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Abstract Parent selection algorithms (selection schemes) steer populations through
a problem’s search space, often trading off between exploitation and exploration.
Understanding how selection schemes affect exploitation and exploration within
a search space is crucial to tackling increasingly challenging problems. Here, we
introduce an “exploration diagnostic” that diagnoses a selection scheme’s capac-
ity for search space exploration. We use our exploration diagnostic to investigate the
exploratory capacity of lexicase selection and several of its variants: epsilon lexicase,
down-sampled lexicase, cohort lexicase, and novelty-lexicase.Weverify that lexicase
selection out-explores tournament selection, and we show that lexicase selection’s
exploratory capacity can be sensitive to the ratio between population size and the
number of test cases used for evaluating candidate solutions. Additionally, we find
that relaxing lexicase’s elitismwith epsilon lexicase can further improve exploration.
Both down-sampling and cohort lexicase—two techniques for applying random sub-
sampling to test cases—degrade lexicase’s exploratory capacity; however, we find
that cohort partitioning better preserves lexicase’s exploratory capacity than down-
sampling. Finally, we find evidence that novelty-lexicase’s addition of novelty test
cases can degrade lexicase’s capacity for exploration. Overall, our findings provide
hypotheses for further exploration and actionable insights and recommendations for
using lexicase selection. Additionally, this work demonstrates the value of selection
scheme diagnostics as a complement tomore conventional benchmarking approaches
to selection scheme analysis.
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5.1 Introduction

Lexicase-based parent selection algorithms have proven to be highly successful for
finding effective solutions to test-based problems in genetic programming (GP) [10,
15, 34]. Lexicase selection’s success is rooted in its ability to balance strong search
space exploration with simultaneous exploitation. That is, lexicase selection main-
tains meaningfully diverse populations [12, 14] by promoting the coexistence of
subpopulations that are each focused on different aspects of a problem (e.g., on dif-
ferent test cases or selection criteria) [5]. As such, lexicase selection algorithms are
able to explore many promising problem-solving pathways in parallel, optimizing
each until an overall solution is found.

Many genetic programming problems are multi-faceted where the quality of a
candidate solution must be measured according to its performance on a set of test
cases. For such problems, we must decide how to combine performances across
many test cases in order to select promising individuals to produce offspring for
the next generation. Traditional parent selection algorithms assess the quality of an
individual by aggregating their performance on all test cases. The lexicase selec-
tion algorithm, however, chooses each parent based on the relative performances of
candidate solutions on random permutations of the test set. Specifically, each time a
parent is needed, the entire population is considered as candidates for selection, and
the full set of test cases are shuffled; each test case is applied sequentially (in the given
shuffled order) to the current set of candidates, removing all but the best candidates
from consideration until only a single individual remains to be selected [18]. Because
the ordering of test cases is different for each parent selection event, individuals that
perform well on different subsets of problems are able to coexist [5]. Moreover, lex-
icase selection exerts strong selection pressure to optimize each subpopulation, as
only the best candidates on different sequences of test cases are selected.

Indeed, the successes of the original lexicase selection algorithm have inspired
numerous variants, each either specialized for solving different categories of prob-
lems or designed to address potential shortcomings of the original lexicase algorithm
(e.g., computational efficiency). Such variants include epsilon lexicase [24, 25],
down-sampled lexicase [19], novelty-lexicase [22], ALPS lexicase [10], and batch-
lexicase selection [1]. Many of these variants have been rigorously benchmarked on
their problem-solving success and on their ability to maintain phenotypic and phy-
logenetic diversity [7, 12, 13, 37]. However, benchmarking is often performed in
the context of a particular GP system and with the overall goal of measuring perfor-
mance on challenging computational problems (e.g., program synthesis benchmark
problems from [11, 15]). While such benchmarking is critical for understanding the
real-world applicability of a selection scheme, the specific problems used do not
always allow us to disentangle the particular pros and cons of each scheme [21]. For
this paper, we focus on one important aspect of lexicase-based selection schemes:
How do we isolate the exploration capabilities of lexicase selection and its variants?

We introduce an “exploration diagnostic” and use it to test how well a set of par-
ent selection algorithms can explore a simple landscape with many uphill pathways
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of differing peak fitnesses. Our exploration diagnostic allows for the total number
of possible evolutionary pathways to be tuned, enabling practitioners to find where
an algorithm’s exploratory abilities begin to fall off. First, we verify established
expectations that lexicase selection better facilitates search space exploration than
tournament selection, a more traditional selection algorithm. Next, we evaluate lex-
icase selection on our exploratory diagnostic with an increasing number of possible
pathways identify its exploratory limitations. Finally, we apply our exploration diag-
nostic to four variants of lexicase selection: epsilon lexicase, down-sampled lexicase,
cohort lexicase, and novelty-lexicase selection.

We find that lexicase selection drives performance improvement at each of the
exploration diagnostic difficulty levels that we evaluated. Lexicase selection finds
nearly perfect solutions for fitness landscapes with a small number of pathways to
be explored, and performance gradually declines as the number of possible evolu-
tionary pathways increases. Additionally, we show that lexicase selection can be
sensitive to the ratio between population size and the number of test cases used for
evaluating candidate solutions. For small values of ε, epsilon lexicase improves the
exploratory capacity of lexicase selection. Random subsampling via either down-
sampled or cohort lexicase degrades exploratory capacity, but cohort partitioning
better preserves lexicase’s exploratory capacity than down-sampling. Finally, we did
not find compelling evidence that novelty-lexicase improves performance on the
exploration diagnostic relative to standard lexicase selection; in fact, the addition of
novelty test cases can substantially degrade lexicase’s diagnostic performance.

