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Preface

Environmental stresses, such as drought, salinity, or floods, induce the generation of
reactive oxygen species (ROS) which causes severe damage to cell membrane
integrity by accelerating lipid peroxidation. Growing evidence has suggested that
ROS play a critical role as the signaling molecules throughout the entire cell death
pathway. Though ROS act as a signaling molecule, they can cause oxidative burst if
there is an imbalance between ROS generation and their scavenging. Oxidative
stresses also decrease the efficiency of PSI and PSII by disrupting the electron
transport chain and chloroplast integrity. Moreover, under severe stress conditions,
the generation of ROS often exceeds beyond the antioxidant potential of the plants,
resulting in oxidative damages. To counteract the detrimental effect of ROS, plants
are inherited with an intricate and vibrant antioxidant defense system, composed of
enzymatic (catalase, peroxidase, superoxide dismutase, glutathione reductase, gluta-
thione S-transferase, guaiacol peroxidase, monodehydroascorbate reductase,
dehydroascorbate reductase, etc.) and nonenzymatic (glutathione, ascorbate, α-
tocopherol, carotenoids, flavonoids, etc.) antioxidants, which scavenge and/or
reduce excess ROS and improve plant tolerance to abiotic stresses. Stress tolerance
in most crop plants is positively correlated with an efficient oxidative system.
Therefore, studying the efficiency of antioxidant defense systems in plants is neces-
sary for facilitating the plant’s nature of adaptation against abiotic stresses.

Knowledge about the oxidative mechanisms in plants may contribute to the
development of plants, adapted to the environment and resistant to pathogens.
During the last decades, antioxidant enzymes have been used to develop transgenic
plants that have increased tolerance to several stresses. The ROS production, major
antioxidant enzymes as well as nonenzymatic antioxidants involved in detoxifica-
tion, and defense under stresses are the major areas to be elucidated.

The book comprises 20 chapters (review articles) written by experts, highlighting
the various enzymatic and nonenzymatic antioxidants, defense mechanisms, and
adaptation strategies employed by plants to avoid the stressful conditions. We are
hopeful, this volume would furnish the need of all researchers who are working or
have interest in this particular field.

We are highly grateful to all our contributors for accepting our invitation and for
not only sharing their knowledge and research but also venerably integrating their
expertise in dispersed information from diverse fields in composing the chapters and
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enduring editorial suggestions to finally produce this venture. We also thank
Springer-Nature team for their generous cooperation at every stage of the book
production.

Lastly, thanks are also due to well-wishers, research students, and editors’ family
members for their moral support, blessings, and inspiration in the compilation of this
book.

Aligarh, Uttar Pradesh, India Tariq Aftab
Jeddah, Saudi Arabia Khalid Rehman Hakeem
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An Overview of Roles of Enzymatic
and Nonenzymatic Antioxidants in Plant 1
Shashi Kant Sharma, Devendra Singh, Himanshu Pandey,
Raj Babar Jatav, Virendra Singh, and Devendra Pandey

Abstract

The postindustrial age radically altered global climate conditions, posing a
difficult task for plants and crops to thrive under stress environments like high
temperatures, salt, waterlogging, heavy metals, drought, and so on. A small
period of poor weather had a substantial impact on the development and growth
of plants, eventually influencing crop quality, yield, and agricultural
sustainability as a whole. Plant cells produce free oxygen (O2) radicals and
their derivatives, known as reactive oxygen species (ROS), as by-products of
other reactions in such hostile environments. Furthermore, these ROS molecules
are used as signaling molecules in plants for signal transduction in response to
changing environmental conditions. The cytoplasmic balance that triggers the
antioxidant defense mechanisms is disrupted as a result of the excessive accumu-
lation of ROSs inside the cell. Plants have developed a complicated ROS
scavenging system to avoid sensitive cellular components from being damaged
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by reactive oxygen species. Enzymatic antioxidants, like catalase (CAT), peroxi-
dase (POD), superoxide dismutase (SOD), glutathione peroxidases (GPX), and
ascorbate peroxidases (APX), and nonenzymatic antioxidants, like glutathione,
ascorbate, tocopherols, and phenolic compounds, are important antioxidants that
play key roles in eliminating superoxide (O2

�) and (H2O2). The antioxidant
capacity of plants is the sum of the activities of all enzymatic and nonenzymatic
antioxidant systems. This chapter seeks to provide fundamental information on
enzymatic and nonenzymatic antioxidants, their occurrence, characteristics, and
the antioxidant defense system involved in reactive oxygen species (ROS) detox-
ification under various stresses, as well as their interactions with cellular
components.

Keywords

ROS · Abiotic stress · Oxidative stress · Enzymatic antioxidants · Nonenzymatic
antioxidants

1.1 Introduction

Based on their biochemical nature, antioxidants are divided into two categories:
enzymatic and nonenzymatic. While substantial anabolic and catabolic reactions are
occurring, these chemicals are engaged in the detoxification of free radicals or
reactive oxygen species (ROS). Both classes of antioxidants are capable of effi-
ciently neutralizing ROS and converting them into relatively stable nontoxic
molecules, preventing oxidative damage to cellular apparatuses. As a result,
antioxidants are the most important first line of defense against the oxidative
stress-induced cell damage. Antioxidants, both enzymatic and nonenzymatic, are
electron-rich compounds that readily share electrons with highly energetic ROS and
free radicals, stabilizing cellular randomness.

Furthermore, they may interfere with the oxidizing chain reaction in order to
reduce free radical damage (Apel and Hirt 2004). Antioxidants are also known as
ROS scavengers because they use dynamic and synergistic processes to keep the
intracellular concentration of ROS in check. It (antioxidant) is a substance that may
scavenge reactive oxygen species (ROS) without being converted into a harmful
radical (Noctor and Foyer 1998). As a result, antioxidant enzymes are crucial for
sustaining good cellular and systemic health and well-being. All highly reactive,
oxygen-containing molecules, including the free radicals, are referred to as ROS.
The hydroxyl radical (OH�), singlet oxygen, superoxide anion radical, H2O2 (hydro-
gen peroxide), hypochlorite radicals, lipid peroxides, and nitric oxide radical are all
examples of reactive oxygen species. All have the ability to react with membrane
lipids, enzymes, and other molecules, resulting in the loss of critical cellular
structures and functions and a variety of negative consequences for plants and
animals. As previously stated, free radicals or ROS are highly reactive compounds
that are released directly or as a by-product during normal metabolic processes in
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various cellular compartments like mitochondria, chloroplast, peroxisomes, and
apoplast (Panieri and Santoro 2015), but their synthesis is accelerated during
extreme conditions. Because these compounds have a lone pair of electrons, they
are very unstable and thus highly reactive (Del Río and López-Huertas 2016).
ROS-induced oxidative stress is a well-controlled process, and the balance
in-between the ROS and its quenching define a plant’s and any other organism’s
well-being. If antioxidants reach a condition of disequilibrium, meaning they are
unable to destroy free radicals, the cell and tissue suffer oxidative damage. The
degree of oxidative stress caused by free radicals/ROS is determined by their
concentration, kind, synthesis site, and developmental stage (Møller et al. 2007).
Plants exposed to ROS for a long time period can suffer considerable damage to their
cell machinery and biomolecules, including protein oxidation, lipid peroxidation
(Mittler 2002), PCD (programmed cell death), and inhibition of the enzymes and
also damages nucleic acid, which can lead to tissue necrosis or plant death (Fig. 1.1)
(Pérez-Pérez et al. 2012).

1.2 Enzymatic Antioxidants

Several enzymes, like GPX, SOD, glutathione reductase, APX, and CAT (catalase),
are the enzymatic components of the antioxidant defense system found in diverse
subcellular compartments. In plants under oxidative stress, these enzymatic antioxi-
dant molecules are critical for maintaining cellular homeostasis.

Fig. 1.1 Illustrative representation of different agents generating free radicals and reactive oxygen
species in plants and different antioxidants scavenging agents
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1.2.1 SOD (Superoxide Dismutases)

SODs are enzymes which can catalyze the dismutation/partitioning of O2
� to H2O2

and molecular oxygen (O2). Because O2
� is a typical consequence of oxygen

metabolism, SOD is thought to be the first line of defense against the reactive O2

species-induced damage. By neutralizing the superoxide radical, the Haber–Weiss
reaction eliminates the possibility of hydroxyl ion production. These enzymes are
classed as metalloenzymes based on metal cofactors, subcellular distribution, and
protein folds. Cu-/Zn-containing SODs have been found in prokaryotic and eukary-
otic organisms, and in plant cells, they can be found in the cytoplasm, extracellular
space, or chloroplasts and can also be found in lysosomes, cytoplasm, and nuclear
compartments in mammalian cells. Plant cytoplasm and chloroplasts have been
found to have Fe-containing SODs. MnSODs are found in all kingdoms but particu-
larly in eukaryotic mitochondria, where they play a critical role in preserving
mitochondria by scavenging ROS (Pilon et al. 2011) and initiating cellular differen-
tiation (Moller 2001, 2012). According to Feng et al. (2016), SODs are found in
different organisms, such as mammals, yeast, bacteria, and plants. Multiple genes
producing SODs exist in plants, and their expression can be influenced by develop-
mental stage, tissue type, and environmental cues (Scandalios 2005; Menezes-
Benavente et al. 2004). There are nine SOD genes in tomatoes, which are unevenly
distributed across 12 chromosomes and include four Cu/ZnSODs, one MnSOD, and
three FeSODs (Feng et al. 2016). Various investigations revealed that different types
of SOD genes had varied levels of expression under harsh environmental conditions.
Underwater stress, for example, the expression patterns of the banana genes like
MaCSD1B and MaMSD1A, which are involved in SOD production, were utterly
incompatible (Feng et al. 2015).

Furthermore, SODs with the same cofactor may not necessarily have the same
role in various species. MnSOD expression was not affected by oxidative stress in
Arabidopsis, but it was affected significantly by drought and cold stress in wheat and
salt stress in pea (Baek and Skinner 2003). Additionally, alternative splicing and
miRNAs have been implicated in the regulation of SOD gene expression (Lu et al.
2010). Various plant species, such as Populus trichocarpa, Sorghum bicolor, Musa
acuminata, and Arabidopsis thaliana, have been found to contain the SOD genes
(Srivastava et al. 2009).

1.2.2 CAT (Catalases)

These are tetrameric enzymes, with iron as a prosthetic group attached to each
monomer; they catalyze the energy-efficient disproportionation of H2O2 into water
molecules (H2O) and molecular oxygen (Regelsberger et al. 2002; Zamocky et al.
2008). In contrast to H2O2, it has a lower affinity for R-O-O-R (organic peroxides)
and also has a higher turnover rate among antioxidant enzymes and is unique among
antioxidant enzymes because it does not need a reducing counterpart. Unfavorable
conditions necessitate increased energy generation, and expenditure by plants and
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other organisms leads to an increase in catabolic reactions, which yields H2O2. CATs
are predominantly attached to peroxisomes, where they execute β-oxidation of fatty
acid, photorespiration, and purine catabolism, all of which produce a considerable
amount of H2O2 (Mittler 2002). Hydrogen peroxide (H2O2) is also a key signaling
molecule in plant development and plant response to the environment (Mhamdi et al.
2010). Plants have numerous CATs, each produced by a separate gene, that respond
differently to different stressors that are known to cause ROS. Recent investigations
reveal that CAT is also prevalent in other subcellular compartments like the
mitochondria, chloroplast, and cytosol, albeit no evidence of substantial CAT
activity has been observed (Mhamdi et al. 2010). CAT1 is mostly expressed in
plant pollen and seeds; on the other side, CAT2 is not only expressed in photosyn-
thetic tissues (mostly) but also expressed in seeds and roots, while CAT3 is predom-
inantly expressed in vascular tissues and leaf in angiosperms (McClung 1997;
Frugoli et al. 1996).

1.2.3 APX (Ascorbate Peroxidases)

Ascorbate peroxidases are the heme peroxidase superfamily that is involved in the
recycling of AsA and the response to environmental stress in plants (Ishikawa and
Shigeoka 2008; Lazzarotto et al. 2011). These enzymes catalyze the conversion of
H2O2 to water and monodehydroascorbate (MDHA) using ascorbate (AsA) as an
electron donor (Caverzan et al. 2012). Plants have five different isoforms of APX,
which are found in diverse subcellular compartments like the cytosol, mitochondria,
peroxisomes, and chloroplast (Sharma and Dubey 2005). These enzymes are divided
into groups based on the amino acids they contain and the cell compartments in
which they are found. Several abiotic stressors in plants have varied effects on the
APX genes (Rosa et al. 2010; Caverzan et al. 2014). APXs, CATs, and SODs must
be in balance to determine the effective intracellular level of H2O2 and oxygen, and
variations in this equilibrium appear to trigger compensation processes (Apel and
Hirt 2004; Scandalios 2002, 2005). Under a normal and stressful environment, APX
is a key component of the ASC–GSH (ascorbate–glutathione) cycle, which
eliminates excess H2O2 from plant cells (Mittler and Zilinskas 1991). Because
APX is more broadly distributed and also has a higher affinity for hydrogen peroxide
than CAT, it is a more effective H2O2 scavenger during stressful situations. APX is a
chloroplastic isoenzyme expressed by a single gene in higher plants (apx1).

1.2.4 GPx (Glutathione Peroxidases)

The term glutathione peroxidases collectively describe the group of phylogenetically
related nonheme and thiol-containing peroxidase enzymes. It was called after GPx-1,
the mammalian tetrameric seleno enzyme, which was the first to be defined and
reported. More than 700 members of the GPx family have been identified so far,
overall domains of life. G. C. Mills discovered its activity in red blood cells in 1957,
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where it protected hemoglobin from oxidative degradation. The biological function
of GPxs is to catalyze the H2O2 reduction or lipid hydroperoxides into H2O or the
corresponding alcohols by using GSH (glutathione) as a reducing agent. The cata-
lytic moiety of selenium was later identified as selenocysteine, the 21st naturally
occurring amino acid. Selenocysteine was recommended as a way to ensure a rapid
reaction with the hydroperoxide and glutathione reducibility. GPx1 is found in the
mitochondria, chloroplasts, and cytosol of a wide range of plants and animals, and it
serves as an antioxidant in several cellular compartments. In human beings, there are
eight distinct glutathione peroxidase isoforms (GPx1-8) that have been found. The
mechanism of reaction comprises oxidation of the selenol of a selenocysteine residue
by H2O2. The RSeOH (selenenic acid) group is formed as a result of this action. A
two-step mechanism converts selenenic acid back to selenol, starting with a reaction
with GSH to create the GS-SeR and H2O. The GS-SeR intermediate is reduced back
to selenol by a second GSH molecule, releasing a by-product GS-SG.

1.3 Nonenzymatic Antioxidants

Antioxidants that are generally nonenzymatic in nature are found in all subcellular
parts of plants. These antioxidants help to detoxify reactive O2 species and free
radicals and can also help to reduce the substrates from antioxidant enzymes (Mittler
2002). The primary cellular redox buffers GSH and ascorbate, along with
carotenoids, tocopherol, and polyphenolic compounds, are different forms of non-
enzymatic defense pathways (Scandalios 2002).

1.3.1 Vitamin C (Ascorbic Acid)

Ascorbate is a well-known vitamin having anti-oxidizing properties that have been
found in a variety of organelles and even apoplast. It occurs in different reduced and
oxidized forms, as ascorbic acid (90% of the ascorbate pool) and mono- and
dehydroascorbic acid (Smirnoff 2011). The ratio of oxidized to reduced ascorbate
is a key element that influences plant oxidative stress resistance (Conklin et al. 2000;
Cruz-Rus et al. 2012). Glutathione reductase, dehydroascorbate reductase, and
monodehydroascorbate reductase are among the NAD(P)H-dependent enzymes
that keep AsA in its reduced state (Mittler 2002; Foyer and Noctor 2011). According
to the Horemans et al. (2000), the mitochondria are the major site for ascorbate
production, from which it is transferred to other cell organs via a proton-electron
gradient. Due to its ability to transfer electrons in enzymatic and nonenzymatic
processes, AsA is a critical component for ROS detoxification in the aqueous phase.
AsA can quickly remove O2

�, hydroxide ions, and 1O2, and therefore, it can reduce
H2O2 to H2O by the ascorbate peroxidase mechanism, protecting membranes
(Blokhina et al. 2003). In the ascorbate–glutathione cycle, APX utilizes two AsA
molecules to decrease H2O2 to water, with the intermediate monodehydroascorbate,
which is a short-lived radical that is further disproportionated into dehydroascorbate
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(DHA) and AsA. Furthermore, it plays a crucial role in the dynamic and control of
the cell cycle, the advancement of the G1 to S stage of the cell division pathway, and
cellular elongation, as well as many photosynthetic functions (Smirnoff 2011).
Although the exact biosynthetic process for ascorbate is unknown, it is speculated
that D-glucose may be used as a precursor.

1.3.2 Glutathione

Glutathione (GSH) oxidation by ROS results in the formation of GSSG, which is
present in all plant cell compartments. In cellular compartments, GSH, together with
its oxidized counterpart, GSSG, maintains a redox balance. It has been revealed that
the GSH/GSSH pair is involved in gene regulation and cell cycle pathways (Mittler
2002). The antioxidant glutathione and ascorbic acid are prolific and stable, and they
have the right redox potential to react with different varieties of substrate and
compounds. Glutathione is a tripeptide molecule made up of three amino acids,
glutamine, cysteine, and glycine, that are found in all plant cell parts, including the
cytoplasm, vacuoles, chloroplasts, mitochondria, and endoplasmic reticulum (Millar
et al. 2003). In most plant cells, glutathione is the important source of nonprotein
thiols. Glutathione is appropriate for a wide range of metabolic actions in all
organisms due to the presence of a thiol group and its reactivity. The reduced form
of glutathione (GSH) is found at higher concentrations in chloroplasts. Unlike the
ascorbate biogenesis system, the glutathione biosynthetic pathway is well-
established and identical throughout all domains of life. The amino acids are linked
to produce the full tripeptide in two ATP-dependent stages catalyzed by GSHS and
γ-ECS. These events take place in chloroplastic and non-chloroplastic segments, and
glutathione concentrations and redox status play a crucial role in different pathways.
GSH is used to reduce DHA both in an enzymatic and nonenzymatic way in the
ascorbate–glutathione pathway, and it is then oxidized to GSSG. Glutathione reduc-
tase catalyzes the regeneration of GSH from GSSG, with NADPH as the reducing
agent. The cysteine residue in GSH’s tripeptide has a high reactivity potential. GSH
scavenges harmful H2O2 by reacting nonenzymatically with O2

�, OH�, and 1O2.
The ability of GSH to replenish another potent antioxidant, ascorbic acid, via the
ascorbate–glutathione cycle gives it a crucial role in antioxidative defense (Millar
et al. 2003). It has been observed that the antioxidant property of glutathione was
utilized to achieve transgenic lines of tobacco (Foyer and Noctor 2005), which can
withstand oxidative stress (Del Río and López-Huertas 2016). GSH has been
involved in sensing alterations in redox equilibrium and transferring these alterations
to appropriate target proteins, in addition to being a co-substrate and reducing agent
in defense against reactive oxygen species.
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1.3.3 Vitamin E

All types of tocopherols are methylated fat-soluble phenols that have similar to
vitamin E (Sharma et al. 2012). They primarily function as antioxidants in plants,
algae, and mammals, but they may also have additional functions. In lipid bilayers,
α-tocopherol is the most effective for the removal of peroxyl radicals. Tocopherols
are the most powerful scavengers of free radicals. At the energy of 323 kJ mol�1, the
hydroxyl bond present in vitamin E becomes weaker than in the majority of phenols
and readily liberates hydrogen atom and thereby helps in quenching peroxyl radicals
and other free radicals, decreasing their harmful effect (Lide 2006). The produced
tocopheryl radical is generally nonreactive, and through redox interaction with a
hydrogen donor such as ascorbate or other antioxidants, it reverts to tocopherol
(Igamberdiev and Hill 2004; Traber and Stevens 2011). Tocopherols are integrated
into cell membranes and thereby protect the chloroplast membrane from oxidative
damage due to their fat-soluble nature (Blokhina et al. 2003). α-Tocopherols are
significantly bioactive and prominent antioxidants in the chloroplast lamina and are
primarily utilized for defending them against the photooxidative effect. It has been
observed that a single α-tocopherol molecule may neutralize one 20 singlet oxygen
and also act as reusable chain reaction terminators for PUFA radicals synthesized
during oxidation of lipids (Hare et al. 1998; Wu and Tang 2004; Ledford and Niyogi
2005). Photosynthesis and other metabolic processes in chloroplasts produce ROS,
which causes lipid peroxidation in plant cells. To cope up with a range of abiotic
stress conditions, the content of α-tocopherol in photosynthetic plant tissues
increases dramatically (Noctor 2006). The ability of α-tocopherols to scavenge and
quench ROS aids in the modulation of signal transduction and the stabilization of
membranes (Kruk et al. 2005; Noctor 2006). They work as a free radical capturing
process by preventing the chain extension stage in lipid autooxidation. Plants
respond to oxidative stress by expressing genes involved in tocopherol production
(Table 1.1) (Giacomelli et al. 2007; Wu and Tang 2004).

1.3.4 Carotenoids

Carotenoids, also known as tetra terpenoids, are pigments that naturally occur in
plants and microorganisms (Otles and Cagindi 2008). To date, more than 750 natural
carotenoids have been discovered. These chemicals give different vegetables and
fruits their distinct colors. Xanthophylls and carotenes are the two broad categories
of carotenoids. Carotenoids are classified into two broad subclasses, xanthophylls
and carotenes; the former class contains oxygen, whereas the latter class is purely
hydrocarbons and contains no oxygen (Ngamwonglumlert et al. 2017). Carotenoids
found in the human diet may help to prevent cancer, age-related muscle degenera-
tion, atherosclerosis, and other disorders. These pigments are lipid-soluble and are
absorbed together with fats through the gut tract. Carotenoids have a variety of
beneficial activities in plants, including attracting pollinators, indicating fruit devel-
opment, assisting in photosynthesis, and protecting cells from light-induced damage
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in plants and in photosynthetic bacteria and algae (Lerfall 2016). The ability of
β-carotene to quench free radicals such as O2

�, OH�, and 1O2 without undergoing
any changes or degradation is largely due to its highly delocalized polyene backbone
or conjugated double bond structure, which is primarily responsible for its antioxi-
dant behavior. Carotenoids found in higher concentrations in particular tissues and
organs can protect lipids against oxidative damage.

1.3.5 Phenolic Compounds

Tannins, flavonoids, lignins, and stilbenes are examples of phenolic compounds,
which constitute a varied group of naturally occurring secondary metabolites com-
mon in plants. Multiple phenol rings distinguish these compounds, making them
suited for free radical scavenging in both de novo and in vitro conditions. Over 8000
phenolic bioactive substances have been detected in different plant families. Phenyl-
alanine/shikimic acid is the common intermediate precursor for all plant phenolic
compounds. Under in vitro conditions, polyphenols have been shown to be more
potent antioxidants than ascorbate and tocopherols. Phenols are the most significant
dietary elements for humans, providing bitterness, color, astringency, flavor, odor,
and oxidative stability in food (Schroeter et al. 2002). Antioxidative activities of
polyphenols are characterized by the presence of readily available donor hydrogen or
electron (Rice-Evans et al. 1997). In another way, phenols alter the peroxidation
kinetics of lipid membrane and packaging, thereby protecting the membrane integ-
rity (Schroeter et al. 2002). Furthermore, phenolics have been implicated in the H2O2

scavenging cascade in plant cells. Polyphenols play different functions in plants,
which include pigmentation to plants; increase and decrease of plant growth
regulators, for example, auxin; UV protectants against ionizing light; deterrence to
herbivores; phytoalexins; and signaling compounds in ripening and other plant
developmental activities (Huber et al. 2003; Lattanzio et al. 2006).

1.4 Conclusion

Antioxidants are created normally, but they are triggered and upregulated in stressful
situations, which help to retain the structural firmness of cell organelles while
probably reducing oxidative damage. Plant defense is aided by a number of antioxi-
dant enzymes. The production and activation of ROS scavenging enzyme systems in
transgenic plants to increase their tolerance to a variety of stress conditions. Further-
more, because numerous enzymes and their different isoforms are involved and
reactive oxygen species is only one of the major factors of plant resistance to
unfavorable environmental and biotic stimuli, further research is needed in this
field. The increasing number of articles addressing superoxide dismutase, common
antioxidant enzyme, ascorbate peroxidase, glutathione peroxidase enzyme, and
glutathione reductase enzymes demonstrates these enzymes’ favorable responses
to biotic and abiotic stressors. These findings highlight the need to investigate these
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enzymes in order to better understand their role in the scavenging of hazardous cell
products in a variety of species and the relationship between biological processes
and oxidative stress.
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Abstract

In alarming condition (stressful), the metabolic imbalances cause an excess
production of reactive oxygen species (ROS) and lead to oxidative imbalances.
Every plant’s first line of defense amid stress is the ROS generation. ROS serve as
messengers in initiating plant defense signaling. Large quantities of ROS have
negative impacts on plants survival, but low amounts of ROS are necessary and
act as signaling molecule to protect plant from death. Plants have a complex
antioxidant system that protects cells from ROS damage. Superoxide dismutase
(SOD), guaiacol peroxidase (GPOX), catalase (CAT), glutathione reductase
(GR), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR),
and dehydroascorbate reductase (DHAR) are the main enzymatic components of
the defense system. Nonenzymatic antioxidants include carotenoids, glutathione
(GSH), proline, ascorbate (ASA), tocopherols, phenolics, etc. Most effective
intracellular enzyme antioxidants is the superoxide dismutase (SOD); it catalyzes
the conversion of superoxide anions to oxygen and hydrogen peroxide, thus
avoiding damage. Catalase works catalytically, i.e., it catalyzes the energy-
efficient conversion of H2O2 into water and oxygen. Glutathione reductase
(GR) is a flavoprotein enzyme that converts oxidized glutathione (GSSG) to
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reduced glutathione (GSH) via the oxidation of NADPH to NADP+ whereas
glutathione peroxidase is a free radical and hydrogen peroxide elimination
enzyme that catalyzes glutathione oxidation in the presence of a hydroperoxide.
Guaiacol peroxidase is a heme protein that oxidizes aromatic electron donors like
guaiacol and pyragallol by using H2O2. Ascorbate peroxidase (APX) is also a
heme peroxidase that carries out the reduction of H2O2 into water by employing
ascorbate as an electron source.

Keywords

Abiotic stress · Antioxidant system · Ascorbate peroxidase · Guaiacol peroxidase ·
Catalase · Glutathione reductase · Superoxide dismutase

2.1 Introduction

Plants are affected from both biotic and abiotic stress environments. In stressful
environment, water and nutrient uptake, membrane permeability, and normal growth
and development are all hampered (Pitman and Lauchli 2002). Such alterations have
a deleterious influence on hormone metabolism and gas exchange and in turn
accelerate the formation of reactive oxygen species, compromising cell expansion
and division. As a result, plant development is altered, and finally, plant senescence
and death occur (Rossatto et al. 2017). However, in alarming condition (stressful),
the metabolic imbalances cause an excess production of ROS and lead to oxidative
imbalances. Among the different forms of ROS that can be formed include the
singlet oxygen, superoxide radicals, hydrogen peroxide, and radical hydroxyl (Gupta
and Huang 2014). Every plant’s first line of defense amid stress is the ROS genera-
tion. Despite the fact that plants lack specialized cells for immune function to
pathogens, ROS serve as messengers in initiating plant defense signaling. Large
quantities of ROS have been shown to have negative impacts on plants survival,
growth, and production, but low amounts of ROS are necessary and acts as signaling
molecule to protect plant from death. When the amount of ROS produced exceeds
the amount that can be digested and scavenged, they may react with a variety of
cellular components and cause damage to cellular components and molecules like
DNA, lipids, proteins, and carbohydrates. Such damage results in structural and
function changes or inhibition. Plants, on the other hand, have a complex antioxidant
system that protects cells from ROS damage. Superoxide dismutase (SOD), guaiacol
peroxidase (GPX), catalase (CAT), glutathione reductase (GR), ascorbate peroxi-
dase (APX), monodehydroascorbate reductase (MDAR), and dehydroascorbate
reductase (DHAR) are the main enzymatic components of the defense system
(Mushtaq et al. 2021). SOD emerges first in the line of defense when it comes to
ROS elimination, dismutating superoxide radicals into hydrogen peroxide. The CAT
and the APX convert hydrogen peroxide into water and oxygen, with the help of the
GR (Rossatto et al. 2017). Nonenzymatic antioxidants such as carotenoids, glutathi-
one (GSH), proline, ascorbate (ASA), tocopherols, phenolics, and others are also
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present in addition to enzymatic antioxidants. In this chapter, we will try to explain
the roles of various antioxidant enzymes in plants under stress.

2.2 Generation of Reactive Oxygen Species (ROS) in Plant Cells

ROS are produced by normal cellular processes, and the primary generating
organelles are peroxisomes chloroplasts and mitochondria. Superoxide radicals are
formed in chloroplasts at the thylakoid membrane and photosystem II. Complexes I
and III are the primary producers in mitochondria, whereas matrix and membranes
are the primary producers in peroxisomes (Corpas et al. 2015). These ROS are
produced as a result of electron leakage onto O2 from the electron transport system or
as a result of numerous metabolic reactions in cellular compartments. Oxygen-
centered radicals and oxygen-centered non-radicals are the two types of reactive
oxygen species. Hydroxyl radical, superoxide anion, peroxyl radical, and alkoxyl
radical are oxygen-centered radicals, whereas hydrogen peroxide and singlet oxygen
are oxygen-centered non-radicals. Other reactive include nitrogen bearing molecules
like nitric oxide and peroxynitrite (Huang et al. 2005a, b). Under lighting
circumstances, O2 is continually given in photosystem I (PSI) by the water autolysis
done in PSII, as stated in reaction [A]; thus light would encourage the superoxide
radical generation reaction [B] at the PSI site. Under conditions of abundant reduced
ferredoxin and limited NADP availability, autooxidation of this iron sulfur protein
occurs, resulting in the generation of O2

•2, as shown in reaction [C] (Corpas et al.
2015).

Reaction A½ � : 2H2O→ 4e2 þO2 þ 4Hþ

Reaction B½ � : 2O2 þ 2e2 → 2 O2˙
2

Reaction C½ � : FdredþO2 →FdoxþO2˙
2

2.2.1 Beneficial Role of ROS in Plants

Plant growth rate is negatively impacted by abiotic and biotic factors like salt,
drought, temperature, infections, and water stress. Plants have a unique capacity to
cope with these pressures and thrive in a variety of demanding environments. Plants
have created several endogenous defensive mechanisms to resist such pressures in
order to protect themselves. ROS have been implicated as a second messenger in
intracellular signaling cascades because they stimulate numerous responses in plant
cells, including tolerance to biological and chemical stresses. The signals are firstly
detected by numerous membrane-bound sensors, which are subsequently amplified
and transduced to the nucleus in order to drive the chain of responses that surely
results in saving an organism. Such signal transduction routes are incredibly
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selective and sensitive. Interactions between signaling and receptor elements are
driven by weak or non-covalent forces (Yan et al. 2007). ROS, notably superoxide,
H2O2, and creation of bursts of superoxide at the plasma membrane, are some
primary responses of plants under environmental changes (Foyer and Noctor
2005; Foreman et al. 2003; Garg and Manchanda 2009). Aside from controlling
growth, they also affect organ quantity and commencement, as well as the formation
of rhizobia symbiotic association in legumes (Sagi et al. 2004; Pauly et al. 2006).
The production of superoxide or its products by apoplast has a function in the
detection of a number of diseases causing agents (Torres et al. 2006). ROS can
trigger host cell wall thickening in plants by cross-linking glycoproteins (Lamb and
Dixon 1997). ROS are signaling molecules that mediate the establishment of defense
genes (Levine et al. 1994). Additional defense-related regulatory activities for ROS
cooccur in which chemical molecules like NO and salicylic acid takes place. Potato
nodal explants subcultured with H2O2 were found to be heat shock tolerant for 15 h
at about 42 �C temperature (Foyer et al. 1997). Prevention of light-induced photo
bleaching was seen in Arabidopsis leaves when injected with H2O2 (Karpinski et al.
1999). Similarly, H2O2 application on maize coleoptiles prevented them from
chilling stress (Prasad et al. 1994).

2.2.2 ROS Scavenging Antioxidant Enzymes

Controlling the consistent amount of ROS in cells is vital. ROS signaling
mechanisms during freezing, temperature, and other stresses might offer an added
potent technique for increasing crop resistance to these adverse environmental
conditions. The word antioxidant refers to a large family of substances that offer
protection from harm induced by encounter to certain highly reactive substances. An
antioxidant is a molecule that may prevent other molecules from oxidizing. Free
radicals are produced during oxidation events, which can set off chain reactions that
harm cells. Antioxidant enzymes stop such chemical reaction by scavenging free
radicals and inhibiting other oxidative damage. They accomplish it by being
oxidized, which is why antioxidants are frequently used as reducing agents. Plants
have various antioxidant enzymes that are found in small quantities in plant cell
partitions and considerably decrease or prevent oxidation of the oxidizable substrate
(Kurutas 2015; Dat et al. 2000). The following is a full description of antioxidant
enzymes:

2.2.3 Superoxide Dismutase (EC 1.15.1.1)

One of the most effective intracellular enzymatic antioxidants is the superoxide
dismutase (SOD); it catalyzes the conversion of superoxide anions to oxygen and
hydrogen peroxide, thus avoiding damage. Catalase or glutathione peroxidase
removes the hydrogen peroxide. There are various forms of superoxide dismutase
that differ in their kind of active metal centers, cofactor, and the sequence of amino
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acids. In plants, Mn-SOD, Cu,Zn-SOD, and Fe-SOD are found (Sawada et al. 1972;
Asada et al. 1973). Mn-SOD was first isolated and biochemically described in pea
leaves (Fernandez et al. 1982). Till year 1981, it was considered that Fe-SODs were
only found in prokaryotes. However, a group led by Marvin L. Salin found SOD that
contained iron, and eventually, iron-containing SOD was described in various
families (Bridges and Salin 1981). At its active site by consecutive oxidation and
reduction reactions, superoxide dismutase neutralizes superoxide ions (Kurutas
2015). This enzyme is made up of two identical subunits, and both units have own
active sites, Cu and Zn ions. Dismutation of superoxide anion to O2 and H2O is
carried out by this enzyme. The 96 kDa homotetramer Mn type SOD is found in
mitochondria, which contain 1 Mn per subunit. Copper- and zinc-containing tetra-
meric SOD is also found extracellular. This SOD has strong attraction with specific
glycosamino glycans (Sheng et al. 2014). The reaction catalyzed by SOD is shown in
reaction D (McCord and Fridovich 1969):

Reaction D : 2O2˙
2 þ O2˙

2 þ 2Hþ →H2O2 þO2

2.2.3.1 SOD Under Environmental Stress
Stress causes an increase in ROS production, which activates the enzyme activity
(DelRo 2015). In most of the plants investigated, cultivars’ higher SOD activity was
correlated with higher abiotic stress tolerance (Wang et al. 2016). Upregulation of
iron SOD and downregulation of Mn and Cu, Zn SOD were seen under Cd stress
(Rodríguez-Serrano et al. 2009). The activity of defense enzymes was examined in
pepper plant cultivars with varying sensitivity to cadmium. Under 0.5 mM cadmium
stress, decreased activity of Cu, Zn-SODs was found, whereas increased activity of
Mn and Fe-SODs, as well as glutathione reductase and guaiacol peroxidase was seen
(León et al. 2002).

An enhancement in defensive antioxidant systems toward ROS was seen in
tolerant pea plants when they were treated with NaCl. Cu, Zn-SOD activity was
observed to be increased (Hernandez et al. 1995). Under long-term NaCl concentra-
tion of 110 mM, enhancements in all chloroplastic SODs were found in tolerant pea
cultivar (Gomez et al. 1999). The activity of Fe-SOD was reduced, whereas Cu,
Zn-SODs were elevated under the application of salt (400 mMNaCl), demonstrating
that Cu, Zn SODs protect halophyte Cakile maritima from salt-mediated stress
(Houmani et al. 2016). Salt stress increased the activity of antioxidant enzymes
like SOD, MDAR, APX, and CAT in NaCl-tolerant Lycopersicon pennellii, but
decreased activities in salt responsive plants (Mittova et al. 2003). Salt stress reduced
H2O2 concentration and lipid per oxidation in roots of salt tolerant Lycopersicon
pennellii, while increasing the activity of peroxisomal SOD, APX, MDAR, and
catalase in salt-sensitive plants (Mittova et al. 2004). Under potassium deficiency,
salinity increased SOD activity in Hordeum maritimum L. (Hafsi et al. 2010).

Water shortages and flooding decrease photosynthesis and increase ROS produc-
tion in chloroplasts. Several studies have reported the production of oxidative stress
by water deficiency, and positive correlation of enzymatic antioxidant system is

2 Functional Characterization of the Antioxidant Enzymes in Plants Exposed. . . 19



associated with it (Wang et al. 2016). Under dryness, the activities of Cu, Zn SODs
with APX improved in plants like maize and pea (Mittler and Zilinskas 1994; Malan
et al. 1990). Resistant varieties of Sorghum have enhanced strength when compared
with drought prone variants (Dat et al. 2000). Researchers have found that low
temperatures cause differential expression of multiple genes, resulting in an increase
in several metabolites that defend against the effects of low temperature stress
(Winfield et al. 2010). When plants are subjected to temperature stress, accumulation
of ROS and activation of defense system occur. In low temperature condition, ROS
are generated by mitochondria and chloroplasts (Dat et al. 2000). In plant species
like Arabidopsis thaliana and Capsicum annuum L., temperature stress resulted in
oxidative and nitrosative damage (O’Kane et al. 1996; Airaki et al. 2012). Increased
chloroplastic and cytosolic SOD were found in tobacco under low temperature stress
(Tsang et al. 1991).

2.2.4 Catalase (CAT 1.11.1.6)

Catalase is an antioxidant in all aerobic organisms. It is a tetrameric enzyme
consisting of four identical 60 kDa subunits organized tetrahedrally, each with a
heme and NADPH in its active core. The enzyme activity of catalase varies with
H2O2 levels. When the H2O2 level is high, the catalase works catalytically; i.e., it
catalyzes the energy-efficient conversion of H2O2 into water and oxygen. However,
at low levels of H2O2, it operates peroxidically and eliminates H2O2, but oxidizes its
substrates in the presence of an appropriate hydrogen donor (Scibior and Czeczot
2006). In cellular surroundings, catalase is found at all significant H2O2 production
sites such as peroxisomes, mitochondria, cytosol, and chloroplast. Catalase isozymes
have several molecular forms, indicating their varied involvement in the plant
system. Cat1, Cat2, and Cat3 encode CAT-1, CAT-2, and CAT-3, respectively.
Times, type of species, and quantity of stress are some factors that are responsible for
differential gene expression. Plants with deficiency in catalase develop abnormalities
like chlorosis and photo respiratory sensitivity (Sharma and Ahmad 2014). One
molecule of catalase can convert around six million hydrogen peroxide molecules
into water and oxygen each minute, and this makes catalase the highest turnover rate
enzyme (Kurutas 2015).

2.2.4.1 Catalase Under Environmental Stress
Various studies have demonstrated the importance of catalase in the plant defense
system (Beulah and Ramana 2013). Enhanced CAT activities are critical to survive
under stress condition; on the other hand, high stress levels can result in irreparable
damage to the enzyme (Youssef and Azooz 2013). Catalase activity was increased in
Brassica rapa L. when 50 μM CdCl2 was applied for 2 weeks (Zhong et al. 1994).
Spray of 50 mg chitosan to Cd-treated plants increased catalase activity to levels
higher than in Cd-treated plants alone. Brassica napus L. treated with 1.5 mM
cadmium (CdCl2) for 1 week showed reduced catalase activity when compared
with control. Superoxide dismutase (SOD) activity, on the other hand, was greater
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treated plants when compared with control. From the study, we concluded that the
activity of catalase is not all times improved with SOD (Karam et al. 2017).

Drought increased CAT and SOD activities in both tolerant and sensitive varieties
of Amaranthus tricolor, but the activities were much higher in the tolerant plant than
sensitive, implying that CAT and SOD play a significant role in drought tolerance by
detoxifying H2O2 and activating the dismutation reaction (Sarker and Oba 2018).

Zeeshan et al. analyzed wheat and barley cultivars and determined that greater
antioxidant enzyme activities, especially CAT, are substantially connected with
greater salt tolerance, thus indicating a definite role for antioxidant activities in
salt-induced oxidative stress mitigation. In the same way, elevated levels of SOD
and CAT activities were found in faba bean genotypes, indicating the control of
antioxidant response and its moderation under salt stress (Alzahrani et al. 2019). In
Nicotiana plumbaginifolia, mutants lacking CAT genes are more susceptible to
oxidative stress than control plants when exposed to salt, ozone, and H2O2

(Willekens et al. 1997).

2.3 Glutathione Reductase (E.C. 1.6.4.2)

Glutathione reductase (GR) is a flavoprotein enzyme that converts oxidized gluta-
thione (GSSG) to reduced glutathione (GSH) via the oxidation of NADPH to
NADP+. Glutathione, in its reduced form, performs critical functions in the cellular
regulation of ROS. This enzyme is extremely well preserved in nature. GR has been
isolated and identified from the leaves of numerous plant species, including Spinacia
oleracea (Halliwell and Foyer 1978) and Pisum sativum (Kalt-Torres et al. 1984).
There are three forms of GR in higher plants, viz., cytosolic, chloroplastic, and
mitochondrial. Eighty percent of GR activity is seen in plant chloroplasts and
photosynthetic cells (Edwards et al. 1990). Glutathione availability has a significant
impact on developmental processes ranging from seed formation to germination to
blooming (Zuccarelli et al. 2017). γ-glutamylcysteine synthetase, abbreviated as
(GSH1), is the primary enzyme involved in synthesis of GSH; in Arabidopsis,
lack of this enzyme results in an embryo-lethal phenotype (Cairns et al. 2006).
Similarly, embryo development is interrupted at globular stage in AtGR2-knockout
Arabidopsis mutants (Ding et al. 2016), and thus plays an important role in the
normal developmental processes of plant (Zuccarelli and Freschi 2018). Figure 2.1
describes the overall mechanism and role of antioxidant system under stress.

2.3.1 Glutathione Reductase Under Environmental Stress

Like other enzymes of antioxidant system, environmental strains also boost the
activity of GR (Maheshwari and Dubey 2009). Recent research showed increases
in GR activity in pea and Arabidopsis (Huang et al. 2005a, b; Hernandez et al. 2000).
In maize drought, strains have enhanced the activities of GR (Pastori and Trippi
1993). However, observations in rice show a gradual decline in GR activity with
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increasing salt stress exposure, implying a gradual decline in GSH regeneration
capability under high salt stress conditions (Demiral and Türkan 2005). In
Cuccumber, maize and wheat chilling induced increases in GR activity have been
seen (Kocsy et al. 2002; Lee et al. 2001). Short-term heat stress increases GR, but
long-term exposure reduces GSH regeneration (Nagesh Babu and Devaraj 2008).
Heat stress of 40 �C for 4–24 h was found to enhance GR expression in Phalaenop-
sis, in contrast to the rapid reduction found after 48 h of same heat exposure (Ali
et al. 2005). Heavy metals stimulate the activity of this enzyme as well. Cd treatment
enhances GR activity in wheat (Yannarelli et al. 2007), Sugarcane, Arabidopsis, and
soybean (Skórzyńska-Polit et al. 2003; Fornazier et al. 2002; Ferreira et al. 2002).
Application of Cd and Hg in Arabidopsis also enhanced the expression of GR
(Sobrino-Plata et al. 2014).

Fig. 2.1 Overview of different process under plant stress. Activation of antioxidant enzymes under
excessive ROS generation, S mean reaction catalyzed by SOD, P by peroxidase, and GR by
glutathione reductase
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2.4 Glutathione Peroxidase

Plant contains glutathione peroxidases (GPXs) in a wide range of tissues, partitions,
and during various developmental stages (Yang et al. 2006). Chloroplasts are the
most common source of glutathione peroxidase. However, several of the enzyme
isoforms have been discovered in mitochondria, cytosol, and peroxisomes (Yousuf
et al. 2012). Glutathione peroxidase is a free radical and hydrogen peroxide elimi-
nation enzyme that catalyzes glutathione oxidation in the existence of hydroperox-
ide, i.e., hydrogen peroxide or lipid hydroperoxide (Kurutas 2015). GPx is an
antioxidant enzyme that contains selenium and actively transforms H2O2 and lipid
peroxides to water and lipid alcohols, respectively, using GSH as a cofactor, and in
turn oxidizing reduced glutathione (GSH) to the disulfide form (GSSG). Unlike
vertebrate GPXs, plants’ GPXs have cysteine in their active site rather than
selenocysteine (Bela et al. 2015). As a result, selenium-dependent (GPx,
EC1.11.1.19) and selenium-independent (GST, EC 2.5.1.18) forms of this enzyme
are present.

2.4.1 Glutathione Peroxidase Under Environmental Stress

Multiple plant GPX coding cDNAs were isolated and characterized, confirming the
enzyme family’s importance in stress responses. GPX mRNA levels frequently rise
in response to numerous biotic and abiotic stresses (Milla et al. 2003; Herbette et al.
2007). Oxidative stress, cold, metal treatments salt, drought, etc. have all been
shown to activate GPX genes (Yang et al. 2005; Milla et al. 2003; Kang et al.
2004; Navrot et al. 2006). Salinity stress caused a continuous rise in PgGPx
transcript until 12 h of observation, whereas dryness caused an over expression of
PgGPx transcript till 48 h of observation from 6 h. In response to dryness, a higher
level of PgGPx gathering was identified at very early stage (3 h), indicating plant
GPxs have versatility in stress sensing, signaling, and adaptation pathways (Islam
et al. 2015). Exogenous treatments like salt, mannitol, heat, or cold have all been
shown to increase AtGPx expression (Milla et al. 2003). AtGPx mRNA expression
was also discovered to be stimulated by plant hormones such as salicylic acid, indole
acetic acid, etc. In response to heavy metal poisoning, OsGPx transcripts were
shown to be upregulated (Ramos et al. 2009). The saline and drought stressors
both resulted in significant upregulation of the PgGPx transcript.

2.5 Guaiacol Peroxidase (EC 1.11.1.7)

Guaiacol peroxidase is a heme protein that oxidizes aromatic electron donors like
guaiacol and pyragallol by using H2O2. It is found in a wide range of animals, plants,
and microbes. Two structural Ca2+ ions and four conserved disulfide bridges are
present in these enzymes (Schuller et al. 1996). Plant tissues contain numerous
isoenzymes of guaiacol peroxidase, which are present in vacuoles, cell wall, and
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the cytoplasm (Asada 1992). Guaiacol peroxidase is engaged in several important
biosynthetic processes, including cell wall lignification, IAA breakdown, ethylene
synthesis, wound healing, and defense against abiotic and biotic stresses (Kobayashi
et al. 1996). The guaiacol peroxidase enzyme is commonly known as a stress
enzyme (Sharma et al. 2012). Guaiacol peroxidase activity in plants is rapidly
activated by stresses (Moussa and Abdel-Aziz 2008). Guaiacol peroxidase has
been revealed to account for nearly 90% of peroxidase activity in plants (Foyer
et al. 1994).

2.5.1 Guaiacol Peroxidase Under Environmental Stress

Various environmental conditions, such as heavy metals (Srivastava and Dubey
2011), salt stress (Jakovljević et al. 2017), and ozone (Li et al. 2013), have been
shown to boost guaiacol peroxidase activity. When compared with salt-sensitive
cultivars, it was observed that salt-tolerant safflower plants are more resistant to salt-
induced oxidative damage due to higher guaiacol peroxidase activity, catalytic
efficiency, and induction of certain isoenzymes (Tayefi-Nasrabadi et al. 2011).
Guaiacol peroxidase activity in Betula pendula increased considerably (up to 2.8
times than control) under increased traffic (pollutants), resulting in a biphasic
paradoxical influence on lipid peroxidation rate. When compared with the control,
the quantity of lipid peroxidation increased in the first phase, but it was reversed in
the second phase by enhanced guaiacol peroxidase activity. The effects of traffic
pollution on guaiacol peroxidase activity and lipid peroxidation rate in Tilia cordata
were contradictory. However, no relationship was found between changes in
guaiacol peroxidase activity and lipid peroxidation rate under middle- and high-
level pollution (Erofeeva 2015). Other studies also revealed role of guaiacol peroxi-
dase in eliminating oxidative stresses under metal toxicity (Radotić et al. 2000).

2.6 Ascorbate Peroxidase (EC 1.1.11.1)

Ascorbate peroxidase (APX) is a heme peroxidase that carries out the reduction of
H2O2 into water by employing ascorbate as an electron source (Welinder 1992). The
method uses two molecules of ascorbate to convert H2O2 to water while also
producing two molecules of monodehydroascorbate (MDHA). In MDAR reaction,
NAD(P)H is used as an electron donor to convert two molecules of
monodehydroascorbate (MDHA) back into ascorbate. Sometimes, these
monodehydroascorbate molecules escape the MDAR reaction, then they spontane-
ously disproportionate and produce ascorbate and dehydroascorbate (DHA). The
reduction of DHA is catalyzed by DHARs by utilizing two molecules of GSH,
resulting in one molecule of oxidized glutathione that is reduced again to two GSH
through GR. This reaction is NADPH-dependent. To smooth organelle and cellular
levels of H2O2, APX isoforms are distributed across the cytosol, mitochondria,
chloroplasts, and peroxisomes in higher plants (Maruta and Ishikawa 2018).
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CAT reduces the effectiveness of APX in facilitating scavenging activity to remove
H2O2; however, isoforms of APX have a significantly greater reactivity for H2O2 and
are renowned peroxide-scavenging enzymes in the plant cells (Maruta and Ishikawa
2018). Water shortage, salinity, freezing, metal toxicity, and ultraviolet radiation all
have a significant impact on APX activity (Hefny and Abdel-Kader 2009). In
sensitive chickpea genotype, the activity of APX and GR was considerably reduced
under high temperature conditions in comparison with tolerant genotypes (Kumar
et al. 2013). In Jatropha macrocarpa, higher APX activity was found in response to
high H2O2 levels, which improved resistance to low-temperature stress, while lower
APX activity with J. curcas was linked with increased sensitivity under low temper-
ature (Spano et al. 2017). In wheat and barley cultivars, it was found that greater
antioxidant activities (SOD, POD, APX, GR, and CAT) are substantially connected
with better salt tolerance, indicating that antioxidant activities play a significant role
in mitigating salt-induced oxidative stress (Zeeshan et al. 2020). Drought exposed
Vigna radiata seedlings had lower AsA/DHA and GSH/GSSG ratios, but higher
APX, GR, GPX, and GST rates, which attributed to drought, induced oxidative
damage tolerance (Nahar et al. 2017).

