Genetic
Programming

Theory and
Practice XVIII

@ Springer

Genetic and Evolutionary Computation

Series Editors

Wolfgang Banzhaf®, Department Computer Science and Engineering, Michigan
State University, East Lansing, MI, USA

Kalyanmoy Deb @, Department of Electrical and Computer Engineering, Michigan
State University, East Lansing, MI, USA

https://orcid.org/0000-0002-6382-3245
https://orcid.org/0000-0001-7402-9939

More information about this series at https://link.springer.com/bookseries/7373

https://springerlink.bibliotecabuap.elogim.com/bookseries/7373

Wolfgang Banzhaf - Leonardo Trujillo -
Stephan Winkler - Bill Worzel
Editors

Genetic Programming
Theory and Practice XVIII

@ Springer

Editors

Wolfgang Banzhaf

Department of Computer Science
and Engineering

Michigan State University

East Lansing, MI, USA

Stephan Winkler
School of Informatics, Communications

Leonardo Trujillo

Tecnoldgico Nacional de México/IT de
Tijuana

Tijuana, Baja California, Mexico

Bill Worzel
Evolution Enterprise
Ann Arbor, MI, USA

and Media

University of Applied Sciences Upper
Austria

Hagenberg, Austria

ISSN 1932-0167 ISSN 1932-0175 (electronic)
Genetic and Evolutionary Computation

ISBN 978-981-16-8112-7 ISBN 978-981-16-8113-4 (eBook)
https://doi.org/10.1007/978-981-16-8113-4

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Singapore Pte Ltd. 2022

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://orcid.org/0000-0002-6382-3245
https://doi.org/10.1007/978-981-16-8113-4

Foreword

This book highlights the extraordinary recent progress in genetic programming. I
wonder what John Holland would have made of it. Many people imagined computers
that could program themselves, but John took seriously the idea of using selection to
evolve working programs. The field of genetic programming has itself now evolved,
as dozens of programmers set a dizzying array of strategies competing to shape
effective efficient programs as quickly as possible. The results are astounding.

I thought I understood natural selection, but then I discovered Adaptation in
Natural and Artificial Systems in 1976 on the front table in the original Borders
bookstore in Ann Arbor. John Holland’s book made me realize that the principle of
selection is much more general, and that selection in silico can reveal a lot about
natural selection. Reading this current volume brings this full circle and at a much
higher level. It describes the strategies genetic programmers use to overcome the
obstacles that limit what natural selection can do. In particular, readers will discover
new strategies for optimizing levels of variation, defining goals, and structuring
selection in ways that transcend and illuminate the limits of natural selection.

Optimizing mutation rates is a core task for genetic programmers; they have a
free hand to set mutation rates and their timing (“rampant mutation”) to maximize
the speed of evolution and minimize getting stuck on suboptimal peaks. They can
measure diversity in new ways (“phylogenetic diversity”). Natural selection is limited
by comparison. Mutator genes that might otherwise benefit the species are selected
against, although some bacteria increase mutation rates temporarily when under
stress.

The process of defining goals is also very different. For genetic programs, that
means reaching a reliable and efficient solution to a defined problem as quickly as
possible. Each agent is evaluated by its contribution to the defined goal, and multiple
goals are possible. Natural selection has no goal; it just mindlessly increases the
prevalence of whatever variants result in individuals who reproduce more than other
individuals. So variants that decrease health, happiness, longevity, or cooperation
quickly become more common if they increase Darwinian fitness.

Strategies for selecting superior programs are at the core of genetic programming.
Lexicase selection is superior to tournament selection, especially in its ability to

vi Foreword

explore the full fitness space. The value of offspring can even be predicted by data
about the parents. Natural selection, by contrast, mindlessly increases and decreases
the prevalence of genetic variants in proportion to their effects on Darwinian fitness,
in competition with stochastic influences that can eliminate useful mutations or take
deleterious ones to fixation.

The problem of getting stuck at suboptimal peaks is faced by both genetic program-
ming and natural selection, but the options are much more diverse for programmers.
Natural selection cannot start fresh. Path dependence restricts it to small changes
that leave many traits suboptimal, such as the shared passageway for air and food,
and blood vessels that run between light and the retina.

I came to the workshop and this book looking for examples of how genetic
programs fail that might illuminate the evolutionary reasons why we are vulner-
able to disease. But from what I can tell, genetic programs are not vulnerable to
failures akin to cancer, heart attacks, diabetes, or autoimmune disease. The intrinsic
advantages of genetic programs described above offer only a partial explanation.
Instead, I think the vulnerabilities and the robustness of organic systems result from
billions of years of selection that have created organic complexity that defies simple
description. Our human minds were shaped to seek simplicity, however, so we tend
to view bodies as if they were designed, with discrete parts each with a specific
function. The prevalence of this tendency to “tacit creationism” is a major obstacle
to full biological understanding. Deep learning neural networks also can be similarly
impossible to comprehend, but there is hope that genetic algorithms will make them
less opaque.

I come away impressed by the vibrant community of scholars and scientists who
are using genetic programming to create programs very different from the products
of natural selection. They leave me astounded that natural selection has done so
well despite its limits. I hope someone who knows more than I do about genetic
programming and natural selection will compare and contrast them in much more
detail in order to illuminate them both.

Ann Arbor, MI, USA Randolph M. Nesse
October 2021 http://nesse.us

http://nesse.us

Preface

The preparations for the eighteenth edition of the workshop on Genetic Programming
Theory and Practice (GPTP) began back in the autumn of 2019. Some months before,
the seventeenth edition of GPTP had been a great success: After 16 annual events in
Ann Arbor, at the University of Michigan, it had been the first edition of GPTP to be
held at Michigan State University in East Lansing. For the eighteenth edition, GPTP
2020, we planned to go back to Ann Arbor. So, similar to the years before, we started
to organize venue details, invited potential speakers and workshop participants, and
asked sponsors if they would be willing and able to support the event. By February
2020, everything was quite well on track, and some of us already had planned their
travel to GPTP 2020.

But then the COVID-19 pandemic struck the entire world. By March 2020 it was
clear that an in-person event in Michigan would not be possible in May 2020, and
with a very heavy heart, we had to cancel the event for 2020. It was the first time
since 2003 that no GPTP took place.

As time went on, in autumn 2020 we started discussions about organizing the 2021
GPTP workshop. In the beginning we were optimistic that a normal event could be
possible, but it quickly dawned on us that this would be highly improbable. It was clear
that universities would still be shut in the spring of 2021 and that traveling would not
be safe by then either. But should we cancel GPTP once again? We were all relatively
used to online meetings—but could a workshop such as GPTP “work” in an online
form? Considering that the real great moments and discussions at GPTP happen in
the discussion sessions and after the talks, when the ideas come up discussing the
day’s sessions at a drink in the evening, what should we do?

As the GPTP workshop has become one of the most important meeting points
for our community, where people meet and can share their thoughts freely and get
feedback for their ideas should we really cancel once again? Especially in the chal-
lenging times of a pandemic, we felt that it would even be more important to keep
the community connected and alive!

So, after several weeks of discussions, we decided to give it a try—GPTP 2021
would be an online event! Again, we contacted potential speakers, participants, and
sponsors, keeping in mind that for an online version of the workshop it would be very

vii

viii Preface

important not to make the event too big. The feedback from people we approached
was very positive—almost all of them accepted their invitations.

And so, May 2021 came along, and GPTP 2021 was held as an online event
via Zoom—and it was great! The talks were interesting, the discussions were very
intense and, similar to the in-person events, many new ideas were presented and
created during the event.

Each day there was a keynote talk, followed by shorter presentations and discus-
sions as well as a special discussion sessions about the topic of the keynote. On Day
1, Elizabeth Barnes from the Department of Atmospheric Science at Colorado State
University gave a keynote about viewing anthropogenic change through an Al lens.
Climate change is a global problem and a threat to us all, and there is a lot of prob-
lems where computer scientists, and especially understandable AI models created
by genetic programming could help.

On Day 2, Randolph Nesse from the Center for Evolution and Medicine at Arizona
State University gave a keynote about evolutionary medicine, why evolved systems
fail, and the mystery of health. This talk was perfectly aligned with the tradition of
GPTP, as we always strive to combine computer science, evolutionary algorithms,
and interdisciplinary thinking.

Finally on Day 3, David Andre from Google-X talked about pitfalls and things
that might go wrong when deploying GP systems, especially in the field of finance—
his talk was entitled provocatively “GP considered Dangerous”. Again, this keynote
sparked many intense discussions as those are topics we all can relate to.

The collection you hold in hand contains the written final contributions submitted
by the 18th workshop’s participants. Each contribution was drafted, read, and
reviewed by other participants prior to the workshop.

We are very glad that we were able to carry on with the spirit of GPTP in 2021,
as a special place in the genetic programming community in an unusually intimate,
interdisciplinary, and constructive atmosphere. It brings together researchers and
practitioners who are eager to engage with one another in thoughtful and unhurried
discussions of the major challenges and opportunities in our field.

Acknowledgements

We would like to thank all of the participants for making GP Theory and Prac-
tice a successful workshop 2021. As is always the case, it produced a lot of inter-
esting and high-energy discussions, as well as speculative thoughts and new ideas for
further work. The keynote speakers delivered thought-provoking talks from diverse
perspectives.

We would also like to thank our financial supporters for making the existence
of GP Theory and Practice possible for now nearly two decades. For 2021, we are
grateful to the following sponsors:

e John Koza

Preface ix

Gilda Cabral and Michael Korns

Mark Kotanchek at Evolved Analytics

Stuart Card

Michael Affenzeller at the University of Applied Science Upper Austria

A number of people made key contributions to the organization of the work-
shop. Foremost among them is Constance James, who helped behind the scenes
before, during, and after the workshop. Special thanks to Michigan State University,
for providing Zoom online services, as well as to the Springer-Nature Publishing
Company, for producing this book. We are particularly grateful for contractual assis-
tance by Mio Sugino, Springer-Nature Tokyo, and Ronan Nugent, Springer-Nature
Heidelberg.

We would also like to express our gratitude to Carl Simon at the Center for the
Study of Complex Systems at the University of Michigan and to Erik Goodman
and Charles Ofria at the BEACON Center for the Study of Evolution in Action at
Michigan State University for their continued support. Free online social space was
provided by wonder.me.

East Lansing, MI, USA Wolfgang Banzhaf
Tijuana, Baja California, Mexico Leonardo Trujillo
Hagenberg, Austria Stephan Winkler
Ann Arbor, MI, USA Bill Worzel

September 2021

Contents

1 Finding Simple Solutions to Multi-Task Visual Reinforcement
Learning Problems with Tangled Program Graphs 1
Caleidgh Bayer, Ryan Amaral, Robert J. Smith, Alexandru Ianta,
and Malcolm I. Heywood

2 Grammar-Based Vectorial Genetic Programming
for Symbolic Regression, 21
Philipp Fleck, Stephan Winkler, Michael Kommenda,
and Michael Affenzeller

3 Grammatical Evolution Mapping
for Semantically-Constrained Genetic Programming 45
Alcides Fonseca, Paulo Santos, Guilherme Espada, and Sara Silva

4 What Can Phylogenetic Metrics Tell us About Useful Diversity
in Evolutionary Algorithms? 63
Jose Guadalupe Hernandez, Alexander Lalejini, and Emily Dolson

5 An Exploration of Exploration: Measuring the Ability
of Lexicase Selection to Find Obscure Pathways to Optimality 83
Jose Guadalupe Hernandez, Alexander Lalejini, and Charles Ofria

6 Feature Discovery with Deep Learning Algebra Networks 109
Michael F. Korns

7 Back to the Future—Revisiting OrdinalGP and Trustable
Models AfteraDecade 129
Mark Kotanchek and Nathan Haut

8 Fitness First 143
W. B. Langdon

9 Designing Multiple ANNs with Evolutionary Development:
Activity Dependence 165
Julian Francis Miller

xi

xii Contents

10 Evolving and Analyzing Modularity with GLEAM (Genetic
Learning by Extraction and Absorption of Modules) 181
Anil Kumar Saini and Lee Spector

11 Evolution of the Semiconductor Industry, and the Start of X
Law .. 197
Andrew N. Sloss

Contributors

Michael Affenzeller Heuristic and Evolutionary Algorithms Laboratory (HEAL),
University of Applied Sciences Upper Austria, Hagenberg, Austria;

Institute for Formal Models and Verification, Johannes Kepler University, Linz,
Austria

Ryan Amaral Faculty of Computer Science, Dalhousie University, Halifax, NS,
Canada

Caleidgh Bayer Faculty of Computer Science, Dalhousie University, Halifax, NS,
Canada

Emily Dolson BEACON Center for the Study of Evolution in Action and Depart-
ment of Computer Science and Ecology, Evolutionary Biology, and Behavior
Program, Michigan State University, East Lansing, MI, USA

Guilherme Espada LASIGE, Departamento de Informatica da Faculdade de Cién-
cias da Universidade de Lisboa, Lisbon, Portugal

Philipp Fleck Heuristic and Evolutionary Algorithms Laboratory (HEAL), Univer-
sity of Applied Sciences Upper Austria, Hagenberg, Austria;

Institute for Formal Models and Verification, Johannes Kepler University, Linz,
Austria

Alcides Fonseca LASIGE, Departamento de Informéatica da Faculdade de Ciéncias
da Universidade de Lisboa, Lisbon, Portugal

Nathan Haut Michigan State University, Lansing, MI, USA

Jose Guadalupe Hernandez BEACON Center for the Study of Evolution in Action
and Department of Computer Science and Ecology, Evolutionary Biology, and
Behavior Program, Michigan State University, East Lansing, MI, USA

Malcolm I. Heywood Faculty of Computer Science, Dalhousie University, Halifax,
NS, Canada

Xiii

Xiv Contributors

Alexandru Ianta Faculty of Computer Science, Dalhousie University, Halifax, NS,
Canada

Michael Kommenda Heuristic and Evolutionary Algorithms Laboratory (HEAL),
University of Applied Sciences Upper Austria, Hagenberg, Austria;

Josef Ressel Center for Symbolic Regression, University of Applied Sciences Upper
Austria, Hagenberg, Austria

Michael F. Korns Korns Associates, San Juan, PR, USA
Mark Kotanchek Evolved Analytics LLC, Rancho Santa Fe, CA, USA

Alexander Lalejini Department of Ecology and Evolutionary Biology, University
of Michigan, Ann Arbor, MI, USA;
Michigan State University, East Lansing, MI, USA

W. B. Langdon Department of Computer Science, University College London,
London, UK

Julian Francis Miller University of York, York, UK
Charles Ofria Michigan State University, East Lansing, MI, USA
Anil Kumar Saini University of Massachusetts Amherst, Amherst, MA, USA

Paulo Santos LASIGE, Departamento de Informatica da Faculdade de Ciéncias da
Universidade de Lisboa, Lisbon, Portugal

Sara Silva LASIGE, Departamento de Informdtica da Faculdade de Ciéncias da
Universidade de Lisboa, Lisbon, Portugal

Andrew N. Sloss Arm Ltd., Washington, USA

Robert J. Smith Faculty of Computer Science, Dalhousie University, Halifax, NS,
Canada

Lee Spector Amherst College, University of Massachusetts Amherst, Amherst,
MA, USA

Stephan Winkler Heuristic and Evolutionary Algorithms Laboratory (HEAL),
University of Applied Sciences Upper Austria, Hagenberg, Austria;

Institute for Formal Models and Verification, Johannes Kepler University, Linz,
Austria

Chapter 1

Finding Simple Solutions to Multi-Task e
Visual Reinforcement Learning Problems

with Tangled Program Graphs

Caleidgh Bayer, Ryan Amaral, Robert J. Smith, Alexandru Ianta,
and Malcolm I. Heywood

Abstract Tangled Program Graphs (TPG) represents a genetic programming frame-
work in which emergent modularity incrementally composes programs into teams
of programs into graphs of teams of programs. To date, the framework has been
demonstrated on reinforcement learning tasks with stochastic partially observable
state spaces or time series prediction. However, evolving solutions to reinforcement
tasks often requires agents to demonstrate/ juggle multiple properties simultaneously.
Hence, we are interesting in maintaining a population of diverse agents. Specifically,
agent performance on a reinforcement learning task controls how much of the task
they are exposed to. Premature convergence might therefore preclude solving aspects
of a task that the agent only later encounters. Moreover, ‘pointless complexity’ may
also result in which graphs largely consist of hitchhikers. In this research we bench-
mark the utilization of rampant mutation (multiple mutations applied simultane-
ously for offspring creation) and action programs (multiple actions per state). Sev-
eral parameterizations are also introduced that potentially penalize the introduction
of hitchhikers. Benchmarking over five VizDoom tasks demonstrates that rampant
mutation reduces the likelihood of encountering pathologically bad offspring while
action programs appears to improve performance in four out of five tasks. Finally,
use of TPG parameterizations that actively limit the complexity of solutions appears
to result in very efficient low dimensional solutions that generalize best across all
combinations of 3, 4 and 5 VizDoom tasks.

C. Bayer - R. Amaral - R. J. Smith - A. Ianta - M. I. Heywood (X))
Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
e-mail: mheywood @dal.ca

C. Bayer
e-mail: caleidgh.bayer@dal.ca

R. Amaral
e-mail: ryan.amaral @dal.ca

R.J. Smith
e-mail: robert.smith@dal.ca

A. lanta
e-mail: aianta@dal.ca

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 1
W. Banzhaf et al. (eds.), Genetic Programming Theory and Practice XVIII,

Genetic and Evolutionary Computation,

https://doi.org/10.1007/978-981-16-8113-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8113-4_1&domain=pdf
mailto:mheywood@dal.ca
mailto:caleidgh.bayer@dal.ca
mailto:ryan.amaral@dal.ca
mailto:robert.smith@dal.ca
mailto:aianta@dal.ca
https://doi.org/10.1007/978-981-16-8113-4_1

2 C. Bayer et al.

1.1 Introduction

Developing policies for high-dimensional partially observable reinforcement learn-
ing tasks most often takes the form of a deep learning framework. The resulting
architectures have been able to demonstrate a wide range of impressive solutions
to robotics [23], gaming [10] and control problems [8]. However, solutions based
on deep learning always require hardware acceleration (even post training) and the
specifics of the deep learning architecture have to be designed by hand. In contrast,
the tangled program graph framework represents a process for open-ended emergent
modularity in which programs are rewarded for decomposing the task [11, 12, 14].
Prior research has demonstrated competitive results for TPG applied to a wide range
of reinforcement learning tasks (e.g. Atari video games [11, 12], Dota 2, ViZDoom
navigation [15, 20-22], and multi-task learning [13, 15]). Moreover, solutions are
computationally very efficient, in part because programs have to explicitly learn what
to index from the state space. That said, TPG is also limited to scalar actions and can
potentially evolve to very large graphs that mostly consist of hitchhikers [9].

In this work, we investigate the impact of three factors that potentially play into
diversity maintenance within the TPG framework for visual reinforcement learning
while also making credit assignment less opaque: 1) multiple mutations per variation
step (rampant mutation), 2) multiple actions per state (action programs) and 3) com-
plexity limiting TPG parameterizations. Specifically, the modular structure of TPG
limits the scope of mutation to single learners, thus rampant mutation affects mul-
tiple learners in multiple ways (i.e. increasing diversity). Action programs enables
an agent to suggest multiple actions per state (i.e. more can potentially be done with
less). Complexity limiting parameterizations might also enable us to do more with
less, however, the impact of each optimization on each other needs to be established.

ViZDoom is used to provide a source of five different tasks that the visual rein-
forcement learning agents have to solve simultaneously (Sect. 1.4). The task domain
is high-dimensional and partially observable. TPG therefore has to support both spa-
tial and temporal representations. The canonical TPG framework assumed for this
purpose is summarized in Sect. 1.2. Rampant mutation and action programs extend
this framework and are described in Sect. 1.3, while the methodology adopted to
encourage simple solutions through TPG parameterization appears in Sect. 1.5. An
empirical evaluation follows in Sect. 1.6 with performance considered from the per-
spective of training fitness over the five tasks, post training multi-task evaluation
over all 5 tasks, and complexity of the resulting solutions. A discussion concludes
the paper with recommendations for future work (Sect. 1.7)

1.2 Tangled Program Graphs

TPG is based on a tuple (T, L) defining team and learner populations respectively
[11, 12]. At initialization, each team identifies team compliment through references
to a subset of learners from the learner population. Learners are rewarded for iden-

1 Finding Simple Solutions to Multi-Task Visual Reinforcement Learning ... 3

tifying the (input) context under which to apply a discrete scalar action. However,
as evolution progresses variation operators enable learners to reference individuals
from the team population. Such a process provides for the open ended decomposition
of a task across the policies as represented by different teams. In the following, we
summarize the relationship between members of the Learner (Sect. 1.2.1) and Team
(Sect. 1.2.2) populations which ultimately results in the representation of solutions as
a ‘graph-of-teams-of-programs’ (Sect. 1.2.3). Section 1.2 therefore establishes what
we take to be ‘canonical TPG’ before we introduce two algorithmic speedups in
Sect. 1.3.

1.2.1 Learners

A learner, L(i), is defined in terms of a program, prog, and terminal action, a where
a € A is the set of discrete terminal atomic actions specific to the task environment,
or L(i) = (p(i), a(i)). A program, p, only produces a single output, whether that be
the root node of tree structured GP [17] or register R[0] in the case of linear GP [2].
Actions are merely a scalar corresponding to a terminal action (these will later evolve
to also encompass pointers to other teams Sect. 1.2.2). The purpose of a program
is to define context for the corresponding action. The same program can appear in
different learners if it is partnered with a different action. A learner on its own does
not define anything useful. Learners only appear in the Learner population, L.

1.2.2 Teams

An independent team population, 7', conducts a search for good combinations
of learners using a variable length representation. The following constraints are
enforced: (1) each team, #m(j) must consist of a unique combination of learners,
L(i) € L; (2) the same learner, L (i), may appear in multiple teams; (3) there cannot
be less than two learners in the same team; (4) there must be at least two different
actions represented by the complement of learners within the same team.

In order to establish the output of team tm(j), all programs associated with learners
within this team are evaluated on the current input state (provided by the task envi-
ronment), S;, or Vi € tm(j) : y; = progi(s;). The program with maximum output
on s, is identified by i* = arg max; (y;). Such a program wins the right to suggest its
corresponding atomic action, or a,. Under reinforcement learning tasks, the agent’s
action is forwarded to the task, typically resulting in a change to the task environment.
Moreover, there is also a scalar reward received at the next time step, r,1;. Such a
reward reflects the relative significance of applying action q, in state s,. Such rewards
capture underlying properties of the task, such as a robot not colliding with a wall, or
the robot’s battery not being exhausted. Thus, the overall interaction between TPG
and environment takes the form of a sequence of interactions:

4 C. Bayer et al.
S0, do, r'1, 81,041,172, .., Sp, A, I'T (L.1)

where each TPG-environment interaction is a tuple (s;, a;, r;+) and rr is the termi-
nal reward received at the task’s end condition.' Such end conditions might reflect a
failure state (point at which a game agent loses a game) or a positive outcome (win-
ning against an opponent, solving a maze) or reflect a computational limit (maximum
number of interactions). The goal of TPG is to maximize the average accumulation
of rewards as sampled during the interaction defined by the sequence of Eq. 1.1. This
means that only affer encountering rr is TPG provided with feedback. This implies
that TPG is closest to Policy based Monte Carlo formulations of reinforcement learn-
ing [24], as per the majority of genetic programming applied to reinforcement learn-
ing tasks [18].

Variation operators assume that the population of TPG agents are first evaluated,
ranked, and the worst Gap teams have been removed (a breeding cycle). Any learners
that are not associated with a team, are also deleted. The remaining pool (of teams)
represent potential parents, of which Gap are selected and cloned. Only the cloned
teams are modified through crossover and mutation. Crossover selects parents pair-
wise from the pool of surviving teams with uniform probability. The learners common
to both appear in both the offspring. Learners unique to each parent are selected to
appear in an offspring with probability P.,,. Let the result of this process be the set
of Gap offspring teams, L’.

Mutation takes the form of stochastically adding (P,) or deleting (P;) learners
from the offspring pool, L’ (subject to the above constraints). Variation is performed
relative to learners indexed by teams from L’ with probability P,,. Again, should a
learner be selected for variation, it is first cloned. This means that only the offspring
team inherits the modified learner, L'(i), not any of the T — Gap grandfathered
teams that happened to use the same learner as a parent. Learner variation operators
include: instruction delete (Pge;), add (P,q4), swap (Py,,,) and choose a new terminal
action (P,,,,).

1.2.3 Graphs

Section 1.2.1 defined a learner as the smallest ‘module’ whereas Sect. 1.2.2 provided
a mechanism for organizing learners into teams without prior parameterization for
how many learners should appear in a team.? Different teams might excel at defining
policy for different subsets of the state-action sequence. Typically, it is assumed that
crossover will provide a sufficient mechanism for recombining the properties from
different teams. The underlying premise to this is that the learners when merged
using crossover continue to identify unique conditions under which to out-bid other

! Implies that the interaction represents the special case of an episodic task [24].

2 Although a minimum of two learners (with different actions) is necessary to avoid defining a
degenerate team Sect. 1.2.2.

1 Finding Simple Solutions to Multi-Task Visual Reinforcement Learning ... 5

learners. Unfortunately, there is no guarantee that this will be the case. TPG may
avoid this condition by enabling a learner to instead reference a different team, thus
devolving control to the referenced team under state s;.

The key to this process is to provide two fypes of learner action mutation. At
initialization all learners are initialized from a discrete set of atomic actions, a(i) € A,
specific to the task (e.g. an enumeration of all joystick directions). Thereafter, an
action mutation consists of the sequence of tests summarized by Algorithm 1.1. Step
1 determines whether to apply any form of mutation. When true either an action from
the set of atomic actions, A, is chosen (Step 5) or a pointer to another team, 7, is
established (Step 6). The significance of Step 4 is that it potentially forces a change
in the type of action.

Algorithm 1.1 Mutating the action type. The ‘Choose’ function selects an action of
the corresponding type with uniform probability.

1: if rand > P, then

2: no mutation

else
if rand > P,.ion then

a(i) < Choose(A)

else a(i) < Choose(T)
end if

: end if

A

Two types of team are now recognized. Those that receive at least one reference
from another team and those that do not; the latter define the set of ‘root teams’
T, 00:- At initialization 7},,, = T. Evaluation may only commence from a root team.
Team evaluation is unchanged relative to that established in Sect. 1.2.2. Should the
winning learner’s action be an atomic action, a,, then the action is returned to the
environment, resulting the next reward, r,, and, assuming that r,,; # rr, the next
state s,.;. Otherwise, the action is a pointer to another team and the process of
determining the winning learner repeats at the identified team.

The set of eligible parents is also limited to the set of root teams, or tm € T, ,y-
Thus, variation operators (Sect. 1.2.2) are only applied to root teams with the ratio
of root to non-root teams floating. Moreover, the non-root teams essentially behave
as if they have been archived, unless at some point the variation operators remove all
incoming references. Note, however, that this has no impact on the pool of actions
that action mutation may select from, only which teams can be parents.

Naturally, it is also possible for loops to appear in the path of evaluation, i.e.
the halting problem. TPG avoids this issue, by marking teams visited during the
evaluation of a root team. Should a learner identify a previously visited team, then
the learner with runner up bid is (recursively) selected. By enforcing the constraint

6 C. Bayer et al.

that all teams have to have a minimum of one terminal action, TPG guarantees that
loops cannot result.® Further details of the TPG algorithm appear in tutorial form in
[12, 14].

1.2.4 Memory

The partially observable aspects of the ViZDoom task imply that support for mem-
ory is beneficial [22], even with respect to single ViZDoom source tasks [15]. For
the purposes of this study, we will adopt the probabilistic indexed memory formu-
lation previously benchmarked under ViZDoom and Dota 2 reinforcement learning
environments [15, 21, 22]. In summary, only one instance of indexed memory is
retained. This implies that a TPG agent inherits the state of indexed memory left by
the previous agent. Indexed memory therefore represents a global internal model of
state that is never reset. Registers, R, specific to a learner (Sect. 1.2.1) are considered
to capture the internal state of each learner. With this in mind, the instruction set
is augmented with a write (write (R))andread (R[i] = read (k)) operation.
Write operations are probabilistic, distributing the content of a learner’s registers
across L columns of indexed memory. The probability of performing a write is such
that locations towards column 1 and L are less likely to be written to (or long term
memory). Conversely, locations near % are most likely to be written to (or short
term memory). Read operations specify a target register, R[i], and an ‘address’ (k)
to indexed memory, i.e. 0 < k < LxMaxReg. Further details of the probabilistic
indexed memory model can be found in earlier work [15, 21, 22].

1.3 Mechanisms for Accelerating TPG Evolution

Two mechanisms are investigated for accelerating the operation of TPG: Rampant
Mutation (Sect. 1.3.1) and Multi-actions (Sect. 1.3.2).

1.3.1 Rampant Mutation

Rampant mutation represents a burst of mutation that occurs on certain generations as
ameans of increasing the potential for greater diversity. To this end, let it M (-) denote
the rampant mutation operation that accepts two parameters (a, b) to configure the
mutation behaviour, where a is an integer generation and b is a mutation multiplier.
Thus, M (a, b) is interpreted as “Every a-th generation, perform mutation b times

3 An arc marking scheme has since been proposed [9], however, for the purpose of this work the
original team formulation was assumed.

1 Finding Simple Solutions to Multi-Task Visual Reinforcement Learning ... 7

instead of once”. Assuming a parameterization of M (1, 5) would therefore result in
x5 the base level of mutation at every generation.

Relative to prior work, Cobb defined a ‘hypermutation’ operator as the application
of different levels of mutation during evolution in proportion to fitness, i.e. decreases
in fitness trigger hypermutation [4]. Conversely, Grefenstette replaced a percentage
of the population at each generation with randomly generated individuals or random
immigrants [7]. Ghosh et al. gave more reproductive rights to agents in a certain age
range [6]. The prior works therefore established that ‘diversity maintenance’ (care of
rates of variation) could be useful under dynamic environments, albeit with a much
simpler genotype and a fixed length representation. In this work, we are interested in
knowing whether the combination of higher-levels of variation in programs (care of
rampant mutation) adversely or positively impact on the ability of TPG to construct
useful graphs. In applying the variation throughout evolution we recognize that wait-
ing until fitness stagnates before attempting to introduce diversity may be too late to
correct for a loss in diversity [3]. We also note that, unlike the earlier studies, TPG
is explicitly modular. Hence mutation when applied is specific to an affected learner
(aka module), where a candidate solution must consist of a minimum of two learners
(but in practice might comprise from thousands).

Multiple ‘rampant’ forms of mutation occur in biological organisms. For exam-
ple, the immune system deploys targeted mutations to the immunoglobulin genes
in a process referred to as somatic hypermutation [25]. The underlying objective
is to respond to threats experienced by an individual, i.e. an adaptive mechanism
for programming/targeting mutation during the lifetime of the individual. A second
example is the case of stress-induced mutations in microbes. These are interesting
because they occur when a microbe is poorly adapted to its environment [1].

1.3.2 Multi-actions

A canonical TPG learner, L (i), is defined by the tuple (p(i), a(i)) or program, p,
(bidding behaviour) and scalar action, a, (Sect. 1.2.1), thus limiting the tasks to
which TPG could be applied to as those with discrete actions alone. In order to
provide support for multiple real-valued actions per learner, we introduce a new
representation (pg(i), pa(i), a(i)) in which pg(i) is the bid program (operation
unchanged), p4 (i) is the atomic action program, and a (i) is the pointer to a team.
Naturally, at any point in time, the learner has enabled either p4 (i) or a(i), never
both.

The purpose of the bidding program, pg (i), is unchanged relative to that of canon-
ical TPG (Sect. 1.2.2). If the learner’s action is a Team reference (a (i) enabled), then
graph traversal follows the same process as outlined above (Sect. 1.2.3). Conversely,
if the learner’s action program is enabled, then p4 (i) is executed (relative to the same
environmental state, s;). In order to efficiently support multiple actions per state we
assume a linear GP representation [2]. Post execution, the action programs registers
represent a vector of actions. Thus, as long as the number of registers per action

8 C. Bayer et al.

program MaxAc tReg is at least as many as required by the task, then the numerical
value in register R [1] is the value for atomic action i of the task under state s;.

As each learner consists of two programs, credit assignment is potentially more
complex. A hierarchical process is therefore assumed in which action program muta-
tion is conditional on the corresponding bidding program having been first mutated.

Relative to previous work, an example of real-valued TPG has been previously
proposed by Kelly et al. [13] and benchmarked on single output time series prediction
tasks. Conversely, in this work multiple actions are always necessary. Note that for
the ViZDoom task discrete actions will be assumed in which case all action program
registers greater than zero imply an action is enabled, otherwise an action is not
enabled at that state. A future benchmarking study will consider the case of real-
valued multi-actions per state.

1.4 ViZDoom Subtask Selection and Performance
Evaluation

The ViZDoom game engine [16] represents a 3D environment through first per-
son perspective, and therefore a challenging visual reinforcement learning task on
account of: (1) the high-dimensionality and partial observability of state, s(¢), (2) the
multitude of different objects/opponents all of which can appear at multiple aspect
ratios and/or view angle, and (3) the environment is stochastic, with the spawn state
of the agent and opponents changing. Moreover, the environment comes with a set
of eight default subtasks [16] that can form the basis for training curricula [20].

Past experience with ViZDoom subtasks has demonstrated that a lack of diversity
can limit the development of agents within the context of training on a single subtask.
With this in mind, we will therefore adopt the approach of evolving agents to play
five subtasks simultaneously by randomly choosing a subtask (without replacement)
and evaluating performance on the three most recently encountered subtasks [20].

In short, we have a ‘bag’ of subtasks, B = 5, each of which can be chosen with
equal probability (without replacement). On choosing subtask S, then the same sub-
task is evaluated T = 5 times per agent.* Resulting in the average performance of
agent i on a subtask S:

T—1

1
£G.8)==3 gnti,S) (1.2)

k=0

where gsi (i, S) is the game score returned by the ViZDoom game engine on agent i
encountering a terminal reward condition, rr, (i.e. episodic reinforcement Eq. (1.1))
under evaluation k for subtask S.

4 Stochastic nature of each subtask requires that agents are evaluated over multiple initializations.

1 Finding Simple Solutions to Multi-Task Visual Reinforcement Learning ... 9

Each subtask has a completely different performance scale for their subtask (Sect.
1.5.1). Thus, the subtask specific score is rescaled relative to the best agent score on
that subtask:

O P AL (1.3)

maxjer,,, S (J,S)

where T,,, denotes the set of eligible agents, i.e. the set of root teams (Sect. 1.2.3).
Performance of agent i is now expressed in terms of the performance across the
current plus R = 2 previous subtasks encountered:

R
F@i)=Y FG.S—j) (1.4)
j=0

Such a process exposes agents to switches in subtask, where such switches have
previously demonstrated to be effective at promoting development of more general
agent behaviours [19]. Thus, by exposing agents to multiple subtasks, we make use of
the population to act as a repository of multiple agent behaviours that TPG ultimately
is rewarded for ‘stitching together’ to compose agents with a multitude of skills [20,
22].

1.5 Empirical Methodology

1.5.1 Task Domains

TPG agents will be evolved against total of 5 subtasks from the ViZDoom game
engine: Basic, Health Gathering, Defend the Centre, Defend the Line, and Take
Cover.’ The objectives and eligible actions per task varies, but (input) state at each
time step, s(¢), always takes the form of a 160 x 120 resolution RGB frame from
the game engine. Each colour channel takes the form of an 8-bit integer that is then
concatenated into a single 24-bit integer [20].

Basic is designed to develop basic aiming skills. Each episode begins by spawning
the agent in the centre of the long side of a rectangular room. A monster is initialized
on the opposing wall at a random location. The agent can only turn left or right and
shoot. Rewards are -1 per elapsed time step, -5 for each shot that misses the monster
and +101 for a shot that hits the monster. The episode terminates when the monster
is shot or 300 time steps (frames) elapse.

Defend the centre generalizes the skill from ‘Basic’ by spawning the agent in the
middle of a rectangular room. The agent has a limited amount of ammunition and
opposes 5 monsters simultaneously. The monsters also re-spawn, thus the objective

3 https://github.com/mwydmuch/ViZDoom/tree/master/scenarios.

https://github.com/mwydmuch/ViZDoom/tree/master/scenarios

10 C. Bayer et al.

is to live for as long as possible. The agent is only allowed to turn left/right and shoot.
The reward is +1 for each monster killed, whereas the episode ends when the agent
is killed.

Defend the line initializes the agent in a rectangular room as under ‘Basic’, but
this time with three monsters on the opposite wall. In this scenario, monsters initially
die after one ‘on-target’ shot, but on re-spawning (in a random location on the wall
opposing the agent) have more ‘strength’, hence need to be hit more times before
dying. The rewards and episode end conditions are the same as ‘Defend the centre’.

Health gathering also assumes a rectangular room, however, there are no mon-
sters. Instead, the floor is ‘acidic’ thus decreases the health of the agent. In order to
survive the agent has to pick up health packs which add a limited amount of health
back to the agent. The health packs randomly spawn over the course of the episode.
The agent can move forward and turn left or right. An agent receives a reward of +1
for each frame for which it survives. The episode terminates if the agent dies or the
agent successfully survives for 2,100 frames.

Take cover assumes the same starting condition as Basic and Defend the line.
Monsters are again randomly spawned on the opposing wall, but this time can launch
fire-balls at the agent. The agent can only move left or right. Agents receive a reward
of +1 for each time step they survive. The longer the agent survives the more monsters
are spawned, thus at some point the agent faces too many monsters to survive any
longer.

In short, the tasks are related, but reward different behaviours. TPG agents are
therefore initially rewarded for discovering solutions to individual sub-tasks. How-
ever, the performance function is formulated to reward behaviour over a sequence of
the last three sub-tasks encountered (Eq. (1.4)). This encourages the TPG to develop
behaviours that generalize over any combination of sub-task. Note that there is no
‘special flag’ that uniquely identifies what each sub-task is, only the visual informa-
tion from the game engine.

1.5.2 Parameters

A total of five TPG configurations will be considered, as summarized in Table 1.1.
Previous research benchmarked TPG without either rampant mutation or action pro-
grams [20]. NRAP represents the case of no rampant mutation, but action programs
are enabled. This is the only case that does not employ rampant mutation.® RAL
enables rampant mutation, but no action programs (zero for ‘Action Registers’).
RAP enables both rampant mutation and action programs. RAPF assumes RAP, but
delays TPG from indexing other teams until generation 3,000. The motivation for
this is to force single teams to first get ‘strong’ before graphs are constructed that
potentially stitch multiple strong teams together. Finally, RAPS also assumes RAP,
but limits the size of an initial team to 2 programs as well as limiting the maximum

6 Reflected in the parameterization of the ‘Rampant Magnitude’ row in Table 1.1.

1 Finding Simple Solutions to Multi-Task Visual Reinforcement Learning ... 11

Table 1.1 Configuring TPG with and without rampant mutation and multi-action programs

Parameter NRAP RAL RAP RAPF RAPS
Team pop size 120

Team gap 0.5

Prob learner delete 0.7

Prob learner add 0.7

Prob mutate action 0.2

Prob mutate team ref 0.5

Maximum team size 12 12 12 12 4
Maximum program size 128

Prob program delete 0.5

Prob program add 0.5

Prob program swap 1.0

Prob program mutate 1.0

Maximum action program size 128

Prob action program delete 0.5

Prob action program add 0.5

Prob action program swap 1.0

Prob action program mutate 1.0

Number of action registers 7 0 7 7 7
Starting learners per team 12 12 12 12

Phase flip 0 0 0 3000 0
Episodes 5

Generations 9,000

Rampant magnitude 1 5 5 5 5

Rampant frequency

Screen resolution

160 x 120 (19,200 pixels)

size of a team to 4 programs. Thus, all the other configurations start with a ‘full
compliment’ of 12 programs per team (variation operators can decrease this), so
the RAPS configuration requires TPG to construct solutions from multiple teams,
whereas the others need not. In the case of indexed memory, the same parameteriza-
tion is assumed as with prior work [15, 21, 22]. Thus, indexed memory consists of
L = 100 columns for a total of m = 100xMaxReg cells, where MaxReg is 8.

1.6 Results

1.6.1 Fitness

Fitness curves are used to express development of the TPG configurations. It takes
approximately a week to perform 1,000 generations, where each generation is a

12 C. Bayer et al.

complete pass through the ‘bag’ of source tasks (Sect. 1.4). Figure 1.1 illustrates the
development of the 5 tasks over the 9,000 training generations for a typical run. In
each case, the shaded region of the plot illustrates the performance spread (best to
worst) of the champion agent under each task (average is the dashed line). The solid
curve is the average performance of the population as a whole. Note also that the
scales for each task are very different, reflecting the different reward schemes (Sect.
1.5.1).

‘We note that progress was made most consistently on the Basic and Health Gath-
ering tasks (max. of 100 and 2,100 respectively). It is apparent that only RAL was
unable to identify a champion agent that could not reach the maximum score under
Health Gathering (Fig. 1.11). Indeed, the performance of RAL (green curves) consis-
tently returned the best performance of all 5 configurations under Defend the Line
(Fig. 1.1g), but the worst at Defend the Center (Figure 1.1c) and Health Gathering.
The configuration without rampant mutation (NRAP, red curves) was interesting
because it appeared to collapse towards the end of the run. Conversely, the two most
constrained TPG configurations (RAPF and RAPS; purple and orange curves) do not
appear to loose anything relative to the ‘unconstrained’ TPG configurations, possibly
implying that it is generally best to stay simple in this subset of tasks.

1.6.2 Generalization

Post training evaluation identifies the champion from training and re-assesses under
each task using 50 initializations per task. From the perspective of generalization,
we are interested in the ability of agents to perform multiple tasks simultaneously.
With that in mind we construct all combinations of three, four and five tasks and then
construct a table of the relative ranking of each TPG configuration. This enables us to
identify whether a statistically significant outcome appears and having rejected the
null hypothesis (all ranks are the same), apply a post hoc test for which configurations
perform differently. Table 1.2 summarizes the outcome of the ranking across each
task combinations.

Applying the Friedman non-parametric test determines the likelihood of the dis-
tribution of ranks being different from the average rank (3 in this case),

(1.5)

12N k(k +1)2
2= Sope o e D

k(k + 1) i 4

where k is the number of TPG configurations (5) and N is the number of tasks
(16). Specifically, under the ranks from Table 1.2 returns a X% = 18.55. This is then
renormalized to provide a critical value distributed according to the F-distribution
[5] using,

1 Finding Simple Solutions to Multi-Task Visual Reinforcement Learning ...

Fig. 1.1 Fitness curves
during training. NRAP (no
rampant mut., but with action
programs) are the red curves.
RAL (rampant mut., discrete
actions) are the green curves.
RAP are the blue curves
(rampant mut., with action
programs). RAPF and RAPS
are purple and orange curves
(phased TPG and small TPG
initialization)

Ftness

Frness

Rtness

0 e M0 a0 w00 700 w00
Genesations

(a) Basic (RAL & RAP)

\'_“'—‘/V\r:u-\mﬂ R

0 1500 M0 a0 6000 Moo w00
Generations

(c) Def. Center (RAL & RAP)

0 1500 00 w00 6000 00 900
Genesations

(e) Cover (RAL & RAP)

R

0 1500 M0 00 6000 M0 w00
Generations

(g) Def. Line (RAL & RAP)

200
s
1300
|_/-'-._
19 g
|
102 |
/
] |
00
0 130 00 @ 6000 ™o w0

Generations

(i) Health (RAL & RAP)

Ftress

Faness

Riness

13

wo ———
w]
of
-504
w0

T T

Generatinn
(b) Basic (other)
ar
s| il
o R
)] L
2]
o
T G we s e me we
Generations

(d) Def. Center (other)
"0
-
o]
220
™ A
ol =~
220

T wm ww e e mw wa

]

Generations

(f) Cover (other)

AP AT
AR AN

o0 o 4s00 oo

Generstion

(h) Def. Line (other)

)

w000

0

10 M0 4m00 6000
Generations

(j) Health (other)

500

14 C. Bayer et al.

Table 1.2 Combinations of 3, 4, and 5 tasks versus TPG configuration. ViZDoom tasks are identi-
fied as ‘b’ for basic; ‘hg’ for health gathering, ‘dtl’ for defend-the-line, ‘dtc’ for defend-the-center,
‘tc’ for take cover

TPG configuration

Task RAL RAP NRAP RAPF RAPS
b-hg-dtl
b-hg-dtc
b-hg-tc
b-dtl-dtc
b-dtl-tc
b-dtc-tc
b-dtl-dtc
hg-dtl-tc
hg-dtc-tc
dtl-dtc-tc
b-hg-dtl-dtc
b-hg-dtl-tc
b-hg-dtc-tc
b-dtl-dtc-tc
hg-dtl-dtc-tc
all 5 tasks
avg. rank (R)

Al LW L L W = 00 Kl Wn

4
2
3
4
4
2
4
4
3
4
4
4
3
3
3
3
3

WA AR PR RXINDUNRRIN|R N W AW

375 5625 9375

(N —Dx2

= NE—D -1} o

Fr

returning Fr = 6.12 withk — 1 =4 and (k — 1)(N — 1) = 60 degrees of freedom,
thus F (4, 60) = 2.53. As F (4, 60) < Fp the the null hypothesis can be rejected.
The Bonferroni-Dunn post hoc test can now be applied to establish the critical
difference (CD) between pairs of TPG configurations [5]. Thus, defining CD =
qaﬂ%) and looking up the critical value for 5 models as goos = 2.498 then
CD = 1.398. From this we can now deduce that RAPF and RAPS are significantly

different from RAL and NRAP.

1.6.3 Complexity

In addition to tracking the dynamic properties of fitness over the generations (Sect.
1.6.1), we can also investigate the development of complexity. With that in mind, three
metrics will be tracked: Learners per Team, Instructions per Learner, and Instructions
per team. Figure 1.2a summarizes development through the average Learners per

1 Finding Simple Solutions to Multi-Task Visual Reinforcement Learning ... 15

Team under the five TPG configurations. Three trends are apparent, RAPS (orange)
retain the least number of Learners per Team, retaining less than half the team mem-
bers of any other TPG configuration. Naturally, this reflects the maximum learner
per team parameterization specific to RAPS (Table 1.1). RAPF (purple) appears to
represent a second level of complexity with an average of about 9 Learners per Team.
NRAP, RAL and RAP represent the most complex teams with 10 learners per team
on average. Moreover, NRAP (red) appear to undergo a switch in complexity (to a
much lower value) around the 8,500 generation mark, where this seems to have also
caused a collapse in the corresponding fitness curves (Sect. 1.6.1).

Figure 1.2b characterizes the development of the average number of instructions
per learner. RAPS (orange) now represent the most complex individuals, implying
that the low team complement observed under Fig. 1.2a is being compensated by
larger programs.” Conversely, RAPF (purple) consistently adopts the lowest program
complexity after a period of complexity around the first 500 generations. NRAP (red)
appear very quickly converge on an instruction count just less than 70 instructions,
but again at the 8,500 generation mark display a switch (to a much higher value). RAP
consistently assumed solutions with 70 instructions after about 1,000 generations,
whereas RAL (green) displayed the most variation in the average instructions per
learner over the duration of the run.

Figure 1.2c summarizes complexity from the perspective of the instructions per
team. Again RAPS represents the least complexity, in part reflecting the team size
parameterization of no more than 4 learners per team. RAPF (purple) identified the
next lowest instruction per team complement, where this reflects the low instruction
to learner complement. RAL were again the most complex with NRAP and RAP for
the most part adopting a similar value. The one exception being NRAP around the
8,500 generation mark where a collapse in complexity followed by a recovery takes
place.

In short, the RAL configuration of TPG appear to represent the most complex solu-
tions. RAL represents the case of discrete action labels where this appears to imply
that more complexity is necessary to offset the scalar action constraint. NRAP rep-
resents the scenario without rampant mutation, and was the only case to demonstrate
a sudden collapse in solution complement. Rampant mutation by modifying multi-
ple components of offspring might therefore provide more opportunity for repairing
negative variation. RAP demonstrated most complexity, whereas both of the ‘con-
strained’ TPG parameterizations with action programs (RAPS and RAPF) where able
to control complexity without impacting on the ability to identify quality solutions.

7 Includes introns and hitchhikers.

16

Fig. 1.2 Complexity of
champions. Vertical line at
3,000 generations indicates
point at which TPG allowed
to index other teams under
RAPF. NRAP (no rampant
mut., but with action

programs) are the red curves.

RAL (rampant mut., discrete

actions) are the green curves.

RAP are the blue curves
(rampant mut., with action
programs). RAPF and RAPS
are purple and orange curves
(phased TPG and small TPG
initialization)

12

C. Bayer et al.

-
@ =3

@

Average Learmners/Team (All Root)

I I'
L

L

Lbaiii, 1oy

P A

Average Instructions/Learner (All Roat)

B0

J00

600

500

Average Instructions/Team (All Root)

200

L

i i A A A AP Ao A g Y

0 1500 3000 4500 6000 7500 9000
Generation

(a) Learners per Team

B0

0 1500 3000 4500 6000 7500 9000
Generation
(b) Instructions per Learner

f MMMW_. A

0 1500 3000 4500 6000 7500 9000

Generation

(c) Instructions per Team

1 Finding Simple Solutions to Multi-Task Visual Reinforcement Learning ... 17

A

D 2%

6% B
\ 14%

78%

(a) Structure of champion (b) Utilization of learners

Fig. 1.3 Simplest RAPS champion solution. a Individual consists of four learners (pp (i), pa(i)).
b Utilization of each learner across the five ViZDoom tasks

1.6.4 Details of a RAPS Solution

Section 1.6.3 established that the RAPS parameterization of TPG typically consisted
of a single team with no more than four programs. Moreover, generalization perfor-
mance did not appear to be adversely affected (Sect. 1.6.2). With that in mind we
can also analyze the nature of a RAPS champion in more detail. Figure 1.3a sum-
marizes the basic structure of such a solution in which (A, B, C, D) are learners
each comprising of a unique bidding and action program (pp (i), pa(i)). Figure 1.3b
summarizes the corresponding utilization of each learner across all tasks, where the
standard deviation between tasks is < 0.6%. Interestingly, the number of instruc-
tions in a bid program is either 78 or 79 and between 108 to 110 for action programs
(including introns). What is interesting is that given the high dimension of the state
space (160 x 120 = 19, 200), the resulting TPG agents are only indexing 19 to 22
pixels for the action programs and 10 to 12 pixels for the bidding programs. Visually
inspecting the resulting source code indicates that action programs do share similar
code structures with each other (albeit with different register references and switched
instruction orders), whereas bidding programs have a lot less in common.

1.7 Conclusions

Tangled program graphs has previously been applied to several visual reinforcement
learning tasks (Arcade Learning Environment [11, 12, 14] and ViZDoom [14, 15, 20,
22]). In this work, various parameter and algorithmic optimizations are benchmarked
on a set of ViZDoom sub-tasks. The underlying goal is to evolve agents able to
play each sub-task from a single evolutionary run. A preference appears to exist for
action programs with statistically significantly better generalization demonstrated

18 C. Bayer et al.

when both action programs and limited TPG parameterizations are adopted. The
action program takes the form of linear GP, and as such can express multiple outputs
simultaneously. Previously, TPG actions were limited to a single discrete value.
This also appears to imply that TPG solutions can be simpler (RAPF and RAPS
configurations) without impacting on performance. Rampant mutation appears to be
less sensitive to introducing pathological modifications to TPG structure, however,
some form of elitism might also be beneficial in this regard. Future research will
continue to develop the TPG framework, with the introduction of mutation operators
that apply horizontal/vertical offsets or rotations to the pixels indexed by a program
being of particular interest.

Acknowledgements We gratefully acknowledge support from the NSERC CRD and Discovery
programs (Canada).

References

1. Bjedov, I, Tenaillon, O., Gerard, B., Souza, V., Denamur, E., Radman, M., Taddei, F., Matic,
I.: Stress-induced mutagenesis in bacteria. Science 300, 1404-1409 (2003)

2. Brameier, M., Banzhaf, W.: Linear Genetic Programming. Springer (2007)

3. Branke, J.: Evolutionary approaches to dynamic environments—a survey. In: GECCO Work-
shop on Dynamic Optimization Problems, pp. 134-137 (1999)

4. Cobb, H.G.: An investigation into the use of hypermutation as an adaptive operating in genetic
algorithms having continuous, time-dependent non-stationary environments. Technical Report
TR AIC-90-001, Naval research Laboratory (1990)

5. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res.
7, 1-30 (2006)

6. Ghosh, A., Tstutsui, S., Tanaka, H.: Function optimization in non-stationary environment using
steady state genetic algorithms with aging of individuals. In: IEEE Congress on Evolutionary
Computation, pp. 666—671 (1998)

7. Grefenstette, J.J.: Genetic algorithms for changing environments. In: PPSN, pp. 137-144 (1992)

8. Hwangbo, J., Lee, J., Dosovitskiy, A., Bellicoso, D., Tsounis, V., Koltun, V., Hutter, M.: Learn-
ing agile and dynamic motor skills for legged robots. CoRR (2019). arXiv:abs/1901.08652

9. Ianta, A., Amaral, R., Bayer, C., Smith, R.J., Heywood, M.I.: On the impact of tangled program
graph marking schemes under the atari reinforcement learning benchmark. In: Proceedings of
the ACM Genetic and Evolutionary Computation Conference, p. to appear (2021)

10. Jaderberg, M., Czarnecki, W.M., Dunning, 1., Marris, L., Lever, G., Castafieda, A.G., Beattie,
C., Rabinowitz, N.C., Morcos, A.S., Ruderman, A., Sonnerat, N., Green, T., Deason, L., Leibo,
J.Z., Silver, D., Hassabis, D., Kavukcuoglu, K., Graepel, T.: Human-level performance in 3D
multiplayer games with population-based reinforcement learning. Science 364, 859—-865 (2019)

11. Kelly, S., Heywood, M.I.: Emergent tangled graph representations for atari game playing agents.
In: European Conference on Genetic Programming, LNCS, vol. 10196, pp. 64-79 (2017)

12. Kelly, S., Heywood, M.L.: Emergent solutions to high-dimensional multitask reinforcement
learning. Evol. Comput. 26(3), 347-380 (2018)

13. Kelly, S., Newsted, J., Banzhaf, W., Gondro, C.: A modular memory framework for time series
prediction. In: Proceedings of the ACM Genetic and Evolutionary Computation Conference,
pp. 949-957 (2020)

14. Kelly, S., Smith, R.J., Heywood, M.L.: Emergent policy discovery for visual reinforcement
learning through tangled program graphs: a tutorial. In: Banzhaf, W., Spector, L., Sheneman L

http://arxiv.org/abs/1901.08652

1

15.

16.

17.

20.

21.

22.

23.

24.
25.

Finding Simple Solutions to Multi-Task Visual Reinforcement Learning ... 19

(eds.) Genetic Programming Theory and Practice X VI, Genetic and Evolutionary Computation,
pp. 37-57 (2018)

Kelly, S., Smith, R.J., Heywood, M.I., Banzhaf, W.: Emergent tangled program graphs in
partially observable recursive forecasting and ViZDoom navigation tasks. ACM Trans. Evol.
Learn. Optim. 1 (2021)

Kempka, M., Wydmuch, M., Runc, G., Toczek, J., Jaskowski, W.: ViZDoom: A Doom-based
Al research platform for visual reinforcement learning. In: IEEE Conference on Computational
Intelligence and Games, pp. 1-8 (2016)

Koza, J.R.: Genetic Programming—On the Programming of Computers by Means of Natural
Selection. MIT Press, Complex Adaptive Systems (1993)

. Moriarty, D.E., Schultz, A.C., Grefenstette, J.J.: Evolutionary algorithms for reinforcement

learning. J. Artif. Intell. Res. 11, 199-229 (1999)

. Parter, M., Kashtan, N., Alon, U.: Facilitated variation: how evolution learns from past envi-

ronments to generalize to new environments. PLOS Comput. Biol. 4(11), 1-15 (2008)

Smith, R.J., Heywood, M.1.: Scaling tangled program graphs to visual reinforcement learning
in ViZDoom. In: European Conference on Genetic Programming, Lecture LNCS, vol. 10781,
pp. 135-150 (2018)

Smith, R.J., Heywood, M.L: Evolving Dota 2 shadow fiend bots using genetic programming
with external memory. In: Proceedings of the ACM Genetic and Evolutionary Computation
Conference, pp. 179-187 (2019)

Smith, R.J., Heywood, M.1.: A model of external memory for navigation in partially observable
visual reinforcement learning tasks. In: European Conference on Genetic Programming, LNCS,
vol. 11451, pp. 162-177 (2019)

Siinderhauf, N., Brock, O., Scheirer, W.J., Hadsell, R., Fox, D., Leitner, J., Upcroft, B., Abbeel,
P., Burgard, W., Milford, M., Corke, P.: The limits and potentials of deep learning for robotics.
Int. J. Robot. Res. 37(4-5), 405-420 (2018)

Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT (2018)

Teng, G., Popavasiliou, F.N.: Immunoglobulin somatic hypermutation. Annu. Rev. Genet. 41,
107-120 (2007)

Chapter 2 ®)
Grammar-Based Vectorial Genetic Guca i
Programming for Symbolic Regression

Philipp Fleck, Stephan Winkler, Michael Kommenda, and Michael Affenzeller

Abstract Vectorial Genetic Programming (GP) is a young branch of GP, where the
training data for symbolic models not only include regular, scalar variables, but also
allow vector variables. Also, the model’s abilities are extended to allow operations on
vectors, where most vector operations are simply performed component-wise. Addi-
tionally, new aggregation functions are introduced that reduce vectors into scalars,
allowing the model to extract information from vectors by itself, thus eliminating
the need of prior feature engineering that is otherwise necessary for traditional GP
to utilize vector data. And due to the white-box nature of symbolic models, the
operations on vectors can be as easily interpreted as regular operations on scalars.
In this paper, we extend the ideas of vectorial GP of previous authors, and propose
a grammar-based approach for vectorial GP that can deal with various challenges
noted. To evaluate grammar-based vectorial GP, we have designed new benchmark
functions that contain both scalar and vector variables, and show that traditional GP
falls short very quickly for certain scenarios. Grammar-based vectorial GP, however,
is able to solve all presented benchmarks.

P. Fleck (X)) - S. Winkler - M. Kommenda - M. Affenzeller

Heuristic and Evolutionary Algorithms Laboratory (HEAL), University of Applied Sciences
Upper Austria, Softwarepark 11, 4232 Hagenberg, Austria

e-mail: philipp.fleck @fh-hagenberg.at

P. Fleck - S. Winkler - M. Affenzeller
Institute for Formal Models and Verification, Johannes Kepler University, Altenberger Strafie 69,
4040 Linz, Austria

M. Kommenda
Josef Ressel Center for Symbolic Regression, University of Applied Sciences Upper Austria,
Softwarepark 11, 4232 Hagenberg, Austria

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 21
W. Banzhaf et al. (eds.), Genetic Programming Theory and Practice XVIII,

Genetic and Evolutionary Computation,

https://doi.org/10.1007/978-981-16-8113-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8113-4_2&domain=pdf
mailto:philipp.fleck@fh-hagenberg.at
https://doi.org/10.1007/978-981-16-8113-4_2

22 P. Fleck et al.

2.1 Introduction

Symbolic Regression (SR) models, created via Genetic Programming (GP), are typ-
ically trained with input variables that represent single, real-valued values. In many
applications, however, higher dimensional data is available, which requires prior
feature engineering to extract relevant information that is then used as regular, real-
valued features. But even when feature engineering is done with the help of domain
experts, some information is always lost and important features forgotten or over-
looked. Instead, a symbolic model should perform the extraction itself, which has
not only the benefit of not requiring domain knowledge, but also can shed light on
relations that were previously unknown and which can be easily read of a symbolic
model due to its white-box nature.

As a demonstration example, we introduce a small, artificial production plant
that produces items, shown in Fig.2.1. For each produced item, we know certain
input parameters such as material properties, and monitor the production process
via sensors that yield continuous measurements. After the production of an item it’s
quality is measured. Now, symbolic regression should be used to predict the quality
of the product, based on the available input data: regular, scalar values, such as input
material parameters, and the continuous time series of the processes while the item
passed through the production plant, represented as vector values. Table 2.1 shows
how the raw input data looks like for this fictional production plant. In this case, there
are two scalar variables available, MarA and MatB, while the process variables Temp
and Press, representing the temperature and pressure process during the production,
are vector variables. The target variable Quality is a regular, scalar variable.