5.2 Exploration Diagnostic

Understanding how parent-selection algorithms affect exploration and exploitation
within a search space is crucial to tackling increasingly challenging problems. This
information can help determine what modifications to an evolutionary algorithm
may be needed to improve the likelihood of finding a high quality solution. Different
selection schemes (or other components of an evolutionary algorithm) can alter the
trade-off between exploitation and exploration [6]. An exploitation-only selection
scheme will push the population to the closest optimum and not allow it to explore
other promising regions of the search space. Conversely, an exploration-only selec-
tion scheme will scatter the population across the entire search space but is unlikely
to reach nearby optima. Hence, striking a balance between exploration and exploita-
tion is critical to finding high-quality solutions. Here, we introduce a diagnostic that
challenges selection schemes to explore multiple avenues of a search space, each
with an upward pathway, with the goal of finding the best avenue to hill climb.

We balanced both exploitation and exploration in our diagnostic. Specifically, we
designed a problem with many upward pathways that all have identical slopes, but
vary in total length. Since shorter pathways are always equivalent to the beginning of
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Fig. 5.1 An example evaluation with the exploration diagnostic. A candidate solution with a
cardinality of 10 is analyzed. The highest value in its vector is identified as 98.2, and its position is
marked as the beginning of the active region. The next four values are all in a decreasing sequence
(77.6, 47.0, 46.1, and 32.5) and are thus all considered part of the active region. The value after that
(36.4) is greater than its predecessor and thus left inactive, closing the active region. All values not in
the active region are expressed in the phenotype as 0.0. The total fitness of the sequence is the sum of
the values in the phenotype or 0.0+ 0.0+ 0.0+ 98.2+ 77.6+ 47.0+ 46.1+ 32.5+ 0.0+ 0.0 =
301.4

longer pathways, exploration is critical for finding the longest pathway (which will
lead to the global optimum). In the end, the only way for an evolving population to
determine the length of a pathway is to follow it.

Candidate solutions for this diagnostic are numerical vectors of a designated size
(its “cardinality”—we used 100 as the default cardinality in this work). Cardinality
determines the number of pathways to local optima in the fitness landscape. Each
value in a candidate solution is a floating-point number between 0.0 and 100.0. To
evaluate a candidate solution, we first scan its vector to find the maximum value and
designate its position as the “activation position” for calculating its fitness. From an
intuitive perspective, the activation position defineswhich peak the candidate solution
is climbing toward. Beginning at the activation position, we sum all consecutive
values that are less than or equal to each previous position. We stop when either
a position is no longer monotonically non-increasing or we reach the end of the
vector. We refer to this consecutive sequence of scored values as the “active region”
of the candidate solution. All values outside of the active region have zero fitness
contribution. The fitness contributions of each position (i.e., each trait) define the
“phenotype” of the candidate solution; two candidate solutions that differ only in
inactive regions will have identical phenotypes. Figure5.1 shows an example fitness
calculation. Given this search space, the optimal solution will have a 100.0 in every
position of its vector starting from the very first, making the entire candidate solution
active and each valuemaximized. However, any candidate solutionwith an activation
position other than the first will not have a pathway to the global optimum that is
reachable via hill climbing alone.

Given the large number of pathways that need to be simultaneously explored,
this diagnostic allows us to compare the exploration capacity of different selec-
tion schemes. Additionally, this diagnostic allows researchers to test the exploration
breaking point of a given selection scheme, as increasing the cardinality of the diag-
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nostic increases the exploratory capacity needed to find the best activation position.
In this work, we use this diagnostic to test the exploratory limits of lexicase selection
along with a number of its variants.

5.3 Lexicase Selection

Reference [36] introduced the lexicase parent selection algorithm for solving GP
problems that require programs to produce qualitatively different modes of response
for different inputs. Since its introduction, lexicase selection has been demonstrated
to be successful across a broad range of problem domains, including automatic
program synthesis [15], symbolic regression [25], evolutionary robotics [31], genetic
algorithms [29], and learning classifier systems [1].

In lexicase selection, individuals are evaluated on a set of selection criteria (e.g.,
test cases or other types of fitness functions). For each selection event, each member
of the population is initially considered to be a candidate for selection. To select
an individual, lexicase shuffles the set of test cases, and considers each test case in
sequence. In shuffled order, each test case is used to filter the candidates, removing
all but the best individuals from further consideration. This process of winnowing
candidates continues until only one candidate remains to be selected or until all test
cases have been considered; if more than one candidate remains, one is selected at
random. Algorithm5.1 details the lexicase selection algorithm.

Algorithm 5.1 Lexicase selection for a single parent. Adapted from [18].
1. Mark entire population as current candidates under consideration.

2. Shuffle test_cases into a random order.

3. For each case in test_cases:

a. Evaluate each candidate in candidates on case.

b. Identify the best_score on case of all candidates.

c. Remove each entry from candidates with a score on case worse than best_score.

4. Select a random entry from candidates.

Because the set of test cases are shuffled whenever a parent must be chosen,
individuals that perform well on different partitions of the test set can coexist within
the population [5]. Indeed, this dynamic creates niches where different members of
the population can specialize on different subsets of selection criteria, allowing a
population to simultaneously explore many pathways to solving a given problem.
Moreover, this focus on exploration does not necessarily sacrifice lexicase’s ability
to exploit each pathway since only the best performing individuals are selected for a
given sequence of test cases.
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Many variants of lexicase selection have been proposed, each either specialized for
solving a particular type of problem or designed to address potential short comings of
the original lexicase selection scheme. Below, we describe each of the four variants
of lexicase selection examined in this work.

5.3.1 Epsilon Lexicase Selection

Epsilon lexicase selection relaxes the elitism of the filtering step in standard lexicase
selection (step 3c in Algorithm5.1). When filtering candidates on a given test case,
epsilon lexicase retains all individuals with performances within some threshold
(ε) of the best performance on that test case. The ε parameter can be tuned by the
practitioner and can be applied either as a proportion of the optimal performance on
a given test case or as an absolute threshold.