2.7 Conclusion

Plants have fine-tuned network of ROS generation and scavenging system, which
aids in proper growth and development under various abiotic and biotic stresses. All
enzymatic and nonenzymatic antioxidant network acts to save plant under harmful
situations. In about all the plants, the expression of antioxidant machinery is
upregulated under various stress conditions. In the future, we can use plants that
have the ability to tolerate extreme environmental stress and have the ability to
scavenge and fine-tune the levels of ROS. Researchers have already achieved
successful results, but still, some doubts and unawareness about ROS, their impact,
and nature need to be addressed. Future researches should focus on the development
of transgenics with over expressed genes for ROS scavenging enzymes.
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Abstract

Plants encounter a variety of stresses in the field due to their stationery and fixed
lifestyle. An important outcome during the exertion of all the stresses is a large-
scale creation and buildup of reactive oxygen species (ROS) in their cells, which
has physiological, biochemical, and morphological repercussions. In crop plants,
especially, it leads to a tremendous loss in terms of quality and quantity of crop
yield. The defense arsenal of plants in response to ROS apart of nonenzymatic
components includes certain important enzymes, which provide defense against
the oxidative stress like catalase (CAT), superoxide dismutase (SOD), glutathione
reductase (GR), glutathione peroxidase (GPX), glutathione S-transferase (GST),
ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), and
dehydroascorbate reductase (DHAR). They defend plants against oxidative
onslaught leading to the restoration and improvement of yield in crops. This
chapter articulates the current understanding of these enzymes in addition to their
status and role at a molecular level in several crops. In addition, a concise account
of transgenic variants of crops with a better expression of these antioxidant
enzymes conferring them improvised tolerance to various stresses is given.
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3.1 Introduction

Plants, due to their immovable nature, are exposed to a plethora of factors that are
hostile to their overall growth and development. Some of these factors include
extremes of temperature, light, scarcity or excessive water, high salinity, heavy
metals, gaseous pollutants, ultraviolet (UV) radiation, etc., which represent different
forms of abiotic stresses and present a grave threat to the cultivation of crops and the
ecosystems culminating in tremendous crop yield loss throughout the world
(He et al. 2018; Tester and Bacic 2005). The global scenario is that about 90% of
cultivated lands are impacted by one or multiple of these abiotic stresses leading to
50–70% of agricultural productivity losses in chief food crops (dos Reis et al. 2012;
Mantri et al. 2012; Waqas et al. 2019). Plants are also prone to many biotic stress
factors under natural conditions like insects, pathogens (virus, bacteria, fungi, and
nematodes), weeds, and herbivore pests, which cause considerable constraints in
global agricultural production (Chen et al. 2020; Kovalchuk, 2016). The different
forms of stresses are frequently interconnected in action and either independently or
in combination, they manifest as physiological, molecular, and biochemical
alterations that undesirably exercise their influence on plant development, produc-
tivity, and eventually crop yield (Bita et al. 2013; Tester and Bacic 2005). For
guaranteeing global food security, sustainable agriculture production has a key
role to play, albeit, stress conditions considerably undermine such endeavors. The
plants require indispensably a modification in their architectural plan, which
includes plant physiology, metabolism, and biochemistry to facilitate survival
against adverse stress conditions (Chen et al. 2020; Rajput et al. 2021).

One of the modes through which these stresses exert their deleterious impact on
various crops is by causing oxidative onslaught in their cells (Akter and Rafiqul
Islam 2017; Sun et al. 2020). Like many other organisms dealing with oxygen,
certain biochemical processes in plants lead to a usual generation of ROS such as
superoxide ion (O2

•_), hydroxyl radical (•OH), and non-radical molecular species
like singlet oxygen (1O2), hydrogen peroxide (H2O2), etc. (Das and Roychoudhury
2014; Sharma et al. 2012). Under typical physiological situations, ROS has a definite
role to play in the regulation of cell growth, gravitropism, hormone signaling. and
development of various tissues in plants (Choudhary et al. 2020; Kwak et al. 2006).
This stable milieu is disturbed by abiotic and biotic stressful factors that lead to
enriched production or outburst of ROS in plants climaxing in the form of disruption
of cellular homeostasis (Tripathy and Oelmüller 2012). The consequent accumula-
tion of ROS is undesirable and can cause a serious threat to cells by instigating
peroxidation of lipids, protein oxidation, impairment to nucleic acid molecules,
inhibition of key enzymes, and stimulation of programmed cell death (PCD) or

32 M. Y. Bhat et al.



cell necrosis (van Breusegem and Dat 2006; Xie et al. 2019). On the other hand,
there is a sort of cross talk between ROS and and relevant signalling pathways that
leads to activation of antioxidant defense against the same (Chen and Raji,
2020). The dilemma of whether ROS will behave as a detrimental entity or facilitate
proper signaling in cells is reliant upon the subtle stability between the scale of ROS
generation and scavenging, which keeps the levels in minimal or requisite intensity.
Detoxification or scavenging of surplus ROS is attained by well-organized
antioxidative machinery involving the low-molecular-mass nonenzymatic and enzy-
matic antioxidants, which, therefore, are crucial components of stress tolerance in
plants (Ahmad et al. 2010). To accomplish effective signaling, ROS must be retained
at minimal intensities in cells to thwart the chances of any oxidative damage. The
capability to maintain a high antioxidant potential in plants to nullify the noxious
levels of ROS has been associated with enhanced tolerance to biotic and abiotic
stresses (Chapman et al. 2019; Nadarajah, 2020). The focus of the study in the past
few decades by concerned researchers has been the study of gene expression of these
antioxidant enzymes vis-a-vis different stresses in plants and understanding the
adaptability which they provide to cope in harsh environments (Rai et al. 2013).
Comprehension of the detoxification process has led to the development of trans-
genic lines in crops with improved levels of antioxidants to make them tolerant to
different stresses, which they encounter in the field. Tolerance to various environ-
mental stresses is known to be provided more efficaciously by the synchronized
expression pattern of multiple antioxidant enzymes in comparison with single or
double expression (Ghimire et al. 2015; Lee et al. 2007). The chapter summarizes
different aspects of the antioxidant enzyme defense system in crop plants and their
part in the management of abiotic and biotic stress in natural and experimental
conditions.

3.2 ROS in Crop Plants: Cellular and Productivity Effects

ROS are oxygen-containing entities that are extremely unstable and reactive (Lobo
et al. 2010). Apart from the utilization of oxygen in various biochemical processes,
approximately 1–2% of it expended by the plants is averted to generate ROS in
certain subcellular sites such as mitochondria, chloroplasts, peroxisomes, apoplast,
endoplasmic reticulum, cell wall, etc. They are typically produced in the intracellular
and extracellular environments throughout the usual metabolic processes involving
electron transfer reactions (Karuppanapandian et al. 2011; Sharma et al. 2012;
Stephenie et al. 2020). The certain factors that exert stress like drought, salinity,
and very high temperature cause stomatal closure limiting CO2 fixation, and thus
electron transport chains in two photosystems act as key bases of ROS under such
circumstances (Gill and Tuteja 2010; Sharma et al. 2012). Several metabolic
pathways, which involve peroxisomes like photorespiration, fatty acid β-oxidation,
nucleic acid and polyamine catabolism, ureide metabolism, etc., give rise to ROS.
Under stressful conditions, such as low availability of water, when the stomata
remain closed, the CO2 to oxygen ratio declines considerably, which favors
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photorespiration, and a tremendous quantity of H2O2 is produced in the cells (Anjum
et al. 2016; Sandalio et al. 2013). The mitochondrial electron transport chain (ETC)
has an ample supply of electrons in complexes to reduce O2 to form ROS such as
superoxide (O2

•�) and hydrogen peroxide (H2O2). Under stressful conditions, inhi-
bition and alteration of its module take place leading to excess reduction process of
electron carrier molecules and, henceforth, creation of surplus ROS (Rhoads et al.
2006; Sharma et al. 2012). The generation of ROS is restricted not only to the inside
of the cell but in numerous plant species biotic stress that can lead to a generation of
superoxide anions at the cell membrane from the activity of an NADPH oxidase. In
addition, the activity of certain enzymes such as amine oxidases, oxalate oxidases,
peroxidases, etc. acts as prospective sources of hydrogen peroxide (H2O2) in the
apoplastic regions (Bolwell et al. 2002).

While an exceedingly high level of ROS causing oxidative stress is harmful to the
plants, a basal optimum or minimal requisite scale of ROS is a boon for cells as it is
crucial for the appropriate growth and development of plants (Mhamdi and van
Breusegem 2018). These molecular species are also mediators in various physiolog-
ical processes spanning the life cycle of plants, from seed germination to vegetative
growth and ultimately to reproductive development (Manna et al. 2019; Singh et al.
2016). In higher plants, ROS are known to have a key role in many aspects of
differentiation, development, and redox balance, biological interactions with other
organisms, stress response signaling, and also the death of cells (Mittler, 2017).
Apart from these ROS, reactive nitrogen species (RNS) like nitric oxide (NO•) and
nitric dioxide (NO2

•) in addition to non-radicals such as dinitrogen tetroxide (N2O4)
and nitrous acid (HNO2) also lead to oxidative injury and tissue damage apart from
molecular signaling depending upon concentration (Kapoor et al. 2019). Nitric oxide
in cells can mediate elicitation of stress tolerance like salinity and water involving
important cross talk with other free radicals such as H2O2 (Qiao et al. 2014). Under
severe biotic and abiotic stress situations, the degree of ROS production surpasses
the quenching capability of the cellular defense system culminating in oxidative
damage leading to disturbance in equilibrium (Gill and Tuteja 2010). Relentless
environmental pressures in the case of plants will lead to the generation of superflu-
ous ROS due to which imperative and detrimental physiological actions are exerted
like peroxidation of lipids, oxidation of nucleic acid molecules, denaturation process
of proteins, inhibition of the activity of different enzymes, and even activation of
programmed cell death process (Das and Roychoudhury 2014; Petrov et al. 2015).
Lipid peroxidation initiates a chain of reactions that subsequently exacerbates
oxidative stress by generating lipid radicals, which cause significant damage to
many important proteins and DNA. When the ROS levels rise tremendously during
highly stressful situations and cross the threshold values, the circumstances turn out
to be so detrimental that it is usually deliberated as the lone parameter to estimate
lipid destruction (Das and Roychoudhury 2014). The two key targets of the ROS in
membrane phospholipids are the double bonds among carbon atoms and the ester
linkage between fatty acids and glycerol. The polyunsaturated fatty acids (PUFAs)
like linoleic and linolenic acid that are considered as two key constituents of the
plasma membrane are the hotspot targets by ROS destruction especially superoxide
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(O2•–) and hydroxyl (OH•). The hydroxyl radical (OH•) is the utmost detrimental
molecular species that can elicit a recurring chain reaction leading to the peroxida-
tion of other membranes PUFAs (Das and Roychoudhury 2014). The reactive
products of lipid peroxidation that include members such as aldehydes, ketones,
and hydroxyl acids are responsible for the alteration of proteins by causing the
oxidation of certain key amino acid residues. The activity profile of the protein is
considerably modified due to varied changes such as carbonylation,
glutathionylation, nitrosylation, and the formation of disulfide bonds (Sharma
et al. 2012). Excessive ROS can considerably impact in the form of oxidative
impairments to nuclear, mitochondrial and chloroplast DNA, which ultimately can
lead to the malfunction or inactive encoded proteins (Guo et al. 2013; Hahn and
Zuryn. 2019). Deoxyribose oxidation, nucleotide removal, strand breakage, and a
variety of other changes in nitrogenous bases are some manifestations that are
brought about in DNA by the ROS onslaught. Apart from that, there may be some
undesirable changes in DNA-protein cross-linkages (Wang et al. 2020). Significant
DNA degradation and undesirable modification have been detected in plants that are
exposed to higher salinity and heavy toxic metals (Sharma et al. 2012).

Crop plants are kept from realizing their full genetic potential in terms of growth,
reproduction, and yield due to the presence of a suboptimal and undesirable envi-
ronment. One of the significant productivity limiting factors throughout the world in
crops is the occurrence of oxidative stress due to various environmental stresses
(Nxele et al. 2017). The rate of plant growth, development, photosynthesis, respira-
tion, and many biochemical processes is perturbed by membrane collapse by excess
ROS accumulation. The structure and arrangement of several cell-building
constituents such as carbohydrates, lipids, proteins, and nucleic acids are
compromised by ROS during stress conditions (Raza et al. 2019). Because of
damage to cellular structures, oxidative stress impairs cellular functions that nega-
tively affect germination, plant growth, and yield. The oxidative stress directly exerts
its effect on different processes such photosynthesis, transpiration, energy metabo-
lism, transpiration, metabolism of lipids, carbohydrates, synthesis of proteins and
nucleic acids, stomatal conductance, cell wall integrity, and pigment distribution,
collectively upsetting plant growth and development (Sharma et al. 2017) (Fig. 3.1).

3.3 Antioxidant Enzyme Defense System in Plants

Redox homeostasis in plants in the scenario of stressful circumstances is maintained
by a double armor strategy – the enzymatic partners comprising of the superoxide
dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase
(GPX), glutathione reductase (GR), glutathione S-transferase (GST),
monodehydroascrobate reductase (MDHAR), dehydroascorbate reductase
(DHAR), and the low-molecular-weight nonenzymatic components like ascorbic
acid, reduced glutathione (GSH), carotenoids, α-tocopherol, proline, phenolics,
flavonoids, glycine betaine, etc. (Almeselmani et al. 2006; Das and Roychoudhury
2014; Xie et al. 2019). The ubiquitous and widely prevalent nature of both these
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Fig. 3.1 Effect of stress on the different aspects of crop plants via oxidative onslaught and
ultimately on their yield
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defenses of antioxidant mechanism highlights the inevitability of detoxification of
ROS for the survival of cells. The development of stress-tolerant crop plants is a
well-directed and important step in this direction (Rajput et al. 2021). Understanding
the role of the individual gene under the influence of different stress conditions can
be useful in developing stress-tolerant plants. Transgenic strategies have been
commonly brought into practice for the progression of plant health and therefore
productivity under the varied situations of oxidative stress. Thus, transgenic plants
can be engineered and tactfully designed to improve stress tolerance by enhancing
the activities of antioxidant enzymes (Hasanuzzaman et al. 2020). A concise account
of the enzymatic antioxidants and their role in ameliorating oxidative stress in
various crops is presented.

3.3.1 Superoxide Dismutase (SOD, E. C. 1.15.1.1)

SODs are metalloprotein enzymes working with metals such as Cu, Fe, Zn, and Mn
as cofactors, and the different isoforms are present in the chloroplast, mitochondria,
cytosol, peroxisomes, and apoplast (Stephenie et al. 2020). SOD enzyme is well
known to catalyze the conversion of superoxide radical (O2

•�) generated via various
metabolic pathways into normal oxygen molecules and hydrogen peroxide,
which comparatively is lesser harmful (Sharma et al. 2012). In aerobic organisms,
the SOD enzyme is very forefront in conferring a defense against the toxicity
exhibited by oxygen-mediated radicals. SODs establish the paramount line of
defense to combat abiotic stress-induced enhancement of ROS and its reaction
products (Gill et al. 2015; Saed-Moucheshi et al. 2021). In the case of plants,
environmental adversities like the occurrence of drought, floods, very high or low
temperature, the existence of toxic heavy metals, and macronutrient insufficiency
often lead to the amplified generation of reduced oxygen reactive species, and in
such scenarios, SOD is suggested to play a vital role in conferring plant stress
tolerance. The SOD activity has been known to increase in plants when they have
to face any of the abiotic or abiotic stress. An investigation with salt-tolerant and
sensitive wheat seedlings treated with a 0.7 M NaCl as compared with control
revealed that there was up to 1.5-fold enhancement in the MnSOD enzyme activity
in the shoots of tolerant cultivars when compared with non-tolerant ones. Though all
the cultivars displayed the diminished activity of MnSOD in root tissues, there was a
considerable enhancement in Cu/ZnSOD activity (three to four fold) in tolerant
cultivar roots, whereas it was diminished in the sensitive ones suggestive of a
definitive role in salinity tolerance of these plants ((Inci) Eyidoğan et al. 2003). An
increase in the gene expression of cytosolic Cu/ZnSOD was observed in chickpea
(Cicer arietinum L.) in response to cold stress (4 �C treatment) wherein the increase
in SOD activity in response to salt stress was attributed to post-transcriptional
regulation (Hernández-Nistal et al. 2002). McKersie et al. 1993 showed that the
progeny in transgenic Alfalfa (Medicago sativa L.) with surplus MnSOD isozyme
exhibited rapid regrowth post freezing stress as compared with non-transgenes
(McKersie et al. 1993). In one more recent study, the activity of SOD was found
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to be 1.38-fold greater in transgenic potato lines overexpressing StSOD1 in compar-
ison with non-transgenic lines. In addition, the activity of POX and CAT was also
found to get boosted in a transgenic line pointing toward a possible cross talk or
interaction in the expression of antioxidant enzymes (Che et al. 2020; Rajput et al.
2021). The expression and activity profile of SOD can be regarded as an indirect
selection criterion for the screening of drought-resistant varieties since it has been
reported to correlate with oxidative stress tolerance in plants (Saed-Moucheshi et al.
2021).

3.3.2 Catalase (CAT, E.C.1.11.1.6)

The function of the catalase enzyme is the decomposition process of hydrogen
peroxide (H2O2) to water and oxygen. Being the first antioxidant enzyme to be
discovered, it is commonly found in almost all living organisms even certain
anaerobes and consists of tetrameric iron porphyrin protein with subunits ranging
from 54 to 59 kDa and molecular weight of 240 kDa, although exceptions are there
(Du et al. 2008; Mhamdi et al. 2010). It is a powerful antioxidant enzyme that plays
an indispensable part in signaling processes in an energetically feasible pattern in the
cells, which are under any sort of environmental stress (Rajput et al. 2021). During
stress in cells for energy and rapid generation of H2O2 through catabolic processes,
the subsequent degradation of H2O2 by catalase in an energy-efficient fashion helps
to keep the balance (Willekens, 1997). The catalase enzyme exists in all the main
organelles where H2O2 is produced such as peroxisomes, mitochondria, chloroplast,
and cytosol of plants. It functions as a single enzyme triggered by excessive H2O2

concentration or in collaboration with other antioxidant enzymes to mitigate the
oxidative onslaught during different stresses in plants (Heinze and Gerhardt 2002). It
has been well established by research that catalase exists in many forms encoded by
corresponding genes and differentially expressed in the temporal, organelle, and
stress-specific pattern (Rohman et al. 2020; Palma et al. 2020; I. Sharma and Ahmad
2014). The presence of multiple molecular forms of catalase isozymes such as
CAT-1, CAT-2, and CAT-3 encoded, respectively, by structural genes Cat1, Cat2,
and Cat3, respectively, are suggestive of its multipurpose role within the plant
system (Matsumura et al. 2002; Rajput et al. 2021). Depending upon intensity,
duration, and nature of stress, there can be an enhancement or diminution of the
CAT activity (Sharma et al. 2012). An increase in catalase activity rate is supposed to
be associated with resistance of drought in Carthamus tinctorius L. (safflower) (Zare
2011). A foliar pretreatment of H2O2 in maize seedlings causing an increase in the
amount of catalase enzyme was shown to lessen the injurious effects of salinity stress
on overall growth parameters and lipid peroxidation (Gondim et al. 2012). Trans-
genic rice plants expressing wheat CAT protein showed almost 2–5 times increase of
activity in leaves as compared with non-transgenic ones, which conferred them with
better capability to low-temperature stress of 4 � C for eight days (Matsumura et al.
2002). Heat-sensitive rice mutants in rice have been demonstrated to amass ROS
accompanied with diminished catalase activity under heat stress in contrast to
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HTT-121 mutant described as heat tolerant, suggesting its key role in adapting to
heat (Zafar et al. 2020). Combined overexpression of antioxidant enzymes Cu/Zn
superoxide dismutase (MeCu/ZnSOD) and catalase (MeCAT1) in cassava, was
shown to extend the shelf life of their storage roots by the maintenance of ROS
homeostasis postharvest apart from a considerably improved tolerance capability to
cold and drought stress in comparison to wild types (Xu et al. 2013).

3.3.3 Guaiacol Peroxidase (GPX, E.C. 1.11.1.7)

It is a heme-containing enzyme consisting of 40–50 kDa monomers that remove
superfluous H2O2 in the stress conditions or usual metabolism and is ubiquitous in
animals, plants, and microbes. It preferably causes oxidation of aromatic moiety
containing electron donors, e.g., guaiacol and pyrogallol, at the expenditure of H2O2

(Das and Roychoudhury 2014; Erofeeva 2015). This enzyme has been deliberated as
the important one in the elimination of H2O2. Apart from its isoenzymes being active
in intracellular components such as cytosol, vacuole, and the cell wall, it also
functions extracellularly as an efficient quencher of reactive intermediary forms of
O2 and peroxy radicals in stressful circumstances (Sharma et al. 2012). In addition to
being involved in defense against abiotic and biotic stresses, it is also linked with
several significant biosynthetic processes, such as lignification of the cell wall,
wound healing, degradation of indoleacetic acid (IAA), and biosynthesis of ethylene
(Anjum et al. 2016; Das and Roychoudhury 2014; Sharma et al. 2012). GPX activity
is known to increase in plants under several forms of biotic and abiotic stresses and
thus has a definite part in providing tolerance (Erofeeva 2015; Varga et al. 2012).
Golfazane et al. 2017 demonstrated a greater level of GPX activity in the drought-
tolerant genotype of canola in osmotic stress conditions, leading to the diminished
buildup of H2O2 as compared with drought susceptible genotype (Golfazane et al.
2017). It was demonstrated that the increase of the GPX activity, at least in part, is
responsible for the superior defense of salt-tolerant safflower plants from the salt-
mediated oxidative onslaught in addition to its catalytic efficiency and stimulation of
specific isoenzymes in comparison to salt-sensitive cultivar (Tayefi-Nasrabadi et al.
2011). In another study, a considerable enhancement in tolerance of pepper (Capsi-
cum annuum L.) plants to chilling-induced oxidative damage as indicated by the
reduction of foliar damage symptoms and levels of malondialdehyde and H2O2 was
provided by exogenous supplement of abscisic acid (ABA) chiefly by improving
GPX and SOD activities and corresponding gene expression (Guo et al. 2012).

3.3.4 Glutathione Reductase (GR, E.C.1.6.4.2)

GR enzyme is a flavoprotein oxidoreductase present in both prokaryotic and eukary-
otic organisms, which utilize pools of NADPH for the reduction of oxidized form
GSSG to GSH (reduced glutathione) and thus is helpful for the maintenance of
higher GSH to GSSG ratio. Although most of the activity of GR isoforms is
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restricted to chloroplasts in the photosynthetic tissue, it is also located in minute
amounts in cytosol, mitochondria, and peroxisomes (Das and Roychoudhury 2014;
Sharma et al. 2012). GSH is converted to its oxidized form (GSSG) in the process of
utilization to generate ascorbic acid from MDHA and DHA. It maintains the pool of
GSH by contributing to the maintenance of the sulfhydryl (_SH) group, which acts as
a substrate for glutathione S-transferases (Yousuf et al. 2012). The catalytic process
of the enzyme is accomplished in two critical steps. The first step is the reduction of
flavin domain taking place by reducer NADPH followed by oxidation and a redox-
active disulfide bridge undergoes reduction in the process to produce a thiolate anion
and a cysteine. In the second one, it is the reduction of GSSG that takes place by
thiol-disulfide exchange reactions (Gill et al. 2013). The concomitant pool of GSH
act as an antioxidant by reaction with detrimental ROS entities like H2O2,

1O2, and
OH˙. The escalation of activity or overexpression of enzyme GR, therefore, leads to
abiotic stress tolerance in many crops due to proficient ROS quenching tendency
(Romero-Puertas et al. 2006). Antisense transgenic tomato (Lycopersicon
esculentum Mill.) for chloroplast glutathione reductase gene under chilling
conditions resulted in a greater buildup of H2O2, excess electrolyte leakage, decrease
in photosynthesis, and oxidizable P700 as compared with wild type plants
emphasizing the importance of GR in alleviating the manifestations of the oxidative
stress (Shu et al. 2011). Oxidative stress in the form of paraquat or H2O2 treatment
has been observed to induce GR synthesis in a drought-resistant strain of maize
(Pastori and Trippi 1992). Similarly, Koscy et al. (2002) observed that cold treatment
induces a greater increase in GR activity in tolerant genotypes of wheat and maize as
compared with sensitive ones. In the same study, osmotic stress and drought stress
also lead to enhanced GR activity and total glutathione content especially to tolerant
genotypes improving their adaptability to abiotic stresses (Kocsy et al. 2002).
An upregulation of GR activity in wheat plants by the stimulation of distinctive
isoforms was observed, which occurs as a defense mechanism against cadmium-
generated oxidative stress in roots (Yannarelli et al. 2007). From time to time, there
have been numerous endeavors for tapping the possibility of alteration in the
expression of specific enzymes by genetic manipulation for the development of
transgenic plants with upgraded levels of oxidative stress defense enzymes to
augment stress tolerance. There have been reports of few transformed lines of
tobacco plants with elevated levels of expression of GR accumulating greater
concentrations of the GSH, which display augmented tolerance to herbicide paraquat
(Creissen et al. 1994).

3.3.5 Ascorbate Peroxidase (APX, E.C.1.1.11.1)

As a scavenger of ROS in cells, APX belongs to the multi-copper oxidase family and
functions as an essential constituent of the ascorbate-glutathione cycle. This enzyme
is involved in catalyzing the reduction of H2O2 to H2O by using two molecules of
ascorbate as a reducing agent resulting in the production of two molecules of
monodehydroascorbate (MDHA) in this process (Das and Roychoudhury 2014). It
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is considered a more useful enzyme in plants during stressful conditions for the
management of oxidative stress because of its ubiquitous nature and better affinity
for H2O2 as compared to CAT enzyme (Pignocchi et al. 2006; Sharma et al. 2012).
Based on different amino acids, the family comprises many isoforms present in
different locations such as cytosol, mitochondria, peroxisomes, and chloroplast
encoded by discrete genes (Pignocchi et al. 2003). APX is highly significant in
connection with alleviating the adverse effects of ROS in crop plants. By employing
various techniques such as western blotting, enzyme activity assay, and biophoton
emission, a strong correlation was found between APX amount and activity with
increasing drought in soybeans (Kausar et al. 2012). Lead-contaminated soil was
shown to stimulate APX activity in Vicia faba L., which plays a critical role in
negating the effects of ROS in a condition of declining CAT activity (Wang et al.
2010). In another study, in Prunus hybrids after 70 days of water scarcity without
irrigation, the activities of APX and other enzymes of the ascorbate-glutathione
cycle were shown to increase with severe drought stress, whereas they showed a
complete reversal in trend during the following rewatering phase more rapidly in
shaded leaves (Sofo et al. 2005). Transformation of plum plants with genes encoding
antioxidant enzymes including cytosolic ascorbate peroxidase (cytapx) has been
demonstrated to augment the tolerance to salinity (Diaz-Vivancos et al. 2013).
Overexpression of cytosolic ascorbate peroxidase (cAPX) gene derived from
Pisum sativum L. in transgenic Lycopersicon esculentum L. (tomato) caused
enhancement of 10 and 25-fold activity during salt and chilling stress minimizing
the oxidative damage, which was visible in leaves (Wang et al. 2005).

3.3.6 Dehydroascorbate Reductase (DHAR, E.C. 1.8.5.1)

Dehydroascorbate reductase is an important ascorbate recycler enzyme belonging to
the glutathione S-transferase (GST) superfamily that catalyzes the reduction of
oxidized ascorbate (DHA) to ascorbate with reduced glutathione (GSH) acting as
the reducing substrate. Thus, DHAR has the role to regenerate and maintain a pool of
reduced forms of ascorbate within the cells for the subsequent detoxification of ROS.
The oxidized glutathione (GSSG) by the action of glutathione reductase is again
reduced to glutathione (GSH) with NADPH as an electron donor (Do et al. 2016).
DHAR enzyme because of its role is copiously found in seeds, root and shoot
distributed in both apoplast and symplast (Das and Roychoudhury 2014). DHA, a
very short-lived molecule, has either chance of getting irreversibly hydrolyzed to
2, 3-diketogulonic acid or can be recycled to ascorbate by DHAR (Sharma et al.
2012). Metal toxicity, salinity, drought, and chilling act as the environmental
stressing agents that trigger the DHAR activity in plants and confer them with the
capability to scavenge ROS generated in such a milieu. An increase in ascorbate pool
content has been reported due to overexpression of DHAR in tobacco and maize,
which effectively enhances the ability to counter oxidative stress during stress
conditions (Chang et al. 2017; de Tullio et al. 1998; Kwon et al. 2003).
Overexpression of DHAR has been shown to enhance salt stress tolerance in rice
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plants (Oryza sativa L. japonica) by maintaining ASA pool leading to better growth
and yield (Kim et al. 2014). Transgenic potato bearing the Arabidopsis cytosolic
AtDHAR1 has been seen to possess enhanced DHAR activity and a level of reduced
ascorbate. Therefore, they are reported to be more tolerant to herbicide, drought, and
salt stresses in comparison with their wild varieties (Eltayeb et al. 2011). Improved
ascorbate regeneration and accumulation via overexpression of DHAR in transgenic
tomato have been known to provide tolerance to deleterious effects of salt stress
resulting in better photosynthetic rate, germination rate, chlorophyll content, etc.
(Li et al. 2012). Constant upregulation of cytosolic DHAR gene in Lotus japonicus,
leading to improvement of apoplastic ascorbate pool, was reported to enhance the
salt stress tolerance in it as compared to other legumes (Rubio et al. 2009).

3.3.7 Monodehydroascorbate Reductase (MDHAR, E.C. 1.6.5.4)

MDHAR is a Flavin adenine dinucleotide (FAD) enzyme that replenishes the
ascorbate pool by catalyzing the process of its regeneration from the short-lived
MDHA generated in APX-catalyzed H2O2 scavenging reaction utilizing NADPH as
the electron donor. The activity of MDHAR is very common in plants since it has
many isozymes which are located in several cell organelles like mitochondria,
chloroplast, glyoxysomes, and peroxisomes in addition to the cytosol (Das and
Roychoudhury 2014; Sharma et al. 2012). Numerous studies reveal an increase in
activity of MDHAR in crop plants such as maize, tomato, wheat, etc. subjected to
varied stresses (Feng et al. 2014; Hodges et al. 1997; Stevens et al. 2008). Ectopic
expression of MDHAR gene from Brassica rapa L. in Arabidopsis was
demonstrated to regulate other antioxidant genes like SOD, APX, GR, DHAR,
etc., and the plants showed improved freezing stress tolerance with favorable
redox status (Shin et al. 2013a, b). Likewise, in another study, transgenic
Arabidopsis plants co-overexpressing BrMDHAR and BrDHAR (from Brassica
rapa L.) consistently exhibited enhanced antioxidant capacity and redox status
upon freezing stress relative to non-transgenic counterparts (Shin et al. 2013a, b).
Overexpression of tomato (Lycopersicon esculentum Mill.) chloroplastic MDHAR
in transgenic Arabidopsis has been reported to enhance its tolerance to temperature
and methyl viologen-mediated oxidative onslaught resulting in the alleviation of
photo inhibition of photosystems (F. Li et al. 2010). Overexpression of MDHAR
gene from Arabidopsis in the case of tobacco plant confers improved tolerance
resulting in the higher net rate of photosynthesis during salt, ozone, and polyethylene
glycol (PEG) stresses (Eltayeb et al. 2007).

3.4 Antioxidant Enzyme Status in Crops Under Stress

Abiotic environmental stresses are known to initiate a cascade of physiological and
molecular changes in plants, effectuating similar sort of responses in some cases.
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3.4.1 Salinity

According to a reasonable estimate, about 50% of the total land under cultivation
faces serious challenges due to an unprecedented rise in salinity. Besides its huge
repercussions on plant growth and health, salinity poses a tremendous threat to world
food security by dramatically downsizing the crop yield of agriculturally important
plants. A global analysis of current trends and plausible future scenarios assume that
crop yield loss due to salinity is likely to continue in the foreseeable time largely
because the direct effects of salinity on crop yields are projected to either remain
constant or increase in the future. Moreover, due to scarcity of freshwater, influence
and incidence of salinity are thought to expand day in and day out (Habib et al.
2016). Among the plethora of biochemical changes, salinity-induced rise in reactive
oxygen species (ROS) generation in plant species is most dramatic. In response to
salinity, plants evolve a series of compensating mechanisms that are enough efficient
to neutralize the negative consequences of salts. Additionally, it has been found that
the activity profile of some antioxidant enzymes increases disproportionally in plants
in extremely saline environments. As a case in point, it has been reasonably argued
that the activities of CAT, APX, and GR rise considerably in both salt-tolerant
KRL-19 and salt-sensitive WH-542 cultivars of wheat (Triticum aestivum)
seedlings. However, the activities of these enzymes showed partial and full recovery
upon desalinization in KRL-19 and WH-542, respectively (Mandhania et al. 2006).
In yet another study, seedlings of barley subjected to NaCl (20 mM) for 0, 1, 2, and
5 days showed a considerable increase in the activities of SOD, CAT, APX, POX,
and GR in the roots within 1 DAT. Interestingly, the elevated levels of these
enzymes in different treatments were sustained by 5 DAT. Among all the enzymes,
the activity of CAT revealed tremendously large increments. Among the antioxidant
enzymes, CAT activity was increased the most drastically. Surprisingly, NaCl-
stressed roots of barley exhibited a strong positive correlation between activities of
SOD, CAT, APX, among others, and expression of constitutive as well as induced
isoforms (Kim et al. 2005). Another interesting study on four different cultivars of
potato showcased a significant rise in the production of CAT and POD during
episodes of salt-induced stress. Moreover, salt-tolerant potato cultivars were found
to be better protected against reactive oxygen species (ROS) outbursts due largely to
the enhanced production of counteractive antioxidant enzymes (particularly SOD) in
them (Rahnama and Ebrahimzadeh 2005). Another well-established in vitro investi-
gation performed on rice (Oryza sativa L.) cultivar, BRS AG, showed that treatment
of plants with 136 mM NaCl increases protection against salinity-induced oxidative
stress via enhanced activities of antioxidant enzyme systems. A series of genes that
encode different isoforms of antioxidant enzymes include OsSOD3-CU/Zn,
OsSOD2-Cu/Zn, OsSOD-Cu/Zn, OsSOD4-Cu/Zn, OsSODCc1-Cu/Zn, OsSOD-Fe,
and OsAPX1. Among all, OsCATB and OsGR2 revealed a proportionately large
surge in their activities. Except for OsAPX6 that exhibited stability in its expression,
all other target isoforms contribute to the escalated enzymatic activity in this species.
Therefore, it is appropriately concluded that cultivar BRS AG of rice has profound
defensive strategies against salt stress and its follow-up oxidative damages (Rossatto
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et al. 2017). Down the line of such investigations, it was observed that Cuminum
cyminum L. plants treated with 50, 100, and 150 mM of NaCl significantly increase
the activity SOD, APX, and CAT. As evidenced by the results of real-time quantita-
tive reverse transcription-polymerase chain reaction, it was found that expression of
iron-superoxide dismutase (Fe-SOD) and catalase (CAT) genes in this species
increases considerably following 50, 100, 150, and 200 mM NaCl treatments.
These changes were also effectuated in the expression profile of their respective
mRNAs. In view of the above discussion, it can be precisely concluded that
C. cyminum’s salinity-responsive antioxidant system enables it to survive in saline
soils (Soleimani et al. 2017). A concise account of more examples wherein the
introduction to salinity stress significantly altered the antioxidant enzyme activity in
crops is given in Table 3.1.

3.4.2 Drought Stress

Drought condition is the manifestation of a disparity between the evapotranspiration
flux and uptake of water from the soil, which represents one of the crucial stresses
that plants encounter in numerous biogeographical regions. Plants experience
drought stress during very little soil moisture, which is accompanied by low atmo-
spheric humidity and high air temperature. In the vast majority of the world’s
agricultural fields, this stress factor alone is the most critical impediment to plant
growth and crop productivity (Lamaoui et al. 2018). The reduction in transpirational
water loss and thus drought stress, however, is alleviated by abscisic acid (ABA), an
important plant hormone that facilitates the closure of stomata. The stomatal closure
is critical in drought stress responses because it lowers the NADP+ regeneration and
inhibits the CO2 fixation via the Calvin cycle (Waterland et al. 2010). Because of the
drawbacks of stomatal closure about photosynthesis, it must be done only when
water conservation benefits outweigh the negative effects (Rajput et al. 2021).
Through accelerated electron leakage to molecular oxygen, these unfavorable
circumstances stimulate the production of ROS such as O2

•—, OH, and H2O2

radicals. Drought or water shortage stress induces the creation of a variety of
ROS, including non-radical molecular forms like 1O2 and H2O2 and highly reactive
free radicals like alkoxy radicals (RO.), perhydroxy radical (HO2

.), O2
•–, and •OH

(Impa et al. 2012). SOD, APX, GPX, and chloroplastic APX activities were aug-
mented in rice seedlings after drought stress of �0.5 to �2.0 MPa for 24 h to slow
the generation of O2

•– and progression and lipid peroxidation (Sharma and Dubey
2005). It was demonstrated that the severity and duration of water stress and fruit
development stage influenced the changes in APX, CAT, SOD, GR, MDHAR, and
DHAR activities and comparable transcript levels in tomato Solanum lycopersicon
L.cv Micro-tom (Murshed et al. 2013). Regulations of plants’ physio-biochemical
responses to drought conditions could be used as markers for drought stress toler-
ance in the selection and breeding processes. In comparison with two other maize
hybrids, drought-induced osmolyte buildup and robust antioxidant enzymatic
defense systems averted serious damage in Dong Dan 80 hybrid (Anjum et al.
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2017). Soybean plants evolved antioxidative defense mechanisms, such as
accelerated antioxidant enzyme activity and suitable soybean cultivars, were able
to mitigate abiotic stresses under imbalanced WDC, particularly in crop rotations

Table 3.1 Effects on antioxidant enzyme activity in crops under salinity stress

Crop plant material
Stress
condition Effect

Status of antioxidant
enzymes

Wheat seedlings two
cultivars
Salt resistant
Salt sensitive

50 and
100 mM
NaCl

A decline in relative
water content, cell
membrane damage

Enhanced activities of
CAT, APX, GPX
(Mandhania et al. 2006)

Four rice varieties
Salt tolerant (BRRI dhan
47, BINA dhan 8 and
BINA dhan 10)
Sensitive (BRRI dhan
28)

20, 40 and
60 mmol/L
NaCl

Reduction in growth,
root shoot biomass,
chlorophyll content

CAT and APX increase
in tolerant varieties,
decreased GPX activity
(Kibria et al. 2017)

CCRI-79 (salt tolerant)
and Simian 3 (salt
sensitive) Cotton
cultivars

0, 80, 160,
and
240 mM
NaCl

Reduction in the dry
weight of organs, a
decline in net
photosynthesis and
stomatal conductance

Higher SOD, CAT,
APX, and GR activity in
CCRI-79 (salt-tolerant
cultivar) (Zhang et al.
2014)

Maize plant
Salt tolerant (USTB-
297)
Moderate salt-tolerant
(USTB-109)
Salt sensitive (USTB-
265)

100 mM
NaCl

Decrease in plant height SOD activity is higher in
USTB 297.
Ct and APX activity are
higher in USTB-109 and
265 (Cai et al. 2019)

Four potato cultivar
seedlings—Agria,
Kennebec (salt tolerant);
Diamant, Ajax (salt-
sensitive)

50 mM
NaCl

50% decrease in shoot
fresh mass in salt-
sensitive cultivars

Enhanced activities of
SOD, CAT, APX
(Rahnama and
Ebrahimzadeh 2005)

A. Amaranthus tricolor
varieties, VA14 (salt-
tolerant), and VA3
(moderately salt-
sensitive)

50 mM and
100 mM
salt

A decline in leaf dry
weight per plant, specific
leaf area, total biomass,
and shoot dry weight,
chlorophyll

Increase in activity of
SOD, GPX, CAT
(Sarker and Oba 2020)

Two barley varieties
Afzal and EMB82-12

50,100,
200, 300,
and
400 mM
NaCl for
3 days

MDA content constant
in Afzal, MDA
enhancement in EMB82-
12

Enhanced activity of
CAT, APX, SOD, GPX
in Afzal (Khosravine
et al. 2008)

Two date palm cultivars
(Phoenix dactylifera L.),
“Umsila” (salt-tolerant),
and “Zabad” (salt
susceptible)

NaCl
solution at
240 mM

Increase in H2O2 in both,
MDA in Zabad

Enhanced activity of
CAT, SOD, APX in leaf
and root tissues of
Usmila (al Kharusi et al.
2019)
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(Iqbal et al. 2019). Melatonin treatment boosted the activities of key antioxidant
enzymes like APX, SOD, CAT, and others, implying that it should be used on a wide
level during drought conditions (Imran et al. 2021). Silicon greatly increased the
lentil crop plants’ ability to tolerate drought stress conditions by promoting antioxi-
dant enzyme activity and diminishing reactive oxygen species production (Biju et al.
2017). In a study conducted, potato plants treated with the development
rhizobacteria Bacillus subtilis HAS31 generated lesser ROS and MDA and had
improved enzymatic activity of POD, SOD, and CAT, demonstrating that growth
and yield were maintained under drought stress (Batool et al. 2020). In another
recent study, selenium supplementation reduced the negative effects of drought by
altering the physio-biochemical processes of plants, including an increase in pro-
duction of APX, SOD, and CAT that eventually led to the enhanced yield and yield
components of both crops, oilseed crops, Brassica napus L. (Canola) and Camelina
sativa L. (Camelina) and under drought conditions (Ahmad et al. 2021). According
to a recent study, drought stress triggered by PEG-6000 had a relatively less negative
impact on photosynthesis in Bachar cultivar of faba beans (Vicia faba) than Giza
3 due to improved antioxidant enzyme operations (CAT, SOD, and APX) and
elevated transcription levels of their respective genes (Abid et al. 2021).

3.4.3 Heavy Metal Toxicity Stress

Heavy metal intoxication of the environment, caused by human-made practices
and/or natural events, is a common and severe challenge in the present era. The
emergence of the industrial revolution has aggravated this issue to such undesirable
limits that have necessitated more relevant scientific research in this direction and
further course of action to lessen its impacts (Arif et al. 2019; Rai et al. 2019).
Excessive accumulation of heavy metals reduces crop yields by inflicting direct or
indirect damage to plant tissue and interfering with various biochemical and physio-
logical processes in plants. They disrupt a variety of physiological processes in
plants, including seed germination, accumulation and remobilization during germi-
nation, photosynthesis, and plant growth, to name a few (Ghosh and Sethy 2013).
Heavy metal poisoning disrupts the redox balance in cells and reduces crop output
by causing an outburst of reactive oxygen species. Plants respond to heavy metal
stress in a variety of ways, but the majority of these involve cell detoxification via
antioxidative scavenging mechanisms (Shahid et al. 2015; Yilmaz et al. 2017).
Plants have restricted stress-avoidance mechanisms and require an adaptable way
of coping with change. A popular attribute in the fight against stress factors is the
synchronized function of antioxidant enzymes, which aids in the substantial reduc-
tion of cellular deterioration by curtailing reactive oxygen species (ROS). Under-
standing the interaction between oxidative stress and the role of antioxidant enzymes
can lead to the development of certain plants that can withstand oxidative stress.
These processes have proven to have enormous potential for remediating these
pernicious metals via phytoremediation (Bhaduri and Fulekar 2012). As several
researchers have pointed out, the severity of oxidative stress triggered by heavy
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metals varies by species and across genotypes, tissues, and /or developmental
phases. Metal-susceptible plants, in general, exhibit severe symptoms when
subjected to oxidative stress, whereas metal-resistant plants show only minimal or
no oxidative damage (Juknys et al. 2012; Xie et al. 2019). Cadmium pollution leads
to the production of ROS in Oryza sativa L. (rice) plants antioxidant stress and
accumulation of peroxidation of membrane lipids. The cadmium exposure
accelerated the activities of SOD, peroxidases, CAT, and other antioxidant enzymes
in both leaves and roots, implying that rice seedlings cope with free radicals
generated by Cd via coordinated, improved activities of the antioxidative enzymes
engaged in detoxification (Yu et al. 2013). In yet another example, Cd and Pb
interactive effects on rice enhanced generation of ROS (H2O2 and O2

•_), lipid
peroxidation, protein carbonylation, etc. Despite increased antioxidative enzyme
activity (GPX and SOD) in metal-treated seedlings relative to controls, CAT
upregulated during the first week of metal exposure and then fell after two weeks
(Srivastava et al. 2014). Recently, Thind et al. (2021) showed that the application of
Si augmented the activities of various antioxidants, APX, SOD, POD, and CAT
leading to the alleviation of parameters of oxidative stress induced by Cd uptake in
root and shoot of two wheat cultivars (Thind et al. 2021). Antioxidant profiling of the
tolerant (TPM-1) and sensitive (TM-4) cultivars of Brassica juncea after exposure to
arsenate [As(V)] and arsenite [As (III) found that TPM-1 had a greater response to
antioxidant enzymes and glutathione levels than TM-4. When compared with TM-4,
these responses may have allowed TPM-1 to withstand higher As concentrations
(Srivastava et al. 2010). It’s likely that Al toxicity is mediated by oxidative stress and
that the Al tolerant maize roots enhanced protection against Al-induced oxidative
damage is due to, at least to some extent, their antioxidative system’s greater activity
(Giannakoula et al. 2010). GB may reduce Cd toxicity in cotton plants by
minimizing Cd concentrations and regulating Cd-induced oxidative stress in various
plant parts, potentially by improving the activity of the antioxidant enzymatic system
(Farooq et al. 2016). Several fold enhancements of antioxidant enzymes APX, SOD,
GR, and CAT were shown in Pisum sativum (pea) after treatment with NiCl2 and
CdCl2 (El-Amier et al. 2019; Hasanuzzaman et al. 2020). Cr levels significantly
increased SOD, APX, and GST activation, particularly in the leaves, and had a
significant impact on the photosynthesis process in Sorghum bicolor. The
antioxidative enzyme activity in the leaves was higher than in the root, implying
that the leaves have a higher level of lipid peroxidation and hence a greater resistance
to heavy metal stress (Yilmaz et al. 2017).

3.5 Conclusion

Reactive oxygen species (ROS) are irreversible by-products of regular cellular
metabolism, which are produced by electron transport processes in various cellular
components or organelles. The various biotic and abiotic stresses cause a buildup of
ROS in cells leading to detrimental consequences; however, they mediate certain
essential biological phenomena such as signaling at minimal concentrations. In crop
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plants, this causes a considerable loss in yield. The plant defense against ROS
depends largely on an enzymatic component that constitutes several enzymes that
help mitigate the ROS and bring the cells back to a state of homeostasis. There are
well-established studies regarding the reaction mechanism of various antioxidant
enzymes, which are engaged in the defense of plants against the ROS to withstand
the stressful milieu. Advances in genomics, metabolomics, and proteomics have
significantly contributed to a better understanding of biochemical mechanisms
involved in cellular responses to oxidative stress. The transgenic method for
overexpression of antioxidant genes individually or as cassettes can deliver tolerance
in crop plants to multiple stresses and thus help to attain the goal to achieve
sustainable global food security.
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Abstract

Plants are sessile organisms and constantly encounter a number of environmental
stresses, including salinity, water scarcity, life-threatening temperature extremes,
toxic heavy metals, flooding/waterlogging (WL), etc., and biotic stresses like
pathogen attack. All these stresses are further worsening due to drastic and harsh
climate change. The aim of this chapter is to critically analyze the proteomic and
genomic aspects and to comprehend the state-of-art knowledge regarding enzy-
matic antioxidant defense systems to cope with the various stresses faced by the
plants. The practical solicitation of antioxidant enzymes in generating stress-
tolerant transgenic plants is also discussed. The proteomic approaches for SOD,
CAT, POX, GPX, GR, GST, APX, MDHAR, and DHAR enzymes and their
recent molecular understanding are particularly discussed with reference to
advanced techniques like LC-MS/MS, MALDI-TOF, and phylogenetic and
conserved motif analysis. Genome-wide association studies (GWAS) including
transcriptome, sequence tagged site, CRISPR/Cas9, and quantitative trait loci-
based approaches regarding enzymatic antioxidants have been summarized with
reference to stress conditions. The detailed study will help in providing
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comprehensive proteomic and genomic understandings about antioxidant
enzyme-mediated defense in higher plants.

