤ K�

q + 1

[
Rq�q + 1 + q

K�
− Rq�q

]

≤ K�

q + 1

[
1 + q

K�

]
< 1,

then by the Banach Lemma for the invertible operator F is invertible and hence, we
can conclude that y∗ = x∗. �

5 Numerical Applications

In this segment, some numerical applications have been mentioned to show the
efficacy of our approach.

5.1 Example

Let the nonlinear integral equation of the form

P(a(x)) = a(x) − 1 − 1

3

∫ 1

0
G(x, y)(a(y))1+q dy, x ∈ [0, 1], (27)
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where G is the continuous and non-negative kernel defined in [0, 1] × [0, 1] and is
given as

G(x, y) =
{

(1 − x)y y ≤ x,

x(1 − y) x ≤ y.

The Fréchet derivative of Eq. (27) is given as

P ′(a)b(x) = b(x) − (1 + q)

3

∫ 1

0
G(x, y)(a(y))qdy, b ∈ [0, 1], q ∈ (0, 1].

Using max-norm, we get

‖P ′(a) − P ′(b)‖ ≤ (1 + q)

3
max

x∈[0,1]

∣∣∣∣
∫ 1

0
G(x, y)dy

∣∣∣∣ ‖a(y)q − b(y)q‖

≤ (1 + q)

24
‖a − b‖q .

Thus, the Lipschitz condition (A3) fails here for q ∈ (0, 1] but the hypothesis (A4)

holds. Now,

‖I − P ′(a0)‖ ≤ 1 + q

24
‖a0‖q .

If 1+q
24 ‖a0‖q < 1, then by Banach Lemma, we obtain

‖�0‖ ≤ 1

1 − 1+q
24 ‖a0‖q

= �.

Similarly, for a0 = a0(x) = 1, we obtain

‖P(a0)‖ ≤ 1

24
, ‖�0P(a0)‖ ≤ 1

(23 − q)
= �.

Now, for q = 0.85, we get p0 = 0.0060010926 < 0.17691956 = ρ1 and p0(1 +
φ3(p0))

q = 0.0060511939 < 1.Therefore, the conditions of the Theorem 1 fulfilled.
Hence, the existence of a∗ is guaranteed in U (a0, 0.046348246) and the uniqueness
in U (a0, 38.217851) ∩ �.

Notice that if we consider q = 1 in (27), we are getting

P(a(x)) = a(x) − 1 − 1

3

∫ 1

0
G(x, y)

(
a(y)

)2
dy.

Therefore,

‖P ′(a) − P ′(b)‖ ≤ 1

12
‖a − b‖.
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Againon assuming,a0 = a0(x) = 1,weobtain p0 = 0.0041322314 < 0.018598403
= ρ1 and p0(1 + φ3(p0))

q = 0.0041580213 < 1.Hence, the existence of a∗ is guar-
anted in U (a0, 0.04621850) and the uniqueness in U (a0, 21.953781) ∩ �.

Thus, the existence anduniqueness domains of convergence balls have been improved
under Hölder condition as compared with Lipschitz condition.

5.2 Example

Consider a nonlinear integral equation defined as

P(a)(x) = a(x) − 1 − 1

4

∫ 1

0

x

x + y
(a(y))1+qdy, x ∈ [0, 1], and a ∈ C[0, 1].

(28)
The Fréchet derivative of P is given as

P ′(a)b(x) = b(x) − 1 + q

4

∫ 1

0

x

x + y
(a(y))qdy, b ∈ [0, 1].

Using max-norm, we get

‖P ′(a) − P ′(b)‖ ≤ 1 + q

4
max

x∈[0,1]

∣∣∣∣
∫ 1

0

x

x + y
dy

∣∣∣∣ ‖a(y)q − b(y)q‖

≤ 1 + q

4
log 2‖a − b‖q .

Thus, the Lipschitz condition (A3) fails here for q ∈ (0, 1] but the hypothesis (A4)

hold. Now,

‖I − P ′(a0)‖ ≤ 1 + q

4
log 2‖a0‖q .

If 1+q
4 log 2‖a0‖q < 1 then by Banach Lemma, we obtain

‖�0‖ ≤ 1

1 − 1+q
4 log 2‖a0‖q

= �.

Hence,

‖�0P(a0)‖ ≤ ‖a0 − 1‖ + log 2
4 ‖a0‖1+q

1 − 1+q
4 log 2‖a0‖q

= �.

Now, for q = 0.7 and a0 = a0(x) = 1, we get p0 = 0.15631365 < 0.166432 = ρ1

and p0(1 + φ3(p0))
q = 0.19340562 < 1. Therefore, conditions of the Theorem 1

are fulfilled. Therefore, the solution exists in U (a0, 0.95963051) and the unique in
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U (a0, 6.4700146) ∩ �.

Notice that if we consider q = 1 in (28), we are getting

P(a)(x) = a(x) − 1 − 1

4

∫ 1

0

x

x + y
(a(y))2dy.

Therefore,

‖P ′(a) − P ′(b)‖ ≤ 1

2
log 2‖a − b‖.

Again, letting a0 = a0(x) = 1, then we get p0 = 0.14065901 < 0.18598403 = ρ1

and p0(1 + φ3(p0))
q = 0.17798110 < 1. Therefore, conditions of the Theorem 1

are fulfilled. Hence, the solution lies in U (a0, 0.64242555) and it is unique in
U (a0, 3.1283546) ∩ �.

Thus, the existence and uniqueness domains of convergence balls are bigger in the
case of Hölder condition.

5.3 Example

Consider the following nonlinear BVP

a′′ + a1+q = 0, q ∈ (0, 1], a(0) = a(1) = 0. (29)

The interval [0, 1] is divided into N sub-intervalswith points ti = ih, i = 0, 1, . . . , N
where h = 1

N . Approximating the second derivative in (29) by central difference
scheme by

a′′
i ≈ ai−1 − 2ai + ai+1

h2
, i = 1, 2, . . . , N − 1,

then we get
− ai−1 + 2ai − ai+1 − h2a1+q

i = 0. (30)

This can be expressed as P(a) = H(a) − h2l(a) = 0 where P : RN−1 → R
N−1,

a = (a1, a2, . . . , aN−1)
t , l(a) = (a1

1+q , a2
1+q , . . . , aN−1

1+q)t and the matrix H is
given by

H =

⎛
⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
. . .

...

0 0 0 · · · 2

⎞
⎟⎟⎟⎟⎟⎠

.

Here,
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P ′(a) = H − (1 + q)h2M(a),

where
M(a) = diag{aq

1 , aq
2 , . . . . . . , aq

N−1},

and
‖P ′(a) − P ′(b)‖ ≤ (1 + q)h2‖a − b‖q . (31)

Letting q = 1
2 , h = 1

10 and on assuming the initial approximation as

a0 = (33.5739, 65.2025, 91.566, 109.168, 115.363, 109.168, 91.566, 65.2025, 33.5739)t

we get K = 0.015, � = 26.5888 and � = 3.7570 × 10−4. Hence, p0 = K��
1
2 =

0.0077305536 < 0.14936797 = ρ1 and p0(1 + φ3(p0))
q = 0.0077908536 < 1.

Therefore, the conditions of Theorem 1 are fulfilled. Hence, the existence of a∗ is
guaranteed in U (a0, 0.00039176436) and the uniqueness in U (a0, 14.144594) ∩ �.

Notice that if we consider q = 1 in (31), we are getting

‖P ′(a) − P ′(b)‖ ≤ 2h2‖a − b‖.

Againonassuming,a0 = a0(x) = 1,weobtain p0 = 0.00019978824 < 0.18598403
= ρ1 and p0(1 + φ3(p0))

q = 0.0009984814 < 1.Hence, the existence of a∗ is guar-
anted in U (a0, 0.00037600048) and the uniqueness in U (a0, 3.7606061) ∩ �.

Thus, the existence and uniqueness domains of convergence balls are better under
the Hölder condition in comparison to the Lipschitz condition.

6 Conclusion

In this paper, the semi-local convergence analysis of the sixth-order iterative method
for finding the approximate root of the nonlinear equations has been studied by using
the recurrence relation technique. The existence and uniqueness of the approximate
solution have been calculated in the convergence theorem. Here, we also obtained an
error estimate expression. Numerical applications are also included which supports
our approach.

Acknowledgements The authors are grateful to the reviewers and editor for their useful comments.
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(m, n)-Paranormal Composition
Operators

Baljinder Kour and Sonu Ram

Abstract In this paper, we prove some characterizations for the class of (m, n)-
paranormal operators acting on the complex Hilbert space H . The class of (m, n)-
paranormal operators is characterized in terms of the Radon–Nikodym derivative of
themeasureλT−1 with respect toλ.Moreover, we discuss the conditions underwhich
the classes of composition operators, weighted composition operators, multiplication
composition operators are (m, n)-paranormal.

Keywords (m, n)-paranormal operators · Composition operator · Weighted
composition operator · Multiplication composition operator

1 Introduction

LetH be an infinite dimensional complex Hilbert space and B(H) denotes the C∗-
algebra of all bounded linear operators on H . Recall that an operator T is (m, n)-
paranormal if ‖T x‖n+1 ≤ m‖T n+1x‖‖x‖n for all x ∈ H , where n is a positive integer
and m is a positive real number [2].

Let (X, �, λ) be a sigma-finite measure space and T be a measurable transforma-
tion from X into itself. In this paper, L2(X, �, λ) is denoted by L2(λ). The equation
CT f = f ◦ T , f ∈ L2(λ) is defined a composition transformation on L2(λ). The
operator T induces a composition operator CT on L2(λ) if

• The measure λ ◦ T−1 is absolutely continuous with respect to λ, and
• The Radon–Nikodym derivative d(λT−1)

dλ
is essentially bounded.
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The adjoint composition operator is given byC∗
T f = h.E( f ) ◦ T−1. For the complex

valued �-measurable u on X , the weighted composition operator W = W(λ,T ) is a
linear transformation acting on L2(λ) is defined by W f = u. f ◦ T and its adjoint is
W ∗ f = h.E(u. f ) ◦ T−1.

Themultiplication composite operator on L2(λ) is given byMu,T ( f ) = u ◦ T . f ◦
T . Also, its adjoint is defined by M∗

u,T f = u.h.E( f ) ◦ T−1.
Senthilkumar et al. have studied weighted composition of quasi-paranormal oper-

ator in [4]. In [8], Veluchamy et al. have studied k-quasi-P-normal composition,
weighted composition, and composite multiplication on the complex Hilbert space.

In [1], Cowen et al. obtained a correlation between subnormality of composition
operators on H2 and Denjoy–Wolff point. There are some other authors who have
studied various operators for class of composition operators, weighted composition
operators, and multiplication composition operators on different spaces [1, 3, 5–7].

2 (m, n)-Paranormal Composition Operators

Proposition 1 [2, Theorem 2.1] An operator T is (m, n)-paranormal if and only if

m
2

n+1 T ∗n+1T n+1 − (n + 1)anT ∗T + m
2

n+1 nan+1 ≥ 0,

for each a > 0.

Theorem 1 Let CT ∈ B(L2). For each a > 0, the following are equivalent:

1. CT is (m, n)-paranormal.
2. m

1
n+1 ‖√hnE(h) ◦ T−n f ‖ ≥ (n + 1)

1
2 a

n
2 ‖√h f ‖ − m

1
n+1 n

1
2 a

n+1
2 ‖ f ‖.

3. m
2

n+1 hnE(h) ◦ T−n ≥ (n + 1)anh − m
2

n+1 nan+1.
4. m

2
n+1 hn−1h ◦ T−(n−1)E(h) ◦ T−n ≥ (n + 1)anh − m

2
n+1 nan+1.

5. m
2

n+1 h.hn−1 ◦ T−1E(h) ◦ T−n ≥ (n + 1)anh − m
2

n+1 nan+1.

Proof (1) =⇒ (2): Since CT is (m, n)-paranormal, by Proposition 1, for each a >

0, we have

m
2

n+1C∗n+1
T Cn+1

T − (n + 1)anC∗
TCT + m

2
n+1 nan+1 ≥ 0,

that is,

m
2

n+1C∗n+1
T Cn+1

T ≥ (n + 1)anC∗
TCT − m

2
n+1 nan+1.

So, we have

m
2

n+1
〈
(C∗n+1

T Cn+1
T ) f, f

〉 ≥(n + 1)an
〈
(C∗

TCT ) f, f
〉

− m
2

n+1 nan+1 〈 f, f 〉 .
(1)

Consider
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(C∗n+1
T Cn+1

T ) f =C∗n
T (C∗

TCT )Cn
T f

=C∗n
T (C∗

TCT )( f ◦ T n)

=C∗n
T (h f ◦ T n)

=hnE(h f ◦ T n) ◦ T−n

=hnE(h) ◦ T−n.E( f ) ◦ T n ◦ T−n

=hnE(h) ◦ T−n. f

(2)

and
C∗

TCT f = h f. (3)

From (1), (2) and (3), we obtain

m
2

n+1
〈
hnE(h) ◦ T−n f, f

〉 ≥ (n + 1)an 〈h f, f 〉 − m
2

n+1 nan+1 〈 f, f 〉 ,

that is,

m
2

n+1 ‖√hnE(h) ◦ T−n f ‖2 ≥ (n + 1)an‖√h f ‖2 − m
2

n+1 nan+1‖ f ‖2,
that is,

m
1

n+1 ‖√hnE(h) ◦ T−n f ‖ ≥ (n + 1)
1
2 a

n
2 ‖√h f ‖ − m

1
n+1 n

1
2 a

n+1
2 ‖ f ‖.

(4)

(2) =⇒ (3): From (4), we have

m
2

n+1
〈
hnE(h) ◦ T−n f, f

〉 ≥ (n + 1)an 〈h f, f 〉 − m
2

n+1 nan+1 〈 f, f 〉 ,

that is,

m
2

n+1 hnE(h) ◦ T−n ≥ (n + 1)anh − m
2

n+1 nan+1.

(3) =⇒ (4): Consider

m
2

n+1 hnE(h) ◦ T−n ≥ (n + 1)anh − m
2

n+1 nan+1 (5)

and
hn = λT−n(B). (6)

We have
λT−n(B) =λ−1(T−(n−1)(B))

=
∫

T−(n−1)
ndλ

=hn−1h ◦ T−(n−1).

(7)

From (6) and (7), we get
hn = hn−1h ◦ T−(n−1). (8)

Now, substitute (8) in (5),
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m
2

n+1 hn−1h ◦ T−(n−1)E(h) ◦ T−n ≥ (n + 1)anh − m
2

n+1 nan+1.

(3) =⇒ (5): Observe that

m
2

n+1 hnE(h) ◦ T−n ≥ (n + 1)anh − m
2

n+1 nan+1 (9)

and
hn = λT−n(B). (10)

We have
λT−n(B) =λ(T−(n−1)(T−1B))

=
∫

T−B

hn−1dλ

=h.hn−1 ◦ T−1.

(11)

From (10) and (11), we obtain

hn = h.hn−1 ◦ T−1. (12)

Now, substitute (12) in (9),

m
2

n+1 h.hn−1 ◦ T−1E(h) ◦ T−n ≥ (n + 1)anh − m
2

n+1 nan+1.

(5) =⇒ (1) :
Consider that

m
2

n+1 h.hn−1 ◦ T−1E(h) ◦ T−n ≥ (n + 1)anh − m
2

n+1 nan+1, (13)

holds. Since
hn = h.hn−1 ◦ T−1.

Therefore, (13) becomes

m
2

n+1 hnE(h) ◦ T−n ≥ (n + 1)anh − m
2

n+1 nan+1,

m
2

n+1
〈
hnE(h) ◦ T−n f, f

〉 ≥ (n + 1)an 〈h f, f 〉 − m
2

n+1 nan+1 〈 f, f 〉 .
(14)

By definition of composition operator, we have

(C∗n+1
T Cn+1

T ) f = hnE(h) ◦ T−n. f

C∗
TCT f = h f.

(15)

Therefore, from (14) and (15), we get
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m
2

n+1
〈
(C∗n+1

T Cn+1
T ) f, f

〉 ≥(n + 1)an
〈
(C∗

TCT ) f, f
〉

− m
2

n+1 nan+1 〈 f, f 〉 .
(16)

Hence CT is (m, n) paranormal operator.
This proves the equivalence relations. �
Example 1 LetH = l2(Z,C) and T be a weighted shift operator onH defined by
T ep = vkep+1 with non zero weights vp, and the orthonormal basis ep for all integers
p, where

vp = 1

for every p.
Equivalently, CT is defined by

CT (..., x−1, x0, x1, ...) = (..., x−1, x0, x1, x2, x3, ...).

By [2, Theorem 2.9], CT is (m, n)-paranormal if and only if

|vp|n−1 ≤ m|vp+1||vp+2|...|vp+n−1|, (17)

for unit vectors and n ≥ 2. Thus, for m = 2 and n = 3, CT is (2, 3)-paranormal.
Let f be a function defined by f (k) = xk and T : Z −→ Z defined by T (k) =

k + 1, then

CT f (..., x−1, x0, x1, ...) = ( f ◦ T )(..., x−1, x0, x1, ...) = (· · · , x−1, x0, x1, · · · )
(18)

is composition operator. Thus CT is (2, 3)-paranormal composition operator.

Theorem 2 An operator C∗
T is (m, n)-paranormal if and only if

m
2

n+1
〈
hn+1 ◦ T n+1.E( f ), f

〉 ≥ (n + 1)an
〈
hn ◦ TmE( f ), f

〉

− m
2

n+1 nan+1 〈 f, f 〉 ,
(19)

for each a > 0.

Proof Let C∗
T be (m, n)-paranormal. Then by Proposition 1, for each a > 0, we

have

m
2

n+1Cn+1
T C∗n+1

T − (n + 1)anCTC
∗
T + m

2
n+1 nan+1 ≥ 0,

that is,

m
2

n+1Cn+1
T C∗n+1

T ≥ (n + 1)anCTC
∗
T − m

2
n+1 nan+1,

that is,

m
2

n+1
〈
(Cn+1

T C∗n+1
T ) f, f

〉 ≥ (n + 1)an
〈
(CTC

∗
T ) f, f

〉

−m
2

n+1 nan+1 〈 f, f 〉 . (20)
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Observe that
(Cn+1

T C∗n+1
T ) f = hn+1 ◦ T n+1.E( f ),

CTC
∗
T f = hn ◦ TmE( f ).

(21)

Substitute (21) in (20),

m
2

n+1
〈
hn+1 ◦ T n+1.E( f ), f

〉 ≥ (n + 1)an
〈
hn ◦ TmE( f ), f

〉

− m
2

n+1 nan+1 〈 f, f 〉 .

Conversely, let (19) holds.
Consider

hn+1 ◦ T n+1.E( f ) =(Cn+1
T C∗n+1

T ) f,

hn ◦ TmE( f ) =CTC
∗
T f.

(22)

Substitute (22) in (19), we obtain

m
2

n+1
〈
(Cn+1

T C∗n+1
T ) f, f

〉 ≥ (n + 1)an
〈
CTC

∗
T f, f

〉

− m
2

n+1 nan+1 〈 f, f 〉 ,

that is,

m
2

n+1 (Cn+1
T C∗n+1

T ) ≥ (n + 1)anCTC
∗
T − m

2
n+1 nan+1.

Hence, C∗
T is (m, n)-paranormal. �

3 Weighted Composition Operators

Theorem 3 An operator W is (m, n)-paranormal if and only if

m
2

n+1 ‖un+1. f ◦ T n+1‖2 ≥ (n + 1)an‖u. f ◦ T ‖2 − m
2

n+1 nan+1‖ f ‖2, (23)

for each f ∈ L2 and a > 0.

Proof Assume that W is (m, n)-paranormal. Then, for each a > 0,

m
2

n+1 W ∗n+1Wn+1 − (n + 1)anW ∗W + m
2

n+1 nan+1 ≥ 0,

that is,

m
2

n+1 W ∗n+1Wn+1 ≥ (n + 1)anW ∗W − m
2

n+1 nan+1,

that is,

m
2

n+1
〈
(W ∗n+1Wn+1) f, f

〉 ≥ (n + 1)an
〈
(W ∗W ) f, f

〉

−m
2

n+1 nan+1 〈 f, f 〉 ,
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that is,

m
2

n+1 ‖Wn+1 f ‖2 ≥ (n + 1)an‖W f ‖2 − m
2

n+1 nan+1‖ f ‖2.
(24)

Consider
Wn+1 f = un+1. f ◦ T n+1,

W f = u. f ◦ T .
(25)

Substitute (25) in (24), we get

m
2

n+1 ‖un+1. f ◦ T n+1‖2 ≥ (n + 1)an‖u. f ◦ T ‖2 − m
2

n+1 nan+1‖ f ‖2.
(26)

Conversely, let (23) holds.
Consider

Wn+1 f = un+1. f ◦ T n+1,

W f = u. f ◦ T .
(27)

Substitute (27) in (23),

m
2

n+1 ‖Wn+1 f ‖2 ≥ (n + 1)an‖W f ‖2 − m
2

n+1 nan+1‖ f ‖2,
that is,

m
2

n+1
〈
(W ∗n+1Wn+1) f, f

〉 ≥ (n + 1)an
〈
(W ∗W ) f, f

〉

− m
2

n+1 nan+1 〈 f, f 〉 ,

that is,

m
2

n+1 W ∗n+1Wn+1 ≥ (n + 1)anW ∗W − m
2

n+1 nan+1.

This completes the converse part. �

Theorem 4 Let W ∗ ∈ B(L2). Then W ∗ is (m, n)-paranormal if and only if

m
2

n+1 ‖hn+1E(un+1. f ) ◦ T−(n+1)‖2 ≥ (n + 1)an‖h.E(u. f ) ◦ T−1‖2
−m

2
n+1 nan+1‖ f ‖2, (28)

for each f ∈ L2 and a > 0.

Proof Let W ∗ be (m, n)-paranormal. Then for each a > 0,
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m
2

n+1 Wn+1W ∗n+1 − (n + 1)anWW ∗ + m
2

n+1 nan+1 ≥ 0,

that is,

m
2

n+1 Wn+1W ∗n+1 ≥ (n + 1)anWW ∗ − m
2

n+1 nan+1,

that is,

m
2

n+1
〈
(Wn+1W ∗n+1) f, f

〉 ≥ (n + 1)an
〈
(WW ∗) f, f

〉

−m
2

n+1 nan+1 〈 f, f 〉 ,

that is,

m
2

n+1 ‖W ∗n+1 f ‖2 ≥ (n + 1)an‖W ∗ f ‖2 − m
2

n+1 nan+1‖ f ‖2.
. (29)

Consider
W ∗n+1 f =hn+1E(un+1. f ) ◦ T−(n+1),

W ∗ f =h.E(u. f ) ◦ T−1.
(30)

Substitute (30) in (29),

m
2

n+1 ‖hn+1E(un+1. f ) ◦ T−(n+1)‖2 ≥(n + 1)an‖h.E(u. f ) ◦ T−1‖2
− m

2
n+1 nan+1‖ f ‖2.

Conversely, let (28) holds.
Since

W ∗n+1 f = hn+1E(un+1. f ) ◦ T−(n+1),

W ∗ f = h.E(u. f ) ◦ T−1.
(31)

Substitute (31) in (28),

m
2

n+1 ‖W ∗n+1 f ‖2 ≥ (n + 1)an‖W ∗ f ‖2 − m
2

n+1 nan+1‖ f ‖2,
that is,

m
2

n+1
〈
(Wn+1W ∗n+1) f, f

〉 ≥ (n + 1)an
〈
(WW ∗) f, f

〉

− m
2

n+1 nan+1 〈 f, f 〉 ,

that is,

m
2

n+1 Wn+1W ∗n+1 ≥ (n + 1)anWW ∗ − m
2

n+1 nan+1.

Hence, W ∗ is (m, n)-paranormal. �
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4 Multiplication Composition Operators

Theorem 5 Let Mu,T is (m, n)-paranormal operator if and only if

m
2

n+1 ‖
n+1∏

i=1

(u ◦ T i ). f ◦ T n+1‖2 ≥(n + 1)an‖u ◦ T . f ◦ T ‖2

− m
2

n+1 nan+1‖ f ‖2,
(32)

for each a > 0.

Proof Let Mu,T be (m, n)-paranormal. Then for each a > 0,

m
2

n+1 M∗n+1
u,T Mn+1

u,T − (n + 1)anM∗
u,T Mu,T + m

2
n+1 nan+1 ≥ 0,

that is,

m
2

n+1 M∗n+1
u,T Mn+1

u,T ≥ (n + 1)anM∗
u,T Mu,T − m

2
n+1 nan+1,

that is,

m
2

n+1
〈
(M∗n+1

u,T Mn+1
u,T ) f, f

〉 ≥ (n + 1)an
〈
(M∗

u,T Mu,T ) f, f
〉

− m
2

n+1 nan+1 〈 f, f 〉 ,

that is,

m
2

n+1 ‖Mn+1
u,T f ‖2 ≥ (n + 1)an‖Mu,T f ‖2 − m

2
n+1 nan+1‖ f ‖2.

(33)

Since

Mn+1
u,T f =

n+1∏

i=1

(u ◦ T i ). f ◦ T n+1,

Mu,T f = u ◦ T . f ◦ T .

(34)

Substitute (34) in (33), so we get

m
2

n+1 ‖
n+1∏

i=1

(u ◦ T i ). f ◦ T n+1‖2 ≥(n + 1)an‖u ◦ T . f ◦ T ‖2

− m
2

n+1 nan+1‖ f ‖2.

Conversely, let (32) holds.
Since

Mn+1
u,T f =

n+1∏

i=1

(u ◦ T i ). f ◦ T n+1,

Mu,T f = u ◦ T . f ◦ T .

(35)
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Substitute (35) in (32),

m
2

n+1 ‖Mn+1
u,T f ‖2 ≥ (n + 1)an‖Mu,T f ‖2 − m

2
n+1 nan+1‖ f ‖2,

that is,

m
2

n+1
〈
(M∗n+1

u,T Mn+1
u,T ) f, f

〉 ≥ (n + 1)an
〈
(M∗

u,T Mu,T ) f, f
〉

− m
2

n+1 nan+1 〈 f, f 〉 ,

that is,

m
2

n+1 M∗n+1
u,T Mn+1

u,T − (n + 1)anM∗
u,T Mu,T + m

2
n+1 nan+1 ≥ 0,

for each a > 0. Thus, Mu,T is (m, n)-paranormal. �

Theorem 6 An operator M∗
u,T is (m, n)-paranormal operator if and only if

m
2

n+1 ‖u.h.

n+1∏

i=1

(E(u.h ◦ T−i )).E( f ) ◦ T−n+1‖2

≥ (n + 1)an‖u.h.E( f ) ◦ T−1‖2 − m
2

n+1 nan+1‖ f ‖2,
(36)

for each f ∈ L2 and a > 0.

Proof Assume that M∗
u,T is (m, n) paranormal. Then for each a > 0,

m
2

n+1 Mn+1
u,T M∗n+1

u,T − (n + 1)anMu,T M
∗
u,T + m

2
n+1 nan+1 ≥ 0,

that is,

m
2

n+1 Mn+1
u,T M∗n+1

u,T ≥ (n + 1)anMu,T M
∗
u,T − m

2
n+1 nan+1,

that is,

m
2

n+1
〈
(Mn+1

u,T M∗n+1
u,T ) f, f

〉 ≥ (n + 1)an
〈
(Mu,T M

∗
u,T ) f, f

〉

− m
2

n+1 nan+1 〈 f, f 〉 ,

that is,

m
2

n+1 ‖M∗n+1
u,T f ‖2 ≥ (n + 1)an‖M∗

u,T f ‖2 − m
2

n+1 nan+1‖ f ‖2.

