Real-Time Integration of Industrial )
Robot with MATLAB oy

Megha G. Krishnan, Abhilash T. Vijayan, and S. Ashok

Abstract The prevalence of robots in manufacturing industries is growing due to the
increasingly automated industrial operations. The research in robotics and automa-
tion is well supported by simulation platforms like MATLAB, which provides a scien-
tific tool with an algebraic base and various toolboxes. Dedicated systems can be built
after testing the innovative algorithms developed. The growth of robotic solutions
becomes sluggish at the system interface phase, which is critical and challenging.
This paper discusses a simple and cost-effective way of interfacing MATLAB with
an industrial robot, ABB IRB 1200 in real-time by establishing file transfer protocol
(FTP) client-server communication using Transmission Control Protocol/Internet
Protocol (TCP/IP). The method benefits researchers to understand and explore the
possibilities of robot communication for validating any modern control. A positioning
experiment is conducted to demonstrate how the robotic system is communicated
with the MATLAB.

Keywords Real-time integration * Industrial robot -+ ABB IRB 1200 robot -
MATLAB interface

1 Introduction

Industries benefit from intelligent or decision-making robots in production lines and
applications rather than collaborative robots. Numerous research has been carried
out to develop smart robots to reproduce human senses by gathering information
about the environment and making decisions for themselves. When the results are to

M. G. Krishnan () - S. Ashok
National Institute of Technology, Calicut, India
e-mail: megha_p160007ee @nitc.ac.in

S. Ashok
e-mail: ashoks @nitc.ac.in

A.T. Vijayan
Rajiv Gandhi Institute of Technology, Kottayam, India
e-mail: abhilash@rit.ac.in

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 123
A. Kumar and S. Mozar (eds.), ICCCE 2021, Lecture Notes in Electrical
Engineering 828, https://doi.org/10.1007/978-981-16-7985-8_13


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-7985-8_13&domain=pdf
mailto:megha_p160007ee@nitc.ac.in
mailto:ashoks@nitc.ac.in
mailto:abhilash@rit.ac.in
https://doi.org/10.1007/978-981-16-7985-8_13

124 M. G. Krishnan et al.

be implemented in real-time systems, the interface options become critical in deter-
mining the system’s performance. Since most of the software solutions of robots are
proprietary in nature, addition or integration of any third-party software or hardware is
not stress-free. In this paper, an effective communication between the control system
and the ABB robot is established for the validation of a suggested strategy in a real-
time system. Both modelling and simulation are possible for ABB robots with various
toolbox developed for MATLAB. The programs can be translated into the corre-
sponding RAPID code using inbuilt functions and the IRC5 controller can receive
the RAPID file using a primary FTP client or through RobotStudio for experimental
evaluation. The ABB robot controllers are capable of reading external information
from sensors through customer I/O devices and influence the program structure in
RAPID. Section 3 explains the stepwise procedure for the interface of ABB robot
with MATLAB through simple programming.

2 Literature Survey

Numerous platforms are available for the simulation studies of robotic systems, some
of which can be extended to hardware-in-loop applications. MATLAB, a widely
used software platform for research and teaching purposes in robotics and automa-
tion, mainly because of the availability of a collection of toolboxes and specific
third-party solution packages [1]. Different manufacturers have dedicated robot
controllers and proprietary robot languages; most of them have similar structures.
It would require either the knowledge of additional software or paid add-on instal-
lations or both for effective communication between the robot controller and the
computation software [2]. Effective integration of the robotic system with research
software platforms is necessary to implement innovative algorithms developed but
presents significant challenges [3]. One of the most common application development
frameworks for robots is the Robot Operating System (ROS) [4]. Robotics systems
toolbox from Mathworks allows the connection of ROS with MATLAB/Simulink
[5, 6]. Various toolboxes/software like Advanced Robotics Control and Operations
Software (ARCOS) [7], Interfacing Toolbox for Robotic Arms (ITRA) [2], Mobile
robot toolbox [8] etc., were developed to communicate between MATLAB and the
pioneer family of robots. A client—server communication using TCP/IP protocol is
developed in C/C++ for MATLAB compatible motion control units on the remote
side [9], which is not used for industrial robots. The R&A equipment, including
industrial robots are accessed from the MATLAB shell based on distributed software
architecture [10]. This paper demonstrates a simple and efficient way of integrating
an industrial robot with MATLAB in the server computer. This method requires
only the basic knowledge of MATLAB, where most of the techniques discussed in
the literature require knowledge of software programming languages like C, C++,
and Java. Most of the researchers face difficulty while testing and implementing the
developed algorithm in a real-time system. This method is advantageous for testing



Real-Time Integration of Industrial Robot with MATLAB 125

the algorithms in a real-time environment without procuring and mastering add-on
packages or supplementary software platforms.