Keywords

Antioxidants · GWAS · LC-MS/MS · MALDI-TOF · Innate mechanism · QTLs

4.1 Introduction

Food security is a major concern to feed growing population, but perplexing
environmental constrains are causing drastic reduction in overall crop yield (Shao
et al. 2009). The higher plants, confronting environmental constraints (drought,
salinity, light, and high and low temperature), are particularly associated with
oxidative stress, resulting in the accumulation of excited oxygen species. These
species regulate many cellular processes and are extensively known for duple role in
plant physiology, for inducing oxidative stress and serving as signaling molecules in
several developmental processes (Noctor et al. 2018). These noxious species are
activated byproducts of oxygen, consisting of free radical or non-radical forms such
as O2

o�/OHo/OH2
o and H2O2, respectively, sum up to cellular impairment, discom-

fort, and ageing mechanism. Plants have been equipped with two basic antioxidant
defense processes, i.e., enzymatic and nonenzymatic systems to mitigate the oxida-
tive stress. The nonenzymatic group comprised of low-molecular-weight molecules
such as glutathione, carotenoids, phenolics, and vitamin (A, C, and E) while
superoxide dismutase, peroxidase, and catalase formed enzymatic defense system
to eliminate stress (Jaleel et al. 2009).

Stress tolerance mechanism is a multifaceted and multigenic trait, and progresses
with traditional breeding procedures must be very challenging to feed growing
population while molecular breeding techniques, based on genetic engineering,
marker-assisted selection (MAS), and genome editing technologies, grasp great
potential to empower farmers to cope with these concerns in a better way.

Post-translational medications (PTMs) of some proteins are significantly
involved in the acclimatization of plants under environmental stresses. Growing
confirmation has revealed that PTMs play critical roles in environmental stress
regulation via regulating glycosylation, phosphorylation, and ubiquitination in
plants. Therefore, it is essential for scientists to further discover key PTM-related
genes for developing abiotic stress-tolerant crops (Wu et al. 2016).

Quantitative analysis of proteins is a strong approach to screen protein accumu-
lation in plant samples. Proteomic analysis clearly defines the role of salt-responsive
proteins in plants (Long et al. 2018). Proteomic study of soybean seedlings under salt
stress revealed the upregulation of amino acid and carbohydrate, antioxidant, and
protein metabolism (Ji et al. 2016). Rice genotypes exhibited an early upregulation
of photosynthetic and antioxidant metabolism proteins under salt stress.
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4.2 Mining of Proteomic Approaches for Enzymatic
Antioxidant Response

Various morpho-physiological and biochemical attributes were considered as indi-
rect indicators for biotic and abiotic stress tolerance (Teulat et al. 2003; Richards
et al. 2002).

The general procedure for proteome analysis involved

• Sample preparation, including extraction and proteolytic digestion of the proteins.
• Peptide separation.
• MS analysis.
• Informatic data interpretation (Liu et al. 2019).

4.2.1 Proteomic Approaches

Proteomic techniques give most suitable way for the functional examination of
translated genome sections. Crude proteins have been extracted and isolated by
fractionation, which is the most promising method to attain better proteome expo-
sure (Hashimoto and Komatsu 2007). More advancements and initiatives for frac-
tionation technique need to be addressed to cope with the narrow proteome
resolution (Hashimoto and Komatsu 2007).

4.2.1.1 LC-MS/MS
Liquid chromatography–tandem mass spectrometry (LC-MS/MS) is a highly precise
technique enabling the detection of wide range of metabolites in biological samples
(Sawada and Yokota Hirai 2013). The desirable peptide can be quantitively
measured and identified by the assistance of this technique and the retaining time
of respective peptide in any complex plant sample (Song et al. 2015). Selected
reaction monitoring (SRM)/multiple reaction monitoring (MRM) approaches have
been proved as foremost advancement tools to acquire reliable quantitative
proteomic data (Lange et al. 2008). Song et al. (2015) using these techniques
successfully identified aldo/keto reductase (AKR) and its isomers along with SOD,
APXs, GR, and GSTs during ripening of strawberry fruit. All studied antioxidant of
strawberry fruit significantly increased except cytosolic APX, CAT, 1-Cys, and
2-Cys PRX. Quantitative MRM and LC-MS/MS technique offers an organized
and multi-focused enquiry of the enzymatic antioxidant in plant samples at each
ripening stage. Several enzymes expressed differentially in Solanum lycopersicum
under drought stress (Cheng et al. 2015). Quantitative and qualitative proteomic
investigation revealed the dynamics of plant apoplast in adverse effect of drought in
plants (Jaswanthi et al. 2019). Stress-related protein species particularly SOD and
peroxidases were found to be upregulated, and 20 unique protein species were also
recognized in drought-stressed proteome analysis (Zhou et al. 2013).

TMT labeling coupled with LC-MS/MS was used to check the stress resistance of
wild and domesticated Rhododendron chrysanthemum at both cellular and
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molecular level. Among 1395 identified proteins, 137 proteins were upregulated in
the domesticated type of R. chrysanthemum. Significantly higher activity and
expression levels were noted for SOD, CAT, APX, and GPX in this category.
However, the enzymatic antioxidants interaction network analysis also expressed
considerable role of these enzymes in plant’s stress tolerance (Zhou et al. 2017)
(Fig. 4.1).

4.2.1.2 MALDI-TOF-MS
Proteomic advancements using two-dimensional electrophoresis (2-DE) and matrix-
assisted laser desorption ionization mass spectrometry (MALDI-TOF MS) provide
an appropriate method to detect differentially expressed proteins engaged in
responses to numerous stresses (Agrawal et al. 2009). Thirty-four different proteins
were detected in rice by MALDI-TOF mass spectrometry approach. The
upregulation of L-ascorbate peroxidase, putative DHAR, and POD was observed
in rice exposed to Cu and Cd stress (Lee et al. 2010; Rakwal et al. 1999). Song et al.
(2013) recorded more pronounced expression of antioxidant proteins in the
Cu-tolerant cultivar compared with Cu-sensitive cultivars. The upregulation of
ascorbate peroxidase is the only prominent feature in the Cu-tolerant genotype.
Transgenic tobacco plants (NtGp11) were compared with wild type for drought
stress and identified 43 contrastingly expressed proteins by using 2-DE coupled to
MALDI TOF-TOF MS/MS approach. Reduced glutathione (GSH) was found to
have an essential role in mitigating osmotic stress by upregulating stress responsive
genes. Further RT-PCR analysis had shown an increase in transcript levels of stress-
resistance genes in NtGp11 compared with wild-type tobacco (Kumar et al. 2014).

Fig. 4.1 Venn diagram for SOD, CAT, APX, GPX (number, percentage, and overlapping), and
their interaction among four categories in Rhododendron chrysanthemum Pall

60 A. Tariq et al.



4.2.1.3 Phylogenetic and Conserved Motif Analysis of Enzymatic
Antioxidants

There are a total of 61 SOD protein enzymes in different plants. A phylogenetic tree of
61 proteins was predicted for the sake of evolutionary study, which categorized all
61 SOD proteins into four groups. First, second, third, and fourth groups were highlighted
by red, blue, purple, and green colors, respectively. In the phylogenetic clade, SOD
enzyme appeared to be in close relationship in different plant species in the gene bank.

According to motif analysis, almost all motifs occupy same locations except some
genes like AFN42318.1 CuZn superoxide dismutase. C95A synthetic construct
appeared on much different locations. Raphanus sativus have seven and Eucalyptus
grandis have two new motif location.

According to Fig. 4.2, one ancestor is divided into three families in which one
family is divided into 11 genes and their motifs are same except synthetic construct
Cu/Zn of SOD. The second family is divided into 21 genes, and motifs are similar
except one, i.e., Raphanus sativus. In the third family, almost all motifs are same and
28 genes involved in it.

According to Fig. 4.3, one ancestor is divided into seven families in which first,
second, third, fourth, fifth, sixth, and seventh gene family belongs to 1, 10, 5, 9, 1, 5,
and 9 genes, respectively. The motifs are different from gene to gene. Some motifs
are same but mostly differ with respect to each other.

According to Fig. 4.4, one ancestor is divided into seven families in which the
first family belongs to three genes or the second, sixth, and 13th family belong to
four genes, and the fifth family belongs to Three genes. Third, fourth, seventh,
eighth, ninth, 11th, or 12th family belongs to one gene. Tenth family contains ten
genes, or 11th or 12th family belongs one gene. The motifs are different from gene to
gene. Somemotifs are same but mostly differ with respect to each other.Motif analysis
shows that every motif has same location and same size except of some genes.

Fig. 4.2 Evolutionary analysis for SOD constructed by mega 7 and conserved motifs analysis by
meme suite
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4.2.2 Genomic Approaches

Genome-wide association studies (GWAS) have endorsed significant contributions
to enable the discovery of genomic variability by developing stress-tolerant crops.
Marker-assisted selection (MAS) is closely linked to target gene for the indirect
picking of trait of interest without phenotyping that trait. Huge advancement has
been accomplished by MAS strategy for crop breeding under various ecological
pressures where one or more genes participate in conferring stress tolerance.

Fig. 4.3 Evolutionary analysis for POD constructed by mega 7 and conserved motif analysis by
meme suite

Fig. 4.4 Evolutionary analysis for CAT constructed by mega 7 and conserved motif analysis by
meme suite
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4.2.2.1 Engineering of Stress-Specific Enzymatic Antioxidant Genes
For the last 10 years, transgenic approaches have been extensively applied to
enhance plant defense system under hostile environmental conditions. Thus, geneti-
cally engineered plants can be a good source for cultivation with better activities of
redox regulating antioxidant enzymes (Table 4.1).

Table 4.1 Engineering of enzymatic antioxidant genes in plants

Gene Plant source
Transgenic
plant

Results of
overexpression Character Reference

MuWRKY3 Macrotyloma
uniflorum

Arachis
hypogea

#MDA
#H2O2

#O2˙
�

"SOD
"APX

Drought
tolerance

Kiranmai
et al. (2018)

MdATG18a Macrotyloma
uniflorum

Malus
domestica

"CAT
"POD

Drought
tolerance

Kiranmai
et al. (2018)

DgNAC1 Arabidopsis
thaliana

Chrysanthemum "SOD
"CAT
"POD

Salinity
tolerance

Wang et al.
(2017)

PaSOD Potentilla
atrosanguinea

Solanum
tuberosum

"SOD
"APX

Sat
tolerance

Shafi et al.
(2017)

RaAPX Rheum
australe

Solanum
tuberosum

"SOD
"APX

Sat
tolerance

Shafi et al.
(2017)

SbMYB15 Salicornia
brachiata

Nicotiana
tabacum

"CAT
"SOD
"MnSOD
"CAT1

Cd
tolerance

Kumar et al.
(2020)

CaGrx Cicer
arietinum

Arabidopsis
thaliana

"GRX
"GR
"GPX
"GST
"APX/CAT
"SOD
"MDHAR

AsIII
Cr
tolerance

Kumar et al.
(2020)

AtDREB1A Arabidopsis
thaliana

Solanum
lycopersicum

"SOD
"CAT

Chilling
tolerance

Karkute
et al. (2019)

DaAPX Dioscorea
alata

Arabidopsis
thaliana

"APX Chilling
and flood
tolerance

Chen et al.
(2019)

AtHDG11 Arabidopsis
thaliana

Nicotiana
tabacum

"SOD Chilling
tolerant

Wu et al.
(2021)

K2-NhaD Arabidopsis
thaliana

Gossypium
hirsutum L.

"SOD
"CAT
"POX

Salt
tolerance

Guo et al.
(2020)

IbCAT2 Ipomea
batatas

Escherichia coli
and
Saccharomyces
cerevisiae

"CAT Salt and
drought
tolerance

Yong et al.
(2017)
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Several genes have been identified for providing significant shielding effect
against environmental stress in many plant species; however, still a number of
genes are yet to be revealed in important crops. Genetic modification is extensively
using biotechnology-based breeding methods (BBBMs) to lift up the plant's toler-
ance mechanism. Crucial tolerant genes have been isolated and successfully
integrated into those plant species, which are at greater risk of environmental
stresses.

4.3 Genome-Wide Analysis for Enzymatic Antioxidants

The emergence of genome engineering techniques greatly affected the progress of
plant biology and agriculture as it allows very accurate genetic modification of
subjective systems. Genome editing approaches are efficient way of modifying
plant genome (Liu et al. 2017; Andersson et al. 2017).

4.3.1 Transcriptome-Based Approach for Enzymatic Antioxidant

Transcriptome study of SOD gene family exposed that variety of environmental
stresses has regulatory impact on the expression of TaSOD genes. Different TaSOD
genes were expressed differentially in retort to the same environmental stressor,
which might be due to differential response of transcriptional regulators (Jiang et al.
2019). Broadly genes translating chlAPX isoenzyme are grouped into following
categories.

• The first class consists of one gene but shows variation in post-transcriptional
alternative splicing regulation for two isoenzymes, e.g., spinach, tobacco, pump-
kin, and ice plant.

• Each gene of second group codify single isoenzymes, e.g., Arabidopsis, tomato,
and rice.

The splicing of premature chlAPX mRNA has been extensively probed in
Spinacia oleracea (Ishikawa and Shigeoka 2008) and found this phenomena funda-
mental in monitoring the expression pattern of stromal and thylakoid APX
isoenzymes. Complementary DNA (cDNA) sequences revealed wide distribution
of antioxidants throughout the plant kingdom. Redox regulating antioxidant
enzymes are expressed by tiny gene groups in the plants (Passardi et al. 2007).
APX cDNAs of cowpea leaves were constructed and mentioned as cytosolic, peroxi-
somal, and chloroplastic isozymes (D’Arcy-Lameta et al. 2006). Similarly, six APX
isoforms of Eucalyptus grandis were putatively nominated as cytosolic, peroxi-
somal, and chloroplastic proteins (Teixeira et al. 2005). Same trend was shown in
Solanum lycopersicum (Najami et al. 2008) and Arabidopsis thaliana (Chew et al.
2003). In Oryza sativa, SOD gene family contains eight members: two for each
cytosolic, peroxisomal, chloroplastic, and mitochondrial (Pan and Yau 1991). The
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existence of organelle-specific peptides shows that transmembrane regions are
present in the amino and carboxyl-terminal of newly formed polypeptide that
specifies subcellular targeting of antioxidant and their isoenzyme (Teixeira et al.
2004).

4.3.1.1 Hybridization-Based Approach for Enzymatic Antioxidants
Natural hybridization is a recurrent method among vascular plants. Hybridization is
referred to as an essential evolutionary power; it may lead to enhanced inter- and
intraspecific genetic variation, participating in speciation process. Plant
hybridization is also of great significance to truthfully identify hybrid individuals.
Several DNA markers like RAPD (random amplified polymorphic DNA), AFLP
(arbitrary fragment length polymorphism), RFLP (restriction fragment length poly-
morphism), SSR (simple sequence repeat), and SNP (single-nucleotide polymor-
phism) are used to identify the hybrids(López-Caamal and Tovar-Sánchez 2014).
Avramova et al. (2017) had determined the difference in drought tolerance Egyptian,
European, and South-African maize hybrids. The maize lines with varying geo-
graphic distribution displayed different molecular approaches to cope the stress. The
European and South-African maize hybrids showed greater drought tolerance,
correlated with improved activities of the enzymatic antioxidants in meristematic
region of leaf. Such outcomes deliver evidence for a strong linkage between antioxi-
dant regulation and hybrid response under limited water supply particularly in the
leaf meristematic region.

4.3.1.2 Sequencing-Based Approach for Enzymatic Antioxidant
Expressed sequence tags (ESTs) are consisted of only exon part of transcribed DNA,
so much smaller than the cDNAs. Assembly of overlapping EST sequences reveal
polymorphism. However, homologous genes may cause disassembly of sequences,
especially in polyploidy plant species such as in hexaploid wheat (Rudd 2003). This
approach is also helpful particularly for crops having larger genome size, where
complete genome sequence is not yet available (Ergen and Budak 2009).

Reem et al. (2020) had isolated and characterized ESTs of Phoenix dactylifera
L. (date palm) tangled in response to saline stress by DD-PCR technique. The
DD-PCR results exposed the presence of 17 (7 ESTs from Bertamoda and
10 ESTs from Malkabi) upregulated genes in salt-treated plants compared with
nonstress plants. These fragments varied in length from 212 to 1361 bp (Abd
El-Maksoud et al. 2020). Plants produced many antioxidant enzymes, efficiently
scavenge free radicals. Genes related to ROS scavenging mechanism are deposited at
the database. Among the 8835 nonredundant set, CAT3 (Contig5024), GSTF3
(Contig5012), and GST1 (Contig4958) consist of 53, 37, and 15 EST, respectively.
The reference gene and their ESTs are deposited in their respective database for salt
tolerant plant. qRT-PCR study revealed the countenance of CAT3 and GSTF3 were
substantially increased under saline stress in Arabidopsis pumila (Huang et al.
2017).
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4.3.1.3 CRISPR/Cas9-Mediated Response for Enzymatic Antioxidants
Desirable genome editing via CRISPR-Cas9 is a widely accepted genetic manipula-
tion method in different living systems. The editing of gene/genome is widely in
practice for easy handling and versatility in comparison with many formerly adopted
genome editing techniques. Scientists have formed some modal mechanism with
several plant species to adopt this editing system and introducing new prospects to
go through laborious and time-consuming transgenic practices for important com-
mercial crops (Montecillo et al. 2020; Andersson et al. 2017). Mariette Andersson
et al. (2017) have also described the transitory solicitation of CRISPR/Cas9-mediated
genome excision process in the protoplasts of tetraploid potato (Solanum tuberosum).

Non-expressor pathogenesis-related gene (NPR1) participated as a primary
defense regulator. The regulation redox active antioxidant enzymes are relatively
associated with Solanum lycopersicum glutathione-S-transferase (SlGST) activity.
Further, the loss of SlNPR1 activity potentially hampers antioxidant gene expression
under water deficit conditions (Li et al. 2019).

4.4 Quantitative Trait Loci (QTLs)-Based Approach
for Enzymatic Antioxidant

QTLs seems to more stable with passing years under varying environmental stresses
(Stevens et al. 2007). Scientists have been utilizing the latest available data and other
potential competitive techniques to understand complete antioxidant mechanisms in
plants, with particular focus to genotoxicity, transgenerational alterations, and QTLs
(Gürbüz Çolak et al. 2020). Tomato size and its composition are a continuously
varying trait, not only controlled by more than one gene but also influenced by the
environment. Different molecular markers allow the partitioning of quantitative
traits into discrete quantitative trait loci (QTL), which are helpful in designing
genomic map (Saliba-Colombani et al. 2001).

Introgression line (IL) of S. lycopersicum M82, S. pennellii LA716, and
S. pennellii was assessed for growth and antioxidant capacity with and without salt
stress. The data was classified on the basis of quantitative trait loci (QTL) for
monitoring the antioxidant accumulation under stress. The distribution of QTL in
the IL population for these attributes may be helpful for breeding salt-tolerant tomato
cultivars having higher antioxidant levels (Frary et al. 2010). Through evaluating the
salt tolerance of 285 ILs at the seedling stage, a total of ten quantitative trait loci
(QTLs) related to salt tolerance were identified on chromosomes 1, 5, 7, and 9–12,
with individual QTLs explaining 2–8% of phenotypic variance (Wang et al. 2017).

4.5 Conclusion

Redox regulating enzymatic antioxidant (SOD, CAT, APX, and POX) scavenges
ROS and is significant components of the plant's immune system. Genetic,
proteomic, and computational biology studies have provided significant insights
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into their regulatory mechanism in diverse plant stress and hormone responses, in
development, as well as in the evolution of the many gene families. Proteins
interacting with their relevant transcription factors have been identified along with
target genes for the regulation of antioxidant-mediated defense response in higher
plants. Some advanced proteomic techniques like liquid chromatography–tandem
mass spectrometry and conserved motif analysis using meme suite significantly
helped in analyzing antioxidant enzymes under stress. QTLs are helpful in the
development of plants with higher antioxidant potential under stress. However, to
validate these results, comprehensive field trails are required at larger scale with
different plant species under changing climatic conditions. Apart from the significant
scientific study of antioxidant-mediated response in plants, more detailed study is
lacking with reference to CRISPR-Cas9 for enzymatic antioxidant response under
stress. GWAS can be helpful in genomic variation in plants to mitigate adverse
climatic conditions.
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Genetic Engineering Applications
in Inducing Stress Tolerance in Plants
Through Antioxidants

5

Deepu Pandita

Abstract

Reactive oxygen species (ROS) is a necessary evil for the adaptation of plants in
an oxygen-containing environment. ROS is mainly produced by electron trans-
port system of chloroplasts (photosynthesis), mitochondria (during respiration),
peroxisomes, and plant cell membrane. ROS in low concentrations is critical in
some important plant metabolic pathways. It is estimated that beyond all the O2

absorbed, approximately 1% of it is diverted to generate ROS. Higher levels of
ROS concentration can damage plant cells, chlorophyll, lipids, proteins,
carbohydrates, and nucleic acids by oxidative damage and can cause disruption
of transport of ions, loss of enzyme activity, protein cross-linking, DNA damage,
and programmed cell death (PCD) pathway activation and death of cells. In order
to evade the oxidative damage, chloroplasts, mitochondria, and peroxisomes in
plants provide complex antioxidative defense against ROS by numerous enzy-
matic and nonenzymatic antioxidant components. Abiotic stress tolerance and
stress-induced oxidative protection/tolerance has been accomplished in several
crop plants by generation of transgenics through detoxification strategies of
overexpression of a battery of enzymatic and nonenzymatic antioxidants that
scavenge oxygen radicals.
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5.1 Introduction

An inevitable consequence of adaptation of life to an oxygen-comprising environ-
ment was the nonstop production of reactive oxygen species (ROS) as the metabo-
lism derivative in a biological system. ROS is mainly produced by electron transport
chain system of chloroplasts (photosynthesis), mitochondria (during respiration),
peroxisomes, and plant cell membrane or as a derivative of numerous cellular
metabolic pathways. ROS originates from molecular oxygen and accumulate in
plant tissues. In normal plant growth scenarios, production rate of ROS is low in
different cell compartments. Exogenous abiotic environmental stresses for instance,
chilling, drought, extreme heat, salinity, toxicity of heavy metals, pollutants, defi-
ciency of nutrients, and UV can interrupt the cellular homeostasis, cell defense, and
intra- and extracellular cell signaling and can induce the production and concentra-
tion of biochemically active reactive oxygen species (ROS) molecule through
oxygen metabolism in that plant (Zurbriggen et al. 2009; Pandita 2021). But higher
levels of ROS concentration can damage plant cells, chlorophyll, lipids, proteins,
carbohydrates, and nucleic acids by oxidative damage and can cause disruption of
transport of ions, loss of enzyme activity, protein cross-linking, DNA damage, and
programmed cell death (PCD) pathway activation and death of cells. Hence, plants
have evolved several complex mechanisms to maintain the ROS concentrations
under balance by stringent reconnaissance (Ali and Alqurainy 2006; Ahmad et al.
2011a, b; Ozgur et al. 2013; Sharma et al. 2012). The ROS consists of both free
radical (alkoxy radical (RO), superoxide radical (O2.-), hydroperoxyl radical (HO2

.),
hydroxyl radical (˙OH), and peroxy radical (ROdrogen peroxide (H2O2)). The free
radical and nonradical forms are plant cytotoxic (Dismukes et al. 2001; Pandita
2021).

Toxic and destructive ROS production in plant cell alters metabolic functions of
cell organelles like chloroplast and mitochondria. Their increased production is
destructive and causes oxidative damage to organellar membranes and other vital
biomolecules. Reactive oxygen species or reactive oxygen intermediate (ROI) are
partially a reduced form of atmospheric oxygen (O2). Their production is due to the
excitation of oxygen (O2) to form singlet oxygen (1O2) or transfer of one or two or
three electrons to O2 to form superoxide radical (O2

�) or hydroxyl radical (HO�).
ROS acts as signal molecule for the activation of stress-response and defense
mechanism in plant body. Oxygen is vital for the cell; however, under stress
conditions, it undergoes a series of reactions to form reactive oxygen species and
jeopardize survival of cells (Ahmad et al. 2010a, b, 2011a, b; Ahmad and Umar,
2011; Choudhury and Panda 2013). ROS and antioxidant balance completely
scavanges ROS. This leads to the loss of ROS, which is a significant second
messenger in intracellular signaling cascade. Disturbance of this balance leads to
oxidative stress (Dalton et al. 1999; Tuteja, 2007; Khan and Singh, 2008; Tuteja,
2010; Ahmad et al. 2010a, b, 2011a, b; Ahmad and Umar, 2011). To avoid the
oxidative damage, chloroplasts, mitochondria, and peroxisomes in plants provide
complex antioxidative defense against ROS by producing numerous enzymatic and
nonenzymatic antioxidant components (Sharma and Dubey, 2007; Zurbriggen et al.
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2009; Gill and Tuteja, 2010; Saed-Moucheshi et al. 2014). Plants accumulate
compatible solutes as well under abiotic stresses (Ashraf and Fooland 2007).

5.2 Reactive Oxygen Species (ROS) and Oxidative Stress

Molecular reduction of O2 results in the production of ROS containing O2�, H2O2,
OH, and 1O2 (Asada, 1999; Ahmad et al. 2008, 2010a, b, 2011a, b; Ahmad and
Prasad 2012a, b; Ahmad et al. 2013). ROS free radicals comprise of oxygen with at
least one unpaired electron. Unpaired electrons pair with other electrons for a stable
conformation. These free radical forms swiftly react with other molecules and
generate supplementary free radicals (Foyer and Halliwell, 1976).

Abiotic stresses increase generation and assemblage of very reactive reactive
oxygen species. This sequentially leads to oxidative stress. Compounds responsible
for tolerance, e.g., heat shock proteins (HSP) in temperature stress, also activate
oxidative bursts (Panchuk et al. 2002; Lee et al. 2000). Advancement of ROS
detoxification is emblematic of the reaction to abiotic and biotic stresses (Munn-
é-Bosch et al. 2004). Disruption in cellular homeostasis reduces molecular oxygen
and changes it into ROS by high energy electrons (Rizhsky et al. 2002a, b; Mittler,
2002). In living conditions, 1O2, H2O2, O2

.�, and ˙OH reactive oxygen species
damage all organic components (Snider et al. 2008). ROS generates at low levels in
chloroplasts, mitochondria apoplasm, and peroxisomes and endoplasmatic reticulum
(Polle 2001; Ashraf 2009; Ahmad and Umar 2011; Ahmad and Prasad 2012a, b;
Ahmad et al. 2013). Under normal conditions of growth, ROS production increases
during environmental stress conditions (Laloi et al. 2004; Ahmad and Umar 2011;
Ahmad and Prasad 2012a, b; Zare and Pakniyat 2012; Ahmad et al. 2013; Rasool
et al. 2013) and reacts directly with numerous metabolites for instance, lipids
(peroxidation), proteins (degradation, inactivation) and nucleic acids (DNA/RNA
disruption) pigments, and other vital cellular molecules causing cell membrane
injury and cell death (Apel and Hirt 2004; Bencze and Veisz 2005; Gao et al.
2008; Ashraf 2009; Mittler et al. 2011).

Abiotic or biotic stresses produce ROS by NADPH oxidases (Pei et al. 2000).
Plants have three main pathways for ROS generation:

1. Electron transport chain (ETC) in photosynthetic chloroplasts and powerhouses
of mitochondria.

2. A number of peroxidases and oxidase processes (glycolate oxidase, NADH
oxidase, NADPH oxidase, amine oxidase, xanthine oxidase, and lipoxygenase).

3. Photosensitizer molecules holding chlorophyll (Blokhina et al. 2003).

Inadequate CO2 fixation along with reduced ETC is the principal goal of ROS
generation in chloroplasts. During photorespiration, glycolate oxidation into
glyoxylic acid produces H2O2 in plant peroxisomes (Mittler et al. 2004). Stress
disturbs functions of mitochondria, resulting in accumulation of ROS and in turn
oxidative damage to lipids of membranes (Vacca et al. 2004; Suzuki and Mittler
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2006). Electrons from NADH produced by enzymes of Krebs cycle reduce O2 to
reactive oxygen intermediates (ROI) by ETC (Davidson and Schiestl 2001). This
process suppresses ROI production during stress conditions and induces several
defense genes, e.g., scavenging enzymes of ROI (Mittler 2002). The ROS signaling
molecule has roles in growth, development, biotic and abiotic stress, and the
programmed cell death of plants. ROS overproduction causes oxidative stress. In
oxidative stress, capability of cellular defense system to eliminate ROS molecules is
lesser than ROS generation. The balance between the production of ROS and the
consumption of ROS shifts toward higher generation of ROS (Ahmad et al. 2008,
2010a, b, 2011a, b; Ahmad and Umar 2011). The swift ROS production known as
oxidative burst is an indispensable process. Respiratory burst oxidase homolog
(Rboh) genes, which encode NADPH oxidases, are key producers of signal
transduction-associated ROS (Miller et al. 2009). Certain signaling pathways expo-
nentially enhance the ROS amount to battle against infection and stress in plants.
This exponentially increased ROS is labeled as the oxidative burst. The positive
power of ROS in low concentrations is decisive in certain vital plant pathways. The
estimations state that beyond all the O2 absorbed, approximately 1% of O2 is side-
tracked to ROS production (Tuteja 2010; Sharma et al. 2012). The localized and
temporal ROS production and ROS scavenging are probably very critical in cellular
and intracellular transduction of ROS signals (Panchuk et al. 2002). Therefore, two
slightly opposite functions of ROS highlight the necessity to regulate steady state
level of ROS in plant cells. This provides an extra potent approach for improving
crop tolerance to various stresses (Suzuki and Mittler 2006). ROS-scavenging
mechanisms protect plants (Yabuta et al. 2002; Yoshimura et al. 2004).

5.3 Scavenging of Reactive Oxygen Species (ROS)

Stress factors induce oxidative stress and antioxidative enzyme expression in bacte-
ria, yeast, and plants (Morgan et al. 1986; Davidson et al. 1996; Jaleel et al. 2007;
Esfandiari et al. 2007). ROS is a by-product of stress in plants, which damages
cellular organelles (Xiaozhong and Huang 2000; Polle 2001). For protection of
cellular and subcellular systems from oxidative damage, plant’s responses have
developed various ROS scavengers consisting of functionally interlocked protective
detoxification systems of enzymatic and nonenzymatic antioxidants for neutralizing
cytotoxic effects of ROS (Sairam and Tyagi 2004). The detoxification systems
include protective molecules like isoprene, glycine betaine, α-tocopherol (vitamin
E), and carotenoids and antioxidant metabolites, for instance, ascorbic acid and
glutathione (Sakamoto and Murata 2001; Young et al. 2004; Markovska et al.
2009). Several plants under stressed condition synthesize and accumulate antioxi-
dant enzymes as defensive mechanism. Antioxidant system consists of a battery of
enzymes that scavenge oxygen radicals, for instance, dehydroascorbate reductase,
ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT), gluta-
thione reductase, glutathione peroxidase (GPX), and peroxiredoxin (PrxR) (Kubo
et al. 1999; Sairam et al. 2000; Shah et al. 2001; Iba 2002; Mittler et al. 2004).
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Antioxidants in excess bind to ROI molecule and detoxify or scavenge
it. Antioxidative activities of antioxidants upregulate under stress, but their activities
are diverse in different species (Smirnoff 2005).

5.3.1 Nonenzymatic Antioxidants

The nonenzymatic antioxidants include glutathione (GSH), tocopherols,
carotenoids, ascorbate (AsA), flavonoids, flavones, and anthocyanins (Fig. 5.1)
(Schafer et al. 2002; Gupta et al. 2005; Ahmad et al. 2008, 2010a, b, 2011a, b;
Ahmad and Umar 2011; Ahmad and Prasad 2012a, b; Ahmad et al. 2013; Rasool
et al. 2013). These antioxidants function as redox buffers, which show ROS interac-
tion and acts as metabolic interface that modulates proper induction of acclimation
responses (Foyer and Noctor 2005). Ascorbate and glutathione are vital nonenzy-
matic antioxidants of ascorbate-glutathione cycle (Rasool et al. 2013; Ahmad et al.
2013).

Nonprotein
amino acids

Non-enzymatic
Antioxidants

Ascorbic acid
(AsA)

Phenolic acids

Alkaloids

Flavonoids

Carotenoids

α-tocopherol

Glutathione
(GSH)

Fig. 5.1 Nonenzymatic antioxidants
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5.3.1.1 Glutathione (GSH)
Glutathione (GSH) is tripeptide γ-glutamylcysteinylglycine (γ-glu-cys-gly) metabo-
lite with significant role in plants. GSH appears in reduced form in tissues of plant.
GSH is localized in cytosol, apoplast, chloroplasts, peroxisomes, mitochondria,
vacuoles, endoplasmic reticulum, and scavenges peroxides (Noctor and Foyer
1998; Jimenez et al. 1998; Asada 1999; Gill and Tuteja 2010; Szarka et al. 2012;
Ramírez et al. 2013). Inside plant cells, GSH exists in reduced form (GSH) and
oxidized disulfide form (GSSG) (Shu et al. 2011).

GSH is the most important antioxidant and plays a vital function in antioxidative
defense system and pathogen tolerance and detoxifies ROS by the regeneration of
ascorbic acid through ascorbate-glutathione cycle and protects plants from oxidative
damage (Foyer and Halliwell 1976; Noctor and Foyer 1998; Ogawa 2005; Shiu and
Lee 2005; Shan et al. 2011). GSH is a substrate of glutathione S-transferase (GST)
and detoxifies dehydroascorbate reductase (DHAR) and xenobiotics (Mendoza-
Cozatl and Moreno-Sanchez 2006). GSH conserves cellular redox equilibrium by
combining with its GSSG under stressful or normal conditions (Wang et al. 2008).

5.3.1.2 Ascorbate (Ascorbic Acid)
Ascorbate is a water soluble metabolite, ubiquitous antioxidant, and enzyme cofactor
molecule, with localization in different organelles of cell, such as apoplast, chloro-
plast, cytosol, mitochondria, and peroxisome, has roles in photosynthesis, photo
protection, growth of cell wall, and development, and fights against stress,
biosynthesizes ethylene, gibberellins, hydroxyproline and anthocyanins (Wolucka
and Van Montagu 2003; Mellidou et al. 2012). It plays central role in the removal of
H2O2 and singlet oxygen (Noctor and Foyer 1998; Asada 1999). Ascorbic acid
frequently occurs in reduced state (ascorbic acid/vitamin C) in plant leaves and
chloroplasts under normal conditions and two oxidized ascorbate forms of mono-
ascorbic acid and dehydroascorbic acid. The ratio of reduced and oxidized ascorbate
forms is a principal factor that influences plant tolerance to oxidative stress (Conklin
et al. 2000; Zechmann 2011; Cruz-Rus et al. 2012). Concentration of ascorbic acid in
cells increases to millimolar range (Smirnoff 2005).

Ascorbate is the most powerful compound for detoxification of reactive oxygen
species due to its capability to provide electrons in various nonenzymatic or enzy-
matic reactions. Ascorbic acid directly quenches O2

�, 1O2, and hydroxyl radicals,
reduces H2O2 via glutathione-ascorbate cycle, and takes part in redox signaling,
gene expression modulation, and enzymatic activity regulation (Foyer et al. 1997;
Zechmann 2011). Ascorbate on reaction with reactive oxygen species produces
monodehydroascorbate (MDHA), which disproportionates into dehydroascorbate
(DHA) and ascorbate (Smirnoff et al. 2001). Ascorbic acid recovers tocopherols
from tocopheroxyl radical and offers protection of membrane. Consequently,
increased ascorbic acid levels in plants balance detrimental influences of oxidative
stress (Smirnoff 2005).
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5.3.1.3 Proline
Proline accumulates safeguard cellular redox potential and protects plants as ROS
detoxification molecule. It maintains integrity of cell membranes and stabilizes
antioxidant enzymes. Proline over accumulation has toxic effect on plant cells
(Rizhsky et al. 2004a, b).

5.3.1.4 Tocopherols
Tocopherols (α-tocopherol) are lipid soluble metabolites with antioxidant and
nonantioxidant potential, present in all plant parts produced by photosynthetic
organisms with localization in biological membranes (Munné-Bosch 2005;
Holländer-Czytko et al. 2005; Maeda and DellaPenna 2007; Ashraf 2009; Quadrana
et al. 2013). Tocopherols detoxify lipid radicals and ROS (Holländer-Czytko et al.
2005). Plant tocopherols have four isomers (α-, β-, γ-, and δ-) (Ashraf 2009). It
removes. OH radicals, superoxide radical, and singlet oxygen (Asada and Takahashi
1987). Leaves store most abundant form of α-tocopherol, and seeds store
γ-tocopherol. The β-tocopherols and δ-tocopherols are less copious in plants. The
α-tocopherol is biosynthesized from γ-tocopherol in green chloroplasts by
γ-tocopherol methyl transferase (γ-TMT, VTE4) (DellaPenna 2005; Lichtenthaler
2007; Szymanska and Kruk 2008; Gill and Tuteja 2010; Szarka et al. 2012; Velasco
et al. 2013). The α-tocopherol changes during stress into two phases. In initial phase,
α-tocopherol content enhances under stress and reduces ROS levels. In second
phase, under severe stress, α-tocopherol degradation is more than biosynthesis.
Stress-tolerant plants face first phase, and stress sensitive plants have second
phase. In photosynthetic biological organisms, fluctuations in tocopherol content
were confirmed under drought, salinity, heavy metal, or high radiation stresses
(Collakova and DellaPenna 2003; Ledford et al. 2004; Munné-Bosch 2005;
Tounekti et al. 2011a, b).

5.3.1.5 Carotenoids
Carotenoids are lipophilic isoprenoids derived from organic pigment antenna
molecules, localized in plant chloroplasts with multiple functions in plant metabo-
lism and tolerance to oxidative stresses (Taiz and Zeiger 2006; Fraser et al. 2007). It
scavenges singlet oxygen and protects chlorophyll from photoxidation (Demmig-
Adams and Adams III 1992; Neubauer and Yamamoto 1992). The chlorophyll to
carotenoid ratio is the indicator of seed tolerance to stress (Smolikova et al. 2011).

5.3.1.6 Flavonoid
Flavonoid phenolic pigments found floral parts; pollens and leaves of plants have
antioxidant properties against various oxidizing compounds. Innumerable
flavonoids act as potential inhibitors of lipoxygenase enzyme. Lipoxygenase enzyme
transforms polyunsaturated fatty acids to oxygen comprising derivatives (Nijveldt
et al. 2001).
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5.3.2 Enzymatic Antioxidants

Enzymatic antioxidants take part in ROS detoxification in abiotic stress (Jiang and
Huang 2001; Vacca et al. 2004). Peroxidase (POD), catalase (CAT), superoxide
dismutase (SOD) and GR, monodehydroascorbate reductase (MDHAR or MDAR),
ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR or DAR), and
glutathione reductase (GR) scavenge superoxide and H2O2 and MDAR and GR
regenerate ascorbate (Fig. 5.2) (Mittler 2002; Nagesh-Babu and Devaraj 2008;
Ahmad et al. 2008, 2010a, b, 2011a, b; Ceylan et al. 2013). Accumulation of
ROS, for instance, H2O2 under various environmental stresses, increased CAT and
POX activities.
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5.3.2.1 Superoxide Dismutase (SOD)
The main and universal multimeric metalloprotein enzymatic antioxidant defense
system in plants is SOD localized in chloroplast, cytsol, mitochondria, peroxisome,
apoplast (Gür et al. 2010). SOD catalyzes dismutation/scavenging of two superoxide
radicals O2� into molecular oxygen and hydrogen peroxide (H2O2) (Abedi and
Pakniyat 2010; Zare and Pakniyat 2012) and thus reduces hydroxyl radical
(OH) formation, which is very toxic (Bowler 1992; Scandalios 1993). SOD
isoforms, localized within cell apoplast, are differentially expressed in plants
(Wingsle et al. 1999). According to SOD metal cofactor existing at their active
sites, plants contain different types like manganese (Mn) (MnSOD), copper/zinc
(Cu-Zn) (CuZnSOD), iron (Fe) (FeSOD), and nickel (Ni-SOD) in chloroplasts and
mitochondria (Alscher et al. 2002; Halliwell 2006; Abedi and Pakniyat 2010; Zare
and Pakniyat 2012).

Bacteria also contain these four SODs (Halliwell and Gutteridge 2006). After
SOD changes superoxide radical to H2O2, then either CAT, APX, or POD reduce
H2O2 to H2O and O2 in cytoplasm and cell organelles (Howarth 2005). Stress
increases SOD enzyme activity for the detoxification of superoxide radicals
(Abedi and Pakniyat 2010; Zare and Pakniyat 2012).

5.3.2.2 Catalase
Catalases (CATs) are tetrameric iron porphyrins. In plants, CATs generate inside
peroxisomes and glyoxisomes. CAT catalyzes redox reaction in which H2O2

changes into oxygen and water. CAT specifically detoxifies H2O2. It also reacts
with various organic hydroperoxides, for instance, methyl hydrogen peroxide
(MeOOH) (Mittler 2002; Ali and Alqurainy 2006).

5.3.2.3 Ascorbate Peroxidase
Peroxidases remove the scavenging of H2O2 through oxidization of various
cosubstrates. Various peroxidases are not specific and use various cosubstrates
(Mano et al. 2001). Ascorbate peroxidase (APX) is a vital antioxidant enzyme
having different isoforms in chloroplasts, mitochondria, cytosol, peroxisome,
apoplast, and microsomes. These ascorbate isoforms detoxify H2O2 (Asada and
Takahashi 1987; Asada 1999; Rasool et al. 2013; Ahmad et al. 2013). APX converts
toxic H2O2 on reaction with ascorbate substrate to monodehydroascorbate (MDHA)
(Payton et al. 2001; Blokhina et al. 2003). In plant cells, four classes of APX are
chloroplast thylakoid bound (tAPX), glyoxisome membrane (gmAPX), chloroplast
stromal soluble (sAPX), and cytosolic (cAPX). The ascorbic acid antioxidant plays a
positive role for plant defense against oxidative stress. Ascorbic acid recovers by
MDAR, DHAR, and GR, oxidized by APX. The stress increased APX gene expres-
sion in chloroplasts of tobacco plants and in turn increases resistance to salt stress
and drought (Rizhsky et al. 2002b; Abedi and Pakniyat 2010; Zare and Pakniyat
2012). APX increases during stress and recovery from stress in tolerant genotypes
approves that glutathione-ascorbate cycle is extra proficient in tolerants and provides
tolerance to seedlings (Pang and Wang 2010). Plant glutathione peroxidases (GPXs)
have Cys instead of seleno-Cys at their active sites. This decreases their catalytic
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action. Actually, some enzymes favor thioredoxin to GSH (Rodriguez-Milla et al.
2003).

5.3.2.4 Monodehydroascorbate Reductase (MDHAR)
Chloroplast, mitochondria, and cytosol cause the reduction of MDHA to ascorbate
(Jimenez et al. 1997).

5.3.2.5 Dehydroascorbate Reductase (DHAR)
DHAR localized in chloroplast, mitochondria, and peroxisomes plays an important
function in defense system and regenerates ascorbate from dehydroascorbate (Asada
1994).

5.3.2.6 Glutathione Reductase (GR)
GR is another enzyme localized primarily in chloroplasts or in low amounts in cell
cytosol and mitochondria, which inhibits oxidation of enzymes and cell membranes
from HTS and protects plants (Creissen et al. 1994; Almeselmani et al. 2006). It
helps in reducing the glutathione (Edwards et al. 1990; Creissen et al. 1994).

Peroxiredoxins are homodimers with significant H2O2-scavenging systems (Rhee
et al. 2005) and are 2-Cys peroxiredoxins, atypical 2-Cys peroxiredoxins, and 1-Cys
peroxiredoxins (Georgiou and Masip 2003).

5.4 Genetic Engineering-Based Stress Tolerance in Plants
Through Antioxidants

Most types of abiotic stress factors, for instance, high light, water deficiency,
salinity, flooding, and temperature extremes, interrupt the metabolic balance of
plant cells, resulting in highly stress-induced overproduction of ROS, which causes
cellular damages and damage to lipids, nucleic acids, proteins, and carbohydrates
(Kanofsky and Sima 1991; Mittler 2002; Mano 2002; Mittler et al. 2004; Foyer and
Noctor 2005; Rodriguez and Redman 2005; Ahmad et al. 2009, 2010; Sharma et al.
2012; Suzuki et al. 2012a). Abiotic stress tolerance and stress-induced oxidative
protection/tolerance have been accomplished in several crop plants by the generation
of transgenics through detoxification strategies of overexpression of glutathione
peroxidase, ascorbate peroxidase, superoxide dismutase, and glutathione reductase
and other enzymatic and nonenzymatic antioxidants (Roxas et al. 1997; Zhu et al.
1999; Lee et al. 2007a, b; Zaefyzadeh et al. 2009; Kosová et al. 2011). The low
molecular nonenzymatic antioxidants, for instance, carotenoids, ascorbate,
tocopherols, and glutathione, play key role to survive with oxidative stress (Xie
et al. 2008; Liu et al. 2009; Ahmad et al. 2010; Gill and Tuteja 2010; Miller et al.
2010; Shu et al. 2011; Mostafa and Ibrahim 2012).

A number of forms of nuclear-encoded SOD have been cloned in plants. FeSOD
genes (FSD1, FSD2, and FSD3), Cu/ZnSOD genes (CSD1, CSD2, and CSD3), and
MnSOD gene (MSD1) with an amino terminal targeting sequence occur in
Arabidopsis thaliana (Scandalias 1990; Kliebenstein et al. 1999). CAT isozymes
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such as CAT1 and CAT2 are restricted to peroxisomes and cytosol and CAT3 to
mitochondria in Helianthus annuus and Brassica (Polidoros and Scandalios 1999;
Azpilicueta et al. 2007). CAT isozymes show temporal and spatial regulation and
respond differentially to light (Scandalias 1990; Willekens et al. 1994). CAT1 is
associated with genes of β-oxidation of fatty acids and superoxide dismutase. CAT3
is a senescence-associated gene (SEN2), whereas CAT1 displays mainly higher
expression in male flower parts. H2O2 accumulation dramatically reduces in the
transgenic cassava plants with upregulated CAT expression (Xu et al. 2013). The
plants with knocked down catalase show correlation between the availability of
intracellular H2O2 and GSH-GSSG ratios. The improved availability of H2O2

declines the status of GSH pools (Queval et al. 2009; Mhamdi et al. 2010).
Catalase-deficient barley, tobacco, and Arabidopsis plants show distressed glutathi-
one status because of the higher load on catalase-independent pathways for
metabolizing H2O2 at intracellular levels (Smith et al. 1984; Rizhsky et al. 2002a;
Queval et al. 2007). In tobacco and barley, Cat1 deficiency of Cat1-deficient plants
produced white necrotic lesions on plant leaves after exposure to higher light
intensities due to reduced ability to eliminate exogenous H2O2 and disturbs other
defense system components (Kendall et al. 1983; Willekens et al. 1997). APX, CAT,
and GPX central players remove H2O2 in plants. CAT deficiency induces APX
mitAOX, MDA reductase, and GPX to compensate for CAT suppression (Mittler
2002). Decline in peroxisomal catalase activity increases sensitivity to ozone, and
H2O2 induced cell death in Arabidopsis thaliana. Deleterious effects of salinity
reduce by pretreatment with H2O2 and raised catalase activity in maize (Gondim
et al. 2012). Modifications in grade of thiol–disulfide balance catalase deficiency and
create an oxidized cellular redox in mutants (Queval et al. 2009). High light induces
photorespiration and APX and GPX accumulation in catalase-deficient Nicotiana
tabacum (Willekens et al. 1997). GPX induction in Cat2 deficient mutants acts as a
well-defined alternate pathway to manage decomposition of H2O2 in catalase defi-
ciency Arabidopsis (Queval et al. 2007; Mhamdi et al. 2010). Overexpression of
BjCAT3 gene in Brassica juncea increased CAT activity by twofolds, which
boosted Cd tolerance (Guan et al. 2009). Transgenic rice overexpressing CAT
gene (katE) from Escherichia coli was salinity tolerant (Nagamiya et al. 2007;
Moriwaki et al. 2008). ABA-induced expression of CAT1 is mediated by MAPK
cascade-mediated ABA signaling in Arabidopsis. Therefore, close-fitting connection
of H2O2 and ABA signaling due to CAT1 may be part of H2O2 signaling (Xing et al.
2008; Michelet et al. 2013). GST and CAT1 gene co-expression increased CAT and
SOD activity in transgenic rice seedlings on exposure to both salinity and paraquat,
whereas increased GST activity in transgenics took place only in plants stressed with
paraquat (Zhao and Zhang 2006). Site-specific modifications in the activity of
antioxidant enzymes have been reported. CAT stimulates in root and shoot; APX
in endosperm and GR and POD are upregulated in shoots of drought-tolerant wheat
genotypes (Devi et al. 2012).

The modification of DHAR expression is imperative for genetic engineering
plants with property of stress tolerance (Amako and Ushimaru 2009). MDHAR
overexpression reduces damaging consequences of ecological stresses (Eltayeb et al.
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2007). In transgenics, overexpression of DHAR tolerates Al stress, tolerates salinity
in Arabidopsis, and results in water deficiency and tolerance to ozone toxicity in
tobacco plants by maintaining high ASC pool (Yin et al. 2010; Chen and Gallie
2005; Ushimaru et al. 2006; Eltayeb et al. 2006). DHAR overexpressing plants show
enhanced growth of roots and lesser content of H2O2, less peroxidation of lipids, and
levels of oxidative damage to DNA in Al stress (Yin et al. 2010). Transgenic tobacco
overexpresses AtMDAR1 and showed 2.1-fold higher MDHAR activity and 2.2-
fold higher level of reduced AsA and enhanced tolerance to O3, salinity, and drought
stress (Eltayeb et al. 2007). Tobacco transformants express DHAR, GR, and GST
genes and display changed antioxidant metabolism and better resistance to salt and
chilling stress (Martret et al. 2011). Tomato fruits having enhanced MDAR activity
showed improved chilling tolerance (Stevens et al. 2008). Salt and osmotic stress-
tolerant transgenic tobacco plants showMDAR overexpression (Eltayeb et al. 2007).