(37)

Consider

M∗n+1
u,T f = u.h.

n+1∏

i=1

(E(u.h ◦ T−i )).E( f ) ◦ T−n+1,

M∗
u,T f = u.h.E( f ) ◦ T−1.

(38)

Substitute (38) in (37), so we obtain
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m
2

n+1 ‖u.h.

n+1∏

i=1

(E(u.h ◦ T−i )).E( f ) ◦ T−n+1‖2

≥ (n + 1)an‖u.h.E( f ) ◦ T−1‖2 − m
2

n+1 nan+1‖ f ‖2.
(39)

Conversely, let (36) holds.
Consider

M∗n+1
u,T f = u.h.

n+1∏

i=1

(E(u.h ◦ T−i )).E( f ) ◦ T−n+1,

M∗
u,T f = u.h.E( f ) ◦ T−1.

(40)

Substitute (40) in (36),

m
2

n+1 ‖M∗n+1
u,T f ‖2 ≥ (n + 1)an‖M∗

u,T f ‖2 − m
2

n+1 nan+1‖ f ‖2,
that is,

m
2

n+1
〈
(Mn+1

u,T M∗n+1
u,T ) f, f

〉 ≥ (n + 1)an
〈
(Mu,T M

∗
u,T ) f, f

〉

− m
2

n+1 nan+1 〈 f, f 〉 ,

that is,

m
2

n+1 Mn+1
u,T M∗n+1

u,T − (n + 1)anMu,T M
∗
u,T + m

2
n+1 nan+1 ≥ 0,

for each a > 0. Thus, M∗
u,T is (m, n)-paranormal. �

5 Concluding Remarks

We have given some characterizations for the class of (m, n)-paranormal operators
acting on the complex Hilbert spaceH . The class of (m, n)-paranormal operators is
characterized in terms of the Radon–Nikodym derivative of the measure λT−1 with
respect to λ. Further, we have discussed the conditions for (m, n)-paranormal of the
classes of composition operators, weighted composition operators, multiplication
composition operators.
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On the Domain of q-Euler Matrix in c0
and c

Taja Yaying

Abstract In this study, we present the Banach spaces eq0 and eqc obtained by the
domain of q-analog Eq of the Euler matrix of order 1 in the spaces c0 and c,
respectively. We exhibit certain topological properties and inclusion relations of
these spaces. We obtain the bases and determine the Köthe duals of the spaces eq0
and eqc . We characterize certain classes of matrix mappings from the spaces eq0 and
eqc to the space μ ∈ {�∞, c, c0, �1, bs, cs, cs0}.

Keywords q-Euler matrix · Sequence spaces · α- · β- · γ -duals · Matrix
mappings

1 Introduction

Throughout this study, the letter s stands for the set of all real-valued sequences. A
sequence space is a linear subspace of s. Some examples of classical sequence spaces
are �∞ (bounded sequences), c0 (null sequences), and c (convergent sequences). A
BK -space is a Banach space with continuous coordinates. The space λ ∈ {�∞, c0, c}
is a BK -space endowed with supremum norm defined by ‖z‖�∞ = supr∈N0

|zr | .
Here and in what follows, N0 = {0, 1, 2, . . .}. Also, �k stands for the space of all
k-absolutely summable sequences with 1 ≤ k < ∞. Further, the notations bs, cs,
and cs0 represent the spaces of all bounded, convergent, and null series, respectively.

Let λ and μ be two sequence spaces. If � = (φrv) is an infinite matrix of real
entries, then r th row of the matrix � shall be denoted by �r . Let z = (zv) be
a sequence in λ, then the notation �z = {(�z)r } = {∑∞

v=0 φrvzv

}
is called �-

transform of the sequence z, provided that the series
∑∞

v=0 φrvzv exists for each
r ∈ N0. Further, the matrix � is said to define a mapping from λ to μ if �z ∈ μ for
every sequence z ∈ λ. In notation, � ∈ (λ : μ) if and only if � is a mapping from λ

to μ. Moreover, the matrix � = (φrv) is called a triangle if φrr �= 0 and φrv = 0 for
all v > r.
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Define the set λ� by
λ� = {z ∈ s : �z ∈ λ}. (1)

The setλ� is a sequence space and is called the domain ofmatrix� in the spaceλ.The
domain of a matrix plays an important role in the construction of sequence spaces.
It is known that if λ is a BK -space, then the matrix domain λ� is also a BK -space
with the norm ‖z‖λ�

= ‖�z‖λ . With this concept, several researchers introduced
the interesting Banach sequence spaces using the domain of special triangles. For
relevant literature, we refer the papers [2, 3, 19, 24, 26, 27, 34] and textbooks/Ph.D.
dissertation [7, 8, 25, 35]. For some recent publications dealing with the domain
of triangles in classical spaces, we refer [1, 2, 4, 9, 12, 14–17, 21–23, 28–31, 33,
36–40].

1.1 Euler Matrix of Order 1 and Sequence Spaces

The Euler matrix E = (erv) of order 1 is defined by

erv =
{

(rv)
2r 0 ≤ v ≤ r,

0 otherwise,

for all r, v ∈ N. Not much studies related to sequence spaces obtained using the
domain of the matrix E can be found in the literature. Recently, Başar and Braha
[6] studied the space of the Euler-Cesàro bounded, convergent, and null difference
sequences. It is shown that these spaces are separable BK -spaces. Further, the authors
obtained certain inclusion relations, Schauder basis, and Köthe duals and character-
ized the certain classes of matrix transformations on these spaces. More recently,
Ellidokuzoğlu and Demiriz [11] give a further generalization of the spaces defined
in [6] by introducing theEuler-Riesz bounded, convergent, and null difference spaces.

1.2 q-Calculus

The q-calculus is a branch of mathematics that deals with the generalization of some
well-known mathematical expressions by using the parameter q. The generalized
expression so obtained is called q-analog of the original expression. Further, the
q-analog returns the original expression when q approaches 1. Several researchers
are engaged in the field of q-calculus due to its broad applications in mathematics,
physics, and engineering sciences. It is widely used by researchers in operator theory,
approximation theory, hypergeometric series, special functions, quantum algebras,
combinatorics, etc. We refer the book [20] for details in q-calculus.
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Now, we recall certain terminologies in q-calculus that are fundamental in our
investigation:

Definition 1 Let 0 < q < 1. Then the q-number is defined by

[r ]q =
{

1−qr

1−q (r = 1, 2, 3, . . .),

1 (r = 0).

Clearly, [r ]q reduces to r when q → 1.

Definition 2 The q-analog of binomial coefficient or q-binomial coefficient is
defined by

[
r

v

]

q

=
{ [r ]q !

[r−v]q ![v]! (r ≥ v),

0 (r < v),

where q-factorial [r ]q ! of r is defined by

[r ]q ! = [r ]q [r − 1]q . . . [2]q [1]q .

Motivated by the above studies, we construct q-analog Eq of the Euler matrix of
order 1 and present new BK -spaces eq0 and eqc derived by the domain of the matrix
Eq in the spaces c0 and c, respectively. We exhibit certain topological properties,
inclusion relations, and bases for the spaces eq0 and eqc . In Sect. 3, we determine the
Köthe duals (α-, β-, and γ -duals) of the spaces eq0 and e

q
c . In Sect. 4, we characterize

certain classes of matrix mappings from the spaces eq0 and eqc to the space μ ∈
{�∞, c, c0, �1, bs, cs, cs0}.

2 q-Euler Spaces eqc and eq0

Throughout this study, we shall use the notation π(r)(q) = 
r−1
v=0(1 + qv) with

π(0)(q) = 1. Then the matrix Eq = (eqrv) is defined by

eqrv =
⎧
⎨

⎩

[rv]qq(v2)

π(r)(q)
(0 ≤ v ≤ r),

0 (v > r),

for all r, v ∈ N0. More explicitly,
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Eq =

⎡

⎢⎢⎢⎢⎢⎢
⎣

1 0 0 0 . . .
1
2

1
2 0 0 . . .

1
2(1+q)

1
2

q
2(1+q)

0 . . .

1
2(1+q)(1+q2)

1+q+q2

2(1+q)(1+q2)

q(1+q+q2)

2(1+q)(1+q2)
1

2(1+q)(1+q2)
. . .

...
...

...
...

. . .

⎤

⎥⎥⎥⎥⎥⎥
⎦

.

It is known from [20, p. 29] that the infinite product π(∞)(q) = 2(1 + q)(1 +
q2) . . . converges to a finite limit. Thus, we may write π(∞)(q) = π(q), where π(q)

is finite. Observe that

lim
r→∞ eqrv = lim

r→∞

[r
v

]
q
q(v

2)

π(r)(q)
= q(v

2)
limr→∞

[r
v

]
q

limr→∞ π(r)(q)

=
q(v

2) 1
[v]q !(1−q)v

π(q)

= q(v

2)

[v]q !(1 − q)v
π(q).

This immediately yields us the following result.

Lemma 1 The q-Euler matrix Eq is a conservative matrix. In other words, Eq maps
c to c.

Now we define the sequence spaces eq0 and eqc by

eq0 =
{

z = (zr ) ∈ s : lim
r→∞

1

π(r)(q)

r∑

v=0

[
r

v

]

q

q(v

2)zv = 0

}

,

eqc =
{

z = (zr ) ∈ s : lim
r→∞

1

π(r)(q)

r∑

v=0

[
r

v

]

q

q(v

2)zv exists

}

.

Further, on using notation (1), we realize that the spaces eq0 and eqc can also be
defined in the form

eq0 = (c0)Eq and eqc = cEq . (2)

The spaces eq0 and e
q
c reduce to the Euler spaces e0 = (c0)E and ec = cE , respectively,

when q approaches 1.
Let us define the sequence w = (wv) in terms of the sequence z = (zv) by

wr = (Eqz)r = 1

π(r)(q)

r∑

v=0

[
r

v

]

q

q(v

2)zv, (3)
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for each r ∈ N0. The sequence w is called the Eq -transform of the sequence z. We
write on using (3)

zr =
r∑

v=0

(−1)r−v
π(v)(q)

[r
v

]
q
q(r−v

2 )

q(v

2)
wv, (4)

for each r ∈ N0.

Now, we can state the first result, as follows, without proof:

Theorem 1 The spaces eq0 and e
q
c are BK-spaces under the supremum norm defined

by

‖z‖eq0 = ‖z‖eqc = sup
r∈N0

∣∣∣∣∣∣

r∑

v=0

[r
v

]
q
q(v

2)

π(r)(q)
zv

∣∣∣∣∣∣
.

Proof The proof is a routine exercise and hence details are omitted. �

Theorem 2 The q-Euler spaces eq0 and eqc are linearly isomorphic to c0 and c,
respectively.

Proof We present the proof for the space eq0 . The proof for the other case can be
obtained analogously. Define the mapping T : eq0 → c0 by T z = Eqz for all z ∈ eq0 .
It is easy to observe that T is linear and 1 − 1. Let w = (wv) ∈ c0 and z = (zv) is
as defined in (4). Then, we have

lim
r→∞

r∑

v=0

[r
v

]
q
q(v

2)

π(r)(q)
zv = lim

r→∞

r∑

v=0

[r
v

]
q
q(v

2)

π(r)(q)

⎛

⎝
v∑

j=0

(−1)v− j
π( j)(q)

[
v

j

]
q
q(v− j

2 )

q(v

2)
w j

⎞

⎠

= lim
r→∞ wr = 0.

Thus, z ∈ eq0 and the mapping T is onto. Therefore, eq0 ∼= c0. This completes the
proof. �

Theorem 3 The inclusion c0 ⊂ eq0 does not hold. However c ⊂ eqc holds.

Proof It is known from Lemma1 that lim
r→∞ eqrv �= 0 for each v ∈ N0. That is, Eq /∈

(c0 : c0). This yields that c0 �⊂ eq0 . In a similar manner, the inclusion c ⊂ eqc can be
established. �

Jarrah and Malkowsky [18, Theorem 2.3, Remark 2.4] state that the domain λ�

of the triangle � in the space λ has a basis if and only if λ has a basis. In the light of
this and Theorem2, we present the following result:

Theorem 4 Consider the sequence x (v)(q) = (x (v)
r (q)) in the space eq0 for every

fixed v ∈ N0 defined by
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x (v)
r (q) =

⎧
⎨

⎩
(−1)r−v

π(v)(q)[rv]qq(r−v
2 )

q(r2)
(v ≤ r),

0 (v > r).

Then we have

(a) the set
{
x (0)(q), x (1)(q), x (2)(q), . . .

}
forms the basis for the space eq0 and every

z ∈ eq0 has a unique representation of the form z =
∞∑

v=0
wvx (v)(q).

(b) the set
{
e, x (0)(q), x (1)(q), x (2)(q), . . .

}
forms the basis for the space eqc , where

e = {1, 1, 1, . . .}, and every z ∈ eqc can be uniquely expressed in the form z =
ξe +

∞∑

v=0
(wv − ξ)x (v)(q), where ξ = lim

v→∞ wv = lim
v→∞(Eqz)v.

3 Köthe Duals

In the current section, we determine the Köthe duals (α-, β-, and γ -duals) of the
spaces eq0 and eqc . We provide the proof for the space eq0 . The proof for the space e

q
c

can be obtained analogously. First, we recall the definitions of the Köthe duals.

Definition 3 The α−, β−, and γ−duals of a subset λ ⊂ s are defined by

λα = {ς = (ςv) ∈ s : ς z = (ςvzv) ∈ �1 for all z ∈ λ},
λβ = {ς = (ςv) ∈ s : ς z = (ςvzv) ∈ cs for all z ∈ λ}, and

λγ = {ς = (ςv) ∈ s : ς z = (ςvzv) ∈ bs for all z ∈ λ},

respectively.

Before proceeding to the main results, we note down celeberated lemmas due to
Stieglitz and Tietz [32] that are required for computing the duals of the spaces eq0
and eqc .

In the rest of the paper, R will represent the family of all finite subsets of N0.

Lemma 2 � = (φrv) ∈ (c0 : �1) if and only if

sup
R∈R

( ∞∑

v=0

∣∣∣∣∣

∑

r∈R

φrv

∣∣∣∣∣

)

< ∞.

Lemma 3 � = (φrv) ∈ (c0 : c) if and only if

sup
r∈N0

r∑

v=0

|φrv| < ∞, (5)

lim
r→∞ φrv exists for each v ∈ N0. (6)
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Lemma 4 � = (φrv) ∈ (c0 : �∞) if and only if (5) holds.

Theorem 5 The set δ1(q) defined by

δ1(q) =
⎧
⎨

⎩
ς = (ςv) ∈ s : sup

R∈R

∞∑

v=0

∣∣∣∣∣∣

∑

r∈R

(−1)r−v
π(v)(q)

[r
v

]
q
q(r−v

2 )

q(r2)
ςr

∣∣∣∣∣∣
< ∞

⎫
⎬

⎭

is the α-dual of the spaces eq0 and eqc .

Proof Consider the following equality:

ςr zr =
r∑

v=0

(−1)r−v
π(v)(q)

[r
v

]
q
q(r−v

2 )

q(r2)
ςrwv

= (Aqw)r (7)

for all r ∈ N0, where the sequence w = (wv) is the Eq -transform of the sequence
z = (zv) and the matrix Aq = (aqrv) is defined by

aqrv =
⎧
⎨

⎩
(−1)r−v

π(v)(q)[rv]qq(r−v
2 )

q(r2)
ςr (0 ≤ v ≤ r),

0 (v > r).

We realize by using (7) that ς z = (ςr zr ) ∈ �1 whenever z ∈ eq0 if and only if A
qw ∈

�1 whenever w ∈ c0. Thus, we compute that ς = (ςr ) is a sequence in α-dual of
eq0 if and only the matrix Eq belongs to the class (c0 : �1). Thus, we conclude from
Lemma2 that

[
eq0

]α = δ1(q). This completes the proof. �

Theorem 6 Define the sets δ2(q), δ3(q), and δ4(q) by

δ2(q) =
⎧
⎨

⎩
ς = (ςr ) ∈ s :

∞∑

l=v

(−1)l−v
π(v)(q)

[l
v

]
q
q(l−v

2 )

q(l
2)

ςl exists for each v ∈ N0

⎫
⎬

⎭
,

δ3(q) =
⎧
⎨

⎩
ς = (ςr ) ∈ s : sup

r∈N0

r∑

v=0

∣∣∣∣∣∣

r∑

l=v

(−1)l−v
π(v)(q)

[l
v

]
q
q(l−v

2 )

q(l
2)

ςl

∣∣∣∣∣∣
< ∞

⎫
⎬

⎭
,

δ4(q) =
⎧
⎨

⎩
ς = (ςr ) ∈ s : lim

r→∞

r∑

v=0

r∑

l=v

(−1)l−v
π(v)(q)

[l
v

]
q
q(l−v

2 )

q(l
2)

ςl exists

⎫
⎬

⎭
.

Then
[
eq0

]β = δ2(q) ∩ δ3(q) and
[
eqc

]β = δ2(q) ∩ δ3(q) ∩ δ4(q).

Proof Consider the following equality:



222 T. Yaying

r∑

v=0

ςvzv =
r∑

v=0

⎧
⎨

⎩

v∑

l=0

(−1)v−l
π(l)(q)

[
v

l

]
q
q(v−l

2 )

q(v

2)
wl

⎫
⎬

⎭
ςv

=
r∑

v=0

⎧
⎨

⎩

r∑

l=v

(−1)l−v
π(l)(q)

[l
v

]
q
q(l−v

2 )

q(l
2)

ςl

⎫
⎬

⎭
wv (8)

= (Bqw)r (9)

for each r ∈ N0, where the matrix Bq = (bqrv) is defined by

bqrv =
⎧
⎨

⎩

∑r
l=v(−1)l−v

π(v)(q)[lv]qq(l−v
2 )

q(l2)
ςl (0 ≤ v ≤ r),

0 (v > r),

for all r, v ∈ N0. Thus, by using (9), we realize that ς z = (ςr zr ) ∈ cs whenever
z = (zr ) ∈ eq0 if and only if Bqw ∈ c whenever w = (wv) ∈ c0. This yields that
ς = (ςr ) is a sequence in the β-dual of eq0 if and only if the matrix Bq belongs to the
class (c0 : c). This in turn implies on using Lemma3 that

sup
r∈N0

r∑

v=0

∣∣bqrv
∣∣ < ∞ and lim

r→∞ bqrv exists for each v ∈ N0.

Thus, eq0 = δ2(q) ∩ δ3(q). This completes the proof. �

Theorem 7 The γ -dual of the spaces eq0 and eqc is δ3(q).

Proof The proof is similar to the previous theorem except that Lemma4 is employed
instead of Lemma3. �

4 Matrix Mappings

In the present section,wedetermine necessary and sufficient conditions for amatrix to
definemapping from the spaces eq0 and e

q
c to the spaceμ ∈ {�∞, c, c0, �1, bs, cs, cs0}.

The following theorem is fundamental in our investigation.

Theorem 8 Let μ be any arbitrary subset of s. Then � = (φrv) ∈ (eq0 : μ) (or
respectively (eqc : μ)) if and only if �(r) = (θ

(r)
lv ) ∈ (c0 : c) (or respectively (c : c))

for each r ∈ N0, and � = (θrv) ∈ (c0 : μ) (or respectively (c : μ)) where

θ
(r)
lv =

⎧
⎪⎨

⎪⎩

0 (v > l),
l∑

j=v

(−1) j−v
π(v)(q)[ jv]qq(

j−v
2 )

q(
j
2)

φr j (0 ≤ v ≤ l),
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and

θrv =
∞∑

j=v

(−1) j−v
π(v)(q)

[ j
v

]
q
q( j−v

2 )

q( j
2)

φr j , (10)

for all r, v ∈ N0.

Proof The proof detailing is omitted since it is similar to the proof of Theorem 4.1
of [24]. �

Now, using the results presented in the Stieglitz and Tietz [32] together with
Theorem8, we obtain the following results:

Corollary 1 The following statements hold:

1. � ∈ (eq0 : �∞) if and only if

sup
l∈N0

∞∑

v=0

∣∣∣θ(r)
lv

∣∣∣ < ∞, (11)

lim
l→∞ θ

(r)
lv exists for all v ∈ N0 (12)

hold and

sup
r∈N0

∞∑

v=0

|θrv| < ∞ (13)

also holds.
2. � ∈ (eq0 : c) if and only if (11) and (12) hold, and

sup
r∈N0

∞∑

v=0

|θrv| < ∞, (14)

lim
r→∞ θrv exists for all v ∈ N0 (15)

also hold.
3. � ∈ (eq0 : c0) if and only if (11) and (12) hold, and (13) and

lim
r→∞ θrv = 0 for all v ∈ N0, (16)

also hold.
4. � ∈ (eq0 : �1) if and only if (11) and (12) hold, and

sup
R∈R

∞∑

v=0

∣∣∣∣∣

∑

r∈R

θrv

∣∣∣∣∣
< ∞ (17)

also holds.
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5. � ∈ (eq0 : bs) if and only if (11) and (12) hold, and

sup
r∈N0

∞∑

v=0

∣∣∣∣∣

r∑

l=0

θlv

∣∣∣∣∣
< ∞ (18)

also holds.
6. � ∈ (eq0 : cs) if and only if (11) and (12) hold, and (18) and

∞∑

r=0

θrv converges for all v ∈ N0 (19)

also hold.
7. � ∈ (eq0 : cs0) if and only if (11) and (12) hold, and (18) and

∞∑

r=0

θrv = 0 for all v ∈ N0 (20)

also hold.

Corollary 2 The following statements hold:

1. � ∈ (eqc : �∞) if and only if (11), (12), and

lim
l→∞

∞∑

v=0

θ
(r)
lv , (21)

hold, and (14) also holds.
2. � ∈ (eqc : c) if and only if (11), (12), and (21) hold, and (13), (15), and

lim
r→∞

r∑

v=0

θrv exists (22)

also hold.
3. � ∈ (eqc : c0) if and only if (11), (12), and (21) hold, and (13), (16), and

lim
r→∞

r∑

v=0

θrv = 0 (23)

also hold.
4. � ∈ (eqc : �1) if and only if (11), (12), and (21) hold, and (17) also holds.
5. � ∈ (eqc : bs) if and only if (11), (12), and (21) hold, and (18) also holds.
6. � ∈ (eqc : cs) if and only if (11), (12), and (21) hold, and (18), (19), and
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∞∑

r=0

∞∑

v=0

θrv converges

also hold.
7. � ∈ (eqc : cs0) if and only if (11), (12), and (21) hold, and (18), (19), and

∞∑

r=0

∞∑

v=0

θrv = 0

also hold.

We recall a basic lemma due to Başar and Altay [5] that will help in characterizing
certain classes of matrix transformations from the spaces eq0 and eqc to any arbitrary
space μ.

Lemma 5 [5] Let λ and μ be any two sequence spaces,� be an infinite matrix, and
� be a triangle. Then, � ∈ (λ : μ�) if and only if �� ∈ (λ : μ).

Now, by combining Lemma5 with Corollaries1 and 2, we give the characterizations
of the following classes of matrix mappings:

Corollary 3 Let � = (φrv) be an infinite matrix and define the matrix Cq = (cqrv)
by

cqrv =
r∑

l=0

ql−1

[r + 1]q φlv, (0 < q < 1)

for all r, v ∈ N, where [r ]q is the q-analog of r ∈ N0. Then, the necessary and
sufficient conditions that� is in any one of the classes (eq0 : Xq

0 ), (e
q
0 : Xq

c ), (e
q
c : Xq

0 ),
and (eqc : Xq

c ) are determined from the respective ones in Corollaries1 and 2, by
replacing the elements of the matrix � by those of the matrix Cq , where Xq

0 and Xq
c

are the q-Cesàro sequence spaces defined by Demiriz and Şahin [10].

Corollary 4 Let � = (φrv) be an infinite matrix and define the matrix C̃ = (Crv)

by

C̃rv =
r∑

l=0

ClCr−l

Cr+1
φlv, (r, v ∈ N0)

where (Cr ) is a sequence of the Catalan numbers. Then, the necessary and sufficient
conditions that � is in any one of the classes (eq0 : c0(C̃)), (eq0 : c(C̃)), (eqc : c0(C̃)),
and (eqc : c(C̃)) are determined from the respective ones in Corollaries1 and 2, by
replacing the elements of the matrix � by those of matrix C̃, where c(C̃) and c0(C̃)

are the Catalan sequence spaces defined by İlkhan [13].
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Corollary 5 Let � = (φrv) be an infinite matrix and define the matrix F = ( frv)
by

frv =
r∑

l=0

f 2l
fr fr+1

φlv, (r, v ∈ N0)

where ( fr ) is a sequence of the Fibonacci numbers. Then, the necessary and sufficient
conditions that� is in any one of the classes (eq0 : �∞(F)), (eq0 : c(F)), (eq0 : c0(F)),

(eqc : �∞(F)), (eqc : c(F)), and (eqc : c0(F)) are determined from the respective ones
in Corollaries1 and 2, by replacing the elements of the matrix � by those of matrix
F, where �∞(F), c(F), and c0(F) are the Fibonacci sequence spaces defined by
Kara and Başarır [19].
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8. Bekar, Ş.: q-matrix summability methods. Ph.D. Dissertation. Applied Mathematics and Com-
puter Science, Eastern Mediterranean University (2010)
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23. Kara, E.E., İlkhan, M.: Some properties of generalized Fibonacci sequence spaces. Linear

Multilinear Algebr. 64(11), 2208–2223
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25. Mursaleen, M., Başar, F.: Sequence spaces: topic in modern summability theory, Series: Math-

ematics and Its Applications. CRC Press, Taylor & Francis Group, Boca Raton, New York
(2020)

26. Mursaleen, M., Başar, F., Altay, B.: On the Euler sequence spaces which include the spaces �p
and �∞ II. Nonlinear Anal. 65, 707–717 (2006)

27. Ng, P.-N., Lee, P.-Y.: Cesáro sequence spaces of non-absolute type. Comment. Math. Prace
Mat. 20(2), 429–433 (1978)

28. Roopaei, H.: Norm of Hilbert operator on sequence spaces. J. Inequalities Appl. 2020, 117
(2020)

29. Roopei, H.: A study on Copson operator and its associated sequence space. J. Inequalities Appl.
2020, 120 (2020)
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Study on Some Particular Class
of Nonlinear Integral Equation
with a Hybridized Approach

Nimai Sarkar and Mausumi Sen

Abstract This article deals with a particular class of integral equations involving
pure delay term. The existence of a solution is described using fixed point theory.
Moreover, a hybridized scheme is proposed to investigate the approximate solution.
In this context, boundary element method is used with piecewise linear interpola-
tion. Also, an algorithm is there for error estimation and in support of the considered
numerical method stability analysis is done. This testimony completely demonstrates
the comprehensive study of the considered class of integral equation and understand-
ing the behaviour of the approximate solution in the presence of delay.

Keywords Nonlinear integral equation · Constant delay · Fixed point theory ·
Hybridized approach

1 Introduction

In this paper, our objective is to study the following nonlinear integral equation
involving pure delay.

