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Abstract

Brassinosteroids (BRs) are a group of steroidal phytohormone that plays an
essential role in regulating various chemical and physiological processes
involved in plant growth and development. Furthermore, physiological and
molecular studies of BRs have revealed their potential of enhancing yield and
productivity of crops by regulating variety of genes. But as per current scenario,
variety of abiotic and biotic environmental stresses acts as major constraints in
yield and productivity of crops. Furthermore, BRs act as nontoxic, environmen-
tally safe steroidal compounds that has the potential in modulating plant
responses against abiotic and biotic stresses. When applied exogenously at
specific dose and at particular developmental stage of plant, they are known to
enhance both quality and quantity of the crop plants. Moreover, BRs are also
known to have antifungal, antiviral, and anti-ecdysteroidal properties, which
make them potential alternate of chemical fungicide, pesticide, and herbicides.
Therefore, keeping in view all these properties of BRs, the current book chapter
focuses on the role of BRs in modulating enzymatic and nonenzymatic antioxi-
dant defense mechanism of plants under abiotic and biotic stress conditions.
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15.1 Introduction

Various abiotic and biotic stresses elicit threatening impact on productivity and yield
of crops. Various abiotic stresses include thermal (high and low temperature), water
(drought and flooding), heavy metal toxicity, salinity, and UV radiation stresses, and
the biotic stress includes pathogenic stress. All these stresses have contributed in
converting arable lands to unproductive barren lands, thus ultimately resulting in
economic loss in agricultural field (Ahanger et al. 2018). All these stresses affect
germination, growth, and various physiological processes in plants, and moreover, it
has been predicted that if the similar situation continues, there will be scarcity of
staple crops for human population (which is growing at an alarming rate) by 2050
(Ahanger et al. 2014). Keeping in mind, all these changes, biologists are trying to
meet all these challenges by using various environmentally stable strategies like the
use of biological components, drainage, water management, etc. One such strategy is
the application of phytohormones, since various phytohormones play an essential
role in regulating the normal and developmental processes and are also involved in
combatting the effects caused due to various biotic and abiotic stresses by
modulating several signaling pathways to evoke plants responses.

Among all plant hormones, brassinosteroids (BRs), a group of steroidal hormones
found in lower as well as higher plants, are involved in regulating various
mechanisms involved in growth and developmental processes in plants (Liu et al.
2017). BRs act as an essential regulator involved in photosynthesis, antioxidant
defense system, and plant-water relation under normal as well as stress conditions,
thus ultimately regulating the growth and developmental processes under normal as
well as stress conditions. Furthermore, in the case of plants having mutations in BR
biosynthesis, abnormal developmental phenotypes are generated, thus confirming
the potencies of BRs (Sahni et al. 2016). Moreover, BR-induced ameliorating stress
responses have been reported in various plants that were exposed to thermal, water,
heavy metal, and pathogen stress (Hayat et al. 2010; Singh et al. 2012; Talaat et al.
2015; Zhao et al. 2016; Jasrotia and Ohri 2017a). BRs are applied exogenously to
plants and are reported to have ability of mitigating different stresses in
concentration-dependent manner and also on the developmental stage of plants as
well as on the treated plant organs (Bao et al. 2004). So, in the current book chapter,
efforts have been made to examine the potential of BRs in modulating antioxidant
defense in plants growing under stress conditions. Moreover, cross talks of BRs with
other phytohormones have also been summarized here.

15.2 Plant Responses to Environmental Stresses

Plants respond to various environmental stresses which include abiotic factors like
heavy metals, drought, wounding, salinity, changes in temperature and light,
pesticides, and nutrient stress and biotic factors such as pest and pathogen attack
(Gull et al. 2019). Abiotic and biotic stresses induce morphological, biochemical,
molecular, and physiological changes in plants. Extreme temperature, salinity
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drought, and oxidative stress are often interconnected and may lead to similar
cellular damage. For example, salinity and drought condition are primarily
evidenced as osmotic stress, leading to disruption of ion homeostasis in the cells
(Samynathan et al. 2021). Denaturation of structural and functional proteins is
caused by oxidative stress, which often accompanies high temperature, drought, or
salinity stress (Chaki et al. 2020). As a result, various environmental stresses often
activate similar cellular responses and cell signaling pathways (Sewelam et al. 2016),
such as accumulation of compatible solutes, upregulation of antioxidants, and
production of stress proteins (Kosová et al. 2018; Dumont and Rivoal 2019;
Hasanuzzaman et al. 2020). Plants also undergo certain biochemical adaptations
which involve various changes in cell biochemistry. These changes include detoxi-
fication mechanism, synthesis of special proteins, evolution of new metabolic
pathways, accumulation of the metabolites, and changes in phytohormone level
(Fujita et al. 2006) (Fig. 15.1).

15.3 Biosynthesis of BRs

The pathway leading to the biosynthesis of BRs and different genes involved in BR
biosynthesis has been identified in Arabidopsis as well as in rice and tomato (Divi
and Krishna 2009). Initially, BR-biosynthetic pathway was established by feeding
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Fig. 15.1 Response of plants to different environmental stresses
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cultured cells of Catharanthus roseus and Arabidopsis seedlings with deuterium-
labeled substrates followed by identification of various metabolites and reaction
sequences involved in biosynthetic pathway by utilizing gas chromatography-mass
spectrometry (GC-MS) (Choi et al. 1996; Fujioka et al. 2000; Noguchi et al. 2000).
The precursor for the biosynthesis of brassinolide (BL), the most active BR, is
campesterol (CR). Earlier, BRs were thought to be biosynthesized from two parallel
pathways, namely, early C-6 and late C-6 oxidation pathways (Fujioka et al. 1998).
According to these pathways, CR is first converted to campesterol (CN), then to
castasterone (CS), and finally to BL (Fig. 15.2). In early C-6 oxidation pathway, CN
is first converted to 6-oxocampestanol, then to cathasterone, teasterone,
3-dehydroteasterone, typhasterol, and then CS. In late C-6 oxidation pathway, CN
is first hydroxylated at C-22 to form 6-deoxocathasterone and is then converted to
corresponding intermediates as in early C-6 oxidation pathway but in C-6 deoxy
forms. These two pathways ultimately converge at CS, which is eventually
converted to BL (Zhao and Li 2012). Another branching pathway termed as
CN-independent pathway, which is an early C-22 oxidation branch, has been
reported (Fujioka et al. 2002). Recently, a shortcut route involving C-23 hydroxyl-
ation leading to the conversion of CR to 6-deoxytyphasterol has been described
(Ohnishi et al. 2006). Experimental data on different plant species have revealed that
the CN-independent and late C-6 oxidation pathways are the predominant
BR-biosynthetic pathways (Zhao and Li 2012). Different genes involved in
BR-biosynthesis are constitutive photomorphogenesis and dwarfism (CPD),
de-etiolated-2 (DET2), and DWARF4 (DWF4) (Bartwal and Arora 2020). Constitu-
tive expression of these genes can be modulated to regulate the endogenous levels of
BR in plants (Fig. 15.2).