WO E'u.qo

ID Mat A MatB .. ID Time Temp. Press. .. 1D Quality Quality = ?
1 103 22.0 1 0 20 15 1 50
2 120 230 1 1 25 14 2 52
3 115 224 1 2 30 18 3 53
n 1 t1 n

1t 25 12

2 0 18 16

2 1 22 13

2 2 23 17

2t

2t 28 12

Fig. 2.1 An example of a small factory, where the product quality should be predicted based on
known material properties and the measured process data during production

2 Grammar-Based Vectorial Genetic Programming for Symbolic Regression 23

Table2.1 Example dataof an artificial production plant containing scalar and vector input variables,
and a scalar target variable

ID Mat A | MatB | Temp. Press. Quality
1 10.3 22.0 [20, 25, 30, ..., 25] [1.5,14,18,..,12]|5.0

2 12.0 23.0 [18, 22,23, ..., 28] [1.6,13,1.7,..,1.2] |5.2

3 11.5 224 [20, 21, 28, ..., 30] [1.6,1.6,1.7,..,13] |53

n

The input data, as presented in Table?2.1, cannot be used directly for training a
symbolic model, because traditional training methods can only handle scalar input
variables and do not support vector data directly. Typically, features are extracted
from those vectors, by using simple statistical measures such as mean and standard
variation, or more sophisticated features, such as the linear trend of a vector or some
form of similarity between two vectors. However, calculating all potentially useful
features for all vectors can be unfeasible because it increases the number of features
drastically, especially if considering features that require more than one vector, thus
requiring all combinations of vectors.

Instead of performing feature engineering manually, the learning algorithm itself
should find the proper extraction steps. For example, using the data from the artificial
production plant, if the mean temperature is relevant for predicting the quality, the
model itself should represent that fact. In some cases, it might be necessary to combine
and modify vectors first before obtaining useful information, for example, while the
spread of the temperature or the pressure is not important when considered separately,
the spread of the variables combined might be. Those examples could be represented
in a prediction model such as

1.5 - MatA - mean(Temp)
MatB? + stdev(Press - Temp) '

Quality = (2.1)

While the presented model is simple—and most certainly wrong—it shows that the
actual extraction step can also be performed by the symbolic model itself. The model
might even come up with some extraction steps, that weren’t obvious beforehand,
and therefore, would have not been included via feature engineering. In essence,
this eliminates manual feature engineering of vectors, and allows the model itself
to describe how vector variables should be manipulated and combined with regular,
scalar variables or other vector variables to describe the target variable.

As a general goal, we want to make symbolic regression more flexible towards
different types of input data. We aim to reduce the need of manual feature engineering
by allowing the models themselves to represent the necessary steps of extracting
useful information. In this case we used time series measurements from a production
plant as an example, however, the methodology also applies for any data of higher
dimensions.

24 P. Fleck et al.

The remainder of the paper is structured as follows. Sect. 2.2 covers the state
of the art regarding vectorial GP for symbolic regression and also grammar-based
GP. Sect. 2.3 describes our method and discuss benefits and potential drawbacks
compared to the state of the art. Sect. 2.4 explains our experimental setup and Sect. 2.5
contains the results and a detailed analysis for each presented benchmark instance.
Finally, in Sect. 2.6, we summarize our findings and discuss further ideas and next
steps.

2.2 State of the Art

In this section, we discuss the relevant state of the art for using vector data in symbolic
regression. We also discuss grammar-based genetic programming and its benefits.
Additionally, we also briefly mention other related topics such as feature engineering
and deep learning.

2.2.1 Vectorial Genetic Programming

One way of using vector data in GP is using the data directly within the symbolic
model via variables that represents vectors.

One of the first usages of vector data directly in GP was done by Holladay et
al. using a stack-based GP language that is capable processing elements of different
dimensions [11, 12]. Control structures, such as loops and branches, are used to
operate on the vector data, to gradually convert values into lower dimensions. Addi-
tionally, more complex processing steps are also included to operate on signal data,
such as a fast Fourier transform. Due to the nature of stack-based GP, the resulting
models can be very complex and are also difficult to interpret.

Azzali et al. proposed a tree-based approach for vectorial GP, where both scalars
and vectors can be used within the model, and operations on vectors are simply
executed component wise [3, 4]. For instance, while the log of a scalar returns a
scalar, the log of a vector returns a vector. Along common arithmetic operations,
various aggregation functions are included to convert vectors into scalars, whereby
scalars are simply treated as vectors of length one. This special case is necessary,
because scalar and vector results can be mixed arbitrary. Lastly, many operators
include additional parameters, controlling the range of an aggregation function, for
instance. On the presented benchmarks, the presented tree-based vectorial approach
shows very good results in comparison to traditional GP.

One example of a tree that also includes vector is shown in Fig.2.2. Here, the
variables p and ¢ represent vectors, that are multiplied component-wise, before the
maximum is obtained. Then, the maximum is added to the scalar variable w to
produce the final model output.

2 Grammar-Based Vectorial Genetic Programming for Symbolic Regression 25

max(p = t) + w
Aggregation-function ,________.
Datatypes
calar

Component-wise
multiplication

Fig. 2.2 During the evaluation of a symbolic model, each subtree can return a different type,
depending on the type(s) of the input(s). In this case, the nodes for vector variables p and ¢ yield
vectors, therefore, their component-wise product yields a vector. The max symbol takes a vector as
input but yields a scalar

The tree-based approach by Azzali et al. is very flexible, since all operations can
be applied to both scalar and vector data.! However, this flexibility can also be a
downside, for instance, when the final type of the prediction needs to be of a certain
type. If the final prediction does not match the required type, a penalty is applied to
guide GP towards the required output type. Another potential issue could also arise
if an operation requires a specific type for one of its arguments, which would require
some form of error handling if an invalid argument type is supplied. Therefore, having
constraints that prevent invalid models would be beneficial.

2.2.2 Grammar-Based Genetic Programming

In the previous Sect. 2.2.1 on vectorial GP, we identified, that being able to restrict the
output type of the model or the input types of certain operations would avoid certain
problems that otherwise need to be handled via penalties or other error mechanisms.
One way of restricting the model space for GP is grammar-based GP, which is briefly
summarized in this section.

Early ideas of grammar-based GP were introduced by Montana with strongly-
typed GP, where each tree-node is assigned a type and a dimension, e.g. a tree-
node with INTEGER-3 always returns an integer vector of length 3 [17]. This way,
strongly-typed GP can already handle data of different dimensionality, however,
each function takes only arguments of a type with fixed dimensions, for instance, the
operation “vector-add-3” can only add two vectors of length 3. This limitation was
also addressed by Montana, by having generic operations that supported arbitrary
dimensions, allowing strongly-typed GP to flexibly define the required input type
of each argument of a function, and thus avoiding invalid models where functions
cannot be called due to mismatched argument types. During the GP process, genetic

1 Similar behavior could also be achieved by only using vectors and treating scalars as vectors of
length one.

26 P. Fleck et al.

operators such as mutation and crossover must adhere to the specified constraints to
only produce valid children. This is usually by maintaining internal data structures
to query potentially valid inputs for a given function, so that crossover- and mutation
points can be selected that will result in valid a offspring.

While strongly-typed GP handles constraints on input types of function arguments
to avoid invalid models, sometimes there is a need to specify further constraints to
avoid models that are valid in a technical sense, but still unwanted from a user’s
perspective. For instance, consider a function to calculate the power, where both
base and exponent can be specified and are required to be real-valued—which can
already be done via strongly-typed GP. To avoid overly complex models using this
power function where the exponent could by any value calculated by a sub-tree, we
want to limit the exponent argument to be a fixed, constant-value. However, strongly-
typed GP could only enforce that the exponent is real-valued but not that the value
must come from a constant. Therefore, an additional way of specifying and enforcing
structural constraint on the symbolic model is necessary.

In grammar-based GP, the search space of allowed models is specified declara-
tively by a formal grammar [15], much like grammars for spoken languages defines
how a correct sentence must be structured. Formal grammars are specified by ter-
minal and non-terminal symbols (similar to tree-based GP), where the terminals
are allowed symbols for the final sentence, which is a symbolic model in our case.
The non-terminal symbols in the grammar define derivation rules, describing how
the terminal and non-terminal symbols are allowed to nest, therefore describing the
allowed structure of a model. This limits the search space for GP drastically, since
many models are excluded beforehand. Like in strongly-typed GP, crossover, mutator

and random creation of models must always adhere to the grammar.

In formal languages, grammars are often specified in textual form, such as the
extended Backus-Naur form (EBFN).? Although the EBNF supports many powerful
mechanisms for defining a grammar, for the examples in this paper we only need the
definition of non-terminals (in pascal casing), terminals (in camel casing or enclosed
in quotation marks) and alternatives (by separating the alternatives by a |). A simple
grammar for symbolic regression could look like the following:

Start = Realval ;
Realval = Arithmetic | Power | Terminal ;
Arithmetic = Realval "+" RealVal | Realval "-" Realval
| Realval "*" RealvVal | Realval "/" Realval ;
Power = Realval """ constant ;
Terminal = constant | variable ;

This grammar allows arbitrary arguments for arithmetic operators and for the base
of the power ("~ ") but limits the exponent to a constant. A model 3*a + b"2
would be valid according to this grammar, a b would not. Note that for this simple
grammar, there are no parentheses, and the order of operations is defined as semantic
behavior by the derivation tree when creating the model.

2 See ISO/IEC 14977

2 Grammar-Based Vectorial Genetic Programming for Symbolic Regression 27

Symbols in the Terminal group will be terminals for the symbolic model and
require some special handling. The constant terminal symbol represents any
numeric constant, such as "3.41". The variable terminal symbol can be any
name of an input variable from the training data, for example "x1".

2.2.3 Feature Engineering and Feature Extraction

Instead of using vector data directly as input features, one common practice is to
extract scalar input features from the vectors beforehand, which can be simple statis-
tics, or also complex relations identified by experts.

Interestingly, GP was used as feature engineering mechanism by various authors
already. Harvey and Todd, for instance, used GP to create simple pipelines for fea-
ture extraction of sequential data [10]. Eads et al. used GP to extract features from
time series data, that were then used in a support vector machine for prediction [7].
Likewise, other authors used GP for feature engineering from higher dimensional
data, but did not use GP as a prediction model itself [2, 6, 19].

In this paper, we want to use GP as the prediction model where feature engineering
is done as an included step. And since many authors already used GP successfully
as feature extractor, their ideas serves as valuable inspiration on which aggregation
functions were already successfully used in the past. Also, general feature extraction
frameworks, such as tsfresh, serves as reference for potential aggregation functions

[5].

2.2.4 Deep Learning

Neural networks are one of the few machine learning algorithms that directly sup-
port higher dimensional data, such as vector data or even higher-dimensional data
representing images and videos [8]. Additionally, deep neural networks are often
advertised as machine learning technique that eliminates any manual feature engi-
neering, because feature engineering is already performed as part of the network and
it’s many layers. As a result, deep neural networks offers some powerful features that
are not established well in GP yet. However, neural network lack the simplicity and
interpretability of symbolic models, therefore, the knowledge on how features were
extracted from the higher dimensional data, and how those effect a model’s output
is very difficult to assess.

There is an also interesting technical intersection between GP and neural net-
works regarding the representation of models. Most neural networks libraries, such
as TensorFlow? or PyTorch,* use directed acyclic graphs of tensor operations for

3 https://www.tensorflow.org
4 https://pytorch.org

https://www.tensorflow.org
https://pytorch.org

28 P. Fleck et al.

representing a neural network, similar to the graph representation of Cartesian GP
[16]. Such tensor-graphs could also be used to represent symbolic models that con-
tain scalar and vector data. The additional benefit of representing models as directed
graphs is it’s ability to automatically calculate the gradient of such a graph via auto-
matic differentiation [9], which is essential for training neural networks. Being able
to calculate the gradient of a symbolic model also allows optimizing the numerical
constants of a given symbolic model via least squares, which is more efficient than
tuning the coefficients via GP [13].

2.3 Grammar-Based Vectorial Genetic Programming

In this section, we present our method that extends classical tree-based genetic pro-
gramming for symbolic regression, to also support vector variables along scalar
variables. Our method combines the vectorial GP approach described in Sect. 2.2.1
and a grammar-based approach for symbolic regression described in Sect. 2.2.2.
Fortunately, both vectorial GP and grammar-based GP can be implemented indepen-
dently since they affect independent aspects of GP.

On the one hand, extending GP to be able to handle vector variables only affects
the interpretation module of GP, which is responsible for evaluating a tree-model, by
applying operations defined in the sub-trees onto its argument and propagating the
results bottom-up until it reaches the root of the tree. On the other hand, the grammar
limits the search space by restricting random creation, crossover and mutator to only
create models that adhere to the specified grammar. Therefore, while the interpre-
tation module should be as powerful as possible and allow evaluation of all valid
models, the grammar is responsible of limiting the search space to models that are
sensible and the users are interested in.

2.3.1 Vectorial Tree Interpretation

Compared to traditional GP, in vectorial GP the interpretation module has to handle
a larger number of potential combinations of arguments and operations since there
are different argument types. For instance, the interpretation module must be able
to handle the log for both scalar values and also for vector values. In most cases,
this can be done straightforward, by simply applying functions component-wise. In
cases with multiple arguments, the applied operation depends on the types of the
arguments, for instance, when calculating the sum of two arguments, there are four
potential combinations of types for the two arguments: s + s, s + v, v + s or v + v,
where s represent a scalar argument and v a vector argument.

s + s can be easily handled by simple adding the arguments. v + v represents a
component-wise addition of the two arguments, assuming the vectors have the same
length. For the cases s + v and v + s, where the types differ, we interpret the scalar

2 Grammar-Based Vectorial Genetic Programming for Symbolic Regression 29

Table 2.2 Input and output types of symbols for most (non-aggregating) functions and operations

Function or operation with two inputs

Function with a single input First input type Second input type Output type

Input type Output type Scalar Scalar Scalar
Scalar Scalar Scalar Vector Vector
Vector Vector Vector Scalar Vector

Vector Vector Vector

as vector, repeating its value to match the vector argument’s length and then apply
the operation component-wise. This behavior mimics the broadcasting rules of the
popular Python library NumPy.> The presented examples can also be generalized to
more then two arguments, meaning that if any argument is a vector, the result will be
a vector, otherwise the result will be a scalar. Table2.2 summarizes the type tables
for functions with a single or two arguments.

In addition to the operations that are commonly available for traditional symbolic
regression, vectorial GP also requires operations that are able to reduce a vector to
a scalar value. In this paper, we refer to this operations as aggregation functions.
Aggregation functions can be simple statistical measures, such as the mean or stan-
dard deviation, or more complex functions, such as the linear trend of a vector.
Contrary to non-aggregating functions, aggregation functions always return a scalar.

Because the interpretation module for evaluating GP models should be as flexible
as possible, aggregation functions must also handle the special case of aggregating
a scalar. In such a case, each aggregation function will either return the scalar input
itself or return a specific default value. For example, while the mean of a scalar will
simply return the scalar, the standard deviation of a scalar will always return zero.

Similar to regular operations, aggregation functions can also have multiple argu-
ments, for instance, when calculating the covariance of two vectors. Again, if an
aggregation function with two parameter is called with a vector and a scalar argu-
ment, the scalar is expanded to match the vector’s length. However, the output will
always be a scalar. Table2.3 summarizes the type tables for aggregation functions
with a single or two arguments.

2.3.2 Vectorial Symbolic Regression Grammar

Although the interpretation module can handle arbitrary complex models, having GP
search through this complex and large search space can be infeasible and result in
models that are unwanted by the user. Therefore we want to enforce some rules on
how vectors and scalars can interact via a grammar, as discussed in Sect. 2.2.2.

3 https:/numpy.org/doc/stable/user/theory.broadcasting.html

https://numpy.org/doc/stable/user/theory.broadcasting.html

30 P. Fleck et al.

Table 2.3 Input and output types of symbols for aggregating functions

Aggregation function with two inputs

Aggregation function with a single input First input type Second input type Output type

Input type Output type Scalar Scalar Scalar
Scalar Scalar Scalar Vector Scalar
Vector Scalar Vector Scalar Scalar

Vector Vector Scalar

One key aspect that we want to limit with a grammar is the output type of the
model. While the interpretation module supports both scalars and vectors, the user
usually has a specific output type in mind. For regression, a real-valued scalar is
typically required, although a real-valued vector would be possible. However, for
this paper, we assume that we want to obtain a symbolic model with a scalar output.

To avoid unnecessary aggregations of scalars, we also want to restrict aggrega-
tion functions to only allow vectors as arguments. Of course, there are many other
application-specific restrictions possible, however, in this section we want to present
a general purpose grammar for vectorial GP.

For defining a grammar for vectorial Symbolic Regression (SR), we start with a
grammar for regular SR. As a first step, we group operations and functions to keep the
grammar simple and clean, for instance, sin, cos and tan are put into a separate group
that represents trigonometric functions. Each group is then represented by a non-
terminal symbol in the grammar, where the alternatives are the different functions of
this group.

All groups are then grouped again into an overall scalar group. This group, repre-
sented as the non-terminal symbol Scalar, represents any scalar produced via any
operations that yields a scalar, and therefore can be used in the grammar whenever

there are no restrictions for an input argument.
A typical grammar for SR can look like the following:

Start = Scalar ;
Scalar = Arithmetic | Trigonometric | Exponentiation
| | Terminal ;
Arithmetic = Scalar "+" Scalar | Scalar "-" Scalar
| Scalar "*" Scalar | Scalar "/" Scalar ;
Trigonometric = "sin(" Scalar ")" | "cos(" Scalar ")"
| "tan(" Scalar ")" ;
Exponentiation = "power (" Scalar "," constant ")"
| "root(" Scalar "," constant ")"
| "log(" Scalar "," constant ")" ;

Terminal = constant | variable ;

2 Grammar-Based Vectorial Genetic Programming for Symbolic Regression 31

In the example grammar, most arguments can by any Scalar to allow unre-
stricted arguments. However, the second arguments of the functions within the
Exponentiation group are limited to constants, to a void overly complex models,
also also mentioned in Sect. 2.2.2.

For a vectorial grammar that handles both scalars and vectors, we use the existing
grammar and extend the grammar by a Vector group that handles all operations
that will return vectors. Both group look quite similar, since both can perform the
same functions, however, all operations in the Vector group will be applied com-
ponent wise over the vector arguments, as described earlier in Sect. 2.3.1. To distin-
guish the symbols within the Vector group from the symbols from the Scalar
group, the vector groups are prefixed with Vec. For example, while the group
Trigonometric operators on scalars, the group VecTrigonometric oper-
ates on vectors. The resulting grammar for vectorial SR can look like the following:

Start = Scalar ;

Scalar = Arithmetic | Trigonometric | Exponentiation
| | Aggregation | Terminal ;
Arithmetic = Scalar "+" Scalar | Scalar "-" Scalar
| Scalar "*" Scalar | Scalar "/" Scalar ;
Trigonometric = "sin(" Scalar ")" | "cos(" Scalar ")"
| "tan(" Scalar ")" ;
Exponentiation = "power (" Scalar "," constant ")"
| "root(" Scalar "," constant ")"
| "log(" Scalar "," constant ")" ;
Aggregation = Statistic | Distance ;
Statistic = "mean(" Vector ")" | "std(" Vector ")" | ... ;
Distance = "cov(" Vector "," Vector ")"
| "euclidean(" Vector "," Vector ")" | ... ;
Terminal = constant | variable ;
Vector = VecArithmetic | VecTrigonometric
| VecExponentiation | ... | VecTerminal ;
VecArithmetic = (Vector | Scalar) "+" (Vector | Scalar)
| (Vector | Scalar) "-" (Vector | Scalar)
| (Vector | Scalar) "*" (Vector | Scalar)
| (Vector | Scalar) "/" (Vector | Scalar) ;
VecTrigonometric = "sin(" Vector ")" | "cos(" Vector ")"
| "tan(" Vector ")" ;
VecExponentiation = "power (" Vector "," constant ")"
| "root(" Vector "," constant ")"
| "log(" Vector "," constant ")" ;
VecTerminal = vec-variable;

Within the new Vector group there are two key differences compared to the
Scalar group. First, in the VecArithmetic group both Vector and Scalar
are allowed as input, allowing, for instance, multiplication of a vector with a scalar.

32 P. Fleck et al.

Second, the VecTerminal only contains vec-variable, meaning that we do
not allow vector-constants with this grammar.® The vec-variable also can only
represent variables that are vectors.

Also the Scalar group differs and now contains a new group Aggregation
that contains aggregation functions. The Aggregation group is a sub-group of the
Scalar group because symbols from this group will return a scalar, although the
arguments of the aggregation functions are Vectors. This ensures, that aggregation
functions are only applied to vectors, and not to scalars.

Since the grammar still defines that the Start must be a Scalar, the final
model of the output will always be a scalar. In case the model should predict a whole
vector, this the start symbol can easily be changed to Vector.

We also want to note a minor design flaw in the presented grammar. Since the
operations in VecArithmetic allow both vectors and scalars as argument types, it
is valid that both arguments are scalars, resulting in the VecArithmetic group to
return a scalar. Although the interpretation module can handle such a case, it should
be avoided if possible.

One option would be to only allow vectors as arguments, however, that would dis-
allow common operations such as multiplying a vector by a scalar. Another option
would be to enforce that the first argument has to be a vector. This option would not
limit the search space since the arguments could simply be switched for commutative
operations, e.g. s + v could simply be changed to v + s. Non-commutative opera-
tions, on the other hand, can first be converted to a commutative one by negating
or inverting the second argument, i.e. s — v could be changed to (—v) + s. A third
option would also be to list all allowed combinations exhaustively, however this will
result in a large number of alternatives, since this has to be done per operation.

2.4 Experiment Setup

In this section, we present the experimental setup for comparing vectorial GP to
classical GP without vectors, where both use a grammar for limiting the search
space. All experiments are conducted in HeuristicLab,” an open-source framework
for heuristic optimization, that also includes grammar-based GP [14, 18].

To the authors best knowledge, there are no comprehensive benchmark datasets
for regression that includes vector variables but requires a scalar target variable.
Therefore, we created a new benchmark suite, where we included both scalar and
vector variables. The benchmark functions are kept very simple, to allow detailed
analysis off the core aspects of vectorial GP, without having to deal with issues when

6 We avoided vector constants on purpose to avoid the problem of figuring out the correct vector
length for a vector constant.

7 https://dev.heuristiclab.com/

https://dev.heuristiclab.com/

2 Grammar-Based Vectorial Genetic Programming for Symbolic Regression 33

the training is very difficult. All benchmarks are listed in the Appendix, and the
generated data for the experiment can be found online.®

Because traditional GP cannot use vectors as input variables directly, we can-
not use the exact same benchmark instances. Instead, we transform the benchmark
instances that contain vector variables into benchmark instances that only contain
scalar variables, without changing the underlying data or equation for generating the
target variable. As a result, we obtain three variants of a benchmark instance, one
for vectorial GP and two for traditional GP:

Vector Variant: This variant includes both scalar and vector input features, and
represent the “raw” version of the benchmark instance, as defined in the Appendix.
This variant will be solved using grammar-based vectorial GP.

Pre-Aggregated Variant: This variant represents a traditional GP setup, where fea-
ture engineering was performed beforehand to convert vectors to scalars. For this
experiment we used the following statistics: mean, median, standard deviation,
variance, min and max. Due to the aggregation step, this variant only contains
scalar input features. Also, the number of features is a higher than the vector
variant, because each vector is aggregated into multiple features. Pre-aggregating
the vectors into scalars will cause some degree of information loss, therefore, we
assume that for some benchmarks, this variant will fall behind the vector variant
where all information is still available.

Unrolled Variant: This variant of the benchmark represents a use case, where all
information from the vector variables is preserved, but as individual scalar vari-
ables. For this, each vector variable is unrolled into multiple scalar variables, e.g. a
20-dimensional vector is unrolled into 20 separate scalar variables. Compared to
the pre-aggregated variant, this variant does not loose any information to feature
engineering, offering the same raw information as the vector variant. However,
the number of variables can be substantially larger because each vector is split into
many scalar variables. Also, to make use of all the variables, the resulting sym-
bolic model has to become much larger and therefore, is computationally more
expensive to train and also more difficult to interpret due to its size. This variant
is mainly included for reference and does not represents a practicable solution
when dealing with vector data.

Note, that all three variants are based on the same raw data. This means that the
vector variant and the unrolled variant contain exactly the same data, but arranged
into different variables. The pre-aggregated variant contains different data due to the
aggregation step, but the raw data is exactly the same as the other variants.

In addition to the three variants of the benchmarks, the benchmarks are also split
into two groups, according to their difficulty.

e Group A contains simple benchmarks where only direct aggregations of vector-
variables are necessary. Those simple benchmarks should pose no difficulty for the
vector variant and the pre-aggregated variant. For the unrolled variant, however,

8 https://dev.heuristiclab.com/wiki/ AdditionalMaterial# GPTP2021

https://dev.heuristiclab.com/wiki/AdditionalMaterial#GPTP2021

34 P. Fleck et al.

Table 2.4 Algorithm configuration

Population Size 1000
Elites 1
Selection Gender-specific ¢
Crossover Subtree swapping
Crossover Probability 100 %
Mutation Multiple ?
Mutation Probability 20 %
Comparison Factor 1.0
Max Generations 200
Max Selection Pressure 200
Max Tree Length 30/60 ¢
Training-Test Split 75 % 125 %

;)2
Optimization Criterion Coefficient of determination (R? = —2X0-0)°_
var (y)var(y)

2 Proportional & random
b Change node type, Full tree shaker, One point shaker, Remove branch, Replace branch
¢ Larger trees are allowed for the unrolled variant

aggregating a vector manually is considerable more difficult, especially for non-
trivial aggregations such as the variance of a vector. Thus, we expect that the
unrolled variant will already fail on benchmarks in this group.

e Group B contains benchmarks, where vector variables interact with other vector
variables before aggregation. While the vector variant should be able to handle
those cases, we expect that the pre-aggregated variant won’t always be able to
obtain the same information because some information is already lost while feature
engineering.

For training we use Offspring Selection GP (OS-GP), since the algorithm is more
robust than standard GP [1]. The configuration of OS-GP is listed in Table2.4.
Table 2.5 lists the allowed terminal and non-terminal set, which are defined via a
grammar, as described in Sect. 2.3.2.

Since the benchmarks are very simple, GP should be able to solve them robustly if
the configuration is appropriate. Therefore, we have deliberately chosen a relatively
large population size to avoid potential unlucky runs with a suboptimal initial pop-
ulation, that then struggles to reintroduce necessary building blocks via mutation.
Likewise, we narrowed the search space down by only include relevant functions in
the grammar that are necessary to solve the benchmarks. Or course, GP should be
able to solve the instance with smaller population sizes and larger search spaces, but
we want each GP run to reliably solve the instance, if it is able to.

2 Grammar-Based Vectorial Genetic Programming for Symbolic Regression 35

Table 2.5 Allowed terminal and non-terminal symbols for the experiment. Symbols dealing with
vectors are only present for the vector variant

Symbol-Group ~ Symbols Types

Terminals scalar constant, scalar variable, vector variable*

Arithmetics +, -/ Scalar and Vector*
Exponentiation x%, \/x Scalar and Vector*
Aggregations™ mean, median, std, var, min, max Vector only

4 Only for the vector variant

2.5 Results

For the results, each dataset contains 1000 rows and each vector contains 20 elements.
Each GP run was repeated 50 times for each variant and instance, with the aggregated
results listed in Table 2.6.

Because the benchmark instances are defined without noise, they can be solved
exactly, i.e. with R? =1 or NMSE = 0. Therefore, we also analyzed the success
rates of each of each benchmark instance by variant. To this end, we define a success
threshold of a maximum NMSE of 10~*, meaning that we consider a benchmark
solved, if the NMSE on the test partition is less than 107, On the relation that
NMSE ~ 1 — RZ, this means we consider a benchmark as solved, if the unexplained
variance of the solution is smaller than 0.01%. Table2.7 shows the number of suc-
cessful runs and the success rate for all instances per variant.

The results show that the vector variant was capable of solving all benchmark
instances from benchmark group A and B. The pre-aggregated variant was also
able to reliably solve all benchmarks of group A, however, was only able to solve
benchmark 01 in benchmark group B. The unrolled variant was only sometimes able
to solve some simple benchmarks of group A.

In the following, we analyze each benchmark instance in more detail, explain-
ing why each instance could or could not be solved the different variants. First, we
discusses the simpler benchmark group A where the vector and the pre-aggregated
variant was able to solve all instances, while the unrolled variant struggled already.
Second, we discusses benchmark group B where interactions between vector vari-
ables are required before aggregation, demonstrating the limits of pre-aggregating
vector data into scalar variables. For each instance the function is listed along the
success-rates on the right (V=vector, A=pre-aggregated, U=unrolled).

P. Fleck et al.

36

uonnred-1sa) oy uo (

«Hasw

€T0F 65€9°0 10°0 F €L£0°0 00°0 F ¥000°0 [LT0F €00¥7°0 900 F 9656°0 000 F 86660 |90 d 15
TI'0F 891T°0 €0°0 F LSTO'0 000 F 00000 |[TI'0F 008L0 CO'0F €LL6'0 000 F 00001 |SO g 591
80°0 F 8€8T°0 10°0 F 0I80°0 00°0 F 00000 [90°0 F99ZL°0 100 F 9LI60 000 F 0000'T Y0 € IS}
P1°0 F SSOE0 SO0 F €€80°0 00°0 F 00000 |ST°0F 0£89°0 ¥0°0 F 0616°0 000 F 0000'T |€0 g 159
100 F ¥190°0 81°0 F I1T61°0 000 F 00000 |10°0 F 10¥6°0 LT0F LSSL'O 000 F 0000 |TO € 1833
00°0 F 9Z10°0 00°0 F 00000 00°0 F 0000°0 |{00°0 F 9,860 00°0 F 0000 T 00°0 F 0000'T |10 € IS}
60°0 F 80TS0 00°0 F 1000°0 00°0 F 0000 |01°0 F LYLY'O 00°0 F 6666'0 000 F 86660 Y0V 159
000 F 6200°0 00°0 F 0000°0 00°0 F 00000 {000 F [L66°0 00°0 F 0000'T 000 F 0000'T |[€0 V 159}
LOOF 61£9°0 000 F 00000 00°0 F 00000 |TI'0F 09€€°0 000 F 0000 T 000 F 00001 [TO V 189}
00°0 F 9¥00°0 00°0 F 0000°0 00°0 F 00000 {000 F ¥$66°0 00°0 F 0000'T 00°0 F 0000 10"V 159
HSHWN 24
porjorun poje3aIdiy-aig J0JO9A pororun poje3aI33y-aig 10)09A Qoue)suy

(€)1ea

jueLrea Aq padnoi3 ‘Qouejsur yoes Joj

= (£ “€)FSWN) Jo112 parenbs ULSW PIZI[EWLIOU PUT .3 UOHBUIULISIAP JO JUSIOYFA0D 3y} JO UOHEBIASD PIBPUEIS F UBSN 97T IqEL

2 Grammar-Based Vectorial Genetic Programming for Symbolic Regression 37

Table 2.7 Number of successful runs, grouped by variant. A benchmark is solved successfully, if
the NMSE on the test-partition is less than 104

Instance ‘ Vector Pre-Aggregated Unrolled

test_A_01| 50/50 (100%) 50/50 (100%) 6/50 (12%)
test_A_02| 50/50 (100%) 50/50 (100%) 0/50 (0%)
test_A_03| 50/50 (100%) 50/50 (100%) 6/50 (12%)
test_A_04| 49/50 (98%) 49/50 (98%) 0/50 (0%)

test_B_01| 50/50 (100%) 50/50 (100%) 0/50 (0%)
test_B_02| 50/50 (100%) 0/50 (0%) 0/50 (0%)
test_B_03| 50/50 (100%) 0/50 (0%) 0/50 (0%)
test_B_04| 50/50 (100%) 0/50 (0%) 0/50 (0%)
test_B_05| 49/50 (98%) 0/50 (0%) 0/50 (0%)
test_B_06| 47/50 (94%) 0/50 (0%) 0/50 (0%)

2.5.1 Analysis Benchmarks Group A

test A_01 y = 2.5 - mean(v,)
V: 100% A: 100% U: 12%

This very simple benchmark is designed as a proof of concept for vectorial GP,
which could be solved by the vector variant and the pre-aggregated variant easily.
However, the unrolled variant has to perform the mean aggregation manually by
summing all individual variables and dividing by the number of variables. Since for
the benchmarks the vectors contain 20 values, 20 individual variables have to be
summed, which is already difficult for standard GP, hence the low success rate of
12%.

test A_02 y = std(vy) — 2

V: 100% A: 100% U: 0%

Complexity-wise, this instance is similar to the previous one, but using the standard
deviation for aggregation. This is still easily solvable with the vector variant by
using the standard deviation aggregation function or with the pre-aggregated variant
by using the already pre-calculated standard deviation. However, the equation for
calculating the standard deviation of 20 values manually is quite challenging for GP.
For this calculation, the deviation of each value to the mean is required first, meaning
that the mean of the 20 values has to be calculated beforehand, and since the tree-
based models cannot store the mean for multiple use, it has to be recalculated 20
times. Therefore, the unrolled variant was not able to solve this benchmark.

test A_03 y =2.5-x; + mean(v;) + 2.0
V: 100% A: 100% U: 12%

38 P. Fleck et al.

This instance differs to test_A_01 only in using an additional scalar variable x;. As
a result, both vector and pre-aggregated variable can easily solve the instance, while
the unrolled variant only managed to solve it in 12% of the runs.

test A_04 y = x; - var(v1)/3.0 — 3.0 - mean(v,)/x;

V:98% A: 98% U: 0%

This instance, uses two vector variables and requires two different aggregations,
meaning that this instance is a bit harder to solve due to additional variables and
operations. However, both vector and pre-aggregated variant were both able to solve
the instance almost every time. Similar to test_A_02, the unrolled variant was not
able to calculate the variance manually, thus, was unable to solve this instance.

2.5.2 Analysis Benchmarks Group B

test_ B_01 y = x; - mean(v; + v;)

V: 100% A: 100% U: 0%

This instance requires a mean aggregation of the sum of two vectors. Because, the
expected value of the sum of two random variables is the sum of the expected val-
ues, i.e. E[X + Y] = E[X] + E[Y], this instance can both be solved by the vector
variant and the aggregated variant. The vector variant can either calculate the sum
of the vectors first, and then calculate the mean, or calculate the mean of the vector
separately and them sum the means. The pre-aggregated variant always can simply
add the pre-calculated means of the vectors. With sufficiently sized trees, the unrolled
variant should also be able to solve this, however, would require considerable more
resources and would result in a very large model.

test_B_02 y = x; - mean(v; - v3)

V: 100% A: 0% U: 0%

This instance is similar to the previous test_B_01, however the mean of the product
of two vectors is used. In general, the expected value of the product of two random
variables is not equal the product of the expected value, i.e. E[X - Y] # E[X] - E[Y],
thus, the pre-aggregated variant is not able to solve this instance completely because
multiplying the pre-calculated means does not yield the correct result. In cases where
the two vectors are completely independent from each other, the expected value of the
product would be equal to the product of the expected value. Although the data for the
benchmarks is generated randomly, there is still some very small, random correlation,
i.e. |[Cov[X, Y]| > 0, therefore the instance could not be solved according to the
defined success-threshold of NMSE < 10~*. For real-world application, however,
it is to be expected that measured signals of a system are connected and therefore
will rarely be complete independent from each other, meaning that pre-aggregating
vector data into scalars would not be able to maintain the relevant information to
solve such a case.

test B_03 y = x; - std(v; + v3)
V:100% A: 0% U: 0%

2 Grammar-Based Vectorial Genetic Programming for Symbolic Regression 39

Since the standard deviation of the sum of two variables is not equal the sum of
the standard deviations, i.e. Var[X + Y] = Var[X] 4 2Cov[X, Y] + Var[Y], the pre-
aggregated variant could not solve this instance because the covariance was not one of
the calculated features. Additional experiments have shown, that when the covariance
of vy and v, is present, the aggregated variant was able to solve this instance robustly.
However, when feature extraction is performed on vector data, covariances for all
combinations of vector variables is rarely done, therefore we assume, that such a
feature is typically not present in the training data.

test B_04 y = x; - std(v; - v2)

V: 100% A: 0% U: 0%

Similar to test_B_02, the standard deviation of the product of two random vari-
ables can only be calculated if the random variables are independent. In cases
where the vectors are completely independent, the aggregated variant could be
able to discover that Var[X - Y] = Var[X] - Var[Y] + Var[X] - (E[Y])? + Var[Y] -
(E[X1)%. However, as discussed earlier, in real-world scenarios, it is to be expected
that measured signals would typically be related to a certain extend, thus, the raw
data is usually required to correctly calculate the standard deviation of the product.

test_ B_05 y = x; - mean((v; + 2v3)/(0.5v,))

V:98% A: 0% U: 0%

This instance combines test_B_01 and test_B_02, showing that the vector variant can
also solve instances where multiple combinations of different vectors are required
before aggregation. Again, pre-aggregated and unrolled variant were not able to solve
this instance, while the vector variant was able to solve it robustly.

test_ B_06 y = x; - std((v; + 2v3)/(0.5v,))

V:94% A: 0% U: 0%

Similar to test_B_05, this instance is a combination of previous instance, but uses
the standard deviation for aggregation. The vector variant was also able to solve this
instance in almost all of the cases.

2.6 Discussion and Next Steps

The benchmarks and experimental setup presented in Sect. 2.4 were designed to
show limitations of traditional GP when working with vector data. According to the
results in Sect. 2.5, the first benchmark group A already showed that using vector data
by simply unrolling the vector into multiple, scalar variables is not effective. First,
it requires that the vectors have a fixed length, otherwise the number of variables
would change. Second, even simple aggregations of medium size vector lengths
would require symbolic models of considerable sizes to accommodate high number
of variables. A common solution is to pre-aggregate vectorial data via a feature
engineering step, and include promising key figures of the vectors in the training
data. The results show, that pre-aggregating the data works well in cases where

40 P. Fleck et al.

vectors are directly aggregated without any previous interaction with other vector
variables.

The second benchmark group B contained instances where vector variables have
to be combined with other vectors before aggregating them. Pre-aggregating vectorial
data, however, is done on vectors directly, thus, some information loss is occurring.
Therefore, when interaction of vector variables are required before aggregation, the
required information is not present in the pre-aggregated variables, and the relevant
information for performing the interaction is already lost. In such cases, only the
vector variant was able to perform the necessary interactions prior to aggregation,
since the data is still available in the form of vector variables.

The benchmarks in this paper were kept very simple on purpose and also have
some restrictions concerning the vector lengths, which simplified the benchmarks.
The first restrictions concerns the aggregation range of the vectors, meaning that
aggregation was always applied on a whole vector. In practice, it could be very
interesting to calculate the aggregation only on a subset of a vector. For instance, in
real-world cases, the last minutes of a process could have a high impact, whereas mea-
surements that where longer in the past have no influence. In this case, aggregation
should only be calculated based on the parts of the vector that is most important. Of
course, determining the optimal sub-section of the vector to aggregate is not known
in advanced, and therefore, should be determined by GP itself. Aggregating only a
subset of a vector is also a unique feature of vectorial GP that standard GP would
have difficulty with, since aggregating on a subset would require that the original
vector data is still present in the training data.

A second restrictions concerns the lengths of the vectors, which where constant
for all presented benchmarks. However, in a typical production scenarios where
vector data represent time series of sensor data, the lengths could differ per product,
depending on the production time. In this case, all vectors of the sample have the
same length and, therefore, would not cause an immediate issue for component-wise
operations since they still operate on vectors of the same length. If the vector lengths
vary within a single product, i.e. different vector variables have different lengths per
observation, then additional mechanisms would be necessary to handle operations on
vectors of different lengths. Such mechanisms could include resampling the vectors
to compatible lengths, cutting the longer one, or filling up the shorter one. Regardless
of the mechanism, benchmarks where the vector lengths differ would be an interesting
addition to study the behavior and applicability of vectorial GP.

Another way forward could be a general extension for GP towards input types
of higher dimensions. While we only covered vectors in this paper, the presented
methods could also be extended towards matrices and input types of higher dimen-
sions. Aggregation functions could gradually reduce dimensions, until the desired
dimensionality is reached.

Acknowledgements This work was carried out within the Dissertationsprogramm der Fach-
hochschule OO #875441 Vektor-basierte Genetische Programmierung fiir Symbolische Regression
und Klassifikation mit Zeitreihen (SymRegZeit), funded by the Austrian Research Promotion Agency
FFG. The authors also gratefully acknowledge support by the Christian Doppler Research Associ-

2 Grammar-Based Vectorial Genetic Programming for Symbolic Regression 41

ation and the Federal Ministry of Digital and Economic Affairs within the Josef Ressel Centre for
Symbolic Regression.

Appendix

Below, the equations to generate the target variable for each benchmark are listed.
Each scalar variable x; is defined by a uniform distribution with lower and upper
bound, denoted by U (lower, upper). Each vector variable v; is defined by two
hidden, scalar variables for defining the mean and standard deviation of the vec-
tor. These hidden variables are also defined and obtained via uniform distribu-
tions, like a regular scalar variable. Then, based on the hidden mean and stan-
dard deviation for each vector variable, we define the final uniform distribution
where the values for each individual vector is sampled from, where the upper
and lower bound are 1 + +/120/2. In this case, we denote the vector variable by
U(n = [lower mean, uper mean], o = [lower std dev, upper std dev]; length). This
step ensures that the mean and standard deviation of each vector is also randomized.

test_A_Ol y =2.5-mean(vy)

vy ~U(n = [4,8],0 =[2,4]; 20)
test_A_02 y =2.5-mean(vy)

vy ~ Uk = [4,8],0 =[2,4];20)
test_ A_03 y =2.5-x; +mean(vy) + 2.0

x1 ~U(1,4)

vy ~ Uk = [4,8],0 =[2,4];20)
test_A_04 y = xj-var(vy)/3.0 — 3.0 - mean(vz)/x2

x1 ~U(1,4)

xp ~U(-8, —4)

vy ~ Uk = [4,8],0 =[2,4];20)

vy ~ U((n = [10,20], o = [4, 8]; 20)
test_B_01 y = x; - mean(vy + v2)

x1p ~U(1,4)

xp ~ U8, —4)

vy ~ Uk = [4,8],0 =[2,4];20)

vy ~ U((n = [10,20], o = [4, 6]; 20)
test_B_02 y = x| - mean(vg - v2)

x; ~U(1,4)

x2 ~U(—8, —4)

vy ~ Uk =[4,8],0 =[2,4];20)

vy ~U((n = [10,20], o = [4, 6]; 20)
test B_03 y = xj -std(vy + v2)

42 P. Fleck et al.
x1 ~ U, 4)
x2 ~ U8, —4)
v ~ U = [4,8],0 = [2,4]; 20)
vy ~U(u = [10, 20], o = [4, 6]; 20)
test_ B_04 y =xp-std(vy - v2)
x1 ~ U, 4)
x2 ~ U8, —4)
vy ~ U =1[4,8],0 =[2,4];20)
vy ~U((u = [10, 20], o = [4, 6]; 20)
test_B_05 y = xj - mean((v1 + 2v3)/(0.5v2))
x1 ~ U, 4)
x2 ~ U8, —4)
v ~ U =[4,8],0 =[2,4]; 20)
vy ~ U(n =[10,20], 0 = [4, 6]; 20)
v3 ~U(u =[2,4],0 =[0.05, 0.15]; 20)
test_B_06 y = x1 - std((v1 + 2v3)/(0.5v2))
x1 ~ U, 4)
X2 ~U(-8,—4)
v ~U(n =1[4,8],0 =[2,4]; 20)
vy ~ U(n =[10, 20], o = [4, 6]; 20)
v3 ~ U(u =[2,4], 0 =[0.05, 0.15]; 20)
References
1. Affenzeller, M., Wagner, S.: Offspring selection: a new self-adaptive selection scheme for

e

10.

genetic algorithms. In: Adaptive and Natural Computing Algorithms, pp. 218-221 (2005)
Alfaro-Cid, E., Sharman, K., Esparica-Alcézar, A.L.: Genetic programming and serial process-
ing for time series classification. Evol. Comput. (2013)

. Azzali, 1., Vanneschi, L., Bakurov, 1., Silva, S., Ivaldi, M., Giacobini, M.: Towards the use of

vector based GP to predict physiological time series. Appl. Soft Comput. J. 89, 106097 (2020)
Azzali, 1., Vanneschi, L., Silva, S., Bakurov, 1., Giacobini, M.: A vectorial approach to genetic
programming. EuroGP 213-227 (2019)

Christ, M., Braun, N., Neuffer, J., Kempa-Liehr, A.W..: Time series feature extraction on basis
of scalable hypothesis tests (tsfresh A Python package). Neurocomputing 307, 72-77 (2018)
De Falco, 1., Della Cioppa, A., Tarantino, E.: A genetic programming system for time series
prediction and its application to El Nifio forecast. In: Soft Computing: Methodologies and
Applications (2005)

Eads,D.R., Hill,D., Davis, S., Perkins, S.J., Ma, J., Porter, R.B., Theiler, J.P: Genetic algorithms
and support vector machines for time series classification. In: Applications and Science of
Neural Networks, Fuzzy Systems, and Evolutionary Computation V, vol. 4787, p. 74 (2002)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning (2016)

Baydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J.M.: Automatic differentiation in
machine learning: a survey. J. Mach. Learn. Res. 18, 1-43 (2018)

Harvey, Dustin Y., Todd, Michael D.: Automated feature design for numeric sequence classi-
fication by genetic programming. IEEE Trans. Evol. Comput. 19(4), 474-489 (2015)

2 Grammar-Based Vectorial Genetic Programming for Symbolic Regression 43

11.

12.

13.

14.

15.

16.

17.

18.

Holladay, K.L., Robbins, K.A.: Evolution of signal processing algorithms using vector based
genetic programming. In: 2007 15th International Conference on Digital Signal Processing,
DSP 2007, pp. 503-506 (2007)

Holladay, K., Robbins, K., Von Ronne, J.: FIFTH: a stack based GP language for vector
processing. In: Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 4445 LNCS(December), pp. 102—
113 (2007)

Kommenda, M., Affenzeller, M., Kronberger, G., Winkler, S.M.: Nonlinear least squares opti-
mization of constants in symbolic regression. In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8111
LNCS(PART 1), pp. 420-427 (2013)

Kommenda, M., Kronberger, G., Wagner, S., Winkler, S., Affenzeller, M.: On the architecture
and implementation of tree-based genetic programming in HeuristicLab. In: GECCO’ 12—
Proceedings of the 14th International Conference on Genetic and Evolutionary Computation
Companion, pp. 101-108 (2012)

McKay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’neill, M.: Grammar-based genetic pro-
gramming: a survey. Genet. Program. Evolvable Mach. 11(3—4), 365-396 (2010)

Miller, J.F., Harding, S.L.: Cartesian genetic programming. In: European Conference on
Genetic Programming, pp. 121-132 (2000)

Montana DJ (1995) Strongly typed genetic programming. Evol. Comput. 1 3(2), 199-230
(1995)

Wagner, S., Kronberger, G., Beham, A., Kommenda, M., Scheibenpflug, A., Pitzer, E.,
Vonolfen, S., Kofler, M., Winkler, S., Dorfer, V., Affenzeller, M.: Architecture and design
of the heuristiclab optimization environment 197-261 (2014)

. Xie, F, Song, A., Ciesielski, V.: Event detection in time series by genetic programming. In:

2012 IEEE Congress on Evolutionary Computation, CEC 2012, pp. 1-8 (2012)

Chapter 3)
Grammatical Evolution Mapping for e
Semantically-Constrained Genetic
Programming

Alcides Fonseca, Paulo Santos, Guilherme Espada, and Sara Silva

Abstract Search-Based Software Engineering problems frequently have semantic
constraints that can be used to deterministically restrict what type of programs can
be generated, improving the performance of Genetic Programming. Strongly-Typed
and Grammar-Guided Genetic Programming are two examples of using domain-
knowledge to improve performance of Genetic Programming by preventing solu-
tions that are known to be invalid from ever being added to the population. However,
the restrictions in real world challenges like program synthesis, automated program
repair or test generation are more complex than what context-free grammars or sim-
ple types can express. We address these limitations with examples, and discuss the
process of efficiently generating individuals in the context of Christiansen Gram-
matical Evolution and Refined-Typed Genetic Programming. We present three new
approaches for the population initialization procedure of semantically constrained
GP that are more efficient and promote more diversity than traditional Grammatical
Evolution.

3.1 Introduction

The Software Engineering practice includes solving high-complexity challenges that
are traditionally done manually. However, researchers have tried to automate several
phases of this process, resulting in the field of Search-Based Software Engineering

A. Fonseca () - P. Santos - G. Espada - S. Silva

LASIGE, Departamento de Informatica da Faculdade de Ciéncias da Universidade de Lisboa,
Lisbon, Portugal

e-mail: alcides @ciencias.ulisboa.pt

P. Santos
e-mail: pacsanto@ciencias.ulisboa.pts

G. Espada
e-mail: gjespada@ciencias.ulisboa.pt

S. Silva
e-mail: sara@ciencias.ulisboa.pt

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 45
'W. Banzhaf et al. (eds.), Genetic Programming Theory and Practice XVIII,

Genetic and Evolutionary Computation,

https://doi.org/10.1007/978-981-16-8113-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8113-4_3&domain=pdf
mailto:alcides@ciencias.ulisboa.pt
mailto:pacsanto@ciencias.ulisboa.pts
mailto:gjespada@ciencias.ulisboa.pt
mailto:sara@ciencias.ulisboa.pt
https://doi.org/10.1007/978-981-16-8113-4_3

46 A. Fonseca et al.

(SBSE). Requirements engineering, specification mining, program synthesis, and test
generation are examples of complex tasks that have been tackled using evolutionary
algorithms.

SBSE is not the only approach to solve complex problems, though. Depending
on the phase we are targeting, there are deterministic algorithms that are useful for
solving the problem. However, deterministic algorithms are typically limited to a
well-behaved restricted subset of programming languages, and often do not scale to
more than two or three classes.

Taking Automated Program Repair as an example, there are approaches that per-
form a deterministic search following a set of rules (e.g., SemFix [25]), and there
are approaches that rely on Genetic Programming [27] (GP) to find patches that pass
all the tests (e.g., GenProg [11]). However, neither approach has been completely
successful [6], and hybrid approaches like ARJA [39] are being proposed. ARJA
uses GP, but encodes program information as rules in the genetic operators, avoiding
parts of the search space that would not be viable.

This Chapter addresses the challenge of combining domain-knowledge con-
straints on the representation of the solutions with an efficient and generic evolu-
tionary search procedure.

e Section 3.2 discusses several domains where restricting the tree construction with
semantic information is useful.

e Section 3.3 presents existing approaches for encoding semantic constraints in GP.

e Section 3.4 presents our type-aware approach, compared to the existing generate-
and-validate.

e Section 3.5 discusses possible individual representations for this problem.

e Section 3.6 presents the dynamic techniques for efficiently combining static and
dynamic validation of trees.

e Section 3.7 reports on our empirical evaluation, applied to program synthesis.

e Section 3.8 draws the final conclusions.

3.2 Software Engineering Applications of
Semantically—Constrained GP

SBSE covers a wide spectrum of the Software Development Life Cycle and related
artifacts. While natural language can be converted to a more formal language (e.g.,
using the approach taken by Alhroob et al. [1]), this work focus on formal languages
as they provide structure and information that can be used in reducing the search
space. The idea of embedding constraints in the program representation is popular
in the following application domains.

3 Grammatical Evolution Mapping for Semantically-Constrained ... 47

3.2.1 Automated Program Repair

Tools for automated program repair often fall in one these two categories: search-
based and logic-based. Search-based approaches try to apply random template and
ingredient-based mutations on the program components identified by Fault Local-
ization tools. GenProg [11] was one of earliest approaches in this family.

On the other hand, SemFix [25] is an example of a logic-based tool that is deter-
ministic in nature. Controlled symbolic test execution evidences the components of
the program that fail to meet conditions required by the tests. Program synthesis is
then used to synthesize a new, correct-by-construction, component to replace the
buggy one. However, deterministic symbolic techniques are limited by the type of
code supported by symbolic execution and are not better than search-based tech-
niques [6]. The ideal solution would be to use search-based techniques constrained
by the information recorded via semantic analysis, but there are challenges in effi-
ciently including that information in search operators. For instance, ARJA [39] tries
to address these, but the applied rules are only a small subset of the potential rules
that can be applied, thus having a limited, albeit useful, benefit.

3.2.2 Automated Test Generation

Tools for automated test generation follow the same pattern: there are tools that
rely mostly on evolutionary algorithms to find tests that maximize coverage (e.g.,
EvoSuite [9]) and tools that rely solely on symbolic execution to obtain determinis-
tic tests that maximize branching conditions (e.g., ATGen [22]). Suggested hybrid
approaches [10] rely on dynamic symbolic execution in fitness evaluation to guide
search, with an evaluation overhead in execution time (which has led the authors
to perform dynamic symbolic execution only once every 30s). Recently, a similar
approach with no overhead during population evaluation has been presented that
also encodes semantic information into the program generation phase [33]. Another
related approach has been to use the logical specification of a function to restrict the
type of operators that can be applied to an S-expression [34].

3.2.3 Program Synthesis

Genetic Programming is, in itself, Program Synthesis. The goal of GP is to cre-
ate a program that maximizes a given dynamic semantic specification. Alterna-
tive approaches rely on SMT/SAT solvers to more deterministically obtain the
exact expression that conforms to a logical specification (popular in Program
Sketching [35] and in Higher-Order functional programs [13]). While SMT-based
approaches are orders of magnitude faster, they are limited to statically verifiable

48 A. Fonseca et al.

logical conditions, while GP can use as a fitness function any executable code. In
fact, GP is also capable of solving the sketch-based problems [4]. Recently, a new
approach has been proposed that integrates SMT solvers in the evolutionary search,
in the context of Program Synthesis [7], which will be the focus of this Chapter.
Another advantage of using GP with constraints is that it can be used to increase the
readability of the generated programs [5].

3.3 Semantic Constraints in GP

While Standard GP imposes no restrictions on the representation of individuals, other
than distinguishing terminals from non-terminals, more advanced alternatives have
been proposed.

3.3.1 Strongly-Typed GP (STGP)

Montana has proposed the use of simple types to restrict the generation of program
trees [24]. This is the first step in encoding program properties in the tree repre-
sentation, which excludes most of the (irrelevant) search space. In fact, the more
restrictions there are on the program tree, the more efficient search will be. As an
example, STGP has been used to generate unit tests for object-oriented software [38].
STGP has been extended with polymorphic types and higher-order functions [3],
approximating the features of mainstream programming languages like Java or Cf.
This extension enables users to specify the same restrictions that the final program
in a mainstream language will have. A bidirectional tree generation algorithm that
supports polymorphic types has been shown to reduce the search space exponen-
tially [17]. Our idea in this Chapter is to further advance the idea of using advanced
type systems to encode semantic information in the tree structure, which was intro-
duced as a more usable alternative to Grammar-Guided GP [7].

3.3.2 Grammar-Guided GP (GGGP)

Grammar-Guided GP generalized STGP by allowing the user to define the grammar
of the program language, instead of just restricting the combination of symbols using
types. In fact, the monomorphic STGP can easily be implemented using a Context-
Free Grammar (CFG). The additional expressive power of grammars allowed GP
to be applied to more SBSE domains, like Software Testing [37], Algorithmic
Design [23] and Program Synthesis [8]. Grammar-based approaches typically use
CFGs because the initialization algorithm is guaranteed to terminate in well-formed

3 Grammatical Evolution Mapping for Semantically-Constrained ... 49

grammars (and a feasible maximum depth). As an example, take the CFG described
in Backus Normal Form (BNF).

The algorithm for generating a random program is direct from its structure: starting
in (s), recursively replace all non-terminals with one random choice from the possible
alternatives. This (mostly useless) grammar only has an alternative in the root non-
terminal, which supports just the two following programs: k1 k2 k3 £ and k2
k3 £. So the only restriction that can prevent a program from being generated is the
maximum allowed depth. If it is set to 2, there is no program that can be generated
with just two recursion levels. Some GGGP approaches would discard the individual,
while others would leave it in the population with a low fitness value, but both
solutions have the drawback of spending time recursively generating tree components
that are going to be discarded or ignored. This issue is more critical in recursive
grammars (consider an extra alternative (a):: = x(s) was added to the grammar),
because the proportion of programs that would reach the maximum allowed depth
increases with the branching factor of non-terminals. In practice, for simple grammars
that have a base case, this issue is solved by ignoring recursive productions when
close to the maximum allowed depth. In Sect. 3.6, we will revisit this issue in a more
complex scenario.

While CFGs present an efficient initialization procedure, they are very restricted
in their expressiveness. It is simply not possible to model popular programming
languages like Java or Rust using a CFG. One simple example is the definition of
new variables, as the use of that variable is restricted to statements after the definition
and in the same scope. More complex features like Rust lifelines or Contracts are
also impossible to model using CFGs.

Christiansen Grammar Evolution [26] (CGE) was proposed to encode semantic
properties of trees in the grammar. Christiansen Grammars are also called Adaptive
Grammars because the productions can be modified as the grammar is recursively
explored. This approach is able to solve the issue of variable declarations in programs,
because the grammar can be expanded with the new variable after the declaration
statement is visited. Despite the much higher expressive power, there are two major
drawbacks with this approach, the first one being that it is computationally more
intensive. Because it is necessary to keep track of changes to the grammar while
producing programs, less programs can be generated in the same amount of time. So
this is a crucial trade-off between how much the adaptive grammar is restricting the
search space and the computational effort of keeping track of grammatical changes.
The second drawback has to do with usability. There is a reason why programming
language compilers have a simple grammar, and a second phase for detecting and
discarding semantically invalid programs. Type systems are simple to implement on
their own by transversing the tree, instead of encoding several rules as meta grammar
rules.

50 A. Fonseca et al.

3.3.3 Refined-Typed GP (RTGP)

Refined-Typed GP [7] was proposed to address this usability issue. It follows the line
of work of STGP by having a simple grammar and using an advanced type system
with dependent types to have the same expressive power as Christiansen Grammars.
For the user, there is a substantial difference: they do not have to change the grammar
(as a very simple lambda calculus-inspired language is used), but instead describe
what variables and functions are available in the context, and use refinements to
specify the semantic restrictions. Besides the usability aspect, another advantage of
RTGP over CGE is the fact that a subset of the restriction language can be converted
into Verification Conditions that are statically deemed valid or not through the use
of an SMT solver. This is the basis of Liquid Types [31], which have been used to
address several SBSE issues like Program Synthesis [13], resource analysis [16],
communication and synchronization verification [12, 15], information flow [29] and
distributed data replication [18]. Furthermore, there are no practical approaches for
these problems that rely on Christiansen Grammars.

3.4 Correct-by-Construction Versus Generate-and-Validate

CGE follows a correct-by-construction approach: any (maximum depth-permitting)
generated tree is valid according to the meta-rules encoded in the grammar. RTGP
is more flexible: synthesis can be type-aware, thus correct-by-construction, or sim-
ple types (corresponding to CFG with a minimal context) can be used to generate
trees, which are then validated according to the full refined types, thus following a
generate-and-validate procedure. As an example, imagine we want to generate pro-
grams with the type (x:Int | x > 3) -> s:List[String] | len(s)
== x@ (a function that receives an integer that is guaranteed to be greater than 3,
and returns a string of size equal to the input integer) and the replicate function,
that takes an element and an integer and returns a list with as many elements as the
integer value, of type (e:A, k:Int) — L:List[A] | len(l) == k in the context. In this case, a
type-aware synthesis could take the following steps among the many allowed by the
grammar (?n : T denotes the nth yet-to-be-synthesized hole of type T):

?1: (x:Int | x> 3) — {s:List[String] | len(s) == x}
\X — (72 : {s:List[String] | len(s) == x })

\x — replicate(?3:String, ?4:Int)

\x — replicate("abc123", x)

The advantages of RTGP can be seen in the last step. The replicate function can
only synthesize x as its second argument in a type-safe manner (because the replicate
type guarantees that the size of the output is equal to the second argument, and we
know that the size of the output list is equal to the variable x). A generate-and-validate
approach would synthesize any function that generates lists of strings, including, for

3 Grammatical Evolution Mapping for Semantically-Constrained ... 51

(t) =1 {(Ty+s=B
| x | x(T)—>T
| () () | {x(T)|r}
| Ax— (1)
|

if (r) then () else (r)

Fig. 3.1 The £AON grammar for liquid types

instance, replicate("a", 2), which would later be discarded or ignored. Synthesizing
candidate programs that will be discarded serves no purpose in the search and should
normally be avoided.