W(x) = �(x, u(x),W(x)) + v(x)X
( ∫ b−τ

a
G(x, s,N (W(s)))ds

)
(1)

where a, b ∈ R with a < b, τ ∈ [0, 1) is the pure delay term and we denote I ∗ =
[a, b − τ ].W(x), u(x), v(x) are continuous functions from I ∗ toR, which are essen-
tially considered from X∗ = C(I ∗,R),� : I ∗ × I ∗ × I ∗ → R,G : I ∗ × I ∗ × I ∗ →
R and X : R → R are smooth mappings in the considered space (X∗, d∗). Here,
d∗(g, h) = supx∈I ∗ ||g(x) − h(x)||, ∀g, h ∈ X∗ andN (W(x)) represents a continu-
ously differentiable nonlinear function ofW(x). Numerous literatures are available
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regarding the occurrence of integral equation in various real-world modelling prob-
lems [1–4] and such cases always demand some comprehensive study related with
existence uniqueness of solution, numerical treatment towards approximate solu-
tion and stability analysis. Artikis and his co researchers, Maleknejad and his co
researchers,Oregan,Karoui and several other researchers have contributed in thefield
of integral equations from theoretical aspect, see [5–13] using different approaches.
In this context, one key point is that the exact solution is not easily available in all the
circumstances, therefore numerical treatment to approximate solution is an obvious
requirement for the researchers to get vivid realization regarding the behaviour of
solution. Over a long time, different researches have provided numerical methods
[14–22] depending upon the particular class of integral equation.

In this article, the existence of unique solution has been studied by using Banach
fixed point theorem. A hybridized numerical scheme along with an algorithm for
error estimation is described. Moreover, we have presented stability analysis for the
considered class of integral equation. The arrangement of the current manuscript is
as designed as Sect. 2 covers all the fundamentals used throughout this paper, and
deals with the main results, in Sect. 3, a numerical example is there in support of the
proposed numerical scheme and some closing remarks are there in Sect. 4.

2 Preliminaries

Definition 1 Let (X∗, d∗) be a complete metric space. Then a map T : X∗ → X∗ is
said to be a contraction mapping on X∗ if there exists some constant k ∈ [0, 1) such
that

d∗(T x, T y) ≤ kd∗(x, y),∀x, y ∈ X∗

where k is contractivity constant.

Definition 2 ([23, 24]) Equation (1) has the Hyers-Ulam stability if there exists a
constant C ≥ 0 satisfying the following property : For each ε > 0,W ∈ X∗, if

|W(x) − �(x, u(x),W(x)) − v(x)X
( ∫ b−τ

a
G(x, s,N (W(s)))ds

)
| ≤ ε

then there exists some w ∈ X∗ satisfying Eq. (1) such that

|w(x) − W(x)| ≤ Cε.

Theorem 1 Banach fixed point theorem: Let (X∗, d∗) be a nonempty complete met-
ric space with a contraction mapping T : X∗ → X∗ andL < 1 be the corresponding
Lipschitz constant. Then T admits a unique fixed point x0 in X∗. That is T (x0) = x0.
Furthermore, for x ∈ X∗, the following propositions hold true:
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(A) The sequence T nx converges to a fixed point x0 of T ;

(B) x0 is the unique fixed point of T in

X∗
1 =

{
y ∈ X∗ : d∗

(
T nx, y

)
< ∞

}
;

(C) if y ∈ X∗
1 , then

d∗
(
y, x0

)
≤ 1

1 − Ld∗
(
T y, y

)
.

2.1 Main Results

Before entering into the theoretical discussion, we consider the following assump-
tions:
(A1) X : R → R is Lipschitz function, i.e. there exists some positive constant L
such that for every p, q ∈ R

||X (p) − X (q)|| ≤ L||p − q||.

(A2) There exist integrable functionsQ1,Q2 : I ∗ × I ∗ → R such that for α, β ∈ X∗

0 ≤ �(x, u(x), α) − �(x, u(x), β) ≤ Q1(x)||α − β||

and
0 ≤ G(x, s,N (α)) − G(x, s,N (β)) ≤ Q2(x, s)||α − β||.

(A3) There exist MQ1 , MQ2 ∈ [0, 1) such that

supx∈I ∗ ||Q1(x)|| ≤ MQ1

L

supx∈I ∗

∫ b−τ

a
||Q2(x, s)||ds ≤ MQ2

L
.

(A4) v is bounded function on I ∗, i.e. there exists M > 0 such that for all x ∈ I ∗

||v(x)|| ≤ M.

Theorem 2 Under the assumptions (A1)–(A4), the integral Eq. (1) admits a unique

solution in X∗ if
(

MQ1+1
L

)
< 1 and

(
MQ1
L + MMQ2

)
< 1 hold.
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Proof Basic motivation is to apply Banach fixed point theorem on X∗. For that
purpose, we consider the mapping T ∗ : X∗ → X∗ defined as

(T ∗W)(x) = �(x, u(x),W(x)) + v(x)X
( ∫ b−τ

a
G(x, s,N (W(s)))ds

)
(2)

and Br =
{
W ∈ X∗ : ||W|| ≤ r

}
where r ≥

(
M� + MLMN MQ2 + MMX

)
L .

Let supx∈I ∗ ||�(x, u(x), 0))|| = M�, supx∈I ∗ ||N (W(x))|| = MN and

supx∈I ∗ ||X
( ∫ b−τ

a G(x, s, 0)ds
)
|| = MX . For W ∈ X∗, we proceed as follows

||(T ∗W)(x)|| = ||�(x, u(x),W(x)) + v(x)X
( ∫ b−τ

a G(x, s,N (W(s)))ds
)
||

≤ ||�(x, u(x),W(x)) − �(x, u(x), 0)|| + ||�(x, u(x), 0)|| + ||v(x)||
||X

( ∫ b−τ

a G(x, s,N (W(s)))ds
)

− X
( ∫ b−τ

a G(x, s, 0)ds
)
||+

||v(x)||||X
( ∫ b−τ

a G(x, s, 0)ds
)
||

≤ Q1(x)||W(x)|| + supx∈I∗ ||�(x, u(x), 0)||+
ML|| ∫ b−τ

a G(x, s,N (W(s)))ds − ∫ b−τ
a G(x, s, 0)ds||+

Msupx∈I∗ ||X
( ∫ b−τ

a G(x, s, 0)ds
)
||

≤ rsupx∈I∗Q1(x) + M� + ML
∫ b−τ
a Q2(x, s)||N (W(s))||ds + MMX

≤ rMQ1
L + M� + MLMN

MQ2
L + MMX

≤ rMQ1
L + M� + MLMN MQ2 + MMX .

≤ rMQ1
L + r

L ≤ r

Thus, T ∗Br ⊂ Br . Now forW1,W2 ∈ X∗ we have

||(T ∗W1)(x) − (T ∗W2)(x)|| ≤ ||�(x, u(x),W1(x)) − �(x, u(x),W2(x))||+
||v(x)||||X

( ∫ b−τ

a G(x, s,N (W1(s)))ds
)
−

X
(∫ b−τ

a G(x, s,N (W1(s)))ds
)
||

≤ Q1(x)||W1 − W2|| + ML
∫ b−τ
a ||G(x, s,N (W1(s)))−

G(x, s,N (W2(s)))||ds

≤ supx∈I∗Q1(x)||W1 − W2|| + ML
∫ b−τ
a Q2(x, s)||W1 − W2||ds

≤ MQ1
L ||W1 − W2|| + ML||W1 − W2||supx∈I∗

∫ b−τ
a Q2(x, s)ds

≤ MQ1
L ||W1 − W2|| + ML||W1 − W2||

MQ2
L

≤
( MQ1

L + MMQ2

)
||W1 − W2||
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Hence, d∗(T ∗W1, T ∗W2) ≤
(

MQ1
L + MMQ2

)
||W1 − W2||.

This implies T ∗ : X∗ → X∗ is a contraction mapping. Theorem1 suggests that
T ∗ has a unique fixed point.

As the exact solution or closed form solution is not always available, therefore
we present a numerical scheme to obtain the approximate solution for equations of
the type (1). �

2.2 Numerical Method

Applying a hybridized treatment of Boundary element method and linear inter-
polation, we propose the present numerical scheme on Eq. (1). Initially, the inter-
val I ∗ = [a, b − τ ] is splitted into n uniformly distributed linear segments by
a = μ0 < μ1 < μ2 < · · · < μn = b − τ . In each subinterval [μ j−1, μ j ], the non-
linear term ofW(x) is approximated by using piecewise linear interpolation scheme,

N (W(x)) = W(x) − N (W(μn)) − N (W(μn−1))

μn − μn−1
N (W(μn))(x − μn) (3)

forμn−1 < x < μn. In the interpolation scheme, it is assumed that at the mesh points
x = μ j , the nonlinear functions N (W(x)) are prescribed and we denote piecewise
linear approximate function ψ j on each sub interval [μ j−1, μ j ]. i.e.

ψ j = W(x) − N (W(μ j )) − N (W(μ j−1))

μ j − μ j−1
N (W(μ j ))(x − μ j ) for j = 1, 2, . . . , n

On the interval [μ j−1, μ j ], ε j = δμ j + (1 − δ)μ j−1 with δ ∈ [0, 1] we have the
following equation

W(μ j ) = �(μ j , u(μ j ),W(μ j )) + v(μ1)X
( ∫ 1

0
G(μ j , ε j ,N (W(ε j ))(μ j − μ j−1))dδ

)
. (4)

For j = 1, 2, . . . , n; on each subinterval, the boundary elements are assumed to be
constant, see [19, 20] and then proceed with Eq. (4). Finally (4) constitutes a system
of algebraic equations. Solution of the system provides values at the mesh points
as W(μ j ), for sufficiently large n the system generates more accurate approximate
solution as output.

2.3 Error Algorithm

This section concerns an algorithm for error estimation for Eq. (1). Let the error
function be E(μ j ) = W̃(μ j ) − W(μ j ) at the mesh point μ j with W̃(x) being exact
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solution and the expression for W(μ j ) is given by (3). Moreover, the absolute and
relative errors are to be calculated using the formula Eabs(μ j ) = |W̃(μ j ) − W(μ j )|
and Erel(μ j ) = |W̃(μ j )−W(μ j )|

|W̃(μ j )| , respectively. Here, we present maximum error bound

from a theoretical point of view. On the interval [μ j−1, μ j ], ψ j (x) be the linear
approximation of N (W(x)) then from theory of interpolation we have

|N (W(x)) − ψ j (x)| = | (x − μ j−1)(x − μ j (x))

2
N ′′

(W(c j ))|

where μ j−1 < c j < μ j and double prime denotes the second derivative. For x = ε j ,

|N (W(ε j )) − ψ j (ε j )| = | (ε j − μ j−1)(ε j − μ j )

2
N ′′

(W(c j ))|

≤ |ε j−μ j−1||ε j−μ j |
2 max|N ′′

(W(c j ))|.
In particular, if length of each interval is h and for δ = 1

2

|N (W(ε j )) − ψ j (ε j )| ≤ |μ j−1+μ j

2 − μ j−1||μ j−1+μ j

2 − μ j |
2

max |N ′′
(W(c j ))|

≤ h2

8 max|N ′′
(W(c j ))|.

This concludes the error bound for Eq. (1) corresponding to the present numerical
scheme.

For stability analysis, one relevant assumption is considered

(A5) ||T ∗n+1W − T ∗nW|| ≤
(
||X ||MQ2

L

)n
(b−τ−a)n

n! d∗(T ∗W,W).

Theorem 3 The equation T ∗W = W , where T ∗ is given by (2) posses Hyers-Ulam
stability; For every W ∈ X∗ and ε > 0 with

d∗(T ∗W,W) ≤ ε

there exists exactly one w ∈ X∗ such that

T ∗w = w,

d∗(W, w) ≤ Aε,

for some A ≥ 0.

Proof LetW ∈ X∗, for ε > 0 we have d∗(T ∗W,W) ≤ ε. First conclusion of The-
orem1 provides

limn→∞T ∗nW(x) = w(x).
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For ε > 0, d∗(T ∗nW, w) ≤ ε; assuming all the conditions from (A1) to (A5) hold.
We proceed as follows

d∗(W, w) ≤ d∗(W, T ∗nW) + d∗(T ∗nW, w)

≤ d∗(W, T ∗W) + d∗(T ∗W, T ∗2W) + d∗(T ∗2W, T ∗3W) + · · ·
+d∗(T ∗n−1W, T ∗nW) + d∗(T ∗nW, w)

≤ d∗(W, T ∗W) + η

1!d
∗(W, T ∗W) + η2

2! d
∗(W, T ∗W) + · · ·

+ ηn−1

(n−1)!d
∗(W, T ∗W) + d∗(T ∗nW, w)

≤ d∗(W, T ∗W)
∑n−1

s=0
ηs

s! + d∗(T ∗nW, w)

≤ ε
(
eη

)
+ ε =

(
1 + eη

)
ε

where η = ||X ||MQ2 (b−τ−a)

L . �

3 Numerical Results

We encounter an example in support of the proposed testimony. Particularly for
τ = 0, 0.25 the investigation is done, which eventually leads to a quite accurate
solution. The absolute and relative errors are also provided in the representative
tables.
Example For � = 5

6 x , v = x ,
∫ b−τ

a G(x, s,N (W(s)))ds = ∫ 1−τ

0 s2W2(s)ds

Approximate solutions are obtained and corresponding errors are calculated by using
3.1. and 3.2., respectively. The representative tables illustrate the numerical results
for considered delay (Table1 and Table 2).

Table 1 τ = 0

x W̃(x) W(x) Eabs(x) Erel (x)
0.25 0.25 0.20858 0.04141 0.16567

0.5 0.5 0.42233 0.07766 0.15532

0.75 0.75 0.65163 0.09836 0.13115

1 1 0.85335 0.14664 0.14664
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Table 2 τ = 0.25

x W̃(x) W(x) Eabs(x) Erel (x)
0.125 0.125 0.10411 0.02082 0.16660

0.250 0.250 0.20855 0.04144 0.15532

0.375 0.375 0.31406 0.06093 0.16249

0.500 0.500 0.42234 0.07765 0.15531

0.625 0.625 0.52785 0.09714 0.15543

0.750 0.750 0.64691 0.10308 0.13744

4 Conclusion

The present article demonstrates a complete study of the considered integral equation.
As the existence and uniqueness are strongly supported by the hybridized numerical
treatment. Error bound and stability analysis ensure that the proposed numerical
scheme might be a good option to solve equations of the form (1). Moreover, the
numerical method is easy to implement and less time-consuming. In this context,
Eq. (1) with variable delay appears to be an exciting area for future work.
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Investigation of the Existence Criteria
for the Solution of the Functional
Integral Equation in the L p Space

Dipankar Saha, Mausumi Sen, and Santanu Roy

Abstract This work manifests the credibility of Darbo’s fixed point theory towards
the solvability of nonlinear functional convolution integral equation with deviating
argument. The solution space is taken to be the space ofLebesgue integrable functions
defined on R+. The concept of measure of noncompactness in correlation with the
compactness criterion, i.e., Kolmogorov–Riesz compactness theorem in L p(R+)

space has been taken. Then under certain suitable hypotheses and by the assistance
of Darbo’s fixed point theory, sufficient conditions for the existence of the solution
have been introduced. Finally, some examples have been taken to justify the result.

Keywords Fixed point · Measure of noncompactness · Integral equation

1 Introduction

Fixed point theory encompasses its domain of applications in diverse aspects ofmath-
ematical science, physical science and engineering. In a wide range of engineering
problems and modelling, the existence of a solution to a real-world problem is same
as the existence of a fixed point for a suitable map or operator. Specifically, it is not
always easy to determine the exact solution to the problem. In such cases, fixed point
theory serves as an authentic tool to develop relevant algorithms for approximating
the exact solution. In the context of solving differential equation, partial differential
equation and integral equation, often the existence of solution can be attained by
formulating the problem to a fixed point problem [1, 2].

In recent years, the existence of solution of the nonlinear integral equations by the
fixed point theory has become an emergent domain of research [3, 4]. Particularly,
Darbo fixed point theory is the prominent one that is used extensively in resolving the
existence of solution of the nonlinear functional integral equation (NLFIE) [5–10].

Here, we have taken nonlinear convolution integral equation involving deviating
argument of the following type:
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y(ϕ) = g(ϕ, y(ζ(ϕ))) +
∞∫

0

k(ϕ − s)u(s, y(η(s)))ds, (1)

where g, u : R+ × R → R are unknown functions. ζ, η : R+ → R are nondecreas-
ing functions. These type of integral equations are used tomodel real-world problems
specifically in radiation, transportation theory and kinetic gas theory. So, the exis-
tence of solution of the considered Eq. (1) is very essential. Also the motivation is
extracted from the earlier literature [6] where the author has studied the existence of
solution by the Darbo fixed point concept of the following linear integral equation

y(t) = f (ϕ, y(ϕ)) +
∞∫

0

k(ϕ − s)(Qy)(s)ds. (2)

which is a particular case of Eq. (1). In that work as stated above, the author has
introduced the new measure of noncompactness by considering Kolmogorov–Riesz
compactness theorem [11].

2 Basics and Preliminaries

Here, we deal with an infinite dimensional Banach space (S, ‖ · ‖), consisting of
the zero element θ̃ . Ū and ConvU refer to the closure and closed convex hull of a
subset U of S, respectively. B(y, r̃) denotes the closed ball with centre y and radius
r̃ . We will denote Br̃ for the ball B(θ̃ , r̃). In addition, supposeAS to be the collection
of all nonempty bounded subsets of S and CS to be its subcollection consisting of
nonempty relatively compact subsets.

Definition 1 [12] A mapping ν̃ : AS → R+ is the measure of noncompactness in S
under the following conditions:

(i) ker ν̃ = {U ∈ AS : ν̃(U ) = 0} is nonempty and ker ν̃ ⊂ CS .
(ii) U ⊂ V ⇒ ν̃(U ) ≤ ν̃(V ).
(iii) ν̃(Ū ) = ν̃(U ).
(iv) ν̃(Conv U ) = ν̃(U ).
(v) ν̃(λ̃U + (1 − λ̃)U ) ≤ λ̃ν̃(U ) + (1 − λ̃)ν̃(U ) for λ̃ ∈ [0, 1].
(vi) If the sequence (Un) of closed sets fromAS , are such thatUn+1 ⊂ Un provided

n = 1, 2, . . .. In addition, if limn→∞ ν̃(Un) = 0, then the intersection U∞ =⋂∞
n=1Un is nonempty. �

Lemma 1 [6] Suppose � is a nonempty, convex, closed and bounded subset of
the space S. Let H : � → � be a continuous contraction mapping with respect to
the measure of noncompactness ν̃, i.e., there exists a constant 0 ≤ ρ < 1 such that
ν̃(HU ) ≤ ρν̃(U ) for any nonempty subset U of �. Then H has a fixed point in the
set �.
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2.1 Main Results

To find the sufficient condition for the existence of the solution, the following
hypotheses have been proposed, which are as follows:

i. g : R+ × R → R satisfies the Carathéodory conditions, i.e., g(ϕ, y) is measure-
able for any x, y ∈ R and continuous for almost all s, ϕ ∈ R+. In addition, there
exists a ∈ L p(R+) such that
|g(ϕ, x) − g(s, y)| ≤ |a(ϕ) − a(s)| + λ|x − y| also holds.

ii. g(·, 0) ∈ L p(R+).
iii. k ∈ L1(R).
iv. u(s, y(s)) is a continuous function from the space L p(R+) onto itself and there

exists a constant b ∈ R+ such that ‖u(s, y)‖L p[σ,∞) ≤ b‖y‖L p[σ,∞) for any y ∈
L p(R+) and σ ∈ R+.

v. The inequality λ + b‖k‖L1(R) < 1 also holds.

Theorem 2 [6] Suppose 1 ≤ p < ∞ and Y is a bounded subset of L p(R+). Then
for y ∈ Y and ε > 0, let

w(y, ε) = sup{(
∞∫

0

|y(ϕ + h) − y(ϕ)|pdϕ)
1
p : |h| < ε}

w(Y, ε) = sup{w(y, ε) : y ∈ Y }

w(Y ) = limε→0w(Y, ε)

and

dT (Y ) = sup{(
∞∫

T

|y(s)|pds) 1
p : y ∈ Y }

d(Y ) = limT→∞dT (Y ).

Then,w0(Y ) = w(Y ) + d(Y ) gives themeasure of noncompactness on L p(R+). Also
we show that ker ν̃ = CL p(R+).

Remark 1 [6] Under the proposed hypotheses (i i i), the linear operator, K :
L p(R+) → L p(R+) defined as (Ky)(ϕ) =

∞∫
0
k(ϕ − s)y(s)ds is a continuous oper-

ator, and ‖Ky‖p ≤ ‖k‖L1(R)‖y‖p.

Theorem 3 Under the proposed assumptions (i)–(v), Eq. (1) has at least one solu-
tion in the space L p(R+).
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Proof Let us represent the integral equation in operator form (Hy)(ϕ) =
g(ϕ, y(ζ(ϕ))) +

∞∫
0
k(ϕ − s)u(s, y(η(s)))ds.

Accounting the Carathéodory conditions, we found that Hy is measurable for any
y ∈ L p(R+).

Step 1: Hy ∈ L p(R+) for any y ∈ L p(R+).

|H(y)(ϕ)| ≤ |g(ϕ, y(ζ(ϕ))) − g(ϕ, 0)| + |g(ϕ, 0)| + b
∞∫
0
k(ϕ − s)|y(ηs)|ds (3)

≤ λ|y| + |g(ϕ, 0)| + b
∞∫
0
k(ϕ − s)|y(η(s))|ds.

Thus,

(
∞∫
0

|H(y)(ϕ)|pdϕ)
1
p ≤ λ(

∞∫
0

|y(ϕ)|pdϕ)
1
p + (

∞∫
0

|g(ϕ, 0)|pdϕ)
1
p + b(

∞∫
0
(

∞∫
0
k(ϕ −

s)|y(ηs)|ds)pdϕ)
1
p Now employing Young’s inequality, we get

‖Hy‖p ≤ λ‖y‖p + ‖g(·, 0)‖p + b‖k‖1‖y‖p. (4)

Hence, Hy ∈ L p(R+) is a well-defined map. Also, by the hypothesis (i i) (v), and
the inequality given by the Eq. (4), H(Br0) ⊆ Br0 for ‖y‖ ≤ r0 where r0 = ‖g(·,0)‖p

1−λb‖k‖1 .
Furthermore, H is continuous in L p(R+) because g(ϕ, ·), u and k are continuous for
a.e ϕ ∈ R+. Step 2: Estimate of w(Hy).

|(Hy)(ϕ + h) − (Hy)(ϕ)| = |g(ϕ + h, y(ζ(ϕ + h))) +
∞∫
0
k(ϕ + h − s)u(s, y(ηs))ds

−(g(ϕ, y(ζ(ϕ))) +
∞∫
0
k(ϕ − s)u(s, y(ηs))ds

≤ |g(ϕ + h, y(ζ(ϕ + h))) − g(ϕ, y(ζ(ϕ)))|
+|

∞∫
0
k(ϕ + h − s)u(s, y(ηs))ds −

∞∫
0
k(ϕ − s)u(s, y(ηs))ds|

≤ |g(ϕ + h, y(ζ(ϕ + h))) − g(ϕ + h, y(ζ(ϕ)))|
+|g(ϕ + h, y(ζ(ϕ))) − g(ϕ + h, y(ζ(ϕ)))| +

∞∫
0

|k(ϕ + h − s) − k(ϕ − s)||u(s, y(ηs))|ds
≤ |a(ϕ + h) − a(ϕ)| + λ|y(ζ(ϕ + h)) − y(ζ(ϕ + h))|

+b
∞∫
0

|k(ϕ + h − s) − k(ϕ − s)||y(ηs)|ds.

Thus,
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(

∞∫

0

|(Hy)(ϕ + h) − (Hy)(ϕ)|pdϕ)
1
p ≤ (

∞∫
0

|a(ϕ + h) − a(ϕ)|pdϕ)
1
p + λ(

∞∫
0

|y(ζ(ϕ + h)) − y(ζ(ϕ))|pdϕ)
1
p

+b(
∞∫
0

|
∞∫
0

|k(ϕ + h − s) − k(ϕ − s)||y(ηs)|ds|pdϕ)
1
p

≤ w(a, ε) + λw(y, ε) + b‖y‖p

∞∫
0

|k(ϕ + h − s) − k(ϕ − s)|dϕ

≤ w(a, ε) + λw(y, ε) + b‖y‖p‖k − τhk‖L1(R). (5)

Since {a} and {k} are compact sets in L p(R+) and L1(R), respectively, we have
inferred that w(a, ε) → 0 and ‖k − τhk‖L1(R) → 0 as ε → 0.

Then, we obtain

w(HY, ε) ≤ λw(Y ) ≤ (λ + b‖k‖L1(R))w(Y ). (6)

Step 3: Estimate of d(Hy).
Let us fix an arbitrary number σ > 0. Then, considering the hypothesis, for an

arbitrary y ∈ Y , we get

(
∞∫
σ

|(Hy)(ϕ)|pdϕ)1/p

≤ (
∞∫
σ

|g(ϕ, y(ζ(ϕ))) − g(ϕ, 0)|pdϕ)1/p + (
∞∫
σ

|g(ϕ, 0)|pdϕ)1/p

+(
∞∫
σ

|
∞∫
0
k(ϕ − s)u(s, y(ηs))|pdϕ)1/p

≤ λ(
∞∫
σ

|y(ϕ)|pdϕ)1/p + (
∞∫
σ

|g(ϕ, 0)|pdϕ)1/p + b‖k‖L1(R)(
∞∫
σ

|y(ϕ)|pdϕ)1/p.

Since g(ϕ, 0) is compact in L p(R+), we obtain (
∞∫
σ

|g(ϕ, 0)|pdϕ)1/p → 0 asσ → ∞.

Thus, we have inferred the following inequality

d(HY ) ≤ (λ + b‖k‖L1(R))d(Y ). (7)

Now linking (6) and (7), we have acquired that

w0(HY ) ≤ (λ + b‖k‖L1(R))w0(Y ). (8)

Finally, by (8) and Lemma (1), the operator H has a fixed point in Br0 . Thus, the
NLFIE (1) has a solution in L p(R+).
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3 Numerical Examples

Example 1 y(ϕ) = sin y(ϕ)

2 + 1

(ϕ+5)
3
2

+
∞∫
0

e−(ϕ−s)2 cos(ϕ−s)
(ϕ−s)2+7 |arctany(s)|ds.

It is a particular case of Eq. (1) with g(ϕ, y) = sin y(ϕ)

2 + 1

(ϕ+5)
3
2
, k(ϕ) = e−ϕ2 cos(ϕ)

ϕ2+7

and u(ϕ, y(ϕ)) = |arctany(ϕ)|. Now,

|g(ϕ, x(ζ(ϕ))) − g(s, y(ζ(ϕ)))| = | sin x(ϕ)

2 + 1

(ϕ+5)
3
2

− (
sin y(s)

2 + 1

(s+5)
3
2
)|

≤ | sin x(ϕ)

2 − sin y(s)
2 | + | 1

(ϕ+5)
3
2

− 1

(s+5)
3
2
|

≤ | 1

(ϕ+5)
3
2

− 1

(s+5)
3
2
| + 1

2 |x − y|. (9)

Thus, g satisfies assumption (i) with a(ϕ) = 1

(ϕ+5)
3
2
and λ = 1

2 .

Here, it is easy to interpret that g(·, 0) satisfies assumption (i i) for p > 2
3 .

Moreover, ‖k‖L1 ≤
√

π

7 implies that assumption (i i i) holds.
Also, u(s, y(s)) = |arctany(s)| ≤ |y(s)| and ζ(ϕ) = η(ϕ) = ϕ.
Thus, u(ϕ, y(ϕ)) satisfies hypothesis (iv) with b = 1.
Now, Theorem (3) guarantees that Eq. (1) has a solution in L p(R+) for p > 2

3 .