3 Robot MATLAB Communication

The robot system under study includes 6 DOF ABB IRB 1200 robot manipulator with
7 kg payload and 703 mm reach and IRCS controller [11]. RobotWare is the robot
controller software that communicates RAPID, a flexible high-level programming
language [12]. The robot manipulator can be positioned by running the MATLAB
programs in the personal computer (PC) and RAPID program in the FlexPendant
(ABB’s Human Machine Interface) in parallel. The controller has numerous Ethernet
channels, which can be used at 10 Mbit/s or 100 Mbit/s. The speed of communication
is set automatically. The programmer can send or receive data/information between
the PC and the robot by establishing TCP/IP communication with network file system
access using FTP client and server (see Fig. 1).

To establish secure communication between robot and PC, connect the robot
controller and PC through a permanent Ethernet port. Then log on to the controller

FTP Server
a == .
N\ r -
S - -
FlexPendant h \L o a E
A IRCS5 Controller ﬂl_.
A ABB IRB 1200 Robot

Ethernet
Y

® 4

i
User L =

A
\

PC with MATLAB

FTP Client

Fig. 1 System framework



126 M. G. Krishnan et al.

using the user authorization system (UAS) in the FlexPendant. UAS can limit avail-
able functions to the users. Configure the PC to use Dynamic Host Configura-
tion Protocol (DHCP) to obtain an automatic Internet Protocol (IP) address and
open the command prompt window in the PC and renew the IP configuration by
executing ipconfig/renew command. Command prompt window displays the current
TCP/IP network configuration of the PC. The FTP server on the IRCS5 controller will
assign an IP configuration for the client PC. As the connection is established, the
files with data/information are transferred between the client and the server.

3.1 Creating FTP Object and Files for Data Transfer
in MATLAB

MATLAB can be connected to the FTP server by calling ftp function as

robotftp = ftp('192.168.125.1' . ‘username’, ‘password’) ;

The username and password are to access a particular FTP account on the server,
which corresponds to that for logging on the controller. Open files for the posi-
tion, orientation and configuration data using fopen function and keep them in the
MATLAB directory for data transfer. Upload these files to the robot controller using
mput function and then close and delete them from the MATLAB directory using
fclose and delete functions to prevent duplication and replacement of intended
data.

3.2 Write and Send Current Pose Data in RAPID

Meanwhile, the robot controller is ready to receive the files uploaded by the PC.
The RAPID program code written on the FlexPendant should be running and
waiting for these files. The text files for the position, orientation and configuration
data are declared as string variables stringl, string?2 and string3 in the
MainModule. The program code to be executed is written in the procedure called
main. There can be several procedures and a procedure is declared in the program
with PROC. Then the existence of file is checked using the following code snippet
and the maximum wait time for the robot is set as 240 s.

IF object THEN

object:=FALSE;

ELSE

WaitUntil IsFile(stringl) \MaxTime:=240;
obect :=FALSE;

ENDIF



Real-Time Integration of Industrial Robot with MATLAB 127

Table 1 robtarget components

S. No. | Reference Data Data type | Description

1 Translation [x,y, z] pos Position of the tool in mm

2 Rotation [q1, 92, g3, g4] orient Orientation of the tool in
quaternions

3 Robot configuration | [cf1, cf4, cf6, cfx] confdata Axis configuration of the
robot

4 External axes [eax_a, eax_b, eax_c, |extjoint Position of the external

eax_d, eax_e, eax_f] axes

Once the files are received at the controller, the current pose of the robot has to
be written and send back to the PC for further movement. The pose data in RAPID
[1] is defined using a data type robtarget, which can be expressed as,

CONST robtarget posl:=[[x, v, z],[gl, g2, g3, g4], [cfl, cf4, cfé6,
cfx], [eax_a,eax_b,eax_c,eax_d,eax_e,eax_£f]]

The robtarget consists of four components and each one is explained in Table 1.
The current position of the robot can be read using CRobT function, which returns
a robtarget value with position, orientation, axes configuration, and external axes
position. Open a file from diskhome for writing using the open function and set
the file pointer to the beginning of the file using Rewind instruction. The following
code snippet shows how the current position is written on file and keep ready for
sending to the PC.