To understand the exceptions, take this very simple example: {x:Int | x !=42}. A
type-aware approach would be much slower than generating a simple integer and
verifying that it is not equal to that particular value. Given the full range of integer,
the chance of synthesizing 42 is so close to zero, that a simple call to an SMT solver
would be orders of magnitude slower, even in the case where 42 is generated the first
time and a second number is required. On the other end of the spectrum, to synthesize
{x:Int | x == 43} the tiny probability of missing the target type of the previous example
is now the tiny probability of finding the right value. The overhead of calling the SMT
solver for this simple example would be negligible compared to the average case of
a random search. Of course, in real-world examples most expressions come from
more complex types that are not so black and white.

For the remainder of this Chapter we will address the issue of implementing
type-aware synthesis, as it is the most challenging scenario. Existing STGP and
GGGP already address the implementation of generate-and-validate programs by
first generating the programs, and only then validating whether that program fulfills
the specification, discarding or ignoring it.

Let us now understand the synthesis procedure used in the previous example.
We are using the £ON programming language [7], which is inspired by ML and its
Liquid version [31]. £ON has a very simple core grammar (Fig.3.1) of terms (#) and
types (T). We use the following meta-variables: 1 for boolean and integer literals; B
for base types like Int or Bool; x for variable names and r for valid refinements.

Liquid type-checking and inference is implemented with the same rules of
Sprite [14] and term synthesis is symmetrical to type-checking, following the same
approach of Synquid [28]. These rules will be explained as they are needed through-
out the document.

Having a mental model of the grammar of this language in mind, we can now
understand two major performance issues of type-aware synthesis in the context of
GGGP. We consider two individual representations: the tree-representation of the
original GGGP and the Gramatical Evolution [32] (GE) representation that uses
variable-sized lists of integers.

The first issue arrises when an unproductive rule is chosen non-stop. Take the
example of synthesizing a term of type {x:Int | x > y} and y:Intis in the context. If either

52 A. Fonseca et al.

a random number generator chooses the first of the five rules or the GE codon is an
integer multiple of 5, the algorithm will try to synthesize an integer literal. However,
the SMT solver will output that there is no literal that can always be greater than
y for any given y (y can always take the value of the maximum supported integer).
In that case the algorithm will backtrack to the previous recursion level and try
another path based on random choice or the next codon. If the recursion is at the
maximum allowed depth, then the probability of choosing an unproductive rule is
50% (choice between literal and variable). While this issue seems only theoretical
in the sense that repetitions in random choices seem improbable, our experience
implementing A£ON shows that this is a common problem that substantially impacts
performance. The main reason is that this unproductive behavior can occur at every
level of the term synthesis. Because of the binary and ternary branching present in
the grammar, population initialization slows down as the maximum allowed depth
increases. Section 3.7 will present evidence of this issue in practice.

The second issue is shared with traditional GGGP: when the maximum depth is
reached without a valid terminal symbol (there is no literal nor variable that type-
checks), the standard approach is to either discard or assign a low fitness value (which
will, in practice, ignore the individual during the next selection phase). While this
may be acceptable in CFG grammars, the expensive cost of type-aware synthesis
makes discarding or ignoring individuals much more detrimental to the overall search
efficiency.

3.5 Direct Versus Indirect Representations

In our Program Synthesis tool for the £ON language, we have experimented with
a tree representation. We have found that crossover and mutation operators on tree
representations had a negative impact on the performance of the algorithm. To per-
form either operation, the tree would need to be transversed again to rebuild the
necessary context at the crossover/mutation point. Caching the context inside the
tree did not improve the process, as allocating memory also takes time (not having
cache promotes memory reusing via garbage collection).

We have also considered using a multiple-stack representation inspired by the
PushGP system [36], but it is not feasible because it is not possible to group values
in stacks of different types, since there are infinite types. Even if only the types used
in a program have their own dedicated stack, values can be in many different types
and each stack may have only a single value, breaking the constraints of the system
that provide an efficient implementation.

Structured [20] and Dynamically Structured Grammatical Evolution [19] (SGE
and DSGE) could have been implemented, partitioning the list of integers in sublists
for each of the grammar rules. This approach improves the locality of the genotype-
phenotype mapping, but in the context of our grammar, it provides limited gain
because there are only two non-terminals (terms and types), and types occur only on
a single term production (the application rules).

3 Grammatical Evolution Mapping for Semantically-Constrained ... 53

We settled on a representation based on a variable-length list of integers. The
crossover and mutation operators are standard in Grammatical Evolution [32] (GE),
with which we share the representation. The main innovation of this approach is
the mapping function between the genotype (list of integers) and the phenotype
(program trees that are guaranteed to be valid with regard to a logical specification,
i.e., programs that type-check).

3.6 A Dynamic Grammar-Guided Mapping

An ideal mapping function would promote diversity [2], have a good locality [20],
have a perfect success rate and be fast. We focus on the last two goals, as without them,
it is impossible to even evaluate the first two. Total time consumption of individual
synthesis is important to be able to use this approach in real-world problems in
reasonable time. Having a low success rate will contribute to an higher execution
total, because in order to generate a population of 100 individuals having a 50%
success rate, one would need to wait the time of generating 200 individuals.

3.6.1 GE Mapping

Following the spirit of GE, we will deterministically generate a valid program tree
from a list of integers, or fail if that task is impossible within given restrictions
(maximum allowed depth and backtracking budget). Like in GE, we keep track of the
current index of the array that will help make the next decision (based on grammar
non-determinism). If we have the following two productions that can expand the
current rule (S): S:: = AB and S:: = ¢, that choice will be made using the value at
the current index (v). Because there are only two choices, we will take the first if the
value is even or the second if the value is odd (choice = v%alts, where alts is the
number of alternatives). After making this choice, we move the current index to the
following position of the array. If the index overflows the size of the array, it wraps
around to the beginning of the array.

3.6.2 Semantic Filter of Valid Productions

The first difference from GE is that not all valid productions are considered when
taking the decision at each step. GE typically only excludes rules that will expand
the program beyond the maximum allowed depth. In A£ON, if the current allowed
depth is 0, only variables and literals will be considered.

Our approach adds another filter layer that is semantic. Before considering a
production, there is a check to validate that the production will be able to produce

54 A. Fonseca et al.

def term _synthesis(ctx, type, d):

options = []

if ctx. has_lit_of_type (type):
options.add(lit)

if ctx.has_var_of_type(type):
options.add(var)

it d >0:
options.add(app)
if type. is _abstraction () :

options.add(abs)

options.add(ifthenelse)

while options and has _budget():
checkpoint()
try :
return follow_rule (choice(options))
except NoBudget:
rollback ()
raise NoBudget()

Fig. 3.2 High-level synthesis algorithm with the semantic filter. The function term_synthesis is
responsible for synthesizing a term based on the context (ctx), the expected type (type) and how
many depth levels are left (d). The 1it, var, app, abs and ifthenelse correspond to the
recursive functions that implement each of the expansions of the £ZON grammar in Fig.3.1. The
checkpoint and rollback functions support the dynamic probability manager

a result. The variable production will only be available for choosing if there is at
least one variable in the program context that is of the required type (e.g., if there
are no variables of type {x:Int | x == 3}, only literals will be considered). If, on the
other hand, there is no valid literal for that type, the rule will not be considered (e.g.,
{x:Int | x ==y}, with y of type Int in the context).

This filter is important to be applied as early in the process as possible. To under-
stand this, let us consider the array [1, 11, 33] (as probable to occur as any other
of the same size). Without the filter, we would choose the variable production (first
index is odd), figure out that there are no variables of the target type and backtrack,
advancing to the second index. This would occur also on the following tries because
all the next values in the genotype are odd. And because we wrap around when we
get to the end of the array, this process would continue for ever (or, in practice, until
we reach the maximum backtracking budget) without making any progress. Because
the £AON grammar is so simple, this issue occurs very frequently and would make
this approach unusable without the semantic filter.

Figure 3.2 depicts the necessary conditions to implement the context-dependent
semantic filter in the A£ON language. The checkpoint and rollback functions
will be explained later, as they serve another purpose.

3 Grammatical Evolution Mapping for Semantically-Constrained ... 55

3.6.3 Dynamic and Depth-Aware Dynamic Approaches

Even with the semantic filter, there are several common cases in which the algorithm
reaches a point where it makes no progress. And, unlike in the previous examples, it
is not possible to identify those cases.

Let us consider the example of synthesizing a term of type (x:A)— Bool, with a
maximum allowed depth of 2, and no variables in the program context. Because there
are no variables of this type, and only possible recursions in the grammar expansion,
the only valid solutions are (x— true and x— false), corresponding to selecting the
abstraction (abs) production (depth = 1), then the literal (1it) production with
one of either true or false (depth=0). However, while still having depth 1 (meaning
that we only recurse once) all abs, app and ifthenelse productions are valid,
even after the semantic filter, which excluded the 1it and var productions). If the
ifthenelse is selected, the condition will be generated and when building the
then term it will fail to find an alternative with depth O (as we already knew there was
no literal or variable of that type). This example evidences this problem near the leafs,
but in the case we had a larger maximum allowed depth, and the if rule was chosen
n recursion levels before the leafs, we would experience the same issue. Because of
the low number of productions, this issue also occurs frequently in practice.

To improve this scenario, we propose a dynamic approach to population initial-
ization. Similar approaches have been taken by Criado et al. [30], to create a uniform
population initialization algorithm, and by Mégane et al. [21], that adapts probabili-
ties of expansions during the evolution process. However, none of the approaches is
feasible in our scenario because they are designed for CFGs, and while our grammar
is context-free, the semantic validation is not context-free.

Figure 3.3 provides an illustrative example of how the probabilities are dynam-
ically adjusted. The overall algorithm relies on an initial probability' for all rules
(100 in the example). This value will be reduced during the population initialization
phase. Each time a term is synthesized (even recursively), the decision of which node
to use will be made from the value at the current index in the genotype array. Instead
of using the modulo operation to select one of the options like in GE, this operation
takes into consideration the probabilities of each rule, similarly to how the Roulette
Wheel operator [27] is implemented. The synthesis process continues recursively
to each subterm. If the tree is generated, no changes are made to the probabilities.
However, if the backtracking budget is exceeded, we record each decision made in
the relevant subterms, and we decrease by 10% the probability of that rule. The
algorithm in Fig.3.2 includes the checkpoint and rollback, which are used
to implement the tracking of decisions made at each level. This is important to only
penalize decisions made within this term, and not other decisions made higher-up in
the tree.

Note that, because rule probabilities are dynamic, the phenotypical mapping of
the genotype of the first individual might not be the same after the population ini-
tialization process, because weights have changed. To overcome this, the genotype

! ' We use the term ‘probability’ loosely, not with a statistical meaning.

56 A. Fonseca et al.

o () () (0 (=) ()

™\, 813 % 300=213

[k | {xInt|x>0} + | (eint) == (y:nt) > {zint | z==x+y} ‘ &

depth=1 7 — ‘.
Em‘zeﬁ{ pelnt [x> K} @ o, o)

f100 [

/200
r 300

el c10%

Fig. 3.3 A backtracking situation. (1) In the context described in yellow, at depth 1 and budget
100, the system will synthesize an expression of type Integer greater than k; (2) The total sum of
valid (in green) rules is computed; (3) The index for the selected rule is computed from the current
value at the genotype modulo the total value computed; (4) The rule corresponding to that index is
chosen, and the necessary subtrees are synthesized; (5) At depth 0 and without boolean variables,
the literal rule is chosen automatically, and using the 314 the True value is chosen; (6) At depth
0, there are no possible literals or variables greater than an unknown k, thus a backtracking event
occurs; (7) Any rule chosen in this inner synthesis has its probability decreased by 10%; (8) The
synthesis for the original type is retried, with a budget of 99

representation of individuals can be reverse engineered from the final weights in
linear time to the number of nodes, since instead of the original genotype, only the
recorded decisions need to be saved. This overhead is relatively small compared to
the exponential cost of unnecessary backtracking.

The goal of this adjustment is to prevent future similar dead-end scenarios (that
exhaust backtracking) to occur. Because the problem is context-dependent, the actual
probability should also be context-dependent. However, contexts are very volatile
and diverse (each abstraction introduces a new variable and type in the context),
which means they are not shared across individuals, thus not very helpful.

To overcome this limitation, we also propose a depth-aware dynamic approach
that uses the current depth as a proxy for the context that has the advantage of being
shared across all individuals, despite not having a one-to-one correspondence with
the context.

3 Grammatical Evolution Mapping for Semantically-Constrained ... 57

3.7 Evaluation

‘We evaluate the three variants described above (Semantic Filter, Dynamic and Depth-
Aware Dynamic) and compare them with the baseline (GE) within the AON pro-
gramming language on a AMD Ryzen Threadripper 3960X (24 cores) with 64GB
of RAM.

Our experiments consist on different runs trying to synthesize 100 terms of type
{x:Int | x >0 && x < 1000}. The initial program context contains the standard mathe-
matical library of £ON (logical and arithmetic operators). The backtracking budget
is fixed at 100 for all individuals. Each synthesis run is repeated 30 times.

All of the approaches convert the genotype of 100 individuals to the corresponding
phenotype. The genotypes are list of random integers of length between 10 and 100.
Because our grammar-guided approach uses a modulo-based mapping, the size of
each individual matters only for the diversity of available numbers in the genotype.

We report results for this very simple type for ease of read and because the
probability of finding a value using generate-and-validate approaches is really
low (100/2% = 5.427'3) and represents the cases where correct-by-construction
approaches should be favored. Traditionally, this example can be easily solved by
generating a random integer between 1 and 1000, but we are using this type as
a readable proxy for equivalent expressions such as {x:Int | (x >=21 && x <y)ll x <
(2%10)Il x == (80/z)}, where y and z are in context with types {y:Int | 10 x y == 10000}
and {z:Intl 2+z == 6 }, whose bounds would not be obtained faster than using an SMT
solver.

Figures 3.4, 3.5, 3.6 and 3.7 depict the percentage of successes (measured as
the number of trees generated in 100 tries), the average number of successes per
second, the diversity among the population (measured using the tree distance [40])
and the average depth of the population, all for executions with maximum tree depths
between 5 and 13.

Figure 3.4 shows that, as the maximum tree depth increases, the probability of
finding viable candidates decreases. This behaviour is to be expected, as having
more leaf nodes increases the likelihood of reaching dead-ends. This occurs because
the backtracking budget is fixed (representing the time constraint). The plain (depth-
independent) Dynamic probability management is the one reaching more successes,
and Fig. 3.5 confirms that this is indeed the most productive approach. The Depth-
Aware Dynamic approach is the one that generates more diverse trees, both in terms
of tree distance (Fig. 3.6) and average depth (Fig. 3.7), as it reduces the bias of always
choosing the same rules. However, it does so at the cost of having less successes per
second (Fig.3.5). Figures3.6 and 3.7 also evidence that all proposed approaches
outperform GE with regard to both types of diversity in the generated population.
While our approach does not generate the exact depth requested by the user, it is able
to generate values closer to the desired depth than GE. In fact, this variance naturally
mimics the effect of the grow initialization method. As expected, the Semantic Filter
approach is not as good as the dynamic approaches. Finally, we notice that the three
variants behave more similarly to each other when maximum tree depth is lower.

58 A. Fonseca et al.

Grammatical Evolution
Semantic Filter
Dynamic

Depth-Aware Dynamic

Successes
g 3 8
= =
R =
= ey
T
—
— - -
v .
—
1l

Fig. 3.4 Number of trees generated in 100 tries. Higher is better

12 Bl Grammatical Evolution
B Semantic Filter
10 I Dynamic
= B Depth-Aware Dynamic
8
@ 8
3
a
2 6 =
7]
w
@
8
3
w

(5] B
— -

: #ﬂtﬁthnﬁﬁh

Fig. 3.5 Number of successes per second. Higher is better

3.8 Conclusions

We have identified the need for GP methods to encode program semantics not only
as a validation step, but as constraints on the creation of individuals, especially in the
field of SBSE. SMT and SAT solvers have been a useful tool in the different domains
to perform efficient search on a limited formula language, thus it is desirable to
incorporate those tools inside the evolutionary process of GP.

We discussed the possible implementations for the integration of Liquid Types
into GP, concluding that a grammar-guided approach with a type-safe mapping is a
feasible approach. We presented an initialization algorithm that dynamically adjusts
the probabilities of grammar productions according to its failures in expanding the
grammar up to a given depth. We showed that our approach is beneficial, almost

3 Grammatical Evolution Mapping for Semantically-Constrained ... 59

' B Grammatical Evolution
500000 mmm Semantic Filter
Bl Dynamic
400000 Bl Depth-Aware Dynamic
300000

Tree distance

WYY F 1.5,

I R

i aﬁ:} j{ﬁ' = -t:? -i-** -L+ ;* L1

5 6 7 8 9 0 1 12 13
Depth

Fig. 3.6 Level of diversity in the generated individuals, measured by tree distance. Higher is better

N Grammatical Evolution
I Semantic Filter

EEE Dynamic
8 B Depth-Aware Dynamic

Average depth
(2] (2]

ES

W
il
il
=
——
—
-
-

Fig. 3.7 Average depth of the generated individuals. A combination of higher values and wider
range is better

regardless of the variant used, when generating values between very tight bounds,
which are exactly the cases that require a more efficient initialization, do the rate
of failed validations. Furthermore, we showed that our three variants have better
performance than Grammatical Evolution, and generate a more diverse population.
We also identified a trade-off between generating more individuals by using a depth-
independent approach or having individuals with higher depth and diversity by using
a depth-aware approach.

For future work, we intend to explore how to efficiently implement other operators

(like mutation and crossover) in the same context, and benchmark RTGP against
GGGP.

60

A. Fonseca et al.

Acknowledgements This work was supported by the Fundagao para a Ciénciae a Tecnologia (FCT)
under LASIGE Research Unit (UIDB/00408/2020 and UIDP/00408/2020), the GADZET project
(DSAIPA/DS/0022/2018) and the CMU Portugal project CAMELOT (POCI-01-0247-FEDER-
045915).

References

10.

11.

. Alhroob, A., Imam, A.T., Al-Heisa, R.: The use of artificial neural networks for extracting

actions and actors from requirements document. Inf. Softw. Technol. 101, 1-15 (2018)
Bartoli, A., Lorenzo, A.D., Medvet, E., Squillero, G.: Multi-level diversity promotion strategies
for grammar-guided genetic programming. Appl. Soft Comput. 83 (2019)

Binard, F., Felty, A.P.: Genetic programming with polymorphic types and higher-order func-
tions. In: Ryan, C., Keijzer, M. (eds.) Genetic and Evolutionary Computation Conference,
GECCO 2008, Proceedings, Atlanta, GA, USA, 12-16 July 2008, pp. 1187-1194. ACM (2008)
Bladek, I., Krawiec, K.: Evolutionary program sketching. In: McDermott, J., Castelli, M.,
Sekanina, L., Haasdijk, E., Garcia-Sanchez, P. (eds.) Genetic Programming—20th European
Conference, EuroGP 2017, Amsterdam, The Netherlands, 19-21 April 2017, Proceedings,
Lecture Notes in Computer Science, vol. 10196, pp. 3-18 (2017)

Bojarczuk, C.C., Lopes, H.S., Freitas, A.A., Michalkiewicz, E.L.: A constrained-syntax genetic
programming system for discovering classification rules: application to medical data sets. Artif.
Intell. Med. 30(1), 27-48 (2004)

Durieux, T., Madeiral, F., Martinez, M., Abreu, R.: Empirical review of java program repair
tools: a large-scale experiment on 2, 141 bugs and 23, 551 repair attempts. In: Dumas, M.,
Pfahl, D., Apel, S., Russo, A. (eds.) Proceedings of the ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, 26-30 Aug 2019, pp. 302-313. ACM (2019)
Fonseca, A., Santos, P., Silva, S.: The usability argument for refinement typed genetic pro-
gramming. In: Béck, T., Preuss, M., Deutz, A.H., Wang, H., Doerr, C., Emmerich, M.T.M.,
Trautmann, H. (eds.) Parallel Problem Solving from Nature—PPSN XVI—16th International
Conference, PPSN 2020, Leiden, The Netherlands, 5-9 Sept 2020, Proceedings, Part II, Lecture
Notes in Computer Science, vol. 12270, pp. 18-32. Springer (2020)

Forstenlechner, S., Fagan, D., Nicolau, M., O’Neill, M.: Extending program synthesis gram-
mars for grammar-guided genetic programming. In: Auger, A., Fonseca, C.M., Lourengo, N.,
Machado, P., Paquete, L., Whitley, L.D. (eds.) Parallel Problem Solving from Nature—PPSN
XV—15th International Conference, Coimbra, Portugal, 8-12 Sept 2018, Proceedings, Part I,
Lecture Notes in Computer Science, vol. 11101, pp. 197-208. Springer (2018)

Fraser, G., Arcuri, A.: Evosuite: automatic test suite generation for object-oriented software.
In: Gyiméthy, T., Zeller, A. (eds.) SIGSOFT/FSE’11 19th ACM SIGSOFT Symposium on
the Foundations of Software Engineering (FSE-19) and ESEC’11: 13th European Software
Engineering Conference (ESEC-13), Szeged, Hungary, 5-9 Sept 2011, pp. 416-419. ACM
(2011)

Galeotti, J.P., Fraser, G., Arcuri, A.: Extending a search-based test generator with adaptive
dynamic symbolic execution. In: Pasareanu, C.S., Marinov, D. (eds.) International Symposium
on Software Testing and Analysis, ISSTA 14, San Jose, CA, USA—21-24 July 2014, pp.
421-424. ACM (2014)

Goues, C.L., Nguyen, T., Forrest, S., Weimer, W.: Genprog: a generic method for automatic
software repair. IEEE Trans. Softw. Eng. 38(1), 54-72 (2012)

Griffith, D., Gunter, E.L.: Liquidpi: inferrable dependent session types. In: Brat, G., Rungta, N.,
Venet, A. (eds.) NASA Formal Methods, 5th International Symposium, NFM 2013, Moffett
Field, CA, USA, 14-16 May 2013. Proceedings, Lecture Notes in Computer Science, vol.
7871, pp. 185-197. Springer (2013)

3 Grammatical Evolution Mapping for Semantically-Constrained ... 61

13.

14.

15.

16.

17.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

Guo, Z., James, M., Justo, D., Zhou, J., Wang, Z., Jhala, R., Polikarpova, N.: Program synthe-
sis by type-guided abstraction refinement. Proc. ACM Program. Lang. 4(POPL), 12:1-12:28
(2020)

Jhala, R., Vazou, N.: Refinement types: a tutorial. CoRR (2020). https://arxiv.org/abs/2010.
07763

Kloos, J., Majumdar, R., Vafeiadis, V.: Asynchronous liquid separation types. In: Boyland,
J.T. (ed.) 29th European Conference on Object-Oriented Programming, ECOOP 2015, 5-10
July 2015, Prague, Czech Republic, LIPIcs, vol. 37, pp. 396—-420. Schloss Dagstuhl—Leibniz-
Zentrum fiir Informatik (2015)

Knoth, T., Wang, D., Reynolds, A., Hoffmann, J., Polikarpova, N.: Liquid resource types. Proc.
ACM Program. Lang. 4(ICFP), 106:1-106:29 (2020)

Kren, T., Moudrik, J., Neruda, R.: Combining top-down and bottom-up approaches for auto-
mated discovery of typed programs. In: 2017 IEEE Symposium Series on Computational
Intelligence, SSCI 2017, Honolulu, HI, USA, Nov 27-Dec 1, 2017, pp. 1-8. IEEE (2017)

. Liu, Y., Parker, J., Redmond, P., Kuper, L., Hicks, M., Vazou, N.: Verifying replicated data

types with typeclass refinements in liquid haskell. Proc. ACM Program. Lang. 4(OOPSLA),
216:1-216:30 (2020)

Lourenco, N., Assuncio, F., Pereira, EB., Costa, E., Machado, P.: Structured grammatical
evolution: a dynamic approach. In: Ryan, C., O’Neill, M., Collins, J.J. (eds.) Handbook of
Grammatical Evolution, pp. 137-161. Springer (2018)

Lourenco, N., Pereira, F.B., Costa, E.: SGE: A structured representation for grammatical evolu-
tion. In: Bonnevay, S., Legrand, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) Artificial
Evolution—12th International Conference, Evolution Artificielle, EA 2015, Lyon, France, 26—
28 Oct 2015. Revised Selected Papers, Lecture Notes in Computer Science, vol. 9554, pp.
136-148. Springer (2015)

Mégane, J., Lourenco, N., Machado, P.: Probabilistic grammatical evolution. In: Hu, T,
Lourenco, N., Medvet, E. (eds.) Genetic Programming—24th European Conference, EuroGP
2021, Held as Part of EvoStar 2021, Virtual Event, 7-9 April 2021, Proceedings, Lecture Notes
in Computer Science, vol. 12691, pp. 198-213. Springer (2021)

Meudec, C.: ATGen: automatic test data generation using constraint logic programming and
symbolic execution. Softw. Test. Verif. Reliab. 11(2), 81-96 (2001)

de Miranda, P.B.C., Prudéncio, R.B.C.: Generation of particle swarm optimization algorithms:
an experimental study using grammar-guided genetic programming. Appl. Soft Comput. 60,
281-296 (2017)

Montana, D.J.: Strongly typed genetic programming. Evol. Comput. 3(2), 199-230 (1995)
Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S.: SemFix: program repair via semantic
analysis. In: Notkin, D., Cheng, B.H.C., Pohl, K. (eds.) 35th International Conference on
Software Engineering, ICSE °13, San Francisco, CA, USA, 18-26 May 2013, pp. 772-781.
IEEE Computer Society (2013)

Ortega, A., de la Cruz, M., Alfonseca, M.: Christiansen grammar evolution: grammatical evo-
lution with semantics. IEEE Trans. Evol. Comput. 11(1), 77-90 (2007)

Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming. Lulu Enter-
prises, UK Ltd. (2008)

Polikarpova, N., Solar-Lezama, A.: Program synthesis from polymorphic refinement types.
CoRR (2015). http://arxiv.org/abs/1510.08419

Polikarpova, N., Stefan, D., Yang, J., Itzhaky, S., Hance, T., Solar-Lezama, A.: Liquid infor-
mation flow control. Proc. ACM Program. Lang. 4(ICFP), 105:1-105:30 (2020)
Ramos-Criado, P., Rolania, D.B., Manrique, D., Serrano, E.: Grammatically uniform population
initialization for grammar-guided genetic programming. Soft Comput. 24(15), 11265-11282
(2020)

Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: Gupta, R., Amarasinghe, S.P. (eds.)
Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language Design and
Implementation, Tucson, AZ, USA, 7-13 June 2008, pp. 159-169. ACM (2008)

https://arxiv.org/abs/2010.07763
https://arxiv.org/abs/2010.07763
http://arxiv.org/abs/1510.08419

62

32.

33.

34.

35.

36.

37.

38.

39.

40.

A. Fonseca et al.

Ryan, C., Collins, J.J., O’Neill, M.: Grammatical evolution: evolving programs for an arbitrary
language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) Genetic Programming,
First European Workshop, EuroGP’98, Paris, France, 14—15 April 1998, Proceedings, Lecture
Notes in Computer Science, vol. 1391, pp. 83-96. Springer (1998)

Santos, P., Campos, J., Timperley, C.S., Fonseca, A.: Augmenting search-based techniques
with static synthesis-based input generation. In: ICSE *21: 42nd International Conference on
Software Engineering, Workshops, Madrid, Spain, 17 May—4 June 2021. ACM (2021)

Sato, Y.: Specification-based test case generation with constrained genetic programming. In:
20th IEEE International Conference on Software Quality, Reliability and Security Companion,
QRS Companion 2020, Macau, China, 11-14 Dec 2020, pp. 98-103. IEEE (2020)
Solar-Lezama, A.: The sketching approach to program synthesis. In: Hu, Z. (ed.) Programming
Languages and Systems, 7th Asian Symposium, APLAS 2009, Seoul, Korea, 14—16 Dec 2009.
Proceedings, Lecture Notes in Computer Science, vol. 5904, pp. 4-13. Springer (2009)
Spector, L., Robinson, A.J.: Genetic programming and autoconstructive evolution with the
push programming language. Genet. Program. Evolvable Mach. 3(1), 7-40 (2002)

Vergilio, S.R., Pozo, A.T.R.: A grammar-guided genetic programming framework configured
for data mining and software testing. Int. J. Softw. Eng. Knowl. Eng. 16(2), 245-268 (2006)
Wappler, S., Wegener, J.: Evolutionary unit testing of object-oriented software using strongly-
typed genetic programming. In: Cattolico M. (ed.) Genetic and Evolutionary Computation
Conference, GECCO 2006, Proceedings, Seattle, Washington, USA, 8—12 July 2006, pp. 1925—
1932. ACM (2006)

Yuan, Y., Banzhaf, W.: ARJA: automated repair of java programs via multi-objective genetic
programming. IEEE Trans. Softw. Eng. 46(10), 1040-1067 (2020)

Zhang, K., Shasha, D.E.: Simple fast algorithms for the editing distance between trees and
related problems. SIAM J. Comput. 18(6), 1245-1262 (1989)

Chapter 4)
What Can Phylogenetic Metrics Tell us e
About Useful Diversity in Evolutionary
Algorithms?

Jose Guadalupe Hernandez, Alexander Lalejini, and Emily Dolson

Abstract It is generally accepted that “diversity” is associated with success in evo-
lutionary algorithms. However, diversity is a broad concept that can be measured
and defined in a multitude of ways. To date, most evolutionary computation research
has measured diversity using the richness and/or evenness of a particular genotypic
or phenotypic property. While these metrics are informative, we hypothesize that
other diversity metrics are more strongly predictive of success. Phylogenetic diver-
sity metrics are a class of metrics popularly used in biology, which take into account
the evolutionary history of a population. Here, we investigate the extent to which (1)
these metrics provide different information than those traditionally used in evolu-
tionary computation, and (2) these metrics better predict the long-term success of a
run of evolutionary computation. We find that, in most cases, phylogenetic metrics
behave meaningfully differently from other diversity metrics. Moreover, our results
suggest that phylogenetic diversity is indeed a better predictor of success.

4.1 Introduction

Maintaining a sufficiently diverse population to successfully solve challenging prob-
lems is a central challenge in all branches of evolutionary computation. If the popu-
lation’s diversity collapses, an evolutionary algorithm can prematurely converge on
a sub-optimal solution from which it is unable to escape [10]. While many diversity

J. G. Hernandez - E. Dolson (<)

BEACON Center for the Study of Evolution in Action and Department of Computer Science and
Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing,
MI, USA

e-mail: dolsonem @msu.edu

J. G. Hernandez
e-mail: herna383 @msu.edu

A. Lalejini
Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
e-mail: amlalejini @gmail.com

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 63
W. Banzhaf et al. (eds.), Genetic Programming Theory and Practice XVIII,

Genetic and Evolutionary Computation,

https://doi.org/10.1007/978-981-16-8113-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8113-4_4&domain=pdf
mailto:dolsonem@msu.edu
mailto:herna383@msu.edu
mailto:amlalejini@gmail.com
https://doi.org/10.1007/978-981-16-8113-4_4

64 J. G. Hernandez et al.

maintenance techniques have been designed to combat this challenge, we currently
lack a clear understanding of what factors contribute to their success or failure in any
given situation. Broadly speaking, diversity maintenance techniques can fail in two
ways: (1) failure to maintain a diverse population at all, and (2) failure to maintain
diversity that is actually helpful to solving the problem. Because more effort has
historically been paid to the former category, here we will focus on the latter.

In evolutionary computation, diversity is usually evaluated by counting the num-
ber of unique “types” in the population. These “types” may be genotypes, phenotypes,
ecotypes, species, or other descriptors of a group of solutions. The most commonly
used types are phenotypes, which are often described using error vectors, behaviors,
or output values. Sometimes a population’s diversity is measured as the raw count
of unique types (in biology, such metrics are called “richness”). Alternatively, some-
times different metrics are used that take into account how evenly the population
is distributed across the types (as in Shannon diversity/entropy). Occasionally more
nuanced metrics are used that consider the level of similarity of the types in the
population (e.g., calculating Euclidean distance between error vectors, or including
some sort of clustering step). However, the metrics commonly used in evolutionary
computation are a small subset of the broader range of ways one could measure diver-
sity. Prior work suggests that some diversity metrics are more predictive of success
than others [17, 22], so investigating the implications of a wider variety of diversity
metrics is worthwhile.

A variety of diversity metrics from ecology and evolutionary biology have yet to
be examined in the context of evolutionary computation. One particularly interesting
class of diversity metrics, called phylodiversity metrics [29], takes into account the
evolutionary history of a population to calculate its diversity. For intuition behind
how these metrics are different from other diversity metrics, see Fig.4.1. They do
so by measuring the topology of the phylogenetic tree for the population (i.e., the
ancestry tree). Intuitively, types that are more evolutionarily distant from each other
(i.e., share a more distant common ancestor) are likely farther apart from each other
in the fitness landscape. As such, the ability to maintain evolutionarily distinct types
may be important for effective problem-solving in evolutionary computing, due to the
likely difficulty of re-evolving such distinct types from each other. Notably, biological
simulations suggest that phylogenetic diversity provides different information about
a population than a specific type of phenotypic richness (functional diversity) does;
moreover, the extent of this difference varies across different scenarios [30].

Preliminary data supports the hypotheses that (1) phylogenetic diversity captures
information that other diversity metrics do not [7, 30], and (2) phylogenetic diversity
may be a better predictor of success in genetic programming than other diversity met-
rics [7]. Here, we investigate these hypotheses in the context of a range of problems
and diversity maintenance techniques. Our findings provide further support for these
two hypotheses. In particular, using a technique called causality analysis, we show
that phylogenetic diversity is a stronger predictor of future fitness than phenotypic
diversity is.

4 What Can Phylogenetic Metrics Tell us About Useful ... 65

a b Q

[]] _O O_
OO0OO0O00O O O

Fig. 4.1 Example populations with different kinds of diversity. This figure shows two different
phylogenies. Arrows show parent-child relationships. Each node is a taxonomically unique phe-
notype (i.e., a phenotype with a unique evolutionary origin). For simplicity, leaf nodes in these
diagrams are assumed to be the current set of taxa in the population; in reality, there could be non-
leaf nodes corresponding to extant taxa. a. A population with high phenotypic diversity (phenotypic
richness = 5) and low phylogenetic diversity (mean pairwise distance = 2). b. A population with
low phenotypic diversity (phenotypic richness = 2) and high phylogenetic diversity (mean pairwise
distance = 6)

4.2 Methods

To identify phylogenetic metrics that correlate with success in evolutionary compu-
tation, we ran an evolutionary algorithm on a variety of problems using a range of
parent selection methods in a full-factorial design. Specifically, we applied each of
tournament, random, fitness sharing, lexicase, and Eco-EA selection to the follow-
ing problems: an exploration diagnostic, Count Odds, Logic-9, sorting networks, and
NK Landscapes.

4.2.1 Selection Methods

4.2.1.1 Tournament

In tournament selection, 7" individuals are randomly selected from the population to
form a “tournament”. The individual in the tournament that has the highest fitness
is selected to reproduce. Tournament selection is included here as a control, as it is
simple and introduces no pressure for diversity.

In the exploration diagnostic experiments, we used a tournament size of 7 = 8
for consistency with [15]. In the other experiments, we used a tournament size of
T =2.

66 J. G. Hernandez et al.
4.2.1.2 Random

Random selection is also included in this paper as a control. In this selection method,
individuals are selected at random to reproduce.

4.2.1.3 Fitness Sharing

Fitness sharing is one of the earliest diversity maintenance techniques [10]. It is very
similar to tournament selection, except that before the tournament occurs, the fitness
of each individual is discounted in proportion to the number of similar individuals
and the degree of their similarity. As a result, fitness sharing creates pressure for
increased population diversity.

Fitness sharing requires two parameters: « (which controls the shape of the sharing
function) and o, (which controls the niche width). Here, we used @ = 1 and oy, = 2.

4.2.1.4 Lexicase Selection

Lexicase selection is designed to work in situations where fitness can be broken
down into multiple constituent parts [28]. Conventionally, these constituent parts,
or fitness criteria, are individual test cases in a genetic programming problem, but
lexicase selection has been shown to work well in other scenarios too [3, 20]. To
select a parent with lexicase selection, the fitness criteria are randomly ordered. Then
the criteria are stepped through in order, with all but the best performers on each
criterion being eliminated from consideration for this selection event. This process
continues either until only one individual remains to be selected or until there are no
criteria left, in which case an individual is randomly selected from those remaining.
Lexicase selection is known to generally maintain high levels of diversity [12, 14],
and preliminary evidence suggests that lexicase selection is also particularly effective
at maintaining phylogenetic diversity [7].

4.2.1.5 Eco-EA

Like lexicase selection, Eco-EA is designed to work on problems that have various
sub-components [8, 9]. The original inspiration for Eco-EA came out of problems in
which solutions to multiple simpler tasks served as helpful building blocks for solving
a more complex overall task. These building block tasks are analogous to fitness
criteria in lexicase selection [3, 7]. Eco-EA associates each sub-task with a limited
resource. Individuals that perform a task gain fitness while resources associated
with that task are available; however, this decreases that task’s associated resources.
When the resource is depleted, there is no fitness benefit to performing the task. New
resources flow in and out at a constant rate over the course of each update. As such,
there is pressure for diversity.

4 What Can Phylogenetic Metrics Tell us About Useful ... 67

The specific fitness gain associated with performing a task is described by the
following function:

total fitness — base fitness * 2min(score‘1 * Cy * resource, max_bonus) (41)

where base fitness is the individual’s fitness according to the global fitness function,
score is the individual’s score on the current sub-task, « is a variable that tunes the
shape of the relationship between sub-task performance and fitness gain, C is the
fraction of available resources that can be consumed, resource is the amount of the
resource available, and max bonus is the maximum allowed bonus. To strengthen
the negative frequency dependence, a cost can be applied for attempting to use more
resource than is available.

For the exploration diagnostic, we used Cy =1, o = .25, cost =, 1, and max
bonus = 5. Resources flow in at a rate of 250 units per generation. Every generation,
0.01% of the total quantity of each resource flows out. For the other experiments, we
used Cy = 0.01, @ = 2, cost = 3, and max bonus = 5. Resources flow in at a rate
of 50 units per generation and 5% of each resource flows out each generation.

4.2.2 Problems

4.2.2.1 Exploration Diagnostic

Recently, Hernandez et al. proposed a suite of “diagnostic” fitness landscapes
designed to test evolutionary algorithms in a controlled environment [15]. Among
these is an exploration diagnostic, which tests an algorithm’s ability to simultane-
ously explore many different paths through a fitness landscape. In this diagnostic
fitness landscape, genomes are vectors of floating point numbers. An individual’s
fitness is determined by finding the highest value in its genome, which represents the
start of the values that contribute to fitness. This value and all subsequent monotoni-
cally decreasing values are summed together to produce the total fitness. For lexicase
selection and Eco-EA, the fitness contribution of each individual site was used as the
selection criterion or sub-task respectively.

Our hypotheses are predicated on the idea that phylogenetic diversity is a better
measure of fitness landscape exploration than more conventionally used diversity
metrics. As such, the exploration diagnostic represents an ideal context in which to
test our hypotheses. Moreover, this fitness landscape provides a smooth and con-
trolled environment with more intuitive diversity dynamics. In contrast, more com-
plex fitness landscapes can yield idiosyncratic crashes in diversity that vary based on
the path(s) the population takes. Thus, we will use the exploration diagnostic for our
in-depth analysis, and provide results in the more complex landscapes as a follow-up
investigation of the robustness of our findings.

68 J. G. Hernandez et al.
4.2.2.2 Count Odds

Count Odds is part of a benchmark suite of program-synthesis problems derived from
a set of real programming problems given to introductory computer science students
[13]. These problems are specified using sets of testcases where each testcase contains
inputs and expected outputs. Solutions to these problems consist of evolved code that
produces the correct output for a given set of inputs. In the Count Odds problem,
programs are given a list of numbers as input and must output an integer indicating
how many of those numbers are odd.

For lexicase selection and Eco-EA, each test case is used as one selection criterion
or sub-task, respectively. For fitness sharing, similarity is calculated based on the
euclidean distance of the vector of performances on all test cases.

4.2.2.3 Logic-9

In Logic-9, a solution comprises code that, when executed, performs the nine one-
and two-input bitwise Boolean logic tasks (not, and, or, nand, orn, andn, nor, xor,
and equ) [5, 24]. To evaluate a program, we provide two numeric inputs that the
program may use during its execution. Over the course of evaluation, a program may
output numbers. We check whether each output is the result of performing one of
the nine logic operations. If so, the program is counted as having completed that
operation. Every logic operation completed increases the program’s score by one. In
addition to the Boolean logic tasks, programs get credit for solving the echo task, in
which the program must output one of the numbers it received as input. This task is
included because it is known to be helpful in scaffolding the evolution of the more
complex logic tasks.

For lexicase selection and Eco-EA, each logic task is used as one selection criterion
or sub-task, respectively. For fitness sharing, similarity is calculated based on the
euclidean distance of the vector of which tasks were completed.

4.2.2.4 NK Landscapes

In NK Landscapes, individuals are bitstrings of length N [19]. Each position in
the bitstring has an associated table used to look up the fitness contribution of that
position, which is based on the value (0 or 1) at that position and the values of
K neighboring positions. Thus, each lookup table comprises 2X*+! entries, one for
each possible sequence of relevant bits. Total solution quality for a given bitstring
individual is calculated by summing up the fitness contributions from each site.
AnNK Landscape is generated by randomly selecting a value between 0 and 1 to be
the fitness contribution for each entry in each site’s fitness contribution lookup table.
N determines the size of the fitness landscape, and K determines the landscape’s
level of epistasis or ruggedness (i.e., how interdependent the fitness contribution of
each site is on other sites). For example, if K is 0, each site has two possible fitness

4 What Can Phylogenetic Metrics Tell us About Useful ... 69

contributions, one for if that position is set to 1 and one for if it is set to 0. If K is set
to 1, each site has four possible fitness contributions based on the value of that site
and the value of its neighbor (one each for 00, 01, 10, and 11). Every increase in K
doubles the possible different fitness contributions.

For lexicase selection and Eco-EA, the fitness contribution from each site is used
as one selection criterion or sub-task, respectively. For fitness sharing, similarity is
based on the Hamming distance between the solutions. For the experiments presented
here, we used K = 3 and N = 20.

4.2.2.5 Sorting Networks

Sorting networks are computational units designed to sort fixed-length sequences of
numbers via a set of comparisons between pre-specified positions in the sequence
[27]. When the network compares two positions, the numbers in them are swapped
if they are out of order. In this problem, individuals are represented as sequences of
comparators between positions. As with the Count Odds problem, fitness is assessed
via a sequence of test cases. Once all test cases are solved correctly, individuals can
receive additional fitness bonuses for having as few comparators as possible. For
lexicase selection and Eco-EA, each test case is used as a single selection criterion
or sub-task respectively.

Here, we evolved sorting networks to sort 30 values and test them on 100 test
cases. The maximum allowed number of comparators per network was 128.

4.2.3 Computational Substrates

For the genetic programming problems (Count Odds and Logic-9), we evolved lin-
ear genetic programs where each genome is a sequence of simple computational
instructions. Most notably, the instruction set is designed to support the evolution of
modularity by supporting the encapsulation of subroutines into “scopes”. Programs
have a set of read-only memory spaces used to provide input and a set of write-only
memory spaces to be used as output. Each instruction in the genome is executed in
sequence. If execution reaches the end of the genome before the program runs out
of evaluation time, execution will loop back around to the front of the genome. We
propagated programs asexually and applied the following mutations to offspring,
each with a probability of 0.005: (1) instruction substitutions, (2) point insertions
and deletions, and (3) substituting the argument being supplied to an instruction.
This linear genetic programming representation is described in more detail in [5].

For NK Landscapes, we evolved bitstrings. We propagated individuals asexually,
and we applied bit flip mutations at a per-bit rate of 0.01.

In the exploration diagnostic, we evolved vectors of 50 floating point values where
each value ranged between 0.0 and 25.0. We reduced the size of these ranges from
those used by [15] to ensure that Eco-EA had sufficient time to solve the problem

70 J. G. Hernandez et al.

within our allocated computational budget. We used asexual reproduction, and each
position had a 0.007 probability of mutating. Mutations modify a value by a number
drawn from a normal distribution with mean 0 and standard deviation 1.

Sorting networks are represented as sequences of pairwise comparators. They
can mutate via insertions of new comparators (0.0005 probability), duplications of
existing comparators (0.0005 probability), deletions of existing comparators (0.001
probability), swapping pairs of existing comparators (0.001 probability), and substi-
tuting different indices in existing comparators (0.001 probability).

4.2.4 Other Parameters

For the exploration diagnostic, we used a population size of 500 and allowed runs to
evolve for 500,000 generations. This length was selected to ensure that all selection
schemes (most notably Eco-EA) had adequate time to find a good solution. For the
other fitness landscapes, we used a population size of 1000 and allowed runs to evolve
to 1,000 generations.

4.2.5 Phylogenetic Diversity Metrics

A wide variety of phylogenetic diversity metrics have been developed, and the extent
to which they capture different information from each other is an area of active
research [29]. All of them require that you keep track of the full phylogeny (ancestry
tree) of a population. For further discussion of building phylogenies in the context of
evolutionary computation, see [4]. Here, we focus on two classes of metrics: pairwise
distance metrics and evolutionary distinctiveness metrics.

Pairwise distance metrics calculate the number of edges' in the shortest path
between each pair of nodes associated with extant taxa (i.e., taxonomic units corre-
sponding to individuals in the current population) [31]. The resulting set of distances
can then be summarized by calculating its minimum, maximum, mean, or variance.
Each of these statistics produces a different phylogenetic diversity metric with dif-
ferent properties.

Evolutionary distinctiveness metrics assign an evolutionary distinctiveness score
to each extant taxon [16]. This score takes into account each branch’s age, and repre-
sents how evolutionarily distant each taxon is from all other extant taxa. To calculate
evolutionary distinctiveness, the age of each branch is calculated and divided by the
number of extant taxa the branch ultimately leads to. A taxon’s evolutionary distinc-
tiveness is the sum of the values calculated for all branches between that taxon and

1 Weighted edges can also be used, in which case the weights along the path should be summed.
Here, we use unweighted edges.

4 What Can Phylogenetic Metrics Tell us About Useful ... 71

the tree’s root. As with pairwise distances, the set of evolutionary distinctiveness
scores can be summarized by taking its minimum, maximum, mean, or variance.

4.2.6 Analysis Techniques

4.2.6.1 Statistics

Correlations among variables at a fixed time point were measured using Spearman
correlations. We used Spearman correlations rather than Pearson correlations due
to the fact that many of the relationships being measured were non-linear (but still
monotonically increasing). To compare different conditions, we used Kruskal-Wallis
tests with subsequent pairwise Wilcoxon rank-sum tests and a Bonferonni correction
for multiple comparisons. To ensure statistical rigor, we decided what set of statistical
comparisons to perform based on analysis of an initial pilot data-set. We then re-
ran all experiments with different random seeds and performed the pre-determined
analysis on this new data to generate the results presented here.

4.2.6.2 Transfer Entropy

As alluded to previously, there is a positive feedback loop between diversity and
evolutionary success during the initial phase of evolution. To further complicate
matters, fully solving a problem can lead diversity to crash as that solution sweeps
through the population. For these reasons, looking at correlations between fitness
and diversity at any given time point gives us only limited information about their
relationship. One approach to getting around this problem is to take all measurements
at the time step when a perfect solution is first discovered [6]. While this approach
helps, it does not address the question of what is driving the feedback loop. Moreover,
even before a perfect solution evolves, the evolution of partial solutions may initiate
partial selective sweeps.

In order to understand the specific role that different types of diversity play in
driving the feedback loop between diversity and success, we turn to an analytical
approach called causality analysis. As the nature of causality can quickly drift into
murky philosophical territory, here we specifically use a notion of causality called
Granger causality [1, 11]. We say that X Granger-causes Y if past values of X contain
information about the current value of Y above and beyond the information that past
values of Y contain about the current value of Y. This definition comes from the
insights that 1) the past causes the future, not the other way around, and 2) if X
and Y are jointly caused by an external process, that process will be captured by the
information that past values of ¥ have about the current value of Y.

Granger causality is normally measured in the context of vector auto-regressive of
models. However, our data do not match the assumptions of such models (particularly
stationarity). Thus, we measure Granger-causality with an information theoretic met-

72 J. G. Hernandez et al.

ric called Transfer Entropy [26, 33]. In information theoretic terms, transfer entropy
is I (Y; X;—x|Y:—x), the conditional mutual information between Y, and X, ;|Y;_;.
Here, Y is the variable being predicted, ¢ is the time point it is being predicted at, X is
the variable we are using the predict Y, and k is the “lag”. The lag specifies the time
scale on which we are interested in measuring Granger causality. In other words, it
indicates which past value of X we are attempting to use to predict the current value
of Y.

Often, the goal of these measurements is simply to establish the direction of
Granger-causality. In those cases, very short lags are often used. In this case, however,
it would also be valuable to know whether predictive capability is maintained over
large lags. If it were, there would be a variety of useful practical implications. For
example, we could potentially use the diversity at a relatively early time point to
predict whether a given run of evolutionary computation will be successful. For this
reason, we measure Transfer Entropy using lags ranging from 10 generations to
100,000 generations.

Here, we measure both the Transfer Entropy between fitness and phylogenetic
diversity and the Transfer Entropy between fitness and phenotypic diversity. Note
that, because Transfer Entropy is a value calculated based on two time series, we
cannot meaningfully lump multiple replicates into the same calculation. Thus, for
each condition we will end up with a distribution of Transfer Entropy values.

4.2.7 Code Availability

All code used in this paper is open source and freely available in the supplemental
material [2]. Research code was written in C++ using the Empirical library [23].
Data analysis was performed using the R statistical computing language, version
4.0.4 [25], the ggplot2 [32], ggpubr [18], and infotheo [21] libraries.

A C++ implementation of phylogeny tracking and all phylodiversity metrics used
here is available in the Empirical library [23]. This implementation is designed to
plug into any computational evolution code written in C++.

4.3 Results and Discussion

4.3.1 Do Phylogenetic Metrics Provide Novel Information?

If phylogenetic diversity is to tell us anything useful, a necessary first step is that
it provide information that more commonly-used metrics do not. It is particularly
important to establish this distinction in light of the fact that phylogenetic metrics
are typically more computationally expensive to calculate.

4 What Can Phylogenetic Metrics Tell us About Useful ... 73

First, we investigated the relationships between different metrics of phenotypic
and phylogenetic diversity. The two measurements of phenotypic diversity that we
analyzed were phenotypic richness and phenotypic Shannon diversity, the two most
commonly used diversity metrics (see supplemental material [2]). Unsurprisingly,
phenotypic richness and phenotypic Shannon diversity are closely correlated across
all conditions. We performed the rest of the analyses in this paper using both richness
and Shannon diversity, but observed qualitatively the same results for both. For
simplicity, we only present the results using richness (for Shannon diversity results,
see supplemental material [2]).

There are many ways of measuring phylogenetic diversity [29]. Here, we focus
on the pairwise distance and evolutionary distinctiveness metrics (see Sect. 4.2.5
for more information). Minimum pairwise distance was not informative, as there
are nearly always at least two taxa a distance of 1 away from each other. In the
conditions observed here, the other pairwise distance metrics tended to correlate
fairly closely with each other. Correlations among evolutionary distinctiveness met-
rics were weaker and less consistent, but still present in most cases. In contrast, we
did not observe consistent relationships between pairwise distance metrics and evo-
lutionary distinctiveness metrics. While there were sometimes strong correlations
within a condition, the direction of these correlations varied. For this reason, we
performed subsequent analyses using both mean pairwise distance and mean evolu-
tionary distinctiveness. As we observed qualitatively the same results for both, here
we present only the results using mean pairwise distance (for evolutionary distinc-
tiveness results, see supplemental material [2]).

Next, we compared the phenotypic metrics to the phylodiversity metrics. Intu-
itively, we might expect them to be highly correlated. In practice, however, we see
that the correlation between phenotypic and phylogenetic diversity is not consis-
tently? significantly different from O (see Fig.4.2). In some cases, the correlation is
even negative.

As previously noted, diversity metrics can be sensitive to the exact time at which
they are measured. To confirm that this lack of instantaneous correlation is indicative
of a consistent lack of relationship, we plotted phenotypic and phylogenetic diversity
over time (see Figs.4.3 and 4.4). Indeed, phenotypic and phylogenetic diversity
behave differently over long temporal scales as well.

Having established that phenotypic and phylogenetic diversity are not reliably cor-
related, we next asked whether either diversity metric can predict the other. Based on
our hypothesis that phylogenetic diversity is useful because it more directly indicates
a population’s spread across the fitness landscape, we might expect current phylo-
genetic diversity to predict future phenotypic diversity. We tested this hypothesis
by measuring the transfer entropy from phylogenetic diversity to phenotypic diver-
sity. Consistent with our hypothesis, transfer entropy from phylogenetic diversity
to phenotypic diversity was generally higher than transfer entropy from phenotypic

2 The correlation for tournament selection in the exploration diagnostic is incredibly high, however
(1) the observed range of mean pairwise distance is so low that the correlation is almost certainly
an artifact, and (2) this correlation is not observed for other fitness landscapes.

74 J. G. Hernandez et al.
EcoEA Fitness Sharing Lexicase
2104 130 " 5
p=“‘02,p=01? 200 - s R
180 1 - u 120 1 [. o ™ b
150_3%% %/:,/ L 110~P:ﬁ,13, =04
1501, g;‘o;az,w: 2 % _ . °
E 1001 » 100 - i R m
#1208 ¢ 5
3 50g 901
c]
E 90 L T T T “ L3 T T 80 L T .l T
E 0 10000 20000 0 50 100 150 10000 15000 20000
;Q., Random Tournament
2 g0 ¢ ° .
2 .
o 804 ¢ 5@’ . X 100 A
. @__..«—-?""-“-
70 4 ﬂﬁ_mﬁrp =01 o
. =
”ee H “ 0
60 1 a® @
OVl . -100- ; ;
20 40 1.90 1.95

Mean pairwise distance

Fig.4.2 Relationship between phenotypic diversity and phylogenetic diversity at a single time
point for the exploration diagnostic. Values were measured at the final time point (generation
500,000). Spearman correlation coefficients are shown for each selection scheme, along with a
95% confidence interval around regression lines. Note that axis scales vary between panels

diversity to phylogenetic diversity (see Fig. 4.5). Thus, in the Granger sense of causal-
ity, we can say that phylogenetic diversity produces phenotypic diversity to a greater
extent than phenotypic diversity produces phylogenetic diversity.

In the exploration diagnostic fitness landscape, the only exceptions to this obser-
vation are our two control selection schemes: tournament selection and random selec-
tion. In tournament selection, neither form of diversity is particularly predictive of
the other. This behavior is unsurprising, as tournament selection generally maintains
minimal levels of both forms of diversity. In random selection, both forms of diver-
sity are somewhat predictive of each other. In the other fitness landscapes we observe
more variation in transfer entropy (see supplemental material [2]).

Taken together, these results provide strong evidence that, in an evolutionary com-
putation context, phylogenetic diversity metrics provide information that phenotypic
diversity metrics do not. We base this conclusion on the lack of consistent correlation
between these metrics at a fixed point in time, the differences in their long-term behav-
ior, and that fact that the transfer entropy from phylogenetic diversity to phenotypic
diversity is higher than the other way around (implying that phylogenetic diversity
contains information about future phenotypic diversity that current phenotypic diver-
sity does not contain about future phylogenetic diversity). We may now proceed to

4 What Can Phylogenetic Metrics Tell us About Useful ... 75

150 A
0
m .
2 Selection
<
] EcoEA
© 1001 — Fitness Sharing
& — Lexicase
Is] — Random
c
[} — Tournament
=
o
50 1

1e+01 1e+02 1e+03 1e+04 1e+05
Generation

Fig.4.3 Phenotypicrichness over time for each selection scheme on the exploration diagnostic.
Shaded areas represent 95% confidence interval around the mean for all 50 replicates for each
selection scheme. Note that the x-axis is on a log scale

ask whether that information is actually useful for understanding problem-solving
success in evolutionary computation.

4.3.2 Do Phylogenetic Metrics Predict Problem-Solving
Success?

Having established that phylogenetic metrics provide different information than phe-
notypic diversity metrics, the next question to ask is what that information can tell
us. In the exploration diagnostic landscape, we can see some intuitive connections
between both types of diversity and fitness (see Fig.4.6). Excluding random selec-
tion, the final performance of a selection scheme appears to be correlated with the
final level of phylogenetic diversity maintained by that selection scheme (but not
with the level of phenotypic diversity). In the other fitness landscapes, however,
the connection between a selection scheme’s ability to maintain diversity of either
type and its ability to succeed is less obvious (see supplemental material [2]). This
increased complexity is unsurprising, as success in the exploration diagnostic land-
scape is based primarily on the ability to explore; succeeding on the other fitness
landscapes is more complicated.

76 J. G. Hernandez et al.

10000 1
[
2 1000+
g Selection
g EcoEA
0 ~— Fitness Sharing
E 100 4 — Lexicase
8 Random
c Tournament
o
4]
=

10 1

1e+01 1e+02 1e+03 1e+04 1e+05
Generation

Fig. 4.4 Phylogenetic diversity (mean pairwise distance) over time for each selection scheme
on the exploration diagnostic. Shaded areas represent 95% confidence interval around the mean
for all 50 replicates for each selection scheme. Note that the x-axis is on a log scale

It should also be noted that, while there is a correlation between phylogenetic
diversity and fitness in the aggregate on the exploration diagnostic landscape, there
is not a consistent correlation among individual runs within a selection scheme (see
supplemental material [2]). Eco-EA, for instance, appears to lose phylogenetic diver-
sity as it approaches a good solution, leading to a negative correlation between fitness
and phylogenetic diversity. For most of the other selection schemes, there is no sig-
nificant correlation.’

To understand the precise dynamics driving the relationship between diversity and
success, we measured the transfer entropy of phylogenetic diversity to fitness and
the transfer entropy of phenotypic diversity to fitness. In the exploration diagnostic
landscape, we see that, for the three non-control selection schemes, phylogenetic
diversity is substantially more predictive of future fitness than phenotypic diversity
(see Fig.4.7). The predictive power of both types of diversity weakens substantially
in the other fitness landscapes (see Fig.4.8). However, when there is a discernible
difference, phylogenetic diversity has higher transfer entropy than phenotypic diver-
sity.

3 In the pilot data set, we observed a strong positive correlation between phylogenetic diversity and
fitness for lexicase selection. However, this correlation disappeared when we re-ran the experiments
to generate the final data set.

4 What Can Phylogenetic Metrics Tell us About Useful ... 77

EcoEA Fitness Sharing Lexicase
0.6 1
| |
] i U " .

044 = H | | i | | ‘) H - - B B M
vl | 07 T
[o R . ® o |
o - i ‘
UE_I' 0.0 1 el ' . ' ‘ '
5 Random Tournament 10 1000 100000
@
§ | _
= 0.61] F’henityplc

044 & _g; % & Phylogenetic

[] 1
0.2 [t Phylogenetic
! Phenotypic
0.0 __ . .] . A Amn A o . _'.a.
10 1000 100000 10 1000 100000
Lag

Fig. 4.5 Transfer entropy between phenotypic and phylogenetic diversity on the exploration
diagnostic. Each boxplot shows the distribution of observed transfer entropies for each direction of
transfer, lag, and selection scheme. Results shown here are for 50 replicate runs of each selection
scheme on the exploration diagnostic. Note that the x-axis is on a log scale

From these results, we can conclude that, for selection schemes that maintain
diversity, phylogenetic diversity “Granger-causes” success to a greater extent than
phenotypic diversity does. We interpret this as strong evidence that phylogenetic
diversity is, in general, more predictive of success than phenotypic diversity (as
measured by phenotypic richness and phenotypic Shannon diversity).

4.4 Conclusion

We have demonstrated that, in the context of evolutionary computation, phylogenetic
diversity metrics capture information information that is substantially different from
the information captured by conventionally used phenotypic diversity metrics (phe-
notypic richness and phenotypic Shannon diversity). The extent of this difference
appears to vary by problem and by selection scheme, but it is evident in (1) the lack
of consistent strong correlation between phenotypic and phylogenetic diversity at a
fixed point in time, (2) the lack of similarity in long-term trends in phenotypic and
phylogenetic diversity, and (3) the fact that phylogenetic diversity is better able to
predict future phenotypic diversity than the other way around.