Example 2 y(ϕ) = e−ϕ

ϕ1/2 +
∞∫
0

e−arctan(ϕ−s)

5+(ϕ−s)2 ln(1 + |y(s)|)ds.

It is a particular case of Eq. (1) with g(ϕ, y) = e−ϕ

ϕ1/2 , k(ϕ) = e−arctan(ϕ)

5+(ϕ)2
, and

u(ϕ, y(ϕ)) = ln(1 + |y(ϕ)|). Also, ζ(ϕ) = η(ϕ) = ϕ.
Thus, g satisfies assumption (i)with a(ϕ) = e−ϕ

ϕ1/2 and λ = 0.Also g(·, 0) satisfies
assumptions (i i) for p < 2. Also k(ϕ) satisfies assumption (i i i) as ‖k‖L1 ≤ 1.

In addition u(ϕ, y(ϕ)) satisfies assumption (iv) with b = 1.
Thereby, assumption (v) is satisfied.
Consequently, Theorem (3) guarantees that Eq. (2) has a solution in L p(R+) for

p < 2.

4 Conclusion

Here, the sufficient condition for the existence of convolution integral equation with
the changed argument has been derived. Finally, some examples have been added in
the end to validate the result.
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Functional Inequalities for the
Generalized Wright Functions

Sourav Das and Khaled Mehrez

Abstract In this work, our aim is to obtain some mean value inequalities for the
generalized Wright function. Mainly, we establish Turán, Redheffer, Wilker and
Lazarević-type inequalities for the generalized Wright function. Furthermore, the
monotonicity properties of ratios for partial sums of the series of these functions are
discussed. Finally, some other related inequalities are also derived as a consequence.

Keywords Wright functions · Turán-type inequalities · Monotonicity properties
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1 Introduction

Special functions play a vital role inmathematical physics, quantum physics, theoret-
ical physics, approximation theory, number theory and in many branches of science.
A vital role of the Wright function can be found [6, 16] in the complex systems.
These functions are also involved in the solution of the fractional order linear partial
differential equations.

Special functions and the theory of inequalities are related to each other, and
several open problems were solved with the help of various inequalities. One of the
special kind of inequalities is Turán’s inequality. Let Rn(x) be polynomial of degree
n. Then Turán’s determinant is defined as �n(x) = [Rn+1(x)

]2 − Rn+2(x)Rn(x). If
�n(x) ≥ 0, then Rn(x) is said to satisfy Turán’s inequality, which was introduced
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by P. Turán in 1950 [18]. This inequality has been attracted the attention of several
mathematicians and researchers and has been proved for various special functions
such asHypergeometric functions [1, 2, 17],Wright functions [9, 10],Mittag-Leffler
function [11, 12], Fox-Wright functions [13–15] and so forth due to its several
applications in information theory [7] and in modelling credit risk, as discussed
below. Turán’s inequality has applications in various areas of science. In [4], a model
has been considered where the bank has an option to foreclose upon the borrower
at any time. Using the results of [3, 8], it can be verified that geometric Brownian
motion is followed by the firm’s assets [9]. Recently, K. Mehrez [9] derived several
functional inequalities for the Wright function Wα,β(z), defined [16, 19] as

Wα,β(z) =
∞∑

m=0

zm

m!�(mα + β)
, β ∈ C, α > −1. (1)

It is well known thatWα,β(z) is an holomorphic function and the order is (1 + α)−1.
Wα,β(z) is also called as the generalized Bessel function [6, 16].

The above results inspire us to consider the generalized Wright function, defined
as

Wk
α,β(z) =

∞∑

i=0

zi

�k(i + 1)�k(β + iα)
, k > 0, α > −1, β, z ∈ C, (2)

where �k(x) is defined [20] for �(z) > 0, k > 0 as

�k(z) =
∫ ∞

0
t z−1e− tk

k dt = lim
m→∞

(mk)
z
k −1m!km

z(z + k) · · · (z + (m − 1)k)
. (3)

It can be noted that lim
k→1

�k(z) = �(z). The k-digamma and k-polygamma functions

are defined [20] as

ψk(z) = d

dz
ln�k(z), ψ

(n)
k (z) = dn

dzn
ψk(z), n ∈ N.

It is well known that �k(z) and ψk(z) satisfy the following relations [20]:

�k(z + k) = z�k(z), �(z) > 0,

ψk(z) = ln k − γ

k
− 1

z
+

∞∑

m=1

z

mk(mk + z)
,

ψ
(n)
k (z) = (−1)n+1n!

∞∑

m=0

1

(mk + z)n+1
, n ∈ N.
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Before proceedingwith themain results, let us discuss about convex functions, which
will be helpful to obtain themain results. A function g(x) : [c, d] ⊂ R → R is called
convex if for each u, v ∈ [c, d] and μ ∈ [0, 1], we have

g(μu + (1 − μ)v) ≤ μg(u) + (1 − μ)g(v). (4)

g(x) is called concave function if the inequality (4) is reversed. A function g(x)
defined on [c, d] is called logarithmically convex or log-convex (log-concave) if
log g(x) is convex (concave). A differentiable function f (x) on [0, 1] is convex
(concave) if and only if f ′(x) is increasing (decreasing) [5]. From Bohr–Mollerup
theorem [5], we can see that the gamma function �(x) is logarithmically convex and
the psi function (digamma function) ψ(x) is concave for any positive real x .

We have organized this paper as follows. In Sect. 2, we derive some Turán type
inequalities for Wk

α,β(z). In addition, monotonicity criterion of ratios for sections of
series ofWk

α,β(z) is established. In Sect. 3, Lazarević andWilker type inequalities for
this function are derived. In Sect. 4, sharpened Redheffer type inequalities associated
toWk

α,β(z) are proved. Finally, some other related inequalities are also proved in this
section.

Let us state the following lemmas [9] which will be helpful to derive the main
results.

Lemma 1 Let {an}∞n=0 and {bn}∞n=0 be real numbers. If bn > 0 and {an/bn}∞n=0 is

monotonically increasing (decreasing), then
{∑n

i=0 ai∑n
i=0 bi

}∞
n=0

is monotonically increas-

ing (decreasing).

Lemma 2 Let the region of convergence of F(x) =∑∞
n=0 anx

n and G(x) =∑∞
n=0

bnxn be (−r, r). If bn > 0 and {an/bn}∞n=0 is (strictly) monotonically increasing
(decreasing), then the ratio F(x)

G(x) is (strictly) monotonically increasing on (0, r).

Lemma 3 Let the two continuous functions g, h : [c, d] → R, be differentiable on
(c, d) and h′(x) do not vanish on (c, d). If g′/h′ is increasing (or decreasing) on
(c, d), then the ratios

g(x) − g(c)

h(x) − h(c)
and

g(x) − g(d)

h(x) − h(d)
,

are increasing (or decreasing) on (c, d).

2 Turán-Type Inequalities

We consider normalized Wright functions Wk
α,β(z) defined as

Wk
α,β(z) = �k(β)Wk

α,β(z), (5)
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and for modified k-Wright function W
k
α,β(z) defined as

W
k
α,β(z) =

∞∑

i=0

zi

�(i + 1)�k(β + iα)
, k > 0, α > −1, β, z ∈ C. (6)

Clearly,

(
W

k
α,β(z)

)′ = W
k
α,β+α(z).

Let us state the results.

Theorem 1 Wk
α,β(z) satisfies the following inequality for z ∈ (0,∞):

Wk
α,β(z)Wk

α,β+2k(z) ≥ (Wk
α,β+k(z)

)2
, ∀α, β, k > 0. (7)

Proof We have

Wk
α,β(z) =

∞∑

i=0

ai (α, β, k)zi ,

where ai (α, β, k) = �k (β)

�k (i+1)�k (β+iα)
.

Now, ∂2

∂β2 log(ai (α, β, k)) = ψ ′
k(β) − ψ ′

k(β + iα), where ψk = �′
k (x)

�k (x)
is concave.

Hence, ai (α, β, k) is log convex on (0,∞). Therefore, Wk
α,β(z) is logarithmically

convex on the positive real line. Hence,

Wk
α,tβ1+(1−t)β2

(z) ≤ (Wk
α,β1

(z)
)t (Wk

α,β2
(z)
)1−t

, ∀α, β1, β2 > 0, t ∈ [0, 1].

Putting t = 1/2, β1 = β and β2 = β + 2k, we claim that (7) holds. Now, the Cauchy
product helps us to obtain

Wk
α,β (z)Wk

α,β+2k (z)

= �k (β)�k (β + 2k)
∞∑

i=0

⎛

⎝
i∑

j=0

1

�k ( j + 1)�k (i − j + 1)�k (β + jα)�k (β + (i − j)α + 2k)

⎞

⎠ zi

(
Wk

α,β+k (z)
)2

= �2
k (β + k)

∞∑

i=0

⎛

⎝
i∑

j=0

1

�k ( j + 1)�k (i − j + 1)�k (β + jα + k)�k (β + (i − j)α + k)

⎞

⎠ zi
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Now,

Wk
α,β (z)Wk

α,β+2k (z) −
(
Wk

α,β+k (z)
)2

= �k (β)�k (β + p)
∞∑

i=0

i∑

j=0

(β + k)(β + jα) − β(β + (i − j)α)+
�k ( j + 1)�k (i − j + 1)�k (β + jα + k)�k (β + (i − j)α + 2k)

zi

= �k (β)�k (β + p)
∞∑

i=0

i∑

j=0

β2 + jαβ + kβ + k jα − β2 − (i − j)αβ − kβ

�k ( j + 1)�k (i − j + 1)�k (β + jα + k)�k (β + (i − j)α + 2k)
zi

= �k (β)�k (β + p)
∞∑

i=0

i∑

j=0

αβ(2 j − i) + α jk

�k ( j + 1)�k (i − j + 1)�k (β + jα + k)�k (β + (i − j)α + 2k)
zi

= �k (β)�k (β + p)
∞∑

i=0

i∑

j=0

Ai, j (α, β)zi ,

where

Ai, j (α, β) = αβ(2 j − i) + α jk

�k( j + 1)�k(i − j + 1)�k(β + jα + k)�k(β + (i − j)α + 2k)
.

If i is even, then we obtain

i∑

j=0

Ai, j (α, β)

=
i/2−1∑

j=0

Ai, j (α, β) +
i∑

j=i/2+1

Ai, j (α, β) + Ai,i/2(α, β)

=
i/2−1∑

j=0

Ai,i− j (α, β) +
i/2−1∑

j=0

Ai, j (α, β) +
kαi
2

�2
k (i/2 + 1)�k (β + iα

2 + k)�k (β + iα
2 + 2k)

=
[(i−1)/2]∑

j=0

(Ai, j (α, β) + Ai,i− j (α, β)) +
kαi
2

�2
k (i/2 + 1)�k (β + iα

2 + k)�k (β + iα
2 + 2k)

.

Similarly, if i is odd, then

i∑

j=0

Ai, j (α, β) =
[(i−1)/2]∑

j=0

(Ai, j (α, β) + Ai,i− j (α, β))

+
kαi
2

�2
k (i/2 + 1)�k(β + iα

2 + k)�k(β + iα
2 + 2k)

.

Simplifying the above expression, we obtain
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Ai, j (α, β) + Ai,i− j (α, β) = α2β(i − 2 j)2 + α2 j2k + α2k2(i − j)2 + αik(β + k)

�k ( j + 1)�k (i − j + 1)�k (β + jα + 2k)�k (β + (i − j)α + 2k)
.

Consequently for any z > 0, we have

Wk
α,β(z)Wk

α,β+2k(z) − (Wk
α,β+k(z)

)2
> 0 ∀α, β > 0.

Remark 1 It can be observed from the proof of above Theorem1, that logWk
α,β(z)

is a convex function on (0,∞). Therefore, logWk
α,β+ε(z) − logWk

α,β(z) is monoton-
ically increasing for each ε > 0. By choosing ε = α > 0, we claim thatWk

α,β+α(z)/
Wk

α,β(z) is monotonically increasing for each z ∈ (0,∞).

Theorem 2 Let α, β1, β2 and k be positive. If β1 < β2, (or β2 < β1), thenWk
α,β1

(z)/
W

k
α,β2

(z) is monotonically increasing ( or decreasing) on (0,∞). Furthermore, the
following Turán-type inequality holds :

W
k
α,β2

(z)Wk
α,β1+α(z) − W

k
α,β1

(z)Wk
α,β2+α(z), ∀β2 > β1 > 0, α > 0. (8)

In particular,

(
W

k
α,β+α(z)

)2 − W
k
α,β(z)Wk

α,β+2α(z) ≥ 0, ∀α, β, z > 0. (9)

Proof Using the definition of modified k-Wright function (6), we have

W
k
α,β1

(z)/Wk
α,β2

(z) =
∞∑

i=0

zi

�(i + 1)�k(β1 + iα)

/ ∞∑

i=0

zi

�(i + 1)�k(β2 + iα)
.

Let
ui = �k(β2 + iα)/�k(β1 + iα), i ≥ 0.

Then
ui+1

ui
= �k(β2 + α + iα)�k(β1 + iα)

�k(β2 + iα)�k(β1 + α + iα)
.

Since �k(z) is logarithmically convex, the ratio �k(z + a)/�k(z) is monotonically
increasing on the positive real line for any positive a. Hence, for any a, b, z > 0, we
have

�k(z + a)

�k(z)
≤ �k(z + a + b)

�k(z + b)
. (10)

Case I:When β1 > β2.
Putting z = β2 + iα, a = α and b = β1 − β2 > 0 in (10), we obtain
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ui+1

ui
= �k(β2 + α + iα)�k(β1 + iα)

�k(β2 + iα)�k(β1 + α + iα)
≤ 1.

Now combining Lemma2 and the above inequality, we claim that ui+1 ≤ ui∀i ≥ 0

iff β1 > β2, and W
k
α,β1

(z)
/
W

k
α,β2

(z) is monotonically decreasing on the positive

real line if β1 > β2.
Case II:When β2 > β1.
Putting z = β1 + iα, a = α and b = β2 − β1 > 0 in (10), we have ui+1 ≥ ui∀i ≥

0. Hence, Wk
α,β1

(z)
/
W

k
α,β2

(z) is monotonically increasing on (0,∞) if β2 > β1,

by Lemma2. Since W
k
α,β1

(z)
/
W

k
α,β2

(z) is monotonically increasing on (0,∞) if

β2 > β1, we get

[
W

k
α,β1

(z)

W
k
α,β2

(z)

]′
= W

k
α,β2

(z)Wk
α,β1+α(z) − W

k
α,β1

(z)Wk
α,β2+α(z)

(
W

k
α,β2

(z)
)2 .

Consequently, (8) holds. Now putting β1 = β and β2 = β + α in (8), we
obtain (9). �

Theorem 3 Consider the function Wk,n
α,β (z) defined as

Wk,n
α,β (z) = Wk

α,β(z) −
n∑

i=0

zi

�k(i + 1)�k(β + iα)
=

∞∑

i=n+1

zi

�k(i + 1)�k(β + iα)
, n ∈ N. (11)

Then

[
Wk,n+1

α,β (z)
]2 − Wk,n

α,β (z)Wk,n+2
α,β (z) ≥ 0, ∀α, β, k, z > 0, 0 < k ≤ 1.

Proof Using the definition of Wk,n
α,β (z), we obtain

Wk,n
α,β (z) = Wk,n+1

α,β (z) + zn+1

�k(n + 1)�k(β + (n + 1)α)

Wk,n+2
α,β (z) = Wk,n+1

α,β (z) − zn+2

�k(n + 2)�k(β + (n + 2)α)
.

Now,
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[
Wk,n+1

α,β (z)
]2 − Wk,n

α,β (z)Wk,n+2
α,β (z)

= Wk,n+1
α,β (z)

[
zn+2

�k(n + 2)�k(β + (n + 2)α)
− zn+1

�k(n + 1)�k(β + (n + 1)α)

]

+ z2n+3

�k(n + 1)�k(n + 2)�k(β + (n + 1)α)�k(β + (n + 2)α)

≥
∞∑

i=n+3

[
1

�k(n + 2)�k(β + (n + 2)α)�k(i)�k(β + (i − 1)α)

− 1

�k(n + 1)�k(β + (n + 1)α)�k(i + 1)�k(β + iα)

]
zi+n+1

=
∞∑

i=n+3

⎡

⎢⎢
⎣

�k(n + 1)�k(i + 1)�k(β + (n + 1)α)�k(β + iα)

−�k(n + 2)�k(β + (n + 2)α)�k(i)�k(β + (i − 1)α)

�k(n + 1)�k(n + 2)�k(β + (n + 1)�k(β + (n + 2)α)

�k(i)�k(i + 1)�k(β + (i − 1)α)�k(β + iα)

⎤

⎥⎥
⎦ zi+n+1.

Since i ≥ n + 3, therefore

�k(n + 1)�k(i + 1) ≥ �k(n + 2). (12)

Putting z = β + (n + 1)α, a = α and b = α(i − (n + 2)) in (10)

�k(β + iα)�k(β + (n + 1)α) ≥ �k(β + (n + 2)α)�k(β + (i − 1)α) (13)

Combining (12) and (13), we have

�k(n + 1)�k(i + 1)�k(β + (n + 1)α)�k(β + iα) ≥ �k (n + 2)�k (β + (n + 2)α)�k(i)�k(β + (i − 1)α),

which proves the theorem. �

Theorem 4 Let α, β, k > 0 and n ∈ N. Then the function Hk
n (α, β, z) defined by

Hk
n (α, β, z) = Wk,n

α,β (z)Wk,n+2
α,β (z)

[
Wk,n+1

α,β (z)
]2

is monotonically increasing on the positive real line. Furthermore, for any positive
α, β and z and n ∈ N, the following inequality holds:

�2
k (n + 3)

�k (n + 2)�k (n + 2)
· �2

k (β + (n + 2)α)

�k (β + (n + 1)α)�k (β + (n + 3)α)

[
Wk,n+1

α,β (z)
]2 ≤ Wk,n

α,β (z)Wk,n+2
α,β (z)

(14)
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The constant in left-hand side of the inequality (14) is sharp.

Proof Using Cauchy product, we have

Hk
n (α, β, z) =

∑∞
i=0

∑i
j=0 A j (α, β)z2n+2+i

∑∞
i=0

∑i
j=0 Bj (α, β)z2n+2+i

where

A j (α, β) = 1

�k ( j + n + 2)�k (i − j + n + 4)�k (β + (n + 1 + j)α)�k (β + (n + 3 + i − j)α)

and

B j (α, β) = 1

�k ( j + n + 3)�k (i − j + n + 3)�k (β + (n + 2 + j)α)�k (β + (n + 2 + i − j)α)
.

Now consider the following sequence (Vj ) j≥0 defined by

Vj (α, β) = A j (α, β)

B j (α, β)

= �k ( j + n + 3)�k (i − j + n + 3)�k (β + (n + 2 + j)α)�k (β + (n + 2 + i − j)α)

�k ( j + n + 2)�k (i − j + n + 4)�k (β + (n + 1 + j)α)�k (β + (n + 3 + i − j)α)
.

Then

Vj+1(α, β)

C
=
[

�k ( j + n + 4)�k ( j + n + 2)

�2
k ( j + n + 3)

][
�k (i − j + n + 4)�k (i − j + n + 2)

�2
k (i − j + n + 3)

]

Ti, j (α, β),

with

Ti, j (α, β) = �k (β + (n + 3 + j)α)�k (β + (n + 1 + j)α)

�2
k (β + (n + 2 + j)α)

· �k (β + (n + 1 + i − j)α)�k (β + (n + 3 + i − j)α)

�2
k (β + (n + 2 + i − j)α)

= �k (β1 + (n + 3)α)�k (β1 + (n + 1)α)

�2
k (β1 + (n + 2)α)

· �k (β2 + (n + 1)α)�k (β2 + (n + 3)α)

�2
k (β2 + (n + 2)α)

,

where β1 = β + jα and β2 = β + (i − j)α. Again with the help of (10), we have
Ti, j (α, β) ≥ 1 ∀α, β > 0, which proves that

(
Vj (α, β)

)
j
is monotonically increas-

ing. Hence, by Lemma1 we have, (
∑∞

j=0 A j (α, β)/
∑∞

j=0 Bj (α, β))i is monoton-
ically increasing. Again by Lemma3, Hk

n (α, β, z) is monotonically increasing on
(0,∞). Now,



256 S. Das and K. Mehrez

lim
z→0

Hk
n (α, β, z) = �2

k (n + 3)

�k(n + 2)�k(n + 2)
· �2

k (β + (n + 2)α)

�k(β + (n + 1)α)�k(β + (n + 3)α)
,

which shows that

�2
k (n + 3)

�k(n + 2)�k(n + 2)
· �2

k (β + (n + 2)α)

�k(β + (n + 1)α)�k(β + (n + 3)α)
, ∀α, β, z > 0, n ∈ N

is the best possible for the inequality (14). �

3 Lazarević- and Wilker-Type Inequalities

In this section, our aim is to obtain some Lazarević- and Wilker-type inequalities for
modified normalized k-Wright functions defined as

Wk
α,β(z) = �k(β)

∞∑

i=0

zi

�(i + 1)�k(β + iα)
, k > 0, α > −1, β, z ∈ C. (15)

Clearly,

(
Wk

α,β(z)
)′ = �k(β)

�k(β + α)
Wk

α,β+α(z). (16)

Theorem 5 Let β1 ≥ β2 and α be positive real numbers. Then

[
Wk

α,β2
(z)
]�k (β2+α)/�k (β2) ≤ [Wk

α,β1
(z)
]�k (β1+α)/�k (β1) ∀z ∈ (0,∞). (17)

In particular,

[
Wk

α,β(z)
]β ≤ [Wk

α,β+1(z)
]β+α

, z, β > 0. (18)

Proof Let f : (0,∞) → R be defined as

f (z) = �k(β2)�k(β1 + α)

�k(β1)�k(β2 + α)
log[Wk

α,β1
(z)] − log[Wk

α,β2
(z)].

Using (16), we obtain

f ′(z) = �k(β2)

�k(β2 + α)

[
Wk

α,β1+α(z)

Wk
α,β1

(z)
− Wk

α,β2+α(z)

Wk
α,β2

(z)

]

. (19)
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Again using Remark1, we claim that f (x) is monotonically increasing on (0,∞) if
β1 ≥ β2. Hence, f (x) ≥ f (0) = 0, which proves the inequality (17). Finally, putting
β1 = β and β2 = β + 1 in (17), the inequality (18) can be obtained, which completes
the proof. �
Corollary 1 Let β1 ≥ β2, α and z be any positive real numbers. Then

Wk
α,β1

(z)

Wk
α,β2

(z)
+ [Wk

α,β1
(z)]

�k(β2)�k(β1 + α) − �k(β1)�k(β2 + α)

�k(β1)�k(β2 + α) ≥ 2. (20)

In particular,

Wk
α,β+1(z)

Wk
α,β(z)

+ [Wk
α,β+1(z)]α/β ≥ 2, ∀z, β > 0. (21)

Proof Withy the help of the inequality (17), we have

[Wk
α,β1

(z)] �k (β2)�k (β1+α)

�k (β1)�k (β2+α)

Wk
α,β2

(z)
=
[
Wk

α,β1
(z)

Wk
α,β2

(z)

]

· [Wk
α,β1

(z)] �k (β2)�k (β1+α)−�k (β1)�k (β2+α)

�k (β1)�k (β2+α) ≥ 1.

Using the arithmetic-geometricmean inequalitywith the above expression,we obtain

1

2

[
Wk

α,β1
(z)

Wk
α,β2

(z)
+ [Wk

α,β1
(z)] �k (β2)�k (β1+α)−�k (β1)�k (β2+α)

�k (β1)�k (β2+α)

]

≥
√√
√√ [Wk

α,β1
(z)] �k (β2)�k (β1+α)

�k (β1)�k (β2+α)

Wk
α,β2

(z)
≥ 1.

Hence, the inequality (20) holds true. Now, putting β1 = β and β2 = β + 1 in (20),
the inequality (21) can be derived. �

4 Redheffer-Type Inequalities

Theorem 6 Let r, α, β, k > 0. Then the following inequality holds:

(
r + z

r − z

)σα,β,k

≤ Wk
α,β(z) ≤

(
r + z

r − z

)γα,β,k

, ∀0 < z < r, (22)

where σα,β,k = 0 and γα,β,k = r�k (β)

2�k (β+α)
are the best possible constants.

Proof Let

H(z) = logWk
α,β(z)

log

(
r + z

r − z

) = f (z)

g(z)
,
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where f (z) = logWk
α,β(z) and g(z) = log((r + z)/(r − z)). Then

f ′(z)
g′(z)

= (r2 − z2)(Wk
α,β(z))′

2rWk
α,β(z)

= A(z)

2r B(z)

with A(z) = (r2 − z2)(Wk
α,β(z))′ and B(z) = Wk

α,β(z). Using (15), we obtain

A(z) = (r2 − z2)(Wk
α,β(z))′

= r2�k(β)

�k(β + α)
+ r2�k(β)

�k(β + 2α)
z

+
∞∑

i=2

(
r2�k(β)

�k(i + 1)�k(β + (i + 1)α)
− �k(β)

�k(i − 1)�k(β + (i − 1)α)

)
zi

=
∞∑

i=0

ai z
i ,

with a0 = r2�k(β)/�k(β + α), a1 = r2�k(β)/�k(β + 2α) and ai = r2�k(β)/

�k(i + 1)�k(β + (i + 1)α) − �k(β)/�k(i − 1)�k(β + (i − 1)α), i ≥ 2. Similarly,
B(z)
can be expressed as

B(z) =
∞∑

i=0

bi z
i ,

with b0 = 1, b1 = �k(β)/�k(β + α) and bi = �k(β)/�k(i + 1)�k(β + iα), i ≥ 2.
Now consider ui = ai/bi , i ∈ N0, which satisfies u0 = r2�k(β)/�k(β + α), u1 =
r2�k(β + α)/�k(β + 2α), and

ui = r2�k(β + iα)

�k(β + (i + 1)α)
− �k(i + 1)�k(β + iα)

�k(i − 1)�k(β + (i − 1)α)
, i ≥ 2.

Putting a = b = α, x = b in (10) we have u1 ≤ u0. Again,

ui+1 − ui = r2
[

�k(β + (i + 1)α)

�k(β + (i + 2)α)
− �k(β + iα)

�k(β + (i + 1)α)

]

+ �k(i + 1)�k(β + iα)

�k(i − 1)�k(β + (i − 1)α)
− �k(i + 2)�k(β + (i + 1)α)

�k(i)�k(β + iα)
, ∀i ≥ 2.

Using (10) with z = i − 1, a = 2 and b = 1, we have
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ui+1 − ui ≤ r2
[

�k(β + (i + 1)α)

�k(β + (i + 2)α)
− �k(β + iα)

�k(β + (i + 1)α)

]

+ �k(i + 1)

�k(i − 1)

[
�k(β + iα)

�k(β + (i − 1)α)
− �k(β + (i + 1)α)

�k(β + iα)

]
. (23)

Again putting x = β + (i − 1)α and a = b = α in (10), we obtain

�k(β + iα)

�k(β + (i − 1)α)
≤ �k(β + (i + 1)α)

�k(β + iα)
. (24)

Replacing i by i + 1 in (24), we get

�k(β + iα)

�k(β + (i − 1)α)
≤ �k(β + (i + 1)α)

�k(β + iα)
. (25)

Combining (23)–(25),we can conclude that for all i ≥ 2, ui ismonotonically decreas-
ing sequence. Hence, ui is monotonically decreasing for all i ≥ 0. Furthermore, with
the help of Lemma2, it can be proved that f ′/g′ is monotonically decreasing on
(0, r). Therefore, using Lemma3, we claim that F(z) = f (z)− f (0)

g(z)−g(0) is monotonically
decreasing on (0, r). Again,

lim
x→0

F(z) = u0
2r

= r�k(β)

2�k(β + α)
, and lim

x→r
F(x) = 0.

