
Evading Security Products for Credential
Dumping Through Exploiting Vulnerable Driver

in Windows Operating Systems

Huu-Danh Pham1, Vu Thanh Nguyen2(B), Mai Viet Tiep3(B), Vu Thanh Hien4,
Phu Phuoc Huy5, and Pham Thi Vuong6

1 University of Information Technology, Ho Chi Minh City, Vietnam
danhph.14@grad.uit.edu.vn

2 Ho Chi Minh City University of Food Industry, Ho Chi Minh City, Vietnam
nguyenvt@hufi.edu.vn

3 Academy of Cryptography Techniques, Ho Chi Minh City, Vietnam
4 Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Vietnam

vt.hien@hutech.edu.vn
5 Military Information Technology Institute, Ho Chi Minh City, Vietnam

6 Sai Gon University, Ho Chi Minh City, Vietnam
vuong.pham@sgu.edu.vn

Abstract. Device drivers play an essential role in operating systems; therefore,
they are always on the target of bug hunters. Many vulnerabilities have been
reported for decades, and the number of new ones is increasing every year.
Although the drivers would be patched in the newer version, the older ones are
still benign programs with signed digital signatures trusted by antivirus software.
Cyber adversaries can use the unsafe version of drivers to perform malicious
actions. This study demonstrates how to use an old version from 2012 of the Intel
Network Adapter Diagnostic Driver for Windows OS credential dumping. We
successfully collect credentials in the memory without any notification from the
antivirus programs. By evading almost all the current security products with an
aged driver, our results raise awareness for the potential threat from vulnerable
drivers and the call for mechanisms to counter this attack technique.

Keywords: Computer virus · Antivirus software ·Malware evasion ·
Vulnerability driver · Credential dumping

1 Introduction

Adevice driver is a component that helps the operating systemand adevice communicate.
The driver is commonly developed by the related company that designed the device
hardware. For example, nowadays, most of the graphic drivers are developed by Nvidia
and AMD. In the current Windows operation systems, a built-in feature called Driver
Signature Enforcement (DSE) ensures only signed drivers by trusted providers will be

© Springer Nature Singapore Pte Ltd. 2021
T. K. Dang et al. (Eds.): FDSE 2021, CCIS 1500, pp. 486–495, 2021.
https://doi.org/10.1007/978-981-16-8062-5_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8062-5_36&domain=pdf
https://doi.org/10.1007/978-981-16-8062-5_36


Evading Security Products for Credential Dumping 487

loaded [1]. This mechanism blocks malware from getting into the Windows kernel and
performing harmful behavior afterward.

Due to the protection of theDSE feature, cyber adversaries have tofindvulnerabilities
in signed device drivers to execute code in kernel mode. Cyber attackers could bypass
security products and control the system if a high severity flaw is found and exploited. For
example, in a recent report, millions of Dell computers are at risk of being compromised
due to five critical vulnerabilities [2]. Therefore, many reward programs were organized
to encourage security researchers to identify and submit vulnerability reports. These
reports help the manufacturers in patching security bugs before they are found and used
by cybercrimes.

However, instead of finding new vulnerabilities, hackers analyzed vulnerability
reports and abusing vulnerable drivers to perform kernel execution. There are many
pieces of evidence that many cyber attackers used this approach. For instance, Turla
Group, a Russian-based threat actor, utilized the signed VirtualBox driver to disable
DSE and load its unsigned payload drivers in 2014. This exploit is generally referred to
as a publicly known vulnerability in 2008, known as CVE-2008–3431 [3]. As a recent
example, in 2020, researchers from ESET internet security company reported that the
InvisiMole hacker group used a vulnerable driver to target military and diplomatic orga-
nizations in Eastern Europe [4]. This technique was also used by the Slingshot APT
(Advanced Persistent Threat) and was reported by Kaspersky in 2018 [5].

This study was conducted to research public offensive techniques for exploiting the
vulnerability driver. In the next section, we reviewed the related works and pointed
out the motivation. In the fourth section, we presented the attack technique in detail to
encourage the detection methods development. For evaluation, we developed a secu-
rity tool for penetration testing and tested it with five different home security products
from reputable companies. This process illustrates how easily cyber attackers build new
malicious software in reality.

2 Related Works

There are not many scientific papers related to bypassing security products as well as
exploiting vulnerable drivers. In 2020, Blaauwendraad et al. used Mimikatz’ driver,
an open-source signed security tool, to disable the Windows Defender antivirus pro-
gram [6]. However, while they only focus on Windows Defender, we want to bypass
many antivirus programs. Our proposed tool can collect credentials without terminate
the security product’s processes. Besides, in 2021, Karantzas and Patsakis published an
assessment of Endpoint Detection and Response systems (EDR) against Advanced Per-
sistent Threats (APT) attack vectors [7]. They used signed vulnerable drivers to load the
unsigned driver or patch the essential functions. Most of the security products detected
their methods and alerted the user.