78

Average trait performance

J. G. Hernandez et al.

1.00 1 //M__M

e

~

(&)
L

st Selection

~ e EcoEA

0.501 T Fitness Sharing
| — Lexicase

/ Random

Tournament

o

n

o
)

/
/ / e

1e+05

0.004 —
10401 1e+03
Generation

Fig. 4.6 Fitness over time for each selection scheme on the exploration diagnostic. Shaded
areas represent 95% confidence interval around the mean for all 50 replicates for each selection
scheme. Note that the x-axis is on a log scale. The y-axis shows the proportion of the maximum

possible fitness achieved

Moreover, our results also suggest that phylogenetic diversity is generally a
stronger driver of success than phenotypic diversity (in an evolutionary computing
context). This finding also varies by selection scheme and by problem, with selection
schemes that maintain diversity showing a stronger relative effect of phylogenetic
diversity than tournament selection does. Impressively, this is true even at very long
time lags; phylogenetic diversity provides predictive information about fitness tens
of thousands of generations in the future.

Taken together, these results suggest that it may be worthwhile for researchers
studying diversity in evolutionary computation to measure phylogenetic diversity in
addition to or instead of phenotypic diversity. Doing so will take us a step closer
to identifying diversity that is helpful to solving a given problem. Additionally,
these results hint at the possibility of using phylogenetic diversity early in a run
of evolutionary computation as a predictor of which runs will go on to be most
successful. Anecdotally, we have found phylogenetic diversity in just the first few
generations to be a useful indicator of whether we have correctly selected parameters

for fitness sharing and Eco-EA.

4 What Can Phylogenetic Metrics Tell us About Useful ... 79

EcoEA Fitness Sharing Lexicase
1.54
1.0 1
H -
0.5 ‘ || ‘
== . m - = -
£ olar et mifl] B A P &
e U
L 10 1000 100000
o Random Tournament
w5 1.51
c
o
=
1.0
05{ _ .+ ¥ T
Phenotypic
0.0 — — — — — E2 Phylogenetic
10 1000 100000 10 1000 100000
Lag

Fig.4.7 Transfer entropy from diversity to fitness for the exploration diagnostic. Each boxplot
shows the distribution of observed transfer entropies for each type of diversity, lag, and selection
scheme. Results shown here are for 50 replicate runs of each selection scheme on the exploration
diagnostic. Note that the x-axis is on a log scale

In this paper, we have barely scratched the surface of phylogenetic metrics that
may be relevant to evolutionary computation. Given our findings thus far, a more
thorough investigation of other phylogeny metrics in the context of evolutionary
computation is warranted. Additionally, future work should evaluate the relationships
between other conventionally used approaches to measuring diversity (e.g., genetic
diversity). As we improve our understanding of these relationships, we may even be
able to use them to make inferences about fitness landscapes [4]. We hope that the
results presented here will inspire others to incorporate a phylogenetic perspective
into their evolutionary computation research.

4.5 Author Contributions

ED conceptualized the questions and experiments in this chapter, wrote the code
for the non-exploration-diagnostic experiments, ran all experiments, analyzed the
data, and wrote the first draft of this chapter. JGH and AL wrote the code for the
exploration diagnostic experiments and assisted with the data analysis and writing.

80 J. G. Hernandez et al.
Count Odds Count Odds Count Odds Count Odds Count Odds
5 Eco-EA Fitness sharing Lexicase Random Toumament
0.44 = .
021 .t ls 7 o FF &R y 35 L5 ’ A 4
0‘04 - e i T i - g = T
Logic-9 Logic-9 Logic-9 Logic-9 Logic-9
06 Eco-EA Fitness sharing Lexicase Random Tournament
04 .8 .
. . i
0.24 . |
oy se §8 o o A5 H e TV CTT 3. T EX
%0‘0, e ~ === o S T A1 sl a3 il cems
f NK Landscape NK Landscape NK Landscape NK Landscape NK Landscape
% - Eco-EA Fitness sharing Lexicase Random Tournament
E 8
F 0.44 e = . o9l ...
o2{ {1, F Rl f
00d == 54 == ! e e : PR
Sorting networks Sorting networks Sorting networks Sorting networks Sorting networks
0.6 Eco-EA Fitness sharing Lexicase Random Toumament
0.4 wiks
= H Ll B9 &1
024 . L == .
oolad Lp o _ _ ° o atasoo
10 100 1000 10 100 1000 10 100 1000 10 100 1000 10 100 1000
Lag
Phenotypic £3 Phylogenetic

Fig.4.8 Transfer entropy from diversity to fitness for complex fitness landscapes. Each boxplot
shows the distribution of observed transfer entropies for each type of diversity, lag, and selection
scheme. Results shown here are for 50 replicate runs of each selection scheme on each landscape.
Note that the x-axis is on a log scale

Acknowledgements We thank members of the MSU ECODE lab, the MSU Digital Evolution lab,
and the Cleveland Clinic Theory Division for the conversations that inspired this work. This research
was supported by the National Science Foundation (NSF) through the BEACON Center (Coop-
erative Agreement DBI-0939454). Michigan State University provided computational resources
through the Institute for Cyber-Enabled Research. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the NSF, UM, or MSU.

References

1. Bressler, S.L., Seth, A.K.: Wiener—granger causality: a well established methodology. Neu-
rolmage 58(2), 323-329 (2011)
2. Dolson, E.: Supplemental material for “What can phylogenetic metrics tell us about useful
diversity in evolutionary algorithms?”” at GPTP 2021 (2021). https://doi.org/10.5281/zenodo.
4733407

https://doi.org/10.5281/zenodo.4733407
https://doi.org/10.5281/zenodo.4733407

4 What Can Phylogenetic Metrics Tell us About Useful ... 81

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Dolson, E., Banzhaf, W., Ofria, C.: Applying ecological principles to genetic programming.
In: Banzhaf, W., Olson, R.S., Tozier, W., Riolo, R. (eds.) Genetic Programming Theory and
Practice XV, pp. 73-88. Springer International Publishing, Cham (2018)

. Dolson, E., Lalejini, A., Jorgensen, S., Ofria, C.: Interpreting the tape of life: ancestry-based

analyses provide insights and intuition about evolutionary dynamics. Artif. Life 26(1), 1-22
(2020)

. Dolson, E., Lalejini, A., Ofria, C.: Exploring genetic programming systems with map-elites.

In: Banzhaf, W., Spector, L., Sheneman, L. (eds.) Genetic Programming Theory and Practice
XVI, pp. 1-16. Springer International Publishing, Cham (2019)

. Dolson, E., Perez, S., Olson, R., Ofria, C.: Spatial resource heterogeneity increases diversity

and evolutionary potential. bioRxiv (2017). https://doi.org/10.1101/148973

. Dolson, E.L., Banzhaf, W., Ofria, C.: Ecological theory provides insights about evolutionary

computation. Peer J Preprints 6, €27,315v1 (2018)

. Goings, S., Goldsby, H.J., Cheng, B.H., Ofria, C.: An ecology-based evolutionary algorithm

to evolve solutions to complex problems. Artif. Life 13, 171-177 (2012)

. Goings, S., Ofria, C.: Ecological approaches to diversity maintenance in evolutionary algo-

rithms. In: IEEE Symposium on Artificial Life, 2009. ALife ’09, pp. 124-130 (2009)
Goldberg, D.E., Richardson, J., Grefenstette, J.J.: Genetic algorithms with sharing for mul-
timodal function optimization. In: Genetic algorithms and their applications: Proceedings of
the Second International Conference on Genetic Algorithms, pp. 41-49. Lawrence Erlbaum,
Hillsdale, NJ (1987)

Granger, C.W.J.: Investigating causal relations by econometric models and cross-spectral meth-
ods. Econometrica 37(3), 424-438 (1969)

Helmuth, T., McPhee, N.F., Spector, L.: Lexicase selection for program synthesis: a diversity
analysis. In: Riolo, R., Worzel, W.P., Kotanchek, M., Kordon, A. (eds.) Genetic Programming
Theory and Practice XIII, Genetic and Evolutionary Computation, pp. 151-167. Springer Inter-
national Publishing (2016)

Helmuth, T., Spector, L.: General program synthesis benchmark suite. In: Proceedings of the
2015 Annual Conference on Genetic and Evolutionary Computation, GECCO 15, pp. 1039—
1046. ACM, New York, NY, USA (2015)

Helmuth, T., Spector, L., Matheson, J.: Solving uncompromising problems with lexicase selec-
tion. IEEE Trans. Evol. Comput. 19(5), 630-643 (2015)

Hernandez, J.G., Lalejini, A., Ofria, C.: An Exploration of exploration: measuring the ability
of lexicase selection to find obscure pathways to optimality (2021). arXiv:2107.09760 [cs]
Isaac, N.J.B., Turvey, S.T., Collen, B., Waterman, C., Baillie, J.E.M.: Mammals on the EDGE:
conservation priorities based on threat and phylogeny. PLOS ONE 2(3), 296 (2007)
Jackson, D.: Promoting Phenotypic Diversity in Genetic Programming. In: Schaefer, R., Cotta,
C., Kvodziej, J., Rudolph, G. (eds.) Parallel Problem Solving from Nature, PPSN XI. Lecture
Notes in Computer Science, pp. 472-481. Springer, Berlin, Heidelberg (2010)

Kassambara, A.: ggpubr: *ggplot2’ Based Publication Ready Plots (2020). https://CRAN.R-
project.org/package=ggpubr. R package version 0.4.0

Kauffman, S., Levin, S.: Towards a general theory of adaptive walks on rugged landscapes. J.
Theor. Biol. 128(1), 11-45 (1987)

Metevier, B., Saini, A.K., Spector, L.: Lexicase selection beyond genetic programming. In:
Banzhaf, W., Spector, L., Sheneman, L. (eds.) Genetic Programming Theory and Practice
XVI, Genetic and Evolutionary Computation, pp. 123—-136. Springer International Publishing,
Cham (2019)

Meyer, P.E.: Infotheo: information-theoretic measures (2014). https://CRAN.R-project.org/
package=infotheo. R package version 1.2.0

Mouret, J., Doncieux, S.: Overcoming the bootstrap problem in evolutionary robotics using
behavioral diversity. In: IEEE Congress on Evolutionary Computation, 2009. CEC’09, pp.
1161-1168. IEEE (2009)

Ofria, C., Dolson, E., Lalejini, A., Fenton, J., Jorgensen, S., Miller, R., Moreno, M.A., Stred-
wick, J., Zaman, L., Schossau, J., Gillespie, L., G, N.C., Vostinar, A.: Empirical (2018). https://
doi.org/10.5281/zenodo.1439475

https://doi.org/10.1101/148973
http://arxiv.org/abs/2107.09760
https://CRAN.R-project.org/package=ggpubr
https://CRAN.R-project.org/package=ggpubr
https://CRAN.R-project.org/package=infotheo
https://CRAN.R-project.org/package=infotheo
https://doi.org/10.5281/zenodo.1439475
https://doi.org/10.5281/zenodo.1439475

82

24.

25.

26.
217.

28.

29.

30.

31.

32.
33.

J. G. Hernandez et al.

Ofria, C., Wilke, C.O.: Avida: a software platform for research in computational evolutionary
biology. Artif. Life 10(2), 191-229 (2004)

Team, R.C.: R: a language and environment for statistical computing. In: R Foundation for
Statistical Computing, Vienna, Austria (2021). https://www.R-project.org/

Schreiber, T.: Measuring information transfer. Phys. Rev. Lett. 85(2), 461-464 (2000)
Sekanina, L., Bidlo, M.: Evolutionary design of arbitrarily large sorting networks using devel-
opment. Genet. Program. Evolvable Mach. 6(3), 319-347 (2005)

Spector, L.: Assessment of problem modality by differential performance of lexicase selection
in genetic programming: a preliminary report. In: Proceedings of the 14th Annual Conference
Companion on Genetic and Evolutionary Computation, pp. 401-408. ACM (2012)

Tucker, C.M., Cadotte, M.W., Carvalho, S.B., Davies, T.J., Ferrier, S., Fritz, S.A., Grenyer, R.,
Helmus, M.R., Jin, L.S., Mooers, A.O., Pavoine, S., Purschke, O., Redding, D.W., Rosauer,
D.F, Winter, M., Mazel, F.: A guide to phylogenetic metrics for conservation, community
ecology and macroecology. Biol. Rev. 92(2), 698-715 (2017)

Tucker, C.M., Davies, T.J., Cadotte, M.W., Pearse, W.D.: On the relationship between phylo-
genetic diversity and trait diversity. Ecology 99(6), 1473-1479 (2018)

Webb, C.O., Ackerly, D.D., McPeek, M.A., Donoghue, M.J.: Phylogenies and community
ecology. Annu. Rev. Ecol. Syst. 33(1), 475-505 (2002)

Wickham, H.: ggplot2: Elegant Graphics for Data Analysis. Springer, New York (2016)

Yao, C.Z., Li, H.Y.: Effective transfer entropy approach to information flow among EPU,
investor sentiment and stock market. Front. Phys. 8, 206 (2020)

https://www.R-project.org/

Chapter 5 ®)
An Exploration of Exploration: i
Measuring the Ability of Lexicase

Selection to Find Obscure Pathways

to Optimality

Jose Guadalupe Hernandez, Alexander Lalejini, and Charles Ofria

Abstract Parent selection algorithms (selection schemes) steer populations through
a problem’s search space, often trading off between exploitation and exploration.
Understanding how selection schemes affect exploitation and exploration within
a search space is crucial to tackling increasingly challenging problems. Here, we
introduce an “exploration diagnostic” that diagnoses a selection scheme’s capac-
ity for search space exploration. We use our exploration diagnostic to investigate the
exploratory capacity of lexicase selection and several of its variants: epsilon lexicase,
down-sampled lexicase, cohort lexicase, and novelty-lexicase. We verify that lexicase
selection out-explores tournament selection, and we show that lexicase selection’s
exploratory capacity can be sensitive to the ratio between population size and the
number of test cases used for evaluating candidate solutions. Additionally, we find
that relaxing lexicase’s elitism with epsilon lexicase can further improve exploration.
Both down-sampling and cohort lexicase—two techniques for applying random sub-
sampling to test cases—degrade lexicase’s exploratory capacity; however, we find
that cohort partitioning better preserves lexicase’s exploratory capacity than down-
sampling. Finally, we find evidence that novelty-lexicase’s addition of novelty test
cases can degrade lexicase’s capacity for exploration. Overall, our findings provide
hypotheses for further exploration and actionable insights and recommendations for
using lexicase selection. Additionally, this work demonstrates the value of selection
scheme diagnostics as a complement to more conventional benchmarking approaches
to selection scheme analysis.

J. G. Hernandez (X)) - A. Lalejini - C. Ofria
Michigan State University, East Lansing, MI, USA
e-mail: herna383 @msu.edu

A. Lalejini
e-mail: lalejini@umich.edu

C. Ofria
e-mail: ofria@msu.edu

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 83
W. Banzhaf et al. (eds.), Genetic Programming Theory and Practice XVIII,

Genetic and Evolutionary Computation,

https://doi.org/10.1007/978-981-16-8113-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8113-4_5&domain=pdf
mailto:herna383@msu.edu
mailto:lalejini@umich.edu
mailto:ofria@msu.edu
https://doi.org/10.1007/978-981-16-8113-4_5

84 J. G. Hernandez et al.

5.1 Introduction

Lexicase-based parent selection algorithms have proven to be highly successful for
finding effective solutions to test-based problems in genetic programming (GP) [10,
15, 34]. Lexicase selection’s success is rooted in its ability to balance strong search
space exploration with simultaneous exploitation. That is, lexicase selection main-
tains meaningfully diverse populations [12, 14] by promoting the coexistence of
subpopulations that are each focused on different aspects of a problem (e.g., on dif-
ferent test cases or selection criteria) [5]. As such, lexicase selection algorithms are
able to explore many promising problem-solving pathways in parallel, optimizing
each until an overall solution is found.

Many genetic programming problems are multi-faceted where the quality of a
candidate solution must be measured according to its performance on a set of test
cases. For such problems, we must decide how to combine performances across
many test cases in order to select promising individuals to produce offspring for
the next generation. Traditional parent selection algorithms assess the quality of an
individual by aggregating their performance on all test cases. The lexicase selec-
tion algorithm, however, chooses each parent based on the relative performances of
candidate solutions on random permutations of the test set. Specifically, each time a
parent is needed, the entire population is considered as candidates for selection, and
the full set of test cases are shuffled; each test case is applied sequentially (in the given
shuffled order) to the current set of candidates, removing all but the best candidates
from consideration until only a single individual remains to be selected [18]. Because
the ordering of test cases is different for each parent selection event, individuals that
perform well on different subsets of problems are able to coexist [5]. Moreover, lex-
icase selection exerts strong selection pressure to optimize each subpopulation, as
only the best candidates on different sequences of test cases are selected.

Indeed, the successes of the original lexicase selection algorithm have inspired
numerous variants, each either specialized for solving different categories of prob-
lems or designed to address potential shortcomings of the original lexicase algorithm
(e.g., computational efficiency). Such variants include epsilon lexicase [24, 25],
down-sampled lexicase [19], novelty-lexicase [22], ALPS lexicase [10], and batch-
lexicase selection [1]. Many of these variants have been rigorously benchmarked on
their problem-solving success and on their ability to maintain phenotypic and phy-
logenetic diversity [7, 12, 13, 37]. However, benchmarking is often performed in
the context of a particular GP system and with the overall goal of measuring perfor-
mance on challenging computational problems (e.g., program synthesis benchmark
problems from [11, 15]). While such benchmarking is critical for understanding the
real-world applicability of a selection scheme, the specific problems used do not
always allow us to disentangle the particular pros and cons of each scheme [21]. For
this paper, we focus on one important aspect of lexicase-based selection schemes:
How do we isolate the exploration capabilities of lexicase selection and its variants?

We introduce an “exploration diagnostic” and use it to test how well a set of par-
ent selection algorithms can explore a simple landscape with many uphill pathways

5 An Exploration of Exploration: Measuring the Ability of Lexicase ... 85

of differing peak fitnesses. Our exploration diagnostic allows for the total number
of possible evolutionary pathways to be tuned, enabling practitioners to find where
an algorithm’s exploratory abilities begin to fall off. First, we verify established
expectations that lexicase selection better facilitates search space exploration than
tournament selection, a more traditional selection algorithm. Next, we evaluate lex-
icase selection on our exploratory diagnostic with an increasing number of possible
pathways identify its exploratory limitations. Finally, we apply our exploration diag-
nostic to four variants of lexicase selection: epsilon lexicase, down-sampled lexicase,
cohort lexicase, and novelty-lexicase selection.

We find that lexicase selection drives performance improvement at each of the
exploration diagnostic difficulty levels that we evaluated. Lexicase selection finds
nearly perfect solutions for fitness landscapes with a small number of pathways to
be explored, and performance gradually declines as the number of possible evolu-
tionary pathways increases. Additionally, we show that lexicase selection can be
sensitive to the ratio between population size and the number of test cases used for
evaluating candidate solutions. For small values of ¢, epsilon lexicase improves the
exploratory capacity of lexicase selection. Random subsampling via either down-
sampled or cohort lexicase degrades exploratory capacity, but cohort partitioning
better preserves lexicase’s exploratory capacity than down-sampling. Finally, we did
not find compelling evidence that novelty-lexicase improves performance on the
exploration diagnostic relative to standard lexicase selection; in fact, the addition of
novelty test cases can substantially degrade lexicase’s diagnostic performance.

5.2 Exploration Diagnostic

Understanding how parent-selection algorithms affect exploration and exploitation
within a search space is crucial to tackling increasingly challenging problems. This
information can help determine what modifications to an evolutionary algorithm
may be needed to improve the likelihood of finding a high quality solution. Different
selection schemes (or other components of an evolutionary algorithm) can alter the
trade-off between exploitation and exploration [6]. An exploitation-only selection
scheme will push the population to the closest optimum and not allow it to explore
other promising regions of the search space. Conversely, an exploration-only selec-
tion scheme will scatter the population across the entire search space but is unlikely
to reach nearby optima. Hence, striking a balance between exploration and exploita-
tion is critical to finding high-quality solutions. Here, we introduce a diagnostic that
challenges selection schemes to explore multiple avenues of a search space, each
with an upward pathway, with the goal of finding the best avenue to hill climb.

We balanced both exploitation and exploration in our diagnostic. Specifically, we
designed a problem with many upward pathways that all have identical slopes, but
vary in total length. Since shorter pathways are always equivalent to the beginning of

86 J. G. Hernandez et al.

Activation Position
Genotype: /-

| 225 | 11 | 809 | 982 | 77.6 | 47.0 | 46.1 | 3255 | 364 | 17.3 |

I I
I I

Phenotype: 1 1

| 00 | 00 | 00 [982] 776 | 470 [461 [325 | 0.0 | 0.0 |

Active Region

Fig. 5.1 An example evaluation with the exploration diagnostic. A candidate solution with a
cardinality of 10 is analyzed. The highest value in its vector is identified as 98.2, and its position is
marked as the beginning of the active region. The next four values are all in a decreasing sequence
(77.6,47.0, 46.1, and 32.5) and are thus all considered part of the active region. The value after that
(36.4) is greater than its predecessor and thus left inactive, closing the active region. All values not in
the active region are expressed in the phenotype as 0.0. The total fitness of the sequence is the sum of
the values in the phenotype or 0.0 + 0.0 + 0.0 +98.2 +77.6 +47.0 + 46.1 + 3254+ 0.0+ 0.0 =
301.4

longer pathways, exploration is critical for finding the longest pathway (which will
lead to the global optimum). In the end, the only way for an evolving population to
determine the length of a pathway is to follow it.

Candidate solutions for this diagnostic are numerical vectors of a designated size
(its “cardinality”—we used 100 as the default cardinality in this work). Cardinality
determines the number of pathways to local optima in the fitness landscape. Each
value in a candidate solution is a floating-point number between 0.0 and 100.0. To
evaluate a candidate solution, we first scan its vector to find the maximum value and
designate its position as the “activation position” for calculating its fitness. From an
intuitive perspective, the activation position defines which peak the candidate solution
is climbing toward. Beginning at the activation position, we sum all consecutive
values that are less than or equal to each previous position. We stop when either
a position is no longer monotonically non-increasing or we reach the end of the
vector. We refer to this consecutive sequence of scored values as the “active region”
of the candidate solution. All values outside of the active region have zero fitness
contribution. The fitness contributions of each position (i.e., each trait) define the
“phenotype” of the candidate solution; two candidate solutions that differ only in
inactive regions will have identical phenotypes. Figure 5.1 shows an example fitness
calculation. Given this search space, the optimal solution will have a 100.0 in every
position of its vector starting from the very first, making the entire candidate solution
active and each value maximized. However, any candidate solution with an activation
position other than the first will not have a pathway to the global optimum that is
reachable via hill climbing alone.

Given the large number of pathways that need to be simultaneously explored,
this diagnostic allows us to compare the exploration capacity of different selec-
tion schemes. Additionally, this diagnostic allows researchers to test the exploration
breaking point of a given selection scheme, as increasing the cardinality of the diag-

5 An Exploration of Exploration: Measuring the Ability of Lexicase ... 87

nostic increases the exploratory capacity needed to find the best activation position.
In this work, we use this diagnostic to test the exploratory limits of lexicase selection
along with a number of its variants.

5.3 Lexicase Selection

Reference [36] introduced the lexicase parent selection algorithm for solving GP
problems that require programs to produce qualitatively different modes of response
for different inputs. Since its introduction, lexicase selection has been demonstrated
to be successful across a broad range of problem domains, including automatic
program synthesis [15], symbolic regression [25], evolutionary robotics [31], genetic
algorithms [29], and learning classifier systems [1].

In lexicase selection, individuals are evaluated on a set of selection criteria (e.g.,
test cases or other types of fitness functions). For each selection event, each member
of the population is initially considered to be a candidate for selection. To select
an individual, lexicase shuffles the set of test cases, and considers each test case in
sequence. In shuffled order, each test case is used to filter the candidates, removing
all but the best individuals from further consideration. This process of winnowing
candidates continues until only one candidate remains to be selected or until all test
cases have been considered; if more than one candidate remains, one is selected at
random. Algorithm 5.1 details the lexicase selection algorithm.

Algorithm 5.1 Lexicase selection for a single parent. Adapted from [18].

1. Mark entire population as current candidates under consideration.

2. Shuffle test_cases into a random order.

3. For each case in test_cases:

a. Evaluate each candidate in candidates on case.
b. Identify the best_score on case of all candidates.

c. Remove each entry from candidates with a score on case worse than best_score.

4. Select a random entry from candidates.

Because the set of test cases are shuffled whenever a parent must be chosen,
individuals that perform well on different partitions of the test set can coexist within
the population [5]. Indeed, this dynamic creates niches where different members of
the population can specialize on different subsets of selection criteria, allowing a
population to simultaneously explore many pathways to solving a given problem.
Moreover, this focus on exploration does not necessarily sacrifice lexicase’s ability
to exploit each pathway since only the best performing individuals are selected for a
given sequence of test cases.

88 J. G. Hernandez et al.

Many variants of lexicase selection have been proposed, each either specialized for
solving a particular type of problem or designed to address potential short comings of
the original lexicase selection scheme. Below, we describe each of the four variants
of lexicase selection examined in this work.

5.3.1 Epsilon Lexicase Selection

Epsilon lexicase selection relaxes the elitism of the filtering step in standard lexicase
selection (step 3c in Algorithm 5.1). When filtering candidates on a given test case,
epsilon lexicase retains all individuals with performances within some threshold
(¢) of the best performance on that test case. The ¢ parameter can be tuned by the
practitioner and can be applied either as a proportion of the optimal performance on
a given test case or as an absolute threshold.

Epsilon lexicase selection specializes standard lexicase selection for problems
where performances on selection criteria are measured using real-valued numbers,
such as symbolic regression problems [25, 34, 37] or evolving robot controllers [30,
31]. The standard lexicase selection algorithm assumes that individuals with equiv-
alent performances on a given test case will have equal scores for that test case.
Inconsequential noise in an individual’s score on a particular test case could result
in arbitrary, but consequential differences in which individuals are selected by the
standard lexicase algorithm. By allowing a small ¢ difference between individuals,
epsilon lexicase addresses this potential problem.

In this work, we vary ¢ to investigate how it affects exploration. Reference [25]
observed that behavioral diversity increases at larger values of €. Given &’s affect on
behavioral diversity, we hypothesize that increasing ¢ will increase the exploration
capacity of epsilon lexicase. However, at too high of an ¢ value, we expect meaning-
ful exploration to degrade. That is, as ¢ increases beyond a certain point, different
adaptive pathways blur together as meaningful differences in test case performances
become indistinguishable.

For simplicity, we apply ¢ as a fixed absolute error threshold in this work. Future
work, however, should investigate how different applications of ¢ further influence
lexicase’s exploration capacity (e.g., semi-dynamic and dynamic applications of ¢
from [24]).

5.3.2 Down-Sampled Lexicase Selection

Down-sampled lexicase applies random subsampling to the selection criteria in order
to reduce the per-generation computational effort required by lexicase selection [7,
19]. Down-sampled lexicase uses a random subset of test cases each generation,
which reduces the number of test cases on which each individual in the population

5 An Exploration of Exploration: Measuring the Ability of Lexicase ... 89

must be evaluated every generation. After down sampling, the standard lexicase
procedure is used to choose parents.

For an equivalent number of total evaluations, down-sampled lexicase allows
practitioners to run their evolutionary computing system for more generations or with
a larger population size; both of which have been shown to improve problem-solving
success [7, 16, 19]. In this work, we investigate how down sampling affects lexicase
selection’s exploratory capacity. While [7] found no evidence that down sampling
reduces phenotypic diversity across a range of program synthesis problems, they
did find that down sampling degrades specialist maintenance. We hypothesize that
down sampling’s negative effect on specialist maintenance harms its exploratory
capacity. Entire categories of test cases may be excluded on any given generation,
and candidate solutions specializing on those test cases may be lost as a result. Such
dynamics may prevent extensive exploration of valuable niches.

5.3.3 Cohort Lexicase Selection

Cohort lexicase partitions the test case set and the population each into an equal
number of cohorts. Each generation, cohort membership is randomly assigned, and
each cohort of candidate solutions is paired with a cohort of test cases. Each cohort of
candidate solutions is evaluated only on the test cases in the paired test case cohort,
which, like down-sampled lexicase, reduces the required number of per-generation
evaluations relative to standard lexicase selection. Unlike down-sampled lexicase,
however, cohort lexicase ensures that every test case in the full set is used every
generation, as each cohort of candidate solutions competes on a different subset of
the full set. To select a parent, cohort lexicase first selects a cohort to choose from;
previous work guaranteed an equal number of parents were selected from each cohort
each generation [7, 19]. Candidate solutions only compete against other solutions
within their respective cohort, and within-cohort competition is arbitrated by the test
cases in the associated cohort of tests.

In this work, we investigate how the number of cohorts that we partition the
population and test set into influences lexicase selection’s capacity for exploration.
For similar reasons to down-sampled lexicase, we expect cohort lexicase selection to
degrade lexicase selection’s exploratory capacity. However, because cohort lexicase
uses every test case in every generation, we expect it to better support exploration
than down-sampled lexicase. As we increase the size of cohorts (and decrease the
number of cohorts), we expect cohort lexicase to approach the exploratory abilities
of standard lexicase selection. This could be due to the fact that as cohort size
increases, the chances of a specialist being paired with the test cases it specializes
on also increases.

90 J. G. Hernandez et al.

5.3.4 Novelty-Lexicase Selection

Novelty-lexicase selection combines standard lexicase selection with novelty search
[22]. Novelty search disregards functional objectives and instead searches for behav-
ioral novelty, steering populations to continuously explore new regions of the search
space [28]. As such, novelty search is argued to be well-suited for solving problems
with deceptive fitness landscapes where local gradients lead away from the global
optimum [27]. Novelty-lexicase selection incorporates ideas from novelty search
into lexicase selection.

Novelty-lexicase selection (as introduced in [22]) requires that the entire popu-
lation be evaluated on all test cases. For each member of the population, novelty-
lexicase selection computes their “novelty score” on each test case. A novelty score
measures how different a candidate solution’s output on a given test case is from the
rest of the population. Here, a candidate solution’s novelty score on a test case equals
the average distance between its output and the k nearest neighbor outputs for that
test case. Novelty-lexicase selection incorporates novelty scores by augmenting the
test case set with an additional novelty test case for every original test case. Using
this augmented set of test cases, the standard lexicase procedure is used to choose
parents.

In this work, we use our exploration diagnostic to compare the exploratory capac-
ity of novelty-lexicase selection (at k =1, 2, 4, 8, 15, 30, and 60) and standard lexi-
case selection (k = 0). Reference [22] found that novelty-lexicase selection generally
maintained more behavioral diversity than standard lexicase selection on several pro-
gram synthesis problems. As such, we expect the addition of novelty score test cases
to improve lexicase selection’s exploratory capacity on our exploration diagnostic.

5.4 Diagnosing the Exploratory Capacity of Lexicase
Selection and Its Variants

We conducted a series of experiments to analyze the exploratory limits of standard
lexicase selection and four of its variants: epsilon lexicase, down-sampled lexicase,
cohort lexicase, and novelty-lexicase. For each experiment, unless stated otherwise,
we evolved populations of 500 numerical vectors on our exploration diagnostic with a
cardinality of 100 for 50,000 generations. Across all experiments, we ran 50 replicates
of each constituent treatment. We initialized populations to the lowest point in the
fitness landscape, vectors of all 0.0s.

When evaluating a candidate solution, we calculated a score associated with each
position in its vector according to the exploration diagnostic (Fig.5.1). We used this
collection of scores as test case qualities for lexicase selection and its variants. For
this work, we report quality directly; for comparison to other studies, note that test
case error is the amount that quality is below 100. When a single fitness value was
required (e.g., for tournament selection), we summed the individual test case qualities
to determine the solution’s aggregate fitness.

5 An Exploration of Exploration: Measuring the Ability of Lexicase ... 91

Selected candidate solutions reproduced asexually, and we applied point-mutations
to offspring at a per-position rate of 0.7%. The magnitude of each mutation was
drawn from a normal distribution with a mean of 0.0 and a standard deviation of
1.0 (N(0, 1)). When mutations would raise a trait to a value x where x > 100, we
rebounded that trait to 200 — x, ensuring that each trait value remained less than or
equal to 100. When mutations would lower a trait below 0.0, we reset that trait to
0.0.

For each replicate of each experiment, we extracted the most performant individual
in the population (i.e., the individual with the highest aggregate score) to compare
across treatments. For different diagnostic cardinalities (i.e., different numbers of
test cases), the range of possible aggregate scores differs; as such, we normalized all
aggregate scores by dividing by the cardinality, which results in a value between 0.0
and 100.0.

To identify the number of pathways being explored by a population, we measured
the number of unique activation positions within each population. Using this mea-
surement, we calculated “activation position coverage” as the fraction of possible
activation positions represented in a population.

For each experiment, we report both mean performance and mean activation
position coverage over time (each with a bootstrapped 95% confidence interval),
and we compare measurements from the final generation across treatments. For each
comparison, we performed a Kruskal-Wallis test to determine if there were signifi-
cant differences; if so, we applied a Wilcoxon rank-sum test to distinguish between
pairs of treatments, applying Bonferroni corrections for multiple comparisons where
appropriate.

The software used to conduct experiments, statistical analyses, experimental data,
and guides for replication are included in our supplemental material [20]. See Sect. 5.6
for more details.

5.4.1 Lexicase Selection Out-Explores Tournament Selection

First, we used the exploration diagnostic to test well-established expectations that
lexicase selection improves search space exploration relative to tournament selection.
Unlike lexicase selection, tournament selection does not reliably maintain multiple
niches within a population [5]; as such, we expected it to perform worse than lexicase
selection on the exploration diagnostic. For this experiment, we used tournaments of
eight individuals.

Consistent with our expectations, we found that lexicase selection outperforms
tournament selection on the exploration diagnostic (Fig. 5.2; Wilcoxon rank-sum test:
p < 107%). Early on, populations evolving under tournament selection converge to a
single local optimum in the exploration diagnostic (i.e., a single activation position);
without a mechanism to escape, populations become stuck and fail to continue explor-
ing the search space. Lexicase selection, however, rewards specialists for different
activation positions, allowing the population to continuously explore different evo-

Nel
\S)

J. G. Hernandez et al.

L

Performance over time Final performance

P

Average trait performance T

Average trait performance

0 10000 20000 30000 40000 50000 Lexicase Tournament
Generation Selection

Activation position coverage over time Final activation position coverage

0.25 $ |>

0.00 - -

Activation position coverage ©
°
3
Activation position coverage Q.
°
3

0 10000 20000 30000 40000 50000
Generation Selection

Lexicase Tournament
Selection Lexicase Tournament

Fig. 5.2 Lexicase selection versus tournament selection on the exploration diagnostic. Panels
a and b show performance over time and at the end of 50,000 generations, respectively. Likewise,
panels ¢ and d show activation position coverage over time and at the end of 50,000 generations,
respectively. For panels a and ¢, each line gives the mean value across 50 replicates, and the shading
around each mean gives a 95% confidence interval

lutionary pathways. Indeed, we found that lexicase selection maintains substantially
more “activation-position” specialists than tournament selection (Fig. 5.2; Wilcoxon
rank-sum test: p < 107).

5.4.2 The Exploratory Capacity of Lexicase Selection
Degrades as We Increase Diagnostic Cardinality

Next, we evaluated standard lexicase selection on the exploration diagnostic at cardi-
nalities 10, 20, 50, 100, 500, and 1,000. Cardinality defines the number of potential
pathways that must be explored by a population to guarantee finding the global
optimum; increasing cardinality obscures the path to optimality. Cardinality also
corresponds to the number of test cases (i.e., niches) that individuals can specialize
on. For a fixed population size, increasing the number of test cases decreases the
long-term survival probability of any single specialist under lexicase selection [5],
which could negatively affect lexicase’s capacity to fully explore pathways in the
search space. For these reasons, we expected lexicase selection’s performance on the
exploration diagnostic to degrade as we increased cardinality.

Average trait performance

An Exploration of Exploration: Measuring the Ability of Lexicase ...

Performance over time
100

75

50

25

0 10000 20000 30000

Generation

40000 50000

Activation position coverage over time

1.00
0.75

0.50

93

Final performance

100 . ?F I?P

75

. i

25
=

0
10 20 50 100 200

Cardinality

Average trait performance T

500 1000

Final activation position coverage

o TPy

0.75

0.50

Activation position coverage ©
Activation position coverage Q.

0.25 0.25 é D
=
- ——
0.00 0.00
0 10000 20000 30000 40000 50000 10 20 50 100 200 500 1000
Generation Cardinality
Cardinaltiy — 10 — 20 — 50 — 100 — 200 ~ 500 — 1000

Fig. 5.3 Lexicase selection at a range of exploration diagnostic cardinalities. Panels a and b
show performance over time and at the end of 50,000 generations, respectively. Likewise, panels ¢
and d show activation position coverage over time and at the end of 50,000 generations, respectively.
For panels a and ¢, each line gives the mean value across 50 replicates, and the shading around each
mean gives a 95% confidence interval

Figure 5.3 shows lexicase selection’s performance at each cardinality of the explo-
ration diagnostic. Across all cardinalities, lexicase selection improves performance
over time. Notably, treatments with cardinalities 10, 20, and 50 each perform near
optimally after 50,000 generations, and populations evolved under cardinality 100
perform relatively well. Higher cardinalities (e.g., 200, 500, and 1000), however, per-
form substantially worse (Wilcoxon rank-sum tests: p < 10~*) and appear to need
more time to converge on their maximal performance. These data verify that increas-
ing diagnostic cardinality also increases the exploration diagnostic’s difficulty, as
lexicase selection’s performance degrades as cardinality increases.

We also found that populations evolved at lower diagnostic cardinalities main-
tained a larger coverage of unique activation positions than populations evolved at
higher diagnostic cardinalities (Fig.5.3). Such diversity maintenance likely drove
lexicase selection’s ability to continuously explore pathways in the search space.

In these experiments, we used a population size of 500, resulting in 500 selection
events per generation. In each selection event, scores for vector positions (Fig.5.1)
are prioritized in a random order. Across a population, we expect that positions that
are consistently rewarded should maintain solutions that start at that position. The
optimal solution requires the initial position to be the highest in the population,
but this position may, by chance, never be evaluated first during lexicase selection.
The probability of this occurring varies with cardinality. With a population size of

94 J. G. Hernandez et al.

500 and a vector with 50 positions (i.e., a diagnostic cardinality of 50), there is a
0.004% chance (1 in 25,000) of the initial position never being chosen first in a
generation, making it unlikely to go unselected. Increasing the cardinality to 100,
however, increases the chance for the first position to go unselected to 0.657% (1
in 152)—a much more likely occurrence that may explain the reduced performance
at cardinality 100 relative to cardinality 50. By cardinality 200, the probability for
the first position to go unselected within a given generation rises to 8.157%, an even
more likely occurrence.

One way to combat these dynamics is to increase population size, which would
allow lexicase selection to support higher levels of exploration by reducing the
chances of any given starting position from being skipped over by selection in
any single generation. However, increasing population size can be computation-
ally expensive, as more individuals would need to be evaluated every generation.
Decreasing the depth of evolutionary search by reducing the number of generations
evaluated is one way to balance the cost of increasing population size. For a fixed
computational budget, can increasing population size at the expense of evaluating
fewer generations of evolution pay off under lexicase selection?

5.4.3 Increasing Population Size Can Improve Lexicase
Selection’s Exploratory Capacity

To test whether increasing population size can improve lexicase selection’s
exploratory capacity, we extended the runtime of our experiment and compared
lexicase selection’s performance on the exploration diagnostic (with a cardinality
of 100) at two population sizes: 500 and 1,000. Because increasing population size
increases per-generation computational effort, we ran both conditions for a fixed
number of test case evaluations, evolving populations of 500 individuals for twice as
many generations as populations of 1,000 individuals (1,000,000 and 500,000 gen-
erations, respectively). As such, lineages from 500-individual populations take two
reproductive steps in the search space for every one step reproductive step taken by
a 1000-individual population. This difference may allow the smaller populations to
more rapidly exploit their initial position in the search space. However, if larger pop-
ulations are able to maintain more pathways in the search space, they may eventually
outperform smaller populations.

As expected, we found that increasing population size allows lexicase selection to
maintain more starting positions for the entire duration of our experiment (Fig.5.4).
Smaller populations initially outperform larger populations (given a fixed compu-
tational budget); however, despite running for fewer total generations, larger popu-
lations eventually outperform the smaller populations (Fig. 5.4; Wilcoxon rank-sum
test: p < 10~%). These data suggest that, for a fixed number of test case evaluations,
we can indirectly tune lexicase selection’s level of search space exploitation and
exploration by adjusting our allocation of computational resources between genera-
tions of evolution and population size.

5 An Exploration of Exploration: Measuring the Ability of Lexicase ... 95

Performance over time
100

Final performance

100 *|> $ﬁ

75 75

50 50
25 25

0

Average trait performance O
Average trait performance T

0e+00 1e+10 2e+10 3e+10 4e+10 5e+10 500 1000
Evaluations Population Size

Activation position coverage over time Final activation position coverage

v =

0.25 - |>

Activation position coverage ©
Activation position coverage Q.

0e+00 1e+10 2e+10 3e+10 4e+10 5e+10
Evaluations Population size

500 1000
Population Size 500 1000

Fig. 5.4 Lexicase selection’s performance on the exploration diagnostic at different popula-
tion sizes. Panels a and b show performance over time and at the end of the experiment, respectively.
Likewise, panels ¢ and d show activation position coverage over time and at the end of the experi-
ment, respectively. For panels a and ¢, each line gives the mean value across 50 replicates, and the
shading around each mean gives a 95% confidence interval

5.4.4 Relaxing Lexicase Selection’s Elitism Can Improve
Exploration

As discussed in Sect.5.3.1, epsilon lexicase relaxes the elitism of lexicase selection.
To test whether this relaxation of elitism affects exploration, we compared stan-
dard lexicase selection and epsilon lexicase selection on the exploration diagnostic.
Specifically, we evolved 50 replicate populations at each of the following ¢ values:
0.0 (standard lexicase), 0.1, 0.3, 0.6, 1.2, 2.5, 5.0, and 10.0.

Epsilon lexicase with small values of ¢ (0.1 and 0.3) outperforms standard lex-
icase selection on the exploration diagnostic (Fig.5.5; Wilcoxon rank-sum tests:
p < 107*). Extreme values of ¢ (5.0 and 10.0) significantly degrade performance
relative to standard lexicase selection (Wilcoxon rank-sum tests: p < 10~%). Inter-
estingly, intermediate values of ¢ (0.6 and 1.2) perform best during the first approx-
imately 20,000 generations, but are eventually outperformed by treatments with
smaller values of ¢. Unlike previous experiments, the relative levels of activation
position coverage among conditions does not correspond with diagnostic perfor-
mance.

In general, epsilon lexicase is expected to have two main advantages over standard
lexicase selection [25]: (1) it allows small amounts of noise in the evaluation data to be

el
N

J. G. Hernandez et al.

o

Performance over time
100

Final performance

?P i ap P

. b

25

100

75

50

25

= o

Average trait performance Q)
Average trait performance

0

0 10000 20000 30000 40000 50000 0 01 03 06 12 25 5 10
Generations Epsilon
Activation position coverage over time

1.00

Final activation position coverage
1.00
0.75 0.75

0.50 0.50

Activation position coverage ©

Activation position coverage Q.

025 025 é[> ?& +|>¢b %D éDﬁD éb
0.00 0.00
0 10000 20000 30000 40000 50000 0 01 03 06 12 25 5 10
Generations Epsilon
Epsilon 0 0.1 0.3 06 1.2 25 5 10

Fig. 5.5 Epsilon lexicase selection’s performance on the exploration diagnostic at a range of
& values. Panels a and b show performance over time and after 50,000 generations of evolution,
respectively. Likewise, panels ¢ and d show activation position coverage over time and after 50,000
generations of evolution, respectively. For panels a and ¢, each line gives the mean value across 50
replicates, and the shading around each mean gives a 95% confidence interval

ignored, and (2) it prevents nearly identical scores from determining which candidate
solutions win, potentially allowing for greater coexistence. While the first mechanism
cannot be at play here (since all scores are deterministic), the second advantage
could provide additional support for solutions further along a given pathway. That is,
solutions that begin optimizing at an earlier point in their vector, by definition, must
have slightly lower values for later positions in their activated region. In standard
lexicase, when two solutions had overlapping activation regions, the one that start
later would have an advantage at all overlapped sites. In epsilon lexicase, however,
the earlier start (i.e., the one with more long-term potential) now has a better chance
to pass lexicase selection’s selective filter.

5.4.5 Down-Sampling Degrades Lexicase Selection’s
Exploratory Capacity

Next, we investigated whether down-sampling affects lexicase selection’s exploratory
capacity by comparing the performance of lexicase selection at a range of sampling
rates: 100% (standard lexicase), 50%, 20%, 10%, 5%, 2%, and 1%. For example,

5 An Exploration of Exploration: Measuring the Ability of Lexicase ... 97

a Performance over time b Final performance

® 100 @ 100

o (5]

2 2 QD

<]

g 75 g 75

s %

Q 50 o 50

= =

@© ©

E=] =]

o 2 o 2 ﬁﬁ

jo2} jo2} L

g 0 g . H> e Y .

> >

< 0.0e+00 5.0e+08 1.0e+09 1.5e+09 2.0e+09 2.5e+09 < 100% 50% 20% 10% 5% 2% 1%
Evaluations Sampling rate

Activation position coverage over time
1.00

Final activation position coverage
1.00
0.75 0.75

0.50 0.50

0.25 # |>

0.00

0.25

S T N A

0.00

Activation position coverage €
Activation position coverage Q.

0.0e+00 5.0e+08 1.0e+09 1.5e+09 2.0e+09 2.5e+09 100% 50% 20% 10% 5% 2% 1%
Evaluations Sampling rate
Sampling rate 100% 50% 20% 10% 5% 2% 1%

Fig. 5.6 Down-sampled lexicase selection’s performance on the exploration diagnostic at a
range of subsampling rates. Panels a and b show performance over time and at the end of the
experiment, respectively. Likewise, panels ¢ and d show activation position coverage over time and
at the end of the experiment, respectively. For panels a and ¢, each line gives the mean value across
50 replicates, and the shading around each mean gives a 95% confidence interval

a 10% sampling rate means that each generation we randomly selected 10 of the
100 possible test cases (for a diagnostic cardinality of 100) to be used for parent
selection. Down-sampling reduces the per-generation computational effort required
for parent selection by conducting fewer test case evaluations (Sect. 5.3.2). For a fair
comparison across different sampling rates, we limited the computational budget to
a maximum of 2.5 x 10° test case evaluations by varying the number of generations
of evolution for each subsampling rate (100%: 50,000 generations, 50%: 100,000
generations, 20%: 250,000 generations, 10%: 500,000 generations, 5%: 1,000,000
generations, 2%: 2,500,000 generations, and 1%: 5,000,000 generations).

Any amount of down-sampling significantly degraded lexicase selection’s perfor-
mance on the exploration diagnostic for the allotted computational budget (Fig.5.6;
Wilcoxon-rank sum tests: p < 10™%). Down-sampled lexicase selection’s drop in
performance is likely attributed to frequent mismatches between candidate solutions
and the test cases that they are specialized on. As the proportion of test cases used
in each generation decreases, so too does the probability of a solution encountering
the same set of test cases for multiple generations in a row. As such, a solution has
a reduced chance of encountering the test cases for which it is most optimized [7].
These dynamics will repeatedly remove solutions with small active regions, thereby
reducing population diversity. Indeed, we found that down-sampling substantially

98 J. G. Hernandez et al.

reduces the number of activation position specialists represented in the population
(Fig.5.6; Wilcoxon rank-sum tests: p < 10™). In fact, any down-sampling used
appears to have a strong negative effect, substantially reducing performance in all
cases.

We repeated this experiment, except we increased population size instead of
increasing generations of evolution for down-sampled lexicase; that is, we ran each
condition for an equivalent number of generations but differing population sizes to
maintain a fixed number of evaluations. We report these data in our supplemental
material [20]. Overall, the patterns were similar to that of increasing generations
of evolution. Initially, down-sampled lexicase outperforms standard lexicase on the
exploration diagnostic; however, standard lexicase eventually outperforms down-
sampled lexicase across all subsampling rates [20].

5.4.6 Cohort Partitioning Degrades Lexicase Selection’s
Exploratory Capacity

Next, we evaluated whether partitioning the population and test cases into cohorts
affects the exploration capacity of lexicase selection. We compared the performance
of standard lexicase to that of cohort lexicase at a range of cohort sizes (given as
the proportion of the population and the set of test cases used in each cohort): 100%
(standard lexicase), 50%, 20%, 10%, 5%, 2%, and 1%. For example, a cohort size
of 10% means that the population (of 500 individuals) is divided into 10 cohorts of
50 individuals each, and the test cases (100 total) are also divided into those same
10 cohorts, with 10 test cases in each. Like down-sampled lexicase, cohort lexi-
case reduces the per-generation computational effort required for parent selection by
evaluating each cohort of candidate solutions on only one of the test case cohorts
(Sect.5.3.3). Likewise, for fair comparison across different cohort sizes, we limited
the computational budget to a maximum of 2.5 x 10° test case evaluations by varying
the number of generations of evolution for each cohort size (100%: 50,000 genera-
tions, 50%: 100,000 generations, 20%: 250,000 generations, 10%: 500,000 gener-
ations, 5%: 1,000,000 generations, 2%: 2,500,000 generations, and 1%: 5,000,000
generations).

As with down-sampled lexicase, any level of cohort partitioning degrades lex-
icase’s performance on the exploration diagnostic for the allotted computational
budget (Fig.5.7; Wilcoxon rank-sum tests: p < 10~%). However, cohort lexicase
does not appear to degrade lexicase selection’s performance to the same degree as
down-sampled lexicase for a given subsampling rate (Fig.5.6). Moreover, standard
lexicase took longer (more total evaluations) to outperform cohort lexicase than to
outperform down-sampled lexicase. These data suggest that cohort partitioning (with
intermediate levels of partitioning) may be a better method of random subsampling
in the context of lexicase selection.

5 An Exploration of Exploration: Measuring the Ability of Lexicase ... 99

Performance over time Final performance

4 ?PW D

25

100

=)
=3

P e

Average trait performance
3
Average trait performance T

0.0e+00 5.0e+08 1.0e+09 1.5e+09 2.0e+09 2.5e+09 100% 50% 20% 10% 5% 2% 1%

Evaluations Cohort size

Activation position coverage over time Final activation position coverage

1.00

o
S

e
3
o

0.75
0.50

0.25 é|>

0.00

o
i
o

AR s e s 4D

3
o
S

Activation position coverage O
8
Activation position coverage Q.

0.0e+00 5.06+08 1.0e+09 1.56+09 2.0e+09 2.5e+09 100% 50% 20% 10% 5% 2% 1%
Evaluations Cohort size
Cohort size 100% 50% 20% 10% 5% 2% 1%

Fig. 5.7 Cohort lexicase selection’s performance on the exploration diagnostic at a range of
partitioning rates. Panels a and b show performance over time and at the end of the experiment,
respectively. Likewise, panels ¢ and d show activation position coverage over time and at the end of
the experiment, respectively. For panels a and ¢, each line gives the mean value across 50 replicates,
and the shading around each mean gives a 95% confidence interval

We repeated this experiment, except we increased population size instead of
increasing generations of evolution for cohort lexicase; that is, we ran each con-
dition for an equivalent number of generations but differing population sizes to
maintain a fixed number of evaluations. We report these data in our supplemental
material [20]. The overall patterns were qualitatively different and warrant further
exploration in future work. We found no compelling evidence that cohort lexicase
outperformed standard lexicase in the given computational budget; however, we did
find that populations evolving under cohort lexicase (with larger population sizes)
maintained more activation position coverage than standard lexicase selection [20].
Further, some of the cohort sizes were on an upward trajectory when the runs fin-
ished and may eventually outperform standard lexicase given a larger computational
budget.

5.4.7 Cohort Lexicase Out-Explores Down-Sampled Lexicase

Next, we independently verified that cohort lexicase out-explores down-sampled
lexicase on the exploration diagnostic. To do so, we compared the performance of
cohort lexicase and down-sampled lexicase with their most performant parameteri-

(=3
(=)

J. G. Hernandez et al.

Performance over time Final performance

il

=)
S}
=)
S

~
a

~
a

a
S

N
o
N
o

-

0 25000 50000 75000 100000 Cohort lexicase ~ Down-sampled lexicase
Generations Selection

o

Average trait performance o
°

Average trait performance
a
3

Activation position coverage over time Final activation position coverage

1.00 1.00

0.75 0.75

0.50 0.50

Activation position coverage ©
Activation position coverage Q.

0.25 0.25
0 25000 50000 75000 100000 Cohort lexicase Down-sampled lexicase
Generations Selection
Selection — Cohort lexicase — Down-sampled lexicase

Fig. 5.8 Down-sampled versus cohort lexicase on the exploration diagnostic. Panels a and b
show performance over time and at the end of the experiment, respectively. Likewise, panels ¢ and
d show activation position coverage over time and at the end of the experiment, respectively. For
panels a and c, each line gives the mean value across 50 replicates, and the shading around each
mean gives a 95% confidence interval

zations: a 50% cohort size and a 50% sampling rate, respectively. We again limited
the computational budget to a maximum of 2.5 x 10 test case evaluations (100,000
generations of evolution for both conditions), and we ran 50 new replicates of each
condition for comparison.

As expected given Figs. 5.6 and 5.7, cohort lexicase outperformed down-sampled
lexicase by a substantial margin for the given computational budget (Fig.5.8;
Wilcoxon rank-sum test: p < 10~*). Interestingly, down-sampled lexicase appears
to briefly outperform cohort lexicase in the first few thousand generations but is
quickly overtaken by cohort lexicase. Both cohort and down-sampled lexicase offer
equivalent per-generation evaluation savings, but cohort lexicase uses every test case
for parent selection in every generation. This could play a role in problem-solving
success, as a test case that rewards exploration at any given activation position in the
exploration diagnostic is used every generation. Indeed, populations evolving under
cohort lexicase selection maintained a higher diversity of activation positions than
populations evolving under down-sampled lexicase selection (Fig.5.8; Wilcoxon
rank-sum test: p < 107%).

Previous work predicted the potential for such differences between cohort and
down-sampled lexicase. Reference [7] found that cohort lexicase better maintained
phylogenetic diversity than down-sampled lexicase, as phylogenies coalesced less

5 An Exploration of Exploration: Measuring the Ability of Lexicase ... 101

frequently under cohort lexicase selection (maintaining deeper, more divergent
branches). Despite this difference in diversity maintenance, [7] did not find sig-
nificant differences in problem-solving success across a set of program synthesis
benchmark problems, which suggests that the test cases used in these benchmark
problems were more robust to random subsampling than the test cases for the explo-
ration diagnostic. Indeed, each individual test case for the exploration diagnostic
uniquely represents a single activation position; that is, test cases are minimally
redundant with one another. In many program synthesis benchmark problems, how-
ever, individual test cases are often intentionally redundant to others, differing only
in the particular values of their inputs and outputs and not necessarily different in
the functional specialization they reward. Such redundancies prevent candidate solu-
tions from memorizing particular input-output pairings, forcing candidate solutions
to generalize in order to achieve high fitness across redundant test cases. This detail
could explain why the exploration diagnostic reveals substantial performance differ-
ences between cohort and down-sampled lexicase where more standard benchmark
problems failed to do so.

5.4.8 Novelty Test Cases Degrade Lexicase Selection’s
Exploratory Capacity

Finally, we evaluated how incorporating novelty test cases into lexicase selection
impacts exploration. We compared the performance of standard lexicase to that of
novelty-lexicase for a range of k-nearest neighbors: O (standard lexicase), 1, 2, 4, 8,
15, 30, and 60.

Contrary to our expectations, we found that the addition of novelty test cases
degrades performance on the exploration diagnostic in all cases (Fig.5.9; Wilcoxon
rank-sum test: p < 10~%). Though, novelty-lexicase generally maintains similar lev-
els of activation position diversity in the population relative to standard lexicase, and
by the end of the experiment, some parameterizations of novelty lexicase maintain
more activation positions, though none of the differences appear to be substantial
(Fig.5.9).

Novelty search favors solutions that have never been seen before, regardless of
their impact on fitness. Based on previous studies, we expected novelty-lexicase to
outperform standard lexicase on the exploration diagnostic [22]. However, novelty-
lexicase appears to hinder lexicase’s ability to fully exploit pathways in the diagnos-
tic’s search space.

While past work has demonstrated that novelty search can be effective at pro-
ducing solutions for complicated problems, the exploration diagnostic does not have
any of the hidden intricacies that novelty search excels at disentangling. Indeed, nov-
elty search appears to thrive under conditions where there are more non-linearities
between genotype and phenotype. The underlying representation used here is pur-
posely simple numerical vectors as opposed to an artificial neural network [27] or

S
3]

Performance over time
100

75

50

J. G. Hernandez et al.

o

Final performance

P

=)
=3

~
a

»
o

Average trait performance @
Average trait performance

o

3

o

0 10000 20000 30000 40000 50000 0 1 2 4 8 15 30 60

Generations k

Activation position coverage over time
1.00

Final activation position coverage

NN N

0.25

0.00
0 10000

Activation position coverage @
Activation position coverage @

20000 30000 40000 50000

Generations k
k 0 1 2 4 8 15 30 60

Fig. 5.9 Novelty-lexicase selection’s performance on the exploration diagnostic at a range of
nearest-neighbor parameterizations. Panels a and b show performance over time and after 50,000
generations of evolution, respectively. Likewise, panels ¢ and d show activation position coverage
over time and after 50,000 generations of evolution, respectively. For panels a and ¢, each line gives
the mean value across 50 replicates, and the shading around each mean gives a 95% confidence
interval

PushGP [22] where internal architectures can change and qualitatively different out-
puts are possible. For example, in this case, all sites in a genome are optimal at
one end of their range of values, whereas most complex problems are assumed to
have pockets of solutions throughout the genotype-phenotype map. Additionally, our
results also used a single, limited form of novelty lexicase. We did not use a seed
bank (the importance of which has previously been stressed), and we used k-nearest
neighbors euclidean distances to measure novelty instead of a direct measure of
behavioral uniqueness. These differences in problems may shine a light as to why
novelty-lexicase did not outperform standard lexicase selection on the exploration
diagnostic.

Our results from varying diagnostic cardinality (Sect. 5.4.2) may also offer insights
into the unexpectedly poor performance of novelty-lexicase selection. Novelty-
lexicase selection increases the number of test cases used for parent selection (in this
work, doubling the number of test cases from 100 to 200). Increasing the number
of test cases (without simultaneously increasing the population size) is not without
cost, degrading specialist maintenance and performance on the exploration diagnos-
tic (Fig. 5.3). This dynamic is likely to be at play in our novelty-lexicase experiment,
as population size was constant for both standard lexicase and novelty-lexicase selec-
tion.

5 An Exploration of Exploration: Measuring the Ability of Lexicase ... 103

5.5 Conclusion

In this work, we introduced a new diagnostic to investigate the exploratory limits of
lexicase selection along with several of its variants: epsilon lexicase, down-sampled
lexicase, cohort lexicase, and novelty-lexicase. First, we verified well-established
expectations that lexicase selection better facilitates search space exploration than
tournament selection. Across all exploration diagnostic difficulty levels (i.e., car-
dinalities), lexicase selection drove improvements in performance (Fig.5.3), while
tournament selection repeatedly failed to escape early local optima (Fig.5.2). As we
increased the cardinality of the diagnostic, lexicase selection’s specialist maintenance
and overall performance waned. Conditions with larger diagnostic cardinalities used
more test cases to evaluate individuals, and as such had more possible specialists
(i.e., niches). Given a fixed population size, lexicase maintained a smaller fraction
of possible specialists as the number of possible niches increased, which, in turn,
decreased overall performance (Fig.5.3).

Interestingly, we found that allocating a computational budget (i.e., candidate
solution evaluations) toward increasing generations versus increasing population size
is not necessarily a straightforward choice when using lexicase selection. In our case,
a larger population size enabled better specialist maintenance and ultimately higher
performance on the exploration diagnostic with standard lexicase (Fig.5.4). This
finding is interesting in light of [17]’s work investigating the problem-solving benefits
of down-sampled lexicase; on a suite of program synthesis problems, Helmuth and
Spector found that some problems benefited from an increased population size (at the
cost of running for fewer generations), some problems benefited from an increase
in generations, and most problems were unaffected by their choice of increasing
population size versus generations evaluated.

Overall, these results suggest that lexicase selection can be sensitive to expand-
ing the set of test cases used for evaluation, especially if each test case uniquely
represents a distinct, desirable trait. Moreover, our results suggest the importance
of more deeply examining the benchmark problems that we use and the character-
istics of the search spaces that they represent. Given a fixed computational budget,
why do some problems benefit from running deeper evolutionary searches while
others benefit from increased population sizes under lexicase selection? For many
problems, different categories of test cases have uneven representation in the test
set. We hypothesize that the distribution of test cases among categories plays a role
in lexicase selection’s success and the optimal balance between population size and
depth of search (generations of evolution). For example, if the number of test cases is
similar to population size, lexicase selection may fail to maintain specialists on cat-
egories that are underrepresented in the test cases and instead favor overrepresented
categories. In future work, we will develop novel diagnostic tools for investigating
the sensitivity of selection schemes to test case set composition.