Hence,
logWk

α,β(z)

log

(
r + z

r − z

) ≤ r�k(β)

2�k(β + α)
,

which proves the theorem. �

Now we will derive some other inequalities for Wk
α,β(z).

Theorem 7 Let α, β, k > be positive real numbers. Then the following statements
hold:

1. Wk
α,β(z) is logarithmically concave on the positive real line.

2. The following inequalities hold:

Wk
α,β(z1)Wk

α,β(z2) ≤
[
Wk

α,β

(
z1 + z2

2

)]2
, z1, z2 > 0. (26)

Wk
α,β(z)Wk

α,β+2α(z) ≤ �k(β) + �k(β + 2α)

�2
k (β + α)

[
Wk

α,β+α(z)
]2

, z > 0. (27)

Wk
α,β(z) ≤ exp

(
�k(β)

�k(β + α)
z

)
, z > 0. (28)
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Wk
α,β+α(z) ≤ Wk

α,β(z), z > 0. (29)

exp

(
�k(β)(x − y)

�k(β + α)

)
≤ Wk

α,β(x)

Wk
α,β(y)

, 0 < x < y. (30)

Proof 1. To prove this part, it is enough to show that
[
Wk

α,β(z)
]′

/Wk
α,β(z) is mono-

tonically decreasing on the positive real line. Now, the power series representation
for Wk

α,β(z) gives us the following

[
Wk

α,β(z)
]′

Wk
α,β(z)

=

∞∑

i=0

zi

�(i + 1)�k(β + (i + 1)α)

�k(β + α)

∞∑

i=0

zi

�(i + 1)�k(β + iα)

.

Using the Lemma2, we have

ui = ai
bi

= �k(β + iα)

�k(β + (i + 1)α)
, i ≥ 0.

Then,
ui+1

ui
= �2

k (β + (i + 1)α)

�k(β + iα)�k(β + (i + 2α))
, i ≥ 2.

Using (24), we obtain ui+1 ≤ ui∀i ≥ 0, which proves the first part of the theorem.
2. Since Wk

α,β(z) is logarithmically concave. Therefore,

[Wk
α,β(z1)]t [Wk

α,β(z2)]1−t ≤ Wk
α,β(t z1 + (1 − t)z2), ∀t ∈ [0, 1] and α, β, z1, z2 > 0.

Substituting t = 1/2 in the above inequality, the inequality (26) can be derived.

Now we proceed to prove the inequality (27). Since, Wk
α,β(z) is logarithmically

concave on the positive real line. Therefore,
[
Wk

α,β(z)
]′

/Wk
α,β(z) is monotoni-

cally decreasing on the positive real line. Using (16), we have

⎡

⎢
⎣

(
Wk

α,β(z)
)′

Wk
α,β(z)

⎤

⎥
⎦

′

= �k(β)

�k(β + α)
(
Wk

α,β(z)
)2

[
�k(β + α)

�k(β + 2α)
Wk

α,β(z)Wk
α,β+2α(z) − �k(β)

�k(β + α)

(
Wk

α,β+α(z)
)2]

≤ 0.
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This proves the inequality (27).
Let us now prove the inequality (28). To do so, let us assume that

F(z) = logWk
α,β(z) and G(z) = z.

Since
(
Wk

α,β(z)
)′

/Wk
α,β(z) is monotonically decreasing on (0,∞). Therefore,

using Lemma3, we have
F(z)

G(z)
= F(z) − F(0)

G(z) − G(0)

is monotonically decreasing on the positive real line. Now, using the Bernoulli-
l’Hopital’s rule and (16), we obtain

lim
z→0

F(z)

G(z)
= lim

z→0

(
Wk

α,β(z)
)′

Wk
α,β(z)

= �k(β)

�k(β + α)
.

Since,
(
Wk

α,β(z)
)′

/Wk
α,β(z) is monotonically decreasing for z ∈ (0,∞), we

obtain

[
Wk

α,β(z)
]′ ≤ �k(β)

�k(β + α)
Wk

α,β(z). (31)

Again using (16) and the inequality (31), the inequality (29) can be obtained.
Now, using (31), we have

exp

(
�k(β)(x − y)

�k(β + α)

)
≤ Wk

α,β(x)

Wk
α,β(y)

.
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An Information-Theoretic Entropy
Related to Ihara ζ Function and Billiard
Dynamics

Supriyo Dutta and Partha Guha

Abstract This article aims to establish a connection between the dynamical billiards
and information theory. We propose two generalized information-theoretic entropies
based on the Ihara zeta functions associated with a combinatorial graph representing
a billiard dynamical system, rigorously discussed in [5, 6].

Keywords Ihara zeta function · Billiard dynamics · Entropy · Information theory

1 Introduction: Dynamical Billiard and Ihara Zeta
Function

The dynamical billiards are mathematical models for describing different physical
phenomena, where one or more particles travel in a container and collide with the
walls andwith each other. Its dynamical properties depend on the shape of thewalls of
the container. Physicists started studying thesemodels in the early nineteenth century
[8]. Ya. Sinai initiated themathematical studies of chaotic dynamical billiards in 1970
[17]. During the last 50 years, it is extensively investigated within the modern theory
of dynamical systems and statistical mechanics [3, 13, 14].

We assume a billiard system consists of a moving particle on a plane and a
set of reflectors placed on a bounded region. The boundary of the region is also a
combination of reflectors. We assume that the particle will not be reflected between
any two reflectors consecutively. We depict a combination of reflectors in Fig. 1.
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Fig. 1 This billiard system
consists of 8 reflectors
{r1, r2, . . . , r8}, where
r5, r6, r7, r8 form the
boundary of the region and
others lie inside it

In combinatorics, a graphG = (V (G), E(G)) is a set of vertices V (G) and a set of
edges E(G) ⊂ V (G) × V (G) − {[u, u] : u ∈ V (G)}. There is a graph G associated
with the system of billiard under consideration, whose vertices correspond to the
reflectors. Also, there is an edge [u, v] if the particle can be reflected between the
reflectors u and v. The graph in Fig. 2 represents the billiard system in Fig. 1. The
following characteristics of G are easy to observe:

1. The particle moves in any direction, between two reflectors u and v. Therefore,
an edge [u, v] has two opposite orientations e = (u, v) and e−1 = (v, u).

2. As the particle cannot be reflected on a reflector consecutively, there is no loop
on the vertices.

3. As the region is bounded by reflectors, G is neither a path graph nor a cycle.
4. In the neighborhood of a reflector, there is more than one reflector. Hence, there

is no vertex with degree 1. Recall that the degree of a vertex in a graph is the
number of vertices adjacent to it.

These graph-theoretic properties are crucial for defining the Ihara zeta function. A
simple graph without a single-degree vertex which is not a cycle or a path graph is
called an admissible graph.

Let e = (u, v) be an oriented edge with the initiating and terminating vertices
u = i(e) and v = t (e), respectively. The moving particle generates a bi-infinite-
directed walk in G, which is a sequence of oriented edges . . . e−2e−1e0e1e2 . . .

such that t (ei ) = i(ei+1) for i ∈ Z. As we assume that the particle cannot be
reflected consecutively between two reflectors, hence e and e−1 cannot appear
consecutively. A cycle W = e1e2 . . . ek of length k is a finite walk such that
i(e1) = t (ek). Two cycles W1 = e1,1e1,2 . . . e1,k and W2 = e2,1e2,2 . . . e2,k are equiv-
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Fig. 2 Graph representing
the system of billiards in
Fig. 1. The vertices
correspond to the reflectors
in Fig. 1. Edges indicate
possible movement of the
particle between the
corresponding reflectors

alent if e2,1 = e1,r , e2,2 = e1,(r+1), . . . e2,(k−r+1) = e1,k, e2,(k−r+2) = e1,1, . . . , e2,k =
e1,(r−1) for some r ∈ {1, 2, . . . , k}. The set of equivalence classes of cycles are called
prime cycles. The length of a prime cycle P is γ (P).

Definition 1 The Ihara zeta function [10, 20] ζG(z) : {|z| < R} → C of a combi-
natorial graph G is defined by

ζG(z) =
∏

P

(
1 − zγ (P)

)−1
, (1)

where R is the radius of convergence of the infinite product.

The series representation of ζG(z) is stimulated by the oriented line graph G =
(V (G), E(G)) of G, where V (G) = ∪e∈E(G){e, e−1}. An edge (e, f ) ∈ E(G) if
t (e) = i( f ) and i(e) �= t ( f ). The adjacency matrix T = (t(e, f ))2m×2m is defined by

t(e, f ) =
{
1 if (e, f ) ∈ E(G);
0 otherwise.

(2)

Here m is the number of edges in the graph G. It can be proved that the following
power series

ζG(z) = exp

( ∞∑

k=1

trace(T k)

k
zk

)
, (3)

where |z| < 1
λ
[12] represents ζG(z). Here, λ > 0 is the greatest eigenvalue of T .
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In information theory an entropy S(P) is the measure of information induced by a
probability distribution P. For simplicity, we assume a discrete probability distribu-
tion P = {pi : i = 1, 2, . . . ,W, 0 ≤ pi ≤ 1,

∑
i pi = 1} throughout this article. As

all the probability values are real, we restrict the domain of definition of the function
ζG(z) to ζG(x) : [0, 1

λ
) → R

+.
Expanding Eq. (3) we find the following power series for ζG(x):

ζG(x) = 1 + c1x + c2x
2 + c3x

3 + c4x
4 + c5x

5 + · · · , (4)

where c1 = trace(T ) = 0, c2 = trace(T 2)

2 , c3 = trace T 3

3 , c4 = trace(T 4)

4 + (trace(T 2))2

8 ,

c5 = trace(T 5)

5 + trace(T 2) trace(T 3)

6 , . . . . The following lemma is easy to prove by apply-
ing the fact that trace T k is positive for all k > 1.

Lemma 1 ζG(x) is a monotone increasing function in [0, 1
λ
).

In this article, we propose an information-theoretic entropy based on Ihara ζ

function. The preliminary concepts of generalized entropy are discussed in Sect. 2.
Equation (4) along with the Lemma 1 suggest that the compositional inverse ζG(x)
does not exist. Hence, to define a universal group entropy, we construct a number of
invertible power series in terms of ζG . These constructions arementioned in Sect. 3. In
Sect. 4, we define two new generalized entropies and discuss some of their important
properties. Then we conclude this article.

2 Preliminary Concepts on the Generalized Entropy

In his seminal work, Shannon proposed an entropy function

S(P) =
W∑

i=1

pi ln

(
1

pi

)
, (5)

for any given probability distribution P [15]. It fulfills all four Shannon–Khinchin
axioms (SK axioms) [11, 16], mentioned below:

1. S(P) is continuous with respect to pi for i = 1, 2, . . . ,W ;
2. S(P1) = S(P) where P1 = P ∪ {0};
3. S(P) is maximum when pi = 1

W for all i ;
4. S(X,Y ) = S(X) + S(Y |X), where S(X,Y ) and S(Y |X) are the entropy of joint

probability distribution and the conditional probability distribution of the random
variables (X,Y ) and Y |X , respectively.

There are different proposals for generalizing the Shannon entropy. A few well-
known attempts include the Min entropy, Hartley entropy, Rényi entropy, Tsallis
entropy, Sharma–Mittal entropy, etc. Addressing a number of parameters in the
entropy function is a procedure of generalization. For instance, the Tsallis entropy
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is a q-deformed version of Shannon entropy. Here, q acts as a parameter. Similarly,
there is only one parameter in the Rényi entropy. The Sharma–Mittal entropy consists
of two parameters. A review on two-parameter deformed entropy is available in [7].
Most of this entropy satisfies the first three SK axioms. The fourth axiom is general-
ized depending on the generalized entropy function. A family of entropy functions
is proposed in terms of formal power series, which is the fundamental theme of this
article.

A formal power series is a generalization of a polynomial with infinitely many
terms. Given two formal power series F = ∑∞

i=1 bi x
i and G = ∑∞

i=1 ai x
i the com-

position F ◦ G(x) is defined by F ◦ G(x) = F(G(x)) [2]. The power series G is
called invertible if it has a compositional inverse F which is a power series such that
F(G(x)) = x . The following Lemma [1, 4, 9] is useful for further derivations:

Lemma 2 A formal power series G = ∑∞
i=1 ai x

i is invertible if and only if a1 = 1 .

We are in a position to define the formal group entropy which is as follows:

Definition 2 The universal group entropy [18, 19] of the discrete probability distri-
bution P is defined by

S(P) =
W∑

i=0

piG

(
ln

1

pi

)
, (6)

where G(t) = ∑∞
i=1 ai x

i is an invertible power series, that is a1 = 1.

It can be proved that S(P) fulfills the first three Shannon–Khinchin axioms. The
fourth axiom is generalized in terms of the Lazard formal group law.

Definition 3 The Lazard formal group law is a bi-variate formal power series
�(s1, s2) ∈ Z{s1, s2} such that

�(s1, s2) = G(F(s1) + F(s2)), (7)

where F is the compositional inverse of G.

3 Invertible Formal Power Series Related to Ihara Zeta
Function

Recall that an invertible formal power series is essential for defining the universal
group entropy. But, Eq. (4) along with Lemma 2 suggest that ζG(x) is not invertible.
In this section, we propose two invertible formal power series in terms of ζG(x)
satisfying Lemma 2.
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Theorem 1 Let T be the adjacencymatrix of the oriented line graph of an admissible
graphG, andλ be the largest eigenvalue of T . Then the following formal power series

Ga(t) = ζG(ae−t ) − ζG(a) + a(e−t − 1)

−a(1 + ζ ′
G(a))

(8)

is invertible, where t ≥ 0 and 0 ≤ a < 1
λ
.

Proof For proving Ga(t) is invertible we need to justify that it has constant term
zero and coefficient of t is 1. Now, Eq. (4) indicates

ζG(ae−t ) = 1 + c2(ae
−t )2 + c3(ae

−t )3 + c4(ae
−t )4 + · · · . (9)

Hence,

ζG(ae−t ) − ζG(a) = c2a
2(e−2t − 1) + c3a

3(e−3t − 1) + c4a
4(e−4t − 1) + · · ·

(10)
Observe that the power series

ζG(ae−t ) − ζG(a) + a(e−t − 1)

= a(e−t − 1) + c2a
2(e−2t − 1) + c3a

3(e−3t − 1) + c4a
4(e−4t − 1) + · · · (11)

has no constant term. Also, the coefficient of t in ζG(ae−t ) − ζG(a) + a(e−t − 1) is

d

dt

[
ζG(ae−t ) − ζG(a) + a(e−t − 1)

] |t=0 = −a
[
1 + ζ ′

G(a)
]
. (12)

We obtain Ga(t) by dividing ζG(ae−t ) − ζG(a) + a(e−t − 1) by −a
[
1 + ζ ′

G(a)
]
.

Hence, the formal power series Ga(t) has zero constant coefficient as well as the
coefficient for t is 1. �

In Theorem 1 a acts as a parameter in Ga(t). In the next theorem, we derive a
power series with two parameters.

Theorem 2 Let λ be the largest eigenvalue of T , where T is the adjacency matrix of
the oriented line graph G of an admissible graph G. Then, the formal power series

Ga,σ (t) = ζG(ae−tσ ) − ζG(a) + a(e−tσ − 1)

−aσ
(
1 + ζ ′

G(a)
) (13)

is invertible, where t > 0, 0 ≤ a < 1
λ
and σ > 0.
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Proof Following the proof of Theorem 1 we find

ζG(ae−tσ ) − ζG(a) + a(e−tσ − 1)

=a(e−tσ − 1) + c2a
2(e−2tσ − 1) + c3a

3(e−3tσ − 1) + c4a
4(e−4tσ − 1) + · · ·

(14)

Clearly, ζG(ae−tσ ) − ζG(a) + a(e−tσ − 1) has no constant term. If we divide
ζG(ae−tσ ) − ζG(a) + a(e−tσ − 1) with

d

dt

[
ζG(ae−tσ ) − ζG(a) + a(e−tσ − 1)

] |t=0 = −aσ
[
1 + ζ ′

G(a)
]

(15)

then we observe that the coefficient of t in the resultant formal power series Ga,σ (t)
is 1. Therefore, Ga,σ (t) is invertible. �

It can be trivially checked that

Ga,σ (t) = Ga(t), for σ = 1. (16)

4 New Information-Theoretic Entropy

In this section, we propose two information-theoretic entropies based on the obser-
vations in Sect. 3. We also mention a few of their characteristics.

For any non-zero probability value p define t = log( 1
p ), which corresponds to

p = e−t . Setting t = log( 1
p ) in Eq. (8) and simplifying we get

Ga

(
log

(
1

p

))
= ζG(a) − ζG(ap) + a(1 − p)

a(1 + ζ ′
G(a))

. (17)

Now Lemma 1 suggests that G
(
log

(
1
p

))
≥ 0. It leads us to define the single-

parameter Ihara entropy as follows:

Definition 4 Given an admissible graph G, the one-parameter Ihara entropy of a
probability distribution P is defined by

S(a)
G (P) =

W∑

i=1

piGa

(
log

(
1

pi

))
=

W∑

i=1

pi
ζG(a) − ζG(api ) + a(1 − pi )

a(1 + ζ ′
G(a))

, (18)

where 0 < a < 1
λ
.
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Similarly, setting t = log( 1
p ) in Eq. (13) and simplifying we get

Ga,σ

(
log

(
1

p

))
= ζG(a) − ζG(apσ ) + a(1 − pσ )

aσ(1 + ζ ′
G(a))

, (19)

which leads us to the definition of a two-parameter Ihara entropy as follows:

Definition 5 Given an admissible graph G, the two-parameter Ihara entropy of a
probability distribution P is defined by

S(a,σ )
G (P) =

W∑

i=1

piGa,σ

(
log

(
1

pi

))
=

W∑

i=1

pi

(
ζG(a) − ζG(apσ

i ) + a(1 − pσ
i )

aσ(1 + ζ ′
G(a))

)
,

(20)
where 0 ≤ a < 1

λ
and σ > 0 are two real parameters.

From our construction it is clear that

S(a,σ )
G (P) = S(a)

G (P), for σ = 1. (21)

Therefore we discuss the properties of S(a,σ )
G (P) which holds in the special case for

σ = 1.
Define a function sa,σ : [0, 1] → R

+ such that

sa,σ (p) = p ×
(

ζG(a) − ζG(apσ ) + a(1 − pσ )

aσ(1 + ζ ′
G(a))

)
. (22)

Therefore, the Ihara entropy mentioned in Definition 5 can be expressed as
S(a,σ )
G (P) = ∑W

i=1 sa,σ (pi ). Now we have the following observations:

Corollary 1 As sa,σ (p) is a continuous function, S(a,σ )
G (P) is also continuous with

respect to all its arguments pi for i = 1, 2, . . . ,W. Thus, S(a,σ )
G (P) satisfies the SK

axiom 1.

Corollary 2 The SK axiom 2 is also trivially satisfied as sa,σ (0) = 0.

To prove the SK axiom 3 we need the following theorem from [6], which we
mention without proof.

Theorem 3 The function sa,σ (p) has a global maxima in (0, 1).

We can conclude from Theorem 3 that S(a,σ )
G (P) attains the maximum value if

s(pi ) is maximum for all pi ∈ P. Therefore, to maximize S(a,σ )
G (P) we need pi = c

for all i , which is the uniform distribution after a normalization. Hence, S(a,σ )
G (P)

follows the SK axiom 3.
The entropy S(a,σ )

G (P) follows a generalized version of the SK axiom 4 induced
by the Lazard formal group law. The generalized version is mentioned in the theorem
below [6]:
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Theorem 4 Let PA =
{
p(A)
i

}WA

i=1
and PB =

{
p(B)
j

}WB

j=1
be two independent proba-

bility distributions. Then

S(a,σ )
G (PAPB) =

WA∑

i=1

WB∑

j=1

p(A)
i p(B)

j �

(
G

(
log

(
1

p(A)
i

))
,G

(
log

(
1

p(B)
j

)))
,

(23)
where � is Lazard formal group law given by �(s1, s2) = G (F (s1) + F (s2)) as
well as G = Ga or G = Ga,σ .

5 Conclusion

The universal group entropy generated by an invertible formal power series is pro-
posed in the literature [18, 19]. This article considers the power series representation
of the Ihara zeta function for defining universal group entropy, which we call Ihara
entropy. An interesting connection between the billiard dynamical system and the
Ihara zeta function is illustrated in this article. The interesting facet of our proposed
entropy is that the different arrangement of reflectors in the billiard system induces
different entropy functions. We justify that the new entropy functions fulfill the gen-
eralized version of the Shannon–Khinchin axioms.

Disclaimer

This article provides a short overview on the authors’ articles [5, 6].
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On a New Subclass of Sakaguchi Type
Functions Using (p,q)-Derivative
Operator

S. Baskaran, G. Saravanan, and K. Muthunagai

Abstract The authors have introduced a new subclass of bi-univalent functions
consisting of Sakaguchi type functions involving (p, q)-derivative operator. Further,
the estimation of bounds for |a2| and |a3| has been obtained. The authors have stated
a few examples in this paper.
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1 Introduction and Preliminaries

A function of one or more complex variables which is complex-valued is said to be
analytic if it is differentiable at every point of the domain. Every normalized analytic
function can be expressed as a series of the form

f(z) = z +
∞∑

t=2

at z
t (1)
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in the complex variable z that is convergent inU = {z : z ∈ C, |z| < 1}. Let A consist
of every such function. A subclass S of A be defined by S = {f(z) ∈ A : f(z1) =
f(z2) ⇒ z1 = z2} (i.e.)S consists of all univalent functions.

A function f(z) ∈ A is called bi-univalent inU, if f(z) ∈ S and its inverse function
has an analytic continuation to |w| < 1. Let σ = {f ∈ S : f is bi-univalent}.

Though Lewin [7] introduced the class of bi-univalent functions, the passion on
the bounds for the coefficients of these classes was upraised by Netanyahu, Clunie,
Brannan and many others [3, 8, 12–14, 16, 17]. This has been a field of fascination
for young researchers to date.

If, for f1(z) and f2(z) analytic in U, there exists a Schwarz function w(z) with
w(0) = 0 and |w(z)| < 1 in U such that f1(z) = f2(w(z)), then we say that f1(z) ≺
f2(z).

A subclass consisting of functions satisfying the analytic criterion Re
(

zf′(z)
f(z)−f(−z)

)
>

α was introduced by Sakaguchi [11] and these functions were named after him as
Sakaguchi type functions [9, 10, 15]. Sakaguchi type functions are starlike with
respect to symmetric points. Frasin [6] generalized Sakaguchi type class which had

functions of the form (1) given by Re
(

(s1−s2)zf′(z)
f(s1z)−f(s2z)

)
> α, 0 ≤ α < 1, s1, s2 ∈ C

with s1 �= s2, |s2| ≤ 1,∀z ∈ U.

Definition 1 For q, p ∈ (0, 1] and q < p, the (p, q)-derivative operator Dp,q(f(z))
[1, 4] is defined as

Dp,q(f(z)) = f(pz) − f(qz)

(p − q)(z)
, z �= 0 (2)

and Dp,q(f(0)) = f′(0) provided f′(0) exists. It can be easily deduced that

Dp,q(f(z)) = 1 +
∞∑

t=2

[t]p,qat z
t−1,

where [t]p,q = pt−qt

p−q
, the (p, q) bracket of t . It is also called a twin-basic number. It is

to be noted that Dp,q(zt ) = [t]p,qzt−1. Also for p = 1, the(p, q)-derivative operator
Dp,q reduces to the q-derivative operator Dq.

The inverse series of (2) is given by

(Dp,q(g))(w) = g(pw) − g(qw)

(p − q)w

= 1 − [2]p,qa2w + [3]p,q(2a
2
2 − a3)w

2

−[4]p,q(5a
3
2 − 5a2a3 + a4)w

3 + · · · .

Consider an analytic function with Re(Ψ (z)) > 0 inU,Ψ (0) = 1 andΨ ′(0) > 0.
Also Ψ (U) be starlike with respect to 1 and symmetric with respect to the real axis.
Thus, Ψ (z) has the Taylor series expansion
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Ψ (z) = 1 + B1z + B2z
2 + B3z

3 + · · · (B1 > 0). (3)

Consider two analytic functions u(z) and v(z) inU. Let u(0) = v(0) = 0, |u(z)| < 1,
|v(z)| < 1.

Assume

u(z) = p1z +
∞∑

t=2

pt z
t , v(w) = q1w +

∞∑

t=2

qtw
t (|z| < 1, |w| < 1) . (4)

It is to be noted that

|p1| ≤ 1, |p2| ≤ 1 − |p1|2, |q1| ≤ 1, |q2| ≤ 1 − |q1|2. (5)

Equations (3) and (4) take the form

Ψ (u(z)) = 1 + B1 p1z + (
p21B2 + p2B1

)
z2 + · · · , |z| < 1 (6)

and
Ψ (v(w)) = 1 + B1q1w + (

q2
1B2 + q2B1

)
w2 + · · · , |w| < 1. (7)

In this paper we have introduced a new class using (p, q)-derivative operator and
subordination. We have obtained bounds for |a2| and |a3|.

2 Main Results

Definition 2 A function f ∈ σ is said to be in the class S p,q
σ (Ψ, s1, s2), if the fol-

lowing subordination relations hold

(s1 − s2)zDp,q(f(z))

f(s1z) − f(s2z)
≺ Ψ (z)

and
(s1 − s2)wDp,q(g(w))

g(s1w) − g(s2w)
≺ Ψ (w),

where g(w) = f−1(w), s1, s2 ∈ C with s1 �= s2, |s2| ≤ 1.

Theorem 1 Let f given by (1) be in the class S p,q
σ (Ψ, s1, s2). Then

|a2| ≤ B1
√
B1√

|B2
1[[3]pq−[2]pqs1−[2]pqs2+s1s2]−B2[[2]pq−s1−s2]2|+B1|[2]pq−s1−s2|2
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and

|a3| ≤

⎧
⎪⎪⎨

⎪⎪⎩

B1
|[3]pq−s12−s22−s1s2| , B1 ≤ S1(p, q, s1, s2)

|M1(p,q,s1,s2,B1,B2)|B1+|[3]pq−s21−s22−s1s2|B3
1

|[3]pq−s12−s22−s1s2|M2(p,q,s1,s2,B1,B2)
, B1 > S1(p, q, s1, s2)

where

M1(p, q, s1, s2,B1,B2) = ([3]pq − [2]pqs1 − [2]pqs2 + s1s2)B2
1

−([2]pq − s1 − s2)2B2

M2(p, q, s1, s2,B1,B2) = [|([3]pq − [2]pqs1 − [2]pqs2 + s1s2)B2
1

−([2]pq − s1 − s2)2B2| + |[2]pq − s1 − s2|2B1
]

S1(p, q, s1, s2) = |[2]pq − s1 − s2|2
|[3]pq − s12 − s22 − s1s2| .