Open diskhome\File:=string6, selfposedata\Write;
Rewind selfposedata;

posnow := cur_pose.trans;

Write selfposedata, ""\Pos:=posnow;

Close selfposedata;

For convenience, the configuration data cfl, cf4, cf6 and cfx are
initially transferred to registers and then write to the configuration data file. When
the data file is moved to the MATLAB directory, the robot can either wait for the
next instruction or end the procedure depending on the program needs.

3.3 Read Current Pose Data in MATLAB

Once the files uploaded to the controller is written with the current pose of the
robot, download those files using mget function and load data into an array using
importdata function. The orientation data in quaternion format is converted into
rotational matrix using quat2rotm function in Corke’s Robotics Toolbox (RTB)
[14]. The next pose for robot positioning can be obtained using the programmer’s
control law written in MATLAB and can be sent to the controller for robot
manipulation.



128 M. G. Krishnan et al.

3.4 Send New Pose in MATLAB

The new pose data has to be converted in to robtarget format for uploading
to the robot controller. Open new text files using fopen function and write new
position, orientation and configuration data using fprintf function. Then upload
the data files to the FTP server using mput function.

3.5 Read New Pose Data and Move the Robot

The file checking code is run in the RAPID editor to check whether the new files
with updated pose data are reached the controller or not. Once the files are received,
open the files from diskhome in read mode and read the string from the file
using ReadStr function. Hence the updated data are stored in text_pos,
text_orient, and text_config files as string, which can be converted to
values using StrToVal function as follows.

FUNC robtarget robo_target (string postextl,string orient-
text, string robconfigtext) ;

booll := StrToVal (postextl, temptarget.trans) ;

bool2 := StrToVal (orienttext, temptarget.rot) ;

bool3 := StrToVal (robconfigtext, temptarget.robconf) ;

ENDFUNC .

Finally, the updated pose is extracted using robo_ target function and the robot
is moved linearly to the new position using MoveL instruction. v150 specifies the
speed of the robot (150 mm/s). z100 defines the corner zone defined by the datatype
zonedata. GRIPPER defines the tip of the tool attached that should move to the
position specified.

Posenew := robo_target (text_pos, text_orient, text_config) ;
MoveL Posenew, v150, z100, GRIPPER;

With these basic operations, Sect. 4 demonstrates a positioning application on an
industrial robot.

4 Positioning Experiment

To show the performance of the client—server communication strategy developed,
a positioning experiment is conducted to move the robot based on the MATLAB
commands. The experiment setup for positioning application is shown in Fig. 2 [13].
The robot controller, IRC5 compact is connected to PC using the Ethernet cable. The
procedure explained in Sect. 3 is followed for establishing connection. The robot
controller send the current pose to the PC as files. Hence the initial pose (T1i)



Real-Time Integration of Industrial Robot with MATLAB 129

6-DOF IRB 1200 ROBOT FOR

.? Pneumatic Gripper ®0e 8

o0 B

FlexPendant

=0 ;

IR 1200 Robot Arm

/
yr— |

Fig. 2 Experiment setup

of robot tool center point (TCP) is obtained from the robot controller. MATLAB
generates a Cartesian trajectory from pose Ti to Tf with 35 points using ctraj
command from RTB [14]. The pose of the generated trajectory is sent to the robot
controller one after another as files and the robot moves accordingly. The elapsed time
to get a current pose from the controller is about 2-3 s. Thus, the robot manipulator
successfully communicates with the robot controller for positioning experiment. The
position (meters) and orientation (quaternion) obtained during the robot movement
is plotted in MATLAB (see Fig. 3).

5 Conclusion

Various software tools are existing in the robotics and automation field of research for
simulating the innovations, ideas and algorithms developed. The implementation in
real-time is highly inevitable to validate the effectiveness of algorithms developed.
It requires a solid interface between the software and hardware platforms, which
often creates a hurdle with an incompatible system or add-on paid packages. Once
secure communication between the robot and the software platform is established,
dedicated systems can be structured for any applications like tracking, pick and
place, gesture following, visual servoing, etc. This paper provides a simple and cost-
effective method for interfacing an ABB robot with the widespread technical software



130

Fig.