We found that each of the lexicase variants that we evaluated—epsilon lexicase,
down-sampled lexicase, cohort lexicase, and novelty-lexicase—affected lexicase
selection’s exploratory capacity. For small values of ¢, epsilon lexicase outperformed

104 J. G. Hernandez et al.

standard lexicase selection on the exploration diagnostic, while large values of ¢
substantially degraded performance. Surprisingly, we found that novelty-lexicase
degrades performance on the exploration diagnostic relative to standard lexicase
selection.

Our experiments are also the first to demonstrate consequential differences
between down-sampled and cohort lexicase selection, as previous work gener-
ally failed to distinguish the problem-solving performance of these two lexicase
variants [7]. Cohort lexicase substantially outperformed down-sampled lexicase
(Fig.5.8). Both down-sampled and cohort lexicase offer equivalent per-generation
evaluation savings, so our results suggest that cohort partitioning may often be a better
subsampling method than down-sampling for lexicase selection. Future work should
examine whether this difference between cohort partitioning and down-sampling
holds across different selection schemes.

Given equivalent computational budgets, we found that standard lexicase selection
eventually outperforms both cohort and down-sampled lexicase on the exploration
diagnostic (Figs. 5.6 and 5.7). This result diverges from recent benchmarking studies
where subsampling substantially improved performance on a range of program syn-
thesis problems [7, 16, 17]. Future work will develop diagnostic problems to help
identify when subsampling (e.g., via either cohort partitioning or down-sampling) is
likely to improve versus impede lexicase selection’s performance.

Ineach of our experiments, we focused our analyses on performance and activation
position diversity maintenance. Future work should more deeply examine the evo-
lutionary histories of evolving populations using phylodiversity metrics [4]. Along
with this, other parameter values and configurations of each of the variants evaluated
in this work could be tested in order to develop a more complete understanding of
how parameterization affects exploration.

We intend for this work to demonstrate how diagnostics (e.g., the exploration
diagnostic introduced here) can be valuable tools for evaluating the pros and cons of
different selection schemes. We plan to implement a larger suite of selection scheme
diagnostics, each targeted toward evaluating a particular aspect of problem-solving.
Such diagnostics will complement conventional benchmarking experiments in our
community’s effort to understand how different selection schemes steer evolutionary
search.

5.6 Data and Software Availability

Our supplemental material [20] is hosted on GitHub and contains the software,
data analyses, and documentation associated with this work. Our experiments are
implemented using the Empirical library [33], and we used a combination of Python
and R version 4 [35] for data processing and analysis. We used the following R
packages for data wrangling, statistical analysis, graphing, and visualization: ggplot2
[39], tidyverse [38], knitr [42], cowplot [40], viridis [8], RColorBrewer [32], rstatix

https://github.com/jgh9094/GPTP-2021-Exploration-Of-Exploration

5 An Exploration of Exploration: Measuring the Ability of Lexicase ... 105

[23], ggsignif [2], Hmisc [9], and kableExtra [43]. We used R markdown [3] and
bookdown [41] to generate web-enabled supplemental material. Our experimental
data is available on the Open Science Framework at https://osf.io/xpjft/ [26].

Acknowledgements We thank members of the Michigan State University (MSU) Digital Evolution
Laboratory for helpful comments and suggestions on this work. We thank the participants of the
2021 Genetic Programming in Theory and Practice workshop for lively discussion of our work. We
especially thank Lee Spector for encouraging remarks and insightful feedback on our manuscript.
MSU provided computational resources through the Institute for Cyber-Enabled Research. This
work was supported in part by the National Science Foundation (NSF) through the BEACON
Center (DBI-0939454) and a Graduate Research Fellowship to AL (DGE-1424871) and by the
GEM Fellowship Program and Oak Ridge National Laboratory (ORNL). Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of MSU, the NSF, GEM, or ORNL.

References

1. Aenugu, S., Spector, L.: Lexicase selection in learning classifier systems. In: Proceedings of
the Genetic and Evolutionary Computation Conference on - GECCO 19, pp. 356-364. ACM
Press, Prague, Czech Republic (2019)

2. Ahlmann-Eltze, C., Patil, I.: ggsignif: significance brackets for ggplot2. R package version
0.6.2. https://CRAN.R-project.org/package=ggsignif (2020)

3. Allaire, J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., Wickham, H., Cheng, J.,
Chang, W., Iannone, R.: rmarkdown: dynamic documents for R. R package version 2.6. https://
github.com/rstudio/rmarkdown (2020)

4. Dolson, E., Lalejini, A., Jorgensen, S., Ofria, C.: Interpreting the tape of life: ancestry-based
analyses provide insights and intuition about evolutionary dynamics. Artif. Life 26, 58-79
(2020)

5. Dolson, E.L., Banzhaf, W., Ofria, C.: Ecological theory provides insights about evolutionary
computation. preprint, Peer] Preprints. https://peerj.com/preprints/27315 (2018). https://doi.
org/10.7287/peerj.preprints.27315v1

6. Eiben, A.E., Schippers, C.A.: On evolutionary exploration and exploitation. Fundamenta Infor-
maticae 35(1-4), 35-50 (1998)

7. Ferguson, A.J., Hernandez, J.G., Junghans, D., Lalejini, A., Dolson, E., Ofria, C.: Character-
izing the effects of random subsampling on lexicase selection. In: Banzhaf, W., Goodman, E.,
Sheneman, L., Trujillo, L. (eds.) Genetic Programming Theory and Practice XVII, pp. 1-23.
Springer (2020)

8. Garnier, S.: viridis: default color maps from matplotlib. R package version 0.5.1. https://github.
com/sjmgarnier/viridis (2018)

9. Harrell Jr., EE.: Hmisc: harrell miscellaneous. R package version 4.4-2. https://CRAN.R-
project.org/package=Hmisc (2020)

10. Helmuth, T., Abdelhady, A.: Benchmarking parent selection for program synthesis by genetic
programming. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference
Companion, pp. 237-238 (2020)

11. Helmuth, T., Kelly, P.: PSB2: the second program synthesis benchmark suite. In: Proceedings
of the Genetic and Evolutionary Computation Conference, pp. 785-794. ACM, Lille France
(2021)

12. Helmuth, T., McPhee, N.E.,, Spector, L.: Effects of Lexicase and tournament selection on diver-
sity recovery and maintenance. In: Proceedings of the 2016 on Genetic and Evolutionary
Computation Conference Companion - GECCO ’16 Companion, pp. 983-990. ACM Press,
Denver, Colorado, USA (2016)

https://osf.io/xpjft/
https://CRAN.R-project.org/package=ggsignif
https://github.com/rstudio/rmarkdown
https://github.com/rstudio/rmarkdown
https://peerj.com/preprints/27315
https://doi.org/10.7287/peerj.preprints.27315v1
https://doi.org/10.7287/peerj.preprints.27315v1
https://github.com/sjmgarnier/viridis
https://github.com/sjmgarnier/viridis
https://CRAN.R-project.org/package=Hmisc
https://CRAN.R-project.org/package=Hmisc

106

13.

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31

32.

33.

J. G. Hernandez et al.

Helmuth, T., McPhee, N.F., Spector, L.: Lexicase selection for program synthesis: a diversity
analysis. In: Riolo, R., Worzel, W., Kotanchek, M., Kordon, A. (eds.) Genetic Programming
Theory and Practice XIII, pp. 151-167. Springer International Publishing, Cham (2016)
Helmuth, T., Pantridge, E., Spector, L.: On the importance of specialists for lexicase selection.
Genetic Programming and Evolvable Machines (2020)

Helmuth, T., Spector, L.: General program synthesis benchmark suite. In: Proceedings of the
2015 on Genetic and Evolutionary Computation Conference - GECCO 15, pp. 1039-1046.
ACM Press, Madrid, Spain (2015)

Helmuth, T., Spector, L.: Explaining and exploiting the advantages of down-sampled lexicase
selection. In: The 2020 Conference on Artificial Life, pp. 341-349. MIT Press, Online (2020)
Helmuth, T., Spector, L.: Problem-solving benefits of down-sampled lexicase selection (2021).
arXiv:2106.06085 [cs]

Helmuth, T., Spector, L., Matheson, J.: Solving uncompromising problems with lexicase selec-
tion. IEEE Trans. Evol. Comput. 19(5), 630-643 (2015). https://doi.org/10.1109/TEVC.2014.
2362729

. Hernandez, J.G., Lalejini, A., Dolson, E., Ofria, C.: Random subsampling improves perfor-

mance in lexicase selection. In: Proceedings of the Genetic and Evolutionary Computation
Conference Companion, pp. 2028-2031 (2019)

Hernandez, J.G., Lalejini, A., Ofria, C.: Supplemental Material GitHub Repository (2021).
https://doi.org/10.5281/zenodo.5020769

Hooker, J.N.: Testing heuristics: we have it all wrong. J. Heuristics 1, 33-42 (1995)

Jundt, L., Helmuth, T.: Comparing and combining lexicase selection and novelty search. In:
Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1047-1055. ACM,
Prague Czech Republic (2019)

Kassambara, A.: rstatix: pipe-friendly framework for basic statistical tests. R package version
0.7.0. https://rpkgs.datanovia.com/rstatix/ (2021)

La Cava, W., Helmuth, T., Spector, L., Moore, J.H.: A probabilistic and multi-objective analysis
of lexicase selection and e-lexicase selection. Evol. Comput. 27, 377-402 (2019)

La Cava, W., Spector, L., Danai, K.: Epsilon-lexicase selection for regression. In: Proceedings
of the Genetic and Evolutionary Computation Conference 2016, pp. 741-748 (2016)
Lalejini, A.M., Hernandez, J.G.: Experiment data. https://osf.io/xpjft/ (2021). https://doi.org/
10.17605/0OSF.1IO/XPJFT

Lehman, J., Stanley, K.O.: Exploiting open-endedness to solve problems through the search
for novelty. In: Proceedings of the Eleventh International Conference on Artificial Life (Alife
XI). MIT Press (2008)

Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search for novelty
alone. Evol. Comput. 19, 189-223 (2011)

Metevier, B., Saini, A.K., Spector, L.: Lexicase selection beyond genetic programming. In:
Banzhaf, W., Spector, L., Sheneman, L. (eds.) Genetic Programming Theory and Practice
XVI. Genetic and Evolutionary Computation, pp. 123—136. Springer International Publishing,
Cham (2019). https://doi.org/10.1007/978-3-030-04735-1_7

Moore, J.M., McKinley, PK.: A comparison of multiobjective algorithms in evolving
quadrupedal gaits. In: Tuci, E., Giagkos, A., Wilson, M., Hallam, J. (eds.) From Animals
to Animats 14, vol. 9825, pp. 157-169. Springer International Publishing, Cham (2016)
Moore, J.M., Stanton, A.: Lexicase selection outperforms previous strategies for incremental
evolution of virtual creature controllers. In: Proceedings of the 14th European Conference on
Artificial Life ECAL 2017, pp. 290-297. MIT Press, Lyon, France (2017)

Neuwirth, E.: RColorBrewer: colorbrewer palettes. R package version 1.1-2. https://CRAN.
R-project.org/package=RColorBrewer (2014)

Ofria, C., Moreno, M.A., Dolson, E., Lalejini, A., Rodriguez-Papa, S., Fenton, J., Perry, K.,
Jorgensen, S., Hoffman, R., Miller, R., Edwards, O.B., Stredwick, J., G, N.C., Clemons, R.,
Vostinar, A., Moreno, R., Schossau, J., Zaman, L., Rainbow, D.: Empirical: a scientific software
library for research, education, and public engagement (2020). https://doi.org/10.5281/zenodo.
4141943

http://arxiv.org/abs/2106.06085
https://doi.org/10.1109/TEVC.2014.2362729
https://doi.org/10.1109/TEVC.2014.2362729
https://doi.org/10.5281/zenodo.5020769
https://rpkgs.datanovia.com/rstatix/
https://osf.io/xpjft/
https://doi.org/10.17605/OSF.IO/XPJFT
https://doi.org/10.17605/OSF.IO/XPJFT
https://doi.org/10.1007/978-3-030-04735-1_7
https://CRAN.R-project.org/package=RColorBrewer
https://CRAN.R-project.org/package=RColorBrewer
https://doi.org/10.5281/zenodo.4141943
https://doi.org/10.5281/zenodo.4141943

5 An Exploration of Exploration: Measuring the Ability of Lexicase ... 107

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Orzechowski, P., La Cava, W., Moore, J.H.: Where are we now? A large benchmark study of
recent symbolic regression methods. In: Proceedings of the Genetic and Evolutionary Compu-
tation Conference, pp. 1183-1190. ACM, Kyoto Japan (2018)

R Core Team: R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020)

Spector, L.: Assessment of problem modality by differential performance of lexicase selection
in genetic programming: a preliminary report. In: Proceedings of the Fourteenth International
Conference on Genetic and Evolutionary Computation Conference Companion - GECCO Com-
panion ’12, p. 401. ACM Press, Philadelphia, Pennsylvania, USA (2012)

Spector, L., Cava, W.L., Shanabrook, S., Helmuth, T., Pantridge, E.: Relaxations of lexicase
parent selection. In: Banzhaf, W., Olson, R.S., Tozier, W., Riolo, R. (eds.) Genetic Programming
Theory and Practice XV, pp. 105-120. Springer International Publishing, Cham (2018)
Wickham, H.: tidyverse: easily install and load the Tidyverse. R package version 1.3.0. https://
CRAN.R-project.org/package=tidyverse (2019)

Wickham, H., Chang, W., Henry, L., Pedersen, T.L., Takahashi, K., Wilke, C., Woo, K., Yutani,
H., Dunnington, D.: ggplot2: create elegant data visualisations using the grammar of graphics.
R package version 3.3.4. https://CRAN.R-project.org/package=ggplot2 (2021)

Wilke, C.O.: cowplot: Streamlined plot theme and plot annotations for ggplot2. R package
version 1.1.0. https://wilkelab.org/cowplot/ (2020)

Xie, Y.: bookdown: authoring books and technical documents with R markdown. R package
version 0.21. https://github.com/rstudio/bookdown (2020)

Xie, Y.: knitr: A General-Purpose Package for Dynamic Report Generation in R. R package
version 1.30. https://yihui.org/knitr/ (2020)

Zhu, H.: kableExtra: construct complex table with kable and pipe syntax. R package version
1.3.4. https://CRAN.R-project.org/package=kableExtra (2021)

https://www.R-project.org/
https://CRAN.R-project.org/package=tidyverse
https://CRAN.R-project.org/package=tidyverse
https://CRAN.R-project.org/package=ggplot2
https://wilkelab.org/cowplot/
https://github.com/rstudio/bookdown
https://yihui.org/knitr/
https://CRAN.R-project.org/package=kableExtra

Chapter 6 ®)
Feature Discovery with Deep Learning oo
Algebra Networks

Michael F. Korns

Abstract Deep learning neural networks have produced some notable well pub-
licized successes in several fields. Genetic Programming has also produced well
publicized notable successes. Inspired by the deep learning successes with neural
nets, we experiment with deep learning algebra networks where the network remains
unchanged but where the neurons are replaced with general algebraic expressions.
The training algorithms replace back propagation, counter propagation, etc. with a
combination of genetic programming to generate the algebraic expressions and mul-
tiple regression, logit regression, and discriminant analysis to train the deep learning
algebra network. These enhanced algebra networks are trained on ten theoretical clas-
sification problems with good performance advances which show a clear statistical
performance improvement as network architecture is expanded.

6.1 Introduction

Deep learning neural networks have produced some notable successes in several
fields [18-21, 23]. Inspired by the deep learning successes with neural nets, we
extend our Abstract Regression Classification (ARC) system to evolve deep learning
networks of algebraic expressions. These deep learning algebra networks are such
that the network is unchanged but the neurons are replaced with general algebraic
expressions. The new enhanced system is used to train algebra networks on ten the-
oretical classification problems with good performance advances. The performance
advances are analyzed as the network architecture is expanded both by network depth
(i.e. number of hidden layers in the network) and by the width of each network layer
(i.e. number of neurons in a layer). Additionally, the algebra networks will be ana-
lyzed from the vantage point of feature discovery, with the layer width being viewed
as multiple attempts at discovering the same feature, and the network depth being
viewed as attempts to discover multiple new features.

M. F. Korns ()
Korns Associates, San Juan, PR 00911, USA
e-mail: mkorns@korns.com

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 109
W. Banzhaf et al. (eds.), Genetic Programming Theory and Practice XVIII,

Genetic and Evolutionary Computation,

https://doi.org/10.1007/978-981-16-8113-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8113-4_6&domain=pdf
mailto:mkorns@korns.com
https://doi.org/10.1007/978-981-16-8113-4_6

110 M. F. Korns

The problems we are attempting to solve herein are described by the simple matrix
equation in Eq. 6.1 where Y is a numeric vector of N elements and X is a numeric
matrix of N rows and M columns, Hy is an optimized function on X and error is the
term to be minimized. A perfect score would be where error = 0.

Y =Hy(X) +error (6.1)

In this paper we will restrict our research to basic feed-forward deep learning
neural networks with multiple hidden layers and a numeric output layer with a single
neuron. For basic feed forward deep learning neural nets, each deep learning neural
network is composed of an input layer (with multiple inputs), multiple hidden layers
(each with multiple self-similar neurons), and a final output layer (with one or more
neurons). The input layer is a collection of simple numeric values, while each of the
hidden layers and the output layer are a collection of simulated neurons. Examining
the first hidden layer of a simple feed forward neural network we discover a collection
of activation function capped weighted sums of the inputs (which form the simulated
“neurons” in the hidden layer). Each hidden layer of the network contains many of
these simulated neurons [19]. If we arbitrarily choose the hyper tangent function, for
our activation function, each of our first layer neurons can be expressed as a formula
like the following.

Hyj =tanh(cijo+cij1 X1 +cijpXo + - +cijmXm) (6.2)

The X thru X, represent the numeric input values from the input layer. The ¢y o
thru ¢ represent the weights. The term H, ; represents the value of the jth neuron
in the first layer. There are J such weighted sums, simulated neurons, in the first
hidden layer. As we can see, each hidden layer of the neural network contains many
neurons and even more weights.

Examining the second layer of the neural network we encounter another collection
of weighted sums, with inputs from the first layer neurons, which form the “neurons”
in the second layer.

Hy = tanh(coo + coxi Hiy + coxjHyj + -+ - + ey Hiy) (6.3)

The H;, thru H,; represent the J neurons in the first layer which are inputs
to the second layer neurons. The ¢y thru ¢|2K J represent the weights. The term
Hy;, represents the value of the kth neuron in the second layer. There are K such
weighted sums, simulated neurons, in the second hidden layer. This progression
continues neuron by neuron, layer by layer until the final output neuron which is also
a weighted sum, like the following formula.

Hy = tanh(coo + co1 Hy1 +COqHNq+'--+COQHNQ) (6.4)

The Hy, thru Hy ¢ represent the Q neurons in the output layer which are inputs to
the final hidden layer neurons. The ¢ thru ¢ o represent the weights. The term Hy,,

6 Feature Discovery with Deep Learning Algebra Networks 111

represents the value of the gth neuron in the output layer. There are Q such weighted
sums, simulated neurons, in the output layer and the output function, Hy, produces
one numeric output value from the output layer. Deep learning neural networks often
have a large number of neurons in each layer and many layers—often tens and even
hundreds of layers or more. Obviously, as the number of neurons and layers grows,
we can easily have an explosively large number of formulas such as Egs.6.2-6.4
with thousands of weights.

In this paper we view the network from a feature discovery vantage point, let us
describe the set of all input values and all neurons in the network as follows.

S={X1,Xo,....Xm, Hu,..., Hiy, Hy, ..., Hin, ..., Ho1, ..., Hop, Hy, Y}
(6.5)

Expressed as in Eq.6.5, S is the set of all input features and all hidden layer
neurons including the output layer neuron H,, and the target variable Y. S may be
quite a large set, and it is comprehensive. From S we can derive all of the numeric
values of the inputs and each hidden layer neuron, plus the values from output neuron.
In a batch supervised learning context, the numeric values (from the inputs and the
neurons) form an array of rows and columns with each row being a training point
and each column being the values of the inputs, simulated neurons, and the output.
During training, all neurons in the network have their coefficient weights altered to
optimize Eq.6.1.

From S we can infer the dependency properties of the network (even though S
does not contain information about the physical layout of the network). For instance,
a simple dependency graph of the inputs to every neuron formula will identify the
layers in S (any two neurons are in the same layer if they have identical dependency
sets). From the dependency graph we can tell if the network is acyclic (such as a feed
forward network) or if the network contains cycles (i.e. a feedback or other more
complex network). Whether there is a single output or multiple outputs can also be
determined from the collection of neuron formulas. Once we have the set, S, we
no longer need the physical network to train and/or compute the network output—
especially if we are focused on analyzing the network from a feature discovery
vantage point. In this paper we will be adapting all feed forward, acyclic, single
output, neural networks as similarly structured deep learning algebra networks.

Furthermore, examining the set S we can view the neural net hidden layers as
a form of new feature discovery. Each hidden layer neuron is another new feature,
added to the list of original input features, and available as inputs to selected other
up layer neurons based upon the physical network topology. The multiple neuron
formulas in any given layer are analogous to repeated attempts to find relevant new
features from the inputs available to the specified layer (remember all neurons in a
layer have identical dependency sets). Therefore, they represent repeated attempts
to discover new features from the same input data elements but with different ran-
domized learning parameters.

Examining the simulated neurons in Egs. 6.2-6.4 we see that they are quite spe-
cialized and restricted. A great deal of research has gone into enhancing the basic
neuron formula to make it less restrictive, while still keeping the claim to biological

112 M. F. Korns

inspiration [19]. It is inevitable that we may wonder, “What would result from mak-
ing these simple simulated neuron formulas more general?” For instance, we might
want to create a recurrent neural network where the neurons have temporal state [19].
There are many reasons to generalize the simulated neurons in a deep learning neural
network. Assuming one is willing to relinquish the biologically inspired claim, the
most obvious way to generalize these simulated neuron formulas is to make them
activation function capped algebraic general linear models [15] like the following
formula.

p = In n nll'n npLn nPL'n .
Hyy1p = Fuo (oo + €t Fat (S) + cup Fup(S) + -+ - + cup Fup (S)) (6.6)

This formula expresses the generalized linear formula for the pth generalized
neuron in the n + 1s¢ hidden layer. If F,o represents the hyper tangent function
and each F,, represents the pth projection function, then H,;, is our original
simple simulated neuron. However, with proper function substitutions, H,, can
be any algebraic formula we wish—an algebraic neuron. For instance, the following
algebraic neuron is just one of a countably infinite number of formulas which can be
used to represent our new algebraic neurons.

. Ha .
Hyt1p = sin(cpo + cpicos (71) + C,%p[lf(Hsl < Hag, Hy9, X22)) + - -+ + cpplog(Her)]
(6.7)

As one can easily see, the two equations are very similar to Eq. (6.4), the simulated
neuron, being a specific restricted case of the more general algebraic neuron of
Eq.6.6. Algebra neurons form a general class of neural expressions of which the
more restricted simulated neuron is a subset. We can also retain or drop the activation
function with algebra neurons without loss of generality as follows.

Hn-Hp =Cpo + Cnlcannl(S) + Connp(S) +---+ CnPFnP(S) (68)

While the restricted neural net expressions (6.4) are biologically inspired, they
are almost always quite verbose. This verbose property is largely responsible for
the neural net’s reputation as a black box learning methodology. For instance, if the
actual correct answer to a hypothetical regression problem is a simple sine wave.

y =co+ sin(Xs) (6.9)

It will take around ten or more nested basic neuron expressions of format (6.4)
to simulate this simple sine wave and it will be unclear to most human readers what
the multiple nested restricted neurons are trying to accomplish. Whereas the more
general algebraic neuron solution is literally the expression of Eq. 6.9. It is this terse
quality which allows networks of algebraic neurons to be a more human readable
white box learning methodology. On average, it can often take approximately one
hundred to one thousand simple neurons to simulate a single modestly complex
algebraic neuron.

6 Feature Discovery with Deep Learning Algebra Networks 113

Each Abstract Regression Classification (ARC) network algebraic neuron has
one output signal which may be input multiple times to the algebraic neurons in the
layers above. Such algebra neurons can drop the activation function as the remaining
generalized linear model will be no less general [15], or they can keep the activation
function. A simple ARC network might appear as follows.

inputs: x1, X2, ..., Xy (6.10)
hidden neuron: iy = c1o + ¢11 * (x1) + c12 * (cos(x21)) + -+ +c1m * (Jﬁ
X6

(6.11)

Neural networks can learn in an unsupervised or a supervised setting. In this paper
we are concerned only with batch supervised learning. Neural network supervised
training is performed by a selection of learning algorithms which can be applied
“batch” or “online” (i.e. back-propagation, counter-propagation, or RProp to name
few [19]). Most of the popular neural net training algorithms incrementally modify
the entire collection of weights in, Hy, trickling down incrementally, layer by layer
so as to optimize the final output Hy.

ARC Network training proceeds bottom up, layer by layer, where each neuron,
Hoq, is successively optimized against Y. Training ARC networks is predicated on the
fact that algebraic neurons are delivered in the format of general linear models (GLM)
[15]. General linear models are amenable to four types of machine learning which
we use extensively in ARC. These are (a) genetic programming [13] for evolving
concrete algebraic neuron formulas to be optimized, (b) multiple regression [22] for
optimizing algebraic neuron formulas with numeric outputs, (c) logistic regression
[16] for optimizing algebraic neuron formulas with binary outputs, and (c) linear
discriminant analysis [3, 14] for optimizing algebraic neuron formulas with m-class
outputs. The ARC learning algorithm employs industrialized versions of these four
learning algorithms, as described in [11], and proceeds bottom up, one algebraic
neuron expression at a time, adjusting that neuron expression to optimize equation
(EO), then proceeding up through the dependency network hierarchy until the final
output expression is optimized, Hy. Interestingly, one could define an entire ARC
network of restricted simulated neuron algebra expressions and train it in this bottom-
up approach. We will not explore this avenue here; but it would offer an experimental
mechanism for comparing the four bottom-up ARC training algorithms versus the
several popular trickle-down neural network training algorithms.

Neural network architecture determines the total number of neurons in a neu-
ral network. Neurons such as Egs. 6.2—6.4 are fixed unchanging concrete formulas
wherein only the coefficient weights change during training. One can examine a neu-
ral network architecture in advance and compute the maximum number of neurons
that will ever be optimized. Conversely, the action of genetic programming makes
each ARC network an abstract network rather than a fixed concrete network. Algebra
neurons like Eqs. 6.6 and 6.8, together with genetic programming technology, can
best be thought of as neuron factories which act upon abstract neurons such as Eq. 6.6
and produce multiple concrete neurons such as Eq.6.7. ARC networks are abstract

114 M. F. Korns

in nature—composed of neuron factories rather than concrete neurons. During ARC
network training, each abstract neuron factory produces hundreds and thousands of
concrete neurons whose coefficients are then optimized against Y. So not only is
each algebra neuron, on average, far more complex than each neural network neu-
ron, but many hundreds and thousands of concrete algebra neurons are produced and
optimized during ARC network training for every single abstract neuron in the ARC
network architecture. Even a small ARC network can contain tens of thousands of
concrete optimized algebra neurons. Larger ARC networks can contain millions of
concrete optimized algebra neurons.

Eliminating poor performing neurons (pruning) has been shown to be a vital
technique for enhancing neural net training [1]. We have found that pruning of algebra
neurons also enhances ARC network training. In fact, given the large number of
algebra neurons produced in training each ARC network, pruning of poor performing
algebra neurons is essential to increase learning efficiency and to reduce bloat. ARC
algebraic neurons can be pruned based upon any or more of the following: coefficient
strength, principal component analysis, and fitness competition. In this paper, all three
pruning methodologies are employed to the highest levels possible.

Of course, the general nature of the algebraic neuron places the claim of biological
inspiration in jeopardy. Arguments have been made that certain enhancements of the
simple neuron are biologically inspired. For instance, some scientists have argued that
recurrent neurons are biologically inspired. However, few scientists would argue that
the more general algebraic neuron is biologically inspired. In the general algebraic
case, the term neuron is more of a legacy nomenclature than a claim to neuron-
similar behavior. So, if algebraic neurons are not biological inspired, can networks
of algebraic neurons be trained and can they be made useful in any practical sense?

This paper includes a performance comparison of deep learning algebra networks
and five well-known commercially available classification algorithms on ten theoret-
ical noiseless classification problems. The five commercially available classification
algorithms are found in the KNIME system [14], and are as follows: Multiple Layer
Perceptron Learner (MLP); Decision Tree Learner (DTL); Random Forest Learner
(RFL); Tree Ensemble Learner (TEL); and Gradient Boosted Trees Learner (GBTL).
We show that, on the theoretical problems, the two best classification algorithms are
Gradient Boosted Decision Trees (GBTL) and this paper’s deep learning algebra net-
works (ARC). Furthermore, we show that the performance across all ten theoretical
problems consistently improves as the algebra network is expanded both in width
(neurons per layer) and depth (number of layers).

6.2 ARC Background

By way of providing some background, our Abstract Regression Classification
(ARC) system has been under research and development since 2004 [5—12]. ARC
has been heavily industrialized and requires no genetic programming specific input
parameters. Only the names of the training and testing data files and the nature of

6 Feature Discovery with Deep Learning Algebra Networks 115

the target variable (numeric, binary, or nary) need be specified. The selection of the
fitness method, running of multiple genetic programming runs with different ran-
dom number seeds, splicing the different runs together to form a layered network,
determining when the system is finished learning, etc., all of these tasks are hidden
from the user by the ARC system planning module. Only a single ARC training run
is needed per problem, and the ARC system is guaranteed to converge on the best
solution it can find in the finite time and computation resources allotted.

The ARC planning module is based around the Regression Query Language
(RQL) whichis an SQL inspired search language for specifying genetic programming
symbolic regression and classifications runs. The RQL language is briefly described
in [7] and can be used to set in motion single island or multiple island genetic pro-
gramming runs with aged-layered, pareto, elitist, and many other GP methodologies.
The RQL language employs industrialized implementations of (a) genetic program-
ming [13, 21] for evolving algebraic neuron formulas to be optimized, (b) multiple
regression [22] for optimizing algebraic neuron formulas with numeric outputs, (c)
logistic regression [16] for optimizing algebraic neuron formulas with binary outputs,
and (c) linear discriminant analysis [3, 14] for optimizing algebraic neuron formulas
with m-class outputs. The RQL language is quite sophisticated. For instance, one
study includes an RQL specification which is conjectured to be absolutely accurate
on certain scientific problems [7]. The ARC planning module currently contains
a library of numerous predefined RQL searches known to be effective for specific
problems. The planning module applies its library of known RQL searches, based
upon its own heuristic and statistical analysis of the data to be optimized. Each ARC
training run hides thousands of separate genetic programming runs from the user.
Human intervention is not required.

6.3 Regression in Brief

Regression, single and multiple, involves a single dependent variable and one or
more independent variables. It is a statistical technique that develops an optimal
mathematical relationship between one or more real independent variables and a
real dependent variable. Most modern regression tools manage linear regression.
Symbolic regression tools attack the mathematical problem of nonlinear regression
by employing genetic programming.

The canonical generalization of linear regression into nonlinear regression is the
class of Generalized Linear Models (GLMs) as described in [15]. A GLM is a linear
combination of I algebraic functions B;;i =0, ..., I, a dependent variable y, and
an independent data point with M features x = (x¢, X1, X2, ..., Xp—1): such that

y=y&) =co+cBi(x) +c2By(x) + - +cy—1By_1(x) +error (6.12)

116 M. F. Korns

As a broad generalization, GLMs can represent any possible nonlinear formula.
However, the format of the GLM makes it amenable to existing linear regression
theory and tools since the GLM model is linear on each of the algebraic functions B;
(although each algebraic function may be nonlinear). For a given vector of dependent
variables, Y, and a vector of independent data points, X, symbolic regression will
search for a set of algebraic functions and coefficients which minimize error. In [13]
the algebraic functions selected by symbolic regression will be formulas as in the
following examples:

(E12) BO=x3 (E13) Bl =x1+4x4 (E14) B2 = sqrt(x2)/tan(x5/4.56) (E15) B2
= sqrt(x2)/tan(x5/4.56)

By = x3 (6.13)
By =x1 4+ x4 (6.14)
B, = BRVECES (6.15)
tan(33)
B = tanh[cos(x, x 0.2) % (x5 + abs(x1))°] (6.16)

Once a suitable set of algebraic functions B have been selected (via genetic pro-
gramming), we can discover the proper set of coefficients C deterministically using
standard simple or multiple regression [22]. The value of the GLM model is that
one can use standard regression techniques and theory to optimize for the constants
while using genetic programming to search for the optimal algebraic functions.

6.4 Classification in Brief

For all binary classification, we use Logit Regression (LOG) as in [16]. For all M-
Class classification, we use Linear Discriminant Analysis (LDA). Linear discriminant
analysis is a generalization of Fischer’s linear discriminant, which is a method to find
a linear combination of features which best separates K classes of training points [3,
11, 14]. Both LOG and LDA are used extensively in Statistics, Machine Learning,
and Pattern Recognition.

In symbolic classification problems, an N by M matrix of independent training
points, X, is matched with an N vector of dependent values containing only cate-
gorical unordered values between 1 and K. The fitness measure is the classification
error percent (CEP). Linear discriminant analysis is employed as the assisted fitness
training technique in our ARC system. The CEP is the percent of misclassified testing
points (i.e. the count of misclassifications divided by the number of testing points).

Our symbolic classification system outputs K predictor functions (one for each
class). These functions are called discriminants, D (X) ~ Y}, and there is one dis-

6 Feature Discovery with Deep Learning Algebra Networks 117

criminant function for each class. The format of ARC’s discriminant function output
is always as follows.
y =argmax(Dy, D,, ..., Dg) (6.17)

The argmax function returns the class index for the largest valued discrimi-
nant function. For instance if D; = max (D, D», ..., Dg), then i = argmax (D,
Dy, ..., Dg).

A central aspect of LDA is that each discriminant function is a linear variation
of every other discriminant function. For instance, if the ARC symbolic classifi-
cation system produces a candidate with B algebraic neuron functions, then each
discriminant function has the following format:

Do = coo +cor * Bfi +cox % Bfa + -+ cop * Bfp
Dy =cio+cu*xBfi+coxBfa+---+cipxBfp
Dy =co+cini*Bfi +co*xBfy+---+ckp*x Bfs

The K * (B + 1) coefficients are selected so that the ith discriminant function has the
highest value when the y =i (i.e. the class is i). The industrialized LDA technology
ARC uses for selecting these optimized coefficients ¢y to ck p is discussed in more
detail here [10].

6.5 Industrial Regression Classification

The single, multiple, and logit regression plus the linear discriminant analysis algo-
rithms in ARC have been industrialized to handle real world problems. These
quite exacting deterministic algorithms all suffer from their requirement that cer-
tain assumptions about the training data hold true—namely that the data have a
normal distribution, that the training matrices be nonsingular, etc. In cases where the
data does not strictly conform to these assumptions, these deterministic algorithms
can fail or produce inaccurate results. Whenever ARC discovers poorly structured
training data, the deterministic regression classification algorithms are forced into
approximately accurate coefficients. Next a layer of fast evolutionary algorithms is
applied to coerce the approximately accurate coefficients into a more accurate set
of coefficients. These evolutionary algorithms include modified sequential minimal
optimization and bees swarm optimization [4, 17]. These industrial enhancements
create regression classification algorithms which are robust even with poorly formed
training data.

118 M. F. Korns

6.6 Theoretical Test Problems—Classification

A set of ten artificial classification problems are constructed, with no noise, to test the
efficacy of the new ARC deep learning networks. Each of the artificial test problems
is created around an X training matrix filled with random real numbers in the range
[—10.0, +10.0]. The number of rows and columns in each test problem varies from
5000 x 25 to 5000 x 1000 depending upon the difficulty of the problem. The number
of classes varies fromY =0, 1to Y = 0, 1, 2, 3, 4 depending upon the difficulty of
the problem. The test problems are designed to vary from extremely easy to very
difficult. The first test problem is linearly separable with 2 classes on 25 columns.
The tenth test problem is nonlinear multimodal with 5 classes on 1000 columns.

Standard statistical best practices out of sample testing are employed. First the
training matric X is filled with random real numbers in the range [—10.0, +10.0],
and the Y class values are computed from the argmax functions specified below. A
champion is trained on the training data. Next a testing matrix X is filled with random
real numbers in the range [—10.0, 4-10.0], and the Y class values are computed from
the argmax functions specified below.

The argmax functions used to create each of the ten artificial test problems are as
follows:

e Ci: y=argmax(Dy, D;) where Y = 1,2, X is 5000 x 25, and each D; is as

follows:

Dy = 1.57xp — 39.34x; 4+ 2.13x5 + 46.59x3 + 11.54x4
D2 = —1.57)6() + 39.34)61 — 2.13)62 — 46.59)63 — 11.54)64

e Cp: y =argmax(D;, D) where Y = 1,2, X is 5000 x 100, and each D; is as
follows:

Dy = 5.16xp — 19.83x; + 19.83x, +29.31x3 4 5.29x4
Dy = —5.16x0 + 19.83x; — 0.93x; — 29.31x3 + 5.29x4

e C3:y =argmax(Dy, D;) where Y = 1, 2, X is 5000 x 1,000, and each D; is as

follows:

D; = —34.16xp + 2.19x; — 12.73x, 4+ 5.62x3 — 16.36x4
Dy = 34.16xp — 2.19x; 4+ 12.73x, — 5.62x3 4+ 16.36x4

e Cy:y =argmax(Dy, Dy, D3) where Y = 1,2, 3, X is 5,000 x25, and each D;
is as follows:

6 Feature Discovery with Deep Learning Algebra Networks 119

Dy = 1.57 cos xg — 39.34x7, + 2.132 +46.59x7; — 11.54log x4
X3 N

Dy = —0.56 cos xo + 9.34x%) + 5282 — 6.10x3, + 1.48log x,
X3

Ds = 1.37cos xo + 3.62x2 + 4.04-2 + 1.95x3, +9.54log x4
x3

e Cs:y=argmax(Dy, Dy, D3) where Y = 1, 2, 3, X is 5,000 x 100, and each D;
is as follows:

Dy = 1.57 sinxo — 39.34x% + 2.13°2 4 46.59x3, — 11.54log x4
X3
Dy = —0.56sinxo + 9.34x2) + 5.282 — 6.10x3; + 1.48log x,

X3
Ds = 1.37 sinxg — 3.62x2% + 4.0422 + 1.95x3, — 9.54 log x4
X3)

e Co: y =argmax(Dy, Dy, D3) where Y =1, 2,3, X is 5,000 x 1,000, and each
D; is as follows:

Dy = 1.57 tanh xo — 39.34/x10 + 2.122 + 46.59x3, — 11.54log x4
X3)
D = —0.56 tanh xo + 9.34/%10 + 5282 — 6.10x%; + 1.48 log x4
x3

Ds = 1.37tanh xo — 3.62/%10 + 4.04°2 + 1.95x3; — 9.54log x,
X3

e C7: y =argmax(Dy, D, D3, Dy, Ds) where Y = 1,2,3,4,5, X is 5,000 x 25,
and each D; is as follows:

Dy =1. 57(:05(>+9 34x10— +2. 13—10gx8 +46.59x3 22 — 11.541og (xgx10x15)
X2

X21
=—1. 56cos< > + 7. 34x10— +5. 28—10gx3 + 6. 10x13— + 1.481og (x4x10X15)
x21

D3 _231005(>+12 34x10— 7128—10gx8+021x13 +26110g(x4x10x15)
X21 X14 X3

Dy = —0.56 cos (> + 8. 34x10— + 16. 71— logxg — 2. 93x13— + 5.228 log (x4x10X15)

X21

Ds = 1.07 cos (—°> 62x120x—6 ~o0. 04— log xg — 0. 95x]3 + 0.541og (x4x10x15)
X21

e Cg:y =argmax(Dy, Dy, D3, Dy, Ds) whereY = 1,2,3,4,5, Xis 5,000 x 100,
and each D; is as follows:

120 M. F. Korns

D) =1.57 sm(> +9. '54x12— + 2. 13— logxlg + 46. 59x; — — 11.541log (x14x10x15)
X11 X2
= —1.56sin () +17. 34x12— + 5. 28— log x5 + 6. 10x3 — + 1.481og (x1ax10X15)
X11
Ds3 —23lsm<) + 12. 34x12— — 128—10gx13+021x3 +261 log (x14x10X15)
X11 X4

= —0.56sin <) +8.34x zzﬁ +16. 717 log xig — 2. 93x3 = + 5.22810g (X14X10X15)
X11

Ds =1 07sm(> —1.62x% 12— 0. 04— log xig — 0. 95x3 — +O 541og (x14X10X15)
X11 X4

e Cy: y=argmax(Dy, Dy, D3, Dy, Ds) where Y =1,2,3,4,5, X is 5,000 x
1,000, and each D; is as follows:

2
Dy = 1.57sin (x20x11) + 9.34 tanh (*X46) +2.13(x321 — x3) tan x13 + 46.59
X49X672
— 11.541og (x24X120X925)
2
Dy = —1.565in (x20x11) + 7.34 tanh (—x%) +5.28(x321 — x3) tan xyg + 6.10
X49X672
+ 1.48log (x24x120x925)
2
D3 = 2.31sin (x20x11) + 12.34 tanh (—x46) — 1.28(x321 — x3) tan xyg + 0.21
X49X672
+ 2.61 log (x24x120Xx925)
2
= —0.565sin (x20x11) + 8.34 tanh (—x46) +16.71(x321 — x3) tan x13 — 2.93
X49X672
+ 5.228log (x24X120X925)
2
Ds = 1.07sin (xa0x11) — 1.62 tanh (22 x46) — 0.04(x321 — x3) tan x15 — 0.95
X4 X49X672
+ 0.54 log (x24X120x925)

e Cio: y =argmax(Dy, Dy, D3, D4, Ds) where Y =1,2,3,4,5, X is 5,000 x
1,000, and each D; is as follows:

2
D; = 1.57A + 9.34 tanh (—X46) +2.13B 4+ 46.59 ———— — 11.541og (x24X120X925)
X49X672
2
Dy = —1.56A + 7.34 tanh (—X46) +5.28B 4+ 6.10 + 1.481og (x24X120X925)
X49X672
2
D3 =2.31A + 12.34 tanh (7)646) —1.28B +0.21 + 2.61 log (x24X120Xx925)
X49X672
= —0.56A + 8.34 tanh (—X46) +16.71B —2.93 + 5.228 log (x24x120x925)
X49X672
Ds = 1.07A — 1.62 tanh (2 x46) — 0.04B — 0.95 +0.54 1og (x24X120%925)
x4

X49X672

6 Feature Discovery with Deep Learning Algebra Networks 121

with
{sin (x20x11), ifxp < x23

cos (x19, otherwise

and
(x321 — x3) tan xyg, if x10 <0
(x156 — x31)/tanh x,;, otherwise

6.7 Base Performance on the Theoretical Classification
Problems

Here we compare the out of sample CEP testing scores of five well-known com-
mercially available classification algorithms to determine where basic 1-layer ARC
networks rank in competitive comparison. The five commercially available classifica-
tion algorithms are available in the KNIME system [2], and are as follows: Multiple
Layer Perceptron Learner (MLP); Decision Tree Learner (DTL); Random Forest
Learner (RFL); Tree Ensemble Learner (TEL); and Gradient Boosted Trees Learner
(GBTL). The following table lists each classification algorithm in descending order
of average CEP scores on all ten theoretical test problems. The lower the CEP the
more accurate the classification results. The ARCN1 network is composed of 1 hid-
den layer which has 5 algebra neuron factories (width = 5, depth = 1 — which is to
say almost no network and just one training run with five neuron factories) (Fig.6.1).

Test | MLP DTL TEL RFL ARCM GBTL
C1 | 0.0072 | 0.0724 | 0.0496 0.0492 0.0138 0.0308
C2 | 0.0360 | 0.0740 [0.0648 0.0664 0.0116 0.0240
C3 | 0.0724 | 0.0972 | 0.1526 0.1522 0.0132 0.0332
C4 | 0.0472 | 0.0174 | 0.0252 0.0260 0.0194 0.0170
C5 | 03250 | 0.0858 | 0.0946 0.0920 0.0712 0.0530
Co6 | 0.6166 | 0.5396 | 0.6284 0.6286 0.5420 0.3198
C7 | 04598 | 0.2834 | 0.2284 0.2292 0.2272 0.2356
C8 | 04262 | 0.2956 | 0.2248 0.2250 0.2302 0.2340
C9 | 0.6904 | 0.6058 | 0.4334 0.4344 0.4188 0.4286
C10 | 0.5966 | 0.5966 | 0.4352 0.4296 0.4186 0.4286
Avg | 0.3277 | 0.2667 | 0.2337 0.2332 0.2169 0.1804

Fig. 6.1 Test problem CEP testing results before deep learning enhancements

122 M. F. Korns

The top performer overall by a very small margin is the Gradient Boosted Trees
Learner (GBTL). The penultimate performer is the ARCNT1 1-Layer algebra network.
The base ARCNI1 network is composed of 1 layer with 5 algebra neuron factories
producing an average of 51.6 K concrete algebra neurons per test case. Interestingly,
the base ARC network performs reasonably well before deep learning enhancements.

6.8 Thin 2-Layer ARC Performance on the Theoretical
Classification Problems

Here we compare the performance of a thin 2-Layer ARC network with the out of
sample CEP testing scores of five well-known commercially available classification
algorithms to determine where a 2-layer ARC network ranks in competitive compar-
ison. The following table lists each classification algorithm in descending order of
average CEP scores on all ten theoretical test problems. The lower the CEP the more
accurate the classification results. The ARCN2 network is composed of 2 hidden
layers each of which has 40 algebra neuron factories for a total of 80 algebra neuron
factories in the entire network (Fig.6.2).

The top performer overall by a reasonable margin is now the ARCN2 thin 2-
Layer algebra network (width = 40, depth = 2). The Gradient Boosted Trees Learner
(GBTL) has fallen behind. Interestingly, adding just two hidden layers and a total
of 80 algebra neuron factories (40 algebra neuron factories per layer producing an
average of 188.9K concrete algebra neurons per test case) was enough to boost
performance beyond that of the Gradient Boosted Trees Learner (GBTL).

Test | MLP DTL TEL RFL ARCM GBTL ARCM
C1 | 0.0072 | 0.0724 | 0.0496 0.0492 0.0138 0.0308 0.0004
C2 | 0.0360 | 0.0740 | 0.0648 0.0664 0.0116 0.0240 0.0004
C3 | 0.0724 | 0.0972 | 0.1526 0.1522 0.0132 0.0332 0.0022
C4 | 0.0472 | 0.0174 | 0.0252 0.0260 0.0194 0.0170 0.0158
C5 | 0.3250 | 0.0858 | 0.0946 0.0920 0.0712 0.0530 0.0490
C6 | 0.6166 | 0.5396 | 0.6284 0.6286 0.5420 0.3198 0.2518
C7 | 04598 | 0.2834 | 0.2284 0.2292 0.2272 0.2356 0.2264
C8 | 04262 | 0.2956 | 0.2248 0.2250 0.2302 0.2340 0.2238
C9 | 0.6904 | 0.6058 | 0.4334 0.4344 0.4188 0.4286 0.4142
C10 | 0.5966 | 0.5966 | 0.4352 0.4296 0.4186 0.4286 0.4160
Avg | 03277 | 0.2667 | 02337 0.2332 0.2169 0.1804 0.1600

Fig. 6.2 Test problem CEP testing results after thin 2-layer deep learning enhancements

6 Feature Discovery with Deep Learning Algebra Networks 123

6.9 Ultrathin 8-Layer ARC Performance on the
Theoretical Classification Problems

Here we compare the performance of an ultrathin 8-Layer ARC network with the out
of sample CEP testing scores of five well-known commercially available classifica-
tion algorithms to determine where an 8-layer ARC network ranks in competitive
comparison. The following table lists each classification algorithm in descending
order of average CEP scores on all ten theoretical test problems. The lower the CEP
the more accurate the classification results. The ARCN3 network is composed of 8
hidden layers each of which has 10 algebra neuron factories for a total of 80 alge-
bra neuron factories in the entire network (width = 10, depth = 8). On average the
ARCN3 network’s 80 neuron factories produced 1.4 M concrete neurons per test case
(Fig.6.3).

The ARCN2 network and the ARCN3 network have the same total number of
algebra neuron factories. A comparison of their results highlights the difference
between more thin layers or fewer wide layers. A win for the ARCN3 network
would indicate that new feature discovery is important for network performance,
while a win for the ARCN2 network would indicate that mere repetition is important
for network performance. Notice that the dependency set for each of the layer 1
algebra neurons is the set X. While the dependency set for all of the layer 2 algebra
neurons is the set X U H; where H, is the output of all of the layer 1 algebra neurons
after pruning. The difference between the ARCN2 network and the ARCN3 network
is that the layer 2 thru 8 algebra neurons in the ARCN3 network have access to the
outputs of more previous neurons because the network is deep instead of wide.

The top performer overall by a slight margin is now the ARCN3 ultrathin 8-
Layer algebra network (even though it has exactly the same total number of algebra
neurons as the ARCN2 network). Whether this slight advantage persists for other

Test | MLP DTL TEL RFL ARCM GBTL ARC™ ARC™
C1 | 0.0072 | 0.0724 | 0.0496 0.0492 0.0138 0.0308 0.0004 0.0000
C2 | 0.0360 | 0.0740 | 0.0648 0.0664 0.0116 0.0240 0.0004 0.0016
C3 | 0.0724 | 0.0972 0.1526 0.1522 0.0132 0.0332 0.0022 0.0026
C4 | 0.0472 | 00174 | 0.0252 0.0260 0.0194 0.0170 0.0158 0.0132
C5 | 0.3250 | 0.0858 0.0946 0.0920 0.0712 0.0530 0.0490 0.0358
C6 | 0.6166 | 0.5396 | 0.6284 0.6286 0.5420 0.3198 0.2518 0.2392
C7 | 04598 | 0.2834 | 0.2284 0.2292 0.2272 0.2356 0.22064 0.2204

C8 | 04262 | 02956 | 0.2248 0.2250 0.2302 0.2340 0.2238 0.2240
C9 | 0.6904 | 0.6058 0.4334 0.4344 0.4188 0.4286 0.4142 0.4162
C10 | 0.5966 | 0.5966 | 0.4352 0.4296 0.4186 0.4286 0.4160 0.4162
Avg | 03277 | 0.2667 0.2337 0.2332 0.2169 0.1804 0.1600 0.1575

Fig. 6.3 Test problem CEP testing results after ultrathin 8-layer deep learning enhancements

124 M. F. Korns

wide network versus thin network architecture and on other test problems will require
further experiments.

6.10 Wide 2-Layer ARC Performance on the Theoretical
Classification Problems

Here we compare the performance of a wide 2-Layer ARC network with the out of
sample CEP testing scores of five well-known commercially available classification
algorithms to determine where a wide 2-layer ARC network ranks in competitive
comparison. The following table lists each classification algorithm in descending
order of average CEP scores on all ten theoretical test problems. The lower the CEP
the more accurate the classification results. The ARCN4 network is composed of
2 hidden layers each of which has 200 algebra neuron factories for a total of 400
algebra neuron factories in the entire network (width = 200, depth = 2) (Fig. 6.4).

The ARCN4 network has 5 times the total algebra neuron factories as the ARCN3
network although its depth is only 25% of the depth of the ARCN4 network. A
comparison of their results highlights the advantages of a few wide layers over more
thin layers. The top performer overall by a slight margin is now the ARCN4 wide
2-Layer algebra network. The Gradient Boosted Trees Learner (GBTL) has fallen
further behind. Interestingly, a network of two wide hidden layers, with 200 algebra
neuron factories per layer, for a total of 400 algebra neuron factories (200 algebra
neuron factories per layer producing an average of 622.6 M concrete algebra neurons
per test case) was enough to boost performance significantly beyond the ARCN3
thin 8-Layer algebra network. Whether this slight advantage persists for other wide
network versus thin network architecture and on other test problems will require
further experiments.

Test | MLP DTL TEL RFL ARCM GBTL ARCM? ARCM | ARCM™
C1 | 0.0072 | 0.0724 | 0.0496 | 0.0492 0.0138 0.0308 0.0004 0.0000 | 0.0000
C2 | 0.0360 | 0.0740 | 0.0648 0.0664 0.0116 0.0240 0.0004 0.0016 | 0.0000
C3 | 0.0724 | 0.0972 | 0.1526 | 0.1522 0.0132 0.0332 0.0022 0.0026 | 0.0008
C4 | 0.0472 | 0.0174 | 0.0252 0.0260 0.0194 0.0170 0.0158 0.0132 | 0.0068
C5 | 0.3250 | 0.0858 | 0.0946 | 0.0920 0.0712 0.0530 0.0490 0.0358 | 0.0190
C6 | 0.6166 | 0.5396 | 0.6284 | 0.6286 0.5420 0.3198 0.2518 0.2392 | 0.2074
C7 | 0.4598 | 0.2834 | 0.2284 | 0.2292 0.2272 0.2356 0.2264 0.2264 | 0.2262
C8 | 04262 | 0.2956 | 0.2248 0.2250 0.2302 0.2340 0.2238 0.2240 | 0.2230
C9 | 0.6904 | 0.6058 | 0.4334 | 0.4344 0.4188 0.4286 0.4142 0.4162 | 04148

C10 | 0.5966 | 0.5966 | 04352 0.4296 0.4186 0.4286 0.4160 0.4162 | 04156

Avg | 03277 | 0.2667 | 0.2337 0.2332 0.2169 0.1804 0.1600 0.1575 | 0.1513

Fig. 6.4 Test problem CEP testing results after wide 2-layer deep learning enhancements

6 Feature Discovery with Deep Learning Algebra Networks 125

6.11 Wide 8-Layer ARC Performance on the Theoretical
Classification Problems

Here we compare the performance of a wide 8-Layer ARC network with the out of
sample CEP testing scores of five well-known commercially available classification
algorithms to determine where a wide 8-layer ARC network ranks in competitive
comparison. The following table lists each classification algorithm in descending
order of average CEP scores on all ten theoretical test problems. The lower the CEP
the more accurate the classification results. The ARCNS network is composed of
8 hidden layers each of which has 200 algebra neuron factories for a total of 1600
algebra neuron factories in the entire network (width = 200, depth = 8) (Fig.6.5).

The top performer overall by a larger margin is now the ARCNS wide 8-Layer
algebra network. The Gradient Boosted Trees Learner (GBTL) has fallen still further
behind. Interestingly, a network of eight wide hidden layers, with 200 algebra neuron
factories per layer, for a total of 1600 algebra neuron factories (200 algebra neuron
factories per layer producing an average of 1.5B concrete algebra neurons per test
case) was enough to boost performance significantly beyond the ARCN4 wide 2-
Layer algebra network.

6.12 Conclusion

These experiments strongly indicate that there is a performance advantage when
GLM algebraic expressions are fitted together in a feed forward acyclic network
reminiscent of deep learning neural networks. However, these results are statistically
indicative only. A great deal more research remains to be done.

There are other tools which use simple GP and/or GP merged with multiple
regression, logit regression, and discriminant analysis. More experiments can help

Test MLP DTL TEL RFL ARCM | GBTL | ARC™ | ARC™ | ARCM | ARCM
C1 0.0072 | 0.0724 | 0.0496 | 0.0492 | 0.0138 | 0.0308 | 0.0004 | 0.0000 | 0.0000 | 0.0000
C2 0.0360 | 0.0740 | 0.0648 | 0.0664 | 0.0116 | 0.0240 | 0.0004 | 0.0016 | 0.0000 | 0.0000

C3 0.0724 | 0.0972 | 0.1526 | 0.1522 | 0.0132 | 0.0332 | 0.0022 | 0.0026 | 0.0008 | 0.0000
C4 | 0.0472 | 00174 | 0.0252 | 00260 | 0.0194 | 0.0170 | 0.0158 | 0.0132 | 0.0068 | 0.0000
C5 | 03250 | 0.0858 | 0.0946 | 0.0920 | 0.0712 | 0.0530 | 0.0490 | 0.0358 | 0.0190 | 0.0000
C6 | 0.6166 | 05396 | 0.6284 | 0.6286 | 0.5420 | 03198 | 0.2518 | 0.2392 | 0.2074 | 0.2056
C7 | 04598 | 0.2834 | 0.2284 | 02292 | 0.2272 | 0.2356 | 0.2264 | 0.2264 | 0.2262 | 0.2044
C8 | 04262 | 0.2956 | 0.2248 | 02250 | 02302 | 02340 | 02238 | 02240 | 02230 | 02228
C9 | 0.6904 | 06058 | 04334 | 04344 | 04188 | 04286 | 04142 | 04162 | 04148 | 0.0178
C10 | 05966 | 05966 | 0.4352 | 04296 | 04186 | 04286 | 0.4160 | 04162 | 0.4156 | 0.4156
Avg | 03277 | 02667 | 0.2337 | 02332 | 02169 | 0.1804 | 0.1600 | 0.1575 | 0.1513 | 0.1066

Fig. 6.5 Test problem CEP testing results after wide 8-layer deep learning enhancements

126 M. F. Korns

determine whether deep learning algebra networks benefit just the ARC tool; or, if
other GP tools also benefit from deep learning algebra networks and whether these
tools also benefit in a statistically similar manner?

These experiments were performed on a set of ten specific theoretical classifica-
tion problems. Are deep learning algebra networks also beneficial with regression
problems and in other real world problem domains?

These experiments involve only feed forward, acyclic, symmetric (all hidden
layers are the same width) algebra networks. More experiments can help determine
whether other types of deep learning algebra networks are more advantageous and
in which problem domains.

The training method for these deep learning algebra networks involved optimizing
the neurons in each layer against the dependent variable Y. This was done forwards,
neuron by neuron, layer by layer, from the first hidden layer to the last hidden layer.
Most deep learning neural nets are trained with quite different methods, wherein all
coefficients in the network are adjusted backwards, from the dependent variable Y
back to the first hidden layer. Is there a training method, for algebra networks, which
works backwards on all coefficients in the network? Would this or some other training
method provide statistically superior performance? A tremendous advantage of GP
deep learning is that we have much greater visibility into what is actually going on
within the network, since each of the network algebra neurons are human readable. In
the future, much of the mystery surrounding deep learning networks may be clarified.

Clearly there is much work remaining in studying deep learning algebra
networks—far more work than our single research group has resources. As we pursue
our continuing studies of algebra networks, it is our hope that these experiments will
excite other researchers to pursue the many questions still remaining with GP deep
learning.

References

1. Augasta, M., Kathirvalavakumar, T.: Pruning algorithms of neural networks - a comparative
study. Open Computer Sci. 3(3), 105-115 (2013)

2. Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Koétter, T., Meinl, T., Ohl, P., Thiel,
K., Wiswedel, B.: KNIME-the Konstanz Information Miner: Version 2.0 and beyond. ACM
SIGKDD Explorations Newsletter 11(1), 26-31 (2009)

3. Friedman, J.H.: Regularized discriminant analysis. J. Amer. Stat. Assoc. 84(405), 165-175
(1989)

4. Karaboga, D., Akay, B.: A survey: algorithms simulating bee swarm intelligence. Artif. Intell.
Rev. 31(1-4), 61 (2009)

5. Korns, M.E.: A baseline symbolic regression algorithm. In: Genetic Programming Theory and
Practice X. Springer, Berlin (2012)

6. Korns, M.F.: Predicting corporate forward 12 month earnings. In: Parpinelli, R., Lopes, H.S.
(eds.) Theory and New Applications of Swarm Intelligence. Tech Academic Publishers, Cam-
bridge (2012)

7. Korns, M.E.: Extreme accuracy in symbolic regression. In: Genetic Programming Theory and
Practice XI, pp. 1-30. Springer, Berlin (2014)

6 Feature Discovery with Deep Learning Algebra Networks 127

8.

9.

10.

11.

12.

13.

14.

15.
16.

19.

20.

21.

22.

23.