Proof Let f ∈ S p,q
σ (Ψ, s1, s2). Then, there exist analytic functions u, v : U → U

given by (4) such that

(s1 − s2)zDp,q(f(z))

f(s1z) − f(s2z)
= Ψ (u(z)) (8)

and
(s1 − s2)wDp,q(g(w))

g(s1w) − g(s2w)
= Ψ (v(w)). (9)

Since

(s1 − s2)zDp,q(f(z))

f(s1z) − f(s2z)
=1 + ([2]pq − s1 − s2

)
a2z +

{(
[3]pq − s1

2 − s2
2 − s1s2

)
a3

−
(
[2]pqs1 + [2]pqs2 − s1

2 − s2
2 − 2s1s2

)
a22

}
× z2 + · · · .

(10)

(s1 − s2)wDp,q(g(w))

g(s1w) − g(s2w)
=1 − ([2]pq − s1 − s2

)
a2w − {

(
[3]pq − s1

2 − s2
2 − s1s2

)
a3

−
(
2[3]pq − s1

2 − s2
2 − [2]pqs1 − [2]pqs2

)
a22} × w2 + · · · .

(11)
It follows from (6), (7), (10) and (11) that

[[2]pq − s1 − s2
]
a2 = B1 p1, (12)

[[3]pq − s12 − s22 − s1s2
]
a3−

[[2]pqs1 + [2]pqs2 − s12 − s22 − 2s1s2
]
a22

= B1 p2 + B2 p
2
1,

(13)
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− [[2]pq − s1 − s2]a2 = B1q1, (14)

[
2[3]pq − s12 − s22 − [2]pqs1 − [2]pqs2

]
a22 − [[3]pq − s12 − s22 − s1s2

]
a3

= B1q2 + B2q
2
1 .

(15)
From (12) and (14)

p1 = −q1. (16)

Further computation using (12), (13), (15) and (16) leads to

[
2

([3]pq − [2]pqs1 − [2]pqs2 + s1s2
)
B2

1

] − 2
[
([2]pq − s1 − s2)2B2

]
a22

= B3
1(p2 + q2).

(17)

Equations (16) and (17), together with (5), result in

| [[3]pq − [2]pqs1 − [2]pqs2 + s1s2
]
B2

1 − [[2]pq − s1 − s2
]2
B2||a2|2

≤ |B3
1|(1 − |p1|2),

(18)

the desired estimate for |a2|.
Next, in order to obtain the bound for |a3|, subtracting (15) from (13), we have

2
[[3]pq − s12 − s22 − s1s2

]
a3 + 2

[
s21 + s22 + s1s2 − [3]pq

]
a22

= B1(p2 − q2) + B2
(
p21 − q2

1

)
.

(19)

Then, in view of (5) and (16), we have

|[3]pq − s12 − s22 − s1s2||a3|B1 ≤ [
B1|[3]pq − s12 − s22 − s1s2|
−|[2]pq − s1 − s2|

] |a2|2 + B2
1.

Substituting for |a2|, we get the desired estimate for |a3|.
Remark 1 Let p = 1 and q → 1−. The above theorem reduces to Altinkaya et al.
[2]

Corollary 1 Suppose f, given by (1) is in the class S p,q
σ (Ψ, 1,−1), then

|a2| ≤ B1
√
B1√

|B2
1[[3]pq−1]−B2[[2]pq]2|+B1|[2]pq|2

and

|a3| ≤

⎧
⎪⎪⎨

⎪⎪⎩

B1
|[3]pq−1| , B1 ≤ S2(p, q)

|([3]pq−1)B2
1−[2]2pqB2|B1+|[3]pq−1|B3

1

|[3]pq−1|[|([3]pq−1)B2
1−([2]pq)2B2|+|[2]pq|2B1] , B1 > S2(p, q)
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where S2(p, q) = |[2]pq|2
|[3]pq−1| .

Remark 2 Let p = 1 and q → 1−. The above corollary reduces to Emeka et al. [5]

Corollary 2 Suppose f, given by (1) is in the class S p,q
σ (Ψ, 1, 0), then

|a2| ≤ B1
√
B1√

|B2
1[[3]pq−[2]pq]−B2[[2]pq−1]2|+B1|[2]pq−1|2

and

|a3| ≤

⎧
⎪⎪⎨

⎪⎪⎩

B1
|[3]pq−1| , B1 ≤ S3(p, q)

|([3]pq−[2]pq )B2
1−([2]pq−1)2B2|B1+|[3]pq−1|B3

1

|[3]pq−1|[|([3]pq−[2]pq)B2
1−([2]pq−1)2B2|+|[2]pq−1|2B1] , B1 > S3(p, q)

where S3(p, q) = |[2]pq−1|2
|[3]pq−1| .

Remark 3 Let p = 1 and q → 1−. The above corollary reduces to Emeka et al. [5]

Corollary 3 Let

Ψ (z) =
(
1 + z

1 − z

)β

= 1 + 2βz + 2β2z2 + · · · , (0 < β ≤ 1).

We have

|a2| ≤ 2β√∣∣∣2[[3]pq−[2]pqs1−[2]pqs2+s1s2]−[[2]pq−s1−s2]2
∣∣∣β+|[2]pq−s1−s2|2

and

|a3| ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2β
|[3]pq−s12−s22−s1s2| , i f 0 < β ≤ S4(p, q, s1, s2)

2[|M3(p,q,s1,s2)|+2|[3]pq−s21−s22−s1s2|]β2

|[3]pq−s12−s22−s1s2|M4(p,q,s1,s2)
,

i f S4(p, q, s1, s2) < β ≤ 1

where

M3(p, q, s1, s2) = 2([3]pq − [2]pqs1 − [2]pqs2 + s1s2) − ([2]pq − s1 − s2)2

M4(p, q, s1, s2) = [|2([3]pq − [2]pqs1 − [2]pqs2 + s1s2) − ([2]pq − s1 − s2)2|β
+|[2]pq − s1 − s2|2

]

S4(p, q, s1, s2) = |[2]pq − s1 − s2|2
2|[3]pq − s12 − s22 − s1s2| .
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Corollary 4 Let

Ψ (z) = 1 + (1 − 2β)z

1 − z
= 1 + 2(1 − β)z + 2(1 − β)z2 + · · · , (0 ≤ β < 1).

We have

|a2| ≤ 2(1−β)√∣∣∣2([3]pq−[2]pqs1−[2]pqs2+s1s2)(1−β)−([2]pq−s1−s2)
2
∣∣∣+|[2]pq−s1−s2|2

and

|a3| ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2(1−β)∣∣[3]pq−s21−s22−s1s2
∣∣ , i f S5(p, q, s1, s2) ≤ β < 1

2
[|M5(p,q,s1,s2)|+2|[3]pq−s21−s22−s1s2|(1−β)

]
(1−β)

|[3]pq−s12−s22−s1s2|M6(p,q,s1,s2)
,

i f 0 ≤ β < S5(p, q, s1, s2)

where

M5(p, q, s1, s2) = 2([3]pq − [2]pqs1 − [2]pqs2 + s1s2)(1 − β) − ([2]pq − s1 − s2)
2

M6(p, q, s1, s2) =
[
|2([3]pq − [2]pqs1 − [2]pqs2 + s1s2)(1 − β) − ([2]pq − s1 − s2)2|
+|[2]pq − s1 − s2|2

]

S5(p, q, s1, s2) = 2|[3]pq − s21 − s22 − s1s2| − |2 − s1 − s2|2
2|[3]pq − s21 − s22 − s1s2|

.

3 Conclusion

We have estimated the bounds for |a2| and |a3| for functions belonging to the new
class defined by us in this paper. We will extend our work by finding the bounds for
|a4| and |a5|. Though it is too difficult to find sharpness for our class as it is defined
using the pq-derivative operator, wewill try to extend our work by finding sharpness.
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Some Double Integral Formulae
Associated with Q Function and
Galue-Type Struve Function

Nirmal Kumar Jangid, Sunil Joshi, and Sunil Dutt Purohit

Abstract In this study, with the aid of Edward’s double integral formula, we estab-
lish some double integral formula; our results are associated with Q function and
Galue-type Struve function. We often examine their special cases in the form of
recognized functions such as the generalized Mittag–Leffler function and the gener-
alized Struve function. The findings of our present paper would be both useful and
helpful in the study of applied science and engineering problems.

Keywords Mittag-Leffler function · Galue-type Struve function · Generalized
Struve function · Q-function

1 Introduction and Preliminary

In the field of science and engineering, integral and transform formulas are very use-
ful [see [6, 12]] as we understand that the Mittag–Leffler function and Struve func-
tion and their specific generalizations are very useful. Due to the application of the
related problems, double integral formulae are very helpful. Several integral mecha-
nisms have already been developed, but we still need our contribution to enhancing
new double integral formulae connected to Q capacity and Galue-type Struve work.
We also study the accompanying interesting and beneficial result characterized by
Edward [4] for our present review as follows:
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∫ 1

0

∫ 1

o
tη2 (1 − t1)

η−1(1 − t2)
ξ−1(1 − t1t2)

1−ξ−ηdt1dt2

= �(η)�(ξ)

�(η + ξ)
, 0 < �(ξ) < �(η). (1)

Many researchers have used this double integral formula because of its large applica-
tions in the field of science and engineering and have foundmany substantial findings
that are used to solve many relevant problems. Recently, this Edward’s formula was
used by Haq et al. [5] and the result for generalized Lommel–Wright function in the
form of a Wright hypergeometric function is found. Ali et al. [1] also extended this
formula to the generalized Bessel–Maitland function and the results obtained are
very useful for solving many problems that have been applied. Kim et al. [8] further
described an extension of Edward’s double integral formula due to its additional
applications. In this sequel we also want to develop some double integral formulae
associated with Q function and Galue-type Struve function.

For our current analysis, we need descriptions of the Mittag–Leffler function,
Struve function and their generalizations, which many researchers have already
described as follows.

The well-known Mittag–Leffler functions Eu(z) and Eu,v(z) were introduced by
Mittag–Leffler [11] and Wiman [20], respectively, which are defined as follows:

Eu(z) =
∞∑
l=0

zl

�(ul + 1)
, z ∈ C,�(u) > 0 (2)

and

Eu,v(z) =
∞∑
l=0

zl

�(ul + v)
, z, u, v ∈ C,�(u) > 0,�(v) > 0. (3)

Prabhakar [16] defined the generalization of Mittag–Leffler function (3) as follows:

Ew
u,v(z) =

∞∑
l=0

(w)l zl

�(ul + v)l! , z, u, v, w ∈ C,�(u) > 0,�(v) > 0,�(w) = 0,

(4)
where

(w)l =
{
1, if w ∈ C, l = 0
w(w + 1)(w + 2) . . . (w + l − 1), if l ∈ N, w ∈ C.

(5)

Many researchers also developed the Mittag–Leffler function in various forms of
generalization. Shukla et al. [18] and Chouhan et al. [3] established the following
generalization formulae as defined in (6) and (7), respectively.
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Ew,q
u,v (z) =

∞∑
l=0

(w)ql zl

�(ul + v)l! , (6)

u, v, w ∈ C,�(u) > 0,�(v) > 0,�(w) > 0 and q ∈ (0, 1) ∪ N ,

where (w)ql = �(w+ql)
�(w)

is the generalized Pochhammer symbol.

And

Ew,t,q
u,v (z) =

∞∑
l=0

(w)ql zl

�(ul + v)( f )ql
, (7)

where u, v, w, f ∈ C,�(u) > 0,�(v) > 0,�(w),�( f ) > 0, q ∈ (0, 1) ∪ N , and
(w)ql = �(w+ql)

�(w)
. ( f )ql = �( f +ql)

�( f ) denotes the generalized Pochhammer symbols.
In this sequel, Khan et al. [7] investigated the generalized Mittag–Leffler function
Eλ,μ,w,q
u,v,σ,ρ,t,p(z) defined as follows:

Eλ,μ,w,q
u,v,σ,ρ, f,p(z) =

∞∑
l=0

(λ)μl(w)ql zl

�(ul + v)( f )pl(σ )ρl
, (8)

where u, v, w, σ, ρ, μ, f, λ ∈ C; p, q > 0 and q ≤ �(u) + p, and min{�(u) >

0,�(v) > 0,�(w),�(σ ) > 0�(ρ) > 0,�(μ) > 0,�( f ),�(λ) > 0}.

Furthermore, Mazhar-ul-Haque et al. [10] investigated the further generalization
of Mittag–Leffler function Qw,q,r

u,v, f (x) which is described by

Qw,q,r
u,v, f (x) = Qw,q,r

u,v, f (c1, c2, . . . , cr , d1, d2, . . . , dr , x),

where

Qw,q,r
u,v, f (x) =

∞∑
l=0

∏r
n=1 β(dn, l)(w)ql xl∏r

n=1 β(cn, l)( f )ql �(ul + v)
, (9)

for u, v, w, f, c, d ∈ C, min{�(u) > 0,�(v) > 0,�(w) > 0} and q ∈ (0, 1) ∪ N ,
and (w)ql = �(w+ql)

�(w)
, ( f )ql = �( f +ql)

�( f ) denotes the generalizedPochhammer symbols.

Bhatnagar et al. [2] have recently developed the novel generalized Q function
using the generalized Mittag–Leffler function described as follows:
Qλ,μ,w,q,r

u,v,σ,ρ, f,p(x) = Qλ,μ,w,q,r
u,v,σ,ρ, f,p(c1, c2, . . . , cr , d1, d2, . . . , dr , x),

Qλ,μ,w,q,r
u,v,σ,ρ, f,p(x) =

∞∑
l=0

∏r
n=1 β(dn, l) (λ)μl(w)ql xl∏r

n=1 β(cn, l) (σ )ρl( f )pl �(ul + v)
, (10)
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where u, v, w, f, c, d ∈ C, q ∈ (0, 1) ∪ N , min{�(u) > 0,�(v) > 0,�(w),�(σ )

> 0�(ρ) > 0,�(μ) > 0,�(λ) > 0}, and (w)ql = �(w+ql)
�(w)

, ( f )pl = �( f +pl)
�( f ) , (λ)μl

= �(λ+μl)
�(λ)

, (σ )ρl = �(σ+ρl)
�(σ )

denotes the generalized Pochhammer symbols.

We also recognize in our present study the generalizedGalue-type Struve function
established by Nisar et al. [12] as follows:

Wρ,σ
q,g,h,δ

(z) =
∞∑
l=0

(−h)l

� (ρl + σ) �
(
f l + q

δ + g+2
2

) ( z

2

)2l+q+1
, f ∈ N, q, g, h ∈ C,

(11)
where ρ > 0, δ > 0 and σ stand for arbitrary parameter.

Also Orhan et al. [13, 14] demarcated generalization of Struve function Hq,g,h

which is the special case of (11) for ρ = f = δ = 1, σ = 3
2 defined as follows:

Hq,g,h(z) ==
∞∑
l=0

(−h)l

�
(
l + 3

2

)
�

(
l + q + g+2

2

) ( z
2

)2l+q+1
, q, g, h ∈ C. (12)

In our present paper we need Hadamard product of two analytic functions, which
facilitate us to split the emerged function into two eminent functions. If we let h(t)
and g(t) to be two power series defined as
h(t) = ∑∞

l=o al t
l, (|t | < Rh) and g(t) = ∑∞

l=o bl t
l, (|t | < Rg),

where Rh and Rg are radii of convergence, respectively, then their Hadamard product
[15, 17] is defined as follows:

(h ∗ g)(t) =
∞∑
l=0

albl t
l = (g ∗ h)(t) (|t | < R), (13)

where

R = lim
l→∞

∣∣∣∣ albl
al+1bl+1

∣∣∣∣ =
(

lim
l→∞

∣∣∣∣ al
al+1

∣∣∣∣
)(

lim
l→∞

∣∣∣∣ bl
bl+1

∣∣∣∣
)

= Rh Rg,

in general R ≥ Rh Rg .
We also recall the generalized hypergeometric function (see [19], Sect. 1.5) and

generalized Wright hypergeometric function (see for details Mathai et al. ([9], pp.
23)) defined in the following Eqs. (14) and (15), respectively

pFq

[
u1, . . . , u p;
v1, . . . , vq; z

]
=

∞∑
l=0

(u1)l, . . . , (u p)l

(v1)l , . . . , (vq)l l! z
l, (14)
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where z, ui , v j ∈ C, i = 1, 2, . . . , p; j = 1, 2, . . . , q and v j are non-zero, non-
negative integers.

And (u)l is the Pochhammer symbol defined above in (5).

pψq

[
(u1,U1), . . . , (u p,Up);
(v1, V1), . . . , (vq , Vq); z

]
=

∞∑
l=0

∏p
i=1 �(ui +Uil)zl∏q
j=1 �(v j + Vjl)l! , (15)

where z, ui , v j ∈ C,Ui , Vj ∈ R, i = 1, 2, . . . , p; j = 1, 2, . . . , q.

2 Main Results

In this section we determine some double integral formulae related to Q function and
Galue-type Struve work with the assistance of Edward’s double integral formula.
Since our outcomes appeared underneath in Theorems 1 and 2, we additionally
examine about the diversity in Theorem 2.

Theorem 1 For u, v, w, f, ci , di ∈ C; �(u) > 0,�(v) > 0,�(w) > 0,�(σ ) > 0,
�(λ) > 0,�(ρ) > 0,�(μ) > 0; 0 < �(ξ) < �(η) and q ∈ (0, 1) ∪ N, then
we have

∫ 1

0

∫ 1

o
tη2 (1 − t1)

η−1(1 − t2)
ξ−1(1 − t1t2)

1−ξ−η

× Qλ,μ,w,q,r
u,v,σ,ρ, f,p

(
kt2(1 − t1)(1 − t2)

(1 − t1t2)2

)
dt1dt2 = B(η, ξ)

× Qλ,μ,w,q,r
u,v,σ,ρ, f,p

(
k

4

)
∗ 3F2

[
u, v, 1;

u+v
2 , u+v+1

2 ;
k

4

]
. (16)

Proof Let us assume L.H.S. to be denoted by I1, then we have

I1 =
∫ 1

0

∫ 1

o
tη2 (1 − t1)

η−1(1 − t2)
ξ−1(1 − t1t2)

1−ξ−η

× Qλ,μ,w,q,r
u,v,σ,ρ, f,p

(
kt2(1 − t1)(1 − t2)

(1 − t1t2)2

)
dt1dt2,

now using Eq. (10) in the above integral, we have
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I1 =
∫ 1

0

∫ 1

o
tη2 (1 − t1)

η−1(1 − t2)
ξ−1(1 − t1t2)

1−ξ−η

×
∞∑
l=0

∏r
n=1 β(dn, l) (λ)μl(w)ql zl∏r

n=1 β(cn, l) (σ )ρl( f )pl �(ul + v)

(
t2(1 − t1)(1 − t2)

(1 − t1t2)2

)l

dt1dt2.

By altering the order of integration and summation, and in view of Eq. (1), we have

I1 =
∞∑
l=0

∏r
n=1 β(dn, l) (λ)μl(w)ql zl∏r

n=1 β(cn, l) (σ )ρl( f )pl �(ul + v)

�(η + l)�(ξ + l)

�(ξ + η + 2l)
.

Simplifying the above equation, we have

I1 = �(η + l)�(ξ + l)

�(ξ + η + 2l)

∞∑
l=0

∏r
n=1 β(dn, l) (λ)μl(w)ql zl∏r

n=1 β(cn, l) (σ )ρl( f )pl �(ul + v)22l
(

η+ξ

2

)
l

(
η+ξ+1

2

)
l

.

(17)

Finally, using Hadamard product (13) in (17), and making use of (10) and (14), we
obtain the desired result.

Theorem 2 Forq, g, h ∈ C; f ∈ N; ρ > 0, δ > 0; 0 < �(ξ) < �(η); �(η + q) >

−1,�(ξ + q) > −1,�(η + ξ + 2q) > −2,� ( q
δ

+ g
2

)
> −1 and �(σ ) > 0, then

we have

∫ 1

0

∫ 1

o
tη2 (1 − t1)

η−1(1 − t2)
ξ−1(1 − t1t2)

1−ξ−η

× w
ρ,σ

q,g,h,δ

(
kt2(1 − t1)(1 − t2)

(1 − t1t2)2

)
dt1dt2

=
(k
2

)q+1

3ψ3

[ (η + q + 1, 2), (ξ + q + 1, 2), (1, 1);
(σ, ρ),

(
q
δ

+ g
2 + 1, f

)
, (η + ξ + 2q + 2, 4)

; −hk2

4

]
. (18)

Proof Let us assume L.H.S. be denoted by I2, then we have

I2 =
∫ 1

0

∫ 1

o
tη2 (1 − t1)

η−1(1 − t2)
ξ−1(1 − t1t2)

1−ξ−η

× w
ρ,σ

q,g,h,δ

(
kt2(1 − t1)(1 − t2)

(1 − t1t2)2

)
dt1dt2.

Using Eq. (11) in the above integral, we have
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I2 =
∫ 1

0

∫ 1

o
tη2 (1 − t1)

η−1(1 − t2)
ξ−1(1 − t1t2)

1−ξ−η

×
∞∑
l=0

(−h)l

�(ρl + σ)�( f l + q
δ

+ g+2
2 )

(k
2

)2l+q+1
(
kt2(1 − t1)(1 − t2)

(1 − t1t2)2

)2l+q+1

dt1dt2.

Now by altering the order of integration and summation, and in view of Eq. (1), we
have

I2 =
∞∑
l=0

(−h)l

�(ρl + σ)�( f l + q
δ

+ g+2
2 )

( k
2

)2l+q+1 �(η + q + 1 + 2l)�(ξ + q + 1 + 2l)

�(η + ξ + 2q + 2 + 4l)
.

Simplifying the above equation, we have

I2 =
(k
2

)q+1 ∞∑
l=0

�(η + q + 1 + 2l)�(ξ + q + 1 + 2l)

�(ρl + σ)�( f l + q
δ

+ g+2
2 )�(η + ξ + 2q + 2 + 4l)

(−hk2

4

)l
.

(19)

Finally using Eq. (15) in (19) and further simplification we obtain the desired result.

Variation of (18): If the conditions of above Theorem 2 to be fulfilled, then we
can find the variation of Eq. (18) in the following integral formula which holds true

∫ 1

0

∫ 1

o
tη2 (1 − t1)

η−1(1 − t2)
ξ−1(1 − t1t2)

1−ξ−η

× w
ρ,σ

q,g,h,δ

(
kt2(1 − t1)(1 − t2)

(1 − t1t2)2

)
dt1dt2 =

(k
2

)q+1 B(η + q + 1, ξ + q + 1)

�(σ )�(
q
δ

+ g+2
2 )

× 5Fρ+ f +4

[
�(2, η + q + 1),�(2, ξ + q + 1), 1;

�(ρ, σ ),��( f + q
δ

+ g+2
2 ),�(4, η + ξ + 2q + 2);

−hk2

64ρρ f f

]
.

(20)

Proof For the proof of result (20), we use the following results:

�(η + l) = �(η)(η)l,

andGaussmultiplication theorem (ζ )kl = kkl
(

ζ

k

)
l

(
ζ+1
k

)
l

. . .

(
ζ+k−1

k

)
l

, in (19) and

making use of Eq. (14), we get our required result (20).
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3 Special Cases

In this segment we define some special cases by substituting particular values as if we
put r = 0 in Eq. (16), then we have our result in view of Hadamard product of gen-
eralized Mittag–Leffler function (8) defined by Khan et al. [7] with hypergeometric
function.

Corollary 1 Foru, v, w, f, ci , di ∈ C; �(u) > 0,�(v) > 0,�(w) > 0,�(σ ) > 0,
�(λ) > 0,�(ρ) > 0,�(μ) > 0; 0 < �(ξ) < �(η) and q ∈ (0, 1) ∪ N, then
we have

∫ 1

0

∫ 1

o
tη2 (1 − t1)

η−1(1 − t2)
ξ−1(1 − t1t2)

1−ξ−η

× Eλ,μ,w,q
u,v,σ,ρ, f,p

(
kt2(1 − t1)(1 − t2)

(1 − t1t2)2

)
dt1dt2

= B(η, ξ).Eλ,μ,w,q
u,v,σ,ρ, f,p

(
k

4

)
∗ 3F2

[
u, v, 1;

u+v
2 , u+v+1

2 ;
k

4

]
. (21)

Corollary 2 Let the condition of Theorem 1 be satisfied and for λ = μ = σ = ρ =
p = 1, then we have our result in view of Hadamard product of generalized Mittag–
Leffler function defined byMazhar-ul-Haque et al. [10]with hypergeometric function
as follows:

∫ 1

0

∫ 1

o
tη2 (1 − t1)

η−1(1 − t2)
ξ−1(1 − t1t2)

1−ξ−η

× Qw,q,r
u,v, f

(
kt2(1 − t1)(1 − t2)

(1 − t1t2)2

)
dt1dt2 = B(η, ξ).Qw,q,r

u,v, f

(
k

4

)
∗ 3F2

[
u, v, 1;

u+v
2 , u+v+1

2 ;
k

4

]
. (22)

Corollary 3 Let the condition of Theorem 1 be satisfied and if λ = μ = σ = ρ =
p = 1, r = 0, then we have our result in view of Hadamard product of generalized
Mittag–Leffler function defined by Chouhan et al. [3] with hypergeometric function
as follows:

∫ 1

0

∫ 1

o
tη2 (1 − t1)

η−1(1 − t2)
ξ−1(1 − t1t2)

1−ξ−η

× Ew, f,q
u,v

(
kt2(1 − t1)(1 − t2)

(1 − t1t2)2

)
dt1dt2 = B(η, ξ).Ew, f,q

u,v

(
k

4

)
∗ 3F2

[
u, v, 1;

u+v
2 , u+v+1

2 ;
k

4

]
. (23)
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Corollary 4 If we put f = 1, in the above Eq. (23), then we have our result in view
of Hadamard product of generalized Mittag–Leffler function investigated by Shukla
et al. [18] with hypergeometric function as follows:

∫ 1

0

∫ 1

o
tη2 (1 − t1)

η−1(1 − t2)
ξ−1(1 − t1t2)

1−ξ−ηEw,q
u,v

(
kt2(1 − t1)(1 − t2)

(1 − t1t2)2

)
dt1dt2

= B(η, ξ).Ew,q
u,v

(
k

4

)
∗ 3F2

[
u, v, 1;

u+v
2 , u+v+1

2 ;
k

4

]
. (24)

Corollary 5 If setting q = 1 in the above Eq. (24), then we have our result in view
of Hadamard product of generalized Mittag–Leffler function defined by Prabhakar
[16] with hypergeometric function as follows:

∫ 1

0

∫ 1

o
tη2 (1 − t1)

η−1(1 − t2)
ξ−1(1 − t1t2)

1−ξ−ηEw
u,v

(
kt2(1 − t1)(1 − t2)

(1 − t1t2)2

)
dt1dt2

= B(η, ξ).Ew
u,v

(
k

4

)
∗ 3F2

[
u, v, 1;

u+v
2 , u+v+1

2 ;
k

4

]
. (25)

Similarly, if we put w = 1 and v = 1, respectively, in Eq. (25), then we have our
result in view of Hadamard product of generalized Mittag–Leffler function defined
by Wiman [20] and Mittag–Leffler function established by Mittag–Leffler [11] with
hypergeometric function, respectively.