APX family has four different isoforms, i.e., chloroplast stromal soluble form
(sAPX), thylakoid (tAPX), glyoxisome membrane form (gmAPX), and cytosolic
form (cAPX) (Noctor and Foyer 1998). In response to water deficit, salt, or ozone,
APX expression increases in plants (Noctor and Foyer 1998; Yoshimura et al. 2000).
In chloroplasts of tobacco, overexpression of APX enhances tolerance of plants to
salinity and water deficiency (Badawi et al. 2004a, b). The ascorbate-glutathione
cycle enzymes, for instance, APX and GR, were upregulated under high temperature
in lily plants. These enzymes play an indispensable role in the alleviation of H2O2

accumulation. At transcriptional level, APX upregulation and generation of novel
thermostable APX isoforms in Arabidopsis thaliana alleviate H2O2 accumulation
(Panchuk et al. 2002).

Heat-tolerant genotype of cabbage exhibited higher GSH content. Due to increase
in expression of APX, DHAR, and GR enzymes in apple leaves on exposure to heat
stress, content of AsA, total glutathione, GSH, and GR also increase (Ma et al.
2008). APX and GR stop the oxidation of enzymes and cell membranes and
henceforth play an imperative part in the protection of plants from heat
(Almeselmani et al. 2006). The pAPX (peroxisomal type ascorbate peroxidase)
scavenges H2O2 in peroxisomes (Shi et al. 2001). A gene pAPX (HvAPX1) from
Hordeum vulgare was transferred to transgenic Arabidopsis thaliana plant against
oxidative stress (Shi et al. 2001). Both CAT and APX enzymes detoxify H2O2 into
H2O and O2. In oxidative stress conditions, CAT activity is declined in peroxisomes
(Shi et al. 2001). In normal conditions, total APX enzyme activity does not fluctuate.
Overexpression of HvAPX1 transgenic against salt tolerance only affects single
APX isoenzyme instead of improving total APX enzyme activity (Tsugane et al.
1999). The cytosolic APX mRNA increases under ozone stress and causes detoxifi-
cation of ROS (Kubo et al. 1995; Örvar et al. 1997). Antisense version of cytosolic
APX reduced tolerance to ozone in tobacco plants (Örvar et al. 1997). OsAPXa
overexpressing rice plants exhibited improved APX activity and lower levels of
H2O2 and MDA in cold stress (Sato et al. 2011). Two different signals were likely
generated in thylakoid ascorbate peroxidase (tylapx) and cytosolic ascorbate peroxi-
dase 1 (apx1) gene knockout double mutants. The absence of chloroplastic H2O2

removing enzymes enhances heat tolerance in plants (Miller et al. 2007). The
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thylakoid-bound APX genes (LetAPX) from tomato on overexpression in tobacco
lead to enhanced salinity tolerance (Sun et al. 2009).

Heavy metals cause oxidative stress because of better ROS production (Dietzk
et al. 1999). SbMYB15 transgenic tobacco displayed heavy metal tolerance.
SbMYB15 overexpression improved CAT and SOD activities, MnSOD (twofold),
and CdCl2 (three- or ninefold), and CAT1 (62-fold) (Sapara et al. 2019).
Overexpression of CaGrx from chickpea increased heavy metal tolerance into
A. thaliana. Transgenics exhibited enhanced activities of GRX, GST, GR, GPX,
CAT, APX, SOD, and MDHAR in AsIII and Cr stress (Kumar et al. 2020). The gene
expression for GSH biosynthetic enzymes was enhanced in Cd-tolerant transgenic
Brassica juncea (Zhu et al. 1999). Yeast cadmium factor (YCF1) is a glutathione-S-
conjugate transporter. In yeast, it transports Cd21 GSH in a vacuolar membrane
protein (YCF1) and confers tolerance to Cd21 (Decottignies and Goffeau 1997;
Morgan et al. 2013). GS or g-ECS overexpression in B. juncea showed improved
stress resistance to various HMs (Cd, Zn, As, and Pb) because of higher capacity of
GSH and PC biosynthesis (Reisinger et al. 2008). Aluminum (Al+3) toxicity inhibits
root growth (Tabaldi et al. 2009). Tolerant lines showed Al+3 tolerances because of
improved GST activity (Darkó et al. 2004). Ascorbate-glutathione enzymes
increased in Al+3-stressed rice seedlings to cope with oxidative stress (Sharma and
Dubey 2007). MDHAR or DHAR transgenic tobacco plants tolerate Al+3 stresses by
regeneration of reduced AsA (Yin et al. 2010). Higher proline synthesizing trans-
genic plants showed better resistance to several abiotic stresses and oxidative
damage. Transgenic green microalga Chlamydomonas reinhardtii overexpressing
P5CS show tolerance to toxic cadmium heavy metal stress by accumulation of above
twofold free proline content and GSH redox state (Siripornadulsil et al. 2002).

GR overexpression increased tolerance to plant oxidative stress because of
increased antioxidant capacity. Transgenic plants produced by manipulation of
various antioxidant enzymes of ascorbate-glutathione cycle show tolerance to salin-
ity (Ashraf 2009; Kocsy et al. 2001). The cold tolerant coffea sp. shows higher level
of Cu/Zn-SOD, APX, ascorbate, and tocopherol molecules for controlling oxidative
stress produced during chilling (Fortunato et al. 2010). Acerola PMM transgenic
tobacco has threefold more ascorbate content (Badejo et al. 2009b). In Arabidopsis
thaliana, mutations in genes of D-Man/L-Gal pathway decreased AsA content
(Dowdle et al. 2007; Linster et al. 2007). Overexpression of these genes improved
AsA levels (Dowdle et al. 2007; Linster et al. 2008). Arabidopsis ERF (AtERF98)
gene regulates AsA synthesis through the activation of synthesis associated genes
(Zhang et al. 2012). The ascorbate content enhanced twofolds in transgenic tobacco
transformed with GME and GGP than individual gene. The expression of acerola
was 5- to 700-fold higher than in Arabidopsis (Badejo et al. 2009a). In Solanum
lycopersicon, overexpression of GDP-Man-3, 5-epimerase gene (SlGME) increases
AsA content and tolerance to salinity and cold (Zhang et al. 2011). Overexpressed
GDP-D-mannose pyrophosphorylase (GMPase) gene of acerola shows a two- to
threefold rise in ascorbate content in Solanum lycopersicon (Badejo et al. 2008).
The GMPase levels change due to the change in AsA content on the basis of the
presence or absence of light (Wang et al. 2011, 2013). GMPase gene shows
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overexpression in transgenics in normal conditions and heat stress. The activities of
GMPase, DHAR, MDHAR, and APX and contents of DHA and AsA increase. Thus,
potato and Solanum lycopersicon tolerate temperature stress because of
overexpression of GMPase, which in turn increase AsA levels (Li et al. 2011a, b).
During stress, expression of AsA induces and increases AsA biosynthesis in Sola-
num lycopersicon (Ioannidi et al. 2009). There is an association between the rise in
content of AsA and expression of GDP-L-galactose phosphorylase (GGP) and
GDP-D-mannose, 30, 50-epimerase (GME) in kiwifruit (Bulley et al. 2009).

Overexpression of either Gly I or Gly II glyoxalase system enzymes increases
tolerance to abiotic stress in plants (Singla-Pareek et al. 2003, 2006, 2008; Lin et al.
2010; Wu et al. 2012; Viveros et al. 2013). GalUR overexpression in transgenic
potato plants shows better tolerance to salinity and salinity-induced oxidative stress,
accumulation of AsA, restricted increase in MG levels, higher GSH/GSSG ratio, and
increased activities of APX, DHAR, GR, GST, GPX, and Gly I and Gly II. Increased
ROS, MG detoxification, changes in GSH, and AsA redox state enhanced salinity
tolerance in transgenics (Upadhyaya et al. 2011). The induction of plant-specific Tau
class GSTU genes by various abiotic stresses provides improved protection of plants
to oxidative damage (Jha et al. 2011). The effect of heat on glutathione and ascorbic
acid levels was reported (Kocsy et al. 2002, 2004; Kumar et al. 2012; Dai et al.
2012). The transgenic tomato showed higher GPX activity and more resilience to
abiotic stress but more susceptibility to biotic stress (Herbette et al. 2011). Tobacco
GST with GPX overexpression in Nicotiana tabacum L. improved seedling growth
in heat and salinity stress (Roxas et al. 2000). The proline biosynthesis suppression
in transgenic plants with inducible gene coding for P5CR in the antisense direction
improved drought sensitivity (de Ronde et al. 2000, 2001). Salt hypersensitive
Arabidopsis mutant (p5cs1) had reduced root growth, proline content, and NADP1
to NADPH ratio and enhanced ROS production, severe chlorophyll destruction,
elevated H2O2, and level of lipid peroxidation under severe oxidative stress (Szekely
et al. 2008; Sharma et al. 2011). Nicotiana tabacum transformed with P5CS gene
exhibited an increase in activities of APX, CAT, and proline accumulation and
salinity tolerance (Razavizadeh and Ehsanpour 2009). “Swingle” citrumelo
rootstocks were transformed with P5CSF129A gene encoding for proline biosyn-
thesis (De campos et al. 2011). APX, CAT, SOD, and GR exhibited differential
regulation in leaves of Swingle citrumelo transgenics with high endogenous accu-
mulation of proline under drought stress and normal conditions (De Carvalho et al.
2013). P5CS gene overexpression in both sense and antisense directions was done in
transgenic soybean plants. Antisense transgenics showed severe H2O2 and lipid
hydrogen peroxide levels, higher GSH pool, and ROS injury. The sense transgenics
showed slightest injury due to lower accumulation of H2O2 and higher proline and
AsA pool in drought or combined heat and water deficiency stress (Kocsy et al.
2005). Transgenic sugarcane plants overexpress P5CS gene with 2.5-fold higher
proline content but no osmotic adjustment under drought (Molinari et al. 2007). A
rice transgenic overexpressing P5CSF129A gene showed higher salinity tolerance
and reduced lipid peroxidation (Kumar et al. 2010). Salinity leads to excessive ROS
generation and oxidative stress in plants produced as a derivative of aerobic
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metabolism (Chaparzadeh et al. 2004; Parida and Das 2005; Noreen et al. 2009;
Ashraf 2009; Wang et al. 2012a, b).

OsOAT gene transgenic rice showed higher GSH pool, enhanced activities of
GPX and POD, ROS scavenging activity, proline accumulation, and better water
deficiency and osmotic stress tolerance (You et al. 2012). Transgenic Solanum
tuberosum overexpressing l-gulono-c-lactone oxidase (GLOase) gene boosted
basal levels of AsA content and showed improved persistence under various abiotic
stresses (Hemavathi et al. 2010). The a-tocopherol overexpression increases plant
tolerance to oxidative stress. Tocopherol cyclase (VTE1) catalyzes second last step
of tocopherol biosynthesis. VTE1 overexpressing transgenic tobacco exhibited
declined lipid peroxidation, electrolyte leakage, and H2O2 content in water defi-
ciency conditions (Liu et al. 2008).

Synchronized overexpression of Cu/Znsod and apx or only apx in transgenic
tobacco plants lessened the damage of drought stress (Faize et al. 2011). SOD
(SOD-OX) overexpression in leaves enhanced tolerance to both acute and longer-
term high temperatures (Artlip et al. 2009). In Ipomoea batatas, expression of
Cu/ZnSOD and APX improved water deficiency resistance and the recovery rate
from water deficiency stress (Lu et al. 2010). Expression of CuZnSOD, APX, and
DHAR in transgenic tobacco plants was extra effective than single or double
expression with improved tolerance to various stresses (Lee et al. 2007a, b).

Overexpression of MuWRKY3 gene from horse gram into groundnut plants leads
to lower contents of MDA, H2O2, and O2˙� and improved SOD (three- to fivefolds)
and APX (three- to sevenfolds) activities and increased water deficiency tolerance
(Kiranmai et al. 2018). MdATG18a overexpression in apple increased the activities
of CAT and POD and improved tolerance to drought stress by high frequency of
autophagy and restriction of oxidative damage (Sun et al. 2018). Overexpression of
chrysanthemum DgNAC1 gene lowered the accumulation of MDA, H2O2, and
O2• � and significantly improved SOD, CAT, and POD activities and salinity
tolerance in transgenics (Wang et al. 2017). PaSOD (Potentilla atrosanguinea)
and RaAPX (Rheum australe) were overexpressed in potato dual transgenic. Trans-
genic potato increased activities of SOD and APX positive regulators to enhance
tolerance to salinity by ROS regulation and lignin biosynthesis signaling (Shafi et al.
2017). DaAPX overexpression and supplementation of transgenic plants with H2O2

improved APX activity and improved flooding and cold tolerance (Chen et al. 2019).
AtDREB1A overexpression in tomato plants increased activities of SOD and CAT
and superior chilling stress tolerance (Karkute et al. 2019). Overexpression of
StSOD1 gene improved SOD, POD, and CAT activities and improved cold tolerance
in transgenic plants (Che et al. 2020). Chrysanthemum CmSOS1 overexpression
enhanced SOD and CAT in transgenic plants (Wang et al. 2019). A summary of
transgenic plants with increased antioxidant defense system activities under various
stresses is documented in Table 5.1.
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Table 5.1 Transgenic plants tolerant to oxidative stress

Mutant/
transgenic plant Gene Stress response Reference/s

Arabidopsis
thaliana

CaMT Enzyme activities of
APX, POD, GPX, and
GRX enhance in
transgenic plants

Dubey et al.
(2019)

Arabidopsis
thaliana

MpDGK2 Enzyme activities of
CAT, APX, and POD
enhance in transgenic
plant.

Tan and
Wang (2020)

Arabidopsis
thaliana

OsSultr1;1 Enzyme activity is
enhanced, i.e., GSH
with As (III) toxicity

Kumar et al.
(2019)

Arabidopsis
thaliana

BnERF2.4 Enzyme activities of
SOD, POD, and CAT
enhanced in under
waterlogging

Lv et al.
(2016)

Arabidopsis
thaliana

MaRAP2-4 Enzyme activities of
CAT, GPX, and SOD
enhance in transgenic
plants under
waterlogging

Phukan et al.
(2018)

Arabidopsis
thaliana

DaAPX Enzyme activity of APX
enhanced in transgenic
plants

Chen et al.
(2019)

Arabidopsis
thaliana

HvERF2.11 Enzyme activities of
SOD, POD, CAT,
alcohol dehydrogenases
by 2.1-, 2.3-, and 1.9-
fold enhanced in three
transgenic lines under
waterlogging

Luan et al.
(2020)

Arabidopsis
thaliana

apx1/apx2 APX2 knockout lines
produced more seeds
under prolonged heat
stress

Suzuki et al.
(2012b)

Arabidopsis
thaliana

HSF3/APX2 Enhanced ROS
accumulation in plants

Panchuk et al.
(2002)

Arabidopsis
thaliana

CAM3 Thermotolerance
reduced in CAM3
mutants and rescued/
enhanced in CAM3
overexpression

Zhang et al.
(2009)

Arabidopsis
thaliana

CAM3 AtCaM3 is involved in
NO signal transduction
as a downstream factor
and is dependent on
increased HS
transcription factor
DNA-binding activity
and HSP accumulation

Xuan et al.
(2010)

(continued)
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Table 5.1 (continued)

Mutant/
transgenic plant Gene Stress response Reference/s

Arabidopsis
thaliana

Apx1/Apx2 H2O2 takes part in heat
stress signaling pathway
and in HSF activation
during the early phase of
heat stress

Volkov et al.
(2006)

Arabidopsis
thaliana

Mammalian L-gulono-lactone
oxidase

Four- to sevenfold
increase in ascorbate

Jain and
Nessler
(2000)

Arabidopsis
thaliana

DHAR Increased Salinity
tolerance

Ushimaru
et al. (2006);
Chen and
Gallie (2005)

Arabidopsis
thaliana

GPX-2 Salinity, heavy metal,
drought, cold, oxidative,
and MV

Gaber et al.
(2006)

Arabidopsis
thaliana

APX2 and APX 3 Heat tolerance Chiang et al.
(2015)

Arabidopsis
thaliana

MDHAR+ DHAR Freezing oxidative
tolerance

Shin et al.
(2013)

Arabidopsis
thaliana

AtERF98 Activation of ascorbic
acid biosynthesis

Zhang et al.
(2012)

Arabidopsis
thaliana

VvWRKY30 POD, CAT, and SOD
activities enhance in
transgenic plants

Zhu et al.
(2019)

Arachis
hypogaea

MuWRKY3 Enzyme activities of
SOD enhanced by 3–5
and APX by three- to
sevenfolds in transgenic
plants

Kiranmai
et al. (2018)

Brassica
campestris

Cu-Zn SOD + CAT Salinity and SO2 Tseng et al.
(2007)

Brassica juncea GS Heavy metal tolerance Reisinger
et al. (2008)

Chrysanthemum DgNAC1 Enzyme activities of
SOD by twofolds, CAT
by twofolds, and POD
by threefolds enhanced
in transgenic plants

Wang et al.
(2017)

Chrysanthemum
morifolium

CmSOS1 SOD and CAT activities
enhanced in transgenic
plants

Wang et al.
(2019)

E. coli GR Heat and MV Achary et al.
(2015)

Festuca
arundinacea

Mn SOD +APX Multiple abiotic stresses Lee et al.
(2007a, b)

Glycine max GmMYB84 Enzyme activities of
SOD, POD, and CAT
enhanced significantly
in transgenic plants

Zhang et al.
(2020)

(continued)

5 Genetic Engineering Applications in Inducing Stress Tolerance in Plants. . . 87



Table 5.1 (continued)

Mutant/
transgenic plant Gene Stress response Reference/s

Gossypium
hirsutum

GR Cold and
photooxidative
tolerance

Kornyeyev
et al. (2003)

Lycopersicon
esculentum

cAPX Drought, heat, cold, and
UV light

Wang et al.
(2005a)

Malus domestica MdATG18a Enzyme activities of
CAT and POD
enhanced by 1.57–2.05-
fold in transgenic plants

Sun et al.
(2018)

Malus domestica MdATG18a Enzyme activities of
SOD, POD, CAT, AsA,
and GSH enhanced in
transgenic plants, and
decrease in ratio of
GSH/GSSG under
extreme temperature

Huo et al.
(2020)

Manihot
esculenta

APX and Cu-Zn SOD MV and cold Xu et al.
(2014)

Nicotiana
tabacum

ZmSO Increased activity of
GSH in transgenic
plants

Xia et al.
(2018)

Nicotiana
tabacum

SbMYB15 Enzyme activities of
CAT and SOD
enhanced in transgenic
plants and increase the
expression of MnSOD,
CdCl2 and CAT1

Sapara et al.
(2019)

Nicotiana
tabacum

TaFBA1 Enzyme activities of
SOD, POD, and APX
enhanced and CAT
activity decreased in
transgenic plants under
heat stress

Li et al.
(2018)

Nicotiana
tabacum

Cu-Zn SOD Salinity and drought Badawi et al.
(2004c)

Nicotiana
tabacum

katE Salinity Al-Taweel
et al. (2007)

Nicotiana
tabacum

AtMDHAR1 Salinity, ozone and
drought

Eltayeb et al.
(2007)

Nicotiana
tabacum

swpa4 Salinity, osmotic and
oxidative

Kim et al.
(2008)

Nicotiana
tabacum

DHAR Salinity and drought;
ascorbic acid
biosynthesis; aluminum

Eltayeb et al.
(2007), Zhou
et al. (2015b),
Yin et al.
(2010)

(continued)
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Table 5.1 (continued)

Mutant/
transgenic plant Gene Stress response Reference/s

Nicotiana
tabacum

GPX Salinity, cold and
oxidative stress
tolerance

Yoshimura
et al. (2004)

Nicotiana
tabacum

VTE1 Drought tolerance Liu et al.
(2008)

Nicotiana
tabacum

Drought and ozone
tolerance

Ushimaru
et al. (2006)

Nicotiana
tabacum

APX and Cu-Zn SOD Methyl viologen and
oxidative damage;
salinity tolerance

Kwon et al.
(2002),
Negi et al.
(2015)

Nicotiana
tabacum

Cu-Zn SOD MV and cold tolerance;
oxidative and salinity
tolerance; drought
tolerance

Gupta et al.
(1993), Jing
et al. (2015),
Negi et al.
(2015)

Nicotiana
tabacum

APX, Cu-Zn SOD and DHAR Salinity and paraquat
tolerance

Xu et al.
(2014)

Nicotiana
tabacum

EsSPDS1 Drought tolerance Zhou et al.
(2015a)

Nicotiana
tabacum

CAT3 Heavy metal tolerance Gichner
(2004)

Nicotiana
tabacum

SoCYP85A1 Enhanced activity of
POD by 1.3- to 1.5-
folds and SOD by 1.36-
to 1.39-fold

Duan et al.
(2017)

Nicotiana
tabacum

GDP-L-galactose guanylyl
transferase and
GDP-mannose3’,50-epimerase

Sevenfold Bulley et al.
(2009)

Nicotiana
tabacum

Arabidopsis cytosolic DHAR Tolerance to water
deficiency and ozone
stresses

Eltayeb et al.
(2006)

Nicotiana
tabacum

sHSPs H2O2 is required for
activation of sHSP
synthesis

Konigshofer
et al. (2008)

Nicotiana
tabacum

BADH Overexpression
increased
thermotolerance
induced by
accumulation of glycine
betaine and repair of
PSII from heat-
enhanced photo
inhibition in transgenic
plants

Yang et al.
(2007)

Nicotiana
tabacum

MDHAR MDHAR
overexpression
increased tolerance to
salt and osmotic stresses

Eltayeb et al.
(2007)

(continued)
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Table 5.1 (continued)

Mutant/
transgenic plant Gene Stress response Reference/s

Nicotiana
tabacum

Human DHAR gene Tolerance to cold and
salinity stress

Kwon et al.
(2003)

Nicotiana
tabacum

Wheat DHAR gene Tolerance to ozone Chen and
Gallie (2005)

Oryza sativa Cu-Zn SOD Salinity, drought, and
oxidative tolerance

Prashanth
et al. (2008)

Oryza sativa P5CS Drought and salinity
tolerance in transgenic
plants

Su and Wu
(2004)

Oryza sativa MDHAR Salinity tolerance in
transgenic plants

Sultana et al.
(2012)

Oryza sativa Cytosolic GR Photooxidative stress
tolerance

Kouril et al.
(2003)

Oryza sativa MnSOD Salinity tolerance Tanaka et al.
(1999)

Oryza sativa CAM1-1 CaM1-1 Isoform interpret a Ca21
signature regulating
transcription of
nucleoplasmic small
HSP gene during heat
stress

Wu and Jinn
(2012)

Petunia hybrida P5CS Drought tolerance Yamada
(2005)

Populus
davidiana X
Populus
bolleana

MnSOD Salinity tolerance Wang et al.
(2005b)

Prunus
domestica
cv. Claudia
Verde

SOD +APX Salinity tolerance Diaz-
Vivancos
et al. (2013)

Solanum
lycopersicum

DREB1A/CBF3 Drought stress tolerance Rai et al.
(2013)

Solanum
lycopersicum

AtDREB1A Enzyme activities of
SOD and CAT
enhanced in transgenic
plants

Karkute et al.
(2019)

Solanum
lycopersicum

CodA Overexpression of
choline oxidase shows
higher levels MT-sHSP,
HSP70, and HSC70
during heat stress in
transgenic plants

Li et al.
(2011c)

Solanum
lycopersicum

GDP-L- galactose Several fold Bulley et al.
(2012)

(continued)
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Table 5.1 (continued)

Mutant/
transgenic plant Gene Stress response Reference/s

Solanum
lycopersicum

cAPX cAPX overexpression
enhanced resistance to
heat in transgenic plants

Wang et al.
(2006)

Solanum
lycopersicum

Increased MDHAR Chilling tolerance Stevens et al.
(2008)

Solanum
tuberosum

GDP-L- galactose Several fold Bulley et al.
(2012)

Solanum
tuberosum

StSOD1 Enzyme activities of
SOD enhanced by 1.38-
folds, POD by 1.24-
folds, and CAT by 1.37-
folds in transgenic
plants

Che et al.
(2020)

Solanum
tuberosum

GLOase Accumulation of
vitamin C with
enhanced abiotic stress

Hemavathi
et al. (2010)

Solanum
tuberosum

APX and Cu-Zn SOD Heat, oxidative stress
and MV

Tang et al.
(2006)

Solanum
tuberosum

GLOase L-ascorbic acid
accumulation and
tolerance to salinity and
MV

Hemavathi
et al. (2010)

Solanum
tuberosum

P5CS Accumulation of proline
in response to salinity

Hmida-Sayari
et al. (2005)

Solanum
tuberosum

PaSOD, RaAPX SOD enhanced by two-
to sixfolds in PaSOD
and one- to threefolds in
double transgenic plants
(DTP); APX enhanced
by 5- to 11-fold in APX
and four- to eightfold in
DTP

Shafi et al.
(2017)

Strawberry fruits D-galacturonic acid Two- to threefolds Agius et al.
(2003)

Triticum
aestivum

MnSOD Oxidative and
photooxidative
tolerance

Melchiorre
et al. (2009)

Triticum
aestivum

P5CS Drought tolerance Vendruscolo
et al. (2007)
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5.5 Conclusions

Stress from their neighboring environment affects plants in a complex modus. The
schedule and localization of ROS production and scavenging during stress play
strategic roles. Identification and characterization of synchronization of signaling
events between ROS and oxidative stress will enable the generation of stress resilient
crop plants. The findings stated above evidently validate pivotal functions of enzy-
matic and nonenzymatic antioxidants in inducing oxidative stress tolerance.
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Kinase-Mediated Signaling Cascades
in Plant Abiotic Stress Physiology 6
Shalini Dhiman, Neha Handa, Sukhmeen Kaur Kohli, Mohd Ibrahim,
Tamanna Bhardwaj, Dhriti Kapoor, Indu Sharma, Shelja Sareen,
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Abstract

Increasing human intervention in the environment due to population explosion,
urbanization, industrialization, and overutilization of natural resources has
resulted in changes in the overall ecosystem of the earth. Such changes lead to
the pollution of the environment and alteration in natural cycles of water and
temperature. All of these result in stressful environment, which is harmful for
both plant and animal life. Plants in particular are highly susceptible to abiotic
stresses because of their fixed nature. They have developed several signaling
mechanisms, which help in the identification and reception of signals through the
sensors. The signals, according to the type of stress, generate the responses as a
preventive measure through signaling cascades. In the present chapter, an attempt
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has been made to understand various signaling pathways especially kinase
signaling, which occur in plant systems in response to a particular type of abiotic
stress.

Keywords

Abiotic stresses · Environmental pollutants · Kinase signaling · Signaling
cascades

6.1 Introduction

Due to constant changes in the environment, plants have to face several stresses,
which provide hindrance in their growth and development. These conditions are
further hazardous to the plants as they are sessile in nature and unable to escape.
Excessive water, salinity, and extreme temperature are the key environmental
conditions that affect the plant development and control vegetation distributed
geographically (Zhu 2016). Environmental pollutants, chemical pesticides,
herbicides, and fertilizers resulting in excessive heavy metals in the soils and waters
thus show strong adverse effects on plants. Hence, a large effect is seen on produc-
tivity of crops, and it is estimated that an average of 50% loss in yield is due to these
abiotic stresses (Tuteja and Sopory 2008).

In order to survive in adverse conditions, plants need to adapt to these changing
environmental factors. In order to do so, the stress signals are perceived by the
plants, which are further transferred and ultimately result in a stress response. These
responses include modifications in growth, development, and metabolism (Conde
et al. 2011). Such changes in plant morphology and physiology are a result of
changes in gene expression due to the stress signals. Altered expression of genes
further lead to changes in many metabolic functions, and such responses occur both
at cellular level and at the level of the entire plant in a synergistic manner (Tuteja and
Sopory 2008). The primary signals such as hyperosmotic stress by drought and
osmotic and ionic stress as a result of salinity lead to more complex secondary effects
that include overproduction of reactive oxygen species leading to oxidative burst,
loss of membrane integrity, and damage to vital biomolecules (Zhu 2016). The stress
signal is primarily perceived by cell membrane that harbors signal receptors. With
this, the downstream signaling cascade starts which aids in transferring the signals to
the stress responsive genes (Tuteja and Sopory 2008). The responses to primary and
secondary signals enhance the adaptation and hence tolerance of plants to the
environmental stresses. The present chapter reviews the responses of plants to
several stresses through signaling mechanisms mainly involving kinase group.
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6.2 Plant Signaling Under Different Stressor

In response to varied environmental cues, the plants show modulation in gene
expression, physiology, and metabolism, which affirms that plants are capable of
sensing alterations in environmental signals (Zhu 2016). A very few putative sensors
have been identified till recent times due to the functional repetitions or duplication
in genes encoding sensor proteins. In case of plants, under abiotic stress, signal
transduction pathways are conserved formed mainly by excessive amount of
proteins such as receptors, G-proteins, kinases, phosphatases, transcription factors,
channels, and transporters (Pandey et al. 2016). In case of eukaryotes, protein kinase
occupies a large group of functional genes. In plants, protein kinases are grouped on
the bases of functional diversity into different categories such as (1) RLKs (receptor
like protein kinases), which perform similar function as RTKs (receptor of try
kinase) present in animal system; (2) MAPKs (mitogen-activated protein kinases);
(3) CDPKS (calmodulin domain-like protein kinases); (4) CDKs (cyclin-dependent
kinases); and other kinases like SNF1/AMPK,PDK1 (pyruvate dihydrogenase
kinase), HKs (histidine kinases), DGKs (diacylglycerol kinase), etc. (Chakradhar
et al. 2019). Moreover, calcium (Ca) ions are one of the most imperative secondary
messengers involve in signal transduction under stress and their levels are usually
elevated under stress. These calcium sensors detect Ca2+ signals and transduce them
downstream by binding to plethora of targets (Tuteja and Sopory 2008). These
sensors identify and transduce signals provided by calcium signatures (Tuteja and
Mahajan 2007), to target phoporylation networks resulting in alteration in gene
expression. CaBP is an important protein triggered and buffered. This protein is
activated in response to binding with Ca2+ and further reacts with wide array of
target proteins in signaling cascades. On the other hand, buffer proteins bind to Ca2+

and sequester them. Few CaBP-triggered type proteins are calmodulin (CaM),
CaM-binding proteins, and Ca2+-dependent protein phosphatase and kinase
(Reddy 2001).

Plants have been reported to have unique, putative sensors Ca2+, which include
50 families of calmodulin-like proteins in Arabidopsis and they are termed CMLs.
These calmodulin receptors contain more than 148 amino acids residues (Reddy,
2001; Luan et al. 2002). Furthermore, Vanderbeld and Snedden (2007) suggested
that CMLs play pivotal role in sensing Ca2+-regulated development and stress
responsive cascades. In plants, CaM, i.e., CaMBP has been reported to activate
small nuclear NTPases, NAD-kinases, Ca2+ ATPases, heat shock proteins, and few
transcription factors. A hyperosmotic sensor has been identified in Arabidopsis
plants, i.e., OSCA1 (reduced hyperosmolality-induced calcium increase 1) (Yuan
et al. 2014). The cytosolic Ca ion levels are enhanced in response to plethora of
osmotic agent, i.e., chilling, heavy metal, and elevated concentration of abscisic acid
(ABA) in plants that was observed by employing calcium or aequorin receptors. In
comparison with wild Arabidopsis plants, the osca1 loss of function mutants
revealed a decline in calcium spike in response to osmotic stress induced by
elevation in mannitols and sorbitol (Yuan et al. 2014). OSCA1 is a sensor that
encodes plasma membrane proteins, which aid in the activation of hyperosmolality
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and calcium-gated channels. These plants didn’t show any phenotypic alterations in
response to drought and salt stress; hence, significance of OSCA1 under stressful
environment still needs to be evaluated.

Another calcium sensor, i.e., SOS3 (salt overly sensitive 3) have been revealed to
transducer signals downstream that is activated and interact with SOS2 protein
kinases. This complex formed, i.e., SOS3-SOS2 further activates Na+/H+ antiporter
activity of SOS1. More recently, SOS4 and SOS5 have also been identified. The
SOS4 sensor encodes pyridoxal-5-phosphate (PLP), and SOS5 is an adhesion
protein involved in normal expansion of cells (Mahajan et al. 2008). A large family
of cyclic nucleotide-gated channels (CNGCs) has also been identified in plants along
with families of glutamate receptor-like sensor (GLR) channels. Both the channels
are significantly involved in the generation of cytosolic Ca2+signals under stressful
conditions (Swarbreck et al. 2013).

A few mechano-sensitive channels, viz., K2P, TRP, MscS-like Piezo,
DEG/ENaC, etc., are non-plant systems (Hedrich 2012). In animals, TRP channels
are identified as calcium channels, which sense alterations in membrane permeability
in response to change in osmotic status (Árnadóttir and Chalfie 2010). The plants
don’t contain TRP sensors and DEG/ENaC genes, but the presence of family of
MscS-like proteins (MSL) and Piezo homologs has been reported (Hedrich 2012).
MSL8 is one of the most important MSL isolated from Arabidopsis pollens and were
found to overexpress under hypoosmotic pressure during hydration-induced mem-
brane tension (Hamilton et al. 2015). COLD1, another significant putative stress
sensor, has been recently identified by Ma et al. (2015) in rice plants in response to
chilling stress. Furthermore, they revealed that they were also found in Nipponbare,
a subspecies of rice exposed to chilling stress of around 0–15 �C. COLD1 is a
transmembrane protein identified in endoplasmic reticulum and plasma membrane
and is found to interact with RGA1 (an alpha subunit of sole heterotrimeric G
proteins) in plants. They further speculated that COLD1 might be involved in the
modulation of calcium signaling under cold stress, although enhanced cold tolerance
was not confirmed.

Hexokinases 1 (HXK1) has also been recognized as an evolutionary conserved
glucose sensor, which regulates nutrient and hormonal signaling in plants exposed to
varied environmental cues (Cho et al. 2006). More recent reports suggest that an
unknown HXK1 nuclear complex has been revealed to modulate the expression of
specific photosynthetic genes without the involvement of glucose metabolism but
required the presence of VHA-B1 and RPT5B (metabolic enzymes) (Chen 2007).
The fluidity of the cellular phospholipid membranes might get altered as a result of
exposure to cold and heat stress (Sangwan et al. 2002). The alteration in the fluidity
is sensed by membrane proteins, viz., membrane channels, plethora of receptors like
kinase (RLKs), and transporters. A few molecular chaperones have also been
reported to modulate signals under temperature stress. These chaperones bind to
misfolded proteins formed due to heat denaturation of proteins. These misfolded
proteins bind with chaperones release specific heat stress transcription factors
resulting in the activation of heat-responsive genes (Scharf et al. 2012). Another
imperative sensor, viz., H2A2-containing nucleosomes, has been found to be
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thermosensor in plants and in yeast (Kumar and Wigge 2010). They further
suggested that these nucleosomes wrap the DNA more tightly than H2A containing
nucleosomes. The expression of heat shock proteins (HSPs) and alternative histones
such as H2A2 nucleosomes encoding genes were elevated, which made DNA more
available for transcription.

6.3 Kinase Signaling Under Temperature Stress

Exposure of plants to various environmental stresses especially range of
temperatures has been long evident and attained a center stage in this arena of
research. Plant metabolism and transciptomes are greatly affected by temperature
stress. Both cold and heat stresses along with other abiotic factors are responsible for
disrupting the water equilibrium of the cell, the effect of which is manifested as
change in turgor pressure (Novakovic et al. 2018). The changes are evident in the
case of low temperature environment, which cause dehydration. Behind the remark-
able ability of plants to adapt to various stresses is an advanced and effective
mechanism to restore ion and cell homeostasis. Among the plant armory to look
after homeostasis are proficient stress detecting and signaling components, plant cell
detoxification frameworks, perfect solute and osmoprotectant aggregation, and a
fundamental revamp of solute transport and compartmentation (Conde et al. 2011).
Remodeling of the cell wall of plant has been recognized through various proteomics
(Kong et al. 2010; Komatsu et al. 2013) and more recently through metabolomics
studies (Jorge et al. 2016), as key structural component in combating various abiotic
stresses and making plant acclimatized to variety of stresses. Plant hormone signal-
ing and cell wall integrity sensing have been characterized as fundamental
mechanisms in acclimatization of plant toward various stresses.

The response of plants toward stress is a coordinated action of hormones at
physiological level and genes encoding proteins; modifiers such as methylation,
glycosylation etc.; transcription factors; and adaptors at genetic level (Tuteja 2007).
The coordinated action of all these factors will relay signal that switch on the activity
of various stress responsive genes (Tuteja and Sopory 2008). Elevated temperature
has been found to effectuate heat shock protein (HSP) expression responsible for
averting protein denaturation, thus maintaining homeostasis (Scharf et al. 2012),
while freezing temperatures reportedly affect metabolism by inhibiting enzymatic
action and restructuring of gene expression (Chinnusamy et al. 2007). The involve-
ment of MAPK activation during heat stress- and cold stress-induced calcium
signaling with the MAPK cascade has also been reported (Yang et al. 2010).
Some of the common responses of plant toward both cold and heat stress is the
participation of ROS and NO signaling along with proteosomal degradation and
post-translation modifications such as SUMOylation (Chinnusamy et al. 2007). A
tabulated review of various TFs responsible for triggering variety of mechanisms in
making plants acclimatized toward cold stress is presented Table 6.1.

Cold and heat stresses both affect the metabolism of plants, and network of
signaling pathways is activated to deal with the same. Cold stress is sensed by
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Table 6.1 Summary of key factors/genes/TFs responsible for plant’s cold acclimatization and
signaling

S. no.
Transcription factors (TFs)/
genes Effect of TFs Reference

1. AP2-domain proteins CBFs Expression of COR genes Chinnusamy
et al. (2007)2. SUMO E3 ligase SIZ1 SUMOylation of ICE1

3. Ubiquitin E3 ligase HOS1 Polyubiquitination and
subsequent proteasomal
degradation

4. ICE1/2 Exercise the expression of CBFs
and a transcriptional inducer of
CBFs (CBF1–CBF3), ZAT12,
NAC072 HOS9 in Arabidopsis

Benedict
et al. (2006)

5. SnRK2.6/OST1 Phosphorylation of ICE1 thereby
activating CBF-COR gene
expression cascade and enhancing
freezing tolerance

Ding et al.
(2015)

6. MAP2K, MKK2 Controls COR gene expression
and thereby increasing plant
tolerance to freezing

Teige et al.
(2004)

7. MAPKs Calcium influx and membrane
fluidity cause activation of
MAPKs

Sangwan
et al. (2002)

8. CPKs, CIPKs, and CRLK1 Regulation of COR gene
expression and the MAPK
cascade

Zhao et al.
(2017)

9. COLD1 (membrane protein) Cold stress sensor and generates
Ca2+ signal

10. CAMTAs Activation of cold responsive
genes

11. DEAR1, DREB, and EAR
(ethylene response factor-
associated amphiphilic
repression motif protein1)

TF regulates cross talk between
various signaling pathways

Kalia et al.
(2017)

12. DREB and AREB Transactivation of ABA mediated
rd29A promoter-GUS fusion gene
in cold stress

Narusaka
et al. (2003)

13. Z15 (receptor like protein kinase
identified from rice)

The expression of z15 by
moderate to low temperature
confirms its involvement in
tolerance of early freezing stress
in rice

Feng et al.
(2019)

14. OST1 a protein kinase Regulates cold tolerance by
phosphorylating the substrate
BTF3 and BTF3L which in turn
stabilizes CBFs under cold stress

Ding et al.
(2018)

(continued)
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COLD1, membrane protein which leads to CPKs and CBL-CIPK-induced cytosolic
Ca2+, which further activates MAP kinase cascade. This triggers the phosphorylation
of TFs such as ICE1/2 and CAMTAs, responsible for the activation of cold responsive
genes like OST1, followed by activation of ICE1. Similarly, heat stress acclimatization
involves activation of MAPKs, which brings about change in membrane fluidity and
governs HSP accumulation and thermotolerance (Chinnusamy et al. 2007). The
signaling network for both heat and cold stress is displayed in the Fig. 6.1.

Among various abiotic stress factors, heat stress is one of the serious threats to the
plants. In order to address the threats, variety of heat responsive mechanisms such as
stomatal closure, hyper accumulation of HSPs, and increase ROS scavenging
enzyme activity have been developed by plants (Mathur et al. 2014). In contrast to
animals, plants are sessile and can’t escape troublesome temperature conditions. To
endure, plants must most likely envision forthcoming harmful conditions early
enough to trigger expression of genes and accumulate HSPs (Table 6.2).

6.4 Kinase Signaling Under Light Stress

The natural light environment of plants is constantly altered at high speed (Dietz
2015). In order to combat drastic variation in light intensity, the plants have evolved
varied sensing and response generation mechanism. Most signals produced in
response to light stress are mostly generated in chloroplast. The metabolic activity
of chloroplast is coordinated to optimize the metabolism to accuse minimum damage
(Spetea et al. 2014). Rapid photochemical modulation and molecular alterations are
involved in acclimatization of plants to light stress (Dietz 2015). Chloroplast is
metabolically multifunctional organelles that have a pivotal role in light sensing and
signaling in response to varied environmental cues (Trotta et al. 2014). Varied short-
term and long-term light stress results in plethora of alterations in ultrastructural and
phenomenal variations such as (i) stacking of grana is enhanced in chloroplast and
(ii) chlorophyll molecule per photosystem (PSII) is changed (Malkin and Fork
1981). Generally, the number of chlorophyll molecules per PSII is between
220 and 480 in the sun raised species and 630 and 940 in shade species.

Table 6.1 (continued)

S. no.
Transcription factors (TFs)/
genes Effect of TFs Reference

15. GCN2 kinase In Arabidopsis the activation of
GCN2 kinase is found to activate
by cold stress in a light dependent
manner

Lokdarshi
et al. (2020)

CBFs (C-repeat/dehydration-responsive element binding factors); SUMO E3 ligase SIZ1
(a SIZ-mediated small ubiquitin-like modifier (SUMO), ubiquitin E3 ligase; HOS1 (high expression
of osmotically responsive gene 1); ICE1/2 (inducer of CBF Expression 1/2); SnRK2.6/OST1
(SNF1-related kinase 2.6/open Stomata1); MAP2K (mitogen-activated protein kinase); MKK2
(MAP kinase kinase2); MAPKs (mitogen-activated protein kinases); CPKs (Ca2+-dependent pro-
tein kinases); CIPKs (CBL-interacting protein kinases); CRLK1 (calcium/calmodulin–regulated
receptor-like kinase); CAMTAs (calmodulin-binding transcription activators); DREB (dehydration-
responsive element-binding factors); AREB (ABA-responsive element binding factor)
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These variation results in acclimatization of plants to low light exposed leaves by
increasing the number of chlorophyll molecules and lowered number of reaction
centers. These low light exposed leaves activate the photosynthetic electron trans-
port chain (PET) (Ruban et al. 2007). Change in the PET is included among the most
spontaneous reaction to alterations in light intensity. Therefore, the electron pro-
duced from the PET are significant for modulation of short- and long-term acclima-
tion response (Fey et al. 2005; Dietz 2015). Unanticipated exposure of plants to high
intensity of light may result in light stress of varied levels, which might be dependent
to PET over-reduction and inhibition of PSII (Driever and Baker 2011).

Along with these acclimation approaches, the modulation levels of photosynthetic
components (Puthiyaveetil et al. 2012), antioxidative defense, and thylakoid ultra-
structure (Pfannschmidt 2010) play a pivotal role. The changes in the light intensity
results in alteration in ratios of linear to cyclic electron transport chain (Shikanai 2014).
The excessively reduced energy is regained by enhancement in reduction state of
chloroplast and elevation in activity of mitochondrial alternative oxidase (AOX) and
plastid terminals oxidase (PTOX) enzymes, respectively (McDonald et al. 2011;
Ivanov et al. 2012). Enhanced light intensity also results in activation of Calvin
cycle through: (i) alkalization of stroma, (ii) increment in Mg2+ concentration,
(ii) enhanced enzyme activity, viz., fructose 1,6-bisphosphate, and (iv) thiol-dependent
activation of γ-subunit of ATP synthase (Nikkanen and Rintamäki, 2014).

6.4.1 Signaling in Response to Light Stress

Plants have a capability to employ various individual components of photosynthetic
network in stimulation of light-dependent photosynthetic phenomena (Sierla et al.
2013). One of the most imperative environmental cues that exacerbate the produc-
tion of ROS is high light, which in response results in generation of plethora of

Table 6.2 Summary of key factors/genes/TFs responsible for plant’s thermotolerance and
signaling

S. no.

Transcription
factors (TFs)/
genes Mechanistic effect Reference

1. HSP90 Responsible for activation of transcription of HSPs
and thus make plants thermotolerant

Yamada
et al.
(2007)

2. MAPKs Modulation of HSP gene expression which is
responsible for membrane fluidity and ion
signaling, thus making plant thermotolerant

Sangwan
et al.
(2002)

3. HSP70 HSP70 along with HSP90 binds to misfolded
proteins and thus release HSFs to activate heat
stress cascade

Scharf
et al.
(2012)

4. Hsp110/SSE
(subfamily of
HSP70)

The molecular chaperones assist in transcriptional
activation, thus making plant heat tolerant

Wang
et al.
(2004)

Hsp110/SSE, HSP70 (heat shock protein 70), HSP90 (heat shock protein 90)
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secondary metabolites (Zhu 2016). Although enhancement in ROS content might be
hazardous for photosynthetic activity of plants (Karpinski et al. 2003), its accumula-
tion results in the activation of signaling responses against plethora of stresses,
specifically pathogens and light (Karpinski et al. 2003; Trotta et al. 2014). In plants,
phospholipases are involved in various signaling events like seed germination and
light-mediated processes (Tuteja and Sopory 2008). The protein kinases of C type,
i.e., PKC, have also been shown to have role in light-induced stress responses
(Chandok and Sopory 1998). In order to understand the molecular response of
Arabidopsis thaliana mutant to light stress, Li et al. (2007) showed alteration in
expression of high sugar responsive 8 (hsr8), which led to elevation in sugar
responsive growth and gene expression. They further suggested that light grown-
hsr8 plants had increased levels of starch and anthocyanin, whereas the content of
chlorophyll was reduced. Although under dark conditions, hsr8 plants revealed
sugar-hyper sensitivity, hypocotyls elongation, and development. Moreover, the
findings further suggested the activation of various signaling cascades resulting in
alteration in cell wall via PRL 1, which alters the expression of specific genes and
subsequently the sugar metabolism (Li et al. 2007).

Qiu et al. (2007) revealed that light along with other metabolic signals triggers
SUS (sucrose synthase) protein degradation in maize plants in response to etiolation.
They further suggested that SUS degradation is prerequisite for the synthesis of other
imperative proteins needed for autotropic metabolism. Furthermore, in the recent
years, the involvement of various plant growth regulators (PGRs) including auxins,
cytokinins, brassinosteroids, and ethylene have been reported to have significant role
in light stress amelioration (Park et al. 2007; Jackson, 2007). Plants exposed to high
light and heat conditions (Loreto et al. 2006) might have the involvement of volatile
organic compound, which are components of plant-insect interactions that induced
signaling. Two nuclear-encoding proteins, i.e., EXECUTER (EX1) and EX2, are
located in the thylakoid membrane of the chloroplast, in response to enhanced
singlet oxygen species generation, which triggers a signaling cascade (Wagner
et al. 2004). They further showed that Arabidopsis plants (fluorescent mutant, flu)
produce a shiver of singlet oxygen species at the dark to light transition stage. The
enhanced level of singlet oxygen triggers deleterious alterations in the nuclear gene
expression leading to chlorosis and cell apoptosis in wild type and not mutant type
plants. The singlet oxygen has also been reported to stimulate signaling cascades
independent of EX1 and EX2; the β-carotene’s nonenzymatic oxidative breakdown
by-products play a vital role in singlet oxygen-induced signaling (Ramel et al. 2012).

High light stress may lead to elevation in content of plastid metabolites, i.e.,
methyl erythritol cyclodiphosphate (MEcPP), one of the precursors of isoprenoid
synthesis. The nuclear-gene encoding plastid proteins are activated by MEcPP-
induced retrograde signals (Xiao et al. 2012). Furthermore, another metabolite
phoshonucleotide 30-sadenosine 50-phosphate (PAP) is located in the plastids and
is significant for stress signaling. PAP levels have been shown to enhance the
following high light and drought stress (Estavillo et al. 2011); SAL1/FRY1, a
bifunctional phophatase dephosphorylates inositol phosphate and PAP. The
dysfunctioning of SAL1/FRY1 results in enhanced accumulation of PAP
metabolites. Moreover, PAP has been shown to inhibit 50 and 30 exoribonuclease
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activity that results in enhanced expression of high light responsive gene expression
(Estavillo et al. 2011; Gigolashvili et al. 2012). High light stress stimulates systemic
response, causing enhanced systemic acquired acclimation (SAA). SAA participates
in long-distance hydraulic electric signaling, calcium, and ROS networking (Choi
et al. 2014). These stress conditions stimulate calcium and ROS signaling, which
move with the speed of 1000 μm per second and were identified in various transgenic
plants expressing calcium-susceptible fluorescent plants (Choi et al. 2014). They
also result in transcriptional alterations in response to stress in the distal organelles
and tissues (Miller et al. 2009). Figure 6.1 demonstrates light stress sensing and
signaling in plants.

Vital participation of chloroplast envelope in cell signaling under light stress has
been reported (Sun et al. 2011; Furumoto et al. 2011). For example, the re mutant of
Arabidopsis reticulation plant leaves was found to be deficient in transmembrane
proteins of the chloroplast membrane, which resulted in reticulated coloration and
subsequent accumulation of ROS (Pérez-Pérez et al. 2013). The re mutant also
showed enhanced cell death in response to ROS signaling in response to exposure
to ozone fumigation at moderate environment (Overmeyer et al. 2008). Along with
chloroplast and nucleus, recently mitochondrion is now considered important
antegrade and retrograde controller of signaling networks (Schwarzländer and
Finkemeier 2013). Few other factors, which play a major role in retrograde signal-
ing, are changes in redox status linked with: (i) NADPH and thioredoxin (Bräutigam
et al. 2009); (ii) ABA in the thylakoid membrane (Galvez-Valdivieso et al. 2009);
(iii) sugars and chlorophyll anabolites as well as catabolites (Pružinská et al. 2003);
(iv)superoxide anion and H2O2 (op den Camp et al. 2003); (v) glutathione, ascorbic
acid, and lipid peroxides (Müller-Moulé et al. 2004); and (vi) phytohormones, viz.,
SA, ethylene, and JA (Mateo et al. 2006).