Korns, M.F.: Extremely accurate symbolic regression for large feature problems. In: Genetic
Programming Theory and Practice XII, pp. 109-131. Springer, Berlin (2015)

Korns, M.E.: Trading volatility using highly accurate symbolic regression. In: Handbook of
Genetic Programming Applications, pp. 531-547. Springer, Berlin (2015)

Korns, M.F.: Highly accurate symbolic regression with noisy training data. In: Genetic Pro-
gramming Theory and Practice XIII, pp. 91-115. Springer, Berlin (2016)

Korns, M.E.: An evolutionary algorithm for big data multiclass classification problems. In:
Genetic Programming Theory and Practice XIV. Springer, Berlin (2017)

Korns, M.F., May, T.: Strong typing, swarm enhancement, and deep learning feature selection in
the pursuit of symbolic regression-classification. In: Genetic Programming Theory and Practice
XVI, pp. 59-84. Springer, Berlin (2019)

Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge (1992)

McLachlan, G.: Discriminant Analysis and Statistical Pattern Recognition. Wiley, New York
(2004)

Nelder, J., Wedderburn, R.W.: Generalized linear models. J. R. Stat. Soc. 135, 370-384 (1972)
Peng, C.Y.J,, Lee, K.L., Ingersoll, G.M.: An introduction to logistic regression analysis and
reporting. J. Educ. Res. 96(1), 3—14 (2002)

. Platt, J.: Sequential minimal optimization: a fast algorithm for training support vector machines.

Technical Report MSR-TR-98-14, Microsoft Research (1998)

. Rout, A., Dash, PK., Dash, R., Bisoi, R.: Forecasting financial time series using a lowcomplex-

ity recurrent neural network and evolutionary learning approach. J. King Saud Univ.-Computer
Inf. Sci. 29, 536-552 (2017)

Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85-117
(2015)

Selvin, S., Vinayakumar, R., Gopalakrishnan, E., Menon, V., Soman, K.P.: Stock price pre-
diction using LSTM, RNN and CNN-sliding window mode. In: International Conference on
Advances in Computing, Communications and Informatics ICACCI), pp. 1643-1647 (2017)
Tsantekidis, A., Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M., losifidis, A.: Forecasting
stock prices from the limit order book using convolutional neural networks. In: 19th IEEE
Conference onBusiness Informatics (CBI) 2017, pp. 7-12. IEEE Press (2017)

Uyanik, G.K., Giiler, N.: A study on multiple linear regression analysis. Proc.-Soc. Behav. Sci.
106, 234-240 (2013)

Vijh, M., Chandola, D., Tikkiwal, V., Kumar, A.: Stock closing price prediction using machine
learning techniques. In: International Conference on Computational Intelligence and Data
Science (ICCIDS 2019) (2019)

Chapter 7 ®)
Back to the Future—Revisiting e
OrdinalGP and Trustable Models After a
Decade

Mark Kotanchek and Nathan Haut

Abstract OrdinalGP (2006) [4] embraced a fail-fast philosophy to efficiently model
very large data sets. Recently, we realized that it was also effective against small
data sets to reward model generalization. ESSENCE (2009) [6] extended the Ordi-
nalGP concept to handle imbalanced data by using the SMITS algorithm to rank data
records according to their information content to avoid locking into the behavior of
heavily sampled data regions but had the disadvantage of computationally-intensive
data conditioning with a corresponding fixed data ranking. With BalancedGP (2019)
we shifted to a stochastic sampling to achieve a similar benefit. Trustable mod-
els (2007) [3] exploited the diversity of model forms developed during symbolic
regression to define ensembles that feature both accurate prediction as well as detec-
tion of extrapolation into new regions of parameter space as well as changes in the
underlying system. Although the deployed implementation has been effective, the
diversity metric used was data-centric so alternatives have been explored to improve
the robustness of ensemble definition. This chapter documents our latest thinking,
realizations, and benefits of revisiting Ordinal GP and trustable models.

7.1 Introduction

Multi-objective symbolic regression rewarding both simplicity and accuracy has
proven to be a game-changer for real-world data analysis due to the model devel-
opment efficiency as well as the peripheral insights to be gained from analyzing
a candidate pool of accurate-but-simple models—feature selection, metavariables,
variable associations, etc [5].

M. Kotanchek
Evolved Analytics LLC, Rancho Santa Fe, CA, USA
e-mail: Mark @Evolved-Analytics.com

N. Haut ()
Michigan State University, Lansing, MI, USA
e-mail: hautnath@msu.edu

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 129
W. Banzhaf et al. (eds.), Genetic Programming Theory and Practice XVIII,

Genetic and Evolutionary Computation,

https://doi.org/10.1007/978-981-16-8113-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8113-4_7&domain=pdf
mailto:Mark@Evolved-Analytics.com
mailto:hautnath@msu.edu
https://doi.org/10.1007/978-981-16-8113-4_7

130 M. Kotanchek and N. Haut

In this chapter, we return to some of the seminal concepts explored in the early
phases with the benefit of perspective gained over the past fifteen years. Most notably,
we propose a new variant on OrdinalGP that offers benefits for the lumpy data sets
often encountered in practice as well as revisit schemes for defining model ensembles
to create trustable models.

These will be explored after we review some of the foundational concepts in the
next section.

7.2 In the Beginning

7.2.1 Model Complexity—Getting What You Measure

With thousands of models being generated via classic Koza-style GP, we had the
problem of determining which of the myriad possibilities should be deployed in
industrial practice. Guido Smits realized that a good model was both accurate and
simple. He also recognized that simple metrics like leaf counts, node counts, depth,
etc. did not provide enough fidelity at the low end (which is our practical interest)
so he synthesized the ModelComplexity metric. Originally stated as the sum of
the node count of all possible subtrees, Maarten Keijzer subsequently recognized
that this could also be expressed as the visitation length from the root node to all
of the nodes as well as that it was a preferred computationally efficient metric for
complexity [2]. It also has a bias towards bushier trees which opposes the tree-based
crossover bias towards longer ones. Examples of the complexity metric can be seen
in Fig.7.1.

7.2.2 ParetoGP—Simplicity and Accuracy

Once we started thinking about models from a multi-objective viewpoint, the natural
next step was to incorporate that perspective into the model development. The original
ParetoGP algorithm (2004) [7] featured a punctuated equilibrium using single-
objective tournament selection with preservation across cataclysms managed on a
multi-objective criterion. Adoption of a multi-objective framework instantly sped
up the model search by a factor of 60 while simultaneously eliminating bloat as a
problem—it has not reemerged over the course of the past fifteen-plus years.
There are two key assumptions that are implicit to ParetoGP:

e only a relative few number of variables drive the observed behavior and
e simple and accurate models are most desirable (in other words, we do not want to
chase R? irrespective of complexity).

7 Back to the Future—Revisiting Ordinal GP and Trustable Models ... 131

complexity -» 11 complexity - 5 complexity - 6

b} D P2

/ ‘ \\ / \ P2

y z z -3.4 y z 6 z
complexity - 8 complexity - 10 complexity - 3

p] I SQ

M 8.2 z z P2
y 6.2 y

Fig. 7.1 The ModelComplexity is most easily visualized as the visitation length—i.e., number of
nodes traveled through from the root node to all possible nodes (including the root node)

7.2.2.1 ParetoTourney

Tournaments are the preferred choice in single-objective evolutionary computing
because they are robust and easily tunable with respect to the focusing from the
candidate pool. With the development of the ParetoTournament (2006) [4], we
were able to easily migrate classic GP to a multi-target implementation. As we
see in Fig.7.2, the evolutionary energy is focused on the models that best balance
the competing objectives. (To avoid losing useful genetics, we also define a multi-
objective Methuselah set that also get a free transfer into the subsequent generation.)

7.2.3 Secondary and Alternating Objectives

Age Layered GP is a useful concept to drive continuous innovation so we added
ModelAge as a secondary modeling objective (used during development but not
returned to the user). Other criteria such as ModelDimensionality or BasisSet-
Count or ModelNonlinearity are also potentially useful to guide model develop-
ment. Alas, the curse-of-dimensionality comes into play in that the focusing power

132 M. Kotanchek and N. Haut

100 selected from 249 models

0.8

G- ® 0

40 60 80

Complexity

Fig. 7.2 The ParetoTourney rewards both simplicity and accuracy; however, it tends to focus the
evolutionary effort at the knee of the ParetoFront—which is of most practical interest and why
bloat is eliminated as a concern. Here the candidate population was randomly sampled in groups of
30 and the ParetoFront models from the tourneys accumulated until the desired next generation
breeders (300 models) were designated. The size of the bubbles is proportional to the frequency of
being selected. In this case, 100 of the candidates received breeding rights, albeit, not equally

of ParetoTournaments quickly becomes diffused as additional criteria are added.
The approach we use to address this is to use alternating objectives (2005) [7] and
use a different subset of the desired criteria with each generation. This is directly
analogous to Epsilon-Lexicase Selection (2016) [1].

7.2.4 OrdinalGP—Failing Forward

Evaluating a crappy model against a large data set takes the same amount of time as
evaluating a good model. However, if our goal is simply to partition candidate models
into a keep/discard classification, we do not need to know the precise performance.
Instead, if we evaluate against a data subset we can avoid a significant computational
load. Towards this end, Ordinal GP (2006) [4] chooses a random data subset for each
generation. In addition to the computational gains and additional model refinement
achieved due to more generations of development, there is an additional benefit since
the stochastic nature of the fitness landscape rewards model generality.

To make the benefits tangible, assume that evaluating a model against a million
records requires 1s of CPU time. If we have a population of 300, then five minutes
are required per generation. Chopping the generational assessment down to 1% (aka,

7 Back to the Future—Revisiting Ordinal GP and Trustable Models ... 133

10,000 records) implies that we can get through many more generations of algorith-
mic development. Since there is rarely a million records worth of information in the
data, the operational gains can be substantial. Of course, for comparison purposes,
we do need to evaluate the final models against the complete data set.

Think of this as K-fold cross-validation on steroids.

7.2.5 Ensembles—Trustable Models and Active
Design-of-Experiments

The focus on simplicity meant that feature selection was facilitated and the user could
drive modeling towards causal inputs which were most controllable. The problem of
picking out THE model from the myriad contenders (which, eventually, led to the
ParetoGP approach) remained. Rather than picking THE model, we realized that a
ModelEnsemble (2007) [3] of diverse models from near the knee of the ParetoFront
was, effectively, a trustable model that could detect extrapolation or other operating
regime changes.

In addition to deployment trust, an obvious implication is that we can use ensem-
bles to guide future data collection. Effectively, using the ensemble divergence iden-
tifies the most useful experiment to drive uncertainty out of the model.

7.2.6 Data Balancing

As practitioners, we are often faced with lumpy data rather than the balanced data
from designed experiments. As such, the information content of the data records is
not uniform. The SMITS data balancing and associated ESSENCE model search
algorithms (2009) [6] addressed this by estimating the relative information content
of the data records and building foundational global models which were enhanced
in subsequent generations by the incremental inclusion of additional information.

Although a good idea, there were a number of practical issues associated with the
identification of a proper information/distance/clustering metric in high-dimensional
spaces as well as scaling issues to the really large data sets where it is most needed.
However, the BalancedGP approach discussed later gets us most of the way to the
behavior we want.

7.3 BalancedGP

The basic notion of BalancedGP is to meld OrdinalGP with data balancing con-
cepts in a computationally efficient manner. The foundation is the BalancedSample
function which divides the data into equal-increment response bins from which data
records are stochastically pulled for each evolutionary generation.

134 M. Kotanchek and N. Haut

7.3.1 DataSubsetSize

OrdinalGP demands a decision about the DataSubsetSize to be used in each gen-
eration. Intuitively, we would contend that for small data sets, we want to use most
of the data each generation (the limit being leave-one-out-cross-validation) while for
very large sets a small fraction should be sufficient.

As we saw in Fig.7.3, not every data record has equal information content so
we have the question as to how much data is needed to capture the essence of the
underlying data? Our approach was simply to synthesize a data table—100% of the
data at 100 points, 25% at 1,000 points, 12.5% at 10,000 points, etc. until we reach
1% at a million records—and to use SymbolicRegression to evolve a reasonable
approximation of the percent of data records to be used. The chosen expression,
33 4 8215/(5.3 + numRecords) — 2.3Log[numRecords] is clipped at 100% for
data set sizes below 100 and 1% beyond a million records. Although somewhat ad
hoc, using Ordinal GP for our test suite of real-world data shows that such a profile
beats ClassicGP with the full data set evaluation. Figure 7.4 shows the relationship
between the total number of data records and data subset size.

7.3.2 BalancedSample

Reality is that we often have essentially the same data point repeated due to closed-
loop control in process systems or the cellular equivalent for biological systems.
If our goal is to develop a global model, we wish to de-weight such regions so
the more sparsely observed behavior can emerge during the model development.
OrdinalGP doesn’t really address this since, even though the samples change with
each generation, the distribution will remain comparable—albeit stochastic.

0.6017 Seconds Required for Information Ranking

600 data records 81 pts = 0.80 of info

Info Content

5
6 1.0 T
-5 :r'.. 0.8 ér,'
-o &
B
4 '3 0.6
. []
2 @ L e 0.4
I Ne® ® o /
; ol 0.2
-5 L L [
0 ey 0oL
5" 0 100 200 300 400 500 600

Fig. 7.3 Not all information is equally informative. Choosing the right data subset can convert an
imbalanced data set into a balanced one—which is easier to use for model development

7 Back to the Future—Revisiting Ordinal GP and Trustable Models ...

135

Automatic DataSubsetSize vs. Number of Records

100

801

a0f

DataSubsetSize Percent

20[

100

1000

10%

Number of Records

102

Fig. 7.4 The default percentage of data used during OrdinalGP and BalancedGP changes as a
function of data set size. Despite being an ad hoc formula, it works well in practice

Algorithms for deciding the number of range bins

DataSegment Comparison

Records Sturges Rice Rule

10 5
100 8
1000 11
10000 15
100000 18

1000000 21

5
10
20
44
93

200

Number of Bins

80+

60t

40

20+

DataSegment Schemes

Sturges -» [lo

log(2)

n]+1

Rice—~ [2 %/?]]

''_|—l—_

10

100

1000 404 105

Number of Numeric Samples

Fig. 7.5 It seemed reasonable to leverage the histogramming rules to automatically determine the
number of response range bins for BalancedGP. Of the two most popular, we prefer the Rice rule

The BalancedSample approach during BalancedGP is to partition the data
according to equal increments in the target response with the result that the bins
have different numbers of data records. For each generation, the bins are equally
sampled to achieve the desired number of records with any shortfalls made up by
randomly sampling from the overall set. To determine the number of response range
bins, we stole from the histogramming community and settled in on the Rice rule

(Fig.7.5).

Additional computational efficiencies are possible if we preprocess the data set
by sorting by the response and specify index ranges. However, even without that,

136 M. Kotanchek and N. Haut

0.0052 seconds required for a BalancedSample of 81 samples

Fig. 7.6 For clarity, we have reduced the number of samples from the default 192 to that used
above for the SMITS sampling. Note in this case that the sampling changes across generations
which helps to enforce generalization. Three sample sets are shown

Balanced Sample Effect on Distillation Column Histogram

Original Bin Counts Sampled Bin Counts
600 mom 35 I _
30 Hlln
500 L
25
400
20
300 15
200 10
100 5
O 0 mm

Fig. 7.7 The 7,000 data records in the distillation tower data set are not evenly distributed to to
coming from an production system operating in closed-loop control. The default for this size of data
set would be to sample 960 data records—which does a pretty good job of flattening the lumpiness
in the data. Ordinal GP would follow the original distribution

the computational benefits outweigh those of the SMITS algorithm’s information
content assessment. Figure 7.6 shows three separate sample sets which, clearly, are
comparable to that from the SMITS algorithm.

Although we could balance across all of the variables used in model development,
for efficiency reasons, we just balance the response during SymbolicRegression. The
implications of this are illustrated in Fig. 7.7. One side-effect of this algorithm is that
data bins with few members may be fully represented in every generation—which
could expose an outlier influence risk.

7 Back to the Future—Revisiting Ordinal GP and Trustable Models ... 137

7.3.3 BalancedGP

At the end of SymbolicRegression if BalancedGP or OrdinalGP is used, the
models are evaluated against the full data set. In Fig.7.8 we look at the results from
short model searches which illustrate the benefits of being able to grind through more
generations.

Although the BalancedGP and OrdinalGP are fairly comparable from a global
metric (both having been evaluated against the full data set), anecdotally, Bal-
ancedGP seems to handle edge conditions a little better. Spurious correlations can
impose a lower bound on the size of the data set which benefits from the application
of OrdinalGP or BalancedGP.

BalancedGP has an intrinsic advantage if our targeted response is categorical
and imbalanced since it will automatically balance the competing categories which
helps towards our implicit goal of a global model.

All Models — one minute searches

ClassicGP-None : 9 OrdinalGP-None : 33 BalancedGP-None : 31
& : U RS
“yfo} - sy i} i
..‘:"1 f h{_‘. rFa ' L3 -
b ‘J‘jly‘py....,_.,_ & atal J:;'Caﬂ.,v,. i
Complexity Complexity Complexity
ClassicGP-ModelAge : 9 OrdinalGP-ModelAge : 30 BalancedGP-ModelAge : 34
};T T {27, 0.102} nujc (34,0.053] CBIE i {29, 0.082
O T o y o Wy
R ’ : o it i s ﬂ*:l.’iiﬁnu.«_-
Complexity Complexity Complexity

Fig.7.8 Here we compare ClassicGP against OrdinalGP and Balanced GP for one-minute model
searches with and without using ModelAge as a secondary search criteria. 32 IndependentEvo-
lutions were run for each combination and the average maximum ModelAge shown in the plot
title. The OrdinalGP and BalancedGP get through three times as many generations so there is
considerably more model refinement. For these relatively short model searches, it does not appear
that the innovation preservation afforded by using ModelAge as a secondary criteria provides a
noticeable benefit

138 M. Kotanchek and N. Haut

7.4 Ensembles

7.4.1 Introduction to Ensembles

The trustability factor of a diverse model ensemble provides a huge practical
advantage—knowing that you are pushing a chemical plant into previously unex-
plored operating regimes is significant! For most ensembles, we choose from a can-
didate set of simple-and-accurate using a common handful of variables. (Ensembles
with diverse variable sets can be used to detect sensor failure; however, we will not
address that nuance herein.)

In Fig. 7.9 we isolate on distillation column models which only contain the most
popular 4-variable combination and build an ensemble two ways:

e Uncorrelated Models: the strategy is to build a correlation matrix of the model
residuals and look for the least-correlated pair and, from that foundation, look
for the model which is least correlated to that pair and continue until the desired
number of models is achieved.

Selection from a candidate pool of 690 simple-but-accurate models

Selected Models Ensemble Prediction Plot
Uncorrelated Models Uncorrelated Models
005 T T T ?U ’ ” x Y y -
0.04}" |
| 1) 118 1.5¢ »
G 0.03F "« N | | B
: . | 5 1.0}
< 0.02 i | & I r
. g L { & 05}
0.01} S /
0.00¢ ! (\r]
30 40 50 60 70 0.0 0.5 1.0 1.5 2.0
Complexity Observed
Knee -Weighted Knee-Weighted
OA05§') v] 201
0.04} | I
112 15 .
f] Q f
. 0.03F * -, i | =
S i | 3 10}
~ 0.02}) 2 1 | 2 |
I s LR 1 | & 05}
0.01 CRCHARC .
0.00 ke o b s gl ol DOF AN, s s pon o o
30 40 50 60 70 0.0 0:5 1.0 1.5 2.0
Complexity Observed

Fig. 7.9 Here we have identified the five least correlated models (in terms of their residuals) as
well as a knee-weighted selection. The key takeaway is that all of the candidate models are of high
quality so the resulting predictions are still robust

7 Back to the Future—Revisiting Ordinal GP and Trustable Models ... 139

Uncorrelated Models

Complexity {_R2 Function
1 37 0.033 3.38- 23825 _(9.57x1074)refluxFlow colTemp ; +(1.02x 105} feedFlow colTemp, 2
refluxFlow
-5 4 2
) - 0.047 os4s (5.33x10)feedF\ow colTemp 4
reﬂuxF\ow4
3 38 0.038 1.17-(9.91x1073) refluxFlow - (2.76x10%) colTemp 1 + (2.49x 107) colTemp 4 upstreamFlow;
4 39 0.049 0.16+ (5.97><10'14)feedF\0w (~feedFlow + refluxFlow)?2 colTemp ;4
0.13 refluxFlow colTem

5 45 0.030 -8.20+ —8297_ ;027 colTemp, + —281__ _ uxFlow P4

colTemp 4 upstreamFlowy upstreamFlowo

Fig. 7.10 The UncorrelatedModels selected in Fig.7.9 are diverse in structure despite being
comparable in terms of complexity and accuracy

e Knee-Weighted: The candidate models are partitioned into four groups:

— candidates

— ParetoFront of candidates

— knee models of candidates (better than the median value of quality criteria)
— ParetoFront of knee models

From each of the partitions, we identified the least correlated models as well as
the most-typical (largest contribution to the dominant eigenvalue) and remove any
duplicates. This generally results in 8—10 models being selected. The goal here
is to over-weight the knee of the ParetoFront and try to include other models to
detect extrapolation.

If we have a large number of candidate models (as in this case) which would imply
a very large correlation matrix and a correspondingly large number of correlation
computations, the models are randomly partitioned into sets of less than 100 with
the least correlated selected from each, results merged and the process continued
until the number of models being considered is less than the threshold. In this case,
the selected model set will be stochastic. The diversity of selected model forms is
illustrated in Fig. 7.10. Figure 7.11 shows the response behavior of the two ensembles
and demonstrates the ability to detect extrapolation into new regions of parameter
space—which is a major advantage of ensembles relative to choosing THE model.

7.4.2 Ensembles of the Future

Any mechanism to identify diverse models for inclusion into an ensemble will provide
many of the benefits of a trustable model. However, we have a few possible sins of
omission which might offer enhancements.

140 M. Kotanchek and N. Haut

Response Comparison and Distribution of Used Variables

Response Comparison Plot
Uncorrelated Models

6
4
2
0 _— — ?"
refluxFlow feedFlow colTemp1 upstreamFlow2
Knee -Weighted
6
4
2 —
os’s e é S

refluxFlow feedFlow colTemp1 upstreamFlow2
BivariatePlot of Ensemble Variables & Response
4 6 8 21 24

N >
’ . <. e . &
refluxFlow & 50 s -,

feedFlow ' i
» .
colTemp1
F .

upstreamFlow2

quality

Fig. 7.11 The green dot in the ResponseComparisonPlot represents the reference data point at
which the model is evaluated and, in this case, is one of the data records. The plots show the response
behavior (blue line—aka, ensemble median) if we change a variable while holding the other values
at their reference point. The gray lines show the trajectories of the constituent models. The yellow
envelope shows the 2o boundaries of the constituent models. From the above, we see that the models
agree where constrained by data but diverge if asked to extrapolate into new regions of parameter
space

7 Back to the Future—Revisiting Ordinal GP and Trustable Models ... 141
7.4.2.1 Global Versus Greedy Model Selection

The shipping algorithm is greedy but efficient in that it looks for the least coupled
models and adds to those. We also looked at searching the correlation matrix for
the globally least coupled model set as well as clustering the models and randomly
selecting from the clusters. To some extent, however, large numbers of candidate
models force the use of heuristics for computational efficiency. The conclusion was
that although a global approach could provide a less correlated overall set of models,
the runtime scaling of the global approach makes it very quickly unfeasible. As
well, the ensemble quality is only very slightly improved in regards to extrapolation
detection.

7.4.2.2 Data Coverage and Synthesized Data

Using the residual as a diversity metric has the fundamental problem that such may
not cover the true operating space. Using synthesized data addresses this at the cost
of not having a truth reference so lack of correlation becomes relative. Additionally,
matching the true behavior of coupled and correlated inputs can be difficult since
both dithering around observed points as well as learning joint distributions can be
difficult. The conclusion was that the synthetic data approaches worked well when
realistic data was easy to generate but deteriorated quickly as the quality of synthetic
data decreased. Further research to improve the quality of synthetic data could bring
more appeal to using synthetic data as a guide for ensemble development.

7.4.2.3 Data Balancing

Currently, we use the entire data set to characterize diversity. However, the data
balancing explored in association with BalancedGP inspires asking whether such
should be used instead for the characterization. Such is desirable for efficiency rea-
sons when building ensembles against large data sets as well as the lumpy ones.
Additionally, it may be worthwhile to partition data into regions and select models
based upon their performance in those regions. The initial exploration using Mathe-
matica’s built-in clustering functions to partition the data and selecting the best mod-
els from each data cluster to build the ensemble showed promising results. When the
data was able to be partitioned effectively by Mathematica’s clustering functions,
the ensembles fit the data well and were able to detect extrapolation. Occasionally,
the clustering function would create some data clusters containing outliers or very
few points, so selecting models that fit these clusters decreased the quality of the
ensembles. Further research to improve the selection of the data clusters, such as
combining small clusters or eliminating outliers before partitioning the data, could
eliminate the current issues with this approach.

142 M. Kotanchek and N. Haut

7.5 Conclusions

In this chapter we have dusted off concepts and ideas first explored close to two
decades prior and found that further exploration provided benefit for symbolic regres-
sion. Some like BalancedGP and BalancedSample have been integrated into Data-
Modeler while others like strategies for ensemble definition continue to be explored.

In any event, symbolic regression is not a solved problem and remains rich in
possibilities.

References

1. Cava, W. L., Spector, L., Danai, K.: Epsilon-lexicase selection for regression. In: Proceedings
of the Genetic and Evolutionary Computation Conference (2016)

2. Keijzer, M., Foster, J.: Crossover bias in genetic programming. In: Genetic Programming, pp.
33-44. 10th European Conference, EuroGP (2007)

3. Kotanchek, M., Smits, G., Vladislavleva, E.: Exploiting trustable models via pareto GP For tar-
geted data collection. In: Genetic Programming Theory and Practice VI, pp. 145-162. Springer,
New York (2009)

4. Kotanchek, M., Smits, G., Vladislavleva, E.: Pursuing the pareto paradigm: tournaments, algo-
rithm variations, and ordinal optimization. In: Genetic Programming Theory and Practice IV,
pp- 167-185. Springer, New York (2007)

5. Kotanchek, M., Vladislavleva, E., Smits, G.: Symbolic regression is not enough: it takes a village
to raise a model. In: Genetic Programming Theory and Practice X, pp. 187-203. Springer, New
York (2013)

6. Kotanchek, M., Vladislavleva, E., Smits, G.: Symbolic regression via genetic programming as
a discovery engine: insights on outliers and prototypes. In: Genetic Programming Theory and
Practice VII, pp. 55-72. Springer, New York (2010)

7. Smits, G., Kotanchek, M.: Pareto-front exploitation in symbolic regression. In: Genetic Pro-
gramming Theory and Practice II, pp. 283-299. Springer, New York (2005)

Chapter 8 ®)
Fitness First R

W. B. Langdon

Abstract With side effect free terminals and functions it is possible to evaluate the
fitness of genetic programming trees from their parents without creating them. This
allows selection before forming the next generation. Thus avoiding unfit runt Genetic
Algorithm individuals, which will themselves have no children. In highly diverse GA
populations with strong selection, more than 50% of children need not be created.
Even with two parent crossover, in converged populations, e 2 = 13.5% can be saved.
Eliminating bachelors and spinsters and extracting the smaller genetic material of
each mating before crossover, reduces storage in an N multi-threaded implementation
for a population M to <0.63M+N, compared to the usual M+2N. Memory efficient
crossover achieves 692 billion GP operations per second, 692 giga GPops, at runtime
on a 16 core 3.8 GHz desktop.

8.1 Introduction

It is commonly held that genetic programming run time is dominated by the time
to evaluate evolved individual program’s fitness [7, 30]. However, in the last couple
of years fitness evaluation for floating point problems has progressed enormously
[3, 10, 11, 14, 15, 17], meaning in large programs of tens of millions of opcodes
the primary cost can be in performing crossover rather than fitness evaluation, see
Figs.8.1, 8.2 and 8.3. We show the cost of subtree crossover can be reduced by
(1) doing crossover after fitness and (2) separating the subtree donating parent (the
dad). See Figs.8.4, 8.5 8.10 and 8.11.

The next section summarises recent use of high performance parallel computing
for tree based genetic programming. This is followed by Sect. 8.3 which describes
how itis possible to assign fitness values to the current generation before it is complete
by incrementally evaluating [15] children using only the crossover points and their

W. B. Langdon (X))

Department of Computer Science, University College London, Gower Street,
London WCIE 6BT, UK

e-mail: W.Langdon@cs.ucl.ac.uk

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 143
W. Banzhaf et al. (eds.), Genetic Programming Theory and Practice XVIII,

Genetic and Evolutionary Computation,

https://doi.org/10.1007/978-981-16-8113-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8113-4_8&domain=pdf
mailto:W.Langdon@cs.ucl.ac.uk
https://doi.org/10.1007/978-981-16-8113-4_8

144 W. B. Langdon

500 f—,]

100

Number not best fitness trees (smoothed)

Lj‘:

I
| M
Vo) W
-

1 1 1 1 1
0 10000 20000 30000 40000 50000 60000 70000
Generation

Fig. 8.1 Evolution of fitness convergence. Plot of number of individuals worse than the best
smoothed by plotting running mean of 100 generations. Sudden upticks as new better individual is
found and takes over the population. Pop = 500

50 ; ; ; ; . .
45 | 4
40 | g
35 |-
30 |- g

25 | y

20 y

Mean tree size (millions)

15 - .

10 -

o 1 1 1 1 1
0 10000 20000 30000 40000 50000 60000 70000

Generation

Fig. 8.2 Evolution of tree size

8 Fitness First 145

18 T —T T T T T
Crossover orig —+—
= Crossover opt
o 16 | Fitness orig -------- ,
= Fitness first B
3
e 14
X2
c
L 12F
©
2
s 10
o)
g st
(2]
e]
g
3] 6
)
w
T af
S)
|_
2 -
0 ! ! ! !

0 10000 20000 30000 40000 50000 60000 70000
Generation

Fig. 8.3 Evolution of average time taken by incremental fitness first and crossover evaluation.
Pop = 500. 16 core Intel 3.80 GHz 17-9800X. Running means of 100 generations

parents. Section 8.4 shows reversing the order of fitness and crossover allows us to
avoid using crossover to create poor fitness individuals. Also separating subtrees
from fathers eases other crossover optimisations, Sect. 8.4.1.

The final Sects. 8.5-8.8 deal with implementation issues and analysis. Section 8.5
says that, contrary to internet wisdom, current implementations of C++ memmove are
not slow compared to memcpy and discusses its implications for our inplace crossover
optimisation. Section 8.6 describes the GP’s speed. Section 8.7 gives a brief model
of the impact of tournament selection on diverse populations (such as those typically
found near the start of GP runs). This complements the mathematical analysis in
Sect. 8.3, which covers converged populations, when everyone has the same fitness.
The two cases each have benefits which our crossover optimisations are able to
exploit, leading to speedups both at the start and end of GP runs. Section 8.8 describes
problems of load balancing to get peak performance from modern multi-core Intel
CPUs before we conclude in Sect. 8.9. First we describe recent developments with
speeding fitness evaluation and crossover using parallel hardware.

146 W. B. Langdon

8.2 Faster Genetic Programming via Parallel Hardware

8.2.1 Multiple CPU Cores

Koza [7] described genetic programming as being embarrassingly parallel, in that
by distributing the population, GP can easily be coded to get near 100% loading
of parallel computers. Typically the population is spread across multiple computers
which operate more or less independently. Similarly, our GP experiments are run on
a parallel Intel multi-core desktop. There is a single administration thread, but with
the creation of each individual in the population by crossover and also its incremental
fitness evaluation being treated as separate tasks. These tasks are run in parallel by
the hardware cores. The Linux posix pthreads environment is used with one thread
per CPU core. Load balancing across the cores is achieved by each thread taking the
next individual to be processed as it finishes the last, until the whole population has
had its fitness calculated or the required members of the next population have been
created using crossover.

This multi-threading strategy works well when the population size is much more
than the number of CPU cores and the tasks are more or less the same size (but
see Sect. 8.8.1) and means the population remains united. This approach also allows
a light central core containing all the stochastic code with only resource intensive
(deterministic) code running in parallel threads. Thus, with careful control of pseudo
random number seeds, it makes it possible to replicate runs exactly in serial and dif-
ferent parallel environments. That is, a sequential run will produce the same sequence
of populations as one using 8-cores, which in turn is the same as that produced on a
16-core machine. Indeed the system has been run on cluster nodes with 48 cores.

Note a single united panmictic population may converge more rapidly than in
parallelisation schemes which require the population to be geographically divided
between physically distinct processors. The next section considers a much finer
grained parallelism in which fitness evaluation of a single individual is spread over
up to 16 compute elements.

8.2.2 Multiple Fitness Cases Simultaneously

Our use of Intel’s SIMD AVX-512 parallel vector instructions allows 16 test cases
to be evaluated simultaneously [10, 11, 16]. This can be thought of as the float-
ing point equivalent of Poli’s sub-machine code GP [28]. With sub-machine code
GP an opcode (e.g. AND) can be evaluated on 64 Boolean test cases at each clock
tick [9, 27]. Indeed older AVX instructions have been used to evaluate 128 and 256
Boolean test cases simultaneously [6]. Also the newer AVX-512 instructions could
be used to extend this to 512 test cases in parallel. Indeed genetic improvement

8 Fitness First 147

([18, 22-25, 32]) has been applied to AVX code itself [11]. Our latest develop-
ments [15] mean in extended GP runs the primary cost is creating and storing the
next generation, rather than calculating its fitness.

8.2.3 Fitness First

It is relatively straight forward to convert our bottom up incremental evaluation [15]
from evaluating each child directly, to evaluating it indirectly via its parents, Fig. 8.4.
Thus we can find a child’s fitness before creating the child. Figure 8.6 shows an
example of incremental fitness evaluation using only the child’s parents. Figure 8.7
shows an example from generation 1000 where incremental evaluation proceeds
approximately half way from the crossover point to the root node. If it turns out the
child is never used, e.g. because it is unfit or unlucky, it need not be created (Fig. 8.5).

We assume the GP population is made of pure functions (i.e. there are no side
effects) and the same test cases are used to assign fitness of the children as were used
to find the fitness of their parents.

Fitness first starts by evaluating the subtree to be removed from the mum (white)
and the subtree to be inserted (black), Fig.8.6. Apart from starting at the root of a
subtree (i.e. within a parent) rather than at the root node, the evaluation is the same
as usual. Le., the normal depth first recursive evaluation is used for all subtrees that
have to be evaluated. (Albeit if AVX-512 is supported in hardware, we use parallel
AVX instructions.)

If, for all test cases, the values produced by the new code to be inserted are identical
to those produced by the code to be removed, the inserted code has no effect and the
child’s fitness must be the same as the mum’s. If any are different, we proceed up
the mum tree towards its root.

Root donating parent Second parent

Transfer 48 test case values via stack

Fig. 8.4 Fitness is evaluated using only parents, i.e., before the child is created by crossover.
Assuming no side effects, the subtree to be inserted (black) is evaluated on all test cases and values
are transferred to evaluation of mum (left) at the location of the subtree to be removed (white). We
use our incremental evaluation [15], so differences between original code (white subtree) and new
are propagated up 1 parent (mum) until either all differences are zero or we reach the root node

148 W. B. Langdon

A0 00

Children Next generation

Fig. 8.5 As fitness can be calculated before crossover (Fig. 8.4), the parents can be chosen before
crossover too. Here two low fitness individuals (fitness 1 and 2) have no children and hence their
creation need not be completed. Lines indicate the two members of each tournament used to select the
first (red) and second (blue) parent. Solid lines with arrows are the winners of each tournament [29].
(Binary tournament only for illustration, we actually use tournaments with 7 members.) All common
EA selection schemes (with either mutation or crossover) are guaranteed to have members of the
current population who will not have children in the next generation

A
If 48==48 floats:STOP

+ gives 48 floats . ~+ gives 48 floats

Eval gives 48 floats

()
If 48==48 floats|STOP
Eval gives 48 ﬂoatso ~-.|Bval gives 48 floats

OO
OO

Fig. 8.6 “Fitness first” begins by evaluating the subtree to be removed from the mum (white) and
the subtree to be inserted (black). It proceeds up the mum’s tree until either the evaluation in the
mum and unborn child are the same or it reaches the root node. The red subtree is in the mum but it
is identical to the code in its child and so need be evaluated only once per test case. Note the code
from the parents is evaluated without creating the child. Example from Fig. 8.4. See also Fig. 8.7

The example in Fig. 8.6 shows the next node up is a plus. We find the other subtree
in the mum that is the plus’ other argument (shown in red) and recursively evaluate
it for all the test cases. Again this GP code (which must be identical to that in the as
yet unborn child) is run in the mum in situ. The evaluation again gives a vector of
floats (one element per test case). Next the function (plus) is applied to each value in
the vector (red arrow) and the corresponding value from the mum subtree (light blue
arrow) and similarly to the values from child’s subtree (black arrow). This gives us
two float vectors (one for mum and one for the child). Again if they are equal we can
stop, since, if they are equal, they would remain equal all the way to the root node.

8 Fitness First 149

B =

Fig. 8.7 Example of incremental evaluation [15]. Parent tree is modified by crossover replacing
code with inserted subtree (red). Replaced and new code are both evaluated on the test set (48 tests).
As they are different, the next node above the crossover point is evaluated, taking the 48 values
returned by the original and new code (together with its other argument from the unchanged code).
Here too evaluation in the parent and (putative) child are different, so evaluation proceeds up the
tree towards its root node (see also Fig.8.6). The chain of evaluated nodes is in colour [19]. The
size and numbers in each node gives the number of test cases where the evaluation of the parent and
(putative) child are not identical. Their average evaluation difference is indicated on a log scale by
the node’s colour. Average differences greater than 0.01 are shown with dark colours, less than 0.01
by brighter colours. Brightest yellow shows smallest non-zero difference (RMS 3.1 10~19). If, as
here, parent and child evaluations are identical before reaching the root node, the remainder of the
evaluation is not needed (gray nodes) and is skipped and instead fitness is copied from the parent

And therefore the child’s fitness must be equal to that of its mum. Note we still have
not gone near the child and indeed we have finished with the dad.

If the two vectors are not identical, we proceed up the mum tree evaluating side
subtrees and nodes on the path to the root until either we reach a point where the
values in the mum and the values the child would have been identical or we reach
the root. If we reach the root, the child’s fitness is calculated from the values in its
vector of evaluations for each test case. Again we do not need to create the child to
do this.

In very big trees, populations are often highly converged and children often inherit
the same fitness values as their parents. In which case, fitness first evaluation can
give orders of magnitude savings in evaluation time.

Table 8.1 gives details of our GP.

8.3 Avoiding Effort Wasted on Poor Fitness Individuals

Whereas the previous approaches, described in Sects.8.2.1 and 8.2.2, speed up
genetic programming by use of more powerful hardware, we have implemented

150 W. B. Langdon

Table 8.1 Evolution of Sextic polynomial [7] symbolic regression binary trees using GPquick’s
one byte per opcode

Terminal set X, 250 constants between —0.995 and 0.997
Function set MUL ADD DIV SUB
Fitness cases 48 fixed input —0.97789-0.979541 (randomly selected from —1.0 to

+1.0). For simplicity, we use all the same test cases in each generation,
although of course, testing can be reduced [5, 21] or made dynamic [18]
Target y = xx(x—1)(x—D(x+1)& +1)

Selection Tournament size 7 with fitness = ﬁ Z?il |GP(xi) — yil

Population 500 binary trees. Panmictic (fully mixed), non-elitist, distinct
(non-overlapping) generations.

Parameters Initial population ramped half and half [7], depth between 2 and 6.
100% unbiased subtree crossover. 70000 generations

a fitness first scheme which speeds up GP by 14% by doing less work. (Fitness first
could be widely applicable in evolutionary computing, however only when construct-
ing members of the population is expensive compared to fitness evaluation is it likely
to be useful.) For simplicity our implementation ensures that it produces identical
results. That is, given the same pseudo random number seed, the population at each
generation in the new implementation is identical to that given before.

Early in GP runs at each generation many poor individuals are created (see
Fig.8.8). All Evolutionary Algorithm (EA) selection schemes aim to ensure poor
individuals are less likely to be selected to have children themselves. (See example
with a population of five in Fig.8.5.) Since childless individuals have no impact on
the future course of the run, it is wasteful to create such individuals.

Apart from Baker’s Stochastic Uniform Selection (SUS) [1], commonly used
selection schemes, such as tournament selection, allocate children independently.
Thus, even later in the run, when many programs have the same fitness, there will be
some parents who by chance get more than the average number of children and some
who get less. With two parent crossover, on average each member of the current
population gets two children. In the limit of large converged populations (containing
M individuals) on average there will be e=>M individuals which are never selected
to have children (see right hand side of Fig. 8.8). If we consider just the first parent
in crossover, or 100% one parent mutation, then this rises to e M.

As Fig. 8.8 shows, delaying crossover until after fitness selection can save creat-
ing more than half the population during the early part of a run. Even later, when
convergence ensures almost the whole population has the same fitness, 14% (e~2) of
the population need not be created. With very large trees, run time can be dominated
by crossover (see Fig. 8.3), thus run time savings are possible by avoiding complete
generation of poor fitness individuals.

8 Fitness First 151

350 T T T T T T T

300 298.7 7

250

e MO0 I
:
g |

150

100 -

50 |-

0 1 1 1 1 1 1 1
0 10000 20000 30000 40000 50000 60000 70000

Generations

Fig. 8.8 Evolution of number in population without children in next generation. 100% two parent
crossover, 7-tournament, pop = 500

8.4 Asymmetry of GP Subtree Crossover

We use Koza’s two point subtree crossover [7] but for simplicity with both crossover
points chosen uniformly at random. That is, we do not include a bias in favour of
internal nodes.

Figure 8.9 shows the dramatic imbalance in the contributions of the two programs
chosen to be parents for the new individuals (note log scale). For example, in gen-
eration 15000 the root donating trees (mums) supply more than a thousand times as
many opcodes as the dads.

The lower (red) solid line in Fig. 8.9 plots the running mean smoothed over 100
generations of the number of inserted opcodes from each dad program. After gener-
ation 15000 it changes little, and averages 275.4 opcodes. However the distribution
of inserted subtree sizes varies widely in each generation and between generations
(blue dots). It has a long tail with the mean being typically more than three times the
median. The dad long tailed distribution has some impact on run time, with some
trees taking far longer to evaluate for fitness than others, making it harder to dis-
tribute work evenly between threads on multi-core CPUs. (Section 8.8.1 considered
how often cores are not being used.) In contrast the number of opcodes inherited from
mum (top line in Fig. 8.9) closely follows the total tree size and even after generation
15000 continues to bloat.

152 W. B. Langdon

8.4.1 Last Child Inplace Dad-Less Crossover

Initially the populations are very variable and, with strong selection, breeding is
concentrated in a few fit parents. As the populations starts to converge, there are
more parents (with fewer children each). In each generation, as each child is created,
eventually for each parent, there is only one child left to be created. (Locks are used
to ensure multi-threaded code neither skips anyone nor creates any child twice). On
reaching the last child for a root donating parent, instead of copying the code into
the child (see Fig. 8.10), the buffer holding the parent’s genome is unhooked from
the parent and passed to the child. This saves copying the first part of the child (see
Fig.8.11).

As we saw in Fig. 8.9, the second parent (dad) donates only a tiny fraction of the
opcodes in the child. Therefore we extract and save all the subtrees which will be
inserted later. This is relatively cheap and is done (in the sequential code) before the

1e+08 ¢ T T T T T T]
i M ™
- o

1e+06

100000 [

10000

1000

Crossover opcodes per tree

100

10} Opcodes from root donating tree
Opcodes inserted
; | | | IMean opcoldes inserte(lzi —_—

0 10000 20000 30000 40000 50000 60000 70000
Generations

Fig. 8.9 Evolution of number opcodes from each parent. Mums top line. Dads blue lower cloud.
Note log vertical scale

memcp)r 1 memcpy 3 memcpy 2

Fig. 8.10 Andy Singleton’s GPquick [31] subtree crossover requires three memcpy buffer copies:
(1) root segment of donating parent (mum, red/brown) is copied to offspring buffer. (2) subtree from
second parent (dad, blue/black) is copied to offspring. (3) tail (brown) of 1st parent copied to child

8 Fitness First 153

memcpy /
(from heap) memmove
[I

Fig. 8.11 Inplace subtree crossover. Offspring is last child of 1st parent and reuses its buffer. Only
subtree to be inserted (black) of 2nd parent (dad) is kept. (1) Dad subtree overwrites mum’s buffer.
(2) In 71% of children the subtree to be remove (white) and to be inserted (black) are different sizes,
and so memmove is used to shuffle the second part of mum’s buffer (brown) up or down

350 T T T T T T
300 | .

[0]

S 250

-

£

8 200

®©

o

(&)

§ 150

k]

z

O 400

50

0 Il Il Il Il Il Il
0 10000 20000 30000 40000 50000 60000 70000

Generation

Fig. 8.12 Number of times per generation when creating non-sterile children in the next, the root
donating parent (mum) has only one more child to create and so crossover can reuse part of its
genome. Pop = 500. See Sect. 8.4.1 and Fig.8.11

bulk of the crossover operations are done using the root donating parents (mums) in
multi-threaded code. This simple step allows the mum’s last child crossover short
cut (Fig.8.11) to be used about twice as often.

Notice whilst fitness convergence reduces the number of childless members of the
population (Sect. 8.3), here it helps: as spreading the breeding effort, means there are
more parents in general, and thus more cases where a mum has only one child left
to be created. That is, convergence increases the number of times inplace crossover
optimisation can be applied. Figure 8.12 shows later in the run as the population
converges and there are more parents with children, the number of inplace crossovers
rises, so that on average 268.1 (< M(1 — e 2)(1 — e 1)) crossovers are done inplace
per generation.

154 W. B. Langdon

1.2

é82 MB/slec per clore . '
1218 MB/sec per core ———

o
[o0]
T

Seconds per core
o
(o]
T

I
~
T

0.2

0 1 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Millions of crossover opcodes per 3.8GHz core

Fig. 8.13 Time per thread to create children using fatherless (left, red) and traditional (right, blue)
crossovers v. The number of opcodes the thread processes (see Sect.8.4.1). To reduce clutter just
generations 69 000-70000 are plotted. 16 core 3.8 GHz desktop

In about one third (28.9%) of cases, the removed subtree and inserted subtree are
the same size. If so, the mum’s buffer can be simply over written with the inserted
code (from the dad). However most (71.1%) of the time they are not the same size
and the buffer must be shuffled either up or down to take account of the difference
in the subtree sizes (see Fig.8.11). This shuffling is done using memmove, rather
than memcpy. (See also Sect. 8.5). Figure 8.12 confirms, by excluding the dads from
crossover, we can use the inplace short cut more than half the time.

The large blue cloud in Fig. 8.13 shows the time originally taken by each of 16
threads to perform crossover of the whole of the current generation late in the run. The
tight red cluster of dots show the same populations after crossover has been optimised
to: (1) ignore individuals which will not have children (saving about 13.5%) and
(2) where possible, modifying chromosomes inplace. Figure 8.13 confirms we are
reducing the volume of opcodes copied by crossover by almost a half (48.1%). This
leads to a reduction in the total time taken by the crossover threads by about a quarter
(24.4%).

8 Fitness First 155

Gigabytes/Second per 3.8GHz core

0 10000 20000 30000 40000 50000 60000 70000
Generation

Fig. 8.14 Evolution of speed of memmove and memcpy as used in GPquick crossover. It appears
the initial high speed of both is due to GP trees not exceeding the cache size, 16.5 MB. Plots are
smoothed running means of 100 generations. Note traditionally bandwidth counts each byte moved
or copied twice, i.e. a byte into the CPU and a byte out to memory

8.5 Efficiency of Memmove V. Memcpy

Although much has been made of the efficiency of memcpy compared to that of
memmove, with the GCC 9.3.1 g++ compiler and version 2.17 of the GNU C run
time library, for our new crossover implementation we found little difference (see
Fig.8.14). Indeed instrumenting the memmove operation and the corresponding
memcpy, shows memmove to be 14% faster. On average at the end of the run mem-
move moves 970MB/second per core while memcpy copies 851MB/sec per core
(on a 3.80 GHz Intel i7-9800X desktop). Note that these are in place measurements,
rather than standalone benchmarks and so memmove has on average slightly more
work.

8.6 Speed of Fitness First and Incremental Fitness

As described in Sect. 8.2.3, our incremental fitness evaluation [15], which evaluates
side-effect free trees from the crossover point towards the root, can be readily adapted
to evaluate the child via its parents. Apart from adapting pointers to the crossover

156 W. B. Langdon

0.9

74,|350,000 opéodes/core/slecond T

0.8

0.7

0.6 -

05

04

03

Seconds (excluding crossover)

0 1 1 1 1 1 1
0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07

Incremental evals per 3.8GHz core

Fig. 8.15 Time taken each generation by each thread to calculate fitness against the number of
opcodes the thread processes. Note incremental fitness evaluation using the child’s two parents
before the child is created. Scatter plot, 16 threads, generations 69 000—70 000

points in the parents, rather than in their child, little is changed. As expected, Fig. 8.15
shows the time taken to find the fitness of the whole of the current generation depends
linearly on the number of opcodes that have to be evaluated. Note inparticular moving
from incremental evaluation of the children to evaluating them by using only their
parents has made little difference, see lower dash and dotted traces in Fig. 8.3. (The
fitness results are of course identical.)

8.7 Mathematical Model of Number of Parents

Section 8.3) has already shown a model of crossover which predicts the number of
members a population with near uniform fitness which do not have children in the
next generation will be e =2 M. Figure 8.8, confirms the model essentially holds after
generation 15000 even though there remain a few members of the population with
an atypical fitness value. (See also Fig.8.1.)

8 Fitness First 157

T T T T
20+ Crossover 4 L Crossover 4
s Mutation ------- Mutation -------
ke i
=
(6]
5]
@
Qo
S i
>
b4
- i 298.7 335.2
0 I 1 S I : T T - I |
0 100 200 300 400 500 0 100 200 300 400 500
Population Population

Fig. 8.16 Left: Offspring v. rank. Expected number of children with tournament size T=7 in initial
diverse populations [2, 20]. Pop=500. Single parent mutation (dashed line) not used but shown
for comparison. Right: same data as histograms. E.g. on average 298.7 members of the population
(with crossover) have no children, 49.9 have one child, 29.1 two and so on

8.7.1 Number of Parents Initially and in Diverse Populations

Where there is a fitness gradient across the population, a wide variety of selection
schemes will allocate children to the best members of the population. This means
even with two parent operations, like crossover, there will be many low fitness or
just unlucky members of the population, whose genetic material will be lost.

Goldberg’s selection pressure [4] of commonly used fitness selection schemes has
been mathematically analysed by Blickle [2], and ourselves [20, p. 185] giving, in a
diverse population, the chance of the rth best individual in the population winning
the next tournament as (r/M)T — ((r — 1)/M)7 (see Fig.8.16). Assuming distinct
non-elitist generations and 7 -tournament selection, on average the best member of
the population will be selected to be a first parent 7 times. Using crossover there are
two parents, so parents have twice as many children. Thus, the best in the population
has on average 27 = 14 children (see left of Fig.8.16). Even in modest population
sizes, the worst member of the population is unlikely to have children.

A Monte Carlo simulation predicts almost 60% of random populations with a
tournament size of seven will not have children, see Fig. 8.16. This is good agreement
with many populations up to about generation 5000, i.e. before they near fitness
convergence (see 298.7 of 500, in Figs. 8.8 and 8.16).

8.8 Multi-threading Implementation Issues

To minimise memory consumption, we process children whose parents have only
one child left be delt with before the others [12]. This avoids having to store both
the current and the next population at the same time. As children are created, their
parents are moved between two queues. One queue is for parents with one child
left to process and another queue is for parents with two or more children yet to

158 W. B. Langdon

be created. When a parent’s last child has been created, the parent can be deleted
and the memory it occupied can be freed and thus be used by new children in the
next generation. As we reported earlier [12], with the usual crossover and fitness
evaluation order, M+2N memory buffers are needed. Where M is the population size
and there are N threads. The factor of two comes from using two parent crossover.
(If using only single parent mutation, M+N memory buffers would be needed.)

By using fatherless crossover, M+2N, can be reduced to M+1N. Although father-
less crossover, Sects. 8.4 and 8.4.1, does require storing the subtrees to be inserted
on the heap. However typically the opcodes inherited from the dads occupy less than
a megabyte (see Fig.8.9).

The two multi-threaded queues [12] give an easy way of recognising mums
with only one child left to create and so help implementing inplace crossover, see
Sect.8.4.1) and Figs. 8.10, 8.11). Also, as inplace crossover automatically shares the
memory used by the parent and the offspring, in practice memory consumption is
reduced to approximately (1 — e~')M+N = 0.63M+N. That is, although we still have
to allow for N threads operating simultaneously: population fitness convergence, not
creating low fitness individuals who will not have children, fatherless crossover and
inplace crossover, together (as well as speeding up GP) reduce memory consumption
by about a third.

Although we know on which of the two queues parents must be placed [12], we
are still free to decide where in the given queue they are to be. As yet we have
not exploited this ordering freedom. In future there may be modest saving to be
made by better scheduling work between the available threads. (We return to this in
Sect.8.8.2.)

8.8.1 Idle Threads

Figures 8.17 and 8.18 show the total thread idle time on a 16 core desktop. Figure 8.18
shows the average waiting time as a fraction of the elapse time for each set of 16
threads in that generation. To improve visibility, the plots have been smoothed by
taking running averages over 100 generations.

In the original scheme (blue dashed lines) multiple threads performed crossover
and evaluated fitness [15]. I.e. children were created and their fitness was imme-
diately calculated, as an indivisible unit, by the same thread. (Note crossover was
performed to create 100% of each population.) In the new scheme, crossover of only
the part of the next generation which has children is done (red lines with crosses).
Fitness evaluation is unchanged. Since crossover and fitness now operate on differ-
ent individuals, they are separated, and each is done by their own set of threads. For
simplicity the two sets do not overlap. L.e. the fitness threads synchronise together
and then the crossover threads synchronise together. In principle the two types of
threads could be intermingled, but this would complicate the implementation.

Thus, in the original scheme, there is only one synchronisation point at the end
of each generation, where idle threads are forced to wait. Whereas there are two

8 Fitness First 159

synchronisation points in the new scheme. (Hence the three sets of lines in Figs. 8.17
and 8.18.)

In both schemes, the later stages of the run are dominated by the crossover time
(see top two lines in Fig. 8.3). However crossover time is much more predictable and
uniform than the time to do fitness evaluation (where the longest fitness evaluation
can exceed the average by a factor of 100 or more). Fitness evaluation is simply
scheduled by the next free thread taking the next individual. Whereas the order of
the crossover threads is dictated by Koza’s algorithm to minimise buffer usage [8,
pp- 1044-1045], [12, 13] (see previous section).

The more uniform duration of the crossover tasks means thread idle time, as a
fraction of total time (Fig. 8.18), is low. The wide variation in fitness evaluation time
leads to proportionately more wasted thread idle time. However this is mitigated in
bloated runs by the great speed of incremental fitness evaluation compared to the time
taken to create enormous trees. For example, on average over the last 100 generations,
GP was unable to use 39%, of the 16 core computer during fitness evaluation (top
trace in Fig. 8.18), whilst for the new crossover it was 1% unused.

4 T ; : I | |
Fitnessonly ——
Orig combined -+

'§ 35 Crossover only —+— |
s
3
e 3r
X2
C
S 25t
o
)
3
o 2r
o}
a
g 151
c
S
3
» 1
Q@
e}

0.5

0 ‘ . TR B
0 10000 20000 30000 40000 50000 60000 70000
Generation

Fig. 8.17 Total time spent by 15 threads waiting for the slowest to synchronise per generation (on
16 core 3.8 GHz desktop). In the original implementation (dashed blue line) the original crossover
and our incremental [15] fitness evaluation were performed together. In the new crossover and fitness
are separated, leading to two synchronisation steps per generation and two sets of idle threads (solid
red lines). See also Fig. 8.18

160 W. B. Langdon

50 —T T T T T T
Fitnessonly ——
Orig combined --------
- 45 Crossover only —+— 1
3
g 40 | E
=
©o 35 .
8 30 .
S |
3
£ 25| E
X
2 20} .
k=]
& 15 _
IS4 e
) RS ;
5t m i
0 . N -
0 10000 20000 30000 40000 50000 60000 70000

Generation

Fig. 8.18 Time spent by 15 threads waiting for the slowest as a fraction of time taken by all 16.
Data as Fig. 8.17 but expressed as percentages

8.8.2 Future Work: Predicting Thread Execution Time

As mentioned in the previous section, when a thread finishes a task it takes the
next free task and begins processing it. Idle time comes from threads running out
of tasks at different times. When tasks take different lengths of time, there may be
practical savings from more proactive scheduling. Since the threads are (assumed to
be) homogeneous, a simple heuristic of starting with the longest tasks (spread across
all the threads) and then moving to progressively shorter tasks, may be sufficient.
E.g. sort the tasks into execution time order and then run as now.

Crossover time can be readily predicted from the amount of memory to be moved
(memmove) or copied (memcpy). Given the size of individuals and the location
of crossover points, both can be calculated in advance. So, for simplicity treating
memmove and memcpy as the same, to minimise idle time, we might want to order
the crossover queues to put the largest children first. However, to maximise runtime
savings from inplace crossover, we might want to try to schedule crossovers so
that children with the largest root segments are the last to be done for their mums.
Alternatively to save memory, we might want to do them as soon as possible. (In [12]
we treated all trees as being the same size.)

Fitness evaluation time is very variable and hard to predict, as, even though it
is proportional to the number of opcodes to be evaluated (Fig.8.15), the number of
evals is only known after the evaluation. It may be possible even a crude model might

8 Fitness First 161

help. E.g. guess that a large (or very different) subtree to be inserted, will cause more
disruption and hence require more evals, than a smaller or more similar one. Fitness
first execution times can be very variable and, with 16 threads, a single evaluation
can take as long as the rest of the population (spread over 15 threads). Given this,
there may be only marginal gain from clever scheduling. As the variation gets still
bigger it might be, for very time consuming individuals, worthwhile to spread their
fitness evaluation across multiple threads.

8.9 Conclusions

Although we have couched our work in GP terms, the memory savings hold for
evolutionary algorithms with crossover or with mutation alone. Where EA chromo-
somes are enormous and (changes in) fitness can be quickly calculated, these ideas
of reversing the order of fitness calculation and offspring creation, might also be
beneficial.

For a typical small GP population (500 trees) on a 16 node desktop, memory use
can be reduced by about a third. On that desktop we have performance equivalent
to 692 Giga GPop/s (6.92 10'! GP operations per second) which is more than four
times the performance that we claimed as a record [16] for a single computer GP
system and that was a 48 core cluster server.

We have shown it is practical to delay subtree crossover until after fitness eval-
uation and so only create GP trees which themselves will carry genetic material
into subsequent generations. Typically early in GP runs, tournament selection gives
a very high selection pressure, meaning there are many trees of low fitness which
do not have children. In any evolutionary algorithm, by reversing the usual order
of program evaluation and creation, it is no longer necessary to create low fitness
individuals. This can save a large fraction of the memory to store them. Even later
in GP runs, when fitness convergence may spread children more evenly, and the cost
of creating new GP trees may exceed the cost of fitness evaluation, the saving can be
worthwhile.

Even when trees are large, the asymmetry of GP subtree crossover means, the
code to be inserted into the next generation, (i.e. all the subtrees from each father) is
small. Indeed it may fit into fast cache memory. These subtrees can be extracted from
the population before the bulk crossover operations. This simplifies the rest of the
crossover operations, as they now only use one parent from the population (i.e. they
are fatherless). This can be beneficial in terms of freeing memory early and reducing
crossover effort.

The new GPQuick code is available in http://www.cs.ucl.ac.uk/staff/W.Langdon/
ftp/gp-code/GPinc.tar.gz

Acknowledgements I would like to thank Stephan Winkler, Sara Silva, Bill Tozier, other people
at GPTP and anonymous reviewers. This work was inspired by conversations at Dagstuhl Seminar
18052 on Genetic Improvement of Software [26]. Funded by EPSRC grant EP/PO05888/1.