Fig. 15.2 Biosynthesis of brassinosteroids
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15.4 Role of BRs in Plant Growth and Development

BRs are steroidal phytohormones that are analogous to animal steroidal hormones.
Mass spectrophotometric analysis such as UHPLC-ESI-MS/MS determined a total
of around 22 natural BRs in a minute sample of plant tissue which exhibited a highly
significant growth-promoting influence in plants (Tarkowska et al. 2016). They play
imperative roles in divergent aspects of plant biology ranging from elongation and
division of cell, root growth, photomorphogenesis, stomatal and vascular differenti-
ation, seed germination, plant immunity, and its reproduction (Gudesblat and
Russinova 2011; Vardhini and Anjum 2015; Wei and Li 2016) (Table 15.1).
Besides, BRs regulate the production and oxidation of radicals and root gravitropic
response and mediate plant responses to environmental cues (Krishna 2003; Bajguz
and Hayat 2009; Vardhini 2019). Table 15.1 describes the physiological role of BRs
in growth and development of different plant species.

15.5 Cross Talk of BRs with Other Plant Hormones

Several stress-responsive phytohormones act as a molecular regulatory element that
assist sessile plants to maintain their growth plasticity and provide ability to adapt in
tough environmental conditions. A cascade of interactions (occur mainly through
phosphorylation/a common second messenger) that helps in regulating signaling
network and persists among varied plant hormones which alter cellular dynamics is
known as cross talk. This cross talk between phytohormones helps in revealing and
targeting host resistance mechanisms under stress (Kohli et al. 2013; Wani et al.
2016; El-Esawi 2017; Li et al. 2021). On the basis of their action, phytohormones are
grouped into two main categories: First group includes auxins (AUX), gibberellins
(GA), brassinosteroids (BRs), strigolactones (SL), and cytokinins (CK) that coordi-
nate during plant growth and development, while others play a vital role under
environmental cues, namely, abscisic acid (ABA), brassinosteroids, ethylene (ET),
jasmonic acid (JA), and salicylic acid (SA) (Pieterse et al. 2009; Santner et al. 2009;
Denance et al. 2013; Fahad et al. 2015). Thus, BRs play a dual role in plants both
under stress as well as during normal growth.

15.5.1 Interplay Between Brassinosteroids and Auxins

BRs and auxins are master hormones with coordinated effects on innumerable
phases of plant growth and developmental pathways including the biosynthesis of
BRs mediated by auxins (Yoshimitsu et al. 2011; Hao et al. 2013; Chaiwanon and
Wang 2015). Physiological and genetic assays demonstrate opposite role of BR and
AUX for controlling root growth by directing the expression of DWF4 (DWARF4)
and BZR1 (BRASSINAZOLE-RESISTANT 1). On one hand, in roots where auxins
enhance DWF4 expression, BRs suppress it through feedback mechanism
(Yoshimitsu et al. 2011; Chaiwanon and Wang 2015). Also, during lateral root
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Table 15.1 Effect of BRs on the various physiological aspects of plant growth and development in
different plant species

Physiological
parameters Plant species

BR analogues/inhibitors
used Reference

Seed germination/
seedling growth

Brassica juncea
L.

24-Epibrassinolide
(EBL);
28-Homobrassinolide
(HBL)

Sirhindi et al. (2009,
2011), Kumar et al.
(2012), Soares et al.
(2020)

Raphanus sativus
L.

EBL;
HBL

Mahesh et al. (2013)

Leymus chinensis EBL Guo et al. (2014)

Acer
pseudoplatanus
L.; Fraxinus
excelsior L.

EBL Procházka et al.
(2015)

Tobacco EBL Bukhari et al. (2016)

Picea abies, Pinus
sylvestris,
Pseudotsuga
menziesii, and
Quercus robur

2α,3α,17β-trihydroxy-
5α-androstan-6-one
(a Synthetic BR)

Kuneš et al. (2016)

Solanum
lycopersicum L.

EBL Ahammed et al.
(2012a), Shu et al.
(2016)

Solanum
melongena

EBL Xue-Xia et al.
(2011), Wu et al.
(2015), He et al.
(2016), Wu et al.
(2016)

Cucumis sativus EBL Yuan et al. (2012a)

Arabidopsis
thaliana

Brassinazole Yamagami et al.
(2017)

Vigna radiata L. BL Lalotra et al. (2017)

Oryza sativa L. 7,8-Dihydro-
8α-20-hydroxyecdysone
(αDHECD; a BR mimic)

Sonjaroon et al.
(2018)

Pisum sativum BL; EBL Jiroutová et al.
(2019)

Triticum aestivum
L.

BL Toman et al. (2019)

Gossypium
hirsutum

EBL Chakma et al. (2021)

Shoot and root
growth

Arachis hypogaea
L.

BR Verma et al. (2012)

Capsicum
annuum L.

EBL Abbas et al. (2013)

Phaseolus
vulgaris

EBL Cheng et al. (2014)

Oryza sativa BR Fahad et al. (2016)

(continued)
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Table 15.1 (continued)

Physiological
parameters Plant species

BR analogues/inhibitors
used Reference

Potatoes BL Hu et al. (2016)

Arabidopsis
thaliana

BL; Brassinazole Vragovic et al.
(2015), Yamagami
et al. (2017)

Vigna radiata L. BL Lalotra et al. (2017)

Carica papaya L. BR de Assis-Gomes et al.
(2018)

Gossypium
hirsutum

EBL Chakma et al. (2021)

Zea mays EBL Trevisan et al. (2020)

Chenopodium
quinoa Willd

BR Sadak et al. (2020)

Solidago
canadensis

BR El-Sayed et al. (2020)

Pyrus ussuriensis BL Zheng et al. (2020)

Solanum
lycopersicum L.

EBL Shu et al. (2016);
Nazir et al. (2021)

Berberis
thunbergii L.

BL; EBL Pacholczak et al.
(2021)

Photomorphogenesis Arabidopsis
thaliana

BL Kim et al. (2012);
Zhiponova et al.
(2013); Youn et al.
(2016)

Solanum
melongena

EBL Xue-Xia et al. (2011)

Capsicum
annuum L.

EBL Abbas et al. (2013)

Camellia oleifera BL Zhou et al. (2013)

Solanum
lycopersicum L.

EBL Xia et al. (2014), Li
et al. (2015), Nazir
et al. (2021)

Dwarf pear BL Chen et al. (2014)

Leymus chinensis
(Trin.) Tzvel.

BL Niu et al. (2016);
Wang et al. (2016)

Oryza sativa EBL; BR; 7,8-Dihydro-
8α-20-hydroxyecdysone
(αDHECD; a BR mimic)

Sun et al. (2015),
Tong and Chu
(2016), Fahad et al.
(2016), Sonjaroon
et al. (2018)

Brachypodium
distachyon L.

24-Epicastasterone Xu et al. (2015)

Chenopodium
quinoa Willd

BRs Sadak et al. (2020)

Tobacco EBL Zhang et al. (2021)

(continued)
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Table 15.1 (continued)

Physiological
parameters Plant species

BR analogues/inhibitors
used Reference

Photoperiodism and
flower development

Arabidopsis
thaliana

BR Domagalska et al.
(2010)

Cucurbita pepo Brassinozole Manzano et al.
(2011)

Brassica napus BL Belmonte et al.
(2011)

Arachis hypogaea
L.

BR Verma et al. (2012)

Solidago
canadensis

BR El-Sayed et al. (2020)

Photosynthesis Carica papaya L. BR de Assis-Gomes et al.
(2013)

Secale cereale L. EBL Pociecha et al. (2016)

Pisum sativum EBL Dobrikova et al.
(2013)

Helianthus
annuus L.