Epsilon lexicase selection specializes standard lexicase selection for problems
where performances on selection criteria are measured using real-valued numbers,
such as symbolic regression problems [25, 34, 37] or evolving robot controllers [30,
31]. The standard lexicase selection algorithm assumes that individuals with equiv-
alent performances on a given test case will have equal scores for that test case.
Inconsequential noise in an individual’s score on a particular test case could result
in arbitrary, but consequential differences in which individuals are selected by the
standard lexicase algorithm. By allowing a small ε difference between individuals,
epsilon lexicase addresses this potential problem.

In this work, we vary ε to investigate how it affects exploration. Reference [25]
observed that behavioral diversity increases at larger values of ε. Given ε’s affect on
behavioral diversity, we hypothesize that increasing ε will increase the exploration
capacity of epsilon lexicase. However, at too high of an ε value, we expect meaning-
ful exploration to degrade. That is, as ε increases beyond a certain point, different
adaptive pathways blur together as meaningful differences in test case performances
become indistinguishable.

For simplicity, we apply ε as a fixed absolute error threshold in this work. Future
work, however, should investigate how different applications of ε further influence
lexicase’s exploration capacity (e.g., semi-dynamic and dynamic applications of ε

from [24]).

5.3.2 Down-Sampled Lexicase Selection

Down-sampled lexicase applies random subsampling to the selection criteria in order
to reduce the per-generation computational effort required by lexicase selection [7,
19]. Down-sampled lexicase uses a random subset of test cases each generation,
which reduces the number of test cases on which each individual in the population
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must be evaluated every generation. After down sampling, the standard lexicase
procedure is used to choose parents.

For an equivalent number of total evaluations, down-sampled lexicase allows
practitioners to run their evolutionary computing system formore generations orwith
a larger population size; both of which have been shown to improve problem-solving
success [7, 16, 19]. In this work, we investigate how down sampling affects lexicase
selection’s exploratory capacity. While [7] found no evidence that down sampling
reduces phenotypic diversity across a range of program synthesis problems, they
did find that down sampling degrades specialist maintenance. We hypothesize that
down sampling’s negative effect on specialist maintenance harms its exploratory
capacity. Entire categories of test cases may be excluded on any given generation,
and candidate solutions specializing on those test cases may be lost as a result. Such
dynamics may prevent extensive exploration of valuable niches.

5.3.3 Cohort Lexicase Selection

Cohort lexicase partitions the test case set and the population each into an equal
number of cohorts. Each generation, cohort membership is randomly assigned, and
each cohort of candidate solutions is paired with a cohort of test cases. Each cohort of
candidate solutions is evaluated only on the test cases in the paired test case cohort,
which, like down-sampled lexicase, reduces the required number of per-generation
evaluations relative to standard lexicase selection. Unlike down-sampled lexicase,
however, cohort lexicase ensures that every test case in the full set is used every
generation, as each cohort of candidate solutions competes on a different subset of
the full set. To select a parent, cohort lexicase first selects a cohort to choose from;
previous work guaranteed an equal number of parents were selected from each cohort
each generation [7, 19]. Candidate solutions only compete against other solutions
within their respective cohort, and within-cohort competition is arbitrated by the test
cases in the associated cohort of tests.

In this work, we investigate how the number of cohorts that we partition the
population and test set into influences lexicase selection’s capacity for exploration.
For similar reasons to down-sampled lexicase, we expect cohort lexicase selection to
degrade lexicase selection’s exploratory capacity. However, because cohort lexicase
uses every test case in every generation, we expect it to better support exploration
than down-sampled lexicase. As we increase the size of cohorts (and decrease the
number of cohorts), we expect cohort lexicase to approach the exploratory abilities
of standard lexicase selection. This could be due to the fact that as cohort size
increases, the chances of a specialist being paired with the test cases it specializes
on also increases.



90 J. G. Hernandez et al.

5.3.4 Novelty-Lexicase Selection

Novelty-lexicase selection combines standard lexicase selection with novelty search
[22]. Novelty search disregards functional objectives and instead searches for behav-
ioral novelty, steering populations to continuously explore new regions of the search
space [28]. As such, novelty search is argued to be well-suited for solving problems
with deceptive fitness landscapes where local gradients lead away from the global
optimum [27]. Novelty-lexicase selection incorporates ideas from novelty search
into lexicase selection.

Novelty-lexicase selection (as introduced in [22]) requires that the entire popu-
lation be evaluated on all test cases. For each member of the population, novelty-
lexicase selection computes their “novelty score” on each test case. A novelty score
measures how different a candidate solution’s output on a given test case is from the
rest of the population. Here, a candidate solution’s novelty score on a test case equals
the average distance between its output and the k nearest neighbor outputs for that
test case. Novelty-lexicase selection incorporates novelty scores by augmenting the
test case set with an additional novelty test case for every original test case. Using
this augmented set of test cases, the standard lexicase procedure is used to choose
parents.

In this work, we use our exploration diagnostic to compare the exploratory capac-
ity of novelty-lexicase selection (at k =1, 2, 4, 8, 15, 30, and 60) and standard lexi-
case selection (k = 0). Reference [22] found that novelty-lexicase selection generally
maintainedmore behavioral diversity than standard lexicase selection on several pro-
gram synthesis problems. As such, we expect the addition of novelty score test cases
to improve lexicase selection’s exploratory capacity on our exploration diagnostic.

