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Abstract. Adversarial patch is an image-independent patch that mis-
leads deep neural networks to output a targeted class. Existing defense
strategies mainly rely on patch detection based on the frequency or
semantic gaps between the patch and clean image. But we found that
they are effective because the gap is huge. This is because existing
patch attacks only look for an effective patch instead of the optimized
patch that minimizes the gap. We then propose two improved patches,
enhanced and smoothed patches, to reduce the gap. Consequently, the
decision boundary for adversarial examples of the existing defense means
is successfully obscured. To cope with the improved patches, we propose
a defense method based on image preprocessing. We leverage multi-scale
Gaussian blur to amplify the reduced gap between the patch and clean
image. Due to the dense information of patches, for a patch, the dissim-
ilarities of Gaussian blurs with different scales are higher than that of
clean images. By enhancing the local multi-scale details and weakening
them in another scale set, we maximize its effect on patch with high-
frequency information. In this way, our defense method can efficiently
distort adversarial patches and cause only a negligible impact on clean
images.
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1 Introduction

The past decade has witnessed the prosperity of Deep Learning. Deep neural
networks (DNNs) are widely used in computer vision [9], pattern recognition [10],
natural language processing [11], and autonomous driving [15]. However, recent
studies have revealed that DNNs are vulnerable to adversarial examples that
fool the classifier with subtle modifications. Since adversarial examples modify
pixels in the whole image, it is not easy to launch physical attacks. Different
from the imperceptible changes of adversarial examples, the adversarial patch
is an image-independent patch that misleads the classifier to output a targeted
class for any image (Fig. 1). Since it is image-independent, adversarial patches
can be printed or placed in the scene to launch physical attacks without any
prior knowledge of the scene [12].
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Fig. 1. Adversarial patches for ResNet-50.

As a targeted attack method, the adversarial patch imitates images of the
targeted class to mislead the classifier focusing on the patch and making wrong
recognition. Nevertheless, a gap between the patch and clean images is inevitable,
leaving room for defense methods to differentiate the patch from clean images.
Since a successful patch will be the salient activation source, the defense method
can locate the patch and compare its feature with the expected features of the
predicted class to detect the inconsistency [6]. Besides, as a universal attack
method [13], adversarial patches contain more high-frequency information in a
concentrated area than normal images to achieve their versatility. Hence, defense
methods can also detect and distort the patch based on this high-frequency
information which means the higher gradient of an image.

However, we analyze those defense methods and found that they are effective
because the gap between the patch and the clean image is huge. This is because
the goal of generation is only finding the patch successfully fool the threat model
instead of the patch that is more robust to the defense. Based on this obser-
vation, we propose the enhanced and smoothed adversarial patches to respec-
tively obscure the decision boundary of the feature inconsistency detection- and
high-frequency information-based defense methods. To enhance the patch with
more similar features of the targeted class, we leverage an antagonistic train-
ing strategy at the early stage of the patch generation training. To cope with
the high-frequency information-based defense method, we propose generating the
patch with proactive smoothing. Experimental results demonstrate our improved
adversarial patches can significantly decrease the defending ability of existing
methods.

To cope with the improved patches, we propose EGP, a new defense method
based on image preprocessing that enlarges the reduced gaps of improved patches
by amplifying the frequency difference between patches and the original image.
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Different from the conventional image preprocessing based defense methods such
as blur or JPEG that process the whole image, EGP only processes the key
regions of the input image. We leverage multi-scale Gaussian blur [8] to obtain
the multi-scale details of the image which will amplify the frequency properties
of the original image. We magnify the details and add them to the original image
to further enlarge the effect of subtle frequency differences on image processing.
With this preprocessing, the clean images will be enhanced with details, while
patches will be distorted due to the much higher frequency. To reduce the impact
of preprocessing on the clean images, we further propose weakening the local
multi-scale details by another Gaussian kernel set. Experimental results show
that EGP can significantly improve the classification accuracy of adversarial
examples, and cause little impact on clean images.

The main contributions of this paper are as follows: 1) We analyze the effec-
tiveness of existing defense methods against adversarial patches and find that
defense methods are effective because the generated adversarial patches are just
effective to successfully fool the classifier rather than optimal with the mini-
mized gap to the characteristic of a clean image. 2) Based on the observation,
we propose two patch generation methods to obtain the enhanced and smoothed
patches that can effectively obscure the decision boundary for adversarial patches
and further reduce the effectiveness of current defense methods. 3) As for the
countermeasure design, we propose a new defense method based on image pre-
processing. The key idea is enlarging the reduced gap between the patch and the
clean image by multi-scale Gaussian blur.