On the other hand, there are many technical blogs written by anonymous hackers.
From 2019 to 2020, an independent researcher named _xeroxz published two projects
related to abusingWindows drivers [8, 9]. He focused mainly on using physical memory
read and write permissions to map unsigned code into the kernel. These publications
helped us understandmore clearly the code execution in the kernel context. Additionally,



488 H.-D. Pham et al.

an open-source tool namedKDMapper uses an exposed version of the Intel driver to map
non-signed drivers in memory [10], and it only supports the 64-bit versions of Windows
OS.

The most relevant publication to this study is the technical blog published by the
principal author of this study [11]. The blog briefly describes the idea of this research and
its application in business operations. However, it does explain the in-depth techniques,
and it does not report experiment results with multiple security products.

3 Background

3.1 Windows Application Programming Interface

Windows Application Programming Interface (Windows API), informally called
WinAPI, is Windows OS’s core set of application programming interfaces available.
UsingWinAPI, developers can take advantage of the features of Windows OS and make
applications run successfully on all versions.

In addition to the official Microsoft documentation, there are the undocumented
Windows API. They are functions that the developers found through reversing shared
libraries. This research is heavily based on the use of both official Windows API and
undocumented Windows API.

3.2 Windows OS Credential Dumping

Credential dumping is the process of collecting account login information (e.g., pass-
word in clear-text or hash) from the operating system and software. Dumping credential
is the most generally chosen method for the lateral movement stage in cybersecurity
campaigns [12]. When having credentials, an attacker can subsequently perform the
lateral movement, and access restricted information.

In Windows OS, the most popular method is extracting and analyzing parts of the
Local Security Authority Subsystem Service (LSASS) process [13]. This procedure
can be done quickly with a well-known open-source tool called Mimikatz. However,
this post-exploitation tool is commonly detected and prevented by security products. In
case the modified version of Mimikatz can evade antivirus features, there are process-
memory protection features yet. These features are regularly enabled by default and
block external processes that attempt to access critical system processes as LSASS.
Therefore, a warning message is popped up if any process uses ReadProcessMemory
WinAPI to read crucial process memory.

Our goal is to bypass the security products and to read LSASS process mem-
ory. We also utilized Mimikatz’s source code for parsing the credentials to save time
and resources. We developed a custom function that works like ReadProcessMemory
WinAPI and customized the module kull_m_memory to use it.

3.3 Legitimate Vulnerable Drivers

Before the installation, Windows uses digital signatures to verify driver packages’
integrity and verify the software publisher’s identity who provides the driver packages



Evading Security Products for Credential Dumping 489

[1]. Hence, it is hard for hackers to publish and install malicious drivers in compromised
machines. Fortunately, various old versions of legitimate drivers contain vulnerabilities
that allow kernel space execution through IOCTLmessages. A recently well-known case
is the driver in version 4.6.2.15658 of the Micro-Star MSI Afterburner program, pub-
lished in the CVE-2019–16098 report [14]. Attackers can exploit the vulnerable driver
to bypass the Microsoft driver-signing policy to deploy malicious code.

This study focused on the earlier case, the Intel ethernet diagnostics driver ver-
sions before 1.3.1.0, published in the CVE-2015–2291 report [15]. By combining the
0x80862007 IOCTL calls, we can read and write physical memory quickly. This method
is the principle for bypassing process memory protection features. By evading almost
all the current security products with an ancient driver, we present potential dangerous
risks from the old and well-known vulnerabilities.

4 Methodology

Instead of reading the LSASS process memory in the user context, our initial idea is to
read the memory from the kernel context, then send it back to the process. We developed
many pieces of shellcode to accomplish this task, wrote them in the kernel context, and
make them callable by the userland process.

In detail, the shellcodes help the process call PsLookupProcessByProcessIdWinAPI
and MmCopyVirtualMemory undocumented WinAPI. These functions gave us the abil-
ity to read any process memory with kernel privilege. Furthermore, we overwrite the
existing NtShutdownSystem WinAPI with the in-use shellcode to make it callable from
any userland processes. We explain the proposed in the following diagram (Fig. 1):

Fig. 1. An overview of the proposed technique in three steps



490 H.-D. Pham et al.

We split our approach into threemain steps and explain them in detail in the following
subsections:

1. Setup the vulnerable driver
2. Exploit the driver to write shellcode into the ntoskrnl.exe process
3. Execute shellcode to read LSASS process memory

4.1 Setup a Device Driver in Windows OS

We concentrate on the legacy drivers (also known as the non-PnP drivers) because the
installation is uncomplicated and requires only one PE format.sys file. Many collec-
tions of vulnerable drivers are easily found on the Internet. For example, at the DEF-
CON hacking conference in 2019, Jesse and Shkatov published a list of more than 40
exposed drivers from Microsoft-certified vendors [16]. We collected both 32-bit and
64-bit versions of the Intel ethernet diagnostics driver version 1.3.0.6 to use in the
demonstration.