5.4 Diagnosing the Exploratory Capacity of Lexicase
Selection and Its Variants

We conducted a series of experiments to analyze the exploratory limits of standard
lexicase selection and four of its variants: epsilon lexicase, down-sampled lexicase,
cohort lexicase, and novelty-lexicase. For each experiment, unless stated otherwise,
we evolved populations of 500 numerical vectors on our exploration diagnosticwith a
cardinality of 100 for 50,000generations.Across all experiments,we ran50 replicates
of each constituent treatment. We initialized populations to the lowest point in the
fitness landscape, vectors of all 0.0 s.

When evaluating a candidate solution, we calculated a score associated with each
position in its vector according to the exploration diagnostic (Fig. 5.1). We used this
collection of scores as test case qualities for lexicase selection and its variants. For
this work, we report quality directly; for comparison to other studies, note that test
case error is the amount that quality is below 100. When a single fitness value was
required (e.g., for tournament selection), we summed the individual test case qualities
to determine the solution’s aggregate fitness.
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Selected candidate solutions reproduced asexually, andweappliedpoint-mutations
to offspring at a per-position rate of 0.7%. The magnitude of each mutation was
drawn from a normal distribution with a mean of 0.0 and a standard deviation of
1.0 (N (0, 1)). When mutations would raise a trait to a value x where x > 100, we
rebounded that trait to 200− x , ensuring that each trait value remained less than or
equal to 100. When mutations would lower a trait below 0.0, we reset that trait to
0.0.

For each replicate of each experiment,we extracted themost performant individual
in the population (i.e., the individual with the highest aggregate score) to compare
across treatments. For different diagnostic cardinalities (i.e., different numbers of
test cases), the range of possible aggregate scores differs; as such, we normalized all
aggregate scores by dividing by the cardinality, which results in a value between 0.0
and 100.0.

To identify the number of pathways being explored by a population, we measured
the number of unique activation positions within each population. Using this mea-
surement, we calculated “activation position coverage” as the fraction of possible
activation positions represented in a population.

For each experiment, we report both mean performance and mean activation
position coverage over time (each with a bootstrapped 95% confidence interval),
and we compare measurements from the final generation across treatments. For each
comparison, we performed a Kruskal–Wallis test to determine if there were signifi-
cant differences; if so, we applied a Wilcoxon rank-sum test to distinguish between
pairs of treatments, applying Bonferroni corrections for multiple comparisons where
appropriate.

The software used to conduct experiments, statistical analyses, experimental data,
andguides for replication are included inour supplementalmaterial [20]. SeeSect. 5.6
for more details.

5.4.1 Lexicase Selection Out-Explores Tournament Selection

First, we used the exploration diagnostic to test well-established expectations that
lexicase selection improves search space exploration relative to tournament selection.
Unlike lexicase selection, tournament selection does not reliably maintain multiple
niches within a population [5]; as such, we expected it to performworse than lexicase
selection on the exploration diagnostic. For this experiment, we used tournaments of
eight individuals.

Consistent with our expectations, we found that lexicase selection outperforms
tournament selection on the exploration diagnostic (Fig. 5.2;Wilcoxon rank-sum test:
p < 10−4). Early on, populations evolving under tournament selection converge to a
single local optimum in the exploration diagnostic (i.e., a single activation position);
without amechanism to escape, populations become stuck and fail to continue explor-
ing the search space. Lexicase selection, however, rewards specialists for different
activation positions, allowing the population to continuously explore different evo-
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Fig. 5.2 Lexicase selection versus tournament selection on the exploration diagnostic. Panels
a and b show performance over time and at the end of 50,000 generations, respectively. Likewise,
panels c and d show activation position coverage over time and at the end of 50,000 generations,
respectively. For panels a and c, each line gives the mean value across 50 replicates, and the shading
around each mean gives a 95% confidence interval

lutionary pathways. Indeed, we found that lexicase selection maintains substantially
more “activation-position” specialists than tournament selection (Fig. 5.2; Wilcoxon
rank-sum test: p < 10−4).

5.4.2 The Exploratory Capacity of Lexicase Selection
Degrades as We Increase Diagnostic Cardinality

Next, we evaluated standard lexicase selection on the exploration diagnostic at cardi-
nalities 10, 20, 50, 100, 500, and 1,000. Cardinality defines the number of potential
pathways that must be explored by a population to guarantee finding the global
optimum; increasing cardinality obscures the path to optimality. Cardinality also
corresponds to the number of test cases (i.e., niches) that individuals can specialize
on. For a fixed population size, increasing the number of test cases decreases the
long-term survival probability of any single specialist under lexicase selection [5],
which could negatively affect lexicase’s capacity to fully explore pathways in the
search space. For these reasons, we expected lexicase selection’s performance on the
exploration diagnostic to degrade as we increased cardinality.
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Fig. 5.3 Lexicase selection at a range of exploration diagnostic cardinalities. Panels a and b
show performance over time and at the end of 50,000 generations, respectively. Likewise, panels c
and d show activation position coverage over time and at the end of 50,000 generations, respectively.
For panels a and c, each line gives the mean value across 50 replicates, and the shading around each
mean gives a 95% confidence interval

Figure5.3 shows lexicase selection’s performance at each cardinality of the explo-
ration diagnostic. Across all cardinalities, lexicase selection improves performance
over time. Notably, treatments with cardinalities 10, 20, and 50 each perform near
optimally after 50,000 generations, and populations evolved under cardinality 100
perform relatively well. Higher cardinalities (e.g., 200, 500, and 1000), however, per-
form substantially worse (Wilcoxon rank-sum tests: p < 10−4) and appear to need
more time to converge on their maximal performance. These data verify that increas-
ing diagnostic cardinality also increases the exploration diagnostic’s difficulty, as
lexicase selection’s performance degrades as cardinality increases.

We also found that populations evolved at lower diagnostic cardinalities main-
tained a larger coverage of unique activation positions than populations evolved at
higher diagnostic cardinalities (Fig. 5.3). Such diversity maintenance likely drove
lexicase selection’s ability to continuously explore pathways in the search space.