EBL Filova et al. (2013),
Kaplan-Dalyan and
Sağlam-Çağ (2013)

Vigna radiata HBL Yusuf et al. (2014),
Alyemeni and
Al-Quwaiz (2016)

Oryza sativa L. BL; BR; 7,8-Dihydro-
8α-20-hydroxyecdysone
(αDHECD; a BR mimic)

Cao and Zhao
(2008); Fahad et al.
(2016); Sonjaroon
et al. (2018)

Glycine max L. EBL Bariş and Sağlam-
Çağ (2016)

Triticum aestivum
L.

EBL; BL Sağlam-Çağ (2007);
Toman et al. (2019)

Capsicum
annuum L.

EBL Yang et al. (2019)

Solidago
canadensis

BR El-Sayed et al. (2020)

Chenopodium
quinoa Willd

BRs Sadak et al. (2020)

Solanum
lycopersicum L.

EBL Carvalho et al.
(2013), Shu et al.
(2016), Nazir et al.
(2021)

Nitrogen
metabolism

Cajanus cajan
(L.) Millsp.

EBL Dalio et al. (2013)

Vigna radiata L. HBL Yusuf et al. (2014)

Solanum
lycopersicum L.

EBL Shu et al. (2016)

Arabidopsis
thaliana

BL Zhao et al. (2016)

(continued)
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formation, BIN2 (BRASSINOSTEROID-INSENSITIVE2; a key component that
mediate BR and auxin signaling during root development) plays an important role in
auxin signaling, but BR signaling retards BIN2 activity which in turn couldn’t
activate transcription factors BES1 (BRI1-EMS-SUPPRESSOR 1) and BZR1 lead-
ing to downstream control of plant growth and development. But BIN2 causes the
phosphorylation of ARF7 and ARF19 (AUXIN RESPONSE FACTOR), thereby
enhancing their DNA-binding capacity at lower levels of BR (He et al. 2002; Yin
et al. 2002; Cho et al. 2014). In shoot elongation, brassinosteroid treatment
downregulates transcription factor ARF genes ARF4 and ARF8 in Arabidopsis
wild-type (WT) seedlings in contrast to increased level of expression in
BR-deficient mutants (Jung et al. 2010); however, the overexpression of ARF8
could suppress growth of hypocotyl resulting into a weaker apical dominance
(Tian et al. 2004; Peres et al. 2019) (Fig. 15.3). These outcomes clearly indicated
an elaborated and a dynamic interaction of ARFs through BZR1 and BIN2 both
transcriptionally and post-transcriptionally to regulate plant growth and its develop-
ment via BR-auxin cross talk (Peres et al. 2019).

15.5.2 Interplay Between Brassinosteroids and Gibberellins

A cooperative and an interdependent relationship exists between BRs and GAs, with
multiple layers that interact in a species, tissue, and in a dose-dependent manner. The

Table 15.1 (continued)

Physiological
parameters Plant species

BR analogues/inhibitors
used Reference

Capsicum
annuum L.

EBL Yang et al. (2019)

Vigna
unguiculata L.

EBL Cardoso et al. (2019)

Senescence Triticum aestivum
L.

EBL Sağlam-Çağ (2007)

Helianthus
annuus L.

EBL Kaplan-Dalyan and
Sağlam-Çağ (2013)

Citrus unshiu EBL Zhu et al. (2015)

Solanum
lycopersicum L.

EBL Carvalho et al.
(2013); Nazir et al.
(2021)

Glycine max L. EBL Bariş and Sağlam-
Çağ (2016)

Pisum sativum L. EBL Fedina et al. (2017)

Carica papaya L. BR de Assis-Gomes et al.
(2018)

Capsicum
annuum L.

EBL Yang et al. (2019)

Lilium orientalis BR Nergi and Ali (2020)
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studies revealed that the DELLA proteins (a key negative regulator of gibberellin
signaling) have a suppressing effect on BZR1 transcriptional activity while
interacting with BZR1/BES1 (Bai et al. 2012; Gallego-Bartolome et al. 2012; Li
et al. 2012a; Peres et al. 2019). In Arabidopsis seedlings with lower levels of BR
biosynthesis, hypocotyl elongation was promoted by GA or brassinazole treatment
revealing the cooperative role of both hormones though it depends on the stage of
growth, physiological conditions, and on the branched BR-regulated GA pathway
(Gallego-Bartolome et al. 2012; Stewart Lilley et al. 2013; Unterholzner et al. 2015).
BR influences GA biosynthesis not only in dicots but also in monocot plants as
evident through the bioinformatics, chromatin immunoprecipitation (ChIP), and
in vitro DNA binding studies, suggesting a direct binding of BZR1/BES1 to the
target expression levels of two genes GA20ox, GA3ox, and GA2ox (encode
enzymes in the rate-limiting step of GA production) from Arabidopsis and rice
plants, respectively (Tong et al. 2014; Unterholzner et al. 2015; Peres et al. 2019).
Thus, as per the postulates of the proposed model of BR-GA signaling involving the
interaction between BZR1/BES1 and DELLA, BZR1/BES1 are activated post-
translationally by BR to promote GA biosynthesis; further the escalated GA
enhances DELLA degradation and releases the BZR1/BES1 activity. The stability
of this proposed interaction is dependent upon the phosphorylation state of BZR1/
BES1 proteins and the cellular localization of these processes (Ross and Quittenden
2016; Tong and Chu 2016; Unterholzner et al. 2016; Allen and Ptashnyk 2017)
(Fig. 15.4). Additionally, the homeostasis between BR-GA is also affected during
biotic stress where the biotic agents cause an interruption in the interplay between
the hormones by producing hormonal mimicking signals for their own survival
thereby disarming the immunity of their host (De Vleesschauwer et al. 2012; Peres
et al. 2019).

Fig. 15.3 A schematic model showing different signaling and biosynthesis genes during
brassinosteroid-auxin interaction

334 N. Sharma et al.



15.5.3 Interplay Between Brassinosteroids and Cytokinins

An indirect cross talk exists between brassinosteroids and cytokinins to regulate
growth and development of plants. During lateral root formation, auxin transport is
employed, and at molecular level, BR induces the expression of PIN genes (auxin
efflux carriers) required for the development of root primordium, while CK
suppresses its establishment by downregulating the expression of PIN genes, thus
disturbing the auxin accumulation (Bao et al. 2004; Benjamins and Scheres 2008;
Vercruyssen et al. 2011). Enzymatic targets of BR-mediated responses such as
isopentenyl transferases (IPTs) and CKXs (CK oxidases/dehydrogenases) are
responsible for the biosynthesis of bioactive cytokinins as well as its inactivation
respectively. For example, in Arabidopsis, CKX3 gene directs the breakdown of
CKs, and its overexpression under PYK10 (a root-specific promoter) reduces the
levels of CKs in roots, causing minimal leaf and root growth. Reversibly, ectopic
expression of CKX3 and BRI1 showed synergistic elevation in the leaf and root
growth of plants (Werner and Schmülling 2009; Werner et al. 2010; Vercruyssen
et al. 2011). In the regulation of several stress responses, negative role of CKs has
been observed stating the gain and loss of function of CKX and IPT. On one hand,
the overexpression of CKX implicated a deficiency of CK along with an elevated
tolerance for drought and salinity; the suppression of IPT resulted in reduced levels
of bioactive CK with enhanced stress tolerance. This negative relation may further
be attributed to much repression of CK signaling pathway and inducing ABA
signaling marker genes (such as AIL1, COR47, RAB18, RD29B, and SAG29)
during cross talk between ABA and CK where ABA demonstrated similar results
of increased stress tolerance via exogenous application (Nishiyama et al. 2011, 2012;
Peres et al. 2019). Alternately, the role of BR can also be seen in drought stress such
as in transgenic rice where it depends upon the physiological state of plant. The
transgenic lines with IPT driven by PSARK (a stress- and maturation-induced
promoter) showed increased CK levels before the start of senescence and BR

Fig. 15.4 A schematic diagram showing interaction between different signaling and biosynthesis
genes during brassinosteroid-gibberellin cross talk
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signaling genes (BRL3, BRI1, BH1, BIM1, and SERK1) and its biosynthesis genes
[DWF5 and HYD1 (HYDRA1)] were also upregulated under/no stress (Peleg et al.
2011) (Fig. 15.5).