2 Related Work

2.1 Adversarial Patch Attacks

Adversarial patch [1], a localized patch, which enjoys strong robustness to posi-
tion and angle alternation. To further optimize the generation of adversarial
patch, Karmon [2] created adversarial patch using optimized loss function and
they concentrated on the selection of categorys for targeted attack. Duan [4]
adopted style loss and content loss to generate imperceptible patches. Recently,
Liu [3] proposed a universal adversarial patch generation framework based on
model bias, which can effectively attack the invisible categories in the model
training process.

Defenses Against Adversarial Patch Attacks. Naseer [5] proposed a local
gradient smoothing scheme to resist adversarial patch attacks. To eliminate the
influence of noises, the local high gradient region of the image is detected and
smoothed. Hayes [7] put forward a defense strategy based on image inpainting.
They discover the location of patches and further leverage image inpainting
technology to remove them. To address the lack of versatility and computation of
previous methods, Xu [6] was concerned about the feature dissimilarity between
input and image of the corresponding category. If the degree of dissimilarity
exceeds a threshold, the input is considered to be an adversarial example.
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3 Analysis and Improvement on Adversarial Patch

In this section, we mainly analyze the defense mechanism of the existing defense
methods. Based on the analysis results, we improve the universal adversarial
patch generation method.

3.1 Existing Adversarial Patch

Adversarial Patch [1] generates a universal patch, which can be applied to any
image x in the dataset X to mislead the image into the target category regardless
of the scale, orientation, or location of the patch.

Given an adversarial patch p, an image x in dataset X, a target class t, a
random location in the location space of images l ∈ L, and a random angle
transformation over a set of angle transformations t ∈ T , the patch p is then
placed in a location l of image x. The algorithm renovates the patch iteratively
by optimizing the loss function:

p̂ = arg max
p

Ex∈X,t∈T,l∈L[logPr(ŷ|A(p, x, l, t)] (1)

3.2 Enhanced Adversarial Patch

Although adversarial patches are effective for digital or physical world attacks, it
should be noted that they tend to be abrupt and unreal. The feature similarity
between the patch and the image of the predicted class is not high. Therefore,
both artificial means and the existing defense method [6] can distinguish them
without difficulty. Consequently, we consider proposing an enhanced adversarial
patch, which is an improvement based on the original method [1]. Aiming at
mining deeper semantic information about the target category, the enhanced
adversarial patches can be more realistic and closer to the target category.

Our improvement focus on the early input images in the train set (a pre-
training process). For the early inputs, based on the optimization of the objective
function, a strategy of antagonistic training is leveraged. The brief ideology of
antagonistic training is shown in Fig. 2.

Early generated patches always contain insufficient features. It is due to the
over-fitting of the white-box model that an image with an early patch is misclas-
sified successfully. The purpose of patch training is to find an effective patch by
fitting the white-box model, rather than to generate a more realistic adversarial
patch with details, which leads to premature convergence on the white box. For
solving this problem, We feed the adversarial patches generated in the inter-
mediate process to retrain the target model for fooling and generating patch.
Specifically, we consider retraining the adversarial image that has been success-
fully misclassified with the original tag, and then updating the target model for
fooling and generating a patch constantly. By constantly feeding the adversarial
images with early generated patches to retrain the target model, the target model
will be more robust and more difficult to be fooled. While the target model is
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Fig. 2. Antagonistic pretraining of adversarial patch.

more robust, the generated patch is stronger. In short, we strengthen the update
of the patch through the continuous update of the target model used for gener-
ating patch. In this way, we force the patch training process to continue learning
enhanced adversarial features, which reduce the gap between adversarial patch
and target image.

3.3 Smoothed Adversarial Patch

Adversarial patches always contain more high-frequency information, which can
be the motivation of diverse defense methods. Therefore, by adding smooth
processing intermittently during the updating of adversarial patches, we propose
generating smoothed patches (Fig. 3).

In Adv Cam [4], adversarial patch for a specific image can generate imper-
ceptible patches by adding style and content loss to the optimization objective
function. However, as a targeted universal adversarial patch, we can not add
the smoothing loss to the objective loss function to achieve the smoothed patch,
because it will cause the direction of smoothing unable to focus on the target
category. Therefore, we consider periodically smoothing the patch slightly in the
training process to guide the update. Specifically, regarding to slight smoothing,
we can get the intermediate smoothed patch psm as follow:

psm = k ∗ (pg − p) + p (2)

p is the original patch, pg is a Gaussian blur of p, k is a fuzzy coefficient (k < 1)
which is used to get images with different blur levels.
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Fig. 3. Comparison of three different adversarial patches.