In these experiments, we used a population size of 500, resulting in 500 selection
events per generation. In each selection event, scores for vector positions (Fig. 5.1)
are prioritized in a random order. Across a population, we expect that positions that
are consistently rewarded should maintain solutions that start at that position. The
optimal solution requires the initial position to be the highest in the population,
but this position may, by chance, never be evaluated first during lexicase selection.
The probability of this occurring varies with cardinality. With a population size of
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500 and a vector with 50 positions (i.e., a diagnostic cardinality of 50), there is a
0.004% chance (1 in 25,000) of the initial position never being chosen first in a
generation, making it unlikely to go unselected. Increasing the cardinality to 100,
however, increases the chance for the first position to go unselected to 0.657% (1
in 152)—a much more likely occurrence that may explain the reduced performance
at cardinality 100 relative to cardinality 50. By cardinality 200, the probability for
the first position to go unselected within a given generation rises to 8.157%, an even
more likely occurrence.

One way to combat these dynamics is to increase population size, which would
allow lexicase selection to support higher levels of exploration by reducing the
chances of any given starting position from being skipped over by selection in
any single generation. However, increasing population size can be computation-
ally expensive, as more individuals would need to be evaluated every generation.
Decreasing the depth of evolutionary search by reducing the number of generations
evaluated is one way to balance the cost of increasing population size. For a fixed
computational budget, can increasing population size at the expense of evaluating
fewer generations of evolution pay off under lexicase selection?

5.4.3 Increasing Population Size Can Improve Lexicase
Selection’s Exploratory Capacity

To test whether increasing population size can improve lexicase selection’s
exploratory capacity, we extended the runtime of our experiment and compared
lexicase selection’s performance on the exploration diagnostic (with a cardinality
of 100) at two population sizes: 500 and 1,000. Because increasing population size
increases per-generation computational effort, we ran both conditions for a fixed
number of test case evaluations, evolving populations of 500 individuals for twice as
many generations as populations of 1,000 individuals (1,000,000 and 500,000 gen-
erations, respectively). As such, lineages from 500-individual populations take two
reproductive steps in the search space for every one step reproductive step taken by
a 1000-individual population. This difference may allow the smaller populations to
more rapidly exploit their initial position in the search space. However, if larger pop-
ulations are able to maintain more pathways in the search space, they may eventually
outperform smaller populations.

As expected, we found that increasing population size allows lexicase selection to
maintain more starting positions for the entire duration of our experiment (Fig. 5.4).
Smaller populations initially outperform larger populations (given a fixed compu-
tational budget); however, despite running for fewer total generations, larger popu-
lations eventually outperform the smaller populations (Fig. 5.4; Wilcoxon rank-sum
test: p < 10−4). These data suggest that, for a fixed number of test case evaluations,
we can indirectly tune lexicase selection’s level of search space exploitation and
exploration by adjusting our allocation of computational resources between genera-
tions of evolution and population size.
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Fig. 5.4 Lexicase selection’s performance on the exploration diagnostic at different popula-
tion sizes. Panels a and b show performance over time and at the end of the experiment, respectively.
Likewise, panels c and d show activation position coverage over time and at the end of the experi-
ment, respectively. For panels a and c, each line gives the mean value across 50 replicates, and the
shading around each mean gives a 95% confidence interval

5.4.4 Relaxing Lexicase Selection’s Elitism Can Improve
Exploration

As discussed in Sect. 5.3.1, epsilon lexicase relaxes the elitism of lexicase selection.
To test whether this relaxation of elitism affects exploration, we compared stan-
dard lexicase selection and epsilon lexicase selection on the exploration diagnostic.
Specifically, we evolved 50 replicate populations at each of the following ε values:
0.0 (standard lexicase), 0.1, 0.3, 0.6, 1.2, 2.5, 5.0, and 10.0.

Epsilon lexicase with small values of ε (0.1 and 0.3) outperforms standard lex-
icase selection on the exploration diagnostic (Fig. 5.5; Wilcoxon rank-sum tests:
p < 10−4). Extreme values of ε (5.0 and 10.0) significantly degrade performance
relative to standard lexicase selection (Wilcoxon rank-sum tests: p < 10−4). Inter-
estingly, intermediate values of ε (0.6 and 1.2) perform best during the first approx-
imately 20,000 generations, but are eventually outperformed by treatments with
smaller values of ε. Unlike previous experiments, the relative levels of activation
position coverage among conditions does not correspond with diagnostic perfor-
mance.

In general, epsilon lexicase is expected to have twomain advantages over standard
lexicase selection [25]: (1) it allows small amounts of noise in the evaluation data to be
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Fig. 5.5 Epsilon lexicase selection’s performance on the exploration diagnostic at a range of
ε values. Panels a and b show performance over time and after 50,000 generations of evolution,
respectively. Likewise, panels c and d show activation position coverage over time and after 50,000
generations of evolution, respectively. For panels a and c, each line gives the mean value across 50
replicates, and the shading around each mean gives a 95% confidence interval

ignored, and (2) it prevents nearly identical scores from determining which candidate
solutionswin, potentially allowing for greater coexistence.While the firstmechanism
cannot be at play here (since all scores are deterministic), the second advantage
could provide additional support for solutions further along a given pathway. That is,
solutions that begin optimizing at an earlier point in their vector, by definition, must
have slightly lower values for later positions in their activated region. In standard
lexicase, when two solutions had overlapping activation regions, the one that start
later would have an advantage at all overlapped sites. In epsilon lexicase, however,
the earlier start (i.e., the one with more long-term potential) now has a better chance
to pass lexicase selection’s selective filter.