Corollary 6 If we putρ = f = 1, σ = 3
2 and δ = 1 in Theorem2 under the assump-

tion of given conditions then it will reduce to the following form:

∫ 1

0

∫ 1

o
tη2 (1 − t1)

η−1(1 − t2)
ξ−1(1 − t1t2)

1−ξ−η

× Hq,g,h

(
kt2(1 − t1)(1 − t2)

(1 − t1t2)2

)
dt1dt2

=
(k
2

)q+1

3ψ3

[ (η + q + 1, 2), (ξ + q + 1, 2), (1, 1);
( 32 , 1),

(
2q+g+2

2 , 1

)
, (η + ξ + 2q + 2, 4);

−hk2

4

]
. (26)

Corollary 7 Let the restrictions of Theorem 2 be fulfilled and for ρ = f = 1, σ = 3
2

and δ = 1 then Eq. (25) will reduce to the following form:
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∫ 1

0

∫ 1

o
tη2 (1 − t1)

η−1(1 − t2)
ξ−1(1 − t1t2)

1−ξ−η

× Hq,g,h

(
kt2(1 − t1)(1 − t2)

(1 − t1t2)2

)
dt1dt2 =

(k
2

)q+1 2B(η + q + 1, ξ + q + 1)

(φ)
1
2 �(

2q+g+2
2 )

× 5F6

[
�(2, η + q + 1),�(2, ξ + q + 1), 1;

�(1, 3
2 ),��

(
1, 2q+g+2

2

)
,�(4, η + ξ + 2q + 2);

−hk2

64

]
. (27)

4 Conclusions

In the present paper we obtained double integral formulae that are associated with
Q function and Galue-type Struve function. Further, we frequently examined their
special cases in the form of recognized functions such as the generalized Mittag–
Leffler function and the generalizedStruve function. Thefindings of our present paper
would be both useful and helpful in the study of applied science and engineering
problems.
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Time-Dependent Analytical
and Computational Study of an M/M/1
Queue with Disaster Failure and Multiple
Working Vacations

Madhu Jain, Mayank Singh, and Rakesh Kumar Meena

Abstract An M/M/1 working vacation (WV) queueing model with disaster failure
is considered to examine time-dependent behavior.When the system is in busymode,
it can fail such that all the customers in the system are flushed out and never returns;
such type of failure is known as disaster failure. The server is allowed to go for aWV
after each busy period for a randomduration of time. In the duration ofWV, the server
reduces the service rate rather than halting the service. After completing the vacation
period, the server can take any number of vacation until he found some customers
waiting in the queue; this vacation policy is known as multiple vacation policy.
The transient analytical formulae for the queue size distributions are formulated
by solving Chapman–Kolmogorov equations using continued fractions, modified
Bessel function and probability generating function methods. Moreover, various
queueing performance measures are given, and real-time performance is evaluated
by computing the performance measures numerically.

Keywords Transient queue · System disaster · Working vacation · Repair ·
Continued fraction · Modified Bessel function

1 Introduction

In some instances, servers are always accessible in the case of a classical queueing
model. However, for some time, the server may be inaccessible in real life due to
various reasons. This server’s absence time might indicate the server’s work on some
additional jobs, being examined for maintenance, or merely taking breaks. We refer
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the readers to [5, 23, 24] in order to understand the background and applications
of vacationing server queueing systems. Also, the concept of vacation plays a vital
role in machining environment (cf. [7, 11–13, 15]). To examine such systems and
signify the period of temporary absence of the server, the concept of server vacation in
queueing models has been introduced. Vacation occurs when a server is not available
to serve the next customer or has gone for some recreation or leisure activities.
Permitting servers to take vacations makes queueing systems more accurate and
adaptable in the world of waiting lines. There may be a loss of profit in the case
when jobs accumulate during the vacation period. To avoid such loss of profit, the
server will provide services to the customers at a different pace. The server provides
service at a slower rate while on vacation instead of completely stopping the service,
and it will be called on to working vacation (WV), see [17].

Since the inclusion ofWV in queueingmodels makes the model more economical
and closer to real-life situations, many queueing theorists included theWV scenarios
in their queueing models. Tian et al. [25] studied a single-server Markov queueing
model with single WV and framed the queue length, busy period, etc. in various for-
mulae. Vijayashree and Janani [26] presented an analytical study on the multi-server
Markov queueing model with WV and used matrix geometric method to formu-
late various queueing probability distributions. Kannadasan and Sathiyamoorth [10]
fuzzified the parameters in an M/M/1 WV queue and obtained queue length distri-
bution under the steady-state condition. Recently, Ameur et al. [1] established some
explicit results for a Markovian retrial queue with WV and vacation interruption.

Losing all the jobs due to a single fault is known as disaster failure, and can be
commonly seen in various queueing systems. For example, in computer networking,
all the commands are flushed out as soon as a single fault occurs in the server
computer; in the telecommunication systems, the entire call request can be dropped
due to sudden network fluctuations and so on. Many queueing theorists included
disaster failure in various queueing situations. Chen and Renshaw [4] studied an
M/M/1queuewith disaster failure andobtained factorialmoments andvarious system
state probabilities. Jain and Sigman [6] obtained Pollaczek–Khintchine formulae for
an M/G/1 disaster queue. Bocharov et al. [3]; Kim et al. [14] and Shin [18] included
the concept of disaster in multi-server queueing systems. The arriving customers
may get discouraged upon arrival on finding the failed server and can decide not
to queue in the system. The behavior of discouragement of the arriving customers
shows a significant impact on the operation of the queueing system (cf. [16, 19]).
Recently, Jain and Singh [8] included feedback, balking, and reneging in an M/M/1
disaster queue and formulated system size distribution analytically. They also used
these explicit formulae to construct a performance matrix for the model.

The time-dependent analysis of the queueingmodel is a tedious task as the govern-
ing differential-difference equations are highly nonlinear in nature. However, there
are some methods to deal with this situation; one is the continued fraction technique.
It is a powerful tool to handle the complexity of the nonlinear differential-difference
equations and can be used to obtain a closed-form solution for the transient queue-
ing model. This technique is applicable when we found the governing differential-
difference equation is in three-term recurrence relation. Sudhesh [19] implemented
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Fig. 1 State-transition diagram of M/M/1 WV queueing model with disaster

the continued fraction technique for an M/M/1 disaster queue to obtain probability
distribution for a number of jobs in the system.Many researchers, including Sudhesh
and Raj [20], Ammar [2], Sudhesh et al. [21], Suranga Sampath and Liu [22], and
Jain et al. [9] used the technique of continued fraction on various queueing models
to solve Chapman–Kolmogorov differential-difference equation.

In this paper, a single-server Markov queueing model is considered with disaster
failure and WV to formulate the time-dependent analytical results. In Sect. 2, the
model is illustrated by making some assumptions, and a state transition diagram
(Fig. 1) is given to understand thebirth–death transitionof the system tovarious states.
The governing equations are formulated in Sect. 3. Transient analytical solutions
are obtained in Sect. 4. Section 5 is devoted to formulate the various performance
measures for the transient queueing model, such as mean system size, throughput of
the system, and various system state probabilities. In Sect. 6, a numerical solution is
presented to look at the performance of the queueing model. Finally, in Sect. 7, the
conclusion of the present study is given along with the future scope of the model.

2 Model Description

Consider an M/M/1 WV queue with disaster failure. The jobs arrive into the sys-
tem according to a Poisson distribution with rate λ and the service is rendered
by a single server according to first-come first-serve (FCFS) discipline with an
exponentially distributed (Exp-D) time, having the rate μ. The server can go for
a vacation of random duration, after completing each busy period. The length of
vacation follows Exp-D with rate v. If no customers are waiting after the termi-
nation of vacation, the server avails another vacation. Moreover, the system can
suffer disaster breakdown during the busy period, and consequently, all the cus-
tomers are lost. As soon as the system fails, a dedicated repairman is assigned to
repair the system. The occurrence of disaster and repair time both are supposed to
follow Exp-D with rates δ and β, respectively. Let {N (t), t ≥ 0} and Y (t) denote
the number of customers and status of the server at time t , respectively. Here
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χ(t) = {N (t),Y (t); t ≥ 0} is a two-dimensional continuous-time Markov chain,
with state-space � = {(i, j), i = 0, 1, 2, . . . ; j = W, B} ∪ { j = D}.

Y (t) =
⎧
⎨

⎩

D : When system is in downstate,
W : When system is in working vacation state,
B : When system is in busy state.

Then various system state probabilities for i ≥ 0 associatedwith down state, working
state and WV state are denoted and defined as follows:
(a) The probability of system in down state is denoted by

QD(t) = Prob[Y (t) = D].

(b) The probability of system in busy state is denoted by

Qi,B(t) = Prob[N (t) = i,Y (t) = B, ] for i ≥ 0.

(c) The probability of system in working vacation state is denoted by:

Qi,W (t) = Prob[N (t) = i,Y (t) = W ] for i ≥ 0.

Denote Laplace transform of QD(t), Qi,W (t) and Qi,B(t) by Q∗
D(s), Q∗

i,W (s) and
Q∗

i,B(s); i ≥ 0, respectively.

3 Governing Equations

The balance equations for the queueingmodel are formulated by following the birth–
death rule as follows:
(i) The governing equation for (Y (t) = D) down state:

d

dt
QD(t) = −εQD(t) + δ

∞∑

i=1

Qi,B(t) (1)

(ii) The governing equations for (Y (t) = B) busy state:

d

dt
Q1,B(t) = −(λ + μ + δ)Q1,B(t) + μQ2,B(t) + vQ1,W (t) (2)

d

dt
Qi,B(t) = −(λ + μ + δ)Qi,B(t) + λQi−1,B(t) + μQi+1,B(t) + vQi,W (t), i ≥ 2

(3)
(iii) The governing equations for (Y (t) = W ) working state:

d

dt
Q0,W (t) = −λQ0,W (t) + μvQ1,W (t) + μQ1,B(t) + εQD(t) (4)
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d

dt
Qi,W (t) = − (λ + μv + v) Qi,W (t) + λQi−1,W (t) + μvQi+1,W (t), i ≥ 1 (5)

with initial condition Q0,W (0) = 1.

3.1 Transient Analysis

In this section, the equations obtained in Sect. 3 are solved using continued fractions
and probability generation functions to obtain transient solutions for the queueing
model.

Evaluation of QD(t): Laplace transforms and some algebra on (1) yield

Q∗
D(s) = δ

s + ε

∞∑

i=1

Q∗
i,B(s) (6)

Taking inverse Laplace transform of (6)

QD(t) = δe−εt ∗
∞∑

i=1

Qi,B(t) (7)

Clearly QD(t) is expressed in terms of Qi,B(t).

Evaluation of Qi,W (t): Laplace transform and some algebraic on (5) yield

Q∗
i,W (s)

Q∗
i−1,W (s)

= λ

(s + λ + μv + ν) − μv
Q∗

i+1,W (s)
Q∗

i,W (s)

(8)

which gives
Q∗

i,W (s) = β i
v[φ(s)]i Q∗

0,W (s) (9)

where φ(s) =
(
pv − √

p2v − α2
v

αv

)i

, pv = s + λ + μv + v, αv = 2
√

μvλ and βv =
√

λ

μv

.

Inverse Laplace transform of (9) gives

Qi,W (t) = λβ i−1
[
e−(λ+μv+v)t {Ii−1(αt) − Ii+1(αt)}

]∗i ∗ Q0,W (t) (10)

where ‘∗’ and ‘i∗’, respectively, stand for convolution and i-fold convolution and
Ii (αt) denotes the modified Bessel’s function of first kind (MBF-I) of order i .
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Clearly Qi,W (t) is expressed in terms of Q0,W (t).

Evaluation of Qi,B(t): Consider z ∈ C(C is the set of complex numbers) such that
|z| ≤ 1, Define

Q(z, t) =
∞∑

i=1

Qi,B(t)zi , Q(z, 0) = 0

Multiplying (2) by z and (3) by zi , after some algebraic manipulations we get

∂

∂t
Q(z, t) + [

δ + (1 − z)λ + (
1 − z−1)μ

]
Q(z, t) = μQ1,B(t) + v

∞∑

i=1

Qi,W (t)zi

(11)
Solving (11), we get

Q(z, t) =v

∫ t

0

∞∑

m=1

zmQm,W (y) × e−(λ+μ+δ)(t−y)e(λz+μz−1)(t−y)dy

− μ

∫ t

0
Q1,B(y) × e−(λ+μ+δ)(t−y)e(λz+μz−1)(t−y)dy

(12)

Let Ii (t) be MBF-I of order i. It is well known that

e(λ+μz−1)(t−y) =
∞∑

i=−∞
(βz)Ii [α(t − y)] (13)

where α = 2
√

λμ and β =
√

λ
μ
.

For i = 0, 1, 2, . . ., comparing the coefficient of zi on both sides of Eq. (12) using
(13), we get

Qi,B(t) =v

∫ t

0

∞∑

m=1

Qm,W (y) × β i−m Ii−m(α(t − y))e−(λ+μ+δ)(t−y)dy

− μ

∫ t

0
Q1,B(y) × β i Ii (α(t − y))e−(λ+μ+δ)(t−y)dy

(14)

For negative values of i , i.e. i = −1,−2,−3, . . ., Eq. (14) yields

0 =v

∫ t

0

∞∑

m=1

Qm,W (y) × β i−m Ii+m(α(t − y))e−(λ+μ+δ)(t−y)dy

− μ

∫ t

0
Q1,B(y) × β i Ii (α(t − y))e−(λ+μ+δ)(t−y)dy

(15)
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Subtracting (15) from (14), we get

Qi,B(t) = v
∫ t
0

∑∞
m=1 Qm,W (y) × β i−m

[
Ii−m(α(t − y)) − Ii+m(α(t − y))

]
e−(λ+μ+δ)(t−y)dy (16)

Thus Qi,B(t) is expressed in terms of Qi,W (t).

Evaluation of Q0,W (t): Laplace transform of (4) gives

(s + λ)Q∗
0,W (s) = 1 + μvQ

∗
1,W (s) + μQ∗

1,B(s) + εQ∗
D(s) (17)

Taking Laplace transform of (16) at i = 1 and using (9), we get

Q∗
1,B(s) = 2v

∞∑

m=1

β1−mβm
v [φ(s)]mQ∗

0,J (s)
αm−1

(
p + √

p2 − α2
)m (18)

where p = s + λ + μ + δ.
Again taking Laplace transform of (16) and using (9), we get

Q∗
1,B(s) = v

∑∞
m=1 β i−mβm

v [φ(s)]mQ∗
0,T (s)

[(
p+

√
p2−α2

)i−m

αi−m −
(
p+

√
p2−α2

)i+m

αi+m

]

(19)

Using (19) in (6)

Q∗
D(s) = δv

s+ε

∑∞
m=1 β i−mβm

v [φ(s)]mQ∗
0,W (s)

[(
p+

√
p2−α2

)i−m

αi−m −
(
p+

√
p2−α2

)i+m

αi+m

]

(20)

Using (9) for i = 1, (18) and (20) in (17), and some algebra yields

Q∗
0,W (s) = ∑∞

n=0
1

(s+λ)n+1

[

μvβvφ(s) + 2μv
∑∞

m=1 β1−mβm
v {φ(s)}m αm−1

(
p+

√
p2−α2

)m

+ εδv
s+ε

∑∞
i=1

∑∞
m=1

β1−mβm
v√

p2−α2
{φ(s)}m

{(
p+

√
p2−α2

)i−m

αi−m −
(
p+

√
p2−α2

)i+m

αi+m

}]n

(21)
On inversion, (21) gives

Q0,W (t) =
∞∑

n=0

e−λt t
n

n!

[

μvβvφ(t) + 2μv

∞∑

m=1

β1−mβm
v {φ(t)}∗m {Im−1(αt) − Im+1(αt)} e−(λ+μ+δ)t

+εδve−εt ∗
∞∑

i=1

∞∑

m=1

β1−mβm
v {φ(s)}∗m ∗ {Ii−m(αt) − Ii+m(αt)} e−(λ+μ+δ)t

]∗n (22)
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4 System Performance Measures

In this section, we used the transient formulae obtained in Sect. 4 to formulate the
performance measures for the queueing model. Mean system size, system’s through-
put and various system state probabilities are established as follows:
(i) Let LS(t) = E{N (t)} be the mean system size at time t . Then

LS(t) = E{N (t)} =
[ ∞∑

i=1

i
{
Qi,B(t) + Qi,W (t)

}
]

(23)

where Qi,W (t) and Qi,B(t) are given in Eqs. (10) and (16), respectively.
(ii) If T H(t) is the throughput (effective service rate) of the system at time t , then

T H(t) =
∞∑

m=0

μQi,B(t) (24)

where Qi,B(t) is given by Eqs. (16).
(iii) Let PB(t), PW (t) and PD(t) be the transient probabilities when system is in
busy, WV and in down states, respectively. Then

PB(t) =
∞∑

i=0

Qi,B(t), PW (t) =
∞∑

i=0

Qi,D(t) and PD(t) =
∞∑

i=0

QD(t) (25)

where Qi,B(t), Qi,W (t) and QD(t) are given by Eqs. (16), (10) and (7), respectively.

5 Numerical Simulation

In this section, numerical simulation results are given in the form of various figures
and tables. MATLAB’s ode45 function, i.e., Runge–Kutta 4th-order method is used
for calculating numerical results. The computation default parameters are set as λ =
2.4, μ = 2, 8, μv = 2.6, v = 1, δ = 0.05andβ = 1. In Fig. 2(i), the mean system
size LS(t) is plotted against time t for various values of λ. It is noticed that initially
LS(t) grows sharply and after some time settles down to a specific value. Also, it is
evident that the higher the value of λ, the larger the system size. Form Fig. 2 (ii),
it is clearly observable that if the server serves the customers with a faster rate, the
mean system size LS(t) will decrease. In Fig. 3 (i)–(ii), the transient throughput of
the system T H(t) is plotted for varying values of μ and μv. From both of the figures
we see that T H(t) initially grows rapidly and after some time obtains equilibrium
state and shows steady-state behavior; also T H(t) goes up with both the parameters
μ and μv .
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Fig. 2 Ls(t) versus t for various values of (i) λ (ii) μ

Fig. 3 T H(t) versus t for various values of (i) μ (ii) μv

InTables 1, 2 and3, it is noticeable that LS(t), T H(t), PB(t) increasewith respect
to time while PD(t) decreases, but PW (t) starts from a lower value and then attains
a peak and finally starts decreasing continuously. Moreover, all the tabulated system
indices except PD(t) are decreasing but as disaster rate (δ) increases (Table 1).
Entirely reverse relation of these system indices with respect to repair rate (ε) is
seen from Table 2; i.e. PD(t) is decreasing but rest of the other tabulated system
indices are increasing as repair rate (ε) goes high. Also, LS(t), PB(t) and PD(t)
are decreasing but T H(t) and PW (t) increase with respect to working vacation rate
μv (Table 3).
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Table 1 Various system performance measures for varying values of δ with respect to time

δ Time (t) LS(t) T H(t) PB(t) PW (t) PD(t)

0.05 3 0.51375 1.65609 0.07607 0.55501 0.36889

5 1.67699 2.50884 0.3371 0.60191 0.06099

7 2.29466 2.62342 0.46653 0.50659 0.02688

0.1 3 0.51163 1.65331 0.0751 0.55501 0.36989

5 1.62949 2.47886 0.3232 0.60535 0.07145

7 2.16651 2.5708 0.43554 0.51973 0.04473

0.2 3 0.50753 1.64792 0.07322 0.55496 0.37182

5 1.54413 2.42459 0.29805 0.61156 0.09039

7 1.95365 2.48213 0.38323 0.54196 0.07481

Table 2 Various system performance measures for varying values of ε with respect to time

ε Time (t) LS(t) T H(t) PB(t) PW (t) PD(t)

0.5 3 0.30203 1.030121 0.043692 0.349147 0.607161

5 1.244142 2.041886 0.245008 0.521486 0.233506

7 1.939998 2.3997 0.39253 0.500237 0.107233

1.0 3 0.513752 1.65609 0.076071 0.555035 0.368894

5 1.67699 2.508842 0.337098 0.601911 0.060991

7 2.294662 2.623415 0.466533 0.506586 0.026881

1.5 3 0.664195 2.036716 0.100371 0.675261 0.224369

5 1.851207 2.620441 0.37625 0.602669 0.02108

7 2.396506 2.656511 0.487092 0.497174 0.015734

Table 3 Various system performance measures for varying values of μv with respect to time

μv Time (t) LS(t) T H(t) PB(t) PW (t) PD(t)

2.4 3 0.529794 1.545708 0.077752 0.553334 0.368914

5 1.748995 2.391705 0.347137 0.591551 0.061312

7 2.389926 2.526112 0.480134 0.49239 0.027476

2.6 3 0.513752 1.65609 0.076071 0.555035 0.368894

5 1.67699 2.508842 0.337098 0.601911 0.060991

7 2.294662 2.623415 0.466533 0.506586 0.026881

2.8 3 0.498389 1.767151 0.074439 0.556686 0.368875

5 1.608991 2.630096 0.327355 0.611965 0.06068

7 2.20426 2.726356 0.453235 0.520463 0.026301
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6 Conclusion and Future Scope

The time-dependent results for an M/M/1 queue with working vacation (WV) and
disaster failure are established by implementing the methods of continued fraction
and probability generation function. The time-dependent results are useful when
the system does not acquire equilibrium conditions. The internet server, cloud com-
puting, telecommunication systems are some examples of such system. Numerical
results are also presented to test the sensitiveness of parameters on various system
descriptors. This model can be extended by including complete vacation.

Acknowledgements The author (Rakesh Kumar Meena) is thankful to the institute of Eminence
(IoE) cell, Banaras Hindu University for providing a reserach grant with project reference number
IoE (6031) to carry out the present research wok.

References

1. Ameur, L., Berdjoudj, L., Abbas, K.: Sensitivity analysis of the M/M/1 retrial queue with
working vacations and vacation interruption. Int. J. Manag. Sci. Eng. Manag. 14, 293–303
(2019). https://doi.org/10.1080/17509653.2019.1566034

2. Ammar, S.I.: Transient solution of anM/M/1 vacation queuewith awaiting server and impatient
customers. J. Eqypt. Math. Soc. 25, 337–342 (2017). https://doi.org/10.1016/j.joems.2016.09.
002

3. Bocharov, P.P., d’Apice, C., Manzo, R., Pechinkin, A.V.: Analysis of the multi-server Markov
queuing system with unlimited buffer and negative customers. Autom. Remote Control 68,
85–94 (2007). https://doi.org/10.1134/S0005117907010080

4. Chen, A., Renshaw, E.: The M/M/1 queue with mass exodus and mass arrivals when empty. J.
Appl. Probab. 34, 192–207 (1997). https://doi.org/10.2307/3215186

5. Doshi, B.T.: Queueing systems with vacations - A survey. Queueing Syst. 1, 29–66 (1986).
https://doi.org/10.1007/BF01149327

6. Jain, G., Sigman, K.: A Pollaczek-Khintchine formula for M/G/1 queues with disasters. J.
Appl. Probab. 33, 1191–1200 (1996). https://doi.org/10.2307/3214996

7. Jain, M., Meena, R.K.: Fault tolerant system with imperfect coverage, reboot and server vaca-
tion. J. Ind. Eng. Int. 13, 171–180. https://doi.org/10.1007/s40092-016-0180-8

8. Jain,M., Singh,M.: Transient analysis of aMarkov queueingmodel with feedback, discourage-
ment and disaster. Int. J. Appl. Comput. Math. 6, 31 (2020). https://doi.org/10.1007/s40819-
020-0777-x

9. Jain, M., Rani, S., Singh, M.: Transient analysis of Markov feedback queue with working
vacation and discouragement. In: Deep, K., Jain, M., Salhi, S. (eds.), Performance Prediction
and Analytics of Fuzzy, Reliability and Queuing Models: Theory and Applications, pp. 235–
250. Springer, Singapore (2019). https://doi.org/10.1007/978981-13-0857-418

10. Kannadasan, G., Sathiyamoorth, N.: The analysis of M/M/1 queue with working vacation in
fuzzy environment. Appl. Appl. Math. 13, 566–577 (2018)

11. Ke, J.C.,Wang, K.H.: Vacation policies for machine repair problemwith two type spares. Appl.
Math. Model. 31, 880–894 (2007). https://doi.org/10.1016/j.apm.2006.02.009

12. Ke, J.C.,Wu, C.H.:Multi-servermachine repairmodel with standbys and synchronousmultiple
vacation. Comput. Ind. Eng. 62, 296–305 (2012). https://doi.org/10.1016/j.cie.2011.09.017

13. Ke, J.C., Wu, C.H., Liou, C.H., Wang, T.Y.: Cost analysis of a vacation repair model. Procedia
- Soc. Behav. Sci. 25, 246–256 (2011). https://doi.org/10.1016/j.sbspro.2011.10.545

https://doi.org/10.1080/17509653.2019.1566034
https://doi.org/10.1016/j.joems.2016.09.002
https://doi.org/10.1016/j.joems.2016.09.002
https://doi.org/10.1134/S0005117907010080
https://doi.org/10.2307/3215186
https://doi.org/10.1007/BF01149327
https://doi.org/10.2307/3214996
https://doi.org/10.1007/s40092-016-0180-8
https://doi.org/10.1007/s40819-020-0777-x
https://doi.org/10.1007/s40819-020-0777-x
https://doi.org/10.1007/978981-13-0857-418
https://doi.org/10.1016/j.apm.2006.02.009
https://doi.org/10.1016/j.cie.2011.09.017
https://doi.org/10.1016/j.sbspro.2011.10.545


304 M. Jain et al.

14. Kim, C.S., Klimenok, V.I., Orlovskii, D.S.: Multi-server queueing system with a batch Marko-
vian arrival process and negative customers. Autom. Remote Control 67, 1958–1973 (2006).
https://doi.org/10.1134/S0005117906120083

15. Meena, R.K., Jain, M., Sanga, S.S., Assad, A.: Fuzzy modeling and harmony search opti-
mization for machining system with general repair, standby support and vacation. Appl. Math.
Comput. 361, 858–873 (2019). https://doi.org/10.1016/j.amc.2019.05.053

16. Sanga, S.S., Jain, M.: Cost optimization and ANFIS computing for admission control of
M/M/1/K queue with general retrial times and discouragement. Appl. Math. Comput. 363,
124624 (2019). https://doi.org/10.1016/j.amc.2019.124624

17. Servi, L.D., Finn, S.G.: M/M/1 queues with working vacations (M/M/1/WV). Perform. Eval.
50, 41–52 (2002). https://doi.org/10.1016/S0166-5316(02)00057-3

18. Shin, Y.W.: Multi-server retrial queue with negative customers and disasters. Queueing Syst.
55, 223–237 (2007). https://doi.org/10.1007/s11134-007-9018-9

19. Sudhesh, R.: Transient analysis of a queue with system disasters and customer impatience.
Queueing Syst. 66, 95–105 (2010). https://doi.org/10.1007/s11134-010-9186-x

20. Sudhesh, R., Raj, L.F.: Computational analysis of stationary and transient distribution of single
server queue with working vacation BT - Global trends in computing and communication
systems. In: Krishna, P.V., Babu, M.R., Ariwa, E. (eds.), pp. 480–489. Springer, Berlin (2012).
https://doi.org/10.1007/978-3-642-29219-4_55

21. Sudhesh, R., Azhagappan,A., Dharmaraja, S.: Transient analysis ofM/M/1 queuewithworking
vacation, heterogeneous service and customers’ impatience. RAIRO - Oper. Res. 51, 591–606
(2017). https://doi.org/10.1051/ro/2016046

22. Suranga Sampath, M.I.G., Liu, J.: Impact of customers’ impatience on an M/M/1 queueing
system subject to differentiated vacations with a waiting server. Qual. Technol. Quant. Manag.
17, 125–148 (2020). https://doi.org/10.1080/16843703.2018.1555877

23. Teghem, J.: Control of the service process in a queueing system. Eur. J. Oper. Res. 23, 141–158
(1986). https://doi.org/10.1016/0377-2217(86)90234-1

24. Tian, N., Zhang, Z.G.: Vacation Queueing Models Theory and Applications, 1st edn. Springer
US, Springer, Berlin (2006). https://doi.org/10.1007/978-0-387-33723-4

25. Tian, N., Zhao, X., Wang, K.: The M/M/1 queue with single working vacation. Int. J. Inf.
Manag. Sci. 19, 621–634 (2008). https://doi.org/10.1504/IJOR.2009.026941

26. Vijayashree, K.V., Janani, B.: Transient analysis of an M/M/c queue subject to multiple expo-
nential vacation. Adv. Intell. Syst. Comput. 412, 551–563 (2016). https://doi.org/10.1007/
978981-10-0251-951

https://doi.org/10.1134/S0005117906120083
https://doi.org/10.1016/j.amc.2019.05.053
https://doi.org/10.1016/j.amc.2019.124624
https://doi.org/10.1016/S0166-5316(02)00057-3
https://doi.org/10.1007/s11134-007-9018-9
https://doi.org/10.1007/s11134-010-9186-x
https://doi.org/10.1007/978-3-642-29219-4_55
https://doi.org/10.1051/ro/2016046
https://doi.org/10.1080/16843703.2018.1555877
https://doi.org/10.1016/0377-2217(86)90234-1
https://doi.org/10.1007/978-0-387-33723-4
https://doi.org/10.1504/IJOR.2009.026941
https://doi.org/10.1007/978981-10-0251-951
https://doi.org/10.1007/978981-10-0251-951


Usual Stochastic Ordering Results
for Series and Parallel Systems
with Components Having Exponentiated
Chen Distribution

Madhurima Datta and Nitin Gupta

Abstract In this paper, we have considered two n-component series systems and
two n-component parallel systems. The random variables corresponding to each of
these components are assumed to be independent and non-identically distributed.
When the random variables followed Exponentiated Chen distribution (denoted as
ECD(α,β,λ) where α,β,λ are the 3 parameters), the systems can be compared
based on the usual stochastic ordering. Some counterexamples were constructed to
show that the hazard rate and reversed hazard rate orderings cannot be obtained under
certain conditions.