Tetrapyrrole, catabolites, and anabolites function as signaling molecules under
stressed conditions and serve as an operational control under slight alterations in
metabolism. Mutants with disturbed tetrapyrrole metabolism frequently show spon-
taneous cell death and are light dependent (Schlicke et al. 2014). It was reported by
Pružinská et al. (2003) that ACD1 gene (accelerated cell death 1) of Arabidopsis
plants is a homolog to LLS1 gene, i.e., lethal leaf spot 1 of maize plants. LLS1 gene
encodes the phaeophoride, a oxygenase enzyme activity. The maize mutant lls1
accumulated enhanced levels of phaeophoride along with the formation of lesions in
a light-dependent manner. Similarly, in tobacco plants, reduced plastic ferrochelate
activity enhanced the expression of FeChl antisense RNA, which led to decline in
chlorophyll content of leaves and consequently resulted in the formation of necrotic
lesions in a light-dependent manner (Papenbrock et al. 2001). Moreover another
light-dependent input is laid by cryptochrome and phytochromes, which have been
reported to enhance the expression of various photosynthetic genes, specifically
ribulose-1,5-bisphoaphate carboxylase (Berry et al. 2013).

It could be therefore concluded that varied light intensities, which exert plethora
of effects on plants via photosynthetic processes and other metabolism, are depen-
dent upon the duration and quantity of light stress (Kangasjärvi et al. 2005). An
in-depth understanding of complex molecular interplay between environmental light
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signaling components is highly recommended, and efforts should be made to
enhance the stress acclimation of plants for sustainable production and usage
(Fig. 6.2).

6.5 Kinase Signaling in Response to Water Stress

Water stress has pernicious impact on plant’s growth and development (McDowell
2011). It limits photosynthetic capacity of plant, and if condition prolongs, yield is
significantly reduced (Osakabe et al. 2014). Plants have evolved mechanisms such as
osmotic adjustment and antioxidant defense systems, which empower it to survive in
such hostile environment (Khaleghi et al. 2019). Plants have also made remarkable
alterations in regular signaling cascades to adjust their consumption of resources,
adding more to its survival index (Osakabe et al. 2014). Elucidations of these
networks will prove to be pivotal in improving stress tolerance in plants. In various
signaling pathways, membrane-bound receptors play vital role in transmitting infor-
mation to target molecule. RLK is cell wall-associated kinases (WAKs) that are
involved in the perception of turgor pressure. Receptor-like kinase (RLK) family is
involved in osmotic stress signaling in various plant species. These RLKs vary on
the basis of different extracellular domains, which receive environmental stimuli
(Christmann et al. 2013). It transmits information regarding the osmotic conditions
outside the cell (Osakabe et al. 2013). AHK-1, acts as osmosensor, an Arabidopsis
histidine kinase confined to plasma membrane. Drought tolerance was found to be
increased in Arabidopsis. Its mutant had decreased ABA sensitivity, indicating that
AHK1 plays a vital role as osmosensor under osmotic-stress signaling (Tran et al.
2007). Another very important component of plant’s signal perception and its
transduction is mediated by MAPK cascade. Many MAPK cascades were reported
to play a pivotal role in abiotic stress signaling in plants (Sinha et al. 2011). It is
noteworthy that several reports have been proposed that validates a direct association
between MAPK signaling and water stress, enlisted as follows (Table 6.3).

6.6 Kinase Signaling in Response to Ionic Stress

Soil salinization limits the growth and productivity of crops and globally causes
serious risk to agricultural practices (Kumar et al. 2008). Extreme level of salts in the
plants leads to imbalance of ionic homeostasis, and, thus, plant cells generate the
signal of ionic stress. These ionic signals are professed by the receptor or the salinity
sensor, which are present on the plasma membrane of the cells, further it is controlled
by the collective efforts of ion pumps, salt overly sensitive (SOS) pathways, and also
by their downstream interacting partners, hence cause the removal of surplus ions
from the cells (Shabala et al. 2015).
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6.6.1 Sodium (Na+) Ions

Na+ ions interfere with the functioning of the cells when get deposited in cells and
tissues, hence proved detrimental. Na+ deteriorate the functioning of the plant by
damaging the cell wall, by imbalancing the ratio of Na+ and K+ ions inside the cell,
and also by causing the adverse effects to the hydration shell of the molecules
(Shabala et al. 2015). With the help of SOS pathway, a calcium-dependent protein
kinase pathway, plants tolerate the Na+ ions and regulate the signaling (Zhu 2002).
In this pathway, an EF-hand calcium-binding protein SOS3 (CBL4) recognizes
calcium signal of cytosole. SOS3 then turns on SOS2 (CIPK24), which is a
CBL-interacting protein kinase (Halfter et al. 2000). Consequently, SOS1 is
activated by the phosphorylation of SOS2. SOS1 is a Na+/H+ antiporter present at
plasma membrane (Zhu 2016). Inactivation of SOS genes may lead to enhancement
in the sensitivity of mutants exposed to salinity. SOS1 mutant exhibit most sensitiv-
ity in the presence of salinity, whereas sos2 are intermediate in this context and sos3
mutant proved to be least sensitive (Zhu 2000). SOS1 and high-affinity potassium
transporter 1 (HKT1) have antagonistic functions.

In plants, HKT protein family is considered to be crucial to resist the salt stress.
This family activated the parenchymatous cells and vascular system of Arabidopsis,
which acts as a Na + importer (Rus et al. 2004). This protein family helps in the
unloading of Na+ from the roots through the xylem, so as to balance the level of salts.
In the rice plants, OsHKT1;1 is present in the vascular system and acts as Na+

transporter during salinity conditions, that further leads to increased Na+ omission
from the plant cell (Horie et al. 2005). Thus, HKT1 regulates the translocation of Na+

Table 6.3 List of MAPKs involved in stress signaling in different plants

S. no. Plant Stress
Unit of MAPK cascade
involved Reference

1. Arabidopsis Dehydration AtMPK1, AtMPK4,6 Ichimura et al.
(2002)

2. Maize Osmotic stress ZmMPK7 Zong et al. (2009)

3. Alfalfa Drought P44MKK4 Jonak et al.
(1996)

4. Salicornia
brachiata

Dehydration SbMAPKK Agarwal et al.
(2010)

5. Tobacco Osmotic stress SIPK Samuel et al.
(2000)

6. Rice Drought MAPKK1 Kumar et al.
(2008)

7. Alfalfa Drought p44MKK4 Jonak et al.
(1996)

8. Rice Drought OsMSRMK2, OsMAPK5 Agrawal et al.
(2002)

9. Rice Dehydration
stress

DSM1 Ning et al. (2010)

10. Malus Drought MaMAPK Peng et al. (2006)
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from roots to shoots mainly in monocots. On the other hand, OsHKT1;4 gene more
resourcefully helps in the removal of Na+ from leaf of the japonica rice species,
which are tolerant to salinity stress (Cotsaftis et al. 2012).

6.6.2 Calcium Ions

Calcium plays significant role as a crucial messenger in the adjustment and various
other developmental activities of plants. Calcium-dependent pathway is helpful
especially against the salinity stress conditions (Luan et al. 2002). For abiotic stress
tolerance, it acts as a second most essential messenger (Sanders et al. 2002).
Interaction of CBL4 (SOS3) (a Ca2+ sensor protein) with the CIPK24 (SOS2), a
protein kinase at the plasma membrane and Na+/H+ exchanger pathway (SOS1),
leads to the removal of Na+ from the cytoplasm (Zhu 2016). Signaling process of
Ca2+ is activated by Ca2+ sensor and respective target proteins.

Signal is transmitted through a downstream pathway by Ca2+, where it links with
the CBL, a protein sensor, and also interacts with protein kinases CIPKs (Lin et al.
2005). CBL family protein is an inimitable category of calcium sensors, which
decodes calcium transients by balancing protein kinases (CIPKs). CBL10 mutant
uptake low salt concentration signifies its distinctive characteristic in comparison
with wild type (Kim et al. 2007). Different CBLs like CBL4 (SOS3) and the
respective interacting kinase CIPK24 (SOS2), along with SOS1, contribute in efflux
of Na+ ions from the cell cytoplasm (Zhu 2016).

6.6.3 Magnesium Ions

For normal growth and development of plants, Mg2+ is required, but at the same
time, their higher doses may prove toxic to the cells (Niu et al. 2018). Exposure of
plants to high Mg2+ concentration is balanced by CBL2 and CBL3 proteins, which
help in retaining the low Mg level; hence, these proteins also prove their role as a
sequestration of Mg2+ from vacuoles (Tang et al. 2015). Four actively overlapping
factors for the downstreaming of CBL2/3 such as CIPK3, CIPK23, CIPK26, and
CIPK9 assist Mg2+ homeostasis in signaling pathway. This activity is regulated by
CBL-CIPK pathway, which also contributes in detoxification mechanism (Gao et al.
2015).

6.6.4 Nitrate Ions

Nitrate is taken by the plants as a source of nitrogen (Crawford 1995), which
involves high-affinity system specifically in low nitrate situation and low-affinity
system during availability of enough nitrate (Krouk et al. 2010). Nitrate is
translocated in plants with the help of three transporter families: nitrate transporter
1 (NRT1), nitrate transporter 2 (NRT2), and chloride channel (CLC). During the low
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nitrate concentration, AtCBL19-AtCIPK23 compounds are accountable for NRT1.1
phosphorylation that contributes in high binding affinity and transport capacity, in
context with the more uptake of nitrate (Ho et al. 2009). AtCIPK8 is responsible for
reacting against high nitrate by perceiving and activating the low affinity nitrate
reaction, while AtCIPK8 helps in nitrate-regulating root growth for long duration
(Ho et al. 2009).

6.6.5 Potassium (K+) Ions

Potassium (K+) ions are responsible for the growth and development in plants.
Various aspects of crop yield and abiotic stress tolerance is influenced by K+

(Ahmad et al. 2016). Hence for the homeostasis of K+ in plants, K+ transporters
and channels are required to maintain across the plasma membrane. To tolerate the
high salinity stress, Na+/K+ ratio is balanced in the cytosole (Adams and Shin 2014).

In Arabidopsis, AKT1 acts as key K+ transporter as it arbitrates growth by uptake
of K+ by the roots through the help of external K+ application and thus endorse K+

affinity even in the low-K+ concentration range (Xu et al. 2006). At less concentra-
tion of K+, akt1 mutants, cbl1/cbl9 and cipk23 cause retarded growth and chlorotic
leaves. Similarly, AKT2 also acts as another K+ transporter, which contributes in
transporting K+ across the plasma membrane (Thoday-Kennedy et al. 2015). CBL4-
CIPK6 complex regulates plasma membrane focusing of Arabidopsis K+ channel
AKT2 (Fig. 6.3) (Held et al. 2011). Further (de)phosphorylation pathway controls
efficiently switch from influx to efflux. H + -ATPases are key constituents in the
initial sensing during the lack of K+ (Palmgren 2001). For K+ possession and
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allocation in rice plant, OsHAK1, OsHAK2, and OsHAK5, as K+ transporters,
contributes significantly (Chen et al. 2015). OsHAK1 helps in improving tolerance
to salt and drought stress, when expressed in higher doses (Chen et al. 2017).

6.6.6 Phosphorus

Phosphorus (P), a component of nucleic acids and membrane phospholipids, acts as
a key nutrient for the growth and development of plants and forms approximately
0.2% of their dry weight (Schachtman and Reid 1998). Plants uptake orthophosphate
ion (Pi) from the soil, but reaction of inorganic and organic phosphates leads to
deficiency of Pi (Bieleski 1973). There is involvement of CBL-CIPK system during
low Pi in Brassica napus (Chen et al. 2012). BnCIPK6 cooperate with Arabidopsis
CBL1, CBL2, CBL3, and CBL9 where BnCBL1 and BnCIPK6 were upregulated
during Pi deficit conditions at low Pi condition; growth and yield in Arabidopsis is
stimulated by BnCBL1 or BnCIPK6 (Chen et al. 2012).

6.7 Signaling Under Heavy Metal Stress

Plants exhibit various kinds of stresses such as biotic and abiotic. Out of which,
heavy metal stress appears to be one of the most destructions that cause abiotic
stresses. Overdoses of heavy metals not only causes phytotoxicity in plant but also
results in changing the morphological, biochemical, and physiological behavior of
plants. However, these heavy metals become more dangerous and cause serious
human health hazards especially when they get to enter into the food chain web
(Chakraborty et al. 2015). However, plants have gradually developed signaling
mechanisms for adapting adverse overdoses of heavy metal phytotoxicity (Golldack
et al. 2014).

Plants’ defense responses like metal chelation, vacuolar sequestration, heavy
metal intakes by transporters, and magnification of antioxidative mechanisms are
mainly a result of such kind of intricate signaling networks occurring inside the cell
that ultimately transmits the extracellular stimulant into an intracellular reaction and
thus finally result in the formation of various kinds of crucial signaling components
involved mainly under heavy metal stress. Important kinds of signaling networks
working inside the heavy metal stresses are calcium signaling, hormone signaling,
MAPK (mitogen-activated protein kinase) signaling, and ROS (reactive oxygen
species) signaling (Fig. 6.4).

Out of the several stress-induced signaling, the most predominant and compli-
cated type of signaling is the mitogen-activated protein kinase (MAPK) signaling
mainly composed of MAPKKKs (mitogen-activated protein kinase kinase kinases),
MAPKKs (mitogen-activated protein kinase kinases), and MAPKs (mitogen-
activated protein kinase) (Hamel et al. 2006). MAPKs are serine/threonine kinases
consisting of three-tier phospho-relay signaling, which is evolutionary conserved
inside the plant kingdom (Jonak et al. 2002). MAPKs are considered one of the most
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important signaling molecules for providing tolerance to biotic and abiotic stress
(Rao et al. 2011). MAPKs are extremely conserved signaling components, which
function mainly in response to distinct variety of stresses and also during many other
developmental pathways (Sinha et al. 2011). MAPK cascade contains three-tier
components. These are mainly MAPKKKs, MAPKKs, and MAPKs, which mainly
helps in arbitrate phosphorylation reactions from receptor to target (Hamel et al.
2006). MAPKs are activated by specific metal-ligand and by ROS molecules, which
were produced mainly during heavy metals stresses (Smeets et al. 2013). There are
sufficient amount of reports showing the initiation of MAPK signaling in response to
heavy metals such as Cd, Cu, and As (Smeets et al. 2013). However, depth investi-
gation of a complete MAPK signaling network in response to specific heavy metal
stress needs further investigation. However, in Arabidopsis, under CdCl2 and
CuSO4, stress activation of MAPKs such as MPK3 and MPK6 was reported
(Takahashi et al. 2011; Sethi et al. 2014).

Investigation of rice genomic profile displays participation of MAPK signaling
cascade under Cr stress (Huang et al. 2014; Trinh et al. 2014). In wheat root apex,
Al3+ exposure causes the activation of 48- kDa MAPK, which play a dominant role
in transmitting Al-related and Al-resistant signals in wheat (Mossor-Pietraszewska
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Fig. 6.4 This figure displays basic signaling molecules network working during metal stress.
Heavy metals initiate signaling network that causes the activation of transcription factor (TFs)
through phosphorylation (P), which regulates the expression of various stress-related genes
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2001). Investigation of rice genomic profile displays the participation of MAPK
signaling cascade under Cr stress (Huang et al. 2014; Trinh et al. 2014).

In wheat root apex, Al3+ exposure causes the activation of 48-kDa MAPK, which
play a dominant role in transmitting Al-related and Al-resistant signals in wheat
(Mossor-Pietraszewska 2001).

The investigation in rice roots has shown that Zn stimulates quick activation of
MBP by three MAPKs, which have approximate molecular weights of 34, 40, and
42 kDa (Lin et al. 2005). Pb stress in radish showed enhancement in four kinds of
MAPKs such as MAPKKK7, MAPK6, MAPK18, and MAPK20 (Wang et al. 2013).
These some aforementioned reports suggest the involvement of MAPKs in
mediating metal stress; however, a detailed study of an entire MAPK cascade
network working together for mitigating various kinds of heavy metal stress is
required for the complete molecular level of understanding in order to investigate
complete mechanistic pathway.

6.8 Conclusions and Perspectives

The plants have developed mechanisms to combat harsh environments through
various signaling cascades that depend upon stress sensors for signal perception.
The sensor sensitivity regulates the extent of defense mechanism that follows the
stress. Research pertaining to identification of stress sensors, their action, and
behavior in response to multiple stresses can be the goal of future studies as plants
are exposed to multiple abiotic stresses simultaneously. Studies have also
highlighted a plethora of compounds that are actively or indirectly involved in
signaling mechanisms to strengthen the stress tolerance. Another aspect of study
could be the identification of cross talk between these signaling molecules and their
role in biotic and abiotic stresses. There is still a poor understanding about the roles
of organelles such as chloroplast, mitochondria, peroxisomes, cell wall and cell
membrane endoplasmic reticulum, etc. in stress. It becomes imperative to study the
responses of organelles such as chloroplast, which is actively involved in light
perception and along with mitochondria and peroxisomes is a major site of ROS
production. Their perception to stress, behavior, and response to multiple stresses
could be one of the major areas of work, which would be helpful in disclosing the
pathways followed in these organelles. Overall, the multitude of mechanisms
involved plant responses to environmental stresses is an important area of research,
which would help in revealing vital information and increase our understanding
toward plant behavior.
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Plant Peroxidases: Biomarkers
of Environmental Stresses and Signaling
in Plants

7
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Abstract

Plants faced several biotic and abiotic stresses during its life span. For
maintaining the normal growth, plant produces the reactive oxygen species
(ROS), which help in the tolerance of such stress. Fluctuation of the redox
reaction in plants increases the production of ROS, which further adversely
effects the plant physiological processes. Antioxidants governed and maintain
the pathway as well as release of ROS. Till today, it became an interesting and
challenging topic to understand the plant response to ROS. ROS is responsible for
reversible and irreversible modifications of proteins, which act in various signal-
ing pathways. Oxidative post-translational modifications (OX-PTM) cause struc-
tural modifications in target proteins and create oxidative damage. Initially, ROS
were identified as a toxic by-product of aerobic metabolism. Now, it is clear that
ROS play a key role in signal transductions of plants and controlled the process of
growth and development. Biotic and abiotic environmental stimulus triggered the
generation of ROS. The main site of ROS production in plants is chloroplast,
peroxisome, and mitochondria. Apart from these cell walls, cell membrane,
endoplasmic reticulum, and apoplast are also secondary site of ROS production.
Degradation of biomolecules such as pigments, proteins, lipids, carbohydrates,
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and nucleic acid are the forms of cell damage, which ultimately cause plant
cellular death. This chapter discusses the types, mechanism, and response of
plant against these peroxides.

Keywords

Reactive oxygen species · Antioxidants · Stress responses · Oxidative post-
translational modifications

7.1 Introduction

Peroxidase is heme-containing monomeric glycoproteins and a family of isoenzyme
present in all plants. They utilize either H2O2 or O2 to oxidize a wide diversity of
molecules. These important enzymes are utilized in enzyme diagnostic assays,
immunoassays, and industrial enzymatic reactions. In the molecular breeding of
plants, peroxidase genes and their promoters can be used. To explore the physiolog-
ical and molecular functions of peroxidase genes in plants, transgenic techniques
have been utilizing (Jouili et al. 2011).

7.1.1 Plant Peroxidases

Guaiacol is a substrate that was used as the first colored reaction of biological
material, as explained by Schönbein (1855). By semi-century later, to explain an
enzyme extracted from roots of horseradish, horseradish peroxidase (HRP), the term
peroxidase was used for the first time. In cell cultures of many plant species, bean
(Arnison and Boll 1975), spinach (Sticher et al. 1981), tobacco (Pickering et al.
1973), and soybean (Griffing and Fowke 1985) peroxidases were observed, which
are omnipresent in all living organisms (Hiraga et al. 2001).

7.1.1.1 Classes of Plant Peroxidases
Peroxidases are present in plants, animals, and microorganisms. Based on peroxi-
dase catalytic properties and structure, they are divided into three super families
(Welinder 1992, Table 7.1). In animals, fungi yeast, plants, and bacteria, the second
peroxidase superfamily includes catalases (EC 1.11.1.6) (Hiraga et al. 2001). The
plant peroxidase superfamily can be classified further into three classes on the basis
of differences in primary structure (Welinder 1992, classes I, II, and III in Table 7.1).
In plants, bacteria, and yeast such as microbial cytochrome c peroxidase, Class I
plant peroxidases contain the intracellular enzyme such as (EC 1.11.1.5), ascorbate
peroxidase (EC 1.11.1.11), and bacterial catalase-peroxidase (EC 1.11.1.6). Class II
plant peroxidases are extracellular peroxidases from fungi, containing Mn2+- depen-
dent peroxidase (EC 1.11.1.13) and lignin peroxidase (EC 1.11.1.14). Class III plant
peroxidases (EC 1.11.1.7), which were originally explained as peroxidases and
which are the main concern of this article, are plant enzymes that are released outside
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the cells or move into vacuoles. POX contains horseradish peroxidase, which is a
commercially accessible enzyme that is often conjugated to an antibody for chromo-
genic identification (Hiraga et al. 2001).

These three classes of the plant peroxidase superfamily of enzymes are different
in their catalytic properties and structures. Residues in their C-terminal of Class II
peroxidases have an extra 40–60 amino acid in contrast to peroxidases in other
classes (Welinder 1992). Groups of all classes of the plant peroxidase superfamily
have ten simple α-helices. However, three specific helices are present in class III, but
peroxidases enzymes of Classes I and II contain one fixed helix (Hiraga et al. 2001).
Reductants (cytochrome c and ascorbic acid, respectively) represent strong specific-
ity against Cytochrome c peroxidase and ascorbate Peroxidase. From small
molecules to macromolecules, POXs oxidize many substances. However, there is
low sequence similarity between the three classes, five independently positioned
amino acids that are very significant for catalysis and structure as well as the helical
folding of the whole polypeptide. They are strictly preserving among peroxidases in
all three classes (Hiraga et al. 2001).

7.1.1.2 Functions
Plant peroxidases act as huge functional enzymes that could identify in plants, from
shoot up to senescence. The different types of peroxidases and their origin are given
in Table 7.1. The enzyme peroxidase and native ferric peroxidase are transferred into
the compound I (comp) during the standard peroxidative cycle by catalyzing the
reduction of H2O2. Another compound I and II catalyze in continue dehydrogenation
reactions of a broad range of electron donor molecules such as phenolic compounds,
auxin, or secondary metabolites lignin precursors. Widely speaking,
ferriprotoporphyrin is the active part of peroxidases. Indeed, the ferrous heme
(Fe IV¼O) group contains compound I, which undergoes two continuous steps by
AH2 to transform itself into a compound II (CompII). A native form of the enzyme
included a ferric heme (Fe III). The reaction is shown to the generation of phenoxy
radicals that combine spontaneously to form lignin polymers when the oxidized

Table 7.1 Classification of peroxidases

Super family Class Member
EC
number Origin

Plant
peroxidase

Glutathione peroxidase 1.11.1.9 Plant

Catalase 1.11.1.6 Plant, fungus and
yeast

I Cytochrome c peroxidase 1.11.1.5 Yeast and bacterium

Catalase-peroxidase 1.11.1.6 Bacterium and
fungus

Ascorbate peroxidase 1.11.1.11 Plant

II Manganese-dependent
peroxidase

1.11.1.13 Fungus

Ligninase 1.11.1.14 Fungus

III Peroxidase 1.11.17 Plant
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substrate is a phenolic compound (Chen and Schopfer 1999). If somehow, the
phenolic substrate is restored by NADH or related reduced compounds. The
resulting radicals (NAD) start a nonenzymatic oxidative cycle in which O2 can
decrease to O2�, as O2� can respond with another NADH molecule to give H2O2

and NAD. Peroxidases are known as NADH oxidase (Mäder 1980) and use NADH
as the electron donor. They have been recommended to play a crucial role in the
production of H2O2, which is required for lignification.

7.1.1.3 Subcellular Localization
The enzyme peroxidases Class III are commonly present in the apoplast and
vacuoles (Andrews et al. 2002). They have excreted enzymes given by genes that
encode a signal peptide. It is mediated by the entry of the developing peroxidase
peptide into the endoplasmic reticulum. Therefore, they were present in the Golgi
apparatus, the endoplasmic reticulum, and transport vesicles (Mäder 1980). The
activity of the nuclei, mitochondria, and plasma membrane was identified by peroxi-
dase. However, it seems that isoperoxidases with an acidic isoelectric point are
present in cell walls (Passardi et al. 2004), while normal isoperoxidase is present
either in the vacuole or in cell walls. Indeed, they have shown that cationic
peroxidases could be discovered from the cell wall.

7.1.1.4 Multigene Family
The number of genes has increased widely from the appearance of the first Class III
peroxidases, just before the advent of terrestrial plants, to the emergence of
angiosperms (Passardi et al. 2004). The plant adaptation to terrestrial life can be
connected with the multifunctional of peroxidases or characterized by the availabil-
ity of oxygen at high proportions. Therefore, the evolution of a multigene family
looks to be associated with the increasing difficulties of plant structure and the
diverseness of their biotopes and pathogens (Hiraga et al. 2001).

7.2 Production, Scavenging, and Signaling of ROS

During entire life cycle of plants, there are many environmental conditions such as
temperature, humidity, salinity, pathogen attack, herbivores attack, and mechanical
stress, which are major challenges for them. A reserve signaling pathway is devel-
oped by plants which are nonparalleled in its complexity in living species for
resistance of all this type of challenges. There are reprogramming of gene expression
and metabolism in plants due to response of stress stimulus through signaling of
hormones of plants, receptors of cell surface, photoreceptor, and plastids due to
lights (Kami et al. 2010; Jaillais and Chory 2010; Vanstraelen and Benková 2012). A
class of reactive forms of molecular oxygen plays a vital role in this signal integra-
tion and decision-making, collectively known as reactive oxygen species
(Kangasjärvi et al. 2012). Due to many stimuli, either environmental or other cell
organelles like peroxisomes mitochondria and chloroplast are generated ROS, and
this is a hallmark of response against stress. The causes of generation of ROSs and
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their ultimate effect are described in Fig. 7.1. The production of ROS mostly occurs
in apoplast, peroxisome, chloroplast, and sometimes in endoplasmic reticulum,
nucleus, and mitochondria (Shapiguzov et al. 2012).

7.2.1 Plastids (Chloroplasts) Responses to ROS

The ROS is being continuously generated in the chloroplasts as the energy is being
transfer to O2 due to partial reduction of oxygen. When cytochrome C oxidase
interacts with O2 generates water. Sometimes, O˙�2 is liberated due to the reaction of
O2 and discrete ETC constituents, and this is first produced ROS. After undergoing
further reactions, superoxide radical (O˙�2) can also produce member of other ROS
family. Singlet oxygen is produced by the reaction of O2 and triplet state of
chlorophyll in the antenna. It is an unusual member of ROS family, which is not
produced by electron transfer to O2 (Das and Roychoudhury 2014).

1O2 is generated by PSII via two ways (Das and Roychoudhury 2014). Firstly,
when environmental stress disturbs the delicate balance between energy utilization
and light harvesting, followed by triplet Chl (3Chl*), which are formed and react
with dioxygen (3O2), singlet oxygen (1O2) is liberated (Karuppanapandian et al.
2011). Secondly, due to over reduction of ETC, 1O2 is produced by the light
harvesting complex (LHC) at the PSII (Asada 2006). Due to accumulation of 1O2

in the chloroplast, peroxidation of membrane lipid mainly PUFA (polyunsaturated
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Fig. 7.1 Causes of ROS and their effect on plants
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fatty acid) takes place and damages the proteins of PSII at P680 reaction center. It
can also cause the death of cells (Triantaphylides et al. 2008). It is important to
control and scavenge the ROS in the chloroplast for survival of plants under stress
conditions (Tseng et al. 2007).

7.2.2 Mitochondrial Responses to ROS

The mitochondria is the main production site of O˙�2 and H2O2 like injurious ROS
(Navrot et al. 2007). Due to engaging in photorespiration, having rich environment
of carbohydrate and O2, plant mitochondria is different from animal mitochondria
(Rhoads et al. 2006). Complex I and Complex III play lead role in the generation of
ROS; hence, mitochondria is a crucial culprit because it stores energized electron to
reduced O2 and form ROS (Noctor et al. 2007). In Complex I (NADH dehydroge-
nase) at its flavoprotein region, O2 directly decreases into O˙�2. Due to shortage of
NAD+-linked substrates, a reverse electron flow occurs from Complex III to Com-
plex I followed by the production of ROS that increased at Complex I (Das and
Roychoudhury 2014). For the prevention of the oxidative stress in mitochondria,
there are two types of vital enzymes named mitochondrial alternative oxidase (AOX)
and mitochondrial SOD (Mn-SOD) (Das and Roychoudhury 2014). The main
function of AOX is to maintaining the lower state of the UQ pool and reduced the
production of ROS (Ho et al. 2008).

7.2.3 Peroxisomal Responses to ROS

Single-membrane-bound spherical micro-bodies, peroxisomes, and their integral
oxidative metabolism are responsible for the responses against ROS. In matrix,
hypoxanthine and xanthine are metabolized into uric acid by xanthine oxidase
(E.C.1.17.3.2), and O˙�2 is liberated as a by-product. In peroxisomal membrane,
NADPH-dependent electron transport chain having the component of Cyt b and
NADH, which utilized O2 as the electron acceptor and cytosolic O˙�2 is generated
(Das and Roychoudhury 2014). There are three transmembrane proteins of
peroxisomes, which cause the production of ROS, having molecular mass of
18 kDa, 29 kDa, and 132 kDa.

The electron donor of 18 and 132 kDa peroxisomal membrane polypeptide is
NADH and NADPH that also act as electron donor for 29 kDa PMP to lower
cytochrome c. During low water availability, stomata remain closed; in these
stressful abnormal situations, the ratio of CO2 to O2 reduced and caused the
occurrence of the increase of photorespiration followed by the formation of glycolate
(Das and Roychoudhury 2014). With the help of glycolate oxidase, glycolate
oxidized and gave rise to H2O2, and during photorespiration, it is a chief generator
of H2O2 (Noctor et al. 2002). In peroxisomes, there are some other metabolic
pathways that produced ROS such as β-oxidation of fatty acids and flavin oxidase
pathway (Das and Roychoudhury 2014).
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7.2.4 Apoplastic Responses to ROS

Apoplast is a notable site for H2O2 production due to the combination of abscisic
acid(ABA) and stress signals during the time of stressful environmental (Hu et al.
2006). NADPH oxidase is expressed by AtRbohD and AtRbohF for the purpose of
generation of apoplastic ROS, which is vital for stomatal closure via ABA induction
(Kwak et al. 2003). In apoplast, there are some other enzymes that generate ROS like
pH-dependent peroxidases, some polyamine oxidases, cell wall linked oxidases, etc.,
which are responsible for the production of H2O2 (Das and Roychoudhury 2014).

7.2.5 ROS Transport Through Cellular Membranes

The plasma membrane is surrounded with whole plant cell below the cell walls and
plays a key role for the interaction with changeable environmental conditions and
helped in the survival of the cells. The NADPH-dependent oxidases are remarkable
due to the presence of different homologs in various adverse conditions and their
gene expression, which are situated in the plasma membrane (Apel and Hirt 2004).
NADPH oxidase transferred electron from cytosolic NADPH to O2 and gives O˙�2

by the help of SOD (Das and Roychoudhury 2014).

7.2.6 Cell Walls Responses to ROS

The cell wall becomes active source of H2O2, OH˙, O˙�2, and O2 by
hydroperoxidation of polyunsaturated fatty acids with the help of lipoxygenase
(LOX) situated in cell walls during stressful conditions. Polyamines or diamines
are utilized by diamine oxidase, which is located in the cell wall for the production of
ROS (Das and Roychoudhury 2014). For reinforce of the cell wall with lignin during
attack of pathogen, the lignin precursors are cross-linking with the help of H2O2-
mediated pathways (Higuchi 2006).

7.2.7 Endoplasmic Reticulum Responses to ROS

The NADPH-mediated electron transport is situated in the ER including CytP450,
produced O˙�2 (Mittler 2002). A free radical intermediate (Cyt P450 R�) are pro-
duced by the interaction of CytP450 with RH, an organic substrate. Sometimes, this
oxygenated complex decompose to Cyt P450-Rh and liberated O˙�2 in the form of a
by-product (Das and Roychoudhury 2014).
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7.3 ROS-Sensing Mechanisms via Oxidative Post-Translational
Modifications of Cysteine Residues

The oxidative post-translational modification (Ox-PTM) of Cys residues is a neces-
sary mechanism that controls protein structure and functions. Cysteine (Cys) side
chain’s special properties allow various Ox-PTMs, which potentially results in
diverse regulatory effects (Tripathy and Oelmüller 2012). The side chain of a Cys
residue consists of a terminal thiol (�SH) functional group. At the core of the thiol,
the sulfur atom is rich in electron, and its d-orbitals permit for the multiple oxidation
states (Waszczak et al. 2015). The accessibility of different oxidation states permits
the formation of a diverse range of Ox-PTMs containing sulfenylation (SOH),
sulfhydration (SSH), S-nitrosylation, S-glutathionylation (SSG), disulfide bonds
(RS-SR), sulfinic acid (SO2H), and sulfonic acid (SO3H).

Most Cys Ox-PTMs are stimulated by diffusible small molecules and are revers-
ible. Via antioxidant defense system, they can decrease back to a free thiol (SH) or be
transformed to other Ox-PTMs depending on the cell’s redox-state (Waszczak et al.
2015). Many factors are involved in the reactivity of the individual Cys residue, its
surrounding environment, and the composition of the local redox environment leads
to the formation of a single Ox-PTM. A summary of the variety of different
Ox-PTMs and the redox-chemistry is associated with their formation. Mainly, Cys
Ox-PTMs are persuaded by reactive oxygen or nitrogen species molecules
(ROS/RNS) that react with the free thiol on a Cys side chain (Waszczak et al. 2015).

Plants have evolved different strategies to keep ROS levels under a tight control
that is governed by nonenzymatic and enzymatic ROS-producing and
ROS-scavenging systems (Mittler et al. 2011).

Ascorbate (Asc) and glutathione (GSH) are the prime nonenzymatic cellular
redox systems, with tocopherol and diverse alkaloid, carotenoid, and flavonoid
metabolites often listed but consistently debated as physiologically relevant
antioxidants (Hernández et al. 2009). Lower glutathione pool (high GSH/GSSG
ratio) regulation is pivotal for cellular redox homeostasis, since GSH is used to
regenerate oxidized ascorbate in the glutathione–ascorbate cycle (Del Río 2011).
Asc and GSH work hand in hand with ascorbate peroxidases (Nakano and Asada
1981) and glutathione peroxidases (Mills 1957), respectively, which together with
catalases, peroxiredoxins (Prxs), and superoxide dismutases establish the main
enzymatic classes involved in ROS scavenging (Mittler et al. 2004). Glutathione is
fully protonated at physiological pH because of its relatively high pKa (Van Laer
et al. 2013), and thereby its reactivity toward disulfides and ROS is rather limited
(Waszczak et al. 2015).

The chemical properties of the sulfur atom (i.e., broad range of oxidation states)
make Met and Cys residues the crucial sites of oxidation within proteins (Davies
2005). The �2 oxidation state of the sulfur atom is represented by the thiol group
(R-SH) in Cys Ox-PTMs, which is the fully decreased form. Not all Cys residues in a
protein are prone to ROS-mediated modifications, and the reactivity of distinct thiol-
proteins toward ROS differs according to their physiological function and local
redox environment (Waszczak et al. 2015). Between discrete Cys residues, the
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reactivity is strongly correlated with their pKa, i.e., the potential to form the anionic
form of the sulfur, called thiolate (R-S�), which is much more reactive than the thiol.

The protonated thiol will be the dominant species, if the pKa of the sulfur atom is
higher than the pH of the solution. However, the majority of the thiols will be present
as a thiolate (Cys prone to oxidation), if the pKa is lower than the pH (Waszczak et al.
2015). The existence of dipoles or proximal charged residues as well as the hydrogen
bonding between thiolates/thiols and neighboring residues can stabilize the cysteine
thiolates (Harris and Turner 2002). Hydrogen bonding has a great credit on the pKa

of reactive Cys residues. Generally, the lower the pKa is, the more hydrogen bonds a
Cys-sulfur receives, and the more the thiolate form is stabilized (Roos et al. 2013).

The nucleophilicity of the Cys is also a vital factor in its reactivity; sometimes, a
lower stabilization of the thiolate in Cys residues enhances its nucleophilicity, while
a highly stabilized thiolate requires a great amount of energy to gain the transition
state (Ferrer-Sueta et al. 2011). The steric accessibility of Cys residues within the
three-dimensional structure of the protein is another important factor that controls
the reactivity of Cys residues (Marino and Gladyshev 2010). The first step involves
the reversible oxidation of reactive Cys residues to sulfinic acid (R-SOH) in
ROS-dependent signaling. This modification is highly unstable and leads to further
modifications, unless stabilized within its protein environment (Claiborne et al.
1993).

An extreme concentration of oxidant can result in further oxidation to sulfinic
acid (R-SO2H) and thereafter to irreversible sulfonic acid (Roos and Messens 2011).
An ATP-dependent sulfiredoxin enzyme (Srx) catalyzed the reversion of the
R-SO2H modification that can reduce R-SO2H to R-SOH in Arabidopsis (Rey
et al. 2007). However, so far, R-SO2H reduction is rather exceptional with the
only two known substrates of AtSrx: mitochondrial PrxIIF (Iglesias-Baena et al.
2011) and the chloroplast 2-Cys Prx (Iglesias-Baena et al. 2010). On the other hand,
R-SOH can react with free protein thiols to form intra- or intermolecular disulfide
bonds (R-S-S-R/R-S-S-R0) or is modified by low-molecular-weight thiols (like GSH
in plants), induced to Cys S- glutathionylation. Initially, S-glutathionylation events
were regarded to serve as a protective mechanism on active-site Cys residues,
preventing overoxidation and subsequent permanent protein damage (Waszczak
et al. 2015). Only recently, the role of S-glutathionylation in redox signaling was
recognized (Zaffagnini et al. 2012).

The reduction of deglutathionylation and disulfide bonds is controlled by
thioredoxins (Trxs) and glutaredoxins (Grxs), respectively. Plants are equipped
with a much more complex Trx/Grx network, compared with prokaryotes and
animals. Fifty Grx/Grx-like and 44 Trx/Trx-like proteins are encoded by the
Arabidopsis genome (Meyer et al. 2012). Trxs use multiple sources of reducing
equivalents to perform the reduction of intra-/intermolecular disulfide bonds,
depending on the subcellular localization (Waszczak et al. 2015). Light reactions
reduce ferredoxin (Fdx) in chloroplasts, which in turn reduces ferredoxin–
thioredoxin reductase (FTR), which eventually regenerates the Trx sulfhydryl
groups (Schürmann and Buchanan 2008). Another origin of decreasing equivalents,
common in the Trx and Grx systems, is NADPH, which after oxidation to NADP+ is
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reduced by Fdx: NADP+ reductase within the chloroplast stroma, also during the
oxidative pentose phosphate pathway.

7.4 Intracellular Interactions Between Redox Signaling
and Organelle ROS

Cytoplasmic NADPH is a core for redox signaling pathway for the detoxification of
ROS. NADPH supplied electrons to ROS generating enzymes like NADPH oxidase
and also maintained disulfide or thiol status. For the changes in the gene expression
level in nucleus, all the signaling either from apoplast or cell organelles must have to
pass through cytoplasm. Khandelwal et al. (2008) provided an example for the
information of ROS where redox state of any cell is combined with other regulators.
In last decades, the genetic approaches significantly contribute for understanding the
mechanism of it. This is also helpful in the field of genetic engineering of crop plants
(Tripathy and Oelmüller 2012).

7.4.1 Chloroplast-Mitochondrion Cross talk, Signaling, and PAP

Mitochondria are the end products of an endosymbiotic event, like chloroplasts, and
have a portion of ancestral genome (Woodson and Chory 2008). It is a crucial
signaling from mitochondria-to-nucleus in retrograde manner for coordination of the
expression of nuclear genes encoding mitochondrial proteins with the expression of
the mitochondrial genome (Rhoads 2011). The core function of chloroplast and
mitochondria is to capture and utilize the energy in the metabolic exchanges. Apart
from these functions, they are also coupled with cellular redox status (Bobik and
Burch-Smith 2015). To regulate gene expression of mitochondria, the regulated
translocation of proteins would mediate chloroplast signaling. Direct contact
between mitochondria and chloroplasts would be made such translocation much
easier, and by physical interaction, there may be direct communication (Bobik and
Burch-Smith 2015). Mitochondria, peroxisomes, and chloroplasts have frequently
been observed in close association in leaves, consistent with metabolic exchange
among these organelles. Chloroplast-peroxisome association are established and
followed by mitochondria recruited and formed triorganellar unit (Oikawa et al.
2015). These techniques are becoming less time-consuming and easier (McDonald
2014), and we can used these approaches for biology of plant cell (Bobik et al.
2014). This will be an energetic approach for interrogation of ultrastructure of plant
cell body when coupled with fluorescence microscopy, as exemplified by recent
work from Caplan et al. (2015).
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7.4.2 During Stress, the Apoplastic and Organelle ROS Interactions

By the presence of plasmodesmata which is a specialized channel present in the cell
wall between two adjacent cells, communication between plant cells is enhanced.
Plasmodesmata are discovered 100 years ago, but the structure and regulation of
plasmodesmata are not well understood till now (Bobik and Burch-Smith 2015).
Recent advancement in plant biology and genetics helped very much to understand-
ing their unknown fact and function. Plasmodesmata gives a way for the metabolite
exchange and also water, ions, and product of photosynthesis; beside these also
information coded by nucleic acids, proteins like transcription factor and hormones
are essential for proper development of plants (Jackson 2015). Firstly, maize sucrose
export defective1 (Russin et al. 1996) mutant was reported (Bobik and Burch-Smith
2015). From sites of photosynthesis, because of callose accumulation at
plasmodesmata of bundle sheath and vascular parenchyma locations, the export of
photosynthate is decreased by sxd 1 mutants (Botha et al. 2000).

Photosynthesis is not inhibited by sxd1 mutants, while accumulation of starch and
sugar occur in source cells (Provencher et al. 2001). The first clue is that chloroplast
redox state may affect plasmodesmata provided by the sxd1 mutant. However,
mutants were un-differentiable from wild-type plants under optimal growth
conditions; however they are much more sensitive to stress of photooxidative
stage (Porfirova et al. 2002). With metabolism of tocopherol defects, cautiously
examination of Arabidopsis mutants should take place for plasmodesmata-related
changes in intercellular trafficking (Bobik and Burch-Smith 2015). Identification of
the gfp arrested trafficking (gat) mutants can be done by a genetic screening with
altered plasmodesmal function for Arabidopsis thaliana mutants (Benitez-Alfonso
et al. 2009). The gfp is synthesized in the companion cells of the Arabidopsismutant;
in wild type, tissue phloem moves through plasmodesmata, while this is not seen in
mutants, which means that intercellular trafficking is reduced by gat mutants. After
about ten days of development become cease, the gat1, 2, 4, and 5 mutations are all
seedling lethal (Bobik and Burch-Smith 2015). A thioredoxin-m3 (TRX-m3) is
localized in plastid, and gat1 roots is encoded by GAT1 gene, which accumulate
ROS in more amount than wild-type roots.

GAT1 overexpression leads to the reciprocal phenotype of increased intercellular
transport. Hence, GAT1 probably functions in redox homeostasis like SXD1/VTE1,
including the perturbation of plastid and chloroplasts redox state that leads to altered
plasmodesmata. Also, in the gat1 mutant, altered metabolic flux may change the
redox state of TRX-m3 and eventually leads to plasmodesmata function (Benitez-
Alfonso et al. 2009). A separate screen is managed by the lab of Zambryski for
mutants of Arabidopsis with changing intercellular trafficking mediated by
plasmodesmata (Burch-Smith and Zambryski 2012). Numerous increased size
exclusion limit (ise) mutants were identified with the help of screening of the
embryonically lethal mutant. ISE1 and ISE2 have been cloned and mapped
(Kobayashi et al. 2007). Additionally, ise1 and ise2 embryos also consist of
increased numbers of plasmodesmata with multiple branches to increased
plasmodesmal trafficking (Burch-Smith and Zambryski 2010). Hence, due to
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defective chloroplasts, there are overlapping plasmodesmatal phenotypes of the ise1
and ise2 mutants (Bobik and Burch-Smith 2015).

7.4.3 ROS in Stomatal Closure and Plant Immunity

For the regulation of the closure of stomata, reactive oxygen species (ROS) acts as an
important signal (Murata et al. 2015). Organisms, which are aerobic in nature,
possess ROS (H2O2, HO˙, O˙

�
2 and

1O2) as metabolites. Firstly for the regulation
of stomatal closure, ROS is generated in apoplast of guard cells, and after this,
sensing and signaling cause activation of anion channels (Sierla et al. 2016).
NADPH oxidase of plasma membrane, which is also known as respiratory burst
oxidase homologs [RBOHs], is considered ROS production in apoplast of plants and
is known for stress-induced response developmental control (Sierla et al. 2013).
NADPH oxidases are present all over and are evolutionarily conserved in nature
(Sierla et al. 2016).

Molecules transported to intercellular space with the help of microcapillary,
which are inserted to stroma nanoinfusion (Guzel Deger et al. 2015). Rapid stomatal
closure is facilitated by nanoinfusion of flg22 and ABA (Guzel Deger et al. 2015).
There is further a detailed study that is required for the role of RBOH generated ROS
in the closure of stomata (Sierla et al. 2016). In the apoplast, amine oxidases and
peroxidases helped in the production of ROS, aside from RBOHs (Sierla et al. 2016).

In guard cells, apoplastic signaling of ROS create complexity by both peroxidases
and amine oxidases (Wang et al. 2012). Further studies are required for vital role of
enzymes, their molecular identity, and functions, which generate ROS in stomatal
movement (Sierla et al. 2016). Stomatal closure is done by accumulation of ROS in
chloroplast, further ABA treatment, ozone, extracellular Ca2+ (Wang et al. 2012),
and also by some other external stimulus. These discoveries demonstrate the chief
role of ROS accumulation in chloroplast for stomatal movement (Sierla et al. 2013).

ROS accumulation gets in the guard cell vicinity of chloroplast by the help of
ABA due to which in adjacent cells ROS signaling is increased (Zhang et al. 2001).
An NADPH oxidase inhibitor diphenyleneiodonium is inhibiting the accumulation
of ROS in chloroplast partially but not completely (Sierla et al. 2016). The late ROS
peak was noticeably reduced in the double mutant of atrbohD and atrbohF; the late
ROS peak is decreased, which demonstrates that the ROS derived by RBOH is
engaged in initiating cytoplasmic or chloroplastic accumulation during treatment of
O3 (Joo et al. 2005; Vahisalu et al. 2010). These data depict a relation between the
production of ROS by chloroplast and apoplast and describe a signaling in guard cell
of chloroplast (Noctor et al. 2016).
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7.5 ROS in Plant Development

Plants throughout their life cycle are subjected to different environmental stresses. In
managing normal plant growth and improving their stress tolerance, reactive oxygen
species (ROS) play crucial roles (Huang et al. 2019a). Having aerobic conditions for
any organism, there is a chance to utilize oxygen as an electron acceptor and trapping
their reacting quality for signaling and metabolism (Foyer and Noctor 2016). From
seed germination to plant senescence, ROS are either produced or removed, due to
which plants control their development to their adaptation in different environments
(Huang et al. 2019a).

7.5.1 The Maintenance of Plant Vegetative Apical Meristems
Engaged by ROS

ROS homeostasis shapes plant vegetative apex development indicated by emerging
evidence. O2˙

� is required for cell divisions; it is mainly accumulated in the
Arabidopsis thaliana in meristematic tissue of the root, and accumulation site of
H2O2 is mainly the elongation zone, which is the confirmation of cell differentiation
(Tsukagoshi et al. 2010). These two, i.e., meristematic zone and elongation zone, are
called ROS microenvironment, and they are very crucial for distribution of transition
zone. Cell of transition zone can be divided due to having gradient of ROS. Level of
O˙�2 is decreased, and the level of H2O2 starts to increase the cells being elongating
and stop dividing (Dunand et al. 2007). The balance of ROS is very essential for the
transition zone. And this balance is provided by a transcription factor UPB1
(UPBEAT1). H2O2 itself also affects the expression of UPB1, and this system of
regulation contained a feedback loop, which plays a role in both for ROS homeosta-
sis and for root growth showed by further studies (Tsukagoshi et al. 2010). Addi-
tionally, distal stem cell (DSC) and the quiescent center (QC) are needed for root
apical meristem (RAM) size maintenance (Huang et al. 2019b). The root stem cell
niche (SCN) identity is affected by Arabidopsis thaliana P-loop NTPase1 (APP1)
via its control of local ROS homeostasis. Reduction in ROS levels accompanied
disruption of APP1, which is an ultimate reason for increase in the rate of cell
division at the point of quiescent center and root DSC differentiation (Yu et al.
2016). Plant root primary growth is regulated by ROS combined with hormones and
some other signal molecules. ROS and auxin signaling acted antagonistically for the
purpose of balancing root meristem growth in the RAM (Tognetti et al. 2017). For
controlling the regulation of cellular ROS pathway, autophagy is a necessary
mechanism and assisting the degradation of the oxidatively damaged peroxisomes
is proposed by the findings. Brassinosteroids (BRs) also regulate root tip stem cell
activity through ROS, which is shown in current studies (Huang et al. 2019b).