5.4.5 Down-Sampling Degrades Lexicase Selection’s
Exploratory Capacity

Next,we investigatedwhether down-sampling affects lexicase selection’s exploratory
capacity by comparing the performance of lexicase selection at a range of sampling
rates: 100% (standard lexicase), 50%, 20%, 10%, 5%, 2%, and 1%. For example,
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Fig. 5.6 Down-sampled lexicase selection’s performance on the exploration diagnostic at a
range of subsampling rates. Panels a and b show performance over time and at the end of the
experiment, respectively. Likewise, panels c and d show activation position coverage over time and
at the end of the experiment, respectively. For panels a and c, each line gives the mean value across
50 replicates, and the shading around each mean gives a 95% confidence interval

a 10% sampling rate means that each generation we randomly selected 10 of the
100 possible test cases (for a diagnostic cardinality of 100) to be used for parent
selection. Down-sampling reduces the per-generation computational effort required
for parent selection by conducting fewer test case evaluations (Sect. 5.3.2). For a fair
comparison across different sampling rates, we limited the computational budget to
a maximum of 2.5× 109 test case evaluations by varying the number of generations
of evolution for each subsampling rate (100%: 50,000 generations, 50%: 100,000
generations, 20%: 250,000 generations, 10%: 500,000 generations, 5%: 1,000,000
generations, 2%: 2,500,000 generations, and 1%: 5,000,000 generations).

Any amount of down-sampling significantly degraded lexicase selection’s perfor-
mance on the exploration diagnostic for the allotted computational budget (Fig. 5.6;
Wilcoxon-rank sum tests: p < 10−4). Down-sampled lexicase selection’s drop in
performance is likely attributed to frequent mismatches between candidate solutions
and the test cases that they are specialized on. As the proportion of test cases used
in each generation decreases, so too does the probability of a solution encountering
the same set of test cases for multiple generations in a row. As such, a solution has
a reduced chance of encountering the test cases for which it is most optimized [7].
These dynamics will repeatedly remove solutions with small active regions, thereby
reducing population diversity. Indeed, we found that down-sampling substantially
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reduces the number of activation position specialists represented in the population
(Fig. 5.6; Wilcoxon rank-sum tests: p < 10−4). In fact, any down-sampling used
appears to have a strong negative effect, substantially reducing performance in all
cases.

We repeated this experiment, except we increased population size instead of
increasing generations of evolution for down-sampled lexicase; that is, we ran each
condition for an equivalent number of generations but differing population sizes to
maintain a fixed number of evaluations. We report these data in our supplemental
material [20]. Overall, the patterns were similar to that of increasing generations
of evolution. Initially, down-sampled lexicase outperforms standard lexicase on the
exploration diagnostic; however, standard lexicase eventually outperforms down-
sampled lexicase across all subsampling rates [20].

5.4.6 Cohort Partitioning Degrades Lexicase Selection’s
Exploratory Capacity

Next, we evaluated whether partitioning the population and test cases into cohorts
affects the exploration capacity of lexicase selection. We compared the performance
of standard lexicase to that of cohort lexicase at a range of cohort sizes (given as
the proportion of the population and the set of test cases used in each cohort): 100%
(standard lexicase), 50%, 20%, 10%, 5%, 2%, and 1%. For example, a cohort size
of 10% means that the population (of 500 individuals) is divided into 10 cohorts of
50 individuals each, and the test cases (100 total) are also divided into those same
10 cohorts, with 10 test cases in each. Like down-sampled lexicase, cohort lexi-
case reduces the per-generation computational effort required for parent selection by
evaluating each cohort of candidate solutions on only one of the test case cohorts
(Sect. 5.3.3). Likewise, for fair comparison across different cohort sizes, we limited
the computational budget to amaximumof 2.5× 109 test case evaluations by varying
the number of generations of evolution for each cohort size (100%: 50,000 genera-
tions, 50%: 100,000 generations, 20%: 250,000 generations, 10%: 500,000 gener-
ations, 5%: 1,000,000 generations, 2%: 2,500,000 generations, and 1%: 5,000,000
generations).

As with down-sampled lexicase, any level of cohort partitioning degrades lex-
icase’s performance on the exploration diagnostic for the allotted computational
budget (Fig. 5.7; Wilcoxon rank-sum tests: p < 10−4). However, cohort lexicase
does not appear to degrade lexicase selection’s performance to the same degree as
down-sampled lexicase for a given subsampling rate (Fig. 5.6). Moreover, standard
lexicase took longer (more total evaluations) to outperform cohort lexicase than to
outperform down-sampled lexicase. These data suggest that cohort partitioning (with
intermediate levels of partitioning) may be a better method of random subsampling
in the context of lexicase selection.
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Fig. 5.7 Cohort lexicase selection’s performance on the exploration diagnostic at a range of
partitioning rates. Panels a and b show performance over time and at the end of the experiment,
respectively. Likewise, panels c and d show activation position coverage over time and at the end of
the experiment, respectively. For panels a and c, each line gives the mean value across 50 replicates,
and the shading around each mean gives a 95% confidence interval

We repeated this experiment, except we increased population size instead of
increasing generations of evolution for cohort lexicase; that is, we ran each con-
dition for an equivalent number of generations but differing population sizes to
maintain a fixed number of evaluations. We report these data in our supplemental
material [20]. The overall patterns were qualitatively different and warrant further
exploration in future work. We found no compelling evidence that cohort lexicase
outperformed standard lexicase in the given computational budget; however, we did
find that populations evolving under cohort lexicase (with larger population sizes)
maintained more activation position coverage than standard lexicase selection [20].
Further, some of the cohort sizes were on an upward trajectory when the runs fin-
ished and may eventually outperform standard lexicase given a larger computational
budget.