15.5.4 Interplay Between Brassinosteroids and Ethylene

Cross talk between brassinosteroid and ethylene suggested indirect controls of
different facets of plant growth and development. On one side, BR negatively
regulates shoot gravitropism, and ethylene promotes shoot gravitropic reorientation
through the involvement of auxin signaling genes (Guo et al. 2008; Vandenbussche
et al. 2013). This is mainly achieved by activating and inhibiting negative and
positive auxin signaling genes such as AUX/IAA and ARF7 and AR F19, respec-
tively. However, ethylene works antagonistically by enhancing ARF7 and ARF19
and suppresses AUX/IAA to control shoot gravitropic responses (Vandenbussche
et al. 2013). In case of root gravitropic responses also, the two hormones interact in
opposite ways where BR increases root gravitropism while ET retards it by
revamping auxin transport in the BR and ET mutants (Buer et al. 2006; Kim et al.
2007; Vandenbussche et al. 2013). Besides it, exogenously applied BR increases ET
production in Arabidopsis seedlings by upregulating the expression of its key gene
ACS (1-aminocyclopropane-1-carboxylate synthase) and stability of its proteins
(mainly ACS5, ACS6, and ASC9) during external and internal stimuli thereby
adjusting the ethylene synthesis in the plant tissues (Hansen et al. 2009; Muday
et al. 2012). During root cell elongation, BRs and ET interaction has been observed
in the root hair as well as the non-hair cells. In the case of root hair cells, the targeted
expression of BRI1 activates the cell elongation in all tissues; however, it is retarded
in non-hair cells due to elevation in the expression of two ACS genes: ACS5 and
ACS9. Consequently, ACS genes catalyze the rate-limiting step of ET synthesis by
forming ACC (1-aminocyclopropane-1-carboxylate) that accumulates and enhances

Fig. 15.5 Diagrammatic representation showing different signaling and biosynthesis genes during
brassinosteroid-cytokinin interplay
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ethylene signaling, thereby inhibiting unidirectional cell expansion (Fridman et al.
2014; Zhu et al. 2016). On the contrary, synergistic relationship also exists between
BR and ET in controlling hyponastic growth being employed by plants to cope the
environmental strains. Here, ET is the main regulator and in turn is regulated by
BR. C-23 hydroxylation of BR synthesis is mediated by ROT3 (ROTUNDIFOLIA3/
CYP90C1), and any change in it impairs local cell expansion and inhibits BR
synthesis which further lowers ethylene-induced upward leaf movement (Polko
et al. 2013) (Fig. 15.6).

15.5.5 Interplay Between Brassinosteroids and Abscisic Acid

In plants, seed germination, root elongation, and even during stomatal closing, plants
with defective BR signaling show enhanced sensitivity for ABA, thus showing
antagonistic relationship between BRs and ABA (Steber and McCourt 2001;
Zhang et al. 2009; Li et al. 2012b; Wang et al. 2020). During signaling process
also, BR signaling opposes the ABA biosynthesis. This is evident through the
removal of BSK5 (a positive regulator of BR signaling) which causes the induction
of ABA3 and NCED3 (ABA biosynthesis-related genes) (Ha et al. 2016; Ha et al.
2018). Additionally, during BR-ABA cross talk, upstream of BIN2 kinase causes the
downstream of BR receptor complex. In this, two negatively regulating ABA genes,
ABI1 and ABI2, interact as well as dephosphorylate BIN2 (a negative regulator of
BR signaling) to further regulate the phosphorylation of BES1. However, an in vitro
ABA signal transduction mimicking showed that ABA through its receptors inhibit
ABI2 which further promotes BIN2 phosphorylation (Zhang et al. 2009; Wang et al.
2018; Bulgakov and Avramenko 2020). Even under drought stress, BES1 impedes
ABA induction of a drought-related transcription factor RD26 (RESPONSIVE TO
DESICCATION 26) and it reciprocatively exhibits antagonism by modulating
BES1-regulated transcription which hinders brassinosteroid-regulated growth
(Chung et al. 2014; Ye et al. 2017). Moreover, early signaling of ABA is modified

Fig. 15.6 A schematic representation of different signaling and biosynthesis genes in
brassinosteroid-ethylene relationship
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by BR as in the case of Arabidopsis, by directly affecting phosphorylation of the
active ABA signaling participants such as SnRK2.2, SnRK2.3, and SnRK2.6. Here
too, BIN2 kinase signaling acts as an interacting protein of SnRK2.2 causing its
phosphorylation along with SnRK2.3 (Belin et al. 2006; Yoshida et al. 2010; Fujita
et al. 2013; Cai et al. 2014) (Fig. 15.7).

15.5.6 Interplay Between Brassinosteroids and Salicylic Acid

The existence of the cross talk between BR and SA plays a key role in plants under a
variety of environmental constraints. During biotic stress, though BR acts as an
enhancer in vast range of disease resistance, this BR-mediated boosted resistance
does not depend upon SA. However, the joint effect of BR and SAR (systemic
acquired resistance) provides an additive protection against pathogens (Nakashita
et al. 2003; Saini et al. 2015). Under biotic stress, APETALA2/ETHYLENE-
RESPONSIVE FACTOR gene GhTINY2 is strongly enhanced. Its overexpression
boost the plant’s tolerance, and its underexpression makes the plant susceptible to
infection. This is mainly because of more SA accumulation and its signal transduc-
tion through WRKY51 (WRKY transcription factor 51). However, the
overexpression of GhTINY2 retards growth, knockdown of genes induced by
BRs, and upregulation of BR-repressed genes. This occurs because of its interaction
with BZR1 along with restraining of the transcriptional activation of IAA19
(INDOLE-3-ACETIC ACID INDUCIBLE 19) (Xiao et al. 2021). NPR1
(NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1) regulate BR
signaling genes; BIN2 and BZRI induces stress tolerance in plants, and the interplay
between BR and SA may be due to the NPR1 gene which stimulates expression of
the SA-related genes involved in plant defense (Divi et al. 2010; Ohri et al. 2015).
Additionally, negative cross talk also exists between SA and BR signaling pathways
that resulted in the immune-suppressive effect of BR. Moreover, the external

Fig. 15.7 Diagrammatic model showing interaction of signaling and biosynthesis genes during
brassinosteroids-abscisic acid interlinkage
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application of BRs activated the master defense regulators of SA pathway such as
NPR1 and OsWRKY45 (WRKY transcription factor) (De Vleesschauwer et al.
2012) (Fig. 15.8).