Due to binding of BR to its receptor kinase BRI1 (BRASSINOSTEROID
INSENSITIVE1), the levels of H2O2 in cell are increased and the enhanced level
of peroxide to altered the vital transcription factors in signaling of BR. The oxidative
modification is responsible for increased transcriptional activity of BZR1; root
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meristem development is enhanced by increasing its interaction with ARF6 (AUXIN
RESPONSE FACTOR6) and PIF4 (PHYTOCHROME INTERACTING FAC-
TOR4) (Tian et al. 2018). There are limited details about the relationship between
cytokinin and ROS in the apex growth regulations. Hormonal network and the ROS
are interconnected and not to be considered as independent mechanism; they
together activate physiological and stress adaptation response. In the Arabidopsis
RAM, glutathione reductase (GR) plays a key role for the regulation of the levels of
reduced glutathione in the Arabidopsis RAM (Huang et al. 2019a).

Oxidized glutathione enormous accumulation in GR2 (glutathione reductase2)
mutants leads to root apical cells entering the oxidized state and eventually results in
abnormal growth. After applying glutathione exogenously, the normal phenotype is
restored partially (Yu et al. 2013). For different Arabidopsis ecotype, a novel thio-
redoxin DCC1 has signify the shoot regeneration ability (Kka et al. 2018). Bust of
DCC1 activated the formation of mitochondrial ROS. Shoot regeneration further
regulates by the process. Simultaneously, in the DCC1gene sequence, for the
purpose of bud regeneration in different ecotype of Arabidopsis, there are about
six different SNPs (single-nucleotide polymorphism) found, and the level of ROS is
different in ecotypes harboring different SNPs (Zhang et al. 2018). ROS homeostasis
acts crucially in various processes apical meristem maintenance, shoot initiation, etc.
(Huang et al. 2019a).

7.5.2 Organ Morphogenesis Triggers by ROS in Plants

In all plant tissue, metabolically active ROS is found as a signaling component
(Ishibashi et al. 2015). In rice, OsLEA5, the late embryogenesis protein, which is
present, abundantly interacted with transcription factor ZFP and regulated APX
OsAPX1 gene expression for ABA-inhibited germination coregulation (Huang
et al. 2018). A biosynthetic activity of phenylalanine of AROGENATE
DEHYDRATASE3 (ADT3) plays a crucial role in cotyledon development and
coordinating ROS homeostasis in etiolated seedlings of Arabidopsis. From hetero-
trophy to autotrophy, a crucial role is played by Phe at the time of the transition
phase of seedlings by protecting the cells from damage of ROS (Para et al. 2016).

For the development of crown roots in case of rice, ROS also play an essential
role. WOX11 is a transcription factor needed for crown root development, which is a
WUSCHEL-related homeobox gene (Jiang et al. 2017). Under flooding conditions,
ethylene is accumulated in crown roots of rice, and this is helped in the generation of
ROS. With the help of other signals, ROS increased elongation of crown cells, and
this leads to death of epidermal cells (Steffens et al. 2012). Salicylic acid prohibited
the expression of genes related to the scavenging of ROS. In case of mutant
ABNORMAL INFLORESCENCE MERISTEM, crown root synthesis is inhibited
due to the decreased level of ROS, which helped in the synthesis of salicylic acid.
Root development is again restart after using H2O2 externally (Xu et al. 2017).
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7.6 Catalases of Plants Targeted on Nitric Oxide and Hydrogen
Sulfide

The catalase system is the oldest known and first discovered antioxidant enzyme
because it may be a main member of cell metabolism in maximum of the aerobic
beings (Góth 2018). For example, it’s been proved that human catalase displays
245 single-nucleotide polymorphisms, which are involved in diverse physiological
and pathological situations, including hypertension, DM, insulin resistance,
dyslipidemia, asthma, bone metabolism, or vitiligo (Kodydková et al. 2014). Besides
these genetic factors, CAT activity could also be suffering from age, physical
activity, and differences due to the season and certain chemical compounds (Palma
et al. 2020). Additionally, catalase was found to manage lipid metabolism in liver
without compromising the general oxidative damage of cells (Pérez-Estrada et al.
2019), and therefore, the modulation of its expression in cancer cells seems to be a
technique to be potentiated for chemotherapy purposes (Palma et al. 2020).

7.7 Metabolomic-Guided Elucidation od Abiotic Stress
Tolerance by Plants

Plants are unable to flee from unfavorable environmental conditions, e.g., biotic and
abiotic stresses; thus, their responses are manifested through physiological and
metabolomic changes (Maritim et al. 2015). Salt and water stresses are the main
abiotic environmental conditions that reduce plant growth and end in significant
yield losses (Llanes et al. 2018). Although plants have a good spectrum of
mechanisms to adapt to adverse environmental conditions, the present understanding
of mechanisms related to the power of plants to take care of their growth under
abiotic stresses are poorly understood. All chemical species having molecular weight
less than 1800 Da is known as metabolome, and their study is metabolomics (Hall
2018).

Therefore, the metabolites are the top products of cellular functions, and their
levels are often considered because the plant responses to environmental or genetic
manipulation (Llanes et al. 2018). In plants, metabolomic studies aim to spot and
quantify the set of primary and secondary metabolites involved in biological pro-
cesses. Plant primary metabolites are implicated within the normal plant growth,
development, and reproduction, whereas the secondary metabolites are crucial to
plant survival under unfavorable conditions by maintaining a fine-tuning with the
environment (Llanes et al. 2018). Secondary metabolites vary from species to
species, place to place, and even season to season, but essentially primary
metabolites are highly conserved in their structures and abundances across the
Plantae (Scossa et al. 2016).

The diversity of plant metabolites and their complicated regulatory mechanism
highlights the necessity to investigate the biochemical nature of these compounds.
Plant metabolome reported so far consists of roughly 30,000 endogenous
metabolites that mainly comprise carbohydrates, amino acids, organic acids, and
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lipids (Llanes et al. 2018). Also, small molecules like plant hormones and signaling
molecules are vital for plant growth and development. Plant metabolomic research
depends largely on its methodologies and instrumentation to comprehensively
identify, quantify, and localize every metabolite.

Thus, several strategies for the analysis of metabolites are being developed
rapidly (Hegeman 2010): (1) metabolite profiling, identification and quantification
of variety of predefined metabolites, which are related to a specific metabolic
pathway(s); (2) metabolic fingerprinting, global screening of samples to discriminate
among samples of different biological status or origin; (3) metabolite target analysis,
qualitative and quantitative analysis of one or a couple of metabolites associated with
a selected metabolic reaction; and (4) metabonomics, analysis of tissues and
biological fluids for changes in endogenous metabolite contents resulting from
disease or therapeutic treatments (Llanes et al. 2018).

Plant metabolism is notably perturbed under abiotic stress conditions. In the last
years, metabolomics has been employed for the identification of putative metabolites
responsible for phenotypes tolerant/sensitive to several environmental stressors. In
general, the metabolic changes that are observed in plants subjected to worry may
have different causes; thus, they differ in their significance and are expected to
differently correlate with tolerance/sensitivity phenotypes. The main goal of study-
ing metabolic changes during stress responses is to identify metabolites that allow
the reestablishment of homeostasis and normal metabolic fluxes and to detect the
accumulation of groups of compounds involved in mediating the strain tolerance
(Llanes et al. 2018).

A set of primary metabolites (osmolytes and osmoprotectants) and secondary
metabolites (defense metabolites) accumulate to strengthen plant stress tolerance.
Among them, primary metabolites are the foremost important metabolites suffering
from stress, usually as a result of impairment in CO2 assimilation (Llanes et al.
2018). Although an increased accumulation of osmolytes by plants exposed to
abiotic stresses has been reported, not all plant species synthesize all types of
osmolytes; some species synthesize and accumulate very low quantities of a number
of these compounds, whereas some others don’t do so in the least (Llanes et al.
2018).

7.8 Conclusions

Reactive oxygen species (ROS) can synthesize intracellular and extracellular
locations. ROS can cause extensive damage to the integrity of the cell that causes
death. To overcome such a situation, plants can be equipped with a wider range of
defense measures including the morphological change in plants and metabolic and
genetic level changes for the adaptation of nonfavorable environmental conditions.
ROS has short half-life and high reactivity, which is very important for our under-
standing about the formation of ROS. Interaction between ROS and calcium signal-
ing during multiple environmental stresses is still unanswered. Recent works
reported many sources for the production and removal of ROS, different types of
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enzymes, and antioxidant molecules for the signaling to ROS. But still, there are
many points, which are not disclosed about ROS, like how various ROS cause
signaling in spite of having very short half-life and susceptible nature to many
chemicals. Also, production of various ROS and their interaction with each other
cannot be clearly understood. Further, we need some more work in order to
understand complete mechanism and hope for the best.
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Abstract

Superoxide dismutases (SODs) are pervasive metalloenzymes that comprise the
very first line of defense versus reactive oxygen species (ROS). It constitutes one
of the most important enzymatic parts of detoxification of superoxide radicals that
are produced in biological systems through catalyzing its dismutation to H2O2

and eventually to H2O as well as O2 depending on the catalase and peroxidase. In
general, plant species includes several SOD isoforms varying in their active site
metal ions, specifically Cu/Zn-SOD, Mn-SOD, and Fe-SOD. Numerous studies
also stated that the tolerance levels of plants are positively associated with SOD
activity at the same time as well as along with the number of SOD isoforms and
founded the fact that “the greater the SOD activity, the greater the stress toler-
ance.” Hence, the SOD isozyme profile of any plant could be used as a balanced
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marker used for stress tolerance in plants. Throughout this chapter, we have
talked about the title role of SOD in abiotic and biotic stress tolerance, kinds of
SODs, and the correlation of its activity and its isoforms along with stress
tolerance level.

Keywords

Superoxide dismutase · H2O2 · ROS · Stress tolerance

8.1 Introduction

Reactive oxygen species (ROS) are produced as by-product in response to stresses
both biotic and abiotic. ROS causes serious damages at DNA, protein, and lipid level
leading to sever injuries in plants (Apel and Hirt 2004). Production of ROS leads to
the activation of plant defense responses by modifying cell wall, phytoalexins, and
proteins that are linked to pathogenesis (Segal and Wilson 2018). Moreover, hyper-
sensitive response (HR) is also activated due to ROS production, and it is a defensive
strategy to counter the injury or damage (Lamb and Dixon 1997). Plants respond to
various stresses to scrub the reactive oxygen species by producing enzymatic and
nonenzymatic molecules including catalases, peroxidases, and superoxide
dismutases (SODs) (Broxton and Culotta 2016) (Fig. 8.1).

One of the most critical enzyme is superoxide dismutase which acts as a first line
of cellular defense by actively participating in ROS homeostasis, thus converting
superoxide anion (O2

˙�) to H2O2 (Apel and Hirt 2004). SODs are further divided in
three types on the basis of the metal cofactor they had, i.e., (1) manganese (Mn)-
SOD located in mitochondria and the peroxisomes, (2) iron (Fe)-SOD (found in
chloroplast), and (3) copper (Cu)/zinc (Zn)-SOD (located in cytosol, chloroplasts,
and the peroxisomes) (Li et al. 2017).

Cu/Zn SOD having of two subunits, Cu and Zn, plays a crucial role in increasing
the enzyme’s activity and stability (Lin et al. 1995). Ratios of O2

� to H2O2 can be
altered by SODs (Chabory et al. 2010). H2O2 also has a potential to modulate the
expressions of genes including TFs, anti-oxidative genes, and some genes linked to
stress.

It has been proved that SODs are involved in maintaining the ROS homeostasis at
intracellular levels. Overexpressing “MeCu/Zn SOD” and “MeCAT1” in Manihot
esculenta resulted in an enhanced tolerance and ROS scavenging against various
stresses including cold, drought, and oxidative stress (Xu et al. 2013). Similar studies
have been reported in yeast and Arabidopsis by overexpressing “PutCu/Zn SOD”
(Wu et al. 2016). In Saussurea involucrata, a gene, namely, “SiCSD,” belonging to
“Cu/Zn SOD,” was overexpressed in tobacco, thus increasing tolerance to drought,
cold, and other oxidative stresses (Li et al. 2017) (Fig. 8.2).
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Fig. 8.1 The hypersensitive response (HR), an extreme measure to limit pathogen spread

Fig. 8.2 Changes in redox balancing in response to stress
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8.2 SOD-Mediated Mechanism in Plants Against Oxidative
Stress

Life of aerobic organisms can be affected by the oxidative stress imposed by the
oxygen reactions. Generally, these oxygen reactions occurred due to the presence of
radicals of superoxide (SO) and peroxides (PO) which are nonreactive, but they can
attach with other radicals and lead to destruction at cellular levels. Hydroxyl radicals
are known as the top reactive radicals known so far and are produced from SO and
HPO during Haber-Weiss reaction in the presence of metallic ions (Cadenas 1989).
Hydroxyl radicals can cause DNA mutations, proteins denaturation, and peroxida-
tion of lipids. Peroxidation phenomenon of in lipids is considered as an indication of
oxidative stress (Gutteridge and Halliwell 1990). However, O1/2 produced as a result
of energy transfer to oxygen can be destructive (Knox and Dodge 1985) (Fig. 8.3).

According to Salin (1988), cellular reactions lead to the production of radicals of
superoxide, along with H2O2 and oxygen in singlet form. It has been reported that
superoxide radicals have a definite production area called as mitochondrial ETC. But
in the chloroplasts, the production of singlet oxygen occurs during the process of
energy transfer from the chlorophyll to the oxygen. Plants have developed certain
strategies to cope with these free radicals and keep the damage to a minimum. Plants
do this by not allowing the radicals to interact as it is understood that hydroxyl
radicals are the most reactive ones if they combine with the source of their meaning.
Mechanisms including both enzymatic and nonenzymatic sources are involved in the
defense and elimination of free radicals to avoid damages at cellular levels. Bowler
et al. (1992) had discovered SOD (EC 1.15.1.1), and when these SODs come in
contact with the superoxide radicals, it leads to the production of H2O2. SOD is
considered unique in a way that its activities determines the contents of O2� and

Fig. 8.3 Superoxide and hydrogen peroxide can react in a Haber-Weiss reaction to form hydroxyl
radicals
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H2O2, substrates of the Haber-Weiss reaction and, thus, considered central in
defensive mechanisms.

8.3 Different Types of SODs and Their Localization

On the basis of metal cofactors such as Cu/Zn, Fe, and Mn presence, SODs have
been categorized into three types, i.e., “Cu/ZnSOD,” “FeSOD,” and “MnSOD.” All
these have different levels of sensitivities to the inhibitors such as KCN and H2O2

(Han et al. 2020). Of the three types, only MnSOD has resistance against KCN and
H2O2. Cu/ZnSOD is sensitive to KCN and H2O2, whereas FeSOD has sensitivity
against H2O2. FeSOD and MnSOD share the same structural similarity and are
different from that of Cu/ZnSOD (Guleria et al. 2021). On the basis of phylogenetic
studies, it has been proved that SODs with Mn and Fe metal cofactors evolved long
ago even before the divergence of pro- and eukaryotes and are thus considered
ancient as compared to Cu/ZnSOD which are found to evolve at the eukaryote
lineage beginning. All the SODs are found to be located inside the nucleus, and
they are transported to the designated locations via NH2-terminal target sequences
(Han et al. 2020). MnSOD are localized in mitochondria and Cu/ZnSOD in cytosol,
and FeSOD are present in the stroma of the chloroplasts (Bafana et al. 2011)
(Fig. 8.4).

Fig. 8.4 Role of SOD in oxidative stress and antioxidant response
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8.4 Response of SOD to Environmental Challenge-Induced
Oxidative Stress

It has been well established that green leaves possess chloroplastic SOD in abun-
dance, whereas cytoplasmic SODs and those in mitochondria are more in the
germinating seedlings (Song et al. 2020). The activities of different enzymes are
metal cofactor-dependent which means that variations do occur in the expressions in
the presence or absence of metal cofactors. During normal growth, the SOD
activities does not change much (Rahman 2007). Chloroplastic SODs become
more abundant and active during the process of photosynthesis.

Under oxidative stress, plants become vulnerable, and phenotypic changes can be
observed, and the activities of other reactive oxygen scavenging agents including
catalases and glutathione reductases (GTHs) along with SODs decrease (Ighodaro
and Akinloye 2018). Production of oxygen radicals results in the process of lipid
breakdown by enzymes, namely, lipoxygenases in the effected plant tissue. Hence,
the generation of H2O2 also promotes senescence as explained in rice plants by
Bowler et al. (1992), thus supporting the concept that free radicals are involved in
playing key roles in both senescence and the ageing (Song et al. 2020). Genes linked
to SOD are sensitive and being regulated by the environmental influences possibly
due to the formations of oxygen radicals (Fig. 8.5).

8.4.1 Photoinhibition

The production of hydrogen peroxide (H2O2) by illuminated chloroplasts was first
studied by Mehler (1951). Subsequently it has been demonstrated that almost all of

Fig. 8.5 Response of SOD in environmental stresses-induced oxidative damage
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this hydrogen peroxide is originated from superoxide formed by the univalent
transfer of electrons to oxygen from the electron acceptor of photosystem I and
mainly from ferredoxin (Khorobrykh et al. 2020). Since ferredoxin generally passes
its electrons to NADP (via ferrodoxinNADP reductase), the amount of superoxide
made in this side reaction is directed by the amount of NADP available, which in
turn rely on the activity of the Calvin cycle and the availability of CO2. Hereafter, the
extent of potential oxidant stress is reliant on the photosynthetic activity of the
chloroplast. In general, high photosynthetic activity boosts the production of super-
oxide radicals and disorders the normal photosynthetic reactions. Such correlations
are imitated in the behavior of chloroplast SOD. mRNA levels of the FeSOD of
Nicotiana plumbaginifolia were not significantly affected by daily fluctuations of
light and dark. Still, when plants were kept in the dark for three days before
illumination, FeSOD mRNA levels increased dramatically in response to light
(Triantaphylides et al. 2008). This initiation was not facilitated by phytochrome
and could be reduced by adding 3-(3,4-dichlorophenyl)-I, l0 -dimethylurea (DCMU),
an herbicide that blocks electron transport in photosystem II, thereby blocking
superoxide production from photosystem I. These results revealed that the
chloroplastic SOD reacts not directly to light but boosts the superoxide formation
arising from the inadequate transfer of electrons via the photosystems due to inade-
quate photosynthetic apparatus maintenance during the prolonged dark period. In
addition to superoxide and hydrogen peroxide (and therefore the potential to form
hydroxyl radicals), illuminated chloroplasts can produce singlet oxygen by transfer-
ring excitation energy from chlorophyll to oxygen. Carotenoids can enrich this
problem because they can react with singlet oxygen at diffusion-limited rates and
reduce the excited triplet states of chlorophyll that lead to singlet oxygen formation
(Asada 2006).

During normal conditions, chloroplasts interactions normalized the occurrence of
disorder and damage caused by photosynthetic energy transfer misuse. Thylakoid
membranes are rich in antioxidants such as a-tocopherol and carotenoids, and
available SOD, ascorbate peroxidase, provides an efficient enzymatic means for
removing superoxide and H2O2. In addition, the increasing light intensity can
upregulate the level of these antioxidants (Khorobrykh et al. 2020). However,
because of the photosynthetic machinery’s continuous absorption of light energy,
any distress of electron transport can lead to the donation of electrons to the wrong
electron acceptor. This disruption caused the generation of reactive oxygen species.
Such conditions only arose during the attack of herbicides, the herbicides that
interfere with electron transport or CO2 fixation and during conditions of
photoinhibition, in which the absorbed light energy exceeds the capacity of the
photosystems to direct it through photosynthetic electron transport. The conditions
have possibly occurred in the presence of high light intensity and during high or low
temperature (chilling or heat) accompany illumination. When plants are exposed to
high light intensity sunlight, the photosynthetic capacity is disrupted, leading to the
redirection of photon energy into processes that inhibit photosynthetic capacity.
Maintained long enough, this condition leads to the destruction of photosynthetic
pigments (commonly referred to as photooxidation). While this pigment bleaching is
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dependent upon oxygen and light and appears to be mediated to some extent by
reactive oxyradicals, the reduced photosynthesis that precedes, it can occur largely in
the absence of oxygen, hence questioning any involvement of active oxygen species
(Foyer 2018). Under such conditions, photosystem II is the primary site of damage
most likely because of the destruction of the 32-kDa QB polypeptide within the
reaction center. Among other things, oxygen radicals have been implicated in this
phenomenon (Halliwell and Gutteridge 2015). Photosystem I is usually less prone to
damages, but its appearance is relayed upon electron passes from photosystem II and
in the presence of oxygen. The results revealed that the most damage in photosystem
I is mainly directed by the formation of superoxide from oxygen and or ferredoxin
initiation in photosystem I. The iron-sulfur centers of photosystem I appear to be
damage sites (Khorobrykh et al. 2020).

Further evidence for these oxygen-dependent and oxygen-independent events has
been obtained from experiments with isolated spinach chloroplasts or thylakoids,
which showed that adding SOD or catalase could only provide partial protection
against photoinhibitory conditions (Wild et al. 1990). Nonetheless, a biotype of
Conyza bonariensis possessing increase levels of chloroplastic SOD, glutathione
reductase, as well as ascorbate peroxidase was reported to be resistant to photo-
inhibitory light. Injury resulting from the combination of light with cold
temperatures appears to bear some similarity to that described above; but in addition,
the peroxidation of membrane lipids is more noticeable. Indeed, the extent of this
membrane damage may well govern chilling sensitivity because in Anacystis
nidulans, blue-green alga genetic manipulation of fatty acid desaturation alone can
result in alterations of chilling susceptibility (Wild et al. 1990). The effects of
chilling are greatly directed by light, and reactive oxygen species have been
concerned with the destruction of lipids and photosynthetic pigments that occurs
(Wise and Naylor 1987). Consistent with the observations that oxygen radicals play
some role in the cellular damage occurring due to photoinhibition, some reports
document changes in SOD activity. In A. nidulans, the onset of death by
photoinhibition was more apparent when cellular SOD activity had been decreased
by prior incubation in an atmosphere of nitrogen (Abeliovich et al. 1974). In another
blue-green alga, Plectonema boryanum, a mutant was isolated that was resistant to
photooxidation (Steinitz et al. 1979). During exposure to photooxidative conditions,
the SOD activity remained constant in the resistant mutant but dropped more than ten
times in the sensitive parent strain. The maintenance of SOD activity was due to an
increased synthesis of the thylakoid membrane-bound MnSOD and not to the
soluble FeSOD. It was proposed that the increased synthesis of a hydrogen
peroxide-insensitive SOD (the MnSOD) was important for maintaining high SOD
activity during light-mediated stress because the H2O2 generated during photosyn-
thesis may inactivate the sensitive FeSOD enzyme. In higher plants, the resistance
against cold stress is considered to some extent; The ability to chilling-mediated
photoinhibition may be due to the adaptation of the photosystems (Somersalo and
Krause 1989). The process is dependable on the increased SOD activity and, in turn,
increases in the levels of enzymes of the Halliwell-Asada pathway that acts as
scavengers against H2O2 in chloroplasts cells (Schöner and Krause 1990). A new
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SOD enzyme was identified in protein extracts from cold-hardened plants. It shows
similar behaviors as a Cu/ZnSOD does in inhibitor tests with KCN and H202, but its
cellular location was not identified yet.

Furthermore, the high ratio of carotenoids as chlorophyll also boosts the means of
scavenging reactive oxygen species. Research on chilling effects in chilling-
sensitive tomato plants reveals that chloroplastic SOD was irreversibly inactivated,
perhaps due to increased H2O2 concentration. This inactivation was proposed as the
reason for the enhanced lipid peroxidation. Together with those obtained from lower
photosynthetic organisms, these results suggest that a combination of chilling with
light leads to increased H202 formation that may eventually inactivate the
chloroplastic SOD enzymes (Cu/ZnSOD and FeSOD).

Sunscald is a phenomenon related to photoinhibition caused by a combination of
light and heat. It can severely affect the marketability of many kinds of fruits,
flowers, and vegetables grown in warm climates. Oxygen radicals appear to be
responsible for the damage done to photosystems and membranes (Steinberg and
Rabinowitch 1991). The potency of some fruits, e.g., tomato, cucumber, and pepper
fruit, to counter the effect of sunscald is correlated with the levels of carotenoids and
with SOD but not peroxidase activity (Nahar et al. 2015). Furthermore, an artificial
tolerance caused by experimentation in green tomatoes by way of monitored heat
treatment parallels rises in SOD activity (Dias and Ortiz 2012). Whether or not these
alterations in SOD activity have been due to alterations in chloroplastic, cytosolic, or
mitochondrial SOD was not tested. Though N. plumbaginifolia leaves, which were
exposed to heat shock, it was observed that there was an increase in the cytosolic
Cu/ZnSOD mRNA levels, but not in the case of MnSOD and FeSOD. This produc-
tion occurred freely of light (Tsang et al. 1991). Another situation was observed by
exposing the plants to cold stress in combination to light. Here, the expressions of
chloroplastic FeSOD mRNA were increased (Tsang et al. 1991). Still, if the plants
were later sent back to optimum temperatures, MnSOD as well as cytosolic
Cu/ZnSOD mRNA levels were detected. These various forms of SOD initiation
facilitated by cold or heat shock in the light could therefore propose that the
processes of photoinhibition are different in every case.

8.4.2 Paraquat and Other Herbicides

Any disruption in the photosynthetic activities results in the production of ROS,
from photosystem I, ferredoxin, as well as excited chlorophyll. So, herbicides that
have a direct impact on chloroplast activity may stimulate processes which generate
destructive oxygen species. Herbicides which block photosynthetic electron trans-
portation, like monuron, ioxynil, and atrazine, permit the excitation energy to be
moved from chlorophyll to carotenoids, which is going to be damaged gradually as a
result. When they are damaged, the light energy can be transferred to oxygen,
producing singlet oxygen as well as other species that may be able to initiate lipid
peroxidation (Aurand et al. 1977). Likewise, herbicides that are acting by limiting
carotenoid synthesis, like “aminotriazole,” “metflurazone,” “fluridone,”
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“norflurazon,” and “pyrichlor,” remove a very important quencher of excitation
energy, hence potentiating the creation of singlet oxygen along with other reactive
oxygen species (Gill and Tuteja 2010).

Redox-active herbicides including acifluorfen, a diphenyl ether, may also be able
to act through the creation of reactive oxygen. These compounds can accumulate
photodynamic tetrapyrroles which can generate reactive oxygen species (Galvez-
Valdivieso and Mullineaux 2010). Treating the cotyledons of cucumber with
acifluorfen leads to a decrease in the contents of ascorbate as well as glutathione,
along with enzymes in Halliwell-Asada pathway, catalase, and peroxidase,
complemented by lipid peroxidation (Sade et al. 2011). On the other hand, though,
(Schmidt and Kunert 1986) discovered that ascorbate, glutathione, as well as the
glutathione reductase activity improved. Such differences might be due to the
moment at which the events have been investigated. In the first case, the material
could have been in the throes of death, and in the end, the plant might have been
aggressively protecting itself against an herbicide. In a different report, protection
from the damage caused by acifluorfen might be obtained through pre-treatment by
a-tocopherol (Ensminger et al. 1985). Bipyridyl herbicides including paraquat as
well as diquat enhance the oxidative stress directly through producing oxygen
radicals. Of these two, paraquat has proved to be the most widely studied; both
seem to have mediated the exact same effects. Also called methyl viologen (1,1-
0-dimethyl-4,40-bipyridinium chloride) paraquat which is a redox-active compound
photoreduced by means of photosystem I subsequently reoxidized through the
transfer of its electrons to oxygen, producing the superoxide anion (Bowler et al.
1992). This leads to the production of extremely damaging hydroxyl radicals as well
as related species, thus causing the cellular damage, as paraquat can get electrons
multiple sources specifically NADPH-dependent diaphorases so it is also damaging
to non-photosynthetic organisms (Bowler et al. 1992) as well as from a NADPH
cytochrome P-4S0 reductase present in the microsome. Such a mechanism can
almost certainly happen in plants, too, though the elevated rates of electron transfer
via the photosystems throughout illumination guarantee that photosystem I is the
principal donor and that the consequences of paraquat under the light are significant
than in the dark. Due to its indiscriminate toxicity, paraquat is currently prohibited as
a herbicide in most nations. Nevertheless, the manner in which it generates superox-
ide radicals has resulted in its experimental use up for the study of oxygen toxicity in
various organisms. In well-lit plants, paraquat triggers a rapid suppression of carbon
dioxide uptake, subsequently lipid peroxidation, the termination of photosynthetic
electron transport, and the collapse of chlorophyll (Varsamis 2008). SOD has been
frequently correlated together with the mechanism of paraquat survival. In E. coli
that contains both MnSOD as well as FeSOD, just the ex- enzyme is stimulated by
paraquat (Hassan 1988). Paraquat actually induces for approximately 40 proteins in
the E. coli, the vast majority of which have not yet been identified, involving
antioxidant and the repair enzymes. Some of the following are positively regulated
on the transcriptional levels by means of a gene product of the soxR locus
(Greenberg et al. 1990). The significance of SOD in paraquat survival has been
demonstrated by the isolation of SOD-deficient mutant which is hypersensitive to
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paraquat. Once the green alga Chlorella sorokiniana is cultivated in sublethal
concentrations of paraquat, SOD activity boosts due to the synthesis of another
new MnSOD isozyme. This stimulated MnSOD activity, all together with other
protective enzymes, gives resistance to the higher doses of the herbicide. Likewise,
treatment of Spirodelu oligorrhiza with benzyl viologen, which is a less reactive
bipyridinium compound, increased SOD activity marginally, which might have been
a factor in the plant’s later resistance to paraquat (Jansen et al. 1996). Dunaliella
salina reacts to paraquat by means of a more general initiation of SOD as well as
catalase isozymes (Bowler et al. 1992).

Several cases have been studied on effects of paraquat on the endogenous SOD
enzymes in illuminated plants. The treatment of Phaseolus vulgaris and Lemna plant
leaves affects a general level of SOD activity (Radić et al. 2010; Taïbi et al. 2016). A
study of the expression of tomato’s cytosolic and chloroplastic Cu/ZnSODs showed
that mRNAs for both were induced by paraquat. However, the former enzyme was
the most affected strongly. In N. plumbaginifolia, chloroplastic, cytosolic, and
mitochondrial SOD expression was analyzed at the mRNA level, and all three
were strongly induced by paraquat, but in this case, the cytosolic Cu/ZnSOD was
the least affected (Inzé and Van Montagu 1995). These differences are probably
caused by the different light intensities used in each experiment because this can
greatly affect the sites from which electrons are donated to paraquat. In this context,
although (Azevedo et al. 1998) observed induction of all SODs in the light, paraquat
treatment in darkness led only to induction of cytosolic Cu/ZnSOD expression. In
maize, however, the chloroplastic Cui ZnSOD was induced in addition to the
cytosolic Cu/ZnSOD by dark incubation with paraquat (Bowler et al. 1992),
suggesting that there may also be differences between plant species. Following the
intensive use of paraquat in certain world areas, several paraquat-resistant weeds
evolved (Peterson et al. 2018). Biochemical analysis of these has allowed further
insights into how plants protect themselves against oxidative stress. (Harper and
Harvey 1978) analyzed SOD, catalase, and peroxidase activities in four paraquat-
tolerant and eleven paraquat susceptible cultivars of perennial ryegrass (Lolium
perenne). They found that constitutive activities of SOD, catalase, and sometimes
peroxidase were higher in all the paraquat-tolerant lines than in the susceptible lines.
All of the increased SOD activity was associated with the chloroplasts.

Similarly, a resistant biotype of Conyza bonariensis contained constitutively high
levels of chloroplastic SOD, glutathione reductase, and ascorbate peroxidase
(Shaaltiel et al. 1988). This variety was also reported to possess a mechanism of
sequestration that prevented paraquat from entering the chloroplasts (Ye and Gressel
2000), but these results have been questioned. Genetic analysis of the variety
indicates that the three Halliwell-Asada pathway enzymes co-segregate elevated
activities, implying that one dominant nuclear gene is responsible for their control
(Agarwal and Khimnani 2000). In contrast, the mechanism of paraquat resistance in
a variety of barley grass (Hordeum glaucum) is not due to increased activities of
these oxygen-detoxifying enzymes. Still, it may rather be related to uptake of the
herbicide into the cell (Christopher 2018).
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Paraquat-resistant plant varieties have also been artificially selected under exper-
imental conditions. Paraquat-resistant tobacco was obtained by three successive
screenings on paraquat-containing media; these contained constitutively sufficient
SOD but not catalase or ascorbate peroxidase activities. All of the increased activity
was due to Cu/ZnSOD, as shown in many inhibitor studies. Still, it could not be
inhibited by antibodies against chloroplastic Cu/ZnSOD, suggesting that it was a
cytosolic isoform. Thus, in callus material, which is not actively photosynthesizing,
the main site of the oxidant stress generated by paraquat may be in the cytosol. Plants
regenerated from such calli remained resistant to paraquat, even though the chloro-
plast is likely the chief site of superoxide formation in such material. Resistant
tobacco plants were also successfully regenerated from paraquat-selected callus by
(Miller and Hughes 1980). These contained high levels of catalase and peroxidase
but not of SOD activities (Bowler et al. 1992). The selection of paraquat tolerant
mutants of the fern Ceratopteris richardii led to the isolation of allelic mutants with
recessive nuclear mutations. Biochemical studies could identify no differences in the
levels of ascorbate, glutathione, SOD, catalase, peroxidase, glutathione reductase,
dehydroascorbate reductase, and ascorbate peroxidase activities in the presence or
absence of paraquat (Carroll et al. 1988); the uptake of paraquat was identical to that
in the wild-type strain. A mutant with a mutation that enhances paraquat tolerance
and is not linked to the other locus that has subsequently been isolated (Xi et al.
2012), but its effects on oxygen detoxifying enzymes have not yet been studied.

In summary, paraquat strongly influences the expression of SOD and other
oxygen-detoxifying enzymes, as would be predicted from its mode of action.
However, the importance of other mechanisms is not the precluded; for example,
the resistance of one E. coli mutant was due to a decreased uptake of paraquat
(Membrillo-Hernández et al. 1999), and E. coli cells deficient in spermidine biosyn-
thesis have an increased sensitivity to paraquat (Minton et al. 1990). Studies with
paraquat-resistant mutants, together with the realization that more than 40 proteins
are induced by paraquat in E. coli, demonstrate that much remains to be learned
about the basis of an organism’s defense against oxidative stress, even when using
paraquat, the simplest model system available.

8.4.3 Waterlogging and Drought

Waterlogging causes shortage of oxygen shortage on submerged parts of plant, and
plants respond to it through alteration of protein synthesizing patterns. Several plants
have the ability to survive this damaging period but immediately die upon
re-exposure to air, indicating recovery phase is more susceptible to oxidative
damage. A significant increase in SOD activity (up to 13-fold) was observed in
resistant variety in comparison to sensitive variety during this anoxic phase (Kele
and Ünyayar 2004). Mostly this increase is because of Cui ZnSOD. So, the elevated
SOD activity was suggested to be most important in plant protection to air-exposure-
induced oxidative stress. The induction of SOD prior to oxygenation can sometimes
counteract the subsequent damage. Plant response against drought stress is a
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complex phenomenon which likely involve polyamines synthesis and a unique set of
proteins whose function is not clearly known (Salah et al. 2019). Abscisic acid that
regulates closing of stomatal guard is the first in response against water loss. Drought
also reduces CO2 availability for photosynthesis, which results in production of
reactive oxygen species due to misdirection of electrons in photosystems. Therefore,
mechanisms of reducing oxidative stress may perform secondary role in control of
drought stress. In tomato, strong induction of cytosolic Cu/ZnSOD, while unaffected
chloroplastic Cu/ZnSOD, was recorded against drought stress (Perl-Treves and
Galun 1991). In drought-tolerant and drought-sensitive moss varieties, Tortula
ruralis and Cratoneuron filicinum, respectively, the comparison between the
drought-induced changes in SOD activity and catalase and lipid peroxidation was
done (Pan et al. 2006) and revealed low lipid peroxidation level in drought-tolerant
moss, along with increased levels of both enzymes and the opposite response was
seen in the sensitive moss. (Apel and Hirt 2004) analyzed drought tolerant and in
tolerant varieties of maize and found out that resistance is correlating with
Cu/ZnSOD and glutathione reductase; however, increased levels of single enzyme
apparently did not confer drought tolerance.

8.4.4 Pathogen Infection

The two types of plant-pathogen interactions were observed named as incompatible
and compatible. Incompatible reactions (immune host, monotonous pathogen) are
characterized by the appearance of hypersensitive response, a localized plant cell
necrosis at the pathogen penetration site, which is responsible for preventing further
spread of disease to other plant cells, whereas in compatible interaction (potential
host, viral pathogen), the plant’s cell death is not observed and pathogen can easily
spread to other parts of the plant. Many biochemical events in the plant partake in a
hypersensitive reaction, which involves the synthesis of ethylene and phytoalexin;
reinforcement of cell walls with collagen, lignin, and related compounds; accumula-
tion of glycoproteins high in cell wall-bound hydroxyproline; and synthesis of
pathogenesis related (PR) proteins, including glucanases, chitinase, peroxidase,
and proteinase. These observations indicate that superoxide, hydrogen peroxide, or
both are intimately involved in determining the outcome of plant-pathogen
interactions (Apel and Hirt 2004). Superoxide and/or hydrogen peroxide may be
actively involved in killing pathogen. In tomato roots infected with Meloidogyne
incognita, a considerable increase in SOD activity as compared to the roots of
resistant varieties was observed (Maqsood et al. 2020). Similar response was noted
in incompatible reactions of pea and potato to nematodes (Kaloshian et al. 2011).
Incompatible reaction between N. plumbaginifozia and Pseudomonas syringae
resulted in induction of mitochondrial MnSOD, but through this induction, the
increase in oxidative stress due to increase mitochondrial activity occurred during
infestation is clearly reflected. SOD might be involved more directly in large fungal
groups Cercospora-induced defenses. These fungi produce cercosporin (1, 1 2-bis
(2-hydroxypropyl)-2, l l-dimethoxy6,7-methylenedioxy �4 0.9-dihydroxyperylene-
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3,1 O-quinone), a nonspecific phytotoxin sensitized by light to produce both singlet
oxygen and superoxide (Segal and Wilson 2018). Cercosporin causes light-
dependent peroxidation of plant membrane lipids, presumably mediated by toxic
oxygen species. Several plant varieties were proved to be resistant to this toxin, with
very little data available for their resistance mechanism. However, a paraquat-
resistant tobacco variety with augmented SOD level but not catalase or peroxidase
(Segal and Wilson 2018) is found resistant to cercosporin toxin.

8.5 Cross-Tolerance Phenomenon

Tolerance to specific ecological stresses can clearly arise from several potential
processes, each one expected to involve multifaceted impacts, and a biotype lenient
to a single condition may also be tolerant for others. SOD is one element that can
decide this cross-tolerance phenomenon. Chiarella, a unicellular green alga, was the
first organism in which this phenomenon was observed. Earlier growths of
C. ellipsaidea in deadly concentration levels of paraquat, “an MnSOD activist,”
can reduce the injury caused by the chilling facilitated photoinhibition (Clare et al.
1984); on the other hand, presence of sulfite the growths of C. sorokiniana boosts
MnSOD content as well as gives resistance against the paraquat (Rabinowitch and
Fridovich 1985). These phenomena have subsequently proven to be reported for
numerous plants (Hickok et al. 1987; Jansen et al. 1990; Steinman and Ely 1990).
Although the levels of cross-tolerance noted might not be enough in all
circumstances of agrarian significance, it may well be of practical application
because it is easier to experiment with leaf discs used for paraquat tolerance than
to evaluate a complicated trait, for example, the drought tolerance. These findings
also disclosed that several diverse stresses generate very much the same impacts at
cellular levels, one element of that is an oxidative stress. The method of this trend
can involve ethylene, well-known to be generated during numerous stress
circumstances. Ethylene pretreating of mung beans, for instance, bestowed the
protection from a subsequent experience to ozone, then hydrogen peroxide, and
the paraquat (Mehler 1951). It is fascinating that ethylene stimulates plant MnSOD
(Chai and Doke 1987).

8.5.1 SOD Regulatory Mechanism

SOD activity is induced by diverse stress conditions. At first glance, it is logical to
assume that certain common components of these stresses are the chief mediators of
SOD gene regulation. In N. plumbaginifolia, mitochondrial MnSOD responds to
increased oxyradical formation in the mitochondria, while chloroplastic FeSOD
responds to such an event occurring in the chloroplasts (Chai and Doke 1987;
Tsang et al. 1991). Cytosolic Cu/ZnSOD probably responds to cytosol-localized
reactions in a similar fashion. The effect of a particular stress on SOD gene
expression is thus likely to be governed by the subcellular sites at which oxidative
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stress is generated. Because the genes encoding the SOD enzymes are clearly not
coregulated, how may such responses be mediated? The ubiquity of superoxide and
hydrogen peroxide suggests that they do not themselves direct the diverse profiles of
SOD gene expression. The OxyR protein of S. typhimurium, a transcriptional
regulator of hydrogen peroxide-inducible genes, activates these genes only when it
has been oxidized. The soxR gene product of E. coli (Tsaneva and Weiss 1990) is
probably regulated in the same way. Reactive oxygen compounds have also been
implicated in the regulation of transcription in eukaryotic cells; a recent report
presents evidence that the regulation of the transcription factor NF-KB by a wide
range of diverse agents (such as TNF-a, calcium ionophores, interleukin-l, and
phorbol esters) is mediated through reactive oxygen species (Schreck et al. 1991).
How the observed complexity of SOD regulation in plants could be controlled
simply by the oxidation/reduction state of a single transcription factor is not clear.
However, specific regulation could be achieved if the signaling factor regulating
each class of SOD were generated in specific compartments. To induce expression of
the required SOD, this molecule would then need to transfer quickly from the
chloroplast or the mitochondrion to the nucleus because all SODs are encoded
there. The required specificity could be achieved if small molecular components
specific to chloroplasts, mitochondria, or cytosol could be the primary sensors and
signal transducers of compartment-specific stress. Lipid-derived molecules could
serve in this role. Fatty acids specific for chloroplastic, mitochondrial, or plasma
membranes could be cleaved by an oxidative event, leading to the release of a
hydrophilic molecule that could diffuse to the nucleus and interact with particular
transcription factors to activate the gene encoding the required SOD enzyme. Such a
fatty acid derivative could meet the requirements for a signaling molecule: It would
be small, specific, readily modified by reactive oxygen, and diffusible. Several
examples of biologically active lipids from mammalian systems exist, including
the prostaglandins, leukotrienes, and lipoxins, which originate from the oxidation of
fatty acid derivatives initially cleaved from membrane lipids by phospholipases or
lipoxygenases (Samuelsson et al. 1987). Genes that regulate SOD expression have
not yet been isolated from any eukaryotic species. In plants, these may eventually be
isolated by methods requiring promoter analysis, gel shift assays, DNase 1 foot
printing, and the screening of expression libraries with DNA sequence motifs known
to be recognized by the factor of interest. Alternatively, plant mutants may be used to
isolate regulatory genes by genetic approaches. Although several plant mutants have
been described that have mutations in regulatory genes controlling SOD expression,
e.g., Conyza bonariensis (Shaaltiel et al. 1988) and Lolium perenne (Harper and
Harvey 1978), the lack of good genetic maps in these species make them currently
worthless for isolating the regulatory genes themselves. Soybean varieties have been
described to have variant patterns of SOD activities when visualized on polyacryl-
amide gels, although the mutations are likely to be in structural genes encoding SOD
and not in regulatory genes (Griffin and Palmer 1989). In maize, which has excellent
genetic systems available, similar mutations were also found in some varieties
(Baum and Scandalios 1982), but in addition, one strain was found that expressed
reduced levels of the three Cu/ZnSODs but normal levels of MnSOD. It was
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proposed that a regulatory mutation may be responsible (18). The character was
inherited as a recessive trait and was probably polygenic in nature. Some of these
plant varieties may be of use in biochemical approaches to study SOD regulation.
For example, by studying the proteins that bind to the promoters of different SOD
genes using nuclear extracts derived from mutant and wild-type varieties, it may be
possible to identify particular protein factors that are present in much greater
amounts in one variety or that have altered expression patterns, e.g., constitutive in
the mutant and inducible in the wild type. Such approaches may lead to the identifi-
cation of the most interesting factors since their mutation was clearly shown a priori
to affect SOD expression.

8.6 Genetic Alteration of SODs in Plants

The initiation of SOD in reply to the various ecological conditions discussed in the
preceding section implies that it plays a significant role in a plant’s defensive
mechanism. It might be a central element, and in this case, its genetic modification
could lead to stress-tolerant phenotypic characteristics. Instead, the information
collected may merely illustrate the pervasiveness of oxidative stress in the plant
processes. In this situation, changes in the SOD activities which are stemming from
excessive production (or shortages) of SOD might like to disturb the typically
augmented processes. Though likely to result in a clearer understanding of aerobic
toxicity, such distress would likely be of not much use for agriculture. It has been
proposed that a few of the stress-tolerant plant types evaluated with regard to SOD
have bought tolerance by an increase in SOD activity only. This represents a total
generalization of the biochemical level of these types of varieties, as well as the
number of differences discovered with regard to the parental line is frequently a
simple mirror image of how multiple parameters have been studied. Therefore,
despite the fact that biochemical analysis of such mutants might suggest an impor-
tant role of SOD, a genuine assessment of the consequences of altering SOD
activities which are only in plants can only be acquired by genetic manipulation.
To get the full picture, various SOD genes must be overexpressed, due to the fact that
their enzyme products each have somewhat different properties. In specific, the
deactivation of Cu/ZnSOD as well as FeSOD by means of H202, their response to
product as well as the distinct resistance of MnSOD in accordance with the H202
may well be relevant to their particular effects. Enzyme activity must also be
supplemented into one or more of the subcellular sections because various stress
circumstances seem to affect them in various ways. Approaches that can result in
decreased SOD activity, like the antisense (or ribozyme) technological development,
are now viable and should be complementary to any overexpression experiments.
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8.7 Cu/ZnSOD and MnSOD Overexpression

The very first report of the genetic modification of SOD in the plants termed a
generation of tobacco as well as tomato plants which overproduced one chloroplastic
Cu/ZnSOD originating from petunia (209). Tobacco plants expressing maximum
levels have been studied for all their sensitivity to light-mediated paraquat injury
sustained in leaf disc tests by quantifying C02 assimilations, photosystem II fluores-
cence, as well as chlorophyll bleaching. Under these circumstances, superoxide has
the potential to be formed nearly exclusively inside the chloroplasts due to the high
percentage of electron transfer via the photosystems. The genetically modified plants
behaved no way differently from the plants that did not include the improved
chloroplastic Cu/ZnSOD. Likewise, experiments to assess the effects of photo-
inhibitory circumstances (cold and elevated light) on genetically modified tomato
plants showed no major difference between the plants which produced higher
Cu/ZnSOD and the controlled plants. The conclusion was that the enhanced
activities of SOD alone throughout the chloroplasts were not enough to give
protection against oxygen toxicity because of the enhanced H202 that this would
create. The writers suggested that the genomic engineering of the chloroplastic H202-
detoxication system (in accordance with Halliwell-Asada pathway), as a supplement
to SOD, might be required to manufacture a resistant phenotype. The impact of
enhanced chloroplastic SOD activities on the activity of an endogenous pathway has
not been tested. As could be forecast from the research with the other organisms, as
well as from the biochemical attributes of SOD enzymes, excessive production of
MnSOD generates different results. Inside our laboratory, we did the overproduction
of N. plumbaginifolia stemmed MnSOD as well as targeted the enzyme either one to
the mitochondria or to chloroplasts of the tobacco cells (Bowler et al. 1991). The leaf
disc assays using paraquat were once again selected as the model system, and the
light-mediated damage was evaluated by measuring the damage to membrane,
photosystem II fluorescence, as well as the development of pheophytin, the deriva-
tive of chlorophyll created through the action of paraquat. Leaf discs taken from the
plants which contained improved mitochondrial MnSOD performed very much the
manner in which control material performed, as would have been predicted, because
the key site of superoxide manufacturing is probable to be the chloroplasts during
these experiments. Though, excess production of MnSOD into the chloroplasts has
been granted protection from the paraquat toxicity which had been associated with
the boosts in its activities. We assess that highest activity levels of MnSOD in
genetically modified plants have been comparable to those of petunia Cu/ZnSOD
in tobacco (Bowler et al. 1991), which does not grant protection to paraquat.
Therefore, variations in activities of MnSOD and Cu/ZnSOD will not be able to
describe the gap in these results; instead, we think that the varying H2O2 sensitivities
of these two enzymes are in charge. We also studied the effect of paraquat upon leaf
discs kept in full darkness. Subsequently, since photosynthetic electron transporta-
tion does not work in the dark, the comparative proportion of mitochondrially
produced superoxide should increase. Still, electron supplies for paraquat do yet
exist in the dark. These might be components of chlororespiratory electron transport
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route well-known to be fueled in the dark in the photosynthesis prokaryotes, as well
as the green algae, due to the fact that recent evidence indicates it is as well present in
the plant chloroplast (Garab et al. 1989). The findings of these dark experiments
have been distinctly different to those of light experiments. Tiny increases of both
chloroplastic and mitochondrial MnSOD have been harmful for the plant cells at the
same time as larger productions presented resistance.

8.8 Overview of Stress Resistance Through Genetic
Engineering of SOD

The findings discussed above have some bearing on the distinct impacts of SOD
observed in bacterial and the animal systems, as well as to indicate a fine line
between gain and damage resulting from alterations in the SOD activities.

We believe these results could be explained in accordance with Haber-Weiss
reaction, a metal ion-catalyzed development of highly reactive hydroxyl radicals
(OH�) from the relatively inert superoxide anion and hydrogen peroxide. Growth of
SOD activity will alter the H202 balance inside the cell, and this is going to either rise
or decrease the probability of OH production. This will decide whether the geneti-
cally modified alterations in SOD activity have proved to be useful or harmful to the
plant. Regrettably, this equilibrium between help and limitation might be so easily
crisscrossed that there is no method to stress tolerance engineering through SOD
alone can be successful.