Legacy drivers are also recognized as driver services because they are controlled
by the Service Control Manager process. There are two usual installation methods,
using sc.exe commands and calling WinAPIs. We propose the method of calling sc.exe
commands because it splits the overall exploit chains into several steps. Using many
critical WinAPIs in one process would make the process easier detected by antivirus
software.

4.2 Exploit the Vulnerable Driver

Read and Write the Physical Memory. As mentioned in Subsect. 3.2, we utilize the
vulnerability published in the CVE-2015–2291 report [15]. The exploit code for the 64-
bit version is easily found in open-source projects. Unfortunately, we noticed there is no
publication for the 32-bit version. Hence, we reversed both versions, built the structure
for input data, and made them competitive with both 32-bit and 64-bit architectures.

We built three functions to map the physical memory, copy memory, and unmap the
physical memory through 0x80862007 IOCTL calls. Combining three functions in two
different ways helped us read and write physical memory from the user context. For
example, the pseudocode in Fig. 2. represents the reading method.

Fig. 2. Read physical memory by combining three IOCTL calls



Evading Security Products for Credential Dumping 491

Find and Overwrite the NtShutdownSystem WinAPI. There are two reasons for
choosing the NtShutdownSystem WinAPI to overwrite. Firstly, this function is rarely
usedby software and system.Secondly, this function is available for calling fromuserland
through the NTDLL, the user-mode interface of the Windows kernel.

To find the location of a function in memory, we need the signature bytes of that
function. By loading the ntoskrnl.exe image into the memory, we quickly get these bytes
from the GetProcAddress WinAPI. Then, we start to find from position 0 of the physical
address. The pseudocode of the algorithm is presented in Fig. 3.

Fig. 3. Find the NtShutdownSystem WinAPI address in the memory

4.3 Develop Shellcode for Reading OS Credential

We used PsLookupProcessByProcessId WinAPI and MmCopyVirtualMemory undoc-
umented WinAPI to read LSASS process memory. Therefore, we developed four
shellcodes in assembly code (for calling two functions in both 32-bit and 64-bit versions).

In the 64-bit version, we had to pass the first four arguments are passed in registers
RCX, RDX, R8, and R9, while the fifth one is stored on the stack (described in Fig. 4.).

The×86 version calling convention is more straightforward than the×64 one. With
the case of calling the MmCopyVirtualMemory, we pushed the arguments on the stack
in the 32-bit version (described in Fig. 5.).

Besides that, we used the same procedure to call the shellcode to ensure that the
WinAPI is always recovered at the end and limits system crashes:

1. Backup original bytes of NtShutdownSystem WinAPI
2. Overwrite the WinAPI with the shellcode bytes



492 H.-D. Pham et al.

Fig. 4. The 64-bit shellcode for calling MmCopyVirtualMemory

Fig. 5. The 32-bit shellcode for calling MmCopyVirtualMemory

3. Execute the shellcode
4. Recover the WinAPI with original bytes
5. Return the result

Finally, we customized the module kull_m_memory in Mimikatz and utilized its
source code to parse the LSASS process memory to the credentials.



Evading Security Products for Credential Dumping 493

5 Experiments

We experimented with the proposed approach against five widely used security products
currently. This study does not demonstrate any vulnerability in these security products
or imply anything to the corresponding security companies. This technique aims at the
common weakness that can be used to evade most security products nowadays.

We installed five security products in the corresponding virtual machines with the
exact specification:

1. OS Name: Microsoft Windows 10 Windows 10 Pro
2. OS Version: 10.0.19043 N/A Build 19043
3. OS License: Trial
4. Physical Memory: 8 GB (without swap memory)
5. Storage: 200 GB

Five security products were used with trial licenses and updated to the latest versions
on August 11, 2021:

1. Microsoft Defender: built-in anti-malware component of Microsoft Windows 10
2. Kaspersky Total Security 2021
3. McAfee Total Protection 2021
4. Trend Micro Maximum Security 2021
5. Malwarebytes Premium

Wesuccessfully bypassed all five security products and read the credentials inLSASS
process memory in both 32-bit and 64-bit architectures. For instance, Fig. 6. presents the

Fig. 6. The proposed method bypassed McAfee Total Protection 2021



494 H.-D. Pham et al.

output of Mimikatz’s command when we experimented with McAfee Total Protection
2021.