15.5.7 Interplay Between Brassinosteroids and Jasmonic Acid

BR modulates JA signaling and inhibits JA-dependent growth and plays a vital role
in both abiotic/biotic stresses in plants. Induced OPR3 (encodes 12-oxophytodienoic
acid reductase) jointly by BRs and JA signifies a potential integration node between
BR action and JA synthesis (Zhang et al. 2009; Saini et al. 2015). In Arabidopsis,
restoration of the sensitivity and hypersensitive reaction of JA was seen during a
leaky mutation of DWF4 in coi1 mutant and a hypersensitive reaction in the wild
type toward JA. But when BRs were applied exogenously, it mitigated root growth
inhibition of JA because of downregulation of DWF4 in a COI1-dependent
(CORONATINE INSENSITIVE1) manner by jasmonate (Ren et al. 2009; Jang
et al. 2020). Jasmonate-induced anthocyanin accumulation is a hallmark of jasmonic
acid-induced responses which reduces in BR-biosynthetic mutants, but the BR
application helps plants accumulate anthocyanin. This occurs because of the mini-
mal expression of MYB (transcription factor) genes PAP1 and PAP2 (PRODUC-
TION OF ANTHOCYANIN PIGMENT1) (Peng et al. 2011; Song et al. 2011;
Wasternack and Hause 2013). In rice, thionin genes known for encoding antimicro-
bial peptides were greatly induced by JA but were enhanced by BR during stress
(Kitanaga et al. 2006). Against insect herbivory also, BR-JA cross talk showed the
defensive role of JA for anti-herbivory, while BR impedes it (Campos et al. 2009). In
Oryza sativa, exogenous application of JA decreased expression of BR signaling
gene, OSBRI1 and BR biosynthesis gene, and OsDWF4, during nematode infection
revealing antagonistic interplay between JA and BR (Nahar et al. 2013) (Fig. 15.9).

Fig. 15.8 A simplified model showing different signaling and biosynthesis genes during
brassinosteroids-salicylic acid interaction
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15.5.8 Interplay Between Brassinosteroids and Strigolactones

Cross talk between BR and SL is still in its budding stage, and the inter-hormonal
interaction pathways have been demonstrated recently (Faizan et al. 2020). Both
BRs and SL help in regulating shoot branching in plants. This is achieved through
the SL’s key signaling component E3 ubiquitin ligase MAX2 (a shoot branching
inhibitor) that continuously interacts with BR’s transcription factors BZR1 and BRI1
EMS SUPPRESOR1 (BES1) by binding directly with them and causing their
degradation. However, MAX2-mediated degradation of BR transcription factors is
promoted by SL signaling resulting in suppressed shoot branching (Yin et al. 2002;
He et al. 2005; Kim and Wang 2010; Wang et al. 2013). However, this has been
contradicted in bes1-D mutant, where the role of BES1 was re-examined. The
chosen phenotype with enhanced shoot branching does not show any association
with the characteristic bes1-D leaf phenotype, thereby advocating that the branching
defect described earlier might be wrongly referred to as a mutation in BES1 only
(Bennett et al. 2016). Further, it is expected that advances in the studies of this new
class of phytohormone will help in explaining the key underline players of the
hormonal cross talk between BRs and SLs (Fig. 15.10).

15.6 BR-Mediated Modulation of Plant Antioxidant Defense
System Under Abiotic Stress

Reactive oxygen species (ROS) are key regulatory and signaling molecules that play
important role in plant growth and development. ROS, such as superoxide radical
(O2

..), hydrogen peroxide (H2O2), and hydroxyl radical (.OH) production, elevates
when plant is exposed to certain stressed conditions. Brassinosteroids improve the
scavenging mechanism of these ROS by modulating the antioxidative as well as

Fig. 15.9 A schematic representation showing different signaling and biosynthesis genes of
brassinosteroids-jasmonic acid cross talk
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non-antioxidative system, thus playing an essential role in plant stress tolerance
(Table 15.2).

15.6.1 Thermal Stress

In present scenario, with the increase in global greenhouse effect, changes in climatic
conditions lead to rise in temperature, which has become one of the major detrimen-
tal stresses amid of constantly fluctuating environmental factors (Luo and Lau 2019;
Karwa et al. 2020). Transcriptomic studies reveal that thermal/heat stress causes
downregulation of critical gene(s) involved in the synthesis of cell wall, carbon
assimilation, transport and accumulation of starch, and many metabolic pathways
(Kothari and Lachowiec 2021). Plants in the environment are inevitable to such
conditions but undergo some series of mechanisms to cope up with increased
temperature, namely, osmoprotectants, ion transporters, antioxidant system, late
embryogenesis abundant (LEA) proteins, heat shock proteins, signaling messenger,
and factors of transcriptional machinery (Rodríguez et al. 2005). Various reports are
available which depict BR-induced heat tolerance in plants. Though the underlined
mechanism activated by BR for providing thermal stress tolerance is still not so
clear, but different studies suggest that a signaling cascade is initiated by BR
application which activates and brings together the small polypeptides and proteins,
such as heat shock proteins (HSPs) or stress-induced proteins, to alleviate stress
conditions (Bhandari and Nailwal 2020). BRs are believable to act as
immunomodulators, protecting plants from injuries of HT stress. Several reports
showed that BRs increase the production of heat shock proteins (HSPs) under
thermal stress, thereby protecting proteins against irreversible heat-induced damage
by preventing denaturation and facilitating the refolding of damaged proteins
(Chauhan et al. 2011). BRs elevate the activities of various enzymes involved in
the ascorbate–glutathione (AsA-GSH) cycle and maintain the homeostatic redox

Fig. 15.10 Diagrammatic representation showing signaling and biosynthesis genes during
brassinosteroid-strigolactone interaction
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potential during thermal stress in plants. BRs enhanced the expression of various
genes encoding these enzymes (Zhang et al. 2014; Yadava et al. 2016; Kaur et al.
2018; Li et al. 2018; Surgun-Acar and Zemheri-Navruz 2019). Brassinosteroids
alleviate the heat stress by regulating the glyoxylate and antioxidative system in
the case of Ficus seedlings (Jin et al. 2015; Anwar et al. 2018). A study conducted by
Sonjaron et al. (2018) revealed that 7,8-dihydro-8a-20-hydroxyecdysone
(aDHECD), a mimic of brassinosteroid, improve the photosynthetic activity and
carbohydrate content in rice seedlings under high temperature conditions. The
mechanism of BR that contributes to plant heat stress (HS) tolerance is mediated
by various essential complicated processes, namely, enhancing photosynthetic effi-
ciency by maximizing the rate of carboxylation by Rubisco and improving the
efficiency of PSII photochemistry; elevating photosynthetic pigments, stomatal
conductivity, and membrane stability; activating antioxidant mechanisms; and
maintaining redox homeostasis. Contrary to this, reduction in lipid peroxidation
and production of ROS is observed (Hayat et al. 2010; Kaur et al. 2018; Kaya et al.
2019). Although a large number of studies demonstrated the heat stress-protective
role of BR using exogenous applications, only a small number of studies are focused
on molecular mechanism involved in heat stress tolerance (Ahammed et al. 2014;
Zhou et al. 2014). It has been reported that a transient H2O2 production in the
apoplast functions as a critical signal to mediate BR-induced heat stress tolerance
in tomato (Zhou et al. 2014).