It is obvious that the introgression of new genes linked to scavengers would
results in an efficient defense by reducing the free radicals by maintaining the
physiological balance. This might require, as (Shaaltiel and Gressel 1986) originally
indicated, the exploitation of the entire oxidant stress defense method. For plant
chloroplasts, this is going to be boosting the contents of SOD, ascorbate peroxidase,
monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione
reductase—a real challenge for existing plant molecular biology. Ever-increasing
the activities of all such enzymes in genetically modified plants would possibly be
the best thing accomplished by manipulating the relevant regulatory processes which
control their expressions. In Conyza bonariensis, at the very least, one nuclear
localized gene seems accountable for increasing the activities of all mentioned
enzymes (Shaaltiel et al. 1988), and therefore, its alterations may produce such a
result. Though, there is much work to be made prior to the isolation of such genes.
Still, this method is not without any difficulties due to the fact that the subsequent
disturbances in oxidized as well as reduced ascorbate, glutathione, and NADP are
more likely to produce further repercussions. One and only other methodology
which is currently available to the molecular biologists is the overproduction of
hydrogen peroxide-purifying enzyme along with SOD. Catalase as well as the
peroxidase are two options, and catalase is probably the best, because it does not
need any substrates used for catalysis. This self-adequacy would ensure against
distress in additional cellular components. Such an approach might be best taken out
by re-targeting catalase towards chloroplasts, cytoplasm, or mitochondria so that
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H202 can be removed at its location of formation. Likewise, targeting of the
abovementioned enzymes to sites inside the cell at greatest risk from oxidative
damage, e.g., membranes, might be a more detailed approach to reducing oxygen
toxicity. As our knowledge of oxidative stress will improve considerably by
attempting such approaches, it is possible that an optimized method for improving
stress tolerance via the manipulation of a plant’s defense system will be found,
particularly as new methods become available for plant gene manipulation.

8.9 Conclusion

Superoxide dismutase, also known as first barrier to plant oxidative stress, partake
the most fundamental role in scavenging mechanism of abiotic and biotic stress-
induced reactive oxygen species. Foregoing discussion clearly indicates that plants
having native or induced SOD activities induce more tolerance against different
stresses. Numerous researchers have proved higher scavenging process of ROS in
plants with higher level of SOD and its isoforms under stress. Plant SODs are
classified in different types including Mn-SOD, Cu/Zn-SOD, and Fe-SOD, on the
basis of isomers and active sites of metal ions, and they can be localized in different
parts of the cell from which cloroplastic SODs were the most important ones. It has
been proved by various findings that plant tolerance level and SOD activity with
various isomers can be positively correlated. Therefore, plant SOD profiles can be
utilized as a stable stress tolerance marker in almost all plant varieties.
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Abstract

The growth and development of plants are affected by the adverse effect of
environmental stresses including drought, salinity, high temperature, and toxic
metal accumulation. Under environmental stresses, cell oxidative damage of
plants generally occurs as a consequence of the overproduction of reactive
oxygen species (ROS). While tolerant plants could survive against abiotic
stress-induced oxidative stress by following various physiological mechanisms.
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Among various physiological processes, glutathione (GSH), a non-enzymatic
antioxidant, is one of the key metabolites which plays a significant role in
protecting the plant cells from oxidative stress. GSH directly or indirectly
involves in detoxifying the ROS in plants’ cells. Besides these roles, GSH also
plays role in detoxification of methylglyoxal, formation of phytochelatins,
interacts with plant hormones, other signaling molecules and its redox state
triggers signal transduction, and also acts as a cofactor in several biochemical
reactions. Therefore, GSH is measured as a versatile redox molecule and a perfect
metabolite to have an involvement in plant growth and development, under both
stress and normal conditions. The current chapter overviewed the earlier studies
on the biosynthesis and physiological mechanisms of GSH during heat and
drought-induced oxidative stress in plants.

Keywords

Plants · Abiotic stresses · Reactive oxygen species · Glutathione · Biosynthesis ·
Physiological mechanisms

9.1 Introduction

The growth and developmental period of plants are exposed to various environmen-
tal changes as a consequence of various environmental stresses such as heat,
drought, etc. However, plants can regulate the cellular metabolism to cope up with
environmental stresses. Environmental stresses like heat and drought-induced oxi-
dative stress in plants are due to the excessive production of reactive oxygen species
(ROS) in plants’ cells or tissues that are stressed. At lower concentrations, ROS
compounds play a role as a signal to activate the defense activity of plants against
biotic and abiotic stresses. Therefore, the plant’s cell exposed to environmental stress
has to maintain the level of ROS under the threshold to prevent as well as to recover
the plant’s cell from oxidative stress due to the high concentration of ROS in the cell.
To maintain the ROS under a threshold level when cells are in stressed conditions,
plants make use of various enzymatic and non-enzymatic networks. However,
concerning the plant genotypes, the epigenetic signature of plants, developmental
stage of the plant, stress intensity, exposed cell/tissue types, and the efficiency of
these networks, varies (de Pinto et al. 2015a, b; Centomani et al. 2015).

Among many other metabolites involved in these networks to modulate the level
of ROS, glutathione (GSH), a non-enzymatic antioxidant, is one of the key
metabolites playing roles in protecting plant cells from oxidative stress. GSH
directly or indirectly involves in detoxifying the ROS in the plant cell (Foyer and
Noctor 2005). Other than regulating the ROS level, GSH also plays role in detoxifi-
cation of methylglyoxal (MG) (Hasanuzzaman et al. 2017), formation of
phytochelatins (PCs) (Sharma and Dietz 2006), interacts with plant hormones,
other signaling molecules and its redox state trigger signal transduction, and acts
as a cofactor in several biochemical reactions (Foyer and Noctor 2005). These
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multiple functions of GSH and owing to its cysteine (Cys) moiety, GSH is consid-
ered as a versatile redox molecule and makes it a perfect metabolite to have an
involvement in plant growth and development, under both stress and normal
conditions.

Glutathione is a low molecular weight ubiquitous tripeptide (c-Glu-Cys-Gly, i.e.,
c-glutamyl-cysteinyl-glycine) that contains long hydrophilic groups and is found in
all aerobic organisms (Gill et al. 2013). The molecular structure of GSH contains a
peptide bond between the carboxyl group of the glutamate (Glu) side chain and the
amine group of cysteine (Cys) and peptide bond between amine groups of cysteine
(Cys) to a glycine. The Glu linkage of GSH leads to an increased reactivity with
respect to its participation in the c-glutamyl cycle and protects GSH against attack by
amino peptidases (Wonisch and Schaur 2001). It is found in the chloroplasts,
cytosol, vacuoles, mitochondria, endoplasmic reticulum, apoplast, and the
peroxisomes (Noctor and Foyer 1998). GSH synthesis generally takes place in the
plastids (chloroplast), mitochondria, and cytosol (Zechmann and Muller 2010).
However, the major processes which consist of a two-step reaction occur in the
chloroplast where γ-glutamylcysteine synthetase (γECS; EC 6.3.2.2) is involved in
the first step and glutathione synthetase (GSHS; EC 6.3.2.3.) in the second step at the
expense of two molecules of ATP in each step (Fig. 9.1).

The γECS is found in plastids and GSHS is found both in the cytosol and plastids
due to which plastids are considered as the site of GSH production in higher plants
(Pasternak et al. 2008a, b). Wachter et al. (2005a, b) reported that the enzyme
involved in the second step of GSH synthesis i.e., GSHS is encoded by a single
copy nuclear gene in Arabidopsis with alternate transcription start sites leading to
either targeted to plastid or cytosol. GSH is synthesized in its reduced form. In the
plastids, GSH biosynthesis starts with the formation of an amide bond by a reaction
between the c-carboxyl group of Glu and a-amino group of Cys to yield
γ-glutamylcysteine by an enzyme γECS followed by the formation of an amide

Fig. 9.1 A two-step reaction is involved in glutathione synthesis where γ-glutamylcysteine
synthetase catalyzes the first reaction in plastid and glutathione synthetase catalyse the second
reaction in plastid and cytosol at the expense of two molecules of ATP in each step
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bond between the a-carboxyl group of the cysteine moiety in γ-glutamylcysteine and
the a-amino group of glycine to form GSH by an enzyme GSHS (Galant et al. 2011).
Six base pair deletion in the γ-ECS gene caused the reduction of GSH content
making the Arabidopsis mutant sensitive to cadmium. The results suggest that the
γECS is one of the main enzymes involved in GSH biosynthesis. After synthesis of
γ-glutamylcysteine by the activity of γECS in the plastids, γ-glutamylcysteine can
also be transported to the cytosol. The transported γ-glutamylcysteine could serve as
the precursor for GSHS to synthesize GSH in the cytosol along with plastids as
GSHS is found both in plastids and cytosol (Reichheld et al. 2009). Once
synthesized in the cytosol, GSH can be imported or re-imported to plastids,
mitochondria, and other organelles directly or in other forms to meet metabolic
requirements (Mahmood et al. 2010). Once synthesized, glutathione in its reduced
form becomes a substrate for several cellular reactions that results in oxidized
glutathione. Dehydroascorbate reductase uses reduced glutathione as the substrate
to yield ascorbate which in turn is used to detoxify the hydrogen peroxide. In this
system, the pool of reduced glutathione is maintained by the activity of glutathione
reductase as the balance between the oxidized glutathione and reduced forms of
glutathione is a core component in maintaining cellular redox state (Meister 1995).

From the above discussion, it is confirmed that in plants under stress, GSH
enhances plant tolerance against different biotic and abiotic stresses, including
heat (high temperature) and drought (Hasanuzzaman and Fujita 2013). The current
chapter is discussed on the biosynthesis and physiological mechanisms of Glutathi-
one during heat and drought-induced oxidative stress in plants.

9.2 Glutathione and Its Role in Response to Heat
and Drought-Induced Oxidative Stress in Plants

Plant growth and fitness are affected by adverse environmental factors such as
drought, salinity, high temperature, and toxic metal accumulation. Plant growth
and survival are dependent on their ability to modulate metabolism in response to
environmental changes due to their sessile habits. Cell oxidative damage is caused
by the overproduction of ROS in stress-exposed tissues in almost all adverse
environmental conditions. The ability of a species/variety to detect changes in
ROS concentration and cause the appropriate metabolic adjustments is often the
determining factor in how it copes with environmental stress.

Plants have enzymatic and non-enzymatic networks that regulate the levels of
reactive oxygen species. The effectiveness of these networks varies depending on
the severity of the stress, the target tissue or cell compartment, the stage of develop-
ment of the plant, and the genotype of the plant (De Gara et al. 2010; de Pinto et al.
2015a, b). It also depends on epigenetic signatures that alter the plant’s ability to
react to different stresses. Mendoza-Cózatl et al. (2008) found that glutathione is the
most common source of organic sulfur transported in phloem. It is important in the
interaction between plants and symbiotic nitrogen-fixing bacteria in the compart-
mentalization and neutralization of xenobiotics and heavy metals, and in the
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transport of secondary metabolites through the vacuole (Cheng et al. 2017; Noctor
et al. 2012a, b). In Arabidopsis, GSH has also been proposed as the main donor of
the reduced sulfur group for glucosinolate biosynthesis (Parisy et al. 2006). This
non-exhaustive list of glutathione-related processes illustrates glutathione’s function
in various plant protection strategies. Glutathione is likely one of the most essential
metabolites in the body’s response to environmental stresses. In reality, glutathione
and related enzymes appeared in aerobic organisms very early on, most likely
alongside dioxygenic photosynthesis (Deponte 2013). Owing to its cysteine (Cys)
moiety, the tripeptide GSH1 (γ-L-glutamyl-L-cysteinyl glycine) is a versatile redox
molecule.

9.2.1 The Role of Glutathione During Drought Stress

One of the continuing effects of climate change is water shortage, which is likely to
result in a significant reduction in crop productivity. Drought causes plants to close
their stomata, which reduces endogenous water loss. The hormone abscisic acid is
primarily responsible for drought-induced stomatal closure (ABA). When plants are
deprived of water, ABA builds up in the xylem sap and travels to the guard cells,
where it activates a signaling network, causing the guard cells to shrink and the
stomata to close. Stomatal closure is caused by osmotic changes in guard cells as a
result of ABA-induced ionic channel modulation. ROS generation in the apoplast
and an increase in Ca2+ in the cytoplasm of guard cells are both parts of the ABA
signaling network (Pei et al. 2000; Kwak et al. 2003). The role of GSH in
ABA-induced stomatal closure has been addressed in several articles (Okuma
et al. 2011; Akter et al. 2012, 2013). As part of its signaling cascade, ABA lowered
GSH levels in cell guards, leading to stomatal closure according to Okuma et al.
(2011). Indeed, a chemical therapy that lowers GSH levels in guard cells appears to
improve ABA sensitivity in guard cells (Okuma et al. 2011; Akter et al. 2012).
ABA-dependent stomata closure is similarly improved in Arabidopsis
GSH-deficient mutant cad2-1, which lacks glutamylcysteine synthetase, the initial
enzyme in GSH production (Okuma et al. 2011). Another reactive species implicated
in the ABA-induced signaling pathway that promotes stomatal closure is nitric oxide
(NO) (Bright et al. 2006). In fact, ABA-induced ROS generation causes guard cells
to produce more NO. The negative feedback of ABA-induced stomata closure could
potentially be due to NO (Wang et al. 2015). S-nitrosoglutathione (GSNO), storage
of NO molecule in the cells that can operate as a trans-nitrosylating agent (Fig. 9.2;
de Pinto et al. 2013; Locato et al. 2016), may play a role in this process.

9.2.2 The Role of Glutathione During Salinity

Another negative environmental characteristic that restricts the productivity of arable
land is the excessive concentration of salts in the soil. High levels of NaCl in the soil
are the main cause of salinity. Plant defense responses to salt stress are confounded
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by the fact that an excess of salt in the soil causes both osmotic stress (a short-term
effect) and ionic toxicity (a long-term effect) (long-term effect). Due to the high
solute concentration in the soil, osmotic stress prevents the roots from absorbing
water. Plants quickly respond to osmotic stress by closing their stomata, which
reduces water loss. Plant tolerance to salt stress, on the other hand, may be attributed
to their capacity to keep the K+/Na+ ratio within a physiological range (Munns and
Tester 2008). As a result, because Na+ competes with K+ for intracellular transport,
cellular K+ content drops. Gupta and Huang (2014) found that low cellular K+ levels
had a negative impact on a variety of metabolic pathways. Because ROS are
triggered by salt stress conditions, plant tolerance to salinity is also linked to its
ability to reverse salinity-induced oxidative damage. Demidchik et al. (2010) dis-
covered that salt stress causes a drop in cell K+ levels, which is due to ROS activating
guard cells outward rectifying potassium (GORK) channels. Brassica species that are
salt resistant have a higher ability to retain K+ via lowering the sensitivity of the root
K+ permeable channel to ROS (Chakraborty et al. 2016). The role of ROS in the
signaling of salt-activated plant defense responses has also been observed (Ushimaru
et al. 2006). Plants with ectopic expression of dehydroascorbate reductase (DHAR)
have better salt tolerance. DHAR is a GST that regenerates the reduced form of ASC
by temporary GSH conjugation as part of its catalytic action. As a result, ASC
recycling is a component of the GSH metabolic network, which helps plants cope
with oxidative stress caused by salt (Gallie 2013). GSH participates in the
methylglyoxal (MG) detoxification route and is implicated in the defensive
mechanisms triggered in response to salt stress. MG is a cytotoxic molecule that is

Fig. 9.2 The role of GSH in major protective defense mechanisms activated by plant cells against
environmental stress
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produced in cells as a result of carbohydrate and amino acid catabolism. It also
increases as a result of salt stress (Yadav et al. 2005).

9.2.3 The Role of Glutathione During Heavy Metals Stress

Increasing anthropogenic activities, mostly related to the metallurgical sector and
agricultural practices such as mining, fertilizer use, and sewage sludge, have all
released plentiful heavy metals in the soil over the last two centuries. Metal ion
competition with necessary cations, which are routinely absorbed by plants, appears
to be the main source of growth decrease induced by metal uptake. Although several
metals, such as Fe, Mn, Cu, Zn, and Ni, are plant micronutrients, they become
hazardous when their quantities exceed plant demands since they are cofactors of
numerous enzymes (Anjum et al. 2015a). Nonessential metals, on the other hand,
such as Cd, Pb, Hg, As, and Ag, are phytotoxic at low quantities and can poison
people, as their presence in the diet has been linked to a variety of diseases (Järup
2003; Järup and Akesson 2009). Redox-active metals have more than one oxidation
state and can participate in the Fenton reaction, which produces hydroxyl radicals
(OH.). As OH is the most reactive ROS radical, it promotes cell oxidative damage,
which can lead to metabolic dysfunction and cell death. Non-redox active metals, on
the other hand, can boost ROS generation indirectly (Locato et al. 2017). Metals also
compete with the cofactors of numerous ROS-scavenging enzymes, including SOD
and APX, impairing ROS detoxification (Kliebenstein et al. 1998; Jespersen et al.
1997). Plants have evolved a multitude of ligands that chelate metals within cells to
lower metal concentrations in the cytosol. Metal complexes are formed and
translocated into the vacuole, where they are detoxified (Anjum et al. 2015b). Plants
that are exposed to Cd produce GSH and PC by increasing the expression of genes
that code for GSH biosynthetic enzymes. Arabidopsis GSH1 is activated in metal-
induced oxidative conditions (Hicks et al. 2007a, b). Metal hyperaccumulating
plants, which are metal-tolerant species that could be employed in phytoremediation
because of their ability to absorb and endure high amounts of metals and so reduce
metal pollution in the soil, have high GSH levels.

9.3 Biosynthesis of Glutathione During Heat
and Drought-Induced Oxidative Stress in Plants

9.3.1 Molecular Basis of g-Glutamyl Cysteine Synthetase (g-ECS)
and Glutathione (GSH)

In mammals and yeast, γECS also known as glutamate-cysteine ligase (GCL)
catalyzes the rate-limiting step in GSH biosynthesis (Wild and Mulcahy 2000)
which is similar for plants (Noctor et al. 1998). The γECS enzyme functions
normally at less than its maximal rate, because the reaction catalyzed by γECS is
feedback-inhibited by GSH as it is competitive with respect to glutamate. In
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feedback inhibition, the glutamyl moiety of GSH binds to the glutamate binding site
of the enzyme (Meister 1995). In plants, the gene of γ-ECS was first isolated from
Arabidopsis thaliana (May and Leaver 1994a, b). The expression analysis of γ-ECS
genes showed that the transcripts accumulated when plants were exposed to adverse
environments, including extreme temperatures and drought (Fang et al. 2016).

Oxidative stress caused by different environmental and cellular conditions
increases GSH levels in plants (May and Leaver 1993). Several studies reported
the increased expression of the genes encoding γ-ECS and GSHS and transcriptional
regulation of the pathway under different environmental stress (Hasanuzzaman et al.
2017). However, the effects of different environmental stresses on GSH accumula-
tion are not the same. Effects on the genes encoding the enzymes involved in GSH
production in plants by different environmental stresses are different, like the
expression of γ-ECS and GSHS and the levels of glutathione are increased in
response to jasmonic acid and heavy metals (Xiang and Oliver 1998), however,
when treated with GSH or H2O2, expression of those genes was unaffected (Schäfer
et al. 1998). Similarly, the expression of γ-ECS in Brassica juncea (Indian mustard)
and γ-ECS and GSHS in Arabidopsis thaliana was increased when treated with
cadmium (Xiang and Oliver 1998). Generally, in plants, an increase in GSH is
associated with the over-expression of γ-ECS, not GSHS, by increasing flux through
the pathway. Similarly, a study by Meyer and Fricker (2002) also support the role of
γ-ECS as a metabolic control point in the GSH synthesis pathway where it is found
that the addition of cysteine, glycine, or glutamate does not enhance GSH synthesis.
Interestingly, under the various oxidative stresses, both γ-ECS activity and cellular
GSH level increased in Arabidopsis suspension cells, whereas transcription of
γ-ECS was not upregulated (May et al. 1998). Similarly, Arabidopsis mutant
phenotypes such as rml1 (post-embryonic root development) (Cobbett et al. 1998),
cad2 (cadmium tolerance) (Vernoux et al. 2000) and pad2 (plant disease resistance)
(Parisy et al. 2007) are linked to γ-ECS gene.

Cloning and sequence analysis of γ-ECS from Arabidopsis (May and Leaver
1994a, b),Medicago truncatula (Frendo et al. 1999), B. juncea (Hothorn et al. 2006)
and Chorispora bungeana (Wu et al. 2009) revealed that the plant γ-ECS enzyme is
unrelated to the mammalian, yeast, or bacterial enzymes and indicated that this
enzyme is grouped into different families categorized as non-plant eukaryotes,
γ-proteobacteria, plants and α-proteobacteria (Copley and Dhillon 2002). However,
the study based on crystallography analysis deciphered that the γ-ECS from E. coli
(Hibi et al. 2004), plants (Hothorn et al. 2006) and yeast (Biterova and Barycki 2009)
share a common 3D fold. The best-studied γ-ECS are those from non-plant
eukaryotes. In mammals, γECS holoenzyme is a heterodimer that gets dissociated
under non-denaturing conditions into 31,000 Da light or regulatory subunit and
73,000 Da heavy or catalytic subunits, respectively. The properties of a heavy
subunit are the catalytic activity of γ-ECS and GSH feedback inhibition. Catalytic
activity and GSH feedback inhibition are properties of the heavy subunit, but the
kinetic properties of the heavy subunit can be significantly influenced by association
with the light subunit (Huang et al. 1993a, b), however, the magnitude of influence
of the light subunit on the catalytic properties of heavy subunit varies depending on
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the examined species or model system (Wild and Mulcahy 2000). The association of
two subunits is mediated by the formation of intermolecular disulfide bonds (Fraser
et al. 2002). The γ-ECS responds to the changes in the cellular redox environment to
modulate the production of γ-glutamylcysteine, but this model doesn’t extend to all
the non-plant organisms. For example, γ-ECS from Trypanosoma brucei and heavy
subunit of mammalian γ-ECS shares 45% amino acid similarity, however, T. brucei
γ-ECS functions as a monomer (Lueder and Phillips 1996). Similarly, the γ-ECS of
E. coli also functions as a monomer (Hibi et al. 2004).

In plants such as Arabidopsis (Hicks et al. 2007a, b), Brassica juncea (Hothorn
et al. 2006; Gromes et al. 2008a, b), biochemical studies of γ-ECS revealed that
γ-ECS enzyme is regulated by cellular redox environment through a process differ-
ent from the heterodimeric enzymes. Kinetic analysis showed that a potential
inhibitor of mammalian γ-ECS i.e., buthionine sulfoximine, which uses a random
ter-reactant kinetic mechanism with a preferred order of binding for catalysis
inactivated the Arabidopsis γ-ECS (Jez et al. 2004). In the yeast, magnesium ion
(Mg2+) of an active site of γ-ECS orients the glutamate γ-carboxylate in order to
attack on the γ-phosphate of ATP, which is placed by an active site lysine and second
Mg2+ and results into acyl-phosphate intermediate. The acyl-phosphate intermediate
faces the nucleophilic attack by α-amino group of cysteine which is activated by the
glutamate active site. The transition step involved in each reaction is stabilized by a
conserved arginine that mediates peptide bond formation (Galant et al. 2011). In
plants, the mechanistic analysis revealed altered the catalytic activity with more
active oxidized protein than reduced protein caused by reversible disulfide bond
formation (Jez et al. 2004). In yeast, it is reported that in the absence of GSH, the
expression of genes encoding γ-ECS is induced by Met4, a transcription activator
that is also involved in inducing the expression of genes related to sulphur assimila-
tion (Wheeler et al. 2002). The promoter of γ-ECS gene contains a binding site for
Yap1 transcription factor (Wu and Moye-Rowley 1994) which is also involved in
transcriptional regulation of γ-ECS induced by oxidants such as H2O2 and heat
shocks (Stephen and Jamieson 1997; Sugiyama et al. 2000). The depletion of GSH
induces the Yap1 activity, thereby, increases the expression of Yap1 targeted genes.
However, the expression of Met4 genes was found to be unaltered under the same
conditions. It was found that activation of γ-ECS expression by Yap1 in absence of
GSH is regulated by the Met4-dependent process with respect to the sulfur status of
the cell (Wheeler et al. 2003).

In plants, GSH biosynthesis by γ-ECS under cellular redox environment
influences a very simple post-translational control mechanism where the redox
regulation of γ-ECS imparts a control switch for GSH production and GSH
maintains the intracellular redox balance. The activity of γ-ECS is induced and the
demand for GSH is increased under oxidizing conditions, and when the concentra-
tion of GSH increases, the cellular environment gains reduced potential, thereby
decreases the activity of γ-ECS (Galant et al. 2011). To the intracellular oxidative
signals, the γ-ECS enzymes provide the post-translational switch in GSH production
which was confirmed through crystallographic and functional studies of γ-ECS
(Galant et al. 2011). However, in plants regulated by a redox environment, γ-ECS
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functions as a homodimeric protein with two intermolecular disulfide bonds as
opposed to heterodimeric (intramolecular) disulfide bonds in non-plant eukaryotic
γ-ECS (Hicks et al. 2007a, b). The analysis of B. juncea γ-ECS showed that one
disulfide bond (Cys178–Cys398) is at the link between monomers of the dimers and
anchoring of a β-hairpin at the active site entrance and is mediated by a second
disulfide bond (Cys341–Cys356) (Hothorn et al. 2006). Plants γ-ECS functions as a
dimer in the oxidized state, whereas under reduced conditions, the disulfide bond of
plants γ-ECS gets disrupted at Cys178–Cys398 which results in conversion of active
dimer to less active monomeric form (Hothorn et al. 2006). When the disulfide bond
(Cys178–Cys398) of γ-ECS in B. juncea (Hothorn et al. 2006) and disulfide bond
(Cys186–Cys406) in A. thaliana (Hicks et al. 2007a, b) were inactivated through
site-directed mutagenesis, the redox response of the γ-ECS were eliminated and
γ-ECS was locked into its monomeric state.

The disulfide bond that is involved in the transition of the monomer/dimer state of
γ-ECS is conserved all across the plant kingdom and also in α-proteobacteria
(Gromes et al. 2008a, b). Various studies about the relationship between γ-ECS
switch with respect to redox environment and disulphide bond formation for γ-ECS
dimer organization in plants hinted response to redox environment and dimer
formation could be related to the compartmentalization of GSH synthesis in the
plastid (Gromes et al. 2008a, b). However, the compartmentalization of γ-ECS in
sub-organellar positions pointed out different aspects of the regulation of GSH
biosynthesis in plants under a cellular redox environment. The general mechanism
is that γ-ECS is redox-regulated and under the oxidizing environment, the γ-ECS
dimer is more active (Galant et al. 2011), however, in the chloroplast, stroma has
reducing environment and lumen has the oxidizing environment, but γ-ECS activity
is partitioned to the stroma which possesses a reducing environment and has
enhanced the activity of γ-ECS (Rouhier et al. 2008; Meyer et al. 2009). The
presence of both glutaredoxin system and thioredoxin system in the stroma of
chloroplast suggest that one of the systems could be involved in maintaining the
redox state of γ-ECS in the chloroplast, among which glutaredoxin may be important
for modulating the activity of γ-ECS as suggested by physical properties of γ-ECS
(Rouhier et al. 2008; Meyer et al. 2009). Similarly, for maintaining the reduced pool
of less active γ-ECS, there is a potential link to the glutaredoxins system as
suggested by the redox properties of γ-ECS (Galant et al. 2011). Heavy metal stress
such as cadmium (Cd) tolerance in plants is imparted by the involvement of GSH
dependent phytochelatin (PC) synthesis. A study found that the transcription of
genes for PC synthesis, i.e., PCS1, and PCS2 along with γ-ECS, GSHS in
Arabidopsis is positively regulated by a transcription factor ZAT6 under Cd stress.
The γ-ECS could be a key target for ZAT6 as it is capable of specifically binding to
the promoter of γ-ECS (Chen et al. 2016). The transient expression study of a
transcription factor, WRKY12 showed that WRKY12 directly regulates the expres-
sion of both γECS and GSHS. It is found that under increased and decreased Cd
accumulation by over-expression and loss of function of WRKY12 were due to
repressing or expressing of the genes involved in the PC synthesis pathway. Further
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analysis showed that the transcription factor WRKY12 directly binds to the W-box
of the γECS promoter (Han et al. 2019).

As discussed above, γ-ECS is involved in the first step and another enzyme i.e.,
GSHS is involved in the second step of GSH biosynthesis. GSHS is found both in
the cytosol and plastids due to which plastids are considered the site of GSH
production in higher plants (Pasternak et al. 2008a, b). A single gene encodes both
the plastid-targeted and cytosol-targeted GSHS with alternate transcription start sites
(Wachter et al. 2005a, b). There is no amino acid sequence homology of bacterial
and eukaryotic GSHS. In bacteria, it functions as a tetramer (Yamaguchi et al. 1993),
and it functions as a dimer in eukaryotes such as a mammal (De Jesus et al. 2014),
plant (Yang et al. 2019a, b), and yeast (Sibirny 2019). GSHS of Arabidopsis shares
around 40% amino sequence with humans (Rawlins et al. 1995), with yeast
(Ullmann et al. 1996; Wang and Oliver 1996), GSHS of legumes with human
(Moran et al. 2000 and Matamoros et al. 2003), maize, wheat, and soybean GSHS
with human (Skipsey et al. 2005). Wang and Oliver (1997) reported an important
activity related to glycine-rich loop in Arabidopsis GSHS which later was confirmed
as an active site of the GSHS (Galant et al. 2009). Kinetic study of Arabidopsis
GSHS showed that it uses a random ter-reactant process where binding of GSHS
with either γ-glutamylcysteine or ATP is the first preference and addition of glycine
to γ-glutamylcysteine for the formation of GSH is the last (Jez and Cahoon 2004). In
the first preferred reaction, the GSHS mediates the transfer of γ-phosphate of ATP to
γ-glutamylcysteine and a group of acidic residues arranges two Mg2+ to ATP which
orients the γ-phosphate group in the active site and the reaction results in the
formation of an electrophilic acyl-phosphate intermediate. The side chain guanidyl
group of Arg454 of the electrophilic acyl-phosphate intermediate becomes the target
side for glycine which interacts with the intermediates with its carboxylate moiety
(Herrera et al. 2007). In many legumes, namely lentil, soybean, pea, alfalfa, bean,
mungbean, and the thiol tripeptide homoglutathione (hGSH; γGlu-Cys-βAla) is
formed from γ-Glutamylcysteine by hGSHS enzymes which has a higher affinity
for β-alanine and low affinity for glycine which is generally present in tripeptide of
glutathione. Similarly in maize, glycine peptide in the thiol tripeptide glutathione is
replaced by glutamate when exposed to cadmium as it seems under cadmium stress
that GSHS has a higher affinity towards glutamate than glycine peptide (Meuwly
et al. 1995). Similarly in rice, GSHS is encoded by three different homolog genes
designated as OsGS1, OsGS2, and OsGS3. The RNA interference-mediated knock-
down of OsGS2 significantly reduced the concentration of hydroxymethyl-GSH in
rice plants, and in vitro enzyme assay revealed that the product of OsGS2 gene
catalyzed the hydroxymethyl-GSH (h-GSH) in rice plants from γ-glutamylcysteine
at the expense of ATP with higher affinity towards L-serine (tenfold) as compared to
glycine as co-substrate (Yamazaki et al. 2019).

In many legumes, the thiol tripeptide homoglutathione (hGSH; γGlu-Cys-βAla)
(Fig. 9.5b) can partially or fully replace the better-known thiol, glutathione.
γ-Glu-Cys is formed from L-glutamate and L-cysteine by glutamate cysteine ligase
(γ-Glutamylcysteine synthetase or γ-ECS) at the expense of ATP, and γ-Glu-Cys
and β-alanine are condensed at the expense of ATP by a specific hGSH synthetase
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(hGSHS), an enzyme which has affinity for β-alanine and low affinity for glycine.
Several studies reported the transcriptional regulation of the mechanism involved in
the expression of the genes encoding γ-ECS, GSHS and GSH-related genes under
different abiotic stresses. In wheat, under the heat treatment, the GSH, hGSH content
and the activity of the two enzymes γ-ECS, GSHS of GSH synthesis was found to be
increased (Kocsy et al. 2002). Similarly, the effect of heat stress on glutathione
synthesis was studied in wheat genotypes consisting of chromosome substitution
lines with different levels of freezing tolerance. In the substitution lines, genes in 5A
chromosome of Triticum aestivum ssp. aestivum cv. The Chinese Spring responsible
for moderate freezing tolerance was replaced with 5A chromosome of freezing
tolerant genotype, i.e., T. aestivum. Ssp. aestivum cv. Cheyenne and susceptible
genotype T. aestivum. Ssp. Spelta. The GSH and hGSH content, the ratio of reduced
GSH or hGSH to oxidised GSH or hGSH forms and the activity of glutathione
reductase (GR) were higher in freezing sensitive genotype, suggesting that the genes
present in 5A chromosomes which are responsible for freezing sensitivity could be
playing a regulatory role in GSH and hGSH synthesis during heat stress in wheat
(Kocsy et al. 2004). Similarly in Arabidopsis, GSH was found to be modulating the
expression of heat shock proteins via BZIP10 and MYB21 transcription factors
(Kumar and Chattopadhyay 2018).

Foyer-Halliwell-Asada cycle or commonly known as the ascorbate–glutathione
cycle helps in removing the H2O2, on one of the reactive oxygen species that imparts
oxidative stress to the plants. This pathway comprises of AsA, GSH, four enzymes
viz., ascorbate peroxidase, monodehydroascorbate, reductase, dehydroascorbate
reductase, and glutathione reductase. Regulation of these pathways helps in
mitigating the oxidative damage in plants under abiotic stresses (Hasanuzzaman
et al. 2019). Under the heat stress in maize plants, AsA–GSH system plays a key role
in maintaining the ROS homeostasis in cells by finely-tuning the redox metabolism,
thereby minimizing the potentially toxic effects of ROS (Tiwari and Yadav 2020).
The reduced GSH is oxidized into oxidized GSH (GSSG) while detoxifying the ROS
especially H2O2 by glutathione peroxidases (such as Gpx1p, Gpx2p, and Hyr1p).
The GSSG is converted back to reduced GSH by GR. GR, a flavoprotein oxidore-
ductase that acts as a substrate for GSH- S-transferases is involved in the reduction of
glutathione disulfide (GSSG) to the sulphydryl form of GSH by employing NADPH
as a reductant via the ascorbate–glutathione pathway, thereby plays a role in abiotic
stress tolerance (Yousuf et al. 2012; Harshavardhan et al. 2017). Generally, under
normal conditions, GSH/GSSG basal ratio is about 20:1 (Mhamdi et al. 2010a, b).
However, when plants are exposed to oxidative stress, this ratio can go down
significantly. Like heat stress, drought is considered as one of the severe environ-
mental conditions that create oxidative stresses in plants. A study in mung bean
(Vigna radiata L. cv. Binamoog-1) showed increased GSH, GSSG content,
decreased GSH/GSSG ratio, and increased GSH-S-transferase activities in
drought-tolerant genotypes (Nahar et al. 2015). Similarly, in Amaranthus tricolor,
ascorbate-glutathione content, ascorbate-glutathione redox, and ascorbate-
glutathione cycle enzymes activities were found to be increased in drought-tolerant
genotypes (Sarker and Oba 2018). Lou et al. (2018) reported about the enhanced
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activities of the enzymes involved in the ASA-GSH cycle and enzymes responsible
for maintaining GSH homeostasis in the cell under drought stress in winter wheat
(Triticum aestivum L.).

9.3.2 Glutathione Biosynthetic Genes in Transgenic Plants During
Abiotic Stress Tolerance

Many enzymatic and non-enzymatic pathways are involved in regulating the levels
of ROS in the cellular environment. Among the non-enzymatic metabolites, GSH is
one of the important metabolites involved to modulate the level of ROS and is a key
metabolite playing the role of protecting plant cells from oxidative stress. It directly
or indirectly takes part in the detoxification of ROS in the plant cell (Foyer and
Noctor 2005). Apart from the ROS level modulation, GSH also plays role in
detoxification of methylglyoxal (MG) (Hasanuzzaman et al. 2017), formation of
phytochelatins (PCs) (Sharma and Dietz 2006), and interacts with hormones, signal-
ing molecules and its redox state triggers signal transduction and act as a cofactor in
different biochemical reactions (Foyer and Noctor 2005). These multiple functions
of GSH and owing to its cysteine (Cys) moiety, GSH is a versatile redox molecule
and makes it a perfect metabolite to have an involvement in plant growth and
development, under both stress and normal conditions. Thus, it is now a fact that
when plants are under stress, GSH enhances plant tolerance against different biotic
and abiotic stresses, including heat (high temperature) and drought (Hasanuzzaman
and Fujita 2013). The reduced GSH is oxidized into oxidized GSH (GSSG) while
detoxifying the ROS especially H2O2 by glutathione peroxidases (such as Gpx1p,
Gpx2p, and Hyr1p). The GSSG is converted back to reduced GSH by GR. GR, a
flavoprotein oxidoreductase that acts as a substrate for GSH-S-transferases, is
involved in the reduction of glutathione disulfide (GSSG) to the sulphydryl to
form GSH by employing NADPH as a reductant via the ascorbate–glutathione
pathway, thereby playing a role in abiotic stress tolerance (Yousuf et al. 2012;
Harshavardhan et al. 2017). Considering the role of GSH described above, it is
clear that the enhanced activities of GSH, GSH biosynthesis enzyme, GSH utilizing
enzymes, and GSH regenerating enzymes play a crucial role in plants against abiotic
stresses. The use of transgenic plants over-expressing the genes related to GSH
biosynthesis and the genes associated with regulation of GSH level in the cell has
clearly demonstrated the vitality of GSH in plants to protect it from oxidative stress
caused by different abiotic stresses. Some of the experiments, where the transgenic
approach have been used to understand the role of genes for GSH biosynthesis and
genes associated with GSH modulation, are listed in Table 9.1.

9.3.3 Regulation of Glutathione Biosynthesis

Glutathione (GSH) is a tripeptide, γ-L-glutamyl-L-cysteinyl glycine, found in all
living cells. It is a non-protein sulfur analogue of alcohol compounds. Its
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Table 9.1 Transgenic plants over-expressing genes associated with GSH biosynthesis enzyme,
GSH utilizing enzymes, and GSH regenerating enzymes imparting abiotic stress tolerance

Transgene/s
Source of
transgene

Transgenic
organism

Tolerance
to References

Glutathione reductase
(GR) or Glutathione
synthetase (GSHS)

E. coli Populus
species

Photo-
inhibition

Foyer et al.
(1995)

GSHS E. coli B. Juncea L Cadmium Zhu et al.
(1999a)

γ-ECS E. coli B. Juncea L Cadmium Zhu et al.
(1999b)

Serine acetyltransferase
(SAT)

E. coli Solanum
tuberosum

Harms et al.
(2000)

γ-ECS E. coli P. species Herbicides Gullner et al.
(2001)

Arsenate reductase (ArsC)
and γ-ECS

E. coli Arabidopsis
thaliana

Arsenic Dhankher
et al. (2002)

γ-ECS fused to chloroplast
transit sequence of pea and
GSHS under CaMV 35S
promoter

E. coli B. juncea L. Organic
pollutants

Flocco et al.
(2004)

γ-ECS E. coli Populus
species

zinc(2+) Bittsánszky
et al. (2005)

γ-ECS E. coli .A thaliana Arsenic
and
mercury

Li et al.
(2005)

SAT, Phytochelatin synthase
(PCS) and γ-ECS

E. coli and
S. pombe

Nicotiana
tabacum

Cadmium Wawrzyński
et al. (2006)

γ-ECS) E. coli A. thaliana Arsenic
and
mercury

Li et al.
(2006a)

γγ-ECS and GSHS E. coli A. thaliana Mercury Li et al.
(2006b)

Phytochelatin synthase
(AsPCS1) and γ-ECS

Allium sativum
and
S. cerevisiae

A. thaliana Cadmium
and arsenic

Guo et al.
(2008)

γ-ECS and GSHS E. coli B. Juncea L Heavy
metals

Reisinger
et al. (2008)

Glutathione S-transferase
(GST)

Choristoneura
fumiferana

A. thaliana Cold Huang et al.
(2009)

GST Glycine soja N. tabacum Drought
and salt

Ji et al.
(2010)

γ-ECS Phragmites
australis

Agrostis
palustris

Cadmium Zhao et al.
(2010)

γ-ECS E. coli Populus
species

Heavy
metals

Ivanova et al.
(2011)

(γ-ECS E. coli Populus
deltoides

Arsenic LeBlanc
et al. (2011)

(continued)
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concentration varies from tissue to tissue with a maximum in liver tissues
(1–10 mM). GSH is found in the form of disulfide-oxidized (GSSG) (Kaplowitz
et al. 1985). GSH is an active compound and accounts for>98% of the total GSH
(Forman et al. 2009; Ballatori et al. 2009). In Eukaryotes, 80–85% GSH is found in
the cytosol, 10–15% is found in the mitochondria, and trace amounts is found in the
endoplasmic reticulum (Yuan and Kaplowitz 2009). GSH is a ubiquitous

Table 9.1 (continued)

Transgene/s
Source of
transgene

Transgenic
organism

Tolerance
to References

γ-ECS B. juncea Oryza sativa Salt Bae et al.
(2013)

γ-ECS under Rab21 strong
promoter

O. sativa O. sativa Salt Choe et al.
(2013)

GST lambda class, (GSTL) O. sativa A. thaliana Arsenic
cold,
osmotic
stress and
salt

Kumar et al.
(2013)

GST Populus
species

A. thaliana Salt and
drought

Yang et al.
(2019a)

Glutathione Peroxidase
(GPX)

Nelumbo
nucifera

O. sativa Salt Diao et al.
(2014)

γ-ECS Lycopersicon
esculentum
Mill

N. tabacum Salt and
drought

Kumar et al.
(2014)

GST tau class (GSTUs) Citrus sinensis N. tabacum Herbicide,
salt and
drought

Cicero et al.
(2015)

GST tau class (GSTUs) Glycine max N. tabacum Salt Kissoudis
et al. (2015)

γ-ECS Pyrus
calleryana

E. coli Cadmium,
salt,
osmotic
stresses.

Li et al.
(2015)

GSHS under OsCc1
constitutive promoter

O. sativa O. sativa Abiotic
stress

Park et al.
(2017)

GSHS B. napus N. tabacum Salt Kuluev et al.
(2018)

GF14b Triticum
aestivum

N. tabacum Salt and
drought

Zhang et al.
(2018)

GST Trichoderma
virens

N. tabacum Cadmium Dixit et al.
(2011)

GST Medicago
sativa

N. tabacum saline-
alkali
stresses

Du et al.
(2019)

GPX Rhodiola
crenulata

Salvia
miltiorrhiza

Drought Zhang et al.
(2019)
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intracellular peptide with diverse functions and plays very important roles in redox
signaling, detoxification of xenobiotics, cell cycle progression, acts as an antioxi-
dant, apoptosis, and helps in storage of cysteine (Forman et al. 2009; Ballatori et al.
2009; Lu 2009; Pallardó et al. 2009; Liu and Pravia 2010). The structure of GSH is
presented in Fig. 9.3.

The peptide bond linking glutamate and cysteine of GSH is thru the γ-carboxyl
group of glutamate in place of the traditional α-carboxyl group. This uncommon
association is a concern to hydrolysis via way of means of handiest one recognized
enzyme, particularly γ-glutamyltranspeptidase (GGT), that is the handiest gift at the
outside surfaces of sure mobileular types (Meister and Anderson 1983). As a
consequence, GSH is immune to intracellular degradation and is the handiest
metabolized extracellularly via way of means of organs with GGT (Fig. 9.3).

Plants without glutathione can’t survive. Plants reply to environmental stresses
via way of means of regulating metabolic pathways that feature to counteract
ensuing cell damage. In plant, life uncovered to temperature extremes, heavy
metals-infected soils, drought, and air pollutants. The era of ROS and changes
within the side of the intracellular redox surroundings perturb cell physiology
(Ogawa 2005). As a part of their reaction to those environmental stresses, plant
life produces glutathione, which act as an antioxidant by way of means of quenching
ROS species and is worried within side the ascorbate-glutathione cycle that gets rid
of per-oxidases (Noctor and Foyer 1998; Rouhier et al. 2008). The primary GSH
formation pathway is presented in Fig. 9.4, which is highlighted that Gsh1 and
2 genes play a significant role during abiotic stresses in plants. In the cytosol, the
GSH is synthesized by two ATP dependent pathways (Mullineaux and Rausch
2005):

1. L-glutamate + L-cysteine + ATP ! γ-glutamyl-L-cysteine + ADP + Pi,
2. γ-glutamyl-L-cysteine + L-glycine + ATP ! GSH + ADP + Pi.

Fig. 9.3 (a) Chemical structure of glutathione; (b) Structure of γ-glutamylcysteinyl glycine, where
the N-terminal glutamate and cysteine are linked by the γ-carboxyl group of glutamate
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The first step of GSH biosynthesis has taken into consideration the price
restricting and catalyzed via way of means of glutamate-cysteine ligase (GCL,
previously γ-glutamyl cysteine synthetase), which is famous as an absolute require-
ment for both Mg2+ or Mn2+. GCL consists of a heavy or catalytic (GCLC,
Mr. ~ 73,000) and a mild or modifier (GCLM, Mr. ~ 30,000) subunit, which can
be encoded via way of means of unique genes in species as divergent as human
beings and fruit flies (15–17) (Yan and Meister 1990; Huang et al. 1993a, b; Dalton
et al. 2004). The second step in GSH synthesis is catalyzed through GSH synthase
(GS). This enzyme has now no longer been studied as notably as GCL. GS purified
from rat kidney has a Mr. of about 118,000 daltons, consisting of seemingly equal
subunits (Oppenheimer et al. 1979).

(B) Regulation of GCL.
(a) Regulation of GCL catalytic subunit (GCLC).
(b) Transcriptional regulation of GCLC.
(c) Post-transcriptional regulation of GCLC.
(C) Regulation of GCL modifier subunit (GCLM).
(D) Regulation of glutathione synthase (GS).

Fig. 9.4 Biosynthetic pathway of glutathione (GSH)

Factors Affecting the Regulation of Glutathione (GSH)
Following are the factors which affect the regulation of glutathione in different ways:
(A) Factors that determine cysteine availability.
This is the most important factor that affects the synthesis of glutathione.
(a) Diet and amino acid uptake.
(b) Methionine metabolism and the transsulfuration pathway.
(c) Role of γ-glutamyltranspeptidase (GGT).
(d) Concentration of ATP.
(e) The activity of γ -ECS (associated with chloroplast).
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9.4 Antioxidative Function of Glutathione During Heat
and Drought-Induced Oxidative Stress in Plants

Glutathione (gamma-glutamyl-cysteinyl-glycine or GSH), a cysteine-containing
tripeptide, plays a crucial part to protect the lipids, nucleic acids and proteins from
oxidative damage. With thiol-disulfide exchange, GSH controls the protein metabo-
lism and activities in plants. In the case of oxidative stress, glutathione takes part as
the main function of protection and detoxification as a cofactor of glutathione
peroxidases and glutathione-S-transferases. The interaction between glutathione
and components for the antioxidant defense system is synergistic. In recent times,
glutathione (GSH) is being studied most to explore its antioxidative attributes. This
is mainly because of endogenous synthesization of it in the plant body which creates
a high concentration in plants. Many roles of it have been depicted though Fig. 9.5.
GSH plays an important role during abiotic stress in plants. It coordinates with AsA
turnover and is oxidized to GSSG (Hasanuzzaman et al. 2018). Moreover, some
other thiol-dependent enzymes, GPX and GST, use GSH as cofactor, hence,
converted to GSSG.

9.4.1 Redox Regulation Through Glutathione

Glutathione can remove the reactive oxygen species (ROS) directly or indirectly like
many other metabolites, hence, it can work as an antioxidant. However, the signaling
functions and antioxidant activity of the GSH are interdependent as both of these
need GSTs and PRXs enzymes which can reduce hydrogen peroxide or other
organic peroxides through thiol-mediated pathways (Noctor et al. 2012a, b). The
unique antioxidative and signaling mechanism of GSH is believed to be its omni-
present allotment in plant cells and low redox potential.

9.4.2 Glutathione Redox State

Glutathione reductase (GR) activities have been observed in many parts of the plants
viz., cytosol, peroxisomes, chloroplasts, and mitochondria (Stevens et al. 2000;
Romero-Puertas et al. 2006). GR1 gene is majorly responsible for enzymatic
activities in leaves (Mhamdi et al. 2010a, b). Mitochondria and plastid-related
enzymes are regulated by GR2 gene (Chew et al. 2003). GSH can play an important
role in affecting the role of ROS production and/or ROS removal under oxidative
stress conditions (Gomez et al. 2004). Many previous studies reported a strong link
between the high accumulation of hydrogen peroxide and changes in glutathione
redox state (Chaouch et al. 2010). Under oxidative conditions, glutathione disulfide
(GSSG, the oxidized form of GSH) accumulation may be explained as the net result
of oxidation processes that overcome, even if only slightly, the capability of gluta-
thione reduction (Noctor et al. 2013; Fig. 9.6).
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In cases of oxidative stress, GR1 gene activity is the most important (Mhamdi
et al. 2010a, b). In stress conditions, production of GSSG does not decrease the GSH
pool; rather, it has been found that the total GSH pool has been increased due to
GSSG accumulation (Mhamdi et al. 2010a, b). Such phenomenon may be attributed
to the new synthesis of GSH and compartmentalization of GSSG (Noctor et al.

Fig. 9.6 Changes in glutathione content and redox state under oxidative stress
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Fig. 9.5 Antioxidative roles of GSH
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2012a, b). Cysteine and GSH production are activated under oxidative stress as a
result of increment in GSH biosynthesis (Gromes et al. 2008a, b; Queval et al. 2009).
In addition, a considerable quantity of the GSSG generated by oxidative stress can be
accumulated in the vacuole (Queval et al. 2011a, b) by ABCC transporters (Lu et al.
1998a, b).