4 Defense Against Adversarial Patch Attacks

In this section, we will describe our defense methodology against adversarial
patch attacks in detail.

Fig. 4. EGP defense architecture.

4.1 Obtain the Attention Heatmap Matrix

The representative classification models based on convolutional neural networks
pay more attention to the local features of images. The adversarial patch will be
the salient activation source if the attack successes. Therefore, compared with the
global image processing, we aim to process the local areas with strong attention
of the models, which causes less impact on the clean image. Consequently, we
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need to derive the importance of diverse features in different regions to model
decisions, namely, the model’s attention heatmap matrix [14]. Specifically, we
regard αt

k as the sensitivity to the k − th channel of the output feature map of
the last layer Ak about category t. Then we take αt

k as weights and combine
them linearly. Furthermore, the intermediate result of the weighted combination
is fed into the activation function to output the required heatmap matrix Mt.

αt
k =

1
Z

∑

i

∑

j

∂yt

∂Ak
ij

(3)

Mt = RELU

{
∑

k

αt
kA

k

}
(4)

Here Z is a normalizing constant such that αt
k ∈ [−1, 1]. k is the sequence

number of the channel dimension of the feature map, i and j are the sequence
number of the width and height dimension respectively, and t is the target cat-
egory.

4.2 Enhance the Local Multi-scale Details

As an indiscriminate processing method, our method aims to make the distortion
of clean image Ic small, but the distortion of adversarial example Iadv large.

max {D (Ic, I) − D (Iadv, I)} (5)

D is the measurement of image distance.
Compared with clean images, the feature distribution of patches is demon-

strated to be dense and irregular with higher local frequency. Therefore, the
dissimilarities of Gaussian blurs with different scales are higher than that of
clean images. Specifically, our enhanced image can be obtained by Equation (6).
For the original image I, by fusing the Gaussian blur decrease values between
different scales, we can obtain the contour details of the target category for the
clean image Ic. However, for the adversarial example Iadv, details tend to be
dense and intensive after the same treatment as clean image Ic.

Ien = norm

⎧
⎨

⎩I + λ ·
∑

gi,gj∈G

wij (gi − gj) ∗ M

⎫
⎬

⎭ (6)

G is the Gaussian fuzzy set with different Gaussian kernels. λ is the magnification
factor (λ > 1) to enlarge the detailed information. w is the proportional coeffi-
cient. M is the mask matrix from the heatmap matrix that limits the processing
to the local key region. norm is the normalization process. Then, we multiply
the multi-scale details by a magnification factor λ to enhance the details of input
image. Furthermore, we add the enlarged local details to the original image I
and normalize to obtain the enhanced image Ien. As shown in Fig. 4, the clean
image appears as a regional detail enhancement, while the adversarial example
shows high distortion at the location of the patch.
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4.3 Weaken the Local Multi-scale Details

To minimize the influence of preprocessing on the clean images and cause further
distortion on the adversarial examples, we consider weakening the local multi-
scale details in another Gaussian kernel set based on the local multi-scale details
enhancement. The enhanced image Ien is regarded as the input, we weaken the
local multi-scale details in another Gaussian kernel set Gde = {g1, g2, . . . , gn}.
It should be emphasized that although the patch after details enhancement has
been distorted and it is difficult to recover after details weakening. To avoid the
reduction of distortion on pixel value caused by processing in the same scale
set, we think that it is better to weaken the details in another scale set. For a
clean image, the details obtained in another scale set are contour details, which
are similar to the details obtained during the enhancement process. However,
as for a patch, the weakened details in another scale set are not similar to the
enhanced details, because the patch is already distorted and more sensitive to
different scales.

The output images can be obtained by Eq. (7). We can still obtain the multi-
scale details of the enhanced clean image, which is similar to the multi-scale detail
information obtained during enhancement. Consequently, the distance between
the clean image and the original image is reduced after weakening. On the con-
trary, for the adversarial example, since the enhanced image Ien has been dis-
torted, further detail weakening under the Gaussian blur of another scale set
will only aggravate the distortion of the adversarial example. As shown in Fig. 4,
both the clean image and the adversarial example are correctly classified as a
cat.