M. G. Krishnan et al.

Position
1 T T T T T T
—
—_—
— z
E
c 05 4
Re]
‘B
[e]
n_ /
0 - -
T 1 1 1 1
0 5 10 15 20 25 30 35
Steps
Orientation
1 T T T T T
5 @
Eost =
80
©
p=}
(¢]
0 - -
] 1 1
0 5 10 15 20 25 30 35

Steps

3 Position and orientation of TCP

MATLAB and its real-time experimental validation. Even though the system seems
to be a little sluggish in response, the overall performance of the system is inspiring
with the scope of testing any proven algorithm in a real robot.

References

—

MATLAB (2015) MATLAB 2015b users guide. The MathWorks Inc., Natick

Krishnan MG, Vijayan AT, Ashok S (2020) Interfacing an industrial robot and MATLAB for
predictive visual servoing. Industrial Robot. https://doi.org/10.1108/IR-05-2020-0100

Mineo C, Wong C, Vasilev M, Cowan B, MacLeod CN, Pierce SG, Yang E (2019) Inter-
facing toolbox for robotic arms with real-time adaptive behavior capabilities. University of
Strathclyde, Glasgow, pp 1-12. https://doi.org/10.17868/70008

O’Kane JM (2013) A gentle introduction to ROS. CreateSpace Independent Publishing
Platform, Scotts Valley

. Corke P (2015) Integrating ROS and MATLAB. IEEE Robot Autom Mag 22:18-20. https://

doi.org/10.1109/MRA.2015.2418513

Galli M, Barber R, Garrido S, Moreno L (2017) Path planning using Matlab-ROS integration
applied to mobile robots. In: 2017 IEEE international conference on autonomous robot systems
and competitions (ICARSC), Coimbra, pp 98—-103. https://doi.org/10.1109/ICARSC.2017.796
4059

Calusdian J, Yun X (2019) A simple and highly portable MATLAB interface for learning
robotics. SN Appl Sci 1:890. https://doi.org/10.1007/s42452-019-0941-2

Karakaya S, Kucukyildiz G, Ocak H (2017) A new mobile robot toolbox for matlab. J Intell
Robot Syst 87:125-140. https://doi.org/10.1007/s10846-017-0480-2


https://doi.org/10.1108/IR-05-2020-0100
https://doi.org/10.17868/70008
https://doi.org/10.1109/MRA.2015.2418513
https://doi.org/10.1109/ICARSC.2017.7964059
https://doi.org/10.1007/s42452-019-0941-2
https://doi.org/10.1007/s10846-017-0480-2

Real-Time Integration of Industrial Robot with MATLAB 131

9.

10.

11.
12.

13.

14.

Turan A, Bogosyan S, Gokasan M (2006) Development of a client-server communica-
tion method for Matlab/Simulink based remote robotics experiments. IEEE international
symposium on industrial electronics, Montreal, Que, pp 3201-3206

Pires JN (2000) Interfacing Industrial R&A equipment using Matlab. IEEE Robot Autom Mag
7(3):32—-41. https://doi.org/10.1109/100.876909

ABB (2019) Product specification IRB 1200, Document ID: 3HAC046982-001

ABB (2004) Technical reference manual RAPID instructions, functions and data types,
Document ID: 3HAC 16,581-1

Krishnan MG, Ashok S (2019) Kinematic analysis and validation of an industrial robot manip-
ulator IEEE region 10 conference (TENCON), Kochi, pp 1393-1399. https://doi.org/10.1109/
TENCON.2019.8929712

Corke PI (2011) Robotics, vision and control: fundamental algorithms in MATLAB. Springer,
Berlin


https://doi.org/10.1109/100.876909
https://doi.org/10.1109/TENCON.2019.8929712

	 Real-Time Integration of Industrial Robot with MATLAB
	1 Introduction
	2 Literature Survey
	3 Robot MATLAB Communication
	3.1 Creating FTP Object and Files for Data Transfer in MATLAB
	3.2 Write and Send Current Pose Data in RAPID
	3.3 Read Current Pose Data in MATLAB
	3.4 Send New Pose in MATLAB
	3.5 Read New Pose Data and Move the Robot

	4 Positioning Experiment
	5 Conclusion
	References