This result demonstrates that it is hard for security products to ensure all drivers are
not vulnerable and prevent this approach. Driver service installation, service creation,
and the DeviceIoControl calls are signatures that security engineers can use for early
detection or forensic.

The experiment also reveals the weakness of this attack technique. Attackers need
to install the vulnerable driver if they do not find any 0-day vulnerabilities. Therefore,
restricting administrator privilege and updating software regularly are helpful prevention
methods.

6 Conclusion

Abusing vulnerable drivers for kernel execution is not a new and unique technique.Many
security reports present that cybercrimes used this method in their campaigns. However,
there are not many studies related to offensive techniques, particularly exploiting the old
vulnerable drivers. This study presents a new approach, explains the techniques in detail,
and conducted experiments to describe the potential risks from the exposed drivers.

The unique point of our proposed method is applying the idea of exploiting the
vulnerabilities in device drivers for red team activities and adversary simulation. We
successfully bypassed the protection features of the top security products to collect
operation system credentials in memory. Moreover, there are many stages in adversarial
simulation campaigns that we can apply this technique. Researching the weaknesses
always plays an essential role in the early detection and prevention of cyberattacks.

References

1. Driver Signing, Microsoft Documentation. Accessed 08 Aug 2021
2. CVE-2021–21551- Hundreds of Millions of Dell Computers at Risk due to Multiple BIOS

Driver Privilege Escalation Flaws, SentinelLabs (2021)
3. CVE-2008–3431. https://nvd.nist.gov/vuln/detail/CVE-2008-3431, Accessed 08 Aug 2021
4. Digging up InvisiMole’s Hidden Arsenal, WeLiveSecurity by ESET (2020)
5. The Slingshot APT FAQ, Securelist by Kaspersky (2018)
6. Blaauwendraad, B., Ouddeken, T., Van Bockhaven, C.: Using Mimikatz’ Driver, Mimidrv, to

Disable Windows Defender in Windows (2020)
7. Karantzas, G., Patsakis, C.: An empirical assessment of endpoint detection and response

systems against advanced persistent threats attack vectors. J. Cybersecur. Priv. 1(3), 387–421
(2021)

8. _xeroxz: VDM - Vulnerable Driver Manipulation. https://back.engineering/01/11/2020,
Accessed 08 Aug 2021

9. _xeroxz: The Physmeme Open-Source Project. https://githacks.org/_xeroxz/physmeme,
Accessed 08 Aug 2021

10. KDMapper Project. https://github.com/TheCruZ/kdmapper, Accessed 08 Aug 2021
11. VinCSS Threat Hunting Team, How Playing CS: GO Helped You Bypass Security Prod-

ucts. https://blog.vincss.net/2021/08/ex007-how-playing-cs-go-helped-you-bypass-security-
products.html, Accessed 08 Aug 2021

https://nvd.nist.gov/vuln/detail/CVE-2008-3431
https://back.engineering/01/11/2020
https://githacks.org/_xeroxz/physmeme
https://github.com/TheCruZ/kdmapper
https://blog.vincss.net/2021/08/ex007-how-playing-cs-go-helped-you-bypass-security-products.html


Evading Security Products for Credential Dumping 495

12. Alshamrani, A., Myneni, S., Chowdhary, A., Huang, D.: A survey on advanced persistent
threats: techniques, solutions, challenges, and research opportunities. IEEE Commun. Surv.
Tutor. 21(2), 1851–1877 (2019)

13. Ussath, M., Jaeger, D., Cheng, F., Meinel, C.: Advanced persistent threats: behind the scenes.
In: CISS 2016 Conference, pp. 181–186. IEEE (2016)

14. CVE-2019–16098. https://nvd.nist.gov/vuln/detail/CVE-2019-16098,Accessed 08Aug2021
15. CVE-2015–2291. https://nvd.nist.gov/vuln/detail/CVE-2015-2291, Accessed 08 Aug 2021
16. Screwed Drivers – Signed, Sealed, Delivered. https://eclypsium.com/2019/08/10/screwed-dri

vers-signed-sealed-delivered, Accessed 08 Aug 2021

https://nvd.nist.gov/vuln/detail/CVE-2019-16098
https://nvd.nist.gov/vuln/detail/CVE-2015-2291
https://eclypsium.com/2019/08/10/screwed-drivers-signed-sealed-delivered

	Evading Security Products for Credential Dumping Through Exploiting Vulnerable Driver in Windows Operating Systems
	1 Introduction
	2 Related Works
	3 Background
	3.1 Windows Application Programming Interface
	3.2 Windows OS Credential Dumping
	3.3 Legitimate Vulnerable Drivers

	4 Methodology
	4.1 Setup a Device Driver in Windows OS
	4.2 Exploit the Vulnerable Driver
	4.3 Develop Shellcode for Reading OS Credential

	5 Experiments
	6 Conclusion
	References