Iout = norm

⎧
⎨

⎩Ien −
∑

gi,gj∈Gde

wij (gi − gj) ∗ M

⎫
⎬

⎭ (7)

Ien is the enhanced image, Gde is a Gaussian fuzzy set without intersection
with G, Iout is the output image.

5 Experiments

5.1 Feasibility of Attack Reinforcement

Experimental Setup for Attack. We consider the validation set available
with the ImageNet-2012 dataset in our experiments. We choose images of 10
categories comprised of 10000 images to generate our adversarial patches. The
pre-training models are used for patch training with a learning rate of 0.0005.
The size of patch is 70 × 70 covering 10% of the image. During the training
of adversarial patches, the number of iterations is set to 8, 100 images of each
category are randomly selected in each iteration. Furthermore, to generate the
enhanced adversarial patch, we leverage our antagonistic pretraining strategy for
the top 100 input images of the first iteration (early inputs) and the learning rate
is set to 0.001 to retrain the model to be attacked. Besides, to generate smoothed
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adversarial patches, we implement a slight Gaussian blur on the updated adver-
sarial patch every 50 inputs during the generation of the ordinary universal
adversarial patch. The Gauss kernel is 5 and the fuzzy coefficient is set to 0.2.

Fig. 5. A comparison of existing methods and our methods for creating adversarial
patches. Note that these patches are generated by single model ResNet-50 and the
targeted attack success rate refers to the average attack success rate tested in black
boxes for the black-box setting.

Attack Performance. We evaluate the performance of our enhanced and
smoothed adversarial patches in both white-box and black-box settings. As
for the black-box attack, we generate adversarial patches based on ResNet-50,
then use them to attack other models with different architectures and unknown
parameters (i.e., VGG-16, Inception-V3, and ResNet-152) and record the average
target attack success rate.

As indicated in Fig. 5, our generated enhanced adversarial patch enjoys
stronger transferability. The enhanced patch avoids the overfitting of the white-
box model through the antagonistic pre-training process of the adversarial patch.
This process enables the patch to mine the deeper semantic information of the
target category rather than to meet the judgment bias of the white-box model, so
that it can have better migration ability under the black-box setting. However,
regarding our generated smoothed adversarial patch, the attack performance will
decline in the black-box setting, but the targeted attack success rate can also
reach 100% in the white-box setting. In the process of obtaining the smoothed
adversarial patch, some details are discarded. However, our goal is to make the
patch smoother on the premise of ensuring the success of the white-box setting
attack. Therefore, our smoothed universal adversarial patch may enjoy a better
effect in some white-box scenarios with a defense mechanism.
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5.2 Evaluation of EGP

Experimental Setup for Defense. Our defense method is evaluated for adver-
sarial patches, enhanced adversarial patches, and smoothed adversarial patches.
Patches are generated by ResNet-50, and all defense methods are carried out in
white-box settings. For each type of patch, we randomly select 3000 adversarial
examples that are successfully misclassified from our test data and then compare
the accuracy under the defense of various methods. As for our defense method,
we choose three Gauss kernels (5, 9, 19) to get the details with the same pro-
portional coefficient. The magnification factor is set to be 5. We choose another
three Gauss kernels (3, 5, 11) to weaken the enhanced images. The selected
defense model is ResNet-50.

Fig. 6. The effect of amplification factor λ on the experimental results. Note that
the accuracy refers to the classification precision after defense on clean images and
adversarial images.

The intensity of multi-scale details obtained from the patch is greater than
that of a clean image. Therefore, we multiply the multi-scale details by a mag-
nification factor λ to enhance the details of a clean image and limit them to
[−1, 1]. It should be noted that the values of multi-scale details of adversarial
patch are multiple than that of a clean image. Therefore, an appropriate mag-
nification factor λ can be choose to make enhanced details of the patch out of
range [−1, 1]. As shown in Fig. 6, with the increase of λ, the adversarial images
will be distorted due to the excessive enhancement of details, thus increasing
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the accuracy of adversarial images. However, the classification accuracy of clean
images also decreases due to the processing of our method, but when λ is small,
the enhancement does not make the pixel value out of range [−1, 1], and the
enhanced images can still be restored through the weakening process. But when
λ is too large and exceeds a certain threshold, the clean images will be irre-
versibly enhanced like the adversarial images which cause a significant decrease.
Through the experiment, we found that the experimental result is better when
λ is set to 5.