5.4.7 Cohort Lexicase Out-Explores Down-Sampled Lexicase

Next, we independently verified that cohort lexicase out-explores down-sampled
lexicase on the exploration diagnostic. To do so, we compared the performance of
cohort lexicase and down-sampled lexicase with their most performant parameteri-
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Fig. 5.8 Down-sampled versus cohort lexicase on the exploration diagnostic. Panels a and b
show performance over time and at the end of the experiment, respectively. Likewise, panels c and
d show activation position coverage over time and at the end of the experiment, respectively. For
panels a and c, each line gives the mean value across 50 replicates, and the shading around each
mean gives a 95% confidence interval

zations: a 50% cohort size and a 50% sampling rate, respectively. We again limited
the computational budget to a maximum of 2.5× 109 test case evaluations (100,000
generations of evolution for both conditions), and we ran 50 new replicates of each
condition for comparison.

As expected given Figs. 5.6 and 5.7, cohort lexicase outperformed down-sampled
lexicase by a substantial margin for the given computational budget (Fig. 5.8;
Wilcoxon rank-sum test: p < 10−4). Interestingly, down-sampled lexicase appears
to briefly outperform cohort lexicase in the first few thousand generations but is
quickly overtaken by cohort lexicase. Both cohort and down-sampled lexicase offer
equivalent per-generation evaluation savings, but cohort lexicase uses every test case
for parent selection in every generation. This could play a role in problem-solving
success, as a test case that rewards exploration at any given activation position in the
exploration diagnostic is used every generation. Indeed, populations evolving under
cohort lexicase selection maintained a higher diversity of activation positions than
populations evolving under down-sampled lexicase selection (Fig. 5.8; Wilcoxon
rank-sum test: p < 10−4).

Previous work predicted the potential for such differences between cohort and
down-sampled lexicase. Reference [7] found that cohort lexicase better maintained
phylogenetic diversity than down-sampled lexicase, as phylogenies coalesced less



5 An Exploration of Exploration: Measuring the Ability of Lexicase … 101

frequently under cohort lexicase selection (maintaining deeper, more divergent
branches). Despite this difference in diversity maintenance, [7] did not find sig-
nificant differences in problem-solving success across a set of program synthesis
benchmark problems, which suggests that the test cases used in these benchmark
problems were more robust to random subsampling than the test cases for the explo-
ration diagnostic. Indeed, each individual test case for the exploration diagnostic
uniquely represents a single activation position; that is, test cases are minimally
redundant with one another. In many program synthesis benchmark problems, how-
ever, individual test cases are often intentionally redundant to others, differing only
in the particular values of their inputs and outputs and not necessarily different in
the functional specialization they reward. Such redundancies prevent candidate solu-
tions from memorizing particular input-output pairings, forcing candidate solutions
to generalize in order to achieve high fitness across redundant test cases. This detail
could explain why the exploration diagnostic reveals substantial performance differ-
ences between cohort and down-sampled lexicase where more standard benchmark
problems failed to do so.

5.4.8 Novelty Test Cases Degrade Lexicase Selection’s
Exploratory Capacity

Finally, we evaluated how incorporating novelty test cases into lexicase selection
impacts exploration. We compared the performance of standard lexicase to that of
novelty-lexicase for a range of k-nearest neighbors: 0 (standard lexicase), 1, 2, 4, 8,
15, 30, and 60.

Contrary to our expectations, we found that the addition of novelty test cases
degrades performance on the exploration diagnostic in all cases (Fig. 5.9; Wilcoxon
rank-sum test: p < 10−4). Though, novelty-lexicase generally maintains similar lev-
els of activation position diversity in the population relative to standard lexicase, and
by the end of the experiment, some parameterizations of novelty lexicase maintain
more activation positions, though none of the differences appear to be substantial
(Fig. 5.9).

Novelty search favors solutions that have never been seen before, regardless of
their impact on fitness. Based on previous studies, we expected novelty-lexicase to
outperform standard lexicase on the exploration diagnostic [22]. However, novelty-
lexicase appears to hinder lexicase’s ability to fully exploit pathways in the diagnos-
tic’s search space.

While past work has demonstrated that novelty search can be effective at pro-
ducing solutions for complicated problems, the exploration diagnostic does not have
any of the hidden intricacies that novelty search excels at disentangling. Indeed, nov-
elty search appears to thrive under conditions where there are more non-linearities
between genotype and phenotype. The underlying representation used here is pur-
posely simple numerical vectors as opposed to an artificial neural network [27] or
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Fig. 5.9 Novelty-lexicase selection’s performance on the exploration diagnostic at a range of
nearest-neighbor parameterizations. Panels a and b show performance over time and after 50,000
generations of evolution, respectively. Likewise, panels c and d show activation position coverage
over time and after 50,000 generations of evolution, respectively. For panels a and c, each line gives
the mean value across 50 replicates, and the shading around each mean gives a 95% confidence
interval

PushGP [22] where internal architectures can change and qualitatively different out-
puts are possible. For example, in this case, all sites in a genome are optimal at
one end of their range of values, whereas most complex problems are assumed to
have pockets of solutions throughout the genotype-phenotype map. Additionally, our
results also used a single, limited form of novelty lexicase. We did not use a seed
bank (the importance of which has previously been stressed), and we used k-nearest
neighbors euclidean distances to measure novelty instead of a direct measure of
behavioral uniqueness. These differences in problems may shine a light as to why
novelty-lexicase did not outperform standard lexicase selection on the exploration
diagnostic.