15.6.2 Heavy Metal Stress

Presently, heavy metals (HM) are regarded as major pollutants in the environment
due to their toxic effect at very low concentration. “HM” is collective term, which
applies to the group of metals and metalloids with greater atomic density than 4 g/
cm3, or five times, greater than water (Hawkes 1997; Gjorgieva Ackova, 2018). A
number of HMs include cobalt (Co), nickel (Ni), lead (Pb), silver (Ag), iron (Fe),
cadmium (Cd), chromium (Cr), zinc (Zn), arsenic (As), and the platinum group
elements that are present in the environment affecting all its living components
(Nagajyoti et al., 2010). Plants being sessile are exposed to various stress conditions
in the environment, and HM constitutes one of the major obstacles in growth and
development of plants. Anthropogenic activities and improper use of fertilizers and
pesticides, urbanization, industrialization, and fossil fuel combustion have led to
tremendous increase in concentrations of various hazardous chemicals in agricultural
soils (Chen et al. 2015; Zhao et al. 2018). Toxic effect of HMs varies according to
plant species, their concentrations, and chemical nature. HM reduces the rate of
photosynthesis and the required precursors for the process. Also, there is significant
reduction in quality and quantity of yield cultivated in polluted area with high risk of
chemical consumption by human population (Wu et al. 2017; Hasan et al. 2019).

Recently, BRs, as an alternate eco-friendly tool for improving heavy metal
(HM) stress tolerance in plants, have gained momentum (Bücker-Neto et al.
2017). BRs are reported for assimilation and metabolizing capacity for these
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chemicals (Santos et al. 2018). Plant exposed to HMs showed varied responses at the
morphological, cellular, and molecular levels, and to study the complex mechanism
underlining the improved tolerance by application of BRs, various studies have been
conducted by worldwide scientists showing ameliorating effect of BRs during HM
stress (Nawaz et al. 2017; Santos et al. 2018; Sharma et al. 2018; Wu et al. 2019;
Ahammed et al. 2020; Soares et al. 2020; Betti et al. 2021). Study conducted by
Jakubowska and Janicka (2017) decipher the potent role of BRs to provide stress
tolerance during cadmium stress in cucumber plants. It has been observed that the
BR stress tolerance is induced by the induction of plasma membrane NADPH
oxidase and H+ ATPase pump enzyme in cucumber during Cd stress. Similarly,
BRs improve the tolerance against Cd in cowpea plants (Santos et al. 2018).

Exogenous application of EBL enhances the lead tolerance in both seeds and
seedlings of Brassica juncea L. EBL alters the antioxidative enzyme activity and
enhances the rate of ROS scavenging by their increased activity (Soares et al. 2020).
Similar results have also been obtained by Wu and his coworkers (2019) in which
EBL showed ameliorative effect against metalloid stress. Exogenously applied EBL
(foliar spray) altered various enzymes and decreased the ROS level in wild
Arabidopsis thaliana seedlings which improves stress tolerance against antimony.
Similarly, EBL plays an important role in providing strength to rice plants against
iron stress. Exogenous application of EBL can alter the light-capturing capacity and
stomata conductance, increase thickness of epidermis of leaves, and maintain mem-
brane integrity of leaves under Fe toxicity (Tadaiesky et al. 2021). Similarly,
application of 28-Homobrassinolide improves the stress tolerance against Pb, Cd,
and Zn and attenuates their toxic effect on growth and development of seedlings
(Xu et al. 2019). Tolerance to high level of Zn has been reported in Solanum nigrum
L by the foliar application of EBL, contributing in better physiological status and
redox homeostasis in Zn-stressed seedlings (Sousa et al. 2020). BRs in combination
with calcium play important role in amelioration of aluminum stress in plants
(Ashraf et al. 2019). Improved root/shoot length and enhanced carotenoid, glutathi-
one, ascorbic acid, and tocopherol content were reported with elevation in the
expression catalase, peroxidase, glutathione reductase, and glutathione-S-transferase
genes by EBL application during lead stress (Kohli et al. 2018). In conclusion,
exogenous application of BR induce enhancement of tolerance to heavy metals is
their involvement in substantial improvement in carbon metabolism, photosynthetic
pigment content, antioxidative defense system, ROS scavenging capacity, glutathi-
one content etc. (Choudhary et al. 2012; Rajewska et al. 2016). Though there are
many reports available for stress tolerance properties of steroidal hormone
(brassinosteroids), but there is still uncertainty about endogenous BR levels being
modulated by exogenous BR under heavy metal stress.

15.6.3 Drought Stress

Water scarcity, which is one of the most deleterious of all environmental stresses,
checks the growth of many crop varieties and declines the quality and quantity of
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crop production (Todorova et al. 2016). Severe drought stress conditions lead
osmotic stress due to overproduction of reactive oxygen species (ROS) thereby
reducing photosynthetic rate; revamping nitrogen and antioxidant metabolism, sec-
ondary metabolite accumulation, and mineral nutrition; and ultimately causing
growth reduction in plants (Jatav et al. 2014; Ahanger et al. 2015; Ahanger et al.
2018). Various studies have reported that the exogenous application of plant growth
regulators like BRs can mitigate the drought-induced adverse effects on the growth
and metabolism of plants (Behnamnia 2015; Nawaz et al. 2015; Talaat et al. 2015;
Ahanger et al. 2018). They enhance the antioxidative defense of plants to combat
water deficiency. Exogenous application of BRs to plants suffering from drought
stress causes reduction in H2O2 (hydrogen peroxide) and MDA (malondialdehyde)
contents as a result of scavenging activities of antioxidative enzymes such as
peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), and ascorbate
peroxidase (APX) (Li and Feng 2011; Vayner et al. 2014; Nawaz et al. 2017). Foliar
application of EBL (0.01 mg/L) can also improve the antioxidant activity and
drought-induced inhibition of photosynthetic functioning in Capsicum annuum
(Hu et al. 2013).

It has been observed that exogenously applied BRs increase the concentration of
abscisic acid and negate the toxic effects of water stress on plants (Wang et al. 2019).
Supplementation of BRs (24-EBL and 28-HBL) alleviates the toxic effects of
polyethylene glycol-6000 (PEG)-induced drought stress by enhancing seed germi-
nation, seedling length, and biomass (fresh and dry weight) in Cajanus cajan by
increasing abscisic acid, glycine betaine, and proline accumulation (Shahana et al.
2015). It has been observed that the application of EBL and HBL to drought-stressed
pigeon pea significantly decreases H2O2 and MDA accumulation by increasing
antioxidative activities of SOD, CAT, POD, APX, and GR (glutathione reductase)
(Shahana et al. 2015). Earlier, both EBL and HBL treatments have been found to
reverse the inhibitory effects of PEG-6000-induced water stress on radish seedlings
by increasing seed germination and seedling growth associated with enhanced levels
of nucleic acids and soluble proteins and decreased activities of RNase. They also
maintained the membrane integrity by lowering lipid peroxidation and MDA content
(Mahesh et al. 2013). Recently, Tanveer et al. (2019) discussed the potential role of
EBL in improving drought stress tolerance in plants. EBL ameliorates the negative
effects of water stress by increasing carbon assimilation rate, perpetuating balance
between ROS and antioxidants, and accumulating solutes especially proline
(Tanveer et al. 2019). It enhances photosynthesis and other leaf gas exchange traits
by protecting the ultrastructure of photosynthetic pigment apparatus from degrada-
tion (Tanveer et al. 2019).