9.5 Glutathione Transporters in Plants During Heat
and Drought-Induced Oxidative Stress

Being the primary producers of organic sulfur, glutathione transporters are irreplace-
able in the sulfur cycle of plants. Glutathione is one of the major representatives of
reduced sulfur in plants and other organisms (Leustek et al. 2000; Noctor et al.
2002). It is a tripeptide (γ-glutamyl-cysteinyl Gly), an important metabolite for plant
growth and development. Glutathione synthesized in the cytoplasm and chloroplasts
of plant cells as a result of the activity of γ-glutamyl Cys synthetase and glutathione
synthetase enzymes has multiple functions. These include transport and storage of
reduced sulfur, control of sulfur assimilation, protection against biotic and abiotic
stresses, participation in protein folding and cell cycle, antioxidant function against
oxidative stress, biosynthesis of iron-sulfur proteins in mitochondria in the biosyn-
thesis of iron-sulfur proteins, redox signaling, flowering, apoptosis in detoxification
of metals, and xenobiotics (Rodriguez-Manzaneque et al. 2002; Kumar et al. 2011;
Owens and Hartman 1986; Foyer et al. 2001).

9.5.1 Biosynthesis and Subcellular Distribution of Glutathione

The synthesis of glutathione in plants occurs mainly in the cytoplasm, partly in
chloroplasts (Wachter et al. 2005a, b). Glutathione is synthesized in the cytoplasm
from glutamate, cysteine, and glycine by two ATP-dependent enzymes - γ-glutamyl
cysteine synthetase (GSH1) and glutathione synthetase (GSH2). These enzymes
were found in the chloroplast and cytoplasm of Arabidopsis (Foyer et al. 2001).
Although glutathione is mainly stored in the cytoplasm, it is required also in other
cell organelles: mitochondria, nuclei, endoplasmic reticulum, and vacuoles. The
amount of glutathione in cell organelles determined by various biochemical analysis
methods amounted to 0.5-5 mM in chloroplasts, 1–3.52 mM in the cytoplasm, and
about 0.73 mM in the vacuoles (Krueger et al. 2009; Foyer and Halliwell 1976;
Noctor et al. 2002).

Glutathione is a form of reduced sulfur transported for long distances by phloem
and xylem tubes (Herschbach et al. 2000). Glutathione transporters are located in the
membranes of organelles and realize the export and import of glutathione. Accumu-
lation of glutathione in the nucleus is an indication of its important role in the
proliferation and cycle of the cell. Ions and other small molecules, including
glutathione, penetrate into the nucleus through the pores (Bellomo et al. 1997).
The location of ATP-dependent glutathione carriers in the nucleus was identified in
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studies (Ho and Guenthner 1994). The antiapoptotic factor, Bcl-2, was shown to be
responsible for the formation of pores in the nucleus, and these pores provide the
diffusion of glutathione into the nucleus (Voehringer et al. 1998; Markovic et al.
2007). Bcl-2 factor is also responsible for the transport of glutathione to the
mitochondria.

The endoplasmic reticulum is considered to be a more oxidizing medium than the
cytoplasm. Studies showed that both reduced and oxidized forms of glutathione are
transported across the ER membrane at different rates (Banhegyi et al. 1999).
Disorders in glutathione homeostasis can strongly affect the function of the endo-
plasmic reticulum. Glutathione transporters of the endoplasmic reticulum in plants
have not yet been studied at the molecular level. Chloroplasts carry out their own
glutathione biosynthesis. Chloroplasts also can uptake glutathione from the cyto-
plasm. According to previous genetic studies, selective blocking of glutathione
biosynthesis in chloroplasts does not affect plant development. This means that
chloroplasts meet their own need for glutathione (Zaman et al. 1995). Further
biochemical research found the presence of high and low affinity transporter systems
that carry glutathione to the chloroplasts. This transport does not depend on light or
ATP but can be inhibited by glutathione disulfide and activated by hydrogen
peroxide (Noctor et al. 2000; Pasternak et al. 2008a, b). The molecular identification
of these transporters has not been performed yet. CRT-like (CLTs) transporters carry
glutathione from chloroplasts to the cytoplasm.

9.5.2 Plant Glutathione Transporters

Glutathione transporters have been studied for many years, and the available data is
mainly on the biochemical characteristics of glutathione transport (Griffith and
Meister 1979; Iantomasi et al. 1997; Banhegyi et al. 1999). However, there is little
information at the molecular level. The first successful identification of a glutathione
transporter was in yeast (Bourbouloux et al. 2000). The first identified glutathione
transporter was a multidrug resistance-associated protein (MRP) belonging to the
ATP-Binding Cassette (ABC) transporter family. This transporter is called HGT1
and transports GSH, GSSG, and the glutathione-N-ethylmaleimide conjugate
(GS-NEM). This transporter was shown to be involved in the removal of glutathione
from the vacuolar membrane in yeasts (Rebbeor et al. 1993).

In Arabidopsis, the transport of glutathione to the nucleus was identified during
cell proliferation (Vivancos et al. 2010). The existence of low and high affinity
glutathione transport systems was established using biochemical analyses (Noctor
et al. 2012a, b; Queval et al. 2011a, b). Absorption of oxidized glutathione by the
isolated vacuole in barley occurs rapidly. In contrast, the absorption of reduced
glutathione by the vacuole is very weak. The transport of glutathione in the vacuole
depends on ATP and is carried out by special ATPases (Tommasini et al. 1993;
Martinoia et al. 1993).

Chloroquine resistance transporters (CRT-like) have been identified to transport
glutathione from chloroplasts to the cytosol in plants (Maughan et al. 2010). Three
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transporters- CLT 1, CLT 2, and CLT 3 belonging to the family of CRT-like
transporters were studied in Arabidopsis. In Arabidopsis, CLT1 was first cloned
with complementation for the severely glutathione-deficient glutathione1 mutant for
BSO resistance. Expression of AtCLT1 in Xenopus oocytes resulted in a 3-four-fold
increase in intracellular glutathione levels. Expression of all three genes (AtCLT1,
AtCLT2, AtCLT3) also led to the accumulation of glutathione in Xenopus oocytes.
AtCLT genes located in plastids are responsible for the transport of glutathione from
chloroplasts to the cytoplasm. Mutations in the AtCLT1 and AtCLT3 genes have led
to a decrease in the amount of glutathione in the cytoplasm as well as an increase in
the sensitivity of the organism to microbial infections (Maughan et al. 2010). The
amount of glutathione in the roots of mutants also decreased compared to wild
species (Maughan et al. 2010).

The OsCLT1 gene has been identified in an arsenate-sensitive (As) mutant of the
rice plant (Murugaiyan et al. 2021). Encoding CRT-like transporters, this gene is
located in the membrane of plastids. The molecular mass and protein length of
OsGT1 are 86 kD and 766 amino acids, respectively. OsCLT1 plays an important
role in glutathione homeostasis, probably by mediating the export of γ-EC and
glutathione from plastids to the cytosol. The OsGT1 transporter is also capable of
transporting GSH, GS conjugates, oxidized glutathione, and some peptides. These
indicate that OsGT1 has a wide range of substrate specifications (Zhang et al. 2004).
There are at least 3 homologs of OsGT1 in the rice genome. Expression of OsGT1 in
yeast has also led to the assimilation of exogenous glutathione. The weak expression
of OsGT1 in different parts of the rice plant grown under normal conditions indicates
that it does not play a significant role in the transport of sulfur under normal
conditions but OsGT1 is strongly expressed during biotic or abiotic stresses, espe-
cially during drought and heat stress. OsGT 1 stimulates the growth of the yeast hgt1
mutant in a glutathione environment used as a source of sulfur. The OsGT1
transporter, expressed in the yeast strain, is responsible not only for the absorption
of glutathione but also for amino acids and peptides.

The AtOPT4 transporter gene found in Arabidopsis is defective in methionine
(MET) synthesis and glutathione uptake (Zhang et al. 2016). Studies have revealed
that the ATOPT4 gene is expressed in the epidermal cells of onions and that the
amount of glutathione in the leaves, roots, and stems of the mutant species does not
differ significantly from the wild type. The low content of glutathione in atopt2/
atopt4 silique mutants suggests that they play a role in glutathione transport. The
expression of the AtOPT4 gene in the Rosette plant is responsible for the long
distance transport of glutathione (Stacey et al. 2006). Thus, it realizes the transport
of glutathione to various tissues of the plant. AtOPT4 is both a low affinity and a high
affinity oligopeptide transporter. Thus, AtOPT4 encodes a low affinity plasma
membrane glutathione transporter, which contributes to glutathione loading/
unloading in siliques. In yeast strain, AtOPT4 could also transport oligopeptides
such as KLGL, GGFM, YGGFM, and IIGLM (Osawa et al. 2006).

AtOPT6 is an oligopeptide transporter similar to AtOPT4 (Cagnac et al. 2004;
Pike et al. 2009). AtOPT6 in hgt1 yeast mutant can restore growth in a medium
containing reduced glutathione as the sole sulfur source. AtOPT6 can also transport
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Cd, Cd/GSH conjugate, and glutathione-N-ethylmaleimide conjugate (Cagnac et al.
2004). But in Xenopus laevis oocytes, AtOPT6 is a low affinity transporter, respon-
sible only for the transport of glutathione (Pike et al. 2009). AtOPT6 could also
transport plant signaling peptides, including the amino acid conjugate jasmonate-
isoleucine, the active form of the oxylipin signal jasmonic acid, and the sulfated
pentapeptide hormone phytosulfokine. The expression of the AtOPT6 gene is
strongly induced by the herbicide primisulfuron and to a lesser extent by the effect
of abscisic acid. However, Cd does not affect the induction of this gene expression
(Cagnac et al. 2004). AtOPT6 is a transporter that allows glutathione to be
transported to the phloem cell or various parts of the plant. AtOPT6 is located in
the plasma membrane of specific cells and conducts a long distance transport of
glutathione. The transport of peptides by AtOPT6 also promotes plant development
as well as plant resistance to various pathogens and pests. In addition to the above,
AtOPT6 also plays a role in plant signaling (Pike et al. 2009).

The BjGT1 gene from the mustard plant (Brassica juncea) was cloned and found
to be homologous to the high affinity HGT1 glutathione transporter in Saccharomy-
ces cerevisiae (Bogs et al. 2003). The molecular mass and protein length of BjGT1
are 74 kD and 661 amino acids, while for HGT 1, these parameters are 91 kD and
799 amino acids. BjGT1 is highly expressed in leaves, very little in stems, not
expressed in roots, and it is strongly induced by Cd in leaves and stems.

The ZmGT1 transporter cloned from maize (Zea mays) is homologous to
transporters of different plants. Expression of the ZmGT1 gene is strongly induced
by atrazine, and the level of transcripts increases 4-5 times. The strong induction of
ZmGT1 by atrazine suggests that this transporter is involved in the detoxification of
xenobiotics (Pang et al. 2010, 2012).

AtMRP1 and AtMRP2 transporters identified in Arabidopsis carry GS
conjugates. AtMRP1 is structurally and functionally homologous to human multi-
drug resistance-associated protein (HmMRP1). It has been studied for its ability to
generate GS conjugate pump activity in a transfected cell. In parallel, AtMRP2
transports the chlorophyll catabolite carrying substrate (Bn-NCC-1) in Brassica
napus (Lu et al. 1998a, b). In plants, the expression profiles of these two genes
differ. AtMRP2 is responsible for the transport of glutathionated herbicides and
anthocyanins. AtMRP 2 has several times higher transport activity than AtMRP1
and also conducts Bn-NCC-1 transport (Lu et al. 1998a, b).

9.6 Conclusion

From the above discussion of the chapter, it may be concluded that plants are facing
the adverse effect of environmental stresses and induced oxidative stress as a
consequence of the excessive production of reactive oxygen species (ROS),
although tolerant plants could survive against abiotic stresses by the production of
various antioxidants. Among them, glutathione (GSH), a non-enzymatic antioxidant,
play a significant role to protect plants from oxidative damages. It is involved in the
detoxifying the ROS in plant cells through detoxification of methylglyoxal,
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formation of phytochelatins, interacts with plant hormones, other signaling
molecules and its redox state triggers signal transduction. The GSH also acts as a
cofactor in various plants’ biochemical reactions and measures as an adaptable redox
molecule that involve in plant development both under stress and normal conditions.
The knowledge of the involvement of GSH during abiotic stresses will be helpful for
the sustainability of crop production in the modern era of climate change.
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Role of Tocopherol in Conferring Abiotic
Stress Tolerance in Plants 10
Uttam Kumar Ghosh, Md. Saddam Hossain, Md. Nahidul Islam,
and Md. Arifur Rahman Khan

Abstract

Abiotic stressors have a significant impact on plant growth, productivity, and
survival, as well as posing a threat to world food security and supply. Various
mechanisms linked with abiotic stress cause plant cells to create oxygen radicals
and their derivatives, known as reactive oxygen species (ROS). Tocopherol
production is thought to be one of the strategies that allow plants to adapt to
their constantly changing environment. Tocopherols are lipophilic antioxidants
that can be made by photosynthetic organisms. By scavenging lipid peroxyl
radicals in thylakoid membranes, this antioxidant deactivates photosynthesis-
derived reactive oxygen species (mainly 1O2 and OH�) and stops the spread of
lipid peroxidation. Tocopherol levels vary based on the severity of the stress and
the species’ sensitivity to it. As a result of the changed expression of pathway-
related genes, degradation, and recycling, changes in tocopherol levels are widely
thought to contribute to plant stress tolerance, while reduced levels favor oxida-
tive damage. Understanding how plants understand environmental signals and
convey them to cellular machinery to trigger adaptive responses is critical for crop
improvement initiatives aiming to produce stress-tolerant crop varieties.
Tocopherols accumulate in plants and have strong connections with abiotic stress
tolerance, according to a huge number of studies undertaken in the previous few
decades. The potential roles and mechanisms of tocopherols, as well as their link
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to abiotic stress tolerance in plants, are discussed in this chapter. This chapter may
aid readers in learning more about tocopherols and how they act in different
environments, as well as gaining an understanding of how this knowledge can be
used to promote abiotic stress tolerance in plants.

Keywords

α-Tocopherol · Abiotic stress tolerance · ROS · Vitamin E

10.1 Introduction

As a result of global climate change, abiotic stressors on plants have become more
common and strong (Ghosh et al. 2021; Surabhi 2018) and can cause cellular and
developmental processes in plants to be disrupted throughout their lives (Kerchev
et al. 2020; Mohammadi et al. 2020). Plants produce a high amount of reactive
oxygen species in response to numerous abiotic stimuli (such as drought, salt,
waterlogging, ultraviolet radiation, temperature, and heavy metal) and induce lipid
peroxidation (Arif et al. 2016; Singh et al. 2017). Plants have evolved intricate and
well-organized strategies to cope with various abiotic stressors and protect them-
selves (Munns and Tester 2008). Tocopherol biosynthesis and accumulation are
regarded as one of the essential host plant responses to oxidative stress caused by
diverse abiotic stressors (Semchuk et al. 2009; Lushchak and Semchuk 2012). Only
photosynthetic species, such as plants, algae, and most cyanobacteria, generate
tocopherols, lipid-soluble antioxidants (Maeda and DellaPenna 2007; Quadrana
et al. 2013). Tocopherol levels in plant tissue range from extremely low to extremely
high in leaves and seeds (Munné-Bosch and Alegre 2002), and its makeup varies
between species and within a species tissues (Badrhadad et al. 2013).

There are four types of tocopherols: alpha (α), beta (β), gamma (γ), and delta (δ).
Tocopherol has proven to be a ubiquitous component of all higher plants when it
comes to antioxidants (Kamal-Eldin and Appelqvist 1996; Mene-Saffrane and
Pellaud 2017). The most prevalent tocopherol is α-tocopherol, which plays an
important function in plants (Hirschberg 1999). Increased activity of antioxidative
enzymes (Superoxide Dismutase, Peroxidase, and Catalase) and the concentration of
non-enzymatic antioxidants with enhanced water relations are two ways α-tocoph-
erol aids membrane protection (Ali et al. 2020). Normally, α-tocopherol accumulates
in leaves and flowers, but seeds are high in γ-tocopherol (Szymańska and Kruk 2008;
Velasco et al. 2013). Most plant species are deficient in β- and δ-tocopherols. γ-
Tocopherol methyltransferase (γ-TMT, VTE4) in the envelope of plastids synthesizes
alpha-tocopherol from γ-tocopherol in chloroplasts and stores it in plastoglobuli of
the chloroplast stroma and thylakoid membranes (Gill and Tuteja 2010; Szarka et al.
2012). Their antioxidant function includes the prevention of membrane lipid peroxi-
dation as well as the scavenging of reactive oxygen species and lipid peroxy radicals
(Kruk et al. 2005; Kruk and Trebst 2008). PSII is protected by tocopherol against
oxygen singlets (Krieger-Liszkay and Trebst 2006; Munné-Bosch 2005). Other roles
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of tocopherol in plant metabolism include sugar transfer from leaves to the phloem
(Soltani et al. 2012). Tocopherols play an important function in redox homeostasis.
Tocopherols, which are non-enzymatic antioxidant systems, are the most important
preserved mechanism in plants that provides stress tolerance.

Tocopherol biosynthesis has been explored in-depth in a variety of agricultural
and plant species (Hussain et al. 2013; Semchuk et al. 2009; Lushchak and Semchuk
2012). Tocopherol overproduction is caused by a variety of stress signaling
mechanisms. Tocopherol expresses abiotic stress signals via engaging in a signal
cascade, allowing for greater development and stress tolerance (Sattler et al. 2004).
Many studies have shown that plants with higher levels of tocopherol have better
abiotic stress tolerance (Semchuk et al. 2011; Munné-Bosch 2005). There is a link
between endogenous tocopherol and abiotic stress tolerance in plants. Exogenous
tocopherol supplementation has been linked to abiotic stress tolerance in numerous
investigations (Ellouzi et al. 2013; Espinoza et al. 2013). Furthermore, numerous
plants have been metabolically altered for induced tocopherol production, and such
transgenic plants have shown improved survival and tolerance to diverse abiotic
challenges (Abbasi et al. 2007; Hofius et al. 2004; Yusuf et al. 2010).

The current chapter gathers information related to biosynthesis and the prospec-
tive roles and mechanisms of tocopherols, as well as their association with abiotic
stress tolerance in plants, based on the background issues and opportunities.

10.2 Types and Chemical Nature of Tocopherol

Tocopherol is a chemical compound that is related to vitamin E. Tocotrienols and
tocopherols, both of which have a six-chromanol ring head and an isoprenoid side
chain, make up the vitamin E family. Tocopherol is of four different forms that occur
in alpha (α) containing three methyl groups, beta (β) containing two methyl group,
gamma (γ) containing two methyl group, and delta (δ) containing one methyl group
form (Fritsche et al. 2017; Shahidi and de Camargo 2016). The differences among α-
, β-, γ-, and δ-tocopherol are only due to the position and number of the methyl (–
CH3) substitution(s) on the aromatic (chromanol) ring (Ajjawi and Shintani 2004).
Thus, the vitamin E family comprises eight stereoisomers (tocopherols and
tocotrienols), but only the RRR-form is found in nature. The most frequent kind of
vitamin E discovered in tissues is γ-tocopherol, which has been the subject of more
than 95% of investigations (Sen et al. 2007). γ-Tocopherol has been demonstrated to
protect polyunsaturated fatty acids (PUFAs) against oxidation in oil-storing seeds
like Arabidopsis, extending seed longevity. This suggests that γ-tocopherol plays a
role in seed desiccation tolerance (Sattler et al. 2004). Tocopherols are exclusively
generated in photosynthetic organisms such as algae and all higher plants, and they
are ubiquitous elements of them (Hussain et al. 2013). Tocopherols’ antioxidant
properties are linked to the transfer of phenolic hydrogen to oxidative free radicals.
Of different types of tocopherols, α-tocopherol is considered to be a potential
antioxidant, whereas β- and γ-tocopherols have moderate potential as antioxidants
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and δ-tocopherol has the lowest (Kapoor et al. 2015). Different types of tocopherols
with their systematic names and molecular formula are shown in Table 10.1.

10.3 Biosynthesis of Tocopherol

The biosynthesis pathway of tocopherols in photosynthetic organisms was discov-
ered in the mid-1980s by radio-trace research (Grusak and DellaPenna 1999).
Tocopherol biosynthesis involves two metabolic pathways: the first produces the
aromatic ring of the tocopherol molecule using homogentisic acid via the cytosolic
shikimate pathway, and the second produces the tocopherol tail (phytyl diphosphate)
via the plastid methylerythritol phosphate pathway. Tocopherols are formed when
the aromatic ring and the phytyl diphosphate tail come together (Herrmann and
Weaver 1999).

10.3.1 The Shikimate Pathway Leading to Homogentisate
Formation

This metabolic pathway has been studied in microorganisms as well as higher plants.
The shikimate pathway is involved in the synthesis of a variety of aromatic amino
acids as well as precursors for a variety of secondary metabolites such as vitamins
and pigments (Herrmann and Weaver 1999). Phosphoenolpyruvic acid, a glycolytic
cycle molecule, and erythrose-4-phosphate, a transitional compound, are converted
into chorismate in this process. The enzyme 5-enolpyruvylshikimate 3-phosphate
synthase is responsible for the reversible production of 5-enolpyruvylshikimate
3-phosphate and phosphoenolpyruvate (Velíšek and Cejpek 2011) and inhibited
by glyphosate (Lushchak and Semchuk 2012). Chorismate is a precursor for several
metabolites, including vitamin K, tocopherols, and aromatic amino acids, and is
formed as the final step in the shikimate pathway (Lushchak and Semchuk 2012).
Chorismate is converted to prephenate by the chorismate mutase enzyme, which
leads to two distinct processes that result in the synthesis of phenylalanine and
tyrosine. HPP ( p-hydroxyphenyl pyruvate) is a step in the production of tocopherols

Table 10.1 Different types of tocopherols and their molecular formula

Types of
tocopherol

Systematic names given by IUPAC (International
Union of Pure and Applied Chemistry)

Molecular formula
of tocopherols

Alpha (α)
tocopherol

(2R)-2,5,7,8-tetramethyl-2-[(4R,8R)-(4,8,12-
trimethyltridecyl)]-6-chromanol

C29H50O2

Beta (β)
tocopherol

(2R)-2,5,8-trimethyl-2-[(4R,8R)-(4,8,12-
trimethyltridecyl)]-3,4 dihydrochromen-6-ol

C28H48O2

Gamma (γ)
tocopherol

(2R)-2,7,8-trimethyl-2-[(4R,8R)-4,8,12-
trimethyltridecyl]-6-chromanol

C28H48O2

Delta (δ)
tocopherol

(2R)-2,8-dimethyl-2-[(4R,8R)-4,8,12-
trimethyltridecyl]-6-chromanol

C27H46O2
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(Lushchak and Semchuk 2012). The interaction of arogenate with tyrosine in plants
results in the synthesis of HPP. To make p-hydroxyphenyl pyruvate and
homogentisate, a precursor of tocochromanol, some fixed carbon is added to tyrosine
(Rippert et al. 2004; Sterkel and Oliveira 2017).

10.3.2 Tocopherol Phytyl Tail Synthesis

The action of 1-deoxy-d-xylulose 5-phosphate (DOXP) synthase condenses glycer-
aldehyde-3-phosphate and pyruvate into 1-deoxy-d-xylulose-5-phosphate in the first
stage of the methylerythritol pathway (Lushchak and Semchuk 2012). DOXP is
transformed into isopentyl diphosphate by the catalysis of five enzymes in a row
(IPP). Four molecules of IPP are bonded together to generate C-20 geranylgeranyl
diphosphate (GGDP) (Munné-Bosch and Alegre 2002). GG reductase converts
geranylgeranyl diphosphate to phytyl diphosphate during multistep processes in
chloroplast membranes. Chlorophyllase degrades chlorophyll during leaf senes-
cence, resulting in the production of free phytyl. This could be a forerunner of
tocopherols (Valentin et al. 2005).

10.3.3 Compression of Phytyl Diphosphate and Homogentisate

2-Methyl-6-phytyl 1,4-benzoquinone is produced via the reaction of homogentisic
acid with phytyl diphosphate, which is catalyzed by homogentisate phytyl transfer-
ase (HPT) and methyl-phytyl benzoquinol (MPBQ). It’s a crucial step in the
production of tocopherols. MPBQ methyltransferase catalyzes the formation of
2,3-dimethyl-6 phytyl-1,4-benzoquinone (DMPBQ) from 2-methyl-6 phytyl-1,4-
benzoquinone (MPBQ). Tocopherol cyclase, which produces γ-tocopherol,
catalyzes the DMPBQ. α-Tocopherol is formed when α-tocopherol is methylated
by the enzyme γ-TMT (γ-tocopherol methyltransferase) (Sadiq et al. 2019).

10.4 Tocopherol Acts as an Antioxidant Molecule

Tocopherol is a lipid-soluble, nonenzymatic antioxidant. It (mostly α-tocopherol)
considerably reduces ROS production (mostly 1O2 and OH˙) in collaboration with
other antioxidants (e.g., ascorbic acid). Tocopherol biosynthesis increased in stress-
ful situations, offering better protection against oxidative stress by lowering ROS
generation (Shao et al. 2008; Semchuk et al. 2009; Lushchak and Semchuk 2012).

Tocopherol is abundant in the thylakoid membrane of chloroplasts, which is also
a major source of reactive oxygen species (ROS). Because both ROS formation and
tocopherol manufacturing take place in the same place, it’s likely that the presence of
α-tocopherol in chloroplast membranes is linked to tocopherol’s ability to scavenge
ROS such as 1O2 and LOO˙ and protect the photosynthetic apparatus from oxidative
stress (Munné-Bosch 2007; Lushchak and Semchuk 2012). In addition to generating
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tocopherol, the enzymes MPBQ and DMPBQ displayed antioxidant activity by
donating two electrons (Liebler and Burr 2000). Tocopherol’s main antioxidant
role is to keep the membrane structure of polyunsaturated fatty acyl chain reactions
stable (Sattler et al. 2003). Tocopherols work in tandem with other antioxidants like
glutathione and ascorbate to keep plastid redox balance in stressed plants, Munn-
é-Bosch (2005) discovered. In Arabidopsis thaliana plants, degradation of α-tocoph-
erol and glutathione had a deleterious impact on chloroplast integrity and
functionality (Drobot 2013). Antioxidant levels increased by a factor of ten in
Arabidopsis plants exposed to strong light (Kanwischer et al. 2005). In Phillyrea
angustifolia plants exposed to water shortage, powerful coordination of α-tocoph-
erol and salicylic acid has been discovered (Szarka et al. 2012).

10.5 Tocopherol Contribution Towards Abiotic Stress Tolerance

Tocopherol is an antioxidant that aids in the resistance of plants to abiotic stress.
Tocopherol-induced stress protection is influenced by plant species, stress intensity,
and physiological condition (Kapoor et al. 2015; Li et al. 2008; Munné-Bosch 2005).
Stress tolerant plants have higher levels of tocopherol, whereas sensitive plants have
lower levels of tocopherol under stressful conditions, resulting in oxidative damage,
according to various researches (Smirnoff 1993; Munné-Bosch 2005; Munné-Bosch
and Alegre 2002). Munné-Bosch (2005) argues that the levels of α-tocopherol in
stressed plants are controlled in two stages. In the first phase, α-tocopherol is
produced to scavenge ROS, resulting in increased protection by preventing oxidative
damage. Net tocopherol loss occurs in the second phase as a result of extreme stress
produced by tocopherol degradation exceeding its synthesis. If a α-tocopherol
shortage is not corrected through rapid synthesis or exogenous tocopherol supple-
mentation, lipid peroxidation increases, and cell death occurs. Abiotic stress-tolerant
species go through the first degradation phase, while stress-sensitive species go
through the second (Munné-Bosch 2005; Das and Roychoudhury 2014). Under
such unfavorable conditions, plants combat oxidative stress by producing low and
high-mass antioxidants (Lushchak 2011). Figure 10.1 depicts how tocopherols
scavenge reactive oxygen species (ROS) and achieve abiotic stress tolerance.

10.6 Tocopherol’s Mode of Action in Changing Environment

10.6.1 Drought/Water Deficit Stress

Drought affects a lot of crops all around the world (Ghosh et al. 2015, 2018; Mishra
et al. 2021). Many plant species, such as Arabidopsis and tobacco (Liu et al. 2008),
sage balm (Salvia officinalis), and lemon balm (Melissa officinalis) (Munné-Bosch
and Alegre 2003), create a large amount of α-tocopherol when they are exposed to a
lack of water. The intrinsic levels of tocopherols in most species are thought to be
insufficient to adequately counteract the negative effects of drought stress (Bose
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et al. 2014). As a result, some researchers have advocated for the exogenous delivery
of tocopherols to drought-stressed plants, either as a foliar spray or as a seed
pre-treatment (Jie et al. 2008; Mekki et al. 2015). In an experiment, the influence
of seed priming with varying levels (50 and 100 mg L�1) of α-tocopherol was
investigated in carrot plants under water deficit conditions, and it is suggested that
seed priming with 100 mg L�1 α-tocopherol was effective and proved beneficial in
improving plant growth characteristics, osmoprotectants, and the oxidative defense
system of carrot plants in such environment (Hameed et al. 2021). Foliar-applied

Fig. 10.1 The schematic illustration shows the role of tocopherols in the physiological process of
plant adaptation that regulates tolerance to abiotic stress. Upon insight of abiotic stress signal, the
associated signaling pathway is triggered, resulting in the activation of stress-responsive genes
related to biosynthesis and accumulation of tocopherol, which protects and renders plants tolerant to
abiotic stresses by quenching ROS
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α-tocopherol improved maize cultivar growth, which was linked to improvements in
photosynthetic pigment, water relations, antioxidative mechanism, and better nutri-
ent acquisition in root and shoot, as well as tocopherol contents and a reduction in
lipid peroxidation, resulting in maize cultivars with increased drought tolerance (Ali
et al. 2020). Ali et al. (2019) reported that exogenously administered α-tocopherol
could help wheat cope with the negative effects of heat and water stress. It’s possible
that the exogenous application of α-tocopherol improves internal levels because of
its role in plant metabolic regulation (Jamil et al. 2015; Noman et al. 2018). Under
stressed and non-stressed conditions, foliar sprays of α-tocopherol significantly
increased the plant’s endogenous levels and led to significant growth enhancement.
Under the impact of α-tocopherol foliar application, increases in plant biomass
production are favorably associated with improvements in plant water relations
and the manufacture of biosynthetic pigments such as chlorophyll and carotenoids.
The increase in plant water status could be attributed to α-tocopherol’s effect on the
H-ATPase system, which plays a role in cellular osmotic adjustment as an essential
component of cellular membranes. Because of its involvement in cellular osmotic
adjustment, α-tocopherol plays an important role in preserving cellular water
relations under stressful conditions (Ali et al. 2020). Foliar application of α-tocoph-
erol dramatically enhanced the leaf water content of water-stressed plants,
confirming its drought-protective effect. This could be owing to its role in cellular
turgor potential management, as well as its role in cellular osmotic adjustment by
improving osmolyte production, resulting in improved growth by establishing an
environment conducive to enhanced growth (Um et al. 2020).

10.6.2 Salinity

Salt stress is one of the major restrictions to agricultural productivity, impacting at
least 20% of the world’s arable land (Rizwan et al. 2015; Kumar et al. 2020). Salinity
causes osmotic and ionic (high Na+/K+ ratio) stressors in lants, resulting in water
deficits, phytotoxicity, and nutritional discrepancies (Safdar et al. 2019; Van Zelm
et al. 2020). It has been discovered that using 100 mg L�1 tocopherol as a commer-
cial formulation will help soybean plants grow and produce more when they are
irrigated with moderately saline water (EC < 6.25 dS m�1) (Mostafa et al. 2015).
Exogenous administration of α-tocopherol reduced the negative effects of salt stress
in flax cultivars, according to another study (Sh 2014). Seed soaking with the α-
tocopherol enhanced shoot and root dry weight, 100 achene weight and total achene
weight plant�1, catalase and peroxidase activity, total phenolic content, ascorbic
acid, and α-tocopherol pre-sowing seed treatment reduced lipid peroxidation in
sunflowers (Helianthus annuus L.) (Lalarukh and Shahbaz 2020). α-Tocopherol
seed treatment reduced the toxicity of salt (NaCl) stress by enhancing antioxidant
activity, particularly catalase and peroxidase, which may be responsible for lowering
reactive oxygen species levels. Catalases and peroxidases, which are found mostly in
peroxisomes and apoplasts, detoxify H2O2 by converting it to oxygen and water
(Mittler 2002; Fagerstedt et al. 2010) and provide phenols to protect the plant from
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oxidative damage by removing reactive oxygen species (ROS) (Zabalza et al. 2007).
Catalase and peroxidase activity in faba beans and cotton (Orabi and Abdelhamid
2016; Hussien et al. 2015), as well as catalase and peroxidase activity in wheat and
eggplant (Farouk 2011; Shaheen et al. 2013), have all been found to play an
important role in protecting plants from oxidative damage.

10.6.3 Flooding/Waterlogged Condition

Plants’ regular growth, physiological functioning, and productivity are severely
hampered by flooding (Bailey-Serres et al. 2010; Feng et al. 2020). Waterlogging
causes hypoxic conditions around the root system of plants, resulting in the produc-
tion of ethanol and CO2, affecting a variety of factors such as water and nutrient
uptake, carbohydrate mobilization, ROS metabolism, production of superoxide
radicals, hydrogen peroxide, and hydroxyl radical, as well as membrane lipid
peroxidation, resulting in mechanical damage to the water-stressed part of the
plant (Arbona et al. 2017). Sadiq et al. (2016) found that a foliar spray of α-
tocopherol boosted plant growth and antioxidant enzyme activity, resulting in
increased stress tolerance.

Under anoxia, the content of tocopherols in wheat and rice roots differed, as the
tocopherol content of wheat roots increased rapidly at the start of anoxia but
decreased over the next two days, whereas the tocopherol content of rice roots
increased slightly only at the end of the 7-day incubation both under anoxia and
aeration (Chirkova et al. 1998). According to Lin et al. (2004), short-term flooding
stress studies revealed no significant changes in the level of α-tocopherol in the roots
of many tomato and eggplant cultivars. Instead, incubation of the rhizomes of Iris
germanica and Iris pseudacorus under anoxia led to significant decreases in both α-
and β-tocopherol contents only under prolonged anoxia incubations, i.e., 45 and
12 days for the rhizomes of Iris pseudacorus and Iris germanica, respectively.

There are only a few investigations on the tocopherol pool’s reactions to plant
oxygen deprivation stress (Chirkova et al. 1998; Paradiso et al. 2016; Lin et al.
2004). Nonetheless, as the amount of tocopherols has been demonstrated to rise in
wheat roots under low oxygen stress, the data show a wide range of reactions in the
tocopherol pool of the species tested (Chirkova et al. 1998) and in Arabidopsis
suspension cell cultures (Paradiso et al. 2016), but a significant decrease in the
tocopherol content was observed both in the rhizomes of Iris pseudacorus and Iris
germanica and in shoots of wheat seedlings (Chirkova et al. 1998). Furthermore, no
significant changes in the content of tocopherols in tomato and eggplant cultivar
roots were identified during flooding stress trials (Lin et al. 2004) and in roots of rice
seedlings under anoxia (Chirkova et al. 1998). The diversity of reactions may be
influenced by factors such as the plant species or organ utilized in the experiment,
but the experimental setup may also have an impact. The duration of anoxia tests in
most investigations was short, lasting only a few hours (Paradiso et al. 2016) or three
to seven days (Lin et al. 2004; Chirkova et al. 1998), while the anoxic incubations of
Iris germanica and Iris pseudacorus continued up to 12 days and 45 days,
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respectively. Instantaneous flooding might apparently increase α-tocopherol content
in tuberous roots of sweet potato (Ipomoea batatas L.) (Eguchi et al. 2015).

10.6.4 Heavy Metals

Toxic metals can change biochemical and physiological processes, such as oxidative
stress (Sharma et al. 2020; Lee et al. 2019). In various investigations, tocopherol
levels were found to be higher when subjects were subjected to metal stress (Artetxe
et al. 2002; Gajewska and Skłodowska 2007; Ruciska-Sobkowiak and Pukacki
2006; Yusuf et al. 2010). Cu and Cd ions increased tocopherol levels in Arabidopsis
thaliana by six- and fivefold, respectively, when the plant was exposed to them
(Collin et al. 2008). Vitamin E-deficient mutant showed sensitivity to Cd2+ and Cu2+

(75 μM), whereas the wild type displayed better growth traits (Collin et al. 2008).
The buildup of tocopherol increased in carrot (Daucus carota) plants exposed to Cd
stress (36 mM) for 2, 4, 7, and 14 days, according to a study (di Toppi et al. 2012). In
wheat seedlings, 50- and 100-mM nickel (Ni) for 9 d resulted in a 38% and 60%
increase in tocopherol content in shoots (Gajewska and Skłodowska 2007).
Increases of α-tocopherol also have been observed in the lead (Pb)-treated lupin
(Ruciska-Sobkowiak and Pukacki 2006).

10.6.5 Ultraviolet (UV) Radiation

Plants respond abnormally to UV-B radiation in a variety of ways, which harms
plant development, physiology, and yield while also causing oxidative stress (Bais
et al. 2019; Bornman et al. 2019; Mpoloka 2008). Tocopherol is thought to be a
possible UV-B stress protector (Munné-Bosch and Alegre 2002). Endogenous α-
tocopherol from plastids reduced ROS, lipid peroxidation, and H2O2, preserving
membrane integrity under UV-B radiation in a variety of plant species (Sharma et al.
2012). The thylakoid membrane’s α-tocopherol scavenges ROS and lipid alkyl and
peroxyl radicals, preserving membrane structure and function (Hess 2017). UV-B
exposure caused MDA production in Spinacia oleracea leaves (DeLong and Steffen
1998), but this was countered by an increase in endogenous α-tocopherol levels,
which reduced lipid peroxidation and negated the oxidative stress effects. Further-
more, α-tocopherol is said to protect the membranous antioxidant system (DeLong
and Steffen 1998). Incorporating α-tocopherol into phosphatidylcholine liposomes
alleviated UV-B-induced oxidative damage (Pelle et al. 1990). As a result, α-
tocopherol appears to have the capacity to mitigate the negative effects of UV
radiation in some plant species under certain conditions.
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10.6.6 Extreme Temperature

High temperature stress has a variety of effects on plants at different stages of
development, resulting in significant yield loss (Zhang et al. 2018; Ding et al.
2020). High temperature stress, on the other hand, has been linked to increased
tocopherol production and accumulation (Mokrosnop 2014; Szarka et al. 2012).
High tocopherol levels were induced in Helianthus annuus plants when they were
exposed to a temperature of 35 �C during the reproductive stage, as well as an
increase in seed oil amount (Dong et al. 2007). In a study with lettuce, Tang et al.
(2011) discovered that high temperatures activated tocopherol cyclase, resulting in
increased vitamin E production. Orabi et al. (2017) conducted a pot experiment on
cucumber (Cucumis sativus L.) plants and discovered that by reducing hydrogen
peroxide (H2O2), malondialdehyde (MDA), and electrolyte leakage, plants
improved their resistance to low temperature stress. In heat-stressed wheat seedlings,
external treatment of α-tocopherol resulted in greater endogenous tocopherol levels,
increased chlorophyll contents, photosynthetic rate, membrane integrity, and ele-
vated CAT, POD, and SOD, but a significant reduction in H2O2 and MDA levels
(Kumar et al. 2012).

Tocopherol protects plastid membranes from oxidative stress at low temperatures
(Matringe et al. 2008). Low temperatures are another damaging extreme that has a
negative impact on plants. This is stress for plants in tropical regions during the
winter season, not just in countries with very low temperatures (Farooq et al. 2009).
For many, economically important crops at various growth stages, the impacts of
low temperatures, which cause significant harm to plants, have been researched for a
long time. This stress is a source of concern for plant productivity and growth (Wang
et al. 2009). In numerous plant species, the tocopherol inflections in response to
temperature extremes, both high and low, have been examined, and they demon-
strate tocopherol’s beneficial involvement in extreme temperature stress resistance
(Kanayama et al. 2013).

10.7 Bioengineering Approach: Development
of Tocopherol-induced Stress-Tolerant Crops

Transgenic plant species are thought to be capable of producing considerable levels
of tocopherols (Table 10.2). For example, Kumar et al. (2012) claimed that trans-
genic Brassica juncea plants were more drought-resistant than wild type plants due
to higher α-tocopherol levels. Similarly, Cela et al. (2009) discovered a large level of
α-tocopherol in a transgenic Arabidopsis drought-tolerant line. In another study,
Espinoza et al. (2013) discovered the VTE2 gene, which produces α-tocopherol in
response to water stress and is thought to protect photosynthetic machinery from
photooxidative stress. The early initiation of drought stress in Cistus clusii triggered
the homogentisate phytyl transferase gene, which increased the α-tocopherol level
by 62% (Munné-Bosch et al. 2009). Liu et al. (2008) found that transgenic tobacco
plants exposed to drought stress had greater levels of total tocopherol due to
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overexpression of the induced Arabidopsis VTE1 gene. Because of the elevated
content of α-tocopherol in transgenic Brassica juncea, salt tolerance features were
detected (Yusuf et al. 2010). Because of the increased content of α-tocopherol in
transgenic potatoes, they were able to withstand salt and heavy metal stress
(Upadhyaya et al. 2020). Ouyang et al. (2011) claimed that transgenic Oryza sativa
L. has greater salt tolerance due to increased α-tocopherol levels.

10.8 Conclusion

Tocopherol is a well-known antioxidant that aids in the adaptation of plants to
abiotic stress. Transgenic plants might help in reducing various abiotic stresses by
enhancing the tocopherol levels. The physiological, biochemical, and molecular
pathways by which it gives abiotic stress tolerance are poorly understood; thus, its
overall impacts on plants should be researched. Exogenous tocopherol could boost
growth and stress tolerance by increasing endogenous tocopherol levels.
Tocopherol’s signaling role may be more complicated; yet, as part of a complex
signaling network involving ROS, antioxidants, and phytohormones, tocopherol is a
good candidate for influencing cell signaling toward stress tolerance. Tocopherol is
connected with other antioxidants to reduce ROS. Tocopherols’ involvement in
regulating several metabolic processes at the cellular and whole-plant levels requires
a deliberate effort. It’s also crucial to figure out whether extensive usage of
tocopherols in the field is cost-effective, beneficial to growers, and environmentally
friendly. Field trials are essential to see if results acquired in a controlled laboratory

Table 10.2 Overexpression of tocopherol biosynthetic genes in transgenic plants showing stress
tolerance

Transgenic
plant

Overexpressing gene and gene
source

Gene
producta

Protective
effectsb References

Potato γ-TMT and HPT genes from
Arabidopsis thaliana

γ-TMT
and HPT

{ Upadhyaya
et al. (2020)

Brassica
juncea

γ-TMT γ-TMT { Yusuf et al.
(2010)

Brassica
juncea

γ-TMT γ-TMT {{ Kumar et al.
(2012)

Oryza
sativa L.

OsVTE1-OX VTE1 { Ouyang et al.
(2011)

Tobacco VTE2 VTE2 {{ Espinoza et al.
(2013)

Brassica
juncea

γ-TMT γ-TMT + Kumar et al.
(2012)

Green alga VTE3 VTE3 + Luis et al.
(2006)

aγ-TMT γ-tocopherol-methyltransferase, HPT homogentisate phytyltransferase
b{ salt tolerance, {{Drought tolerance, { Salt and heavy metal stress tolerance, + Heavy metal stress
tolerance
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or greenhouse can be replicated in the field with a variety of edaphic and atmospheric
variables. Some attempts have been made in recent years to tailor the genes that
control tocopherol production under stressful settings. A thorough understanding of
these mechanisms will contribute to the development of tolerance to abiotic stresses
and the availability of tocopherol-rich diets for humans.
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Abstract

Abiotic stress in the environment is a major concern and a worldwide problem as
plants have their own molecular responsive mechanism to deal with the abiotic
stress. Thus, we need to explore those compounds which react against abiotic
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stress or stimulate other compound to compensate abiotic-induced damages. Plant
glutathione transferases or glutathione-s transferases (GSTs) are multifunctional
enzymes and consist of many classes. GSTs play an important role in alleviating
oxidative stress from plants including H2O2 content, reactive oxygen species, and
methylglyoxal, etc. In addition, GSTs being hydrophilic, highly reactive, and
stable compound effectively scavenges ROS by inhibiting oxidation of thiol (–
SH) group and creating redox buffer that aids in the stabilization of cellular redox
state while heavy metals detoxify by binding with –SH group and decreased
concentration of metals in cytosol. Thus, GST may be used in innovative agricul-
tural and biotechnological tools to develop abiotic resistant transgenic lines.
Therefore, the goal of this chapter is to emphasize the importance of GSTs in
order to raise awareness about an environmentally safe compound (GST) that can
help to alleviate abiotic stress.

Keywords

Plant glutathione · Classification · Tolerance mechanism · ROS and MG
tolerance · Metal resistance

11.1 Introduction

Environmental stresses are the major factors that alter the plant growth, develop-
ment, and productivity. Abiotic stresses, including salinity, drought, temperature,
and heavy metal toxicity can hinder the plant metabolism causing severe detrimental
effects, even plant death (Raza et al. 2021; Hussain et al. 2020). Conversely, plants
have developed different evolutionary mechanisms to tackle such adversities by
regulating their physiology and metabolisms (Fang et al. 2020). One of the earliest
signaling in plant stress response is the production of reactive oxygen species (ROS)
including super oxides (O2

�), hydroxyl radicals (OH�), and hydrogen peroxide
(H2O2) (Hasanuzzaman et al. 2020). However, accumulation of ROS can damage
the cells by oxidation of the biomolecules (Juan et al. 2021). Therefore, meticulous
regulation of ROS signaling is the key for the plant stress response against various
abiotic stresses. To realize this, plants use the antioxidant system consisting of both
enzymatic and non-enzymatic members. These antioxidants protect the plants from
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the oxidative damage by ROS and also modulate the defense responses (Hussain
et al. 2020). Among the enzymatic members, Glutathione S-transferases (GSTs) are
a large family of enzymes having multifaceted functions in plants. More importantly,
the GSTs are known for their crucial role in the phase II detoxification in plants
(Hasan et al. 2021). The s-conjugation reaction between glutathione (GSH), an
important non-enzymatic antioxidant, and the electrophilic moiety in the stress-
induced substances is catalyzed by GST (Perperopoulou et al. 2018). GSTs have
been reported to alleviate several abiotic stresses in plants, including salinity,
drought, temperature, and xenobiotics in important plants such as rice, chickpea,
cherry tomato, and radish (Kortheerakul et al. 2021; Kumar et al. 2021; Hunter et al.
2021; Lai et al. 2021; Kalita et al. 2020). Many reports showed that GSTs performed
various functions in plants such as plant growth and metabolism. In addition, it can
tolerate stresses such as cold and salt tolerance, water and nutrient deficiency, metals
stress and pathogen infections (Skopelitou et al. 2015; Wang et al. 2019). Apart from
stress response, GSTs have been reported to get involved in many key plant
physiological processes, including growth and development, detoxification, phyto-
hormone biosynthesis, secondary metabolite processing, nodule function, and even
several non-catalytical processes (Kumar and Trivedi 2018). In this chapter, we have
presented the comprehensive report on the plant GSTs in mitigating various stress
effects. In addition, we have discussed the different types of GSTs and their roles in
regulating plant growth and development. We have also presented a detailed con-
clusion and future prospective on the positive modulatory roles of GSTs under plant
stress.

11.2 GSTs: Their Origins, Function, and Classification

The GST classification has developed over the years in tandem with the increasing
availability of genetic data and the identification and characterization of new
isoforms and classes. GSTs were first discovered in rats and then afterwards
identified in mammals, insects, plants, fungi, and microbes. GSTs were previously
split into three categories in mammals: cytosolic, mitochondrial, and membrane-
associated GSTs, with the latter being further differentiated into microsomal GSTs
and leukotriene C4 synthetases (Kraus 1980). Later on, the same three subfamilies
were renamed soluble GSTs, kappa GSTs, and membrane-associated proteins in
eicosanoids and glutathione metabolism (MAPEG) (Jakobsson et al. 1999). Mam-
malian GSTs were classified into the alpha, mu, pi, sigma, theta, and zeta classes
based on immunological cross-reactivity and sequence similarity (Mannervik et al.
1985). Most non-mammalian GSTs were classified as heterogeneous thetas at the
time (Buetler and Eaton 1992). The first classification system for plant GSTs was
based on sequence similarity and the intron-exon organization of the genes. Follow-
ing that, three and then four distinct types of plant GSTs were identified, including
type I (herbicide-detoxifying GSTs), type II (GSTs similar to mammalian zeta
GSTs), type III (primarily auxin-induced GSTs), and type IV (GSTs similar to
classical mammalian theta enzymes) (Droog et al. 1995). Nevertheless, as more
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biochemically described plant GSTs were available in the late 1990s, it appeared that
some plant GSTs clustered with specific mammalian GSTs, while others looked to
be plant-specific. This, together with the publishing of the Arabidopsis thaliana
genome, contributed to the development of a revised phylogenetic classification in
plants based on the Greek-letter designations approach, which was broadly
employed for non-plant GSTs (Dixon et al. 1998a, b). GSTs are identified by a
two-character species code (At for A. thaliana), followed by the three letters “GST,”
a Greek or Latin letter identifying the class, and a number distinguishing members of
the same class. As a result, “AtGSTF1” is assigned to isoform 1 of the Phi (F) class
in A. thaliana. The Phi (replacing former Type I), Zeta (replacing former Type II),
Tau (replacing former Type III), and Theta (replacing former Type IV) classes were
introduced in plants, as well as two groups more distantly related to another known
plant GSTs, the Lambda (L) and dehydroascorbate reductase (DHAR) classes
(Dixon et al. 2002). The most recent phylogenetic study, which used well-annotated
genomes of terrestrial