Our results fromvaryingdiagnostic cardinality (Sect. 5.4.2)mayalso offer insights
into the unexpectedly poor performance of novelty-lexicase selection. Novelty-
lexicase selection increases the number of test cases used for parent selection (in this
work, doubling the number of test cases from 100 to 200). Increasing the number
of test cases (without simultaneously increasing the population size) is not without
cost, degrading specialist maintenance and performance on the exploration diagnos-
tic (Fig. 5.3). This dynamic is likely to be at play in our novelty-lexicase experiment,
as population size was constant for both standard lexicase and novelty-lexicase selec-
tion.
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5.5 Conclusion

In this work, we introduced a new diagnostic to investigate the exploratory limits of
lexicase selection along with several of its variants: epsilon lexicase, down-sampled
lexicase, cohort lexicase, and novelty-lexicase. First, we verified well-established
expectations that lexicase selection better facilitates search space exploration than
tournament selection. Across all exploration diagnostic difficulty levels (i.e., car-
dinalities), lexicase selection drove improvements in performance (Fig. 5.3), while
tournament selection repeatedly failed to escape early local optima (Fig. 5.2). As we
increased the cardinality of the diagnostic, lexicase selection’s specialistmaintenance
and overall performance waned. Conditions with larger diagnostic cardinalities used
more test cases to evaluate individuals, and as such had more possible specialists
(i.e., niches). Given a fixed population size, lexicase maintained a smaller fraction
of possible specialists as the number of possible niches increased, which, in turn,
decreased overall performance (Fig. 5.3).

Interestingly, we found that allocating a computational budget (i.e., candidate
solution evaluations) toward increasing generations versus increasing population size
is not necessarily a straightforward choice when using lexicase selection. In our case,
a larger population size enabled better specialist maintenance and ultimately higher
performance on the exploration diagnostic with standard lexicase (Fig. 5.4). This
finding is interesting in light of [17]’swork investigating the problem-solving benefits
of down-sampled lexicase; on a suite of program synthesis problems, Helmuth and
Spector found that some problems benefited from an increased population size (at the
cost of running for fewer generations), some problems benefited from an increase
in generations, and most problems were unaffected by their choice of increasing
population size versus generations evaluated.

Overall, these results suggest that lexicase selection can be sensitive to expand-
ing the set of test cases used for evaluation, especially if each test case uniquely
represents a distinct, desirable trait. Moreover, our results suggest the importance
of more deeply examining the benchmark problems that we use and the character-
istics of the search spaces that they represent. Given a fixed computational budget,
why do some problems benefit from running deeper evolutionary searches while
others benefit from increased population sizes under lexicase selection? For many
problems, different categories of test cases have uneven representation in the test
set. We hypothesize that the distribution of test cases among categories plays a role
in lexicase selection’s success and the optimal balance between population size and
depth of search (generations of evolution). For example, if the number of test cases is
similar to population size, lexicase selection may fail to maintain specialists on cat-
egories that are underrepresented in the test cases and instead favor overrepresented
categories. In future work, we will develop novel diagnostic tools for investigating
the sensitivity of selection schemes to test case set composition.

We found that each of the lexicase variants that we evaluated—epsilon lexicase,
down-sampled lexicase, cohort lexicase, and novelty-lexicase—affected lexicase
selection’s exploratory capacity. For small values of ε, epsilon lexicase outperformed
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standard lexicase selection on the exploration diagnostic, while large values of ε

substantially degraded performance. Surprisingly, we found that novelty-lexicase
degrades performance on the exploration diagnostic relative to standard lexicase
selection.

Our experiments are also the first to demonstrate consequential differences
between down-sampled and cohort lexicase selection, as previous work gener-
ally failed to distinguish the problem-solving performance of these two lexicase
variants [7]. Cohort lexicase substantially outperformed down-sampled lexicase
(Fig. 5.8). Both down-sampled and cohort lexicase offer equivalent per-generation
evaluation savings, so our results suggest that cohort partitioningmayoften be a better
subsampling method than down-sampling for lexicase selection. Future work should
examine whether this difference between cohort partitioning and down-sampling
holds across different selection schemes.

Given equivalent computational budgets,we found that standard lexicase selection
eventually outperforms both cohort and down-sampled lexicase on the exploration
diagnostic (Figs. 5.6 and 5.7). This result diverges from recent benchmarking studies
where subsampling substantially improved performance on a range of program syn-
thesis problems [7, 16, 17]. Future work will develop diagnostic problems to help
identify when subsampling (e.g., via either cohort partitioning or down-sampling) is
likely to improve versus impede lexicase selection’s performance.

In eachof our experiments,we focusedour analyses onperformance and activation
position diversity maintenance. Future work should more deeply examine the evo-
lutionary histories of evolving populations using phylodiversity metrics [4]. Along
with this, other parameter values and configurations of each of the variants evaluated
in this work could be tested in order to develop a more complete understanding of
how parameterization affects exploration.

We intend for this work to demonstrate how diagnostics (e.g., the exploration
diagnostic introduced here) can be valuable tools for evaluating the pros and cons of
different selection schemes. We plan to implement a larger suite of selection scheme
diagnostics, each targeted toward evaluating a particular aspect of problem-solving.
Such diagnostics will complement conventional benchmarking experiments in our
community’s effort to understand how different selection schemes steer evolutionary
search.

5.6 Data and Software Availability

Our supplemental material [20] is hosted on GitHub and contains the software,
data analyses, and documentation associated with this work. Our experiments are
implemented using the Empirical library [33], and we used a combination of Python
and R version 4 [35] for data processing and analysis. We used the following R
packages for data wrangling, statistical analysis, graphing, and visualization: ggplot2
[39], tidyverse [38], knitr [42], cowplot [40], viridis [8], RColorBrewer [32], rstatix

https://github.com/jgh9094/GPTP-2021-Exploration-Of-Exploration
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[23], ggsignif [2], Hmisc [9], and kableExtra [43]. We used R markdown [3] and
bookdown [41] to generate web-enabled supplemental material. Our experimental
data is available on the Open Science Framework at https://osf.io/xpjft/ [26].
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