BRs mediated plant defense mechanism against oxidative stress by maintaining
the expression of genes involved in encoding xyloglucan endotransglucosylase/
hydrolases (XTHs) or by escalating the activity of H+-ATPase, sucrose synthase,
and cellulose synthase (Clouse 2011; Nawaz et al. 2017). Application of BRs
transmutes the expression of genes responsible for encoding both structural and
regulatory proteins (Ahammed et al. 2020). It was studied that the overexpression of
Arabidopsis BR biosynthetic gene DWF4 in Brassica napus increased seed yield,
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root biomass, and length and enhanced stress tolerance caused by dehydration (Sahni
et al. 2016). Duan et al. (2017) cloned a BR biosynthetic gene, SoCYP85A1, from
Spinacia oleracea and studied its effect on abiotic stress tolerance in tobacco. They
found that overexpression of the cloned gene improved drought tolerance and
resulted in longer primary root and more lateral roots in transgenic tobacco as
compared to wild types by eliminating ROS and MDA accumulation and improving
proline content along with antioxidant enzyme activities (Duan et al. 2017).

15.6.4 Salinity Stress

Salinity is a major abiotic stress that renders most of the agricultural lands as barren
wastelands resulting in food scarcity. It affects the water absorption capacity of
plants that leads to overall decrease in plant growth (Bartwal and Arora 2020).
Salinity stress, often termed as physiological drought, negatively affects plant
development and productivity by inducing osmotic and ionic imbalances (Ahanger
and Agarwal 2017; Kaur et al. 2018; Ahammed et al. 2020). Salt stress-induced toxic
effects on plants include osmotic stress, ionic toxicity, truncated nitrogen metabo-
lism, increased production of ROS that leads to oxidative damage, retarded photo-
synthetic functioning, and hindrance in uptake and translocation of mineral nutrients
(Ahmad et al. 2010; Iqbal et al. 2015; Ahanger and Agarwal 2017). It is well
established that exogenous application of BRs can reverse the negative effects
induced by saline conditions on growth and development of plants. Time and
again various studies have reported the role of BRs in mitigating the toxic effects
of salt stress in wide range of plants including A. thaliana, rapeseed (Brassica
juncea), mustard (B. napus), eggplant (Solanum melongena), pepper (Capsicum
annuum), cucumber (Cucumis sativus), maize (Zea mays), and common bean
(Phaseolus vulgaris) (Yuan et al. 2012a; Yue et al. 2018; Ahammed et al. 2020).

BRs help plants to cope up with salt stress by regulating antioxidative defense
system. They activate the antioxidative defense machinery by influencing or
controlling the transcription and/or translation of specific genes to improve the
oxidative stress tolerance potential of plants (Cheng et al. 2015; Fariduddin et al.
2014). In a study, it was found that 24-EBL application enhanced growth, soluble
proteins, and antioxidant activities of Solanum tuberosum suffering from salinity
stress (Khalid and Aftab 2016). In another study, it was observed that exogenous
application of BR conferred tolerance and mitigated the negative effects of NaCl-
induced salt stress in cucumber by improving growth, chlorophyll content, and
photosynthetic efficiency; promoting the activities of antioxidative enzymes,
namely, CAT, SOD, POD; and increasing proline content (Fariduddin et al. 2013).
In the same plant NaCl-induced production of ROS like O2

¯ and H2O2 was mitigated
by the enhancement of antioxidative defense system by EBL application (Lu and
Yang 2013). Supplementation of watermelon with 24-EBL increased its salt toler-
ance by enhancing CO2 accumulation and water use efficiency; BRs were suggested
to promote photosynthesis through activation of photosynthetic enzymes like
Rubisco under salt stress conditions (Cheng et al. 2015).
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It is well documented that salinity stress reduces the percentage of seed germina-
tion and overall biomass of crops, but after treating stressed plants with brassinolide,
an increase in germination rate as well as root and shoot length was seen, and nitrate
reductase activity was also increased as compared to stressed plants (Lalotra et al.
2017). Apart from exogenous application of BRs, harmful effects of high salt content
have been ameliorated, and stress tolerance has been improved by employing seed
priming techniques (Ahanger et al. 2018). In an experiment Zhang and his
co-workers pre-treated the seeds of Medicago sativa with EBL and then exposed
them to saline conditions. They noticed that under the influence of EBL, seed
germination increased and oxidative damage reduced by enhanced activities of
antioxidant enzymes, namely, SOD, POD, and CAT (Zhang et al. 2007). It has
been seen that BRs regulate DNA methylation that plays a pivotal role in salinity
tolerance. In a study, cytosine DNA methylation was found to be decreased in Linum
usitatissimum (flax) upon NaCl (150 mM) exposure; however, seed priming with
24-EBL induced total methylation and enhanced salt tolerance, suggesting its role in
epigenetic modification under salinity stress (Amraee et al. 2019).

15.6.5 Other Major Abiotic Stress

Aside from the above discussed major abiotic stressors, BRs and related compounds
can also play notable roles in plants to cope up with other abiotic stressors like
pesticides, photoinhibition/light stress, nutrient stress, and water-logging/water-
flooding stress (Ahammed et al. 2012b; Sharma et al. 2013, 2017; Xia et al. 2006;
Ogweno et al. 2010; Ahanger et al. 2018; Janeczko et al. 2010; Kang et al. 2006,
2009; Liang and Liang 2009; Lu et al. 2006; Lu and Guo 2013). 24-Epibrassinolide
can enhance the tolerance of Oryza sativa and Brassica juncea to stress generated by
pesticide imidacloprid (IMI) by decreasing lipid peroxidation via enhanced activity
of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT),
ascorbate peroxidase (APOX), guaiacol peroxidase (GPOX), glutathione reductase
(GR), and monodehydroascorbate reductase (MDHAR), upregulating the expression
of some genes like Fe-SOD, Mn-SOD, Cu/Zn-SOD, CAT, APOX, and GR (Sharma
et al. 2013; Sharma et al. 2017). In Ca (NO3)2-exposed Cucumis sativus, EBL
upregulated the ROS-scavenging metabolism of antioxidant enzymes and protected
the photosynthetic membrane system (Yuan et al. 2012b). Mitigation of impacts
caused by pyrene and phenanthrene toxicity in tomato has been observed as result of
EBL-mediated decreased content of MDA and increased activity of CAT, APOX,
GPOX, and GR (Ahammed et al. 2012a). Application of EBL decreased the lipid
peroxidation and increased H2O2 metabolism via enhanced activity of GST and GSH
content which were asserted to help Solanum tuberosum to counteract phenanthrene-
accrued consequences (Ahammed et al. 2012b, c). In tomato exposed to phenan-
threne and Cd co-contamination, decrease in lipid peroxidation and enhanced
antioxidant defense system by EBL were reported by Ahammed et al. (2013a).
Recently, Ahammed et al. (2013b) evidenced that EBL benefited the tomato to
maintain photochemical quenching coefficient (Pq), quantum efficiency of PSII
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phytochemistry {(PS II)}, and photochemical efficiency of PSII (Fv/Fm) under
polychlorinated biphenyls induced oxidative stress by enhancing the activities of
antioxidant enzymes. Phytotoxicities of nine pesticides (abamectin, chlorpyrifos,
Cuproxat, cyazofamid, Fluazifop-p-butyl, flusilazole, haloxyfop, imidacloprid, and
paraquat) had been alleviated by pre-treating Cucumis sativus with EBL. EBL
increased the CO2 assimilation capacity and antioxidant enzyme activity in
C. sativus (Xia et al. 2006). Application of EBL under light stress in tomato
(Lycopersicon esculentum) enhanced the activity SOD, CAT, APOX, and GPOX
enzymes and benefited the plants to maintain photochemical quenching (qP), quan-
tum efficiency of PSII (PS II), and net photosynthetic rate (Pn) by decreasing lipid
peroxidation (Ogweno et al. 2010). Significant role of EBL in enhancing the activity
of antioxidant enzymes was evidenced in plants exposed to chlorpyrifos (Xia et al.
2009). Similarly, application of 24-epiBL to Arachis hypogea mitigated the oxida-
tive stress induced by Fe-deficiency and reduced ROS production by enhancing
activity of nitrate reductase, antioxidant system, and osmolyte accumulation (Song
et al. 2016). Exogenous application of EBL (soaking and foliar) reduced uptake of
iron and sodium and increased uptake of magnesium, calcium, and potassium in
wheat (Janeczko et al. 2010). Foliar spray of EBL in C. sativus mitigated toxic
effects of excess calcium on the uptake of necessary mineral elements such as
potassium, magnesium, phosphorus, and manganese (Yuan et al. 2015). BRs and
related compound were evidenced to furnish tolerance to water-logging/water-
flooding stress to different crops such as oilseed rape (Liang and Liang 2009),
soybean (Lu et al. 2006), and cucumber (Kang et al. 2006, 2009; Lu and Guo
2013) mainly by decreasing oxidative damage via increased activities of SOD and
POD (peroxidase).