Defense Performance. It should be noted that Table 1 shows the comparison
of the efficiency of various defense methods against Adv Patch, enhanced patch,
and smoothed patch. Accuracy refers to the accuracy of adversarial examples
under the defense. The accuracy of original clean images is 98%. The size of the
patch is 70*70 covering 10% of the image (Fig. 7).

Fig. 7. ResNet-50 confidence scores are shown for example images. (a), (b) and (c)
represent the processing of a clean image. (d), (e) and (f) represent the processing of
an adversarial example. (b) and (e) represent the enhanced images after local multi-
scale details enhancement. (c) and (f) are the output images. As illustrated, EGP
restores correct class confidence and causes a negligible impact on clean images.

We directly use the JPEG method to globally compress the images to imple-
ment defense. PM constructs a saliency map of the image to detect localized and
visible adversarial perturbations. Once a saliency map for the input has been
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found, PM uses a combination of erosion and dilation to remove the adversarial
perturbations. Lance locates the significant activation sources with CAM [14]
and calculates the local input semantic inconsistency with the expected seman-
tic patterns according to the prediction label. Once the inconsistency exceeds a
predefined threshold which can be set between 0.1 and 0.18, Lance conducts a
recovery process to recover the input image. About LGS, it first estimates the
region of interest in an image with the highest probability of adversarial patch
and then performs gradient smoothing in only those local regions. Specifically,
LGS divides the image into several regions, and then performs gradient smooth-
ing in the region where the image gradient exceeds the threshold value. LGS is
used with γ = 2.3, γ is the smoothing factor for LGS. Note that the accuracy of
the detection-based method (i.e., PM, LGS, Lance) is obtained by multiplying
the success rate of detection and inpainting.

Table 1 shows the overall defensive performance. Our method EGP outper-
forms state-of-the-art defense methods for Adv Patch. As for the enhanced adver-

Table 1. Comparison of defense method.

Defense method Accuracy (%)

Adv Patch None 0

JPEG 45.0

PM 76.4

Lance 81.3

LGS 89.5

EGP 90.6

Enhanced Patch None 0

JPEG 45.0

PM 73.1

Lance 55.4

LGS 87.6

EGP 90.4

Smoothed Patch None 0

JPEG 42.8

PM 70.5

Lance 75.2

LGS 79.8

EGP 89.2

Table 2. Effect of defense method on clean images.

Method None EGP JPEG PM LGS

Accuracy (%) 98.1 97.5 90.5 98.1 98.1
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sarial patch, the defense efficiency of the method based on inconsistent features
(Lance) [6] will be significantly reduced. Regarding the smoothed patch, our
indiscriminate defense method is also excellent. Although other defense methods
based on detection also enjoy considerable defensive effect on smoothed patches,
it should be emphasized that the defense performance of them decreases more
compared with dealing with Adv Patch. Furthermore, as shown in Table 2, the
effect of our method on clean images can be ignored compared with other indis-
criminate defense methods such as JPEG.

Fig. 8. Average processing time cost comparison of different defense methods. For
better display, the average processing time of each image is shown at the top of the
histogram.

Moreover, we compare the computational cost of EGP and existing defense
methods. The compared methods include both preprocessing based and detec-
tion based. Note that our method processes image locally and skip the detection
process of adversarial patches. Therefore, our defense strategy costs less compu-
tation. As shown in Fig. 8, our defense method only takes 95ms to process per
image, which is better than most of the existing defense methods. Although our
method is not as good as JPEG in computational cost, our defense efficiency is
much better than JPEG.

6 Conclusions

In this paper, we analyze the effectiveness of existing defense methods against
adversarial patches. Based on the analysis, we propose two improved patch gen-
eration methods to obtain the enhanced and smoothed patches that can effec-
tively obscure the decision boundary for adversarial patches and reduce the
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effectiveness of existing defense methods. To generate the enhanced patch, we
strengthen the generation of the patch through the continuous update of the
target model used for generating patch. Taking ImageNet as the data set, exten-
sive experiments are conducted which demonstrate that our proposed enhanced
patch enjoys stronger transferability and be robust to some defense mechanisms.
Besides, to generate the smoothed patch, we add smooth processing intermit-
tently during the updating of adversarial patch [1] to guide the update. Experi-
mental results show that our smoothed patches enjoy better attack performance
in some white-box scenarios with defense.

As for the countermeasure design, we propose a defense method based on
image preprocessing. Leveraging the local multi-scale image processing [8], our
method can efficiently interfere with adversarial patches and causes only neglect
impact on clean images. Experiments show that our methodology outperforms
state-of-the-art defense methods against adversarial patch attacks.
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