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/GPinc.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/GPinc.tar.gz
https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=18052__;!!NLFGqXoFfo8MMQ!-j-kYg-GB1jNnR9KD-6ZBoIYUzC524aURq-p9XzwOiHGbUHluIsBu1Y64NBNy8mfKjvTdnbE7jU$Reference
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1

162 W. B. Langdon

References

1. Baker, J.E.: Reducing bias and inefficiency in the selection algorithm. In: Grefenstette, J.J.
(ed.) Proceedings of the Second International Conference on Genetic Algorithms and their
Application, pp. 14-21. Lawrence Erlbaum Associates, Cambridge, MA, USA (1987)

2. Blickle, T.: Theory of evolutionary algorithms and application to system synthesis. Ph.D. thesis,
Swiss Federal Institute of Technology, Zurich, Switzerland (1996). http://dx.doi.org/10.3929/
ethz-a-001710359

3. de Melo, V.V,, Fazenda, A.L., Sotto, L.E.D.P,, Iacca, G.: A MIMD interpreter for genetic pro-
gramming. In: Castillo, P.A., Jimenez Laredo, J.L., Fernandez de Vega, F. (eds.) 23rd Interna-
tional Conference, EvoApplications 2020, LNCS, vol. 12104, pp. 645-658. Springer, Seville,
Spain (2020). URL http://dx.doi.org/10.1007/978-3-030-43722-0_41

4. Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning. Addison-
Wesley (1989)

5. Guizzo, G., Petke, J., Sarro, F., Harman, M.: Enhancing genetic improvement of software with
regression test selection. In: van Deursen, A., Xie, T., Dieste, N.J.O. (eds.) Proceedings of the
International Conference on Software Engineering, ICSE 2021. IEEE (2021). http://dx.doi.
org/10.1109/ICSE43902.2021.00120. Winner ACM SIGSOFT Distinguished Artifact Award

6. Hrbacek, R., Sekanina, L.: Towards highly optimized cartesian genetic programming: from
sequential via SIMD and thread to massive parallel implementation. In: C. Igel, D.V. Arnold,
C. Gagne, E. Popovici, A. Auger, J. Bacardit, D. Brockhoff, S. Cagnoni, K. Deb, B. Doerr, J. Fos-
ter, T. Glasmachers, E. Hart, M.1. Heywood, H. Iba, C. Jacob, T. Jansen, Y. Jin, M. Kessentini,
J.D. Knowles, W.B. Langdon, P. Larranaga, S. Luke, G. Luque, J.A.W. McCall, M.A. Montes
de Oca, A. Motsinger-Reif, Y.S. Ong, M. Palmer, K.E. Parsopoulos, G. Raidl, S. Risi, G. Ruhe,
T. Schaul, T. Schmickl, B. Sendhoff, K.O. Stanley, T. Stuetzle, D. Thierens, J. Togelius, C. Witt,
C. Zarges (eds.) GECCO ’14: Proceedings of the 2014 conference on Genetic and evolutionary
computation, pp. 1015-1022. ACM, Vancouver, BC, Canada (2014). URL http://dx.doi.org/
10.1145/2576768.2598343

7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA (1992). http://mitpress.mit.edu/books/genetic-
programming

8. Koza, J.R., Andre, D., Bennett III, FH., Keane, M.: Genetic Programming III: Darwinian
Invention and Problem Solving. Morgan Kaufmann (1999). http://www.genetic-programming.
org/gpbook3toc.html

9. Langdon, W.B.: Long-term evolution of genetic programming populations. In: Proceedings of
the Genetic and Evolutionary Computation Conference Companion, GECCO *17, pp. 235-236.
ACM, Berlin (2017). http://dx.doi.org/10.1145/3067695.3075965

10. Langdon, W.B.: Parallel GPQUICK. In: C. Doerr (ed.) GECCO ’19: Proceedings of the
Genetic and Evolutionary Computation Conference Companion, pp. 63—-64. ACM, Prague,
Czech Republic (2019). http://dx.doi.org/10.1145/3319619.3326770

11. Langdon, W.B.: Genetic improvement of genetic programming. In: Brownlee, A.S., Haralds-
son, S.0., Petke, J., Woodward, J.R. (eds.) GI @ CEC 2020 Special Session, p. paper id24061.
IEEE Computational Intelligence Society, IEEE Press, internet (2020). http://dx.doi.org/10.
1109/CEC48606.2020.9185771

12. Langdon, W.B.: Multi-threaded memory efficient crossover in C++ for generational genetic pro-
gramming. SIGEVOLution newsletter of the ACM Special Interest Group on Genetic and Evo-
lutionary Computation 13(3), 2—4 (2020). URL http://dx.doi.org/10.1145/3430913.3430914

13. Langdon, W.B.: Multi-threaded memory efficient crossover in C++ for generational genetic
programming (2020). http://arxiv.org/abs/2009.10460

14. Langdon, W.B.: Fitness first and fatherless crossover. In: Proceedings of the Genetic and Evo-
lutionary Computation Conference Companion, GECCO ’21. ACM, Internet, pp. 253-254
(2021). http://dx.doi.org/10.1145/3449726.3459437.

http://dx.doi.org/10.3929/ethz-a-001710359
http://dx.doi.org/10.3929/ethz-a-001710359
http://dx.doi.org/10.1007/978-3-030-43722-0_41
http://dx.doi.org/10.1109/ICSE43902.2021.00120
http://dx.doi.org/10.1109/ICSE43902.2021.00120
http://dx.doi.org/10.1145/2576768.2598343
http://dx.doi.org/10.1145/2576768.2598343
http://mitpress.mit.edu/books/genetic-programming
http://mitpress.mit.edu/books/genetic-programming
http://www.genetic-programming.org/gpbook3toc.html
http://www.genetic-programming.org/gpbook3toc.html
http://dx.doi.org/10.1145/3067695.3075965
http://dx.doi.org/10.1145/3319619.3326770
http://dx.doi.org/10.1109/CEC48606.2020.9185771
http://dx.doi.org/10.1109/CEC48606.2020.9185771
http://dx.doi.org/10.1145/3430913.3430914
http://arxiv.org/abs/2009.10460
http://dx.doi.org/10.1145/3449726.3459437

8 Fitness First 163

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

Langdon, W.B.: Incremental evaluation in genetic programming. In: Hu, T., Lourenco, N.,
Medvet, E. (eds.) EuroGP 2021: Proceedings of the 24th European Conference on Genetic
Programming, LNCS, vol. 12691, pp. 229-246. Springer, Virtual Event (2021). http://dx.doi.
org/10.1007/978-3-030-72812-0_15

Langdon, W.B., Banzhaf, W.: Continuous long-term evolution of genetic programming. In:
Fuechslin, R. (ed.) Conference on Artificial Life (ALIFE 2019), pp. 388-395. MIT Press,
Newcastle (2019). http://dx.doi.org/10.1162/isal_a_00191

Langdon, W.B., Banzhaf, W.: Faster genetic programming GPquick via multicore and advanced
vector extensions. Technical Report RN/19/01, University College, London, London, UK
(2019). http://www.cs.ucl.ac.uk/fileadmin/user_upload/avx_rn1901.pdf

Langdon, W.B., Harman, M.: Optimising existing software with genetic programming.
IEEE Trans. Evolut. Comput. 19(1), 118-135 (2015). http://dx.doi.org/10.1109/TEVC.2013.
2281544

Langdon, W.B., Petke, J., Clark, D.: Dissipative polynomials. In: Veerapen, N., Malan, K.,
Liefooghe, A., Verel, S., Ochoa, G. (eds.) 5th Workshop on Landscape-Aware Heuristic Search,
GECCO 2021 Companion. ACM, Internet, pp. 1683-1691 (2021). http://dx.doi.org/10.1145/
3449726.3463147

Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer (2002). http://dx.doi.
org/10.1007/978-3-662-04726-2

Lim, M., Guizzo, G., Petke, J.: Impact of test suite coverage on overfitting in genetic improve-
ment of software. In: Galeotti, J.P., Sharif, B. (eds.) 12th International Symposium on Search
Based Software Engineering SSBSE 2020, LNCS, vol. 12420, pp. 188-203. Springer, Bari,
Italy (2020). http://dx.doi.org/10.1007/978-3-030-59762-7_14

Petke, J.: Constraints: The future of combinatorial interaction testing. In: 2015 IEEE/ACM 8th
International Workshop on Search-Based Software Testing, pp. 17-18. Florence (2015). http://
dx.doi.org/10.1109/SBST.2015.11

Petke, J., Haraldsson, S.O., Harman, M., Langdon, W.B., White, D.R., Woodward, J.R.: Genetic
improvement of software: a comprehensive survey. IEEE Trans. Evolut. Comput. 22(3), 415-
432 (2018). http://dx.doi.org/10.1109/TEVC.2017.2693219

Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Using genetic improvement and code
transplants to specialise a C++ program to a problem class. In: Nicolau, M., Krawiec, K.,
Heywood, M.IL., Castelli, M., Garcia-Sanchez, P., Merelo, J.J., Rivas Santos, V.M., Sim, K.
(eds.) 17th European Conference on Genetic Programming, LNCS, vol. 8599, pp. 137-149.
Springer, Granada, Spain (2014). http://dx.doi.org/10.1007/978-3-662-44303-3_12

Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Specialising software for different down-
stream applications using genetic improvement and code transplantation. IEEE Trans. Softw.
Eng. 44(6), 574-594 (2018). http://dx.doi.org/10.1109/TSE.2017.2702606

Petke, J., Le Goues, C., Forrest, S., Langdon, W.B.: Genetic improvement of software: Report
from dagstuhl seminar 18052. Dagstuhl Rep. 8(1), 158—182 (2018). http://dx.doi.org/10.4230/
DagRep.8.1.158

Poli, R.: TinyGP. TinyGP GECCO 2004 competition (2004). http://www.cs.ucl.ac.uk/staff/W.
Langdon/ftp/papers/poli04__tinyg.pdf

Poli, R., Langdon, W.B.: Sub-machine-code genetic programming. In: Spector, L., Langdon,
W.B., O’Reilly, U.M., Angeline, P.J. (eds.) Advances in Genetic Programming 3, chap. 13, pp.
301-323. MIT Press, Cambridge, MA, USA (1999). http://www.cs.ucl.ac.uk/staft/W.Langdon/
aigp3/ch13.pdf

Poli, R., Langdon, W.B.: Running genetic programming backward. In: Yu, T., Riolo, R.L.,
Worzel, B. (eds.) Genetic Programming Theory and Practice III, Genetic Programming, vol. 9,
Chap. 9, pp. 125-140. Springer, Ann Arbor (2005). http://dx.doi.org/10.1007/0-387-28111-
8.9

Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming. Published
via http://lulu.com http://www.gp-field-guide.org.uk (2008). http://www.gp-field-guide.org.
uk. (With contributions by J. R. Koza)

http://dx.doi.org/10.1007/978-3-030-72812-0_15
http://dx.doi.org/10.1007/978-3-030-72812-0_15
http://dx.doi.org/10.1162/isal_a_00191
http://www.cs.ucl.ac.uk/fileadmin/user_upload/avx_rn1901.pdf
http://dx.doi.org/10.1109/TEVC.2013.2281544
http://dx.doi.org/10.1109/TEVC.2013.2281544
http://dx.doi.org/10.1145/3449726.3463147
http://dx.doi.org/10.1145/3449726.3463147
http://dx.doi.org/10.1007/978-3-662-04726-2
http://dx.doi.org/10.1007/978-3-662-04726-2
http://dx.doi.org/10.1007/978-3-030-59762-7_14
http://dx.doi.org/10.1109/SBST.2015.11
http://dx.doi.org/10.1109/SBST.2015.11
http://dx.doi.org/10.1109/TEVC.2017.2693219
http://dx.doi.org/10.1007/978-3-662-44303-3_12
http://dx.doi.org/10.1109/TSE.2017.2702606
http://dx.doi.org/10.4230/DagRep.8.1.158
http://dx.doi.org/10.4230/DagRep.8.1.158
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/poli04__tinyg.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/poli04__tinyg.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/aigp3/ch13.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/aigp3/ch13.pdf
http://dx.doi.org/10.1007/0-387-28111-8_9
http://dx.doi.org/10.1007/0-387-28111-8_9
http://lulu.com
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk

164 W. B. Langdon

31. Singleton, A.: Genetic programming with C++. BYTE pp. 171-176 (1994). http://www.
assembla.com/wiki/show/andysgp/GPQuick_Article

32. White, D.R., Arcuri, A., Clark, J.A.: Evolutionary improvement of programs. IEEE Trans.
Evolut. Comput. 15(4), 515-538 (2011). http://dx.doi.org/10.1109/TEVC.2010.2083669

http://www.assembla.com/wiki/show/andysgp/GPQuick_Article
http://www.assembla.com/wiki/show/andysgp/GPQuick_Article
http://dx.doi.org/10.1109/TEVC.2010.2083669

Chapter 9 ®)
Designing Multiple ANNs oo
with Evolutionary Development: Activity
Dependence

Julian Francis Miller

Abstract We use Cartesian genetic programming to evolve developmental programs
that construct neural networks. One program represents the neuron soma and the other
the dendrite. We show that the evolved programs can build a network from which
multiple conventional ANNs can be extracted each of which can solve a different
computational problem. We particularly investigate the utility of activity dependence
(AD), where the signals passing through dendrites and neurons affect their properties.

9.1 Introduction

Although ANNs were originally inspired by the brain [16], most do not use evolution
and especially not development. A major weakness of ANN models is the “synaptic
dogma” in which learned knowledge is held solely in connection strengths (i.e.
weights). This gives rise to the fundamental problem of “catastrophic forgetting” [8,
15, 26]. This occurs when an ANN loses it ability to solve a earlier problem when
it is re-trained on a new one. This is to be expected when the learned information
is only encoded in the weights as it is precisely these that are changed when the
network is trained. Another problem is that memory in brains is not even directly
related to synaptic strengths. This is because synapses are not fixed but are constantly
pruned away and replaced by new synapses during learning [29]. Also a large body
of research indicates that learning and environmental interaction are strongly related
to structural changes in neurons. Animals reared in complex environments where
active learning is taking place, have an increased density of dendrites and synapses
[11]. Breeding songbirds undergo an increase in the number, size and spacing of
neurons [32]. Furthermore, a study of London taxi drivers, showed their hippocampi
were significantly larger relative to those of control subjects [14].

Since the emergence of deep learning there has been renewed interest in artificial
neural network (ANN) approaches to artificial intelligence (AI). There are two main
approaches. The manual approach and an Al generating algorithm (AI-GA). The

J. F. Miller (B<0)
University of York, Heslington, York YO10 5DD, UK

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 165
'W. Banzhaf et al. (eds.), Genetic Programming Theory and Practice XVIII,

Genetic and Evolutionary Computation,

https://doi.org/10.1007/978-981-16-8113-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8113-4_9&domain=pdf
https://doi.org/10.1007/978-981-16-8113-4_9

166 J. F. Miller

former is adopted by the vast majority of all ANN/AI researchers. It has two phases.
The first defines the basic components that might be required for intelligence. In
the second, all the components are put together in an enormously complex machine.
The AI-GA approach automatically learns how to produce general Al [4]. At present
the AI-GA approach is rarely looked at. However, since it can be based much more
closely on the brain it is likely to become more popular as our knowledge of the brain
improves. Genetic programming could have a big role in AI-GA approaches.

The aim of our work is to find a computational equivalent of the biological neuron
and hence general Al To do this, we propose a simple neural model (DEMANNED)
which incorporates both evolution and development. In this two neural programs
acting together construct neural networks. The pair build a network from which
multiple conventional ANNs can be extracted each of which can solve a different
computational problem. The model reported here was inspired in part by the devel-
opmental method proposed in [22] and particularly by the paper [10]. In previous
work, we examined a one spatial dimensional developmental model and this was
applied to multiple classification problems only [23, 24]. In [19] we examined a 2D
model and investigated the utility of evolving programs that solve problems incre-
mentally. Here, one starts by trying to solve one problem, then after a given number
of generations, one tries to solve the first two problems, and so on until eventually
one tries to solve all problems at the same time. This was found to be more effective
than trying to solve all problems together. Using this strategy we showed that one
could evolve developmental programs that could build a neural structure which could
achieve reasonable scores on two classification and two control problems at the same
time.

In this article we are interested in the utility of using activity dependence (AD).
This is where changes in levels of activity between neurons leads to changes in
neuron structure and morphology. AD is an extremely important aspect of real brains
[25]. Forms of activity dependence have been implemented in the model. These
allow neuron (dendrite) health, position and bias (weight) to be affected by signals
passing through the neural networks. Activity dependence includes Hebbian-like
mechanisms. AD may have a role in alleviating catastrophic interference since the
neural network can change when inputs are applied (i.e. during training).

Developmental approaches for building ANNs have long been proposed [13, 30]
as one of the important components in an enriched form of artificial evolution called
computational evolution [2, 34]. In particular, for several decades authors have inves-
tigated various ways of implementing and evolving development processes to con-
struct ANNss using a variety of genotype representations at different levels of abstrac-
tion. These are reviewed in a recent submission to the Artificial Life journal [20].
However, most previous research in this area has been on small problems and non-
standard benchmarks. Also it has not addressed the problem of multiple problem
solving.

9 Designing Multiple ANNs with Evolutionary Development: Activity Dependence 167

9.2 Multiple Problem Solving ANNs

The main approach to multiple problem solving with ANNs has been to gradually
augment ANNs by adding additional neurons or join trained ANNs together via
extra connections. This avoids catastrophic forgetting as with each new task a new
neural network is established and outputs from neurons in different networks can
be shared. ‘Constructive neural networks’ are traditional ANNs which start with a
small network and add neurons incrementally while training error is reduced [6, 7].
Modular ANNSs use multiple ANNs each of which has been trained on a sub-problem
and these are combined by a human expert [28]. Both of these approaches could be
seen as a form of human engineered development. More recent approaches adjust
weighted connections between trained networks on sub-problems guaranteeing that
trained networks on sub-problems are unaltered. Rusu et al. applied their method,
called ‘progressive neural networks’ [27] to three classes of problems: variants of
the game of Pong, Atari games and 3D maze problems and Terekhov et al. examined
their approach on purpose designed image classification tasks [31]. Aljundi et al.
have a set of trained ANNs for each task (experts) and use an additional ANN as a
recommender choosing which expert to use for a particular data instance [1]. They
evaluated their approach on image classification tasks and video prediction.

Recently a new approach to alleviate catastrophic forgetting in multi-task learning
using neuromodulation has been proposed. Neuromodulation can help because some
neurons in the network can detect which task is currently being performed, and those
neurons can turn learning on in the part of the network that performs that task and
turn learning off everywhere else in the network. Ellefsen et al. proposed using mod-
ular ANNSs in which task-specific learning is turned on and off in different modules
[5]. Although this reduced catastrophic forgetting, modules specifically dedicated to
different problems did not emerge. Velez and Clune implemented diffusion-based
neuromodulation in which point sources of a diffusing chemical are placed at specific
locations within an ANN [35]. The sources emit diffusing learning signals that corre-
spond to positive and negative feedback for the tasks being learned. On agent-based
foraging tasks they were able to create small networks that completely eliminate
catastrophic forgetting.

9.3 The Neuron Model

The neural programs are represented and evolved using Cartesian Genetic Program-
ming (CGP) [18, 21] in which the program nodes represent mathematical operations,
operating on and returning real-values between —1 and 1. Each primitive function
takes up to two inputs, denoted zg, z1. The functions are as follows. Step: if zo < 0
then Oelse 1. Add: (zo + z1)/2. Sub: (zo — z1)/2. Mult: zoz;. Xor: if the sign of both
inputs is the same then the output is —1 else 1. Istep: if z0 is negative, output is 1
else output is 0. These functions were found to be effective in previous work. The

168 J. F. Miller

Fig. 9.1 A fictitious brain
with 8 neurons solving three
problems. Two output
neurons are devoted to
computational problem one
(black), three are devoted to
problem two (blue) and one
is devoted to problem three
(red). There are also two
non-output neurons (green).
Problem one has three inputs
(black squares on left),
problem two has two inputs
(blue) and problem three has
three inputs (red). Inside
each neuron and dendrite is a
CGP-encoded program (see
Fig.9.2)

1,-1 1,-1

programs read variables associated with neurons and dendrites and produce outputs
which are used to update those variables.

To illustrate the model we discuss a fictitious brain example as shown in Fig.9.1.
The dendrites are assumed to connect to the nearest neurons or inputs on the left
of the parent neuron. Neurons only have a soma and a number of dendrites. Output
neurons are dedicated to their corresponding computational problem. However, it is
possible that some non-output neurons can be shared between different problems.
In Fig.9.1 we can see that dendrites ¢ and d belong to neuron 6 and will connect to
neuron 4 (see dotted arrows). Also dendrites e and d of neuron 8 will also connect to
neuron 4. Thus in this example non-output neuron 4 is shared between computational
problems one and two.

The inputs and outputs of evolved programs are shown in Fig.9.2. When the
evolved soma and dendrite programs are executed, neurons can move, change, die
replicate, grow more dendrites and their dendrites can also change, replicate or die.
We refer to the collection of neurons as the brain. Neurons and dendrites are confined
to the unit square and all neural variables can only take values between —1.0 and
1.0. There are two kinds of neuron: output and non-output. Every output required
by each computational problem has a dedicated output neuron. The other neurons
are internal and are not used to provide outputs from the brain. We refer to these as
NON-OUtput Neurons.

9 Designing Multiple ANNs with Evolutionary Development: Activity Dependence 169

updated neuron . updated dendrite

neuron health, bias neuron bias, health, weight
health, position position position
bias,position XD_

dendrite health, ’@/ é
average dendrite] weight, ——> cgp nodes
health, / position _ﬁy gg
weight, /%'vv nearest neuron ,@
position position

performance (a) soma program performance (b) dendrite program

Fig. 9.2 The model of a developmental neuron

9.3.1 Soma Program Inputs and Outputs

The soma program can read up to nine variables. The first four are the neuron vari-
ables: x and y position, health and bias. Bias refers to an input to the neuron activation
function which is added to the weighted sum of inputs (i.e. it is unweighted). The
soma program can also be supplied with averages of properties of its dendritic tree: x
and y position, weight and health. Finally, the soma program can read a reward signal
which is related to how well the brain is performing on the suite of computational
problems. Non-output neurons receive a reward signal equal to the fitness score.
Output neurons receive the normalised fitness score corresponding to the problem
the output neuron belongs to.

The soma program has four outputs: health updater (s,), bias updater (sb,), and
x and y position updater (sx, and sy,). The evolved soma program reads its ten inputs
and outputs these four soma output update variables. These decide how the actual
soma corresponding variables will be updated. The way this is done is as follows. If
any soma updater variable is greater (less) than zero, the corresponding soma variable
is incremented (decremented) by a user-defined amount (later referred to as delza).
In the case of soma health, there is a further step. If it falls below the user-defined
death threshold, N H..;1,, then the neuron will die and not be present in the updated
brain. Alternatively, if it happens to be above the user-defined neuron birth threshold,
N Hp;,¢1,, then the parent neuron will replicate and an additional neuron will appear
in the brain (near to the parent). In this way, the soma evolved programs can change
the health, bias or position of the soma and whether the neuron will die, or replicate.

9.3.2 Dendrite Program Inputs and Outputs

The dendrite program is executed inside every dendrite. It can read up to nine vari-
ables. The first three are the parent neuron variables: position (x and y) and bias. The
parent neuron health was not supplied to the dendrite program. Initial experiments
indicated that this produced superior results. The next four are the dendrite variables:

170 J. F. Miller

x and y position, weight and health. The dendrite program also can read the x and y
position of the nearest neuron to the dendrite position.

The dendrite program also has four outputs: health updater (dh,,), weight updater
(dw,), and x and y position updater (dx, and dy,). The evolved dendrite program
reads its nine inputs and outputs these four dendrite output update variables. These
decide how the actual dendrite corresponding variables will be updated. The way
this is done is as follows. If any dendrite updater variable is greater (less) than zero,
the corresponding dendrite variable is incremented (decremented) by a user-defined
amount (later referred to as delta). If the parent neuron health is above a user-
defined dendrite health birth threshold, D Hy;,;, then the parent neuron will gain a
new dendrite. Dendrites die if the dendrite health is below (above) a user-defined
threshold, D Hy ey,

9.3.3 Developing the Brain and Evaluating the Fitness

The algorithm used for training and developing the ANNS is given in Algorithm 3.
The brain is always initialised with at least as many neurons as the maximum number
of outputs over all computational problems. Note, all problem outputs are represented
by a unique neuron dedicated to the particular output. Output neurons can change,
but not die or replicate as the number of output neurons is fixed by the choice of
computational problems. The number of developmental steps are defined by the
parameters, NDS,,, and NDS,;;. The ‘pre’ learning phase is an initial phase of
development where the brain is not tested in any way (lines 5-7). In the ‘while’
phase the brain is assessed and provides feedback to the developmental process
(lines 10-12).

Lines 9-30 form the epoch learning loop. This loop repeats the entire training
developmental process (the ‘while loop’) for a number of epochs, N,,. The purpose
of learning epochs is to allow us to direct evolution to produce a pair of programs that
cause the developing ANN to learn. The neural programs can read the performance
of the brain at the previous learning epoch. The learning loop only continues while
the training accuracy does not decrease (lines 25-29). If it does, the algorithm stops
and returns the training score of the previous epoch.

Note that at each epoch, a performance value is determined corresponding to each
individual benchmark problem and this an input to the soma and dendrite programs
for output neurons. If a neuron is not an output neuron then the average fitness
over all problems at the previous epoch, is given as an input to the soma and dendrite
programs. The performance signal is intended to act as a reward to the developmental
process, triggering changes in the brain when necessary.

9 Designing Multiple ANNs with Evolutionary Development: Activity Dependence 171

Algorithm 3 Fitness algorithm.

1: function FITNESS

2 Initialise brain

3 Load ‘pre’ development parameters

4: PrevFitness =0

5: for NDS, times do

6: Run soma/dendrite programs to update brain
7 end for

8: Load ‘while’ developmental parameters

9: for epoch =1to N, do

10: for NDS,,;; times do

11: Run evolved programs to update brain

12: end for

13: TotFitness =0

14: for p = 1to NumBenchmark Problems do

15: Extract ANN

16: Fitness(p) =0

17: for NT (p) training cases do

18: Make activity-dependent changes

19: Fitness(p) = Fitness(p) + FitInstance
20: end for

21: Fitness(p) = Fitness(p)/NT (p)

22: TotFitness = TotFitness + Fitness(p)
23: end for

24: TotFitness = TotFitness/NumBenchmark Problems
25: if TotFitness < PrevFitness then

26: Break

27: else

28: PrevFitness = TotFitness

29: end if

30: end for

31: Return PrevFitness
32: end function

9.3.4 Extracting Conventional ANNs from the Brain

Conventional ANNs are extracted from the developed brain (line 15 in Algorithm 3).
Input data is supplied at fixed spatial locations unique to each problem. First, the
maximum number of inputs in all the computational problems used in fitness eval-
uation is determined. This number of inputs is used to assign inputs fixed random
positions. When data for a particular computational problem is presented, any inputs
that are undefined for that problem are assumed to be zero.

The next phase is to go through all dendrites of the neurons to determine which
inputs or neurons they connect to. To generate a valid neural network we assume that
dendrites are automatically connected to the nearest neuron or input on the left. We
refer to this as snapping. Since, the dendrite position can be on the right of the parent
neuron before extracting ANNS, it is reflected back from the parent position. The

172 J. F. Miller

dendrites of non-output neurons are allowed to connect to either inputs or other non-
output neurons on their left. However, output neurons are only allowed to connect
to non-output neurons on their left. Although, it is not desirable for the dendrites of
output neurons to be connected directly to inputs, when output neurons move, they
may only have inputs on their left. N7 (p) is the number of training cases for each
computational problem, p. The extracted ANNSs use the hyperbolic tangent activation
function. A number of alternative activation functions were examined (e.g. sigmoid,
rectilinear) and hyperbolic tangent seemed to be the most effective.

In Algorithm 3 development in the epoch learning loop happens outside the bench-
mark problem loop (i.e. lines 14-23). However, in principle it could be placed within
it (immediately after line 14). This would allow brain development during problem
solving. This could help the brain to develop differently according to the problem
currently being solved. Such an option has been implemented but as yet has not
shown performance advantages.

9.3.5 Activity Dependence

Step 18 in Algorithm 3 allows the strength of the signal to cause changes in the
brain (activity dependence). We have implemented AD mechanisms to affect neuron
health and bias and dendrite weight, health and position. We have also implemented
a form of non-temporal Hebbian adjustment to dendrite weight. These mechanisms
are shown in Algorithm 4. W;; is the weight of dendrite j of neuron i in the extracted
ANN. Brain;;(v) is variable v of dendrite j of neuroni (i.e. v can be health, weight, or
position). BrainW;; is the weight of dendrite j of neuron i in the brain. DS;; denotes
the signal passing through dendrite j belonging to neuron i. In line 6 the difference
between the absolute value of the dendrite signal and a user defined threshold (6,) is
calculated. Either the variables, weight, health or position of the dendrite in the brain
is then reduced in magnitude using the user-defined increment corresponding to the
chosen variable, 8(’}5’). This is a homeostatic mechanism [3] where with large signals,
neural variables reduce to maintain homeostasis. For brevity we have only shown
one activity-dependent adjustment. The user can choose to adjust any or all of the
three dendrite variables in this way. The weighted sum of signals over all dendrites
belonging to a neuron is accumulated and a bias B; is added (line 13). The neuron
signal, N S;, is then calculated using a user-defined slope parameter, « (line 14). Then
if AD is chosen for a neuron (lines 39—44) brain adjustments take place according to
whether the magnitude of the neuron signal, | N S; | exceeds a user-defined theshold,
0,. In this article, we are particularly interested in AD dendrite weight. The neuron
health or position could also be adjusted in a similar manner.

9 Designing Multiple ANNs with Evolutionary Development: Activity Dependence 173

Algorithm 4 Signal propagation and activity dependence.

1: for neuron i do

2 Wium = 0

3 for dendrite ij do

4: Wium = Weum + Wij X DSij

5: if Dendrite activity dependence then
6 D =| DS;; | -6,

7 if D > 0 then

8: Brain;j(v) = Brainj(v) — 83
9: Bound Brain;;(v)

10: end if

11: end if

12: end for

13: Wsum = Wsum + Bi
14: NS; = tanh(aWyy,,)
15: if Hebbian learning then

16: if NS; > Og.pp then

17: Nhigh =1

18: end if

19: if NS; < —0y.pp then

20: Niow =1

21: end if

22: for dendrite ij do

23: if DS;; > Opeppy then

24 Dpign =1

25: end if

26: if DSij < —QHgbb then

27: Doy =1

28: end if

29: Bothpigh = Npigh AND Dpjgp
30: Bothjoy = Njoyw AND Dy,
31: if Bothpigh OR Both,, then
32: BrainW;j = BrainW;; + Sifnlsbb
33: Bound BrainW;;

34: else

3s: BrainWij = BrainW;; x §iebb
36: end if

37: end for

38: endif

39: if Neuron activity dependence then
40: D =|NS;| -6,

41: if D > 0 then

42: Brain;(v) = Brain; (v) — 8%'
43: Bound Brain; (v)

44 end if

45: end if

46: end for

Lines 15-38 are concerned with Hebbian-like learning. Here, if the magnitude of
the signal passing along the dendrite and the output of the parent neuron both exceed

174 J. F. Miller

a threshold (i.e. they agree), then the weight of the dendrite is increased using the
user-defined increment, Sggbb. However, if only one exceeds a threshold (i.e. they
disagree) then the weight is decreased (using the user-defined multiplier, 5,‘:[1;1’;”). It
should be noted that the model has many parameters many of which are thresholds
and allowed increments on neural variables. The frequency of AD changes can be

controlled via the corresponding threshold, 6, .

9.3.6 Model Parameters

The model has a large number of user-defined parameters (Table9.1). It is hoped
that as the model develops some can be removed or assume default values, however,
at present the approach has been to create a neuron model that is as general as
possible and with the least number of assumptions. The initial number of non-output
neurons, can be chosen by the user and is denoted, N;,;;. In addition, each output
for each computational problem has an output neuron. The total number of neurons
allowed in the network is bounded between a user-defined lower (upper) bound
N Nyin (N Npgy). The number of dendrites each neuron can have is bounded by
user-defined lower (upper) bounds denoted by DN,,;,, (DN,). These parameters
ensure that the number of neurons and connections per neuron remain in well-defined
bounds, so that a network can not eliminate itself or grow too large.

If the health of a neuron falls below (exceeds) a user-defined threshold, N H .5,
(N Hp;rp) the neuron will be deleted (replicated). Likewise, dendrites are subject
to user defined health thresholds, D H;..:;, (N Hp;rs,) Which determine whether the
dendrite will be deleted or a new one will be created. Actually, to determine dendrite
birth the parent neuron health is compared with D Hp;,.;. This choice was made to
prevent the potentially very rapid growth of dendrite numbers.

When neurons are initialized their health and bias are given random values
between —1 and 1. All neurons are initialized with N D;,;; dendrites. The dendrites
variables, health and weight are initialized with random values between —1 and 1.
They are given randomly chosen x and y-positions between 0 and 1. When neurons
are born they are given N D;,;; dendrites. Finally, the neural activation function has
a slope constant given by o.

Newly born neurons are given a health equal to one, a bias of zero, and N D;,;,
dendrites. They are placed above and to the right of the parent neuron, by adding a
small increment, M N;,,. to the parent’s x and y position. Their dendrites are given
weight equal to zero and a health equal to one. The x and y positions of the dendrites
are set to zero. When a neuron decides to create a new individual dendrite it is given
a weight and health equal to one and x and y-positions equal to 0.8 of the parent
neuron x and y-position. There are many possible choices for these parameters when
neurons and dendrites are born. In preliminary empirical investigations these choices
were found to work well.

9 Designing Multiple ANNs with Evolutionary Development: Activity Dependence

Table 9.1 Table of neural model constants, their meanings and chosen values

175

Symbol Meaning Value

N Nyin (N Nypax) Min. (Max.) allowed number |0 (30)
of neurons

Ninit Initial number of non-output | 6
neurons

DNypin(DNpax) Min. (Max.) number of 1 (60)
dendrites per neuron

N D;yi; Initial number of dendrites per |5
neuron

NHY (NHE'S) Neuron health thresholds for | —0.6 (0.2)
death (birth)

DHY (DHP™®.) Dendrite health thresholds for | —0.6 (0.2)
death (birth)

NHYM . (NHY) Neuron health thresholds for | —0.4 (0.1)
death (birth)

DH}M (DH™M,) Dendrite health thresholds for | —0.64 (—0.61)
death (birth)

Suh Neuron health increment: pre | 0.2 (0.1)
(while)

Snp Neuron position increment: 0.1 (0.1)
pre (while)

Snb Neuron bias increment: pre 0.1 (0.1)
(while)

Sdn Dendrite health increment: pre | 0.2 (0.1)
(while)

Sap Dendrite position increment 0.1 (0.1)
pre (while)

Sdw Dendrite weight increment: 0.1 (0.1)
pre (while)

NDSpre Number of developmental 6
steps

NDS,pi Number of ‘while’ 1
developmental steps

Nep Number of learning epochs 8

MN;,. Move neuron increment if 0.0001
collision

1, Max. initial input position —0.6

)} Neuron output position on 1
X-axis

o Hyperbolic tangent exponent | 1.5
constant

0 ‘;‘WD Threshold for AD weight 0.7
change

8(%) AD weight change increment | 0.08

176 J. F. Miller

In some cases, neurons will collide with other neurons (by occupying a small
interval around an existing neuron) and the neuron has to be moved by a certain
increment until no more collisions take place. This increment is given by M Nj,..

The x positions of data inputs to the brain are given fixed random values between
—1 and —1 + [, while the y-positions take randomly chosen values between —1
and 1. The output neurons for all problems are initially placed at x-position O; and
their positions on the y-axis are uniformly distributed between —1 and 1. However,
output neurons as with other neurons can move according to the neuron program. All
neurons are marked as to whether they provide an external output or not. In the initial
network there are N;,,;; non-output neurons and N, output neurons, where N, denotes
the number of outputs required by the computational problem being solved. When
solving a particular problem, output data is read from only those output neurons
corresponding to the chosen problem (the remaining output neurons are ignored).
Note, non-output neurons are not allowed to connect to output neurons and output
neurons can only connect to non-output neurons or inputs.

The chosen experimental parameters for this study are also shown in Table9.1.
After much experimentation these were found to work quite well. The values found
in the while phase D Hy, ., = —0.64 and D Hy;,;;, = —0.61 are quite surprising as
learning is taking place while there is a high probability of dendritic change (birth
or death).

9.4 Experiments

In this work, we look to simultaneously solve collections of problems chosen from
two standard classification problems, diabetes (D) and glass (G) and two reinforce-
ment learning problems , double-pole balancing (DP) [33] and ball throwing (BT)
[12, 33]. The definitions of the classification problems are available in the UCI repos-
itory.! D has 8 real attributes and two Boolean outputs. G has 9 real attributes and
six Boolean outputs. The Boolean class is decided by whichever ANN output is the
greater.

In BT, the aim is to design a controller which throws a ball as far as possible.
There are two inputs, the arm angle from vertical and the angular velocity of the arm.
It has two outputs, the applied torque to the arm and an output which decides when
to release the ball. The system is simulated for a maximum of 10,000 time steps. The
maximum distance the ball can be thrown is can be determined through simulation
and has a value of approximately, 10.202 m. BT is considered solved when the thrown
distance greater than or equal to 9.5 m (fitness = 0.9312). It has a strong sub-optimal
fitness value where the fitness is 0.546 this corresponds to the maximum possible
distance that the ball can be thrown when the arm only swings forward, whereas to
achieve maximum distance, one needs to swing the arm backwards so that it picks
up speed due to gravity before torque is applied.

!https://archive.ics.uci.edu/ml/datasets.html.

https://archive.ics.uci.edu/ml/datasets.html

9 Designing Multiple ANNs with Evolutionary Development: Activity Dependence 177

Table 9.2 Performance for problem pairs with activity dependence versus no activity dependence

Problem pair AD No AD
DP/BT 0.3869 0.3287
DP/G 0.4230 0.4016
D/G 0.6506 0.6482
BT/G 0.5585 0.5768

In DP, the task is to balance two poles on a moveable cart on a limited track by
applying a horizontal force to the cart. The inputs to the controller are the position
and velocity of the cart and the angle and angular velocity of the pole(s). So there are
six inputs. The single output is the force applied to the cart. The system is simulated
for a maximum of 100,000 time steps. It is solved if both poles are balanced to within
certain limits for this number of steps. The fitness for the DP problem is the fractional
number of simulation steps that the poles remain balanced so the fitness is fractional
while the fitness for the ball throwing problem is a continuous floating point value.

The Wilcoxon Ranked-Sum test (WRS) was used to assess the statistical difference
between pairs of experiments [17]. In this test, the null hypothesis is that the results
over the multiple runs for the two different experimental conditions are drawn from
the same distribution and have the same median. If there is a statistically significant
difference between the two then null hypothesis is false with a degree of certainty
which depends on the smallness of a calculated statistic called a p-value. However,
in the WRS before interpreting the p-value one needs to calculate another statistic
called Wilcoxon’s W value. This value needs to be compared with calculated values
which depend on the number of samples in each experiment. Results are statistically
significant when the calculated W-value is less than or equal to certain critical values
for W, [36]. In all our experiments W, = 38. This is available in standard tables of
values dependent on the number of paired samples (20 in our case) and the p-value
bounds for significance.

The genotype length was chosen to be 600 nodes. Goldman mutation [9] was used
which carries out random point mutation until an active gene is changed. Twenty non-
incremental evolutionary runs of a 1+5-ES were used using 20,000 generations. In
a series of experiments we compared the effectiveness of solving pairs of problems
with AD weight versus solving them without AD weight. The results are shown in
Fig.9.2. It turned out that all W-values were larger than the critical value, so the statis-
tical differences between the two scenarios were not significant. Other experiments
were conducted with both Hebbian and activity-dependent dendrite position and
once again there appeared to be no statistical differences between allowing activity
dependence and disallowing it.

178 J. F. Miller

9.5 Discussion and Further Work

The findings regarding the usefulness of activity dependence were disappointing.
However, there are other ways that activity dependence could be implemented. Aver-
age activity could be calculated over each problem data set and this could be given as
an input to the evolved programs. This could allow evolution to respond to activity
levels. In the AD implemented in this article, information about neural activity was
not supplied to evolved programs but rather neural activity was calculated and neural
variables adjusted after the ANNs were extracted from the developed brain. Ideally,
evolved neural programs would be executed during training, however this would be
computationally prohibitive. In real brains, neurons and dendrites are all running in
parallel.

There are many small details in the model particularly relating to the birth of
neurons and dendrites. Empirical investigations to ascertain the most suitable value
of the many parameters have not been exhaustive but rather based on small semi-
informal experiments. It is therefore possible that there are much more suitable
parameters.

Although we were able to evolve a computational brain that can solve multiple
machine learning problems reasonably well, our attempts were greatly hindered by
interference. Activity dependence could in principle alleviate catastrophic forgetting
as the networks could change depending on the problem input data. How does natural
evolution find improvements in the performance of systems without the deterioration
of already evolved systems? For computational reasons the maximum number of
neurons we have used in the experiments has been very small (30). One would
imagine with much larger numbers of neurons that it would be easier for evolution to
develop sub-networks of neurons without interfering with already successful ones. It
could also be simply that to achieve non-interfering development takes much more
evolutionary time. Allowing development to happen within the problem loop (as
discussed earlier in Sect.9.3.3) needs to be more thoroughly investigated.

Snapping needs to be investigated further. At present dendrites snap to their nearest
neurons to establish a connection. However, snapping could be made more local, so
that dendrites only snap when the distance between them and the neuron is less than
a certain bound. Unconnected dendrites would have to be ignored when extracting
ANNE.

The idea behind epoch learning was to allow development to take place until
the brain stopped improving. The hope is that by evolving developmental programs
over sufficient numbers of epochs would encourage generality and result in a self-
improving brain. Environmental feedback (training fitness score) were introduced
to give signals to the developing brain that would allow it to improve. In general,
we found that highest performing developmental programs used few epochs. This
remains puzzling and needs further investigation.

More thought needs to be given as to what internal reward signals need to be
given to the brain. Biological brains have networks of neurons that recognise what

9 Designing Multiple ANNs with Evolutionary Development: Activity Dependence 179

the problem is so that the appropriate rules and actions can be applied. In other words,
the mechanism for selecting relevant inputs is highly complex.

Generality in learning is commonly evaluated using unseen data sets, however
in multiple problem solving methods one could test general learning by presenting
a new problem of the same type encountered in training. This will be investigated
in the future. We have looked at supplying problems to solve both sequentially and
simultaneously. However, perhaps problems should be presented randomly.

We have evaluated our developmental approach on standard benchmarks in
machine learning. This was deliberate so that comparisons could be made with other
techniques. However, it might be better to create new suites of simpler problems for
developmental methods. Also, solving much larger numbers of problems might bias
evolution toward general learning behaviour.

References

1. Aljundi, R., Chakravarty, P., Tuytelaars, T.: Expert gate: Lifelong learning with a network of
experts. CoRR, abs/1611.06194 2 (2016)

2. Banzhaf, W., Beslon, G., Christensen, S., Foster, J.A., Képes, F., Lefort, V., Miller, J.F., Radman,
M., Ramsden, J.J.: From artificial evolution to computational evolution: A research agenda.
Nat. Rev. Genet. 7, 729-735 (2006)

3. Butz, M., Worgétter, F., van Ooyen, A.: Activity-dependent structural plasticity. Brain Res.
Rev. 60(2), 287-305 (2009)

4. Clune, J.: AI-GAs: Al-generating algorithms, an alternate paradigm for producing general
artificial intelligence (2020). arXiv:e1905.10985

5. Ellefsen, K., Mouret, J.B., Clune, J.: Neural modularity helps organisms evolve to learn new
skills without forgetting old skills. PLoS Comput. Biol. 11(4:e1004128) (2015)

6. Fahlman, S.E., Lebiere, C.: The cascade-correlation learning architecture. In: Advances in
Neural Information Processing Systems, pp. 524-532 (1990)

7. Franco, L., Jerez, J.M.: Constructive Neural Networks, vol. 258. Springer (2009)

8. French, R.M.: Catastrophic forgetting in connectionist networks: causes, consequences and
solutions. Trends Cognit. Sci. 3(4), 128-135 (1999)

9. Goldman, B.W., Punch, W.E.: Analysis of cartesian genetic programmings evolutionary mech-
anisms. IEEE Trans. Evolut. Comput. 19, 359-373 (2015)

10. Khan, G.M., Miller, J.F., Halliday, D.M.: Evolution of cartesian genetic programs for develop-
ment of learning neural architecture. Evol. Comput. 19(3), 469-523 (2011)

11. Kleim, J., Napper, R., Swain, R., Armstrong, K., Jones, T., Greenough, W.: Selective synaptic
plasticity within the cerebellar cortex following complex motor skill learning. Neurobiol. Learn.
Mem. 69, 274-289 (1998)

12. Koutnik, J., Gomez, F., Schmidhiiber, J.: Evolving neural networks in compressed weight space.
In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 619-626 (2010)

13. Kumar, S., Bentley, P. (eds.): On Growth, Form and Computers. Academic (2003)

14. Maguire, E.A., Gadian, D.G., Johnsrude, L.S., Good, C.D., Ashburner, J., Frackowiak, R.S.J.,
Frith, C.D.: Navigation-related structural change in the hippocampi of taxi drivers. PNAS 97,
43984403 (2000)

15. McCloskey, M., Cohen, N.: Catastrophic interference in connectionist networks: the sequential
learning problem. Psychol. Learn. Motivat. 24, 109—-165 (1989)

16. McCulloch, Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math.
Biophys.5, 115-133 (1943)

17. McDonald, J.H.: Handbook of Biological Statistics, 3 edn. Sparky House Publishing (2014)

http://arxiv.org/abs/e1905.10985

180

18.
19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.
30.

31.

32.

33.

34.

35.

36.

J. F. Miller

Miller, J.F. (ed.): Cartesian Genetic Programming. Springer (2011)

Miller, J.E.: Evolving developmental neural networks to solve multiple problems. In: Proceed-
ings of ALIFE-2020, pp. 473-482 (2020)

Miller, J.F.: DEMANNED: Designing multiple ANNs via evolved developmental neurons.
Artificial Life (2021), submitted

Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Proceedings of European Con-
ference on Genetic Programming, LNCS, vol. 10802, pp. 121-132 (2000)

Miller, J.F., Thomson, P.: A Developmental Method for Growing Graphs and Circuits. In:
Proceedings of International Conference on Evolvable Systems, LNCS, vol. 2606, pp. 93—104
(2003)

Miller, J.E,, Wilson, D.G., Cussat-Blanc, S.: Evolving developmental programs that build neural
networks for solving multiple problems. In: Genetic Programming Theory and Practice XVI
(pp. 137-178 (2019)

Miller, J.F., Wilson, D.G., Cussat-Blanc, S.: Evolving programs to build artificial neural net-
works. In: From Astrophysics to Unconventional Computation, pp. 23-71. Springer Interna-
tional Publishing (2020)

Ooyen, A.V. (ed.): Modeling Neural Development. MIT Press (2003)

Ratcliff, R.: Connectionist models of recognition and memory: constraints imposed by learning
and forgetting functions. Psychol. Rev. 97, 205-308 (1990)

Rusu, A.A., Rabinowitz, N.C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K.,
Pascanu, R., Hadsell, R.: Progressive neural networks (2016). arXiv:1606.04671

Sharkey, A.J.: Combining Artificial Neural Nets: Ensemble and Modular Multi-net Systems.
Springer Science & Business Media (2012)

Smythies, J.: The Dynamic Neuron. MIT Press (2002)

Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artif. Life 9(2), 93—-130
(2003)

Terekhov, A.V., Montone, G., O’Regan, J.K.: Knowledge transfer in deep block-modular neural
networks. In: Conference on Biomimetic and Biohybrid Systems, pp. 268-279. Springer (2015)
Tramontin, A.D., Brenowitz, E.: Seasonal plasticity in the adult brain. Trends Neurosci. 23,
251-258 (2000)

Turner, A.J.: Evolving Artificial Neural Networks using Cartesian Genetic Programming.
Ph.D. thesis, Department of Electronic Engineering, University of York (2017). http://etheses.
whiterose.ac.uk/12035/

Vaario, J.: From evolutionary computation to computational evolution. Informatica 18, 417-
434 (1994)

Velez, R., Clune, J.: Diffusion-based neuromodulation can eliminate catastrophic forgetting in
simple neural networks. PLOS One 12(11:e0187736) (2017)

Zar, J.H.: Biostatistical Analysis, 2nd edn. Prentice Hall (1984)

http://arxiv.org/abs/1606.04671
http://etheses.whiterose.ac.uk/12035/
http://etheses.whiterose.ac.uk/12035/

Chapter 10)
Evolving and Analyzing Modularity Gzt
with GLEAM (Genetic Learning

by Extraction and Absorption

of Modules)

Anil Kumar Saini and Lee Spector

Abstract General methods for the evolution of programs with modular structure
have long been sought by genetic programming researchers, in part because modular-
ity has long been considered to be essential, or at least helpful, for human program-
mers when they develop large-scale software projects. Multiple efforts have been
made in this direction, and while success has been demonstrated in specific contexts,
no general scheme has yet been demonstrated to provide benefits for evolutionary
program synthesis that are similar in generality and significance to those provided by
modularity in human software engineering. In this chapter, we present and analyze a
new framework for the study of the evolution of modularity, called GLEAM (Genetic
Learning by Extraction and Absorption of Modules). GLEAM’s flexible architec-
ture and tunable parameters allow researchers to test different methods related to the
generation, propagation, and use of modules in genetic programming.

10.1 Introduction

Genetic programming systems have been shown to be capable of synthesizing pro-
grams that make use of multiple data-types, conditionals, loops, and other control
structures that, for human programmers, support the development of complex pro-
grams. They can successfully solve many problems from the introductory program-
ming textbooks [4]. To solve more complex problems, however, like many that are
routinely solved by human programmers, additional breakthroughs may be required
with respect to the evolution of modularity. Despite multiple efforts in this direction,
achieving scalability through modularity remains one of the open issues in the field
of genetic programming [10].

A. K. Saini (X))
University of Massachusetts Amherst, Amherst, MA, USA
e-mail: aks @cs.umass.edu

L. Spector
Ambherst College, University of Massachusetts Amherst, Amherst, MA, USA
e-mail: Ispector@amherst.edu

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 181
W. Banzhaf et al. (eds.), Genetic Programming Theory and Practice XVIII,

Genetic and Evolutionary Computation,

https://doi.org/10.1007/978-981-16-8113-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8113-4_10&domain=pdf
mailto:aks@cs.umass.edu
mailto:lspector@amherst.edu
https://doi.org/10.1007/978-981-16-8113-4_10

182 A. K. Saini and L. Spector
Fig. 10.1 An individual in
GLEAM. The first part / \

shows the program, and the
the second part shows the a, b’ C, tl’ d’ t2’

modules labeled with tags.
The letters a, b, ¢, etc.
denote the regular

t t, t3
instruction, whereas t, 1o,
references \ /

Many of the techniques proposed to encourage modularity in evolving programs
are designed to work only for a handful of modules, and it is not clear that these
techniques will be able to produce large-scale software that involves dozens or more
modules. In this chapter, we present and analyze a new framework called GLEAM
(Genetic Learning by Extraction and Absorption of Modules), in which an evolving
program can make use of a local library of modules that is propagated from generation
to generation (with possible variation) along with the program’s code. Programs can
call modules, and modules can also call each other. Figure 10.1 illustrates a typical
evolving individual in GLEAM.

The framework presented here does not specify how module arguments and return
values and their types are handled. Details of argument handling will depend on the
underlying genetic programming system; below, we spell out the way in which this
is handled in our own experiments.

After every generation, the library is updated in the following way: modules that
are not being used by the individual may be replaced by modules extracted from
the individual itself or elsewhere, modules may be mutated, and module references
may be replaced by their corresponding code segments (which we call “absorption”
of the module). New modules are typically extracted from the main program or
other modules associated with the same program, but under certain experimental
conditions they may instead be taken from other individuals or any other external
source.

Below, after a brief review of related work, we present the GLEAM framework
in more detail and describe the results of experiments with GLEAM on benchmark
software synthesis problems. We analyze the effectiveness of GLEAM for evolving
modular programs, and the improvement in software synthesis performance relative
to experiments in which GLEAM is not used. We also briefly describe additional
experiments that illustrate the use of GLEAM as a platform for testing different
methods for evolving and using modules in genetic programming.

10 Evolving and Analyzing Modularity with GLEAM (Genetic Learning ... 183

10.2 Evolving Modules in Genetic Programming

Ever since the introduction of Automatically Defined Functions (ADFs) by John
Koza [8], multiple attempts have been made over the years to evolve modular pro-
grams that can solve complex problems. Although different frameworks define modu-
larity in different ways, in this section, we restrict our discussion to those frameworks
where evolving individuals have access to labeled modules.

These modularity-inducing systems can be grouped into two categories. In the
systems in the first category, which we call Single-entry-point systems, an evolving
individual is composed of a main program and a set of modules. These modules can
be local to an individual or shared by all individuals in the population. Execution
always starts from the main program, which can call other modules during execution.
Modules can also call each other. In the second category, which we call Multiple-
entry-points systems, an evolving individual is made up of modules. There is no
concept of a main program as such, and the execution can start from any of the
modules based on the signal from the environment.

Single-entry-point Systems. John Koza’s Automatically Defined Functions
(ADFs), one of the first approaches in this direction, were able to improve the prob-
ability of success on a number of problems such as parity functions. However, they
were not very flexible in the sense that the form of the functions, including their
name, arguments, etc. had to be defined in advance. To remedy this, various modifi-
cations have come up, including but limited to, Architecture Altering Operations [7],
Module Acquisition [1], Automatically Defined Macros [11], etc.

Grammatical Evolution (GE) using modules is another technique in this category.
First, all the subtrees in the individuals in the population are assessed on their useful-
ness in their respective program trees, and the better performing ones are considered
to be modules. This is called module identification [15]. Next, the underlying gram-
mar is modified so that individuals in the future generations are able to use such
modules. Tag-based modules [13], whereby programs can label code segments with
integer tags and later refer to them during execution, have shown limited success
in problems like the lawnmower problem and the obstacle-avoiding robot problem.
Another technique that encourages modularity in the evolving programs by reusing
and evolving modules is Embedded Cartesian Genetic Programming (ECGP) [16].

Some work has also been done to use a set of modules between different runs for
a single problem. For example, a Run Transferable Library [5], which is a collection
of functions known as Tag Addressable Functions (TAFs), is used and updated in
one run and transferred to the next one for a certain number of runs for the same or
similar problems. All the individuals in the population are free to use the modules in
this global library.

Multiple-entry-points Systems. In Signal GP [9], a program is a set of functions
that can be accessed by their identifiers called tags. Events in the environment also
contain tags and can trigger functions with appropriate tags in the program. Tangled
program graphs (TPG) [6] use two distinct populations, one for teams and the other
for programs. A team is a collection of pointers to programs, which are executed

184 A. K. Saini and L. Spector

to calculate the fitness of the team. Here, teams act as individuals and programs as
modules.

The GLEAM framework that we discuss in this chapter primarily focuses on the
systems in the first category since it assumes that an evolving individual is made up
of a main program and a set of labeled modules.

10.3 GLEAM

In this section, we describe various aspects of the GLEAM framework. Although the
description has been kept as general as possible, some details on how GLEAM has
been implemented in our experiments are also given.

Each individual in a GLEAM population has a main program and a local library
containing a number of modules. Only the main program is executed for error testing.
Modules are not executed directly, but called by the main program or by other modules
during execution. Modules are identified and called using integer tags.

Libraries are updated each generation, ideally in a way that will cause useful
modules to be retained and useless modules to be replaced by new ones over the course
of evolution. We define the usefulness of modules in a simple way: those modules
which are being referenced by the program directly or indirectly are considered
useful. Those that cannot be reached by chains of references starting in the main
program are considered useless.

GLEAM is a general-purpose technique; it can be implemented with most, if
not all, of the existing genetic programming systems. The only requirement for the
underlying system is that the modules used by the evolving individuals in the system
have labels that can be used to call them. For the sake of concreteness, the description
of GLEAM in this section assumes the use of linear genome representations, but
we provide some suggestions for implementation in tree-based genetic programming
systems as well.

10.3.1 Initializing the Library

Modules are initialized in the same way as the program itself, using the same instruc-
tions that are available to the program.

The number of modules in the library of an individual can be set to any size. In
the version of GLEAM that we use for the preliminary experiments described in
this chapter, each individual library contains a small fixed number of modules (10).
However, we consider this to be a special case of the more general GLEAM archi-
tecture, in which the number of modules may be increased over evolutionary time,
with a specified number of modules being added every time a specified number of
generations passes. More research will be required to determine the effects of various

10 Evolving and Analyzing Modularity with GLEAM (Genetic Learning ... 185

schedules for increasing the number of modules, and to understand the behavior of
the system with much larger numbers of modules.

Within the context of a fixed, small number of modules, we found in exploratory
experiments that the precise number makes little difference, and we picked 10 as the
number of modules for the experiments here simply because it is a round number.

10.3.2 Referencing the Modules

Whenever a module is called, it is provided the current state of the calling program.
During execution, it can change that state, and that state later on gets returned to
the calling program after the module has been executed. Restrictions on the amount
and type of information passed to the modules, and returned from the module calls,
could be implemented for the sake of specific experiments, but we do not do so here.
Instead, we leave it to the underlying genetic programming systems to deal with it.

Calling a module requires the use of special referencing instructions. For the
experiments described here, referencing instructions are implemented in the fol-
lowing way. In order to refer to a particular module with identifier i (also called
its tag), the program uses the instruction tagged_i. This is similar to the proce-
dure adopted in [13]. To generate tag references in the program, a special function
tagged_erc_limit is used. It inserts tagged_j in the program, where j is
an integer chosen randomly between 0 and a pre-defined limit. Since the number of
modules in a given library is 10, this limit is also set to 10. We use five of these tag-
reference generators in our set of instructions available for the programs and modules,
meaning that referencing instructions will be chosen five times as frequently as any
other specific instruction.

10.3.3 Updating the Library

The algorithm, Fig. 10.2, presents the modified steps of the genetic programming
algorithm to accommodate the steps needed to update the library containing modules
for every individual. In the algorithm, the ind variable is a data structure (dictionary,
hashmap, or something similar) containing the main program and a set of modules
called the library.

For every generation, whenever a new child genome is created, while applying
genetic operators on it, its local library is also updated. Other details of this updating
procedure for the library are given in the following subsections.

186 A. K. Saini and L. Spector

for each generation do

for each reproduction event do

if doing crossover then
parent] := Selection(pop)

parent2 := Selection(pop)
ind := Crossover(parent1, parent2)

else

| ind := Selection(pop)

end

/* Update the library */

ind[‘library’] := Mutate(ind[‘library’], mutation_rate_for_module) // Apply
mutation on the modules

ind[‘library’] := Extract(ind, extraction_rate) // Replace the unused
modules with the new ones

ind := Absorb(ind, absorption_rate) // Absorb modules in the main
program as well as other modules

ind[‘main program’] := Mutate(ind[‘main program’], mutation_rate_for_program)

end
end

Fig.10.2 Modified Genetic Programming Algorithm to accommodate the steps needed for updating
the library

10.3.3.1 Crossover and Mutation

During the crossover of two individuals, if a part being received by the child contains
tag references, the child also receives the associated modules. In case various parts
from different parents contain the same tag referring to different modules, some of
those tags may be mutated to accommodate all the modules being referred to by the
tags. For example, assume the child genome receives two parts, and both of them
contain tagged_2. In order to retain modules from both parts, one of the tags can
be changed to some other tag not currently in use. If no other free tag is available,
the module with tag 2 from one of the parts may be dropped.

The mutation methods for the program and the modules in the library can be
different, but to maintain uniformity and simplicity, we will assume the same method
is used for both parts. The rates of mutation, however, might be different for the main
program and modules in the following ways:

1. The mutation rate for modules is less than that of the program. In extreme cases,
the mutation rate can also be zero. That would mean that mutation is not applied
to the modules.

2. The mutation rate for modules is the same as that of the main program.

3. The mutation rate for modules is more than that of the main program.

This difference in mutation rates can affect the dynamics of evolution. In the first case,
for example, lower mutation rates essentially mean the modules are being shielded

10 Evolving and Analyzing Modularity with GLEAM (Genetic Learning ... 187

from frequent mutations so that they can evolve code segments which might be too
useful for the programs to be changing frequently. This is also similar to the idea of
multiple levels of evolution in hierarchical evolution [2], where modules in the lower
layers evolve at a slower speed than the modules or programs in the upper levels.
Keeping the mutation rate for modules same as or more than that of the program
would not provide any such protection to the modules.

Note that although we discussed crossover and mutation operators in detail here
to show the generality of GLEAM, in our experiments conducted in this chapter, we
only use the mutation operator. The reasons for doing this will be discussed later in
the chapter.