15.7 BR-Mediated Modulation of Plant Antioxidant Defense
System Under Biotic Stress

Under natural conditions, plants are exposed to both abiotic stress (discussed above)
and biotic stress (viruses, bacteria, fungi, insects, nematodes, parasites, and weeds).
Plants use inducible defense mechanism to effectively tolerate different types of
stress. Induced defense mechanism of plants against biotic stress is similar to defense
induced against abiotic stress (Anwar et al. 2018). BRs and related compound not
only help the plants to cope up with abiotic stresses but also play an important role to
enhance the tolerance against biotic stresses (Krishna 2003; Ali et al. 2007; Jager
et al. 2008; Bajguz and Hayat 2009; Nawaz et al. 2017) (Table 15.3). They involve
complex signaling cascade to positively regulate antioxidant defense metabolism
(Belkhadir et al. 2012) and induce innate immune response to protect the cells from
different biotic stresses (Wang et al. 2012). Application of brassinolide (BL) in
A. thaliana infected with cucumber mosaic virus (CMV) increased the activity of
antioxidant enzymes like CAT, SOD, POD, and APOX; decreased photosystem
damage; and modulated expression of genes related to defense (Zhang et al. 2015).
Growth and activity of antioxidant enzymes in tomato also enhanced by
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Table 15.3 Role of BRs in modulation of plant antioxidant defense system under various biotic
stress

Type of biotic
stress

BR
source

Mode of BR
treatment Plant species Effects References

Bacteria EBL Injected in
leaves

Arabidopsis
thaliana

Inhibition of
FLS2-mediated
immune
signaling

Albrecht et al.
(2012)

Fusarium
culmorum

EBL Soil and
foliar
application

Hordeum
vulgare

Inhibition of
Fusarium head
blight

Ali et al. (2013)

Oidium
sp. and
Pseudomonas
syringae and
TMV

EBL Hydroponic
system

Hordeum
vulgare

Increased
resistance
against
powdery
mildew fungus
Oidium
sp. bacterium
Pseudomonas
syringae and
TMV

Ali et al. (2014)

TMV BL Leaf
treatment

Nicotiana
benthamiana

Increased
systemic TMV
resistance

Deng et al.
(2016)

Fusarium EBL Root and
foliar
application

Cucumber
sativus

Reduced
infection of
Fusarium wilt

Ding et al.
(2009)

Verticillium
dahlia

BL Soil
application

Gossypium
barbadense
and
Gossypium
hirsutum

Enhanced
resistance
against wilt
causing fungus

Gao et al.
(2013)

Meloidogyne
incognita

EBL Seed dipping Solanum
lycopersicum

Increased
tolerance
against
M. incognita
by enhancing
activity of
antioxidant
enzymes

Jasrotia and
Ohri (2014,
2017a, b)

Meloidogyne
graminicola

BL Foliar
application

Oryza sativa Enhanced
innate
immunity
against
M. graminicola

Nahar et al.
(2013)

Meloidogyne
incognita

HBL
EBL

Seed
treatment

Brassica
juncea

Increased
tolerance
against
M. incognita

Ohri and Kaur
(2011); Ohri
et al. (2011)

(continued)
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28-homobrassinolide (HBL) application and resulted in reduced oxidative stress
caused by nematodes (Kaur et al. 2013, 2014). In rice, induced systemic defense
against nematode stress was stimulated by exogenous application of epibrassinolide
(Nahar et al. 2013). At low temperature, management of Botrytis cinerea in posthar-
vest grapes was reported by Liu et al. (2016) when EBL was applied exogenously.
Similarly, Zhu et al. (2010) reported that exogenously applied brassinosteroid
solution enhanced the activity of antioxidant enzymes like CAT, SOD, and POX
and inhibited the development of blue mold decay caused by Penicillium expansum
in harvested jujube fruit. Additionally, improved fruit quality and delayed senes-
cence due to reduced ethylene production were observed suggesting that
BR-mediated detain in fruit decay might be related with induction of disease
resistance. Citrus unshiu fruit dipped in EBL manifested enhanced resistance against
citrus disease due to increased activity of stress-related metabolites (Zhu et al. 2015).
Reduced susceptibility against leaf blight and rice blast diseases in barley seedlings
grown under hydroponic system containing EBL was also observed (Ali et al. 2014).
Moreover, resistance in uzu barley lines against powdery mildew fungus Oidium sp.,
bacterium Pseudomonas syringae pv. Tabaci and tobacco mosaic virus (TMV) was
also induced by EBL. Application of BL in tobacco and rice showed similar effects
(Nakashita et al. 2003). Application of BR-containing extract of Lychnis viscaria
seeds caused an enhanced resistance of tomato, cucumber, and tobacco to fungal and
viral pathogens (Botrytis, Sphaerotheca fuliginea, and TMV, respectively) (Roth
et al. 2000).

15.8 Conclusion

It is a well-established fact that different environmental stressors (biotic and abiotic)
are responsible for negatively affecting the agricultural economy by directly reduc-
ing the productivity of different crop plants. Moreover, this decline in productivity is
becoming more severe with passing times. Since, these stressors generate ROS in

Table 15.3 (continued)

Type of biotic
stress

BR
source

Mode of BR
treatment Plant species Effects References

Pythium
graminicola

BL Media
augmentation

Oryza sativa Inhibited
infection
caused by root
oomycete
Pythium
graminicola

De
Vleesschauwer
et al. (2012)

Cucumber
mosaic virus
(CMV)

BL Foliar spray Arabidopsis
thaliana

Enhanced
tolerance
against CMV

Zhang et al.
(2015)

Citrus disease EBL Fruit dipping Citrus
unshiu

Improved
disease
resistance and
postharvest
quality

Zhu et al.
(2015)
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affected plants, this further leads to destructive effects on physiological and meta-
bolic processes of plants. In order to overcome this ROS generation, various
strategies have been developed, and one such strategy is the application of plant
growth regulators, which can act as a feasible environmentally safe alternative. In
this continuation phytohormones like BRs and its associated components have been
reported to induce antioxidant defense system of plants under different stressful
conditions. Furthermore, BRs have also the efficiency of interacting with other
phytohormones under normal and stressed conditions thus making them more potent
for the resistance in plants against different environmental stresses.
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