Keywords Exponentiated Chen distribution · Majorization · Parallel system ·
Series system · Usual stochastic order

1 Introduction

Exponentiated Chen distribution is an extension of [1] family of distributions
obtained by using Lehman alternatives. It is used for modeling survival data. The
family of distributions obtained by using Lehman alternatives is known as expo-
nentiated type family. The resultant cumulative distribution function is obtained as
follows

F(x,α) = (F0(x))
α, x > 0, α > 0,

where F0(x) is the baseline distribution and F(x,α) is the generalization of F0(x)
and α is a parameter. This model is referred to as the Proportional reversed hazard
rate (PRHR) model where α is a proportionality constant. The Chen distribution
function introduced by [1] is
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F(x;β,λ) = (1 − eλ(1−ex
β
)), x > 0,β > 0,λ > 0. (1)

Applying the transformation T = (eX
β − 1)1/β in Eq. (1), we observe that T follows

Weibull distributionwith scale parameterλ and shape parameterβ. Also [2] extended
Chen distribution by adding a parameter and the survival function of the resultant
Extended Weibull distribution is

F(x;α,β,λ) = (eλ(1−e( xα )
β
))α, x > 0,α > 0,β > 0,λ > 0. (2)

[3] introduced another shape parameter to the Extended Weibull distribution and
obtained a four parametermodifiedWeibull extensiondistributionusing theMarshall-
Olkin technique.

Later [4] introduced the generalization of Chen distribution given by [1] by intro-
ducing a new parameter α. The new distribution function with parameters α,β,λ
is

F(x;α,β,λ) = (1 − eλ(1−ex
β
))α, x > 0,α > 0,β > 0,λ > 0. (3)

[5] discussed various important properties of ExponentiatedChen distribution such as
the density function can be either decreasing or unimodal depending on the param-
eters α and β. Also the hazard rate function can be bathtub shaped or increasing
depending on α and β. The reversed hazard rate function of Exponentiated Chen
distribution is

r̃(x;α,β,λ) = αβλxβ−1ex
β
eλ(1−ex

β
)

1 − eλ(1−exβ )
, x > 0,α > 0,β > 0,λ > 0. (4)

In this paper we have studied the usual stochastic ordering relations for the minimum
and maximum ordered statistics (series and parallel systems respectively) for two
different samples whose components follow the Exponentiated Chen distribution
(ECD). The order statistics are extremely important in reliability theory. Consider
a set of random variables X1, . . . , Xn , these random variables can be arranged as
X1:n, X2:n, . . . , Xn:n such that X1:n ≤ X2:n ≤ · · · ≤ Xn:n , here Xk:n is the kth mini-
mum of the set and is known as the kth order statistic. Xk:n corresponds to the lifetime
of a (n − k + 1)-out-of-n system. Details on order statistics are available in the book
[6]. Pledger and Proschan [7] pioneered the field of stochastic ordering and developed
usual stochastic ordering results for proportional hazard rate models which implied
similar results for exponential distribution, gamma distribution,Weibull distribution,
etc. Studies of stochastic ordering of ordered statistics are extremely popular nowa-
days and awide variety of stochastic ordering results are available in the literature [8].
The paper has been organized as follows: Sect. 2 includes the definitions of various
stochastic orders followed by some important lemmas. Section3 contains the usual
stochastic ordering results for series and parallel systems along with few examples
and counterexamples. Lastly Sect. 4 summaries the results obtained in the paper.
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2 Definitions

Let the random variables X and Y be absolutely continuous with distribution func-
tions F(x) and G(x); survival functions as F(x) and G(x); probability density func-

tions as f (x) and g(x); hazard rate functions as r(x) = f (x)

F(x)
and s(x) = g(x)

G(x)
;

reversed hazard rate functions as r̃(x) = f (x)

F(x)
and s̃(x) = g(x)

G(x)
, where F−1 and

G−1 are the right continuous quantiles respectively. Barlow and Proschan [9] con-
tains detailed explanation of the above terms. We shall now explain the stochastic
ordering between the random variables X and Y with the help of above mentioned
terms. These relations are mentioned in the book [10].

(a) X is smaller than Y in the usual stochastic order (X ≤st Y ) if and only if F(x) ≤
G(x) ∀ x ∈ R.

(b) X is smaller than Y in hazard rate order (X ≤hr Y ) if r(x) ≥ s(x), x ∈ R.

Equivalently, if
G(x)

F(x)
is increasing in x over the union of the supports of X and

Y .
(c) X is smaller than Y in reversed hazard rate order (X ≤rh Y ) if r̃(x) ≤ s̃(x), x ∈

R. Equivalently, if
G(x)

F(x)
is increasing in x over the union of the supports of X

and Y .

(d) X is smaller than Y in likelihood ratio order (X ≤lr Y ) if
g(x)

f (x)
is increasing in

x over the union of the supports of X and Y .

The likelihood ratio ordering implies both hazard rate and reversed hazard rate order-
ing which again implies the usual stochastic ordering.

Definition 1 Majorization (see [11] for further details)
Consider a = (a1, . . . , an) and b = (b1, . . . , bn) as two real valued vectors then

a is majorized by b ( a ≺ b ) if

n∑

i=1

ai :n =
n∑

i=1

bi :n and
k∑

i=1

ai :n ≥
k∑

i=1

bi :n ∀ k = 1, . . . , n − 1, (5)

where a1:n ≤ · · · ≤ an:n (b1:n ≤ · · · ≤ bn:n) is the increasing arrangement of
a1, . . . , an(b1, . . . , bn).

In general for two matrices A = {ai j }m×n and B = {bi j }m×n , A is majorized by B
(A ≺ B) if A = BP , where P = {pi j }n×n is a doubly stochastic matrix (this matrix
need not be unique but the existence of atleast one suchmatrix ensures majorization).
a is weakly submajorized by b ( a ≺w b ) if

k∑

i=1

an−i+1:n ≤
k∑

i=1

bn−i+1:n ∀ k = 1, . . . , n (6)
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and a is weakly supermajorized by b ( a ≺w b ) if

k∑

i=1

ai :n ≥
k∑

i=1

bi :n ∀ k = 1, . . . , n. (7)

Note that for a, b ∈ R

a ≺w b ⇐ a ≺ b ⇒ a ≺w b

Definition 2 Schur-convexity (Schur-concavity) [11] A real valued function ψ
defined on a subset of Rn is Schur-convex (Schur-concave) if

a ≺ b ⇒ ψ(a) ≤ (≥) ψ(b), (8)

where a = (a1, . . . , an) and b = (b1, . . . , bn) are two real valued vectors.

Throughout the paper, the notation a
sgn= b has been used to represent sign of a is

same as b. The following lemmas are useful for obtaining results in the next section.

Lemma 1 (Theorem 3.A.4, see [11])
For an open interval A ⊂ R, a continuously differentiable function ψ : An → R

is Schur-convex (Schur-concave) if and only if it is symmetric onAn and for all i �= j ,

let � = (ai − a j )

(
∂ψ(a)

∂ai
− ∂ψ(a)

∂a j

)
. Then � ≥ (≤)0.

Lemma 2 (Theorem 3.A.8, see [11])
Let S ⊂ R

n, a function f : S → R satisfying

a ≺w b (a ≺w b) on S ⇒ f (a) ≤ f (b)

if and only if f is increasing (decreasing) and Schur-convex on S.

Lemma 3 Let ψ1 : (0,∞) × (0, 1) → (0,∞) be defined as

ψ1(α, y) = y(1 − y)α−1

1 − (1 − y)α
. (9)

Then

(i) ψ1(α, y) increases with respect to y for 0 < α < 1,
(ii) ψ1(α, y) decreases with respect to y for α > 1.

Proof Differentiating ψ1(α, y) partially with respect to y we obtain,

∂ψ1(α, y)

∂y
sgn= −(1 − y)α(αy + (1 − y)α − 1).
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Let f1(y) = αy + (1 − y)α − 1, 0 < y < 1 and f1(0) = 0. The derivative of f1(y)
is

f ′
1(y) = α(1 − (1 − y)α−1)

= g1(y) (say).

Again the derivative of g1(y) is

g′
1(y) = α(α − 1)(1 − y)α−2.

The two possible cases are

(i) for 0 < α < 1, g′
1(y) < 0 and g1(0) = 0 ⇒ g1(y) < 0, i.e., f ′

1(y) < 0. And

f1(0) = 0 ⇒ f1(y) < 0 which implies
∂ψ1(α, y)

∂y
> 0,

(ii) forα > 1, g′
1(y) > 0 and g1(0) = 0 ⇒ g1(y) > 0, i.e., f ′

1(y) > 0.And f1(0) =
0 ⇒ f1(y) > 0 which implies

∂ψ1(α, y)

∂y
< 0. �

3 Results

In this section we shall compare two systems (series and parallel) by using the usual
stochastic ordering relations. We shall henceforth denote that the random variable
X follows Exponentiated Chen distribution as X ∼ ECD(α,β,λ). Along with the
results we shall present few examples and counterexamples to support the results.
The first theorem shows the usual stochastic ordering between the sample minimum
or between two series system when only the parameter λ is varying and all the other
parameters remain constant.

Theorem 1 Let X1, X2, . . . , Xn bea set of n independent randomvariables such that
Xi ∼ ECD(α,β,λi ), α > 0,β > 0,λi > 0 for i = 1, 2, . . . , n. Consider another
set of n independent random variables Y1,Y2, . . . ,Yn and the distribution function
of each random variable is ECD(α,β,μi ) for i = 1, 2, . . . , n. Then

λ ≺w μ ⇒ X1:n ≤st Y1:n(0 < α < 1)

λ ≺w μ ⇒ X1:n ≥st Y1:n(α > 1),

where λ = (λ1,λ2, . . . ,λn) and μ = (μ1,μ2, . . . ,μn).

Proof The survival function of the series system X1:n is

FX1:n (x) =
n∏

k=1

[
1 −

(
1 − eλk (1−ex

β
)
)α]

, α > 0, β > 0, λk > 0 ∀ k = 1, 2, . . . , n.

(10)
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FX1:n (x) is symmetric with respect to the vector λ = (λ1,λ2, . . . ,λn). Partially dif-
ferentiating (10) with respect to λi ,

∂FX1:n (x)

∂λi
= FX1:n (x)

α(1 − ex
β
)eλi (1−ex

β
)
(
1 − eλi (1−ex

β
)
)α−1

(
1 −

(
1 − eλi (1−exβ )

)α)

≤ 0 ∀ λi > 0, i = 1, 2, . . . , n.

Assume λi �= λ j for i, j = 1, 2, . . . , n and consider

�1 = (λi − λ j )

(
∂FX1:n (x)

∂λi
− ∂FX1:n (x)

∂λ j

)

= α(λi − λ j )FX1:n (x)(1 − ex
β

)
(
ψ1(α, yi ) − ψ1(α, y j )

)
,

where yi = eλi (1−ex
β
) and the function ψ1(α, yi ) is same as in Eq. (9).

Thus using Lemma3, when 0 < α < 1,�1 > 0⇒ FX1:n (x) is Schur-convex with
respect to λ. And for α > 1,�1 < 0 ⇒ FX1:n (x) is Schur-concave with respect to
λ.

Finally using Lemmas1 and 2, we obtain the following two cases:

(i) for 0 < α < 1, λ ≺w μ ⇒ FX1:n (x) ≤ FY1:n (x),

(ii) for α > 1, λ ≺w μ ⇒ FX1:n (x) ≥ FY1:n (x). �
Hence the result follows.

Since majorization implies weak majorization, a realization of the above result can
be observed with the help of the following example.

Example 1 Let us consider two series systemswith 4 components each, such that the
parameter vectors are taken as λ = (0.8, 1.2, 1.3, 1.9) and μ = (0.5, 0.7, 1.5, 2.5),

λ ≺ μ, β = 2. The first plot shows FY1:4(x) − FX1:4(x) for α = 0.7 and the next plot
for α = 1.5 (Figs. 1 and 2).

It has also been observed that the above result cannot be extended to hazard rate

ordering under the same conditions. For instance, we observe that the ratio
FY1:4(x)

FX1:4(x)
is non-monotone for the above example (Fig. 3 and 4).

The next result shows the usual stochastic ordering between two maximum order
statisticwhen the parametersα andβ are constant but only the parameterλ is varying.

Theorem 2 Let X1, X2, . . . , Xn be a set of n independent random variables where
each Xi ∼ ECD(α,β,λi ), α > 0,β > 0,λi > 0 for i = 1, 2, . . . , n. Another set
Y1,Y2, . . . ,Yn be n independent random variables such that Yi ∼ ECD(α,β,μi )

for i = 1, 2, . . . , n. Then
λ ≺w μ ⇒ Xn:n ≤st Yn:n,
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Fig. 1 FY1:4 (x) −
FX1:4 (x) > 0 when α = 0.7

Fig. 2 FY1:4 (x) −
FX1:4 (x) < 0 when α = 1.5

where λ = (λ1,λ2, . . . ,λn) and μ = (μ1,μ2, . . . ,μn).

Proof The distribution function corresponding to the maximum order statistic is

FXn:n (x) =
n∏

k=1

(
1 − eλk (1−ex

β
)
)α

, α > 0, β > 0, λk > 0 ∀ k = 1, 2, . . . , n. (11)

FXn:n (x) is symmetric with respect to the parameter vector λ = (λ1,λ2, . . . ,λn).
Differentiating (11) partially with respect to the parameter λi , we obtain
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Fig. 3
FY1:4 (x)

FX1:4 (x)
is

non-monotone for α = 0.7

Fig. 4
FY1:4 (x)

FX1:4 (x)
is

non-monotone for α = 1.5

∂FXn:n (x)

∂λi
= −α(1 − ex

β

)FXn:n (x)
eλi (1−ex

β
)

1 − eλi (1−exβ )

≥ 0 ∀λi , i = 1, 2, . . . , n.

FXn:n (x) is increasing in each λi for i = 1, 2, . . . , n.
Consider for λi �= λ j , i �= j ,
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�2 = (λi − λ j )

(
∂FXn:n (x)

∂λi
− ∂FXn:n (x)

∂λ j

)

= α(1 − ex
β

)FXn:n (x)(λi − λ j )(φ1(λi ) − φ1(λ j )),

where φ1(λ) = 1 − 1

1 − eλ(1−exβ )
. In order to determine the sign of �2, we evaluate

the derivative of φ1(λ),

φ′
1(λ) = (ex

β − 1)eλ(1−ex
β
)

(1 − eλ(1−exβ ))2
.

We observe that φ′
1(λ) > 0, i.e., φ1(λ) is an increasing function of λ. Thus �2 ≤ 0

⇒ FXn:n (x) is Schur-concave. Clearly, −FXn:n (x) is decreasing and Schur-convex
w.r.t λ. Hence using Lemma2,

λ ≺w μ ⇒ FXn:n (x) ≥ FYn:n (x)

⇒ Xn:n ≤st Yn:n.

Example 2 Consider Example1, the same set of 4 components forms the parallel

system and we plot the difference between FX4:4(x) − FY4:4(x), the ratio
FY4:4(x)

FX4:4(x)
and

the ratio
FY4:4(x)

FX4:4(x)
for α = 0.7 and α = 1.5 (Figs. 5 and 6).

Further the plot for the ratio
FY4:4(x)

FX4:4(x)
is Figs. 7 and 8.

Fig. 5 FX4:4 (x) −
FY4:4 (x) > 0 when α = 0.7
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Fig. 6 FX4:4 (x) −
FY4:4 (x) > 0 when α = 1.5

Fig. 7
FY4:4 (x)

FX4:4 (x)
is

increasing in x when
α = 0.7

Both the plot Figs. 7 and 8 shows that the ratio of FY4:4(x) and FX4:4(x) is increasing
irrespective of the value of α, but the analytical proof includes rigorous calculations.
Hence it might be possible that the reversed hazard rate ordering exists for the parallel
system.

Next we plot the ratio of
FY4:4(x)

FX4:4(x)
Figs. 9 and 10.

The ratio of FY4:4(x) and FX4:4(x) shows that the plot is non-monotone and surely
this implies that the hazard rate ordering for parallel system does not exist under
these circumstances.
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Fig. 8
FY4:4 (x)

FX4:4 (x)
is

increasing in x when α = 1.5

Fig. 9
FY4:4 (x)

FX4:4 (x)
is

non-monotone when α = 0.7

The next theorem proves that there exists usual stochastic ordering relation
between two parallel systems when the parameter β is varied and all the other param-
eters remain constant.

Theorem 3 Consider two parallel systems consisting of n components, the com-
ponents of one system corresponds to the set of n independent random vari-
ables X1, X2, . . . , Xn such that Xi ∼ ECD(α,βi ,λ) for i = 1, 2, . . . , n. Let
Y1,Y2, . . . ,Yn be the random variables corresponding to the components of the
other system, and
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Fig. 10
FY4:4 (x)

FX4:4 (x)
is

non-monotone when α = 1.5

Yi ∼ ECD(α,β∗
i ,λ) for i = 1, 2, . . . , n. Then λ > 1 and β ≺ β∗ ⇒ Xn:n ≤st Yn:n,

where β = (β1,β2, . . . ,βn) and β∗ = (β∗
1 ,β

∗
2 , . . . ,β

∗
n ).

Proof The distribution function corresponding to Xn:n is

FXn:n (x) =
n∏

k=1

(
1 − eλ(1−ex

βk
)
)α

, α > 0, βk > 0, λ > 0 ∀ k = 1, 2, . . . , n. (12)

FXn:n (x) is symmetric with respect to the parameter vector β = (β1,β2, . . . ,βn).
Differentiating (12) partially with respect to βi we have

∂FXn:n (x)

∂βi
= FXn:n (x)

αλxβi eλ(1−ex
βi

)+xβi ln x

1 − eλ(1−ex
βi )

Consider for βi �= β j , i �= j

�3 = (βi − β j )

(
∂FXn:n (x)

∂βi
− ∂FXn:n (x)

∂β j

)

= αλ ln xFXn:n (x)(βi − β j )(φ2(x
βi ) − φ2(x

β j )),

where φ2(t) = teλ(1−et )+t

1 − eλ(1−et )
. Computing φ′

2(t), we observe

φ′
2(t) = −eλ(1−et )+t ((t + 1)eλ(1−et ) + λtet − t − 1)

(eλ(1−et ) − 1)2
.
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Let g(t) = (t + 1)eλ(1−et ) + λtet − t − 1 and g(0) = 0.
Also, g′(t) = (1 − eλ(1−et ))(λ(t + 1)et − 1). In order to determine the sign of

g′(t), let h(t) = λ(t + 1)et − 1 and h(0) = λ − 1. Again differentiating h(t), we
obtain

h′(t) = λet (t + 2)

> 0 ∀ t > 0,

i.e., h(t) is an increasing function of t . Thus, h(t) > 0 when λ > 1, and this implies
g(t) is an increasing function of t . Hence g(t) > 0. Finally we conclude that�3 ≤ 0,
or in other words FXn:n (x) is Schur-concave with respect to the parameter vector β.
Using Lemma1, β ≺ β∗ ⇒ FXn:n (x) ≥ FYn:n (x), i.e., Xn:n ≤st Yn:n for λ > 1.

We can realize the above theorem with the help of the following example.

Example 3 Let us consider a 4 component parallel system, such that the ran-
dom variables corresponding to each component follows ECD(0.6,βi , 2), i =
1, . . . , 4 as described in the above theorem. Let β = (0.4, 0.9, 2, 7.5) and β∗ =
(0.2, 1, 1.9, 7.7), here β ≺ β∗. We shall now plot the difference between FX4:4(x)

and FY4:4(x), Fig. 11 also we can observe the plot for
FY4:4(x)

FX4:4(x)
and

FY4:4(x)

FX4:4(x)
here

Figs. 12 and 13.
Thus the reversed hazard rate ordering is not possible but the hazard rate ordering

may exist. Now if the same set of components form a series system, in that case the
plot for FX1:4(x) − FY1:4(x) is Fig. 14.

This shows that there exists a possibility of usual stochastic ordering, but the
analytical proof is quite complicated, and this can be considered as a future problem
Fig. 14.

The next result describes the usual stochastic order relation for theminimumorder
statistic with the parameters β,λ being constant and only the parameter α varies.

Theorem 4 Let X1, X2, . . . , Xn be n independent random variables corresponding
to the components of a series system such that each Xi ∼ ECD(αi ,β,λ) for i =
1, 2, . . . , n. Let Y1,Y2, . . . ,Yn be the set of n independent random variables corre-
sponding to another series system where the random variables Yi ∼ ECD(α∗

i ,β,λ)

for i = 1, 2, . . . , n. Then as

(a) α ≺w α∗ ⇒ X1:n ≥st Y1:n,

(b)
n∑

k=1

αk ≤
n∑

k=1

α∗
k ⇒ Xn:n ≤lr Yn:n,

where α = (α1,α2, . . . ,αn), α∗ = (α∗
1,α

∗
2, . . . ,α

∗
n)

(a) Proof The survival function of X1:n is
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Fig. 11 shows
FX4:4 (x) − FY4:4 (x) > 0

Fig. 12 shows the plot
FY4:4 (x)

FX4:4 (x)
is not monotone

FX1:n (x) =
n∏

k=1

(
1 − (1 − eλ(1−ex

β
))αk

)
, αk > 0, β > 0, λ > 0 ∀ k = 1, 2, . . . , n (13)

FX1:n (x) is symmetricwith respect to theparameter vectorα = (α1,α2, . . . ,αn),
now differentiating (13) partially with respect to αi we obtain

∂FX1:n (x)

∂αi
= −FX1:n (x) ln(1 − eλ(1−ex

β
))

(1 − eλ(1−ex
β
))αi

1 − (1 − eλ(1−exβ ))αi

≥ 0, ∀αi , i = 1, 2, . . . , n.
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Fig. 13 shows the plot
FY4:4 (x)

FX4:4 (x)
is increasing

Fig. 14 shows
FX1:4 (x) − FY1:4 (x) > 0

For αi �= α j , i �= j , consider

�4 = (αi − α j )

(
∂FX1:n (x)

∂αi
− ∂FX1:n (x)

∂α j

)

= (αi − α j )FX1:n (x) ln(1 − eλ(1−ex
β
))(ψ2(αi ) − ψ2(α j ))

where ψ2(α) = 1 − 1

1 − (1 − eλ(1−exβ ))α
.
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It has been observed that ψ′
2(α) = − ln(1 − eλ(1−ex

β
))

(1 − eλ(1−ex
β
))α

(1 − (1 − eλ(1−exβ ))α)2
.

Therefore, �4 ≤ 0, i.e., FX1:n (x) is Schur-concave. Using Lemma2, α ≺w α∗
⇒ FX1:n (x) ≥ FY1:n (x) and the result follows. �

(b) Proof The distribution function of the parallel system represented as Xn:n is

FXn:n (x) =
(
1 − eλ(1−ex

β
)
)

n∑

k=1

αk

, αk > 0, β > 0, λ > 0, ∀ k = 1, 2, . . . , n,

and the corresponding probability density function is

fXn:n (x) =
n∑

k=1

αk

(
1 − eλ(1−ex

β
)
)(

n∑

k=1

αk − 1)

βλxβ−1eλ(1−ex
β
)+xβ

.

It is enough to prove that the ratio
fYn:n (x)

fXn:n (x)
is increasing in x . And

fYn:n (x)

fXn:n (x)
=

n∑

k=1

α∗
k

n∑

k=1

αk

(
1 − eλ(1−ex

β
)
)(

n∑

k=1

α∗
k −

n∑

k=1

αk)

.

Differentiating with respect to x , we find that

d

dx

(
fYn:n (x)

fXn:n (x)

)

= βλxβ−1e(λ(1−ex
β

)+xβ )

n∑

k=1

α∗
k

n∑

k=1

αk

⎛

⎝
n∑

k=1

α∗
k −

n∑

k=1

αk

⎞

⎠
(
1 − eλ(1−ex

β
)

)(

n∑

k=1

α∗
k −

n∑

k=1

αk − 1)

≥ 0 for
n∑

k=1

αk ≤
n∑

k=1

α∗
k .

Hence the result follows. �

Example 4 Consider two series systems each having 3 components. For system 1,
the random variables corresponding to each component are X1, X2, X3 such that
Xi ∼ ECD(αi ,β,λ), for i = 1, 2, 3 and for system 2, the random variables cor-
responding to each component are Y1,Y2,Y3 and each Yi ∼ ECD(α∗

i ,β,λ), for
i = 1, 2, 3. The parameter values are β = 3, λ = 2, and α = (1, 1.6, 2.8), α∗ =
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Fig. 15 shows
FX1:3 (x) − FY1:3 (x) for
varying α

(1.2, 1.5, 3). The plot for the difference of their survival function, FX1:3(x) − FY1:3(x)
See Fig. 15.

The above graph shows that the difference is negative and hence there exists an
usual stochastic ordering between X1:3 and Y1:3. In other words Theorem4 holds true
for a 3 component system.

4 Inference

The results discussed in this paper include the usual stochastic ordering between
X1:n and Y1:n (two series system) when the parameter λ is varied, or when only
the parameter α has been varied. Whereas for two parallel systems, usual stochastic
ordering exists when only the parameter λ is varied, or only the parameter β is varied.
A likelihood ratio ordering has been possible for Xn:n and Yn:n (two parallel systems)
when the parameter α is varying.
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