10.3.3.2 Extraction

We consider a module being used if it is reachable by the program, i.e., if the program
contains a reference to it, or if the program contains a reference to some other module
which in turn contains the reference to it, and so on. In the extraction operator, every
unused module gets replaced by a new module with a certain probability. Figure 10.3
gives an example of an unused module being replaced by a code segment from the
program. Where do these new modules come from? Various methods [2, 5, 15] find
the new modules using a process known as Module Search or Module Identifica-
tion, where different subtrees from individuals in the population are assigned fitness
depending on their usefulness in the original trees, and the subtrees with better fitness
than the others are chosen as new modules. The fitness of a subtree can be assessed
in various ways: difference in the fitness of the individual tree with and without the
subtree, difference in the fitness with the given subtree and a randomly generated
subtree inserted in its place, etc. For GLEAM, new modules may come from these
places:

1. generate a random code segment of a certain length

2. chose a random code segment from the current program or any other program
in the population

3. choose an existing module from the library of the current program or any other
program in the population

4. any other external repository

For the first two options, the lengths of new modules would also need to be
determined. This can be done by sampling lengths from a discrete distribution such
as Poisson distribution, Negative Binomial distribution, etc. The above-mentioned
procedures for new modules is for linear genomes. For tree-based representations,
a subtree of the program can serve as the module, similar to what is done in Run-
transferable libraries [5] or Hierarchical Genetic Programming [2].

188 A. K. Saini and L. Spector

Fig. 10.3 An individual in / \

GLEAM before and after the
extraction operation. Since
the tag ; is not being used, it a, b’ C tl" d’ t3’

is replaced with the segment
bct) extracted from the
program

4 t; t3

I BN KN
o

10.3.3.3 Absorption

In the absorption operator, with a certain probability, every module reference, in the
program as well as the modules, can get replaced by the code segment it refers to.
Figure 10.4 provides an example of a module getting absorbed by the program. One
reason why expanding modules might be useful for the programs is that it frees up
the tag unless the same tag is referenced somewhere else in the program. The freed
up tag-module association becomes unused and can be replaced by a new module.
Another reason might be that once a module is expanded into the program, it can
interact more freely with other instructions in the program than was possible before.

10.4 GLEAM as a Platform for Testing

Due to its flexible architecture and tunable parameters, GLEAM framework can be
used as a general-purpose platform to test various aspects relating to modularity in
genetic programming: how to use current modules, how to generate new ones, how
to decide which old modules to replace, where do the modules actually reside, etc.

10 Evolving and Analyzing Modularity with GLEAM (Genetic Learning ... 189

Fig. 10.4 An individual in
GLEAM before and after the /
absorption operation. The

tag ¢ gets expanded in the d, b, C, tl’ d, 'l'.3‘||

program
£ & &
EN KN
- /

{8 o

a,b,cefdt,,..
t t, t;
N i

‘We put these methods in four categories and discuss some examples of each of them.
The categories are listed in Table 10.1 and are described below:

1. Using modules: How do modules get referenced? The methods to do that may
include referencing by an identifier, insertion of the modules directly into the
program, etc.

2. Storing modules: Where do modules reside? They might be kept in a library
local to an individual, a library common to all the individuals in the population,
or a combination of both. They can also be defined as part of the program itself.

3. Generating Modules: Where do new modules come from? They can come from
the segments of the program using them or any other program in the popula-
tion, or any external repository. They can even be generated randomly from the
instruction set available to the program.

4. Replacing modules: Which modules get replaced whenever new modules are
being added? Various policies that can be adopted are: replace the ones not used
by the program, replace the ones least recently used, replace the oldest ones, etc.

190 A. K. Saini and L. Spector

Table 10.1 Some of the methods that can be tested using GLEAM framework

Using modules Storing modules
Reference by an identifier In the program
Direct insertion A library local to the program

A library shared by all individuals

Generating modules Replacing modules
From the program using the modules Replace the ones not used by the program
From other programs Oldest

External repository

10.5 Experiments and Analysis

In this section, we describe some experiments conducted to test the effectiveness
of GLEAM to evolve modular programs and to test various methods relating to the
generation, usage, etc. of modules during evolution.

10.5.1 Experimental Set-Up

All experiments were conducted in a genetic programming system called PushGP;
specifically, a version of PushGP written in Clojure, called Clojush,! was used. This
system evolves programs in a stack-based programming language called Push [12,
14]. In this language, every data type has a dedicated stack, and during execution,
instructions can take their inputs from and place their outputs on different stacks.

To test the effectiveness of GLEAM, we ran it on five problems from the General
Program Synthesis Benchmark Suite [4]. These problems have been selected keeping
in mind their difficulty level—state of the art [4] gives about 50% or less success
rate on these problems—as well as the input and output data types. Descriptions of
these problems are reproduced here:

e Last Index of Zero: Given a vector of integers, at least one of which is 0, return
the index of the last occurrence of 0 in the vector.

e Count Odds: Given a vector of integers, return the number of integers that are odd,
without the use of a specific even or odd instruction (but allowing instructions such
as mod and quotient).

e Compare String Lengths: Given three strings nl, n2, and n3, return true if
length(nl) < length(n2) < length(n3), and false otherwise.

e Small or Large: Given an integer n, print ‘small’ if n < 1000 and ‘large’ if n >
2000 (and nothing if 1000 < n < 2000).

! https://github.com/lIspector/Clojush.

https://github.com/lspector/Clojush

10 Evolving and Analyzing Modularity with GLEAM (Genetic Learning ... 191

Table 10.2 Genetic Programming Parameters

Parameter Value
Population size 1000
Number of generations 300
Parent selection algorithm Lexicase
Mutation operator UMAD
Mutation rate 0.09
Genome Representation Plushy
Number of runs per condition 50

e Double Letters: Given a string, print the string, doubling every letter character, and
tripling every exclamation point. All other non-alphabetic and non-exclamation
characters should be printed a single time each.

Some of the genetic programming parameters used for the experiments are given
in Table 10.2. For the problems in the benchmark suite, the best results [3] so far have
been obtained with using lexicase selection (or its other variants) as selection operator,
uniform mutation by addition and deletion (UMAD) as the mutation operator, and
no crossover operator. This is the setting we use in our experiments as well.

10.5.2 Using GLEAM to Evolve Modular Programs

As far as parameters specific to GLEAM are concerned, we conducted some prelim-
inary experiments with various settings, and the configuration that worked the best,
in terms of the number of successes on the problems from the benchmark suite, is
given in Table 10.3. In this configuration, the mutation operator used for the modules
is the same as that of the program, i.e., UMAD, but the rate used for the modules is
half of what is used for the program. Initial modules have the size one-tenth the size
of the initial programs. Every unused module is replaced with a probability of 0.75
by a randomly chosen sequence of genes that is extracted from the program itself.

New modules are extracted in the following way. First, a number is chosen
randomly between 1 and 20. This number called len_segment serves as the ten-
tative length of the new module. Then, a random point in the program genome
is chosen. Let’s call it start. Now, the segment between start and min(start +
len_segment, len_program) is extracted. After extracting the module, we check
whether it has balanced parentheses. If not, we choose the first subsegment of the
extracted segment with balanced parentheses as the new module.

We also allow module references to get absorbed in the program as well as in
other modules with a probability of 0.1. That means one out of every ten module
references would be expanded.

192 A. K. Saini and L. Spector

Table 10.3 GLEAM Parameters

Parameter Value

Number of modules per individual 10

Mutation operator for modules UMAD

Mutation rate for modules half of what is used for the program
Extraction method sequence from the program
Extraction rate 0.75

Module absorption rate 0.1

Table 10.4 Number of successes out of 50 for various configurations

Problem W/out Config Config Config Config Config
GLEAM A B C D E

Lastindex |29 37 34 36 33 37

of zero

Countodds | 3 8 5 4 5 3

Compare 14 19 17 11 13 15

string

lengths

Small or 4 4 6 4 4 6

large

Double 13 12 11 16 13 12

letters

Table 10.4 gives the number of successes, out of 50, for various problems. The first
column gives the number of successes without using GLEAM. The second column,
i.e., Config A corresponds to the parameter settings given in Table 10.3. To qualify
as a solution, the program must have a zero error on the training set, which was used
during evolution, and also on a held-out test set, which was not used during evolution.
Specifically, the programs which produced zero error on the training set were first
simplified according to the procedure detailed in [4], and then were run again on the
test set. Those simplified evolved programs producing zero error on the test set were
termed solutions. Automatic simplification was done because it has been to improve
generalization on the unseen test set.

Although the improvement in the success rate under Config A for the benchmark
problems is moderate and not statistically significant (according to pairwise chi-
square test with Holm correction and a 0.05 significance level), this improvement
is consistent across most of the parameter settings we have tested with GLEAM.
The future work will entail testing various methods available in the literature of
generating new modules, storing those modules, etc. to figure out which one of them
will work the best with these problems.

10 Evolving and Analyzing Modularity with GLEAM (Genetic Learning ... 193

10.5.3 Using GLEAM as a Testing Platform

We also conducted some additional experiments to illustrate the effectiveness of
GLEAM to be used as a testbed for testing various methods of generating, propa-
gating, and using modules. To that end, we experiment with some of the conditions
described in Sect. 10.4. We call the parameter settings of Table 10.3 “Config A” and
compare the performance of all other settings with this one. In each of the config-
urations described below, only one parameter is changed while keeping everything
else the same as in Config A.

1. Config A: The parameter setting of Table 10.3.

2. Config B (Random Segments): In this configuration, new modules come from
randomly generated segments and not from the program. To keep the comparison
fair, we calculate the lengths of the new modules as if they are coming from the
program according to the procedure described in Sect. 10.5.2. After that, the
genes are generated randomly instead of getting extracted from the program.

3. Config C (No Absorption): We set the absorption rate to be zero. This means
there is no absorption either in the program or other modules.

4. Config D (High Absorption): We set the absorption rate to 0.25. This is meant
to test whether higher absorption is better or not.

5. Config E (Modules don’t mutate): There is no mutation at the level of modules.

The results are given in Table 10.4. Again, since the changes in the success rate
are moderate and not statistically significant, we will mainly talk about some general
trends rather than any concrete conclusions drawn from the data. The following
trends may be observed:

1. Using segments extracted from the program itself as modules seems to be better
than using randomly generated segments.

2. Some absorption is better than having no absorption or very high absorption.

3. Having mutation at the level of modules seems to work better than not mutating
modules at all.

10.5.4 Modular Usage in GLEAM

Do programs evolved using GLEAM actually use modules? We answer this question
using the following metric. For each solution program, we calculate the number of
module references that have been absorbed in the programs at various points in its
lineage. This number added to the number of module references currently in the
solution program will give us the total number of modules that have been used to
evolve the solution. We report this number averaged over all the solutions for a given
problem. The data is presented in Table 10.5.

Since the solution programs and the individuals in their lineages do use modules,
it is possible that these modules contain some useful information that was used by

194 A. K. Saini and L. Spector

Table 10.5 Average number of modules used to evolve the final solutions

Problem Config A Config B Config C Config D Config E
Last index of | 3.32 2.38 1.22 3.58 4.35
Zero

Count odds 5.25 13.0 2.5 20.2 13.0
Compare 9.95 10.12 1.73 15.23 12.27
string lengths

Small or large | 1.75 8.5 1.75 14.0 6.33
Double letters |31.92 25.54 2.69 35.77 25.17

them. It is also possible that these modules might have helped the individuals find
new pathways to solutions through the search space. Further research is needed to
verify these claims.

Although the numbers presented in Table 10.5 are indicative of the fact that mod-
ules contain some useful information, these numbers do not correlate highly with the
actual number of successes for a given problem. Further study will be required to
understand the significance of these results, which may depend on specific aspects
of problems that affect the utility of modules.

10.6 Conclusions

We presented and analyzed a general framework for evolving modular programs
in genetic programming called GLEAM. Although it can be applied to any genetic
programming system, in this paper, we study its effects in PushGP, a genetic pro-
gramming system that evolves programs in Push programming language. We find
that GLEAM improves the success rate on multiple benchmark problems. We also
describe how GLEAM can be used as a platform to test various methods of generat-
ing, using, storing, and replacing modules during the evolution of modular programs.
We test some of these methods experimentally as well. We also show that solutions
evolved using GLEAM often use modules, indicating their usefulness during the
process of evolution.

The problems on which we have tested the GLEAM framework are relatively
simple problems, in the sense that the current genetic programming systems are
able to solve them with a moderate success rate. For more complex problems, espe-
cially those which have not been solved by any genetic programming system so
far, the utility of GLEAM remains to be seen. Future work would also investigate
the advantages of using GLEAM with other forms of genetic programming, includ-
ing tree-based, grammar-based, and steady-state systems, etc. More research is also
needed to examine why some parameter settings are more effective than others for
problems of various levels of difficulty.

10

Evolving and Analyzing Modularity with GLEAM (Genetic Learning ... 195

Acknowledgements This material is based upon work supported by the National Science Foun-
dation under Grant No. 1617087. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and do not necessarily reflect the views of the
National Science Foundation. This work was performed in part using high performance computing
equipment obtained under a grant from the Collaborative R&D Fund managed by the Massachusetts
Technology Collaborative.

References

10.

11.

12.

13.

14.

15.

16.

. Angeline, PJ., Pollack, J.B.: The evolutionary induction of subroutines. In: Proceedings of the

14th Annual Conference of the Cognitive Science Society, pp. 236-241. Bloomington, Indiana
(1992)

Banzhaf, W., Banscherus, D., Dittrich, P.: Hierarchical genetic programming using local mod-
ules. In: Bar-Yam, Y., Minai, A. (eds.) Unifying Themes in Complex Systems - Proceedings
of 2nd International Conference on Complex Systems, pp. 321-330. CRC Press (2018)
Helmuth, T., Abdelhady, A.: Benchmarking parent selection for program synthesis by genetic
programming. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference
Companion, pp. 237-238 (2020)

Helmuth, T., Spector, L.: General program synthesis benchmark suite. In: Proceedings of the
2015 Annual Conference on Genetic and Evolutionary Computation, pp. 1039-1046 (2015)
Keijzer, M., Ryan, C., Cattolico, M.: Run transferable libraries - learning functional bias in prob-
lem domains. In: Genetic and Evolutionary Computation Conference, pp. 531-542. Springer
(2004)

Kelly, S., Newsted, J., Banzhaf, W., Gondro, C.: A modular memory framework for time series
prediction. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference,
pp. 949-957 (2020)

Koza, J., Bennet, F., Andre, D., Keane, M.: Genetic Programming III. Morgan Kaufmann
Publishers (1999)

Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press (1992)

Lalejini, A., Ofria, C.: Evolving event-driven programs with signalgp. In: Proceedings of the
Genetic and Evolutionary Computation Conference, pp. 1135-1142 (2018)

O’Neill, M., Spector, L.: Automatic programming: the open issue? Genet Progr. Evol. Mach.
20, 1-12 (2019)

Spector, L.: Evolving control structures with automatically defined macros. In: Working Notes
of the AAAI Fall Symposium on Genetic Programming, pp. 99-105 (1995)

Spector, L., Klein, J., Keijzer, M.: The push3 execution stack and the evolution of control.
In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, pp.
1689-1696 (2005)

Spector, L., Martin, B., Harrington, K., Helmuth, T.: Tag-based modules in genetic program-
ming. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computa-
tion, pp. 1419-1426 (2011)

Spector, L., Robinson, A.: Genetic programming and autoconstructive evolution with the push
programming language. Genet Progr. Evol. Mach. 3(1), 7-40 (2002)

Swafford, J.M., Hemberg, E., O’Neill, M., Brabazon, A.: Analyzing module usage in gram-
matical evolution. In: International Conference on Parallel Problem Solving from Nature, pp.
347-356. Springer (2012)

Walker, J.A., Miller, J.F.: The automatic acquisition, evolution and reuse of modules in cartesian
genetic programming. IEEE Trans. Evol. Comput. 12(4), 397-417 (2008)

Chapter 11)
Evolution of the Semiconductor Industry, | o
and the Start of X Law

Andrew N. Sloss

Abstract In this paper, we explore the use of evolutionary concepts to predict what-
comes-next for the Semiconductor Industry. At its core, evolution is the transition of
information. Understanding what causes the transitions paves the way to potentially
creating a predictive model for the industry. Prediction is one of the essential functions
of research; it is challenging to get right; it is of paramount importance when it
comes to determining the next commercial objective and often depends on a single
change. The most critical part of the prediction is to explore the components that
form the landscape of potential outcomes. With these outcomes, we can decide what
careers to take, what areas to dedicate resources towards and further out as a possible
method to increase revenue. The Semiconductor Industry is a complex ecosystem,
where many adjacent industries rely on its continued advancements. The human
appetite to consume more data puts pressure on the industry. Consumption drives
three technology vectors, namely storage, compute, and communication. Under this
premise, two thoughts lead to this paper. Firstly, the End of Moore’s Law (EoML)
[33], where transistor density growth slows down over time. Either due to costs or
technology constraints (thermal and energy restrictions). These factors mean that
traditional iterative methods, adopted by the Semiconductor Industry, may fail to
satisfy future data demands. Secondly, the quote by Leonard Adleman “Evolution is
not the story of life; it is the story of compute” [2], where essentially evolution is used
as a method to understand future advancements. Understanding a landscape and its
parameterization could lead to a predictive model for the Semiconductor Industry.
The plethora of future evolutionary steps available means we should probably discard
focusing on EoML and shift our attention to finding the next new law for the industry.
The new law is the Start of X Law, where X symbolizes a new beginning. Evolutionary
principles show that co-operation and some form of altruism may be the only methods
to achieve these forward steps. Future choices end up being a balancing act between
conflicting ideas due to the multi-objective nature of the overall requirements.

A. N. Sloss (<)
Arm Ltd., Seattle, Washington, USA
e-mail: Andrew.Sloss @arm.com

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 197
W. Banzhaf et al. (eds.), Genetic Programming Theory and Practice XVIII,

Genetic and Evolutionary Computation,

https://doi.org/10.1007/978-981-16-8113-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8113-4_11&domain=pdf
mailto:Andrew.Sloss@arm.com
https://doi.org/10.1007/978-981-16-8113-4_11

198 A. N. Sloss

11.1 Introduction

Similar to many industries, the Semiconductor Industry is and has been, driven by
immediate short-term goals, e.g., 65 nm, 28 nm, and 14 nm manufacturing processes.
These short-term goals are what we call the Hamster Wheel Effect, see Fig.11.1.
As time progresses, these immediate goals get harder and harder to achieve, as the
degrees of evolvability reduces. Degrees of evolvability reflects what changes are
possible, and this is a property of lineage (what came before) [7]. As-in, history
determines what options are available for future advancements.

Every little advancement overcomes a hurdle, which in turn allows for the explo-
ration of new nano-scale worlds. A good recent example is Extreme Ultraviolet
Lithography (EUV) [24]. EUV operates at a wavelength of 13.5nm, which allows
for stable manufacturing at 5nm, 3 nm scales, and possibly beyond.

At some point, increments are exhausted, and there are no further seams left to
explore, leaving technology-jumps as the only option. Technology-jumps are signif-
icant shifts in the industry. Compared to increments, these jumps remove constraints
that had impeded progress, but normally introduce new limitations, i.e., jumps sig-
nificantly change the landscape.

As we gain a greater understanding of biological evolution, we find that it is
driven by opportunistic changes over a much longer timescale. One of the most
significant jumps in biology was the incorporation of mitochondria and plastids for
energy production and photosynthesis, forming the first ancient eukaryotic cell. The
combination of power-production, replication, and computation into a single unit
allowed for the existence of multi-cellular organisms. These organisms set the stage

NM Geometry Reduction 1971-2024

10000 .
‘manuf.dat’ —a—

5000 |

Nanometers

0) M P
1970 1980 1990 2000 2010 2020 2030
Years

Fig. 11.1 Silicon manufacturing process scale since 1971

11 Evolution of the Semiconductor Industry, and the Start of X Law 199

for what is commonly called the Cambrian Explosion, a short period when a dramatic
acceleration of diversity occurred within the animal kingdom. In other words, a jump
to a higher level caused a rapid expansion of options and variety.

Both the Semiconductor Industry and biology may seem poles apart and focus
on fundamentally different substrates. But both systems are complicated, deal with
roughly the same geometries, and have the challenges of handling vast interactions
(spatial and temporal) to achieve useful work, i.e., a complex system. A complex
system includes the history, as-in the lineage. Thurner et al. described a complex
system as a co-evolving network of entities [32]. Where co-evolving refers to two or
more groups affecting each other’s evolutionary progression.

Before continuing further, let us define what is meant by evolution. Evolution is
a continuous process cycling through replication, selection, and variation. A single
cycle produces a population of potential solutions. A complete cycle is called a gen-
eration. Evolution explores adjacent possibilities either locally and/or globally [17,
32]. The continuous process allows the solutions to adapt dynamically to changing
environments, and the entities within the population have active fitness values. For
engineering, these values represent the distance to a desired goal or goals.

Novelty, or uniqueness, is predominately controlled by the level of diversity within
the population. If a new idea is required then a more diverse population is more
likely to succeed. A diverse population increases the likelihood of something new
emerging. This find assumes there is something new that has not been discovered.
If the population already includes every possibility in the space, nothing new can
emerge; in such a case, a less diverse population increases the likelihood of something
new emerging that is not a new possibility, but a new actuality in the population.

Rapid evolutionary advancements occur when there is significant environmental
pressure. The pressure either causes the population to converge to a new character-
istics or it remains diverse. If convergence occurs too early in the process a potential
“better” solution could be missed. Biological pressure points have come from sig-
nificant changes in the environment. Either by a reduction or sudden increase in the
availability of a resource, e.g., oxygen. By comparison, data consumption can be
seen as the main pressure point for the Semiconductor Industry. Where projected
data demand [9, 28] outstrip future resources and capabilities. In other words, the
current silicon technology cannot keep up with the coming data processing demands.

Today, taking the Semiconductor Industry as a complex evolving population of
systems (a population of populations), it has relatively little diversity and relies
entirely on the exploitation of current skill-sets. Those skill-sets focus on digital
logic etched onto silicon substrates. There are analog components, but these are kept
relatively small by comparison to the digital pieces. The industry has converged. If
there is a desire to escape the convergence then some form of technology-jump has
to occur.

Technology-jumps require some form of evolutionary creativity. Meaning an
inspirational change from the normal development flow has to occur. Margaret Boden
[6], broke down creativity into three useful mechanisms, namely exploration—play
within the rules, combination—apply one set of rules to another domain, or transfor-
mation—rewriting the rules by removing a critical constraint. Exploration creativity

200 A. N. Sloss

means being risk averse, and at the other end of the scale, transformation creativ-
ity means taking the highest risk. We will use these definitions to categorize future
technologies.

It should be stressed that true biological evolution is full of exceptions and con-
troversies. For this paper, we frame change using only the high-level rules. Keep in
mind that there are plenty of exceptions to those rules in the natural world.

11.2 Human Knowledge Constraint

To achieve a technology-jump, it is worth talking about knowledge and, more pre-
cisely, the dissemination of knowledge. Knowledge is one of the biggest constraints
for a any technology-jump. Knowledge provides a distinction between entities (be
that at the organizational or individual level). Knowledge is one of the elements that
forces diversity within an industry. It is also a component for convergence and a
potential barrier for forward progress. Valuable knowledge is created and held by
a few, as time passes, it naturally disseminates through a variety of mechanisms,
namely reverse engineering, personnel movement, teaching, and literature. For fun,
let us put forward the general Law of Disseminating Knowledge.

The law states that human knowledge will disseminate at a rate inversely propor-
tional to the value, i.e., low-value knowledge circulates fast, and high-value knowl-
edge moves much slower. The slowness is due to the difficulty and effort required for
its acquisition. Significant value tends to be latent, as-in value comes over time as its
importance occurs to more people. Once valued knowledge is recognized as essen-
tial, and goes beyond a popularity threshold, restrictive control measures reduce the
overall distribution, i.e., the value goes up. As an extreme example, Afomic Bomb
knowledge is of high-value and requires severe restrictions on the distribution.

For the Semiconductor Industry, transformation change requires that the highest
value knowledge must disseminate. For example, the success of Quantum Computing
requires knowledge sharing beyond a few people, which requires overcoming some
natural barriers such as training and lack of skilled practitioners. Another feature
of this law is that low-value ideas disseminate faster, potentially undermining high-
value knowledge. The Law of Disseminating Knowledge acts as a physical constraint
on evolutionary creativity—if more than one organization has to participate.

11 Evolution of the Semiconductor Industry, and the Start of X Law 201

11.3 Evolutionary Concepts

11.3.1 What Evolutionary Components Can Be Applied to
the Semiconductor Industry?

Firstly, let us break the question down into the three creativity methods discussed
previously. Where exploration creativity are the non-exotic options (local search,
mutations), the combination creativity being a mixture (global search: crossover), and
transformation creativity being the exotic options (local and global search, mutation +
crossover). Keep in mind that evolution is dynamic and adaptive; there are continuous
generational changes. Generation in this context is about satisfying the next data
consumption goals.

1. Exploration evolution, near term the Semiconductor Industry revolves around
the fundamental parameters we have today, namely general-purpose compute,
wafer-size, design scale, synchronization, communication, density/cost, knowl-
edge representation, tool abstraction, degrees of specialization, power con-
straints, new simulation technologies, performance and physical topologies (e.g.,
2D or 3D). These parameters are not mutually exclusive and remain within the
constraint of a silicon substrate. What is evolving from these parameters? Accel-
erators, Domain Specific Architectures [15], Analog Circuits, Asynchronous
design, Wafer-scale chips [12], modular Chiplets [29], Compute-in-Memory
[19], abstract design tools [5], and lastly, EUV advancements [24].

2. Combination evolution, medium-term relies on combining the rules of one
domain into another. Examples include Machine Learning — (rules applied
to) computer architecture design, cloud computing (weather prediction models
of design) — simulation, adaptive Evolutionary Algorithms — Deep Neural
Network hardware [13], software — hardware (FPGAs) [27], new advanced
benchmarks — hardware [16], Computer Science — Biology [18], Quantum
Computing — Machine Learning [21]. Probably the most significant combina-
tion jump would be to change the substrate (e.g., transition to Gallium Nitride
GaN [8]) while keeping the original parameters outlined in (I) the same.

3. Transformation evolution, long-term as applied, are extremely high-risk changes
that are not guaranteed to be successful, namely Quantum Computing [1], Proba-
bilistic Computing [34], Reversible Computing [25], Self-Assembly [11], DNA
Computing [35], Biological Computing [31], Neuromorphic Computing [14]
and lastly Optical/Photonics Computing [3]. Changes in the environment can
force the existence of high-risk alternatives, e.g., Probabilistic Computing may
come about naturally as the number of error-correcting bits increases. These
evolutionary changes may remain specialized, as with Jet Engines, specialized
but essential for a specific purpose.

Each one of components listed above has distinct advantages and disadvantages,
with differing levels of risk. Evolution shows us that there is plenty of options for
continued forward momentum, even for current technology, putting credence to the

202 A. N. Sloss

view that a more optimistic message for the future is required. It is also worth stating
that change comes with an associated cost.

11.3.2 What Else Does Evolution, and Economic Models Tell
Us?

Long-term sustainable systems require a balance between co-operative and compet-
itive behavior [10, 20]. Where too much co-operative action results in stagnation
and too much competitiveness results in brittleness [10], see Fig. 11.2. The window
of viability is where successful stable systems live for optimal long-term sustain-
ability and homeostasis (moving towards stable equilibrium between interdependent
elements).

Evolutionary change occurs at different levels of the stack (whether it is biological
or computing), where many changes can coincide. A transformation change might
ultimately involve forming a higher level of abstraction (the shift to an Intellectual
Property model being an example of a transformational change). Mistakes and risk-
taking are critical for higher-order advancements. It is also worth mentioning co-
evolution, where different species influence each other in the evolutionary process
[71, e.g., in Quantum Computing the influence of Google, IBM, and Microsoft have
with each other, can be thought of as a co-evolutionary process.

A healthy and productive population is one that is diverse and remains diverse. A
community that goes towards a mono-culture, even if thriving, does not necessarily
continue to advance in the long-term. Mono-culture is ripe for disruption. As-in
it remains at a lower part of the system. Bacteria being an excellent example in
biology, vital as they may be, bacteria by design does not move-up the abstract
scale (macro-evolution) and has remained at the same level. A bacteria today will

Viability

" *1
+ | e
100% e
o A .
/] i
- 1) san
Co-operation< / ! i \ >Competition
(Stagnation) ! : (Brittleness)
= // i ' \
= / : :
o @ / 1 1 o
g \,
5 8/, i T ey,
© O F/ K Sys!emanc 1 | Systematic ’ N = ?90
= ‘9 / Instability | i Instability e
@ P / g : \&%%
fo,r \ 2
/ \
0% : ‘:
Resilience Efficiency
(diversity, interconnection) (streamlined)

Fig. 11.2 Long Term System Sustainability [10, 20]

11 Evolution of the Semiconductor Industry, and the Start of X Law 203

resemble its ancestor from 1000 generations ago, their only method of evolution, or
more precisely micro-evolution, is via knowledge dissemination through a technique
called Horizontal Gene Transfer [26] (side-note: this is the mechanism that causes
antibiotics to lose their effect). Bacteria are super successful at a much lower level,
but never achieve ascension to a higher level of abstraction. Success occurs at a fix
level.

11.3.3 How Can Ascension Occur?

In biology, ascension to a higher-level uses two mechanisms, namely egalitarian or
fraternal transition [7]. Egalitarian transition occurs when different ‘skilled’ lower-
level entities come together to create a higher-level entity. As an example, the com-
partmentalization of the molecules in proto-cells (mitochondria within a eukaryotic
cell). It increases individual sophistication. By comparison, the fraternal transition
is where ‘like’ entities come together to create a higher-level entity. The best exam-
ple of this is the forming of multi-cellularity (eusociality in animals). It increases
system-wide sophistication. Both mechanisms adhere to the phrase “the whole is
greater than the sum of its parts”. After a high-level entity is created a shift occurs
towards resilience and stability. In other words, a form of knowledge dissemination is
required for it to remain relevant. The paradox here is that the knowledge needed for
ascension is most likely high value, which is harder to share, but sharing is paramount
to reach a higher-level. Emergent behavior in a populations at some point has to share
information.

11.3.4 What About the Human Element?

Lastly, there is the human element or what we will call Social Evolution. Where
each generation has a style of engineering that differs from the previous one. For
humans, an engineering generation is about 25-years [22]. These styles tend to be
transformational by nature, in that they change the abstract model from generation to
generation. The groups that resist these changes are the ones that have excellent co-
operation, i.e., the highest associated cost of change. The drivers for transformational
changes are directly related to the active problem-domains.

For the Semiconductor Industry, data consumption and efficiency has been the
critical problem-domains. The transformational shift occurring at the moment, within
the industry, is the shift towards Machine Learning (correlation). Where the transition
is from rule-based systems to systems that use outcome driven data models.

Generally, if there is a requirement to produce more of “something” (e.g. Machine
Learning), then that “something” is made more abstract and cheaper to handle. In
other words, there is pressure to move away from specialized skills to produce more
efficient scaling tools that incorporate the learning’s of the craftspeople in that area.

204 A. N. Sloss

Pushing the majority to a higher abstract level. For the the Semiconductor Industry
a good example of social evolution is the appearance of the Chisel tool [5]. The tool
allows a broader group of people to architect processors—Ilowering the barrier for
entry and scaling potential solutions.

11.4 Final Discussion and Thoughts

Up-to-now we have not spent any time on the current, or the exploitative, options
available today. Exploitative in the sense that the industry continues without evolu-
tionary creativity. With the current technology, the analogy between the Semiconduc-
tor Industry + Silicon and the Automotive Industry + Internal Combustion Engine is
an exciting area to explore. The Internal Combustion Engine first appeared in 1859,
some 160 years ago [4], and for the most part, has remained the same. Yes, today,
there are potentially better solutions threatening to displace the Internal Combustion
Engine, but it still remains dominant.

Today’s silicon designs may follow the same path, with many future years of con-
tinued success without requiring the historical increases in transistor density. This is
because a balance has been reached between co-operative and competitive behaviors
(a sustained equilibrium point). Unfortunately, if a technology-jump is required, due
to exponential data consumption pressures, then the industry must take a signifi-
cant risk. That risk requires potentially shifting towards an uncomfortable solution,
making the sector inherently unstable. Future shifts will create new organizational
hierarchies, culminating in the emergence of new winners and losers.

What are the evolutionary variables and constants?

In a predictive model, the control elements supervise how change occurs. Below
are the elements that could play a role in an evolutionary predictive model for the
Semiconductor Industry.

a Horizontal/Vertical movement: Horizontal is about staying at the same level
and hopefully improving and optimizing various systems. Effectively exploitation
of public knowledge. By comparison, vertical movement is about ascension to
a higher level. Vertical change involves exchanging some low-level autonomy
(a form of altruism) with high-level functionality, including some evolutionary
creativity (see c.). Higher-level refers to a more abstract view of a specific problem,
e.g., seeing the idea rather than the implementations details.

b Co-operative/Competitive behavior: Co-operative is about working together to
solve a common problem. The main disadvantage is stagnation and a lack of
nimbleness. It involves reducing the barriers for high-value knowledge transfer,
whereas, by comparison, competitiveness is about selfishness (in the biological
sense) and attempting to get advantages by moving ahead without working with

11 Evolution of the Semiconductor Industry, and the Start of X Law 205

others. It is the opposite of co-operative behavior since it is a non-sharing approach
that ultimately causes brittleness [10].

¢ Exploratory/combination/transformation creativity: Creativity is about dis-
covering new knowledge. Exploration creativity is about following-the-rules and
exploring all the points within a known boundary box. When the variables and
rules are already known. The edge of the box tends to result in most the creativity.
Combination creativity involves taking one set of rules applied to another domain.
It involves transferring knowledge gained in one area and applying it to another.
And finally, transformation creativity is about changing the rules and removing a
constraint.

d Egalitarian/fraternal transition: is about ascending to a high-level of abstrac-
tions. Egalitarian transition is grouping functionally different lower-level entities
to build a new heterogeneous individual with more capability. By comparison,
the fraternal transition is about gathering similar lower-level bodies together. An
organizational method to attain a higher level.

e Knowledge dissemination: is a associated with knowledge sharing. High-value
knowledge tends to move more slowly since it requires people at the same level
to understand solving identical problems. Low-value knowledge disseminates fast
since the barriers of transfer are effectively nonexistent. Low-value knowledge
can appear to outmaneuver high value using speed of dissemination.

f Boolean/Statistical domain: deal with the levels of modeling. A boolean domain
is a precise domain with distinct rules. By comparison, the statistical area moves
closer to the organization of nature, i.e., stochastic. Where the answers are between
0 and 1 and come with a ‘certainty’ component.

g Social Evolution: is a variable where each generation of engineers want to do
something new and different. They go into the workforce with various tools and
different problems to solve.

h Vision, competition, and revenue styles: these are variables that drive businesses.

Vision is about moving towards some form of an idealistic goal. Competition is

about the reaction to other players in the environment. Finally, revenue is where

everything should end up, some profitable outcome.

Diversity: controls the degree of novelty within the population.

j Individuals: are the entities that have collected different biases.

. -

What are the technology entities to play with?

Figure 11.3 below is an attempt to show the technology entities. The diagram includes
both exploratory and transformation entities, along with the separation of Boolean
and statistical domains (i.e., shifting from synthetic to nature). Note, this is very much
a subset and is somewhat arbitrary, and is provided as an example of a possible future
technology landscape. The horizontal axis represents the difficulty of change, as-in
the left side are increments (less difficult), and the right side are technology-jumps
(more difficult). The vertical axis represents the abstraction level, the bottom half

206 A. N. Sloss

Nature
/\ Transformation 1 /\ Biological

Computing (7))
[] Exploratory &
AQuantum ~
Computing 173
=~
Reversible o
A Computing 9_{
Neuromorphic (w)
D E\)na!og A Computing [}
esgn Probabilistic g
I Computing -
= A DNA : & S

s A Self-Assembly Computing " -

g e | Ld 3

] [_] Asynchronous /\ Photonics -8
£ o
[] 3D stacking 5
A Wafer-Scale 3
[] compute-in-Memory Design o
o
[] chiplets 3
i)
EI Accelerators Domain 5

Specific
Semiconductor Architectures
@ Industry v
Synthesis

Fig. 11.3 Future Technology Landscape beyond Moore’s Law

shows binary representation (traditional digital systems), and the top half represents
more of the natural world, i.e., stochastic and statistical.

What are the drivers?

Healthy, expanding industries tend to follow an exponential growth curve. Histori-
cally, Moore’s Law [23] has been used as the target for the Semiconductor Indus-
try. There are a set of constraints that generally come along with growth, namely
power consumption, environmental-costs, and resource usage. For the Semiconduc-
tor Industry, growth has been more critical because of all the adjacent industries that
rely on continued advancements.

In economics, the Jevons paradox [30] comes into effect. Paraphrasing, “as tech-
nology progresses, the efficiency of unit resource-use improves, and subsequently,
the rate of system resource-use rises due to increased demand” . In other words, as we
provide better methods of data consumption, we create a cycle that expects evermore
capabilities. To continue satisfying those demands, a significant technology-jump
must occur. The Internal Combustion Engine reached its upper limits many years
ago, with impressive improvements in both pollution reduction and fuel efficiency.
The question for the Semiconductor Industry is whether those same limits have been
reached with silicon. Are the demands for data consumption outstripping future

11 Evolution of the Semiconductor Industry, and the Start of X Law 207

technological advancements? If so, then a technology-jump, or jumps, must occur
or the Semiconductor Industry risks limiting growth to incremental improvements
or worse an external disruption.

Examples of exponential growth, once a technology-jump has occurred, are the
Industrial Revolution *.* (because of) steam power, Cambrian Explosion *.- multi-
cellular organisms, and the Semiconductor Industry *.* continued reduction in tran-
sistor size. All showing rapid growth due to high-value knowledge dissemination.
Ultimately culminating in a higher level of understanding and opportunity.

11.4.1 What are the Mechanisms for Continued Exponential
Growth?

From an evolutionary standpoint, one mechanism for growth is ascension to a higher
abstract level. This is possible if the limits of hierarchical complexity have not been
reached. Ascension can emerge through co-operation and co-evolution; in other
words, the occurrence of high-value knowledge dissemination. This emergence gives
the industry an excellent chance to increase resilience, longevity, compatibility, sup-
port, knowledge sharing, and finally, the ultimate goal of revenue growth. Transition
to a higher-level involves either building an entity with unique skills or focusing on
an ecosystem (made-up of companies, nonprofits, and governments). The difficulty
of any transition is deciding upon division-of-labor (i.e., who does what), continuity
towards a long-term goal (i.e., consistency), and the handling of defections. If all
three challenges are satisfied then a technology-jump, or jumps, can occur.

11.5 Conclusion

This paper was a discussion about revolution over iteration, and the associated ele-
ments required to create a predictive model. The industry has three choices. The
first, organizations within the Semiconductor Industry, remain isolated, and exhibit
competitive behaviors. This is fine for iterative short-term growth but tends to fail
on long-term sustainability i.e., ripe for disruption. Second, organizations exhibit
the same level of co-operative behavior. This is more like the Internal Combustion
Engine or Bacteria. Relies on an iterative approach. Information is shared via Hori-
zontal Knowledge Transfer (Horizon Gene Transfer in biology) and occurs without
ascension. Again, similar to the first choice it may keep the industry-relevant, but
not at the edge of computation. Third and final thought, the industry attempts to
ascend to a higher-level using some form of co-operative behavior and altruism. A
revolutionary high-risk approach. High-risk has the advantage of creating long-term
sustainability at the edge of computation.

208 A. N. Sloss

This paper does not cover the secondary factors (i.e., byproducts) of risk-taking.
There are no spatial or temporal links (connecting triggers), so no discussion on
lineage, induction, or causality. Also, the industry is treated as a single biosphere,
with no regional differences. Every other factor is considered diversity in the broadest
sense. No discussion of software as an essential evolving element in the environment.

The next step is to build an evolutionary model of the Semiconductor Industry,
with the necessary variables, to explore the potential different futures. In the hope of
eventually defining X Law.

Acknowledgements Each paper is only as good as the reviewers. I wish to personally thank
the following people: Andrew Loats, Lee Smith, Paul Gleichauf, Greg Yeric, Karl Fezer, Joseph
Fernando, Tim Street, Stuart Card, and Gary Carpenter for their participation and thoughts. Lastly,
I would like to specially thank Stephen Freeland for a great talk, and initial strange discussion, on
the idea of mapping the Semiconductor Industry to Evolutionary Biology.

References

1. Abigail Beall, M.R.: What are quantum computers and how do they work? WIRED
explains. https://www.wired.co.uk/article/quantum-computing-explained (2018). Accessed 10
Feb 2020

2. Adleman, L.: Genes, memes, cenes. In: Genes, Memes, Cenes. Presented at the DNA
25 Compute Conference, Seattle, WA. http://misl.cs.washington.edu/events/dna25/program.
html#adleman (2019)

3. American Institute of Physics: Bypassing Moore’s law with high-speed photonic comput-
ers. https://scitechdaily.com/bypassing-moores-law-with-high-speed-photonic-computers/
(2019). Accessed 10 Feb 2020

4. American Society of Mechanical Engineers. Internal Combustion Engine Division. Techni-
cal Conference, A.S., Somerscales, E., Zagotta, A., American Society of Mechanical Engi-
neers. Internal Combustion Engine Division, A.S.: History of the Internal Combustion Engine:
Presented at the Eleventh Annual Fall Technical Conference of the ASME Internal Combustion
Engine Division, Dearborn, Michigan, October 15-18, 1989. ICE (Series). American Society
of Mechanical Engineers (1989)

5. Bachrach, J.: Chisel accelerating hardware design. https://riscv.org/wp-content/uploads/2015/
01/riscv-chisel-tutorial-bootcamp-jan2015.pdf (2015). Accessed 9 Feb 2020

6. Boden, M.A.: Creative Mind: Myths and Mechanisms, 2nd edn. Routledge, USA (2003)

7. Calcott, B., Sterelny, K., McShea, D., Simpson, C., Okasha, S., Godfrey-Smith, P., Lyon, P,,
Kerr, B., Nahum, J., Rainey, P, et al.: The Major Transitions in Evolution Revisited. Vienna
Series in Theoretical Biology. MIT Press, Cambridge (2011)

8. Chen, A.: Gallium nitride is the silicon of the future. https://www.theverge.com/2018/11/1/
18051974/ gallium-nitride- anker-material-silico (2019). Accessed 10 Feb 2020

9. Cisco: cisco visual networking index: forecast and trends, 2017-2022 White Paper. https://
www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/
white-paper-c11-741490.html (2019). Accessed 6 Jan 2020

10. Clippinger, J., Bollier, D.: From bitcoin to burning man and beyond: the quest for identity and
autonomy in a digital society. ID3 (2014)

11. et al., J.F.: Self-assembly. https://www.sciencedirect.com/topics/materials-science/self-
assembly (2018). Accessed 10 Feb 2020

12. Feldman, A.: Cerebras Wafer Scale Engine: why we need big chips for deep learning. https://
www.cerebras.net/cerebras- wafer-scale-engine- why-we-need-big-chips-for-deep-learning/
(2019). Accessed 6 Jan 2020

https://www.wired.co.uk/article/quantum-computing-explained
http://misl.cs.washington.edu/events/dna25/program.html#adleman
http://misl.cs.washington.edu/events/dna25/program.html#adleman
https://scitechdaily.com/bypassing-moores-law-with-high-speed-photonic-computers/
https://riscv.org/wp-content/uploads/2015/01/riscv-chisel-tutorial-bootcamp-jan2015.pdf
https://riscv.org/wp-content/uploads/2015/01/riscv-chisel-tutorial-bootcamp-jan2015.pdf
https://www.theverge.com/2018/11/1/18051974/gallium-nitride-anker-material-silico
https://www.theverge.com/2018/11/1/18051974/gallium-nitride-anker-material-silico
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.sciencedirect.com/topics/materials-science/self-assembly
https://www.sciencedirect.com/topics/materials-science/self-assembly
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

11

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

Evolution of the Semiconductor Industry, and the Start of X Law 209

Frolov, S.: Neuroevolution: a primer on evolving artificial neural networks. https://www.inovex.
de/blog/neuroevolution/ (2018). Accessed 9 Feb 2020

Furber, S.: Large-scale neuromorphic computing systems. J. Neural Eng. 13(5), 051,001 (2016)
Hennessy, J.L., Patterson, D.A.: A new golden age for computer architecture. https://cacm.
acm.org/magazines/2019/2/234352-a-new-golden-age- for-computer-architecture/abstract
(2019). Accessed 9 Feb 2020

Industry: MLPerf: fair and useful benchmarks for measuring training and inference perfor-
mance of ML hardware, software, and services. https://mlperf.org (2018). Accessed 9 Feb
2020

Kauffman, S.A.: The Origins of Order Self-Organization and Selection in Evolution. Oxford
University Press, Oxford (1993)

Kriegman, S., Blackiston, D., Levin, M., Bongard, J.: A scalable pipeline for designing recon-
figurable organisms. Proc. Nat. Acad. Sci. 117(4), 1853-1859 (2020)

Lapedus, M.: In-memory vs. near-memory computing. https://semiengineering.com/in-
memory-vs-near-memory-computing/ (2019). Accessed 9 Feb 2020

Lietaer, B., Ulanowicz, R.E., Goerner, S.J., McLaren, N.: Is our monetary structure a systemic
cause for financial instability? Evidence and remedies from nature. J. Futures Stud. 14(3),
89-108 (2010)

Louriz, R.: Highlighting quantum computing for machine learning. https://medium.
com/meetech/highlighting-quantum-computing-for-machine-learning- 1f1abd41cb59 (2019).
Accessed 9 Feb 2020

McCrindle, M.: The ABC of XYZ: Understanding the Global Generations. University of New
South Wales Press, Sydney (2009)

Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38(8) (1965)
Moore, K.: Euv lithography finally ready for chip manufacturing. IEEE Spectrum 5 (2018)
Perumalla, K.S.: Introduction to Reversible Computing, 1st edn. Chapman & Hall/CRC, Boca
Raton (2013)

Quammen, D.: The Tangled Tree: A Radical New History of Life. HarperCollins Publishers,
New York (2018)

Research, M.: Project catapult. https://www.microsoft.com/en-us/research/project/project-
catapult/ (2018). Accessed 9 Feb 2020

Seagate: DataAge 2025, the digitization of the world. https://www.seagate.com/our-story/data-
age-2025/ (2020). Accessed 6 Jan 2020

Simonite, T.: To keep pace with Moore’s Law, chipmakers turn to *Chiplets’. https://www.
wired.com/story/keep-pace-moores-law-chipmakers-turn-chiplets/ (2018). Accessed 9 Feb
2020

Sorrell, S.: Exploring Jevons’ Paradox, pp. 136—164. Palgrave Macmillan UK, London (2009)
Templeton, G.: How MIT’s new biological “computer” works, and what it could do in the
future. https://www.extremetech.com/extreme/232190-how-mits-new-biological-computer-
works-and-what-it-could-do-in-the-future (2016). Accessed 10 Feb 2020

Thurner, S., Klimek, P., Hanel, R.: Introduction to the Theory of Complex Systems. Oxford
University Press, Oxford (2018)

Track, E., Forbes, N., Strawn, G.: The end of Moore’s law. Comput. Sci. & Eng. 19, 4-6 (2017)
University of Konstanz: A step towards probabilistic computing. https://www.sciencedaily.
com/releases/2019/05/190514115833.htm (2019). Accessed 10 Feb 2020

Watada, J.: Dna computing and its application. In: Computational Intelligence: A Compendium,
pp- 1065-1089. Springer (2008)

https://www.inovex.de/blog/neuroevolution/
https://www.inovex.de/blog/neuroevolution/
https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/abstract
https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/abstract
https://mlperf.org
https://semiengineering.com/in-memory-vs-near-memory-computing/
https://semiengineering.com/in-memory-vs-near-memory-computing/
https://medium.com/meetech/highlighting-quantum-computing-for-machine-learning-1f1abd41cb59
https://medium.com/meetech/highlighting-quantum-computing-for-machine-learning-1f1abd41cb59
https://www.microsoft.com/en-us/research/project/project-catapult/
https://www.microsoft.com/en-us/research/project/project-catapult/
https://www.seagate.com/our-story/data-age-2025/
https://www.seagate.com/our-story/data-age-2025/
https://www.wired.com/story/keep-pace-moores-law-chipmakers-turn-chiplets/
https://www.wired.com/story/keep-pace-moores-law-chipmakers-turn-chiplets/
https://www.extremetech.com/extreme/232190-how-mits-new-biological-computer-works-and-what-it-could-do-in-the-future
https://www.extremetech.com/extreme/232190-how-mits-new-biological-computer-works-and-what-it-could-do-in-the-future
https://www.sciencedaily.com/releases/2019/05/190514115833.htm
https://www.sciencedaily.com/releases/2019/05/190514115833.htm

Index

A

Action program, 2
multi-action program, 6

Activity dependence, 166

Ascension, 203

Automated program repair, 46

B
Bees algorithm, 117
Benchmarking, 8, 84

C
Cache, 52, 161
Cambrian explosion, 199
Causality, 71
Classification, 166
Co-evolution, 202
Competition, 89, 114, 205
Context-free grammar, 48
Convergence
phenotypic, 150, 199
Crossover
asymmetry of GP subtree crossover, 151
fatherless crossover, 158
unbiased subtree crossover, 150

D
Data balancing, 133, 141
Deep learning, 2, 109, 165
with genetic programming, 109
Diagnostics
exploration diagnostics, 104
selection scheme diagnostics, 104

Discriminant analysis, 113
Diversity, 2, 53, 63, 88, 139, 199
phenotypic, 64
phenotypic diversity, 89
phylogenetic, 64
phylogenetic diversity, 84

E

Eco-EA, 66

Efficiency, 84, 114, 129, 155, 203
Ensembles, 133, 138, 139
Exploration diagnostic, 67
Exponential growth, 206

F
Feedback loop, 71
Fitness
predicting evaluation time of, 160
Fitness sharing, 66

G
General artificial intelligence, 165
Genetic learning, 182
Genetic programming
BalancedGP, 133, 137
grammar-based vectorial GP, 22
networked runs genetic programming,
109
OrdinalGP, 134, 137
PushGP, 52, 102, 190
template-constrained genetic program-
ming, 45, 109
vectorial GP, 22

© The Editor(s) (if applicable) and The Author(s), under exclusive license 211

to Springer Nature Singapore Pte Ltd. 2022

W. Banzhaf et al. (eds.), Genetic Programming Theory and Practice XVIII,

Genetic and Evolutionary Computation,

https://doi.org/10.1007/978-981-16-8113-4

https://doi.org/10.1007/978-981-16-8113-4

212

Grammar-guided, 22
Graph, 28, 111, 183
Growing neural networks, 111, 168

H

High performance, 143, 195
Homeostatis, 172
Horizontal gene transfer, 203

I

Inefficient threads
avoiding, 143
causes, 143
measurement, 143
prediction, 143

Information loss, 33, 40

Inplace crossover, 143
shuffle, 143
speedup, 143

Intellectual property, 202

L

Lexicase selection, 65, 66, 83, 191
cohort lexicase selection, 83
down-sampled lexicase selection, 83
epsilon lexicase selection, 83
novelty lexicase selection, 83

Linear genetic programming, 3, 7, 18, 69,

184
Liquid types, 50, 51

M
Memory bandwidth, 143
Memory use

minimising, 143
Metrics, 70
Mitochondria, 203
Modular, 167, 194
Modularity, 2, 7, 69, 181, 194
Moore’s Law, 197, 206

N
Novelty, 90, 199

Index

P
Panmictic, 146, 150
Parent selection, 65, 83, 191
Pareto tournament, 131
Partially observable, 1
Population diversity, 2, 66, 97, 199
Population initialization, 2, 5, 12, 55,90, 174
Predicting success based on diversity, 63
Program

dendrite program, 168

evolving modular program, 182

neuron program, 176

program graph, 2, 183

program representation, 46

program synthesis, 47, 52, 84

program synthesis benchmark suite, 190
programming languages, 48
Program synthesis, 47, 84, 190

program synthesis benchmark suite, 190

R

Rampant mutation, 2
Reinforcement learning, 2, 17, 176
Resilience, 203, 207

S
Selection
offspring selection, 34
selection pressure, 34, 157, 161
Semantic constraints, 48
Semiconductor industry, 197
SMT solvers, 48, 58
Social evolution, 203, 205
Strongly-typed, 25
Sustainability, 202
Symbolic regression, 24, 30, 87,88, 115,116

T

Tags, 183

Tangled program graphs, 2, 183

Team, 3, 183

Tournament selection, 65, 85, 90, 91, 103,
130, 143, 145, 150, 161

Tree-based GP, 26, 28

Tree depth, 57

Type-aware, 50

	Foreword
	Preface
	Contents
	Contributors
	1 Finding Simple Solutions to Multi-Task Visual Reinforcement Learning Problems with Tangled Program Graphs
	1.1 Introduction
	1.2 Tangled Program Graphs
	1.2.1 Learners
	1.2.2 Teams
	1.2.3 Graphs
	1.2.4 Memory

	1.3 Mechanisms for Accelerating TPG Evolution
	1.3.1 Rampant Mutation
	1.3.2 Multi-actions

	1.4 ViZDoom Subtask Selection and Performance Evaluation
	1.5 Empirical Methodology
	1.5.1 Task Domains
	1.5.2 Parameters

	1.6 Results
	1.6.1 Fitness
	1.6.2 Generalization
	1.6.3 Complexity
	1.6.4 Details of a RAPS Solution

	1.7 Conclusions
	References

	2 Grammar-Based Vectorial Genetic Programming for Symbolic Regression
	2.1 Introduction
	2.2 State of the Art
	2.2.1 Vectorial Genetic Programming
	2.2.2 Grammar-Based Genetic Programming
	2.2.3 Feature Engineering and Feature Extraction
	2.2.4 Deep Learning

	2.3 Grammar-Based Vectorial Genetic Programming
	2.3.1 Vectorial Tree Interpretation
	2.3.2 Vectorial Symbolic Regression Grammar

	2.4 Experiment Setup
	2.5 Results
	2.5.1 Analysis Benchmarks Group A
	2.5.2 Analysis Benchmarks Group B

	2.6 Discussion and Next Steps
	References

	3 Grammatical Evolution Mapping for Semantically-Constrained Genetic Programming
	3.1 Introduction
	3.2 Software Engineering Applications of Semantically–Constrained GP
	3.2.1 Automated Program Repair
	3.2.2 Automated Test Generation
	3.2.3 Program Synthesis

	3.3 Semantic Constraints in GP
	3.3.1 Strongly-Typed GP (STGP)
	3.3.2 Grammar-Guided GP (GGGP)
	3.3.3 Refined-Typed GP (RTGP)

	3.4 Correct-by-Construction Versus Generate-and-Validate
	3.5 Direct Versus Indirect Representations
	3.6 A Dynamic Grammar-Guided Mapping
	3.6.1 GE Mapping
	3.6.2 Semantic Filter of Valid Productions
	3.6.3 Dynamic and Depth-Aware Dynamic Approaches

	3.7 Evaluation
	3.8 Conclusions
	References

	4 What Can Phylogenetic Metrics Tell us About Useful Diversity in Evolutionary Algorithms?
	4.1 Introduction
	4.2 Methods
	4.2.1 Selection Methods
	4.2.2 Problems
	4.2.3 Computational Substrates
	4.2.4 Other Parameters
	4.2.5 Phylogenetic Diversity Metrics
	4.2.6 Analysis Techniques
	4.2.7 Code Availability

	4.3 Results and Discussion
	4.3.1 Do Phylogenetic Metrics Provide Novel Information?
	4.3.2 Do Phylogenetic Metrics Predict Problem-Solving Success?

	4.4 Conclusion
	4.5 Author Contributions
	References

	5 An Exploration of Exploration: Measuring the Ability of Lexicase Selection to Find Obscure Pathways to Optimality
	5.1 Introduction
	5.2 Exploration Diagnostic
	5.3 Lexicase Selection
	5.3.1 Epsilon Lexicase Selection
	5.3.2 Down-Sampled Lexicase Selection
	5.3.3 Cohort Lexicase Selection
	5.3.4 Novelty-Lexicase Selection

	5.4 Diagnosing the Exploratory Capacity of Lexicase Selection and Its Variants
	5.4.1 Lexicase Selection Out-Explores Tournament Selection
	5.4.2 The Exploratory Capacity of Lexicase Selection Degrades as We Increase Diagnostic Cardinality
	5.4.3 Increasing Population Size Can Improve Lexicase Selection's Exploratory Capacity
	5.4.4 Relaxing Lexicase Selection's Elitism Can Improve Exploration
	5.4.5 Down-Sampling Degrades Lexicase Selection's Exploratory Capacity
	5.4.6 Cohort Partitioning Degrades Lexicase Selection's Exploratory Capacity
	5.4.7 Cohort Lexicase Out-Explores Down-Sampled Lexicase
	5.4.8 Novelty Test Cases Degrade Lexicase Selection's Exploratory Capacity

	5.5 Conclusion
	5.6 Data and Software Availability
	References

	6 Feature Discovery with Deep Learning Algebra Networks
	6.1 Introduction
	6.2 ARC Background
	6.3 Regression in Brief
	6.4 Classification in Brief
	6.5 Industrial Regression Classification
	6.6 Theoretical Test Problems—Classification
	6.7 Base Performance on the Theoretical Classification Problems
	6.8 Thin 2-Layer ARC Performance on the Theoretical Classification Problems
	6.9 Ultrathin 8-Layer ARC Performance on the Theoretical Classification Problems
	6.10 Wide 2-Layer ARC Performance on the Theoretical Classification Problems
	6.11 Wide 8-Layer ARC Performance on the Theoretical Classification Problems
	6.12 Conclusion
	References

	7 Back to the Future—Revisiting OrdinalGP and Trustable Models After a Decade
	7.1 Introduction
	7.2 In the Beginning
	7.2.1 Model Complexity—Getting What You Measure
	7.2.2 ParetoGP—Simplicity and Accuracy
	7.2.3 Secondary and Alternating Objectives
	7.2.4 OrdinalGP—Failing Forward
	7.2.5 Ensembles—Trustable Models and Active Design-of-Experiments
	7.2.6 Data Balancing

	7.3 BalancedGP
	7.3.1 DataSubsetSize
	7.3.2 BalancedSample
	7.3.3 BalancedGP

	7.4 Ensembles
	7.4.1 Introduction to Ensembles
	7.4.2 Ensembles of the Future

	7.5 Conclusions
	References

	8 Fitness First
	8.1 Introduction
	8.2 Faster Genetic Programming via Parallel Hardware
	8.2.1 Multiple CPU Cores
	8.2.2 Multiple Fitness Cases Simultaneously
	8.2.3 Fitness First

	8.3 Avoiding Effort Wasted on Poor Fitness Individuals
	8.4 Asymmetry of GP Subtree Crossover
	8.4.1 Last Child Inplace Dad-Less Crossover

	8.5 Efficiency of Memmove V. Memcpy
	8.6 Speed of Fitness First and Incremental Fitness
	8.7 Mathematical Model of Number of Parents
	8.7.1 Number of Parents Initially and in Diverse Populations

	8.8 Multi-threading Implementation Issues
	8.8.1 Idle Threads
	8.8.2 Future Work: Predicting Thread Execution Time

	8.9 Conclusions
	References

	9 Designing Multiple ANNs with Evolutionary Development: Activity Dependence
	9.1 Introduction
	9.2 Multiple Problem Solving ANNs
	9.3 The Neuron Model
	9.3.1 Soma Program Inputs and Outputs
	9.3.2 Dendrite Program Inputs and Outputs
	9.3.3 Developing the Brain and Evaluating the Fitness
	9.3.4 Extracting Conventional ANNs from the Brain
	9.3.5 Activity Dependence
	9.3.6 Model Parameters

	9.4 Experiments
	9.5 Discussion and Further Work
	References

	10 Evolving and Analyzing Modularity with GLEAM (Genetic Learning by Extraction and Absorption of Modules)
	10.1 Introduction
	10.2 Evolving Modules in Genetic Programming
	10.3 GLEAM
	10.3.1 Initializing the Library
	10.3.2 Referencing the Modules
	10.3.3 Updating the Library

	10.4 GLEAM as a Platform for Testing
	10.5 Experiments and Analysis
	10.5.1 Experimental Set-Up
	10.5.2 Using GLEAM to Evolve Modular Programs
	10.5.3 Using GLEAM as a Testing Platform
	10.5.4 Modular Usage in GLEAM

	10.6 Conclusions
	References

	11 Evolution of the Semiconductor Industry, and the Start of X Law
	11.1 Introduction
	11.2 Human Knowledge Constraint
	11.3 Evolutionary Concepts
	11.3.1 What Evolutionary Components Can Be Applied to the Semiconductor Industry?
	11.3.2 What Else Does Evolution, and Economic Models Tell Us?
	11.3.3 How Can Ascension Occur?
	11.3.4 What About the Human Element?

	11.4 Final Discussion and Thoughts
	11.4.1 What are the Mechanisms for Continued Exponential Growth?

	11.5 Conclusion
	References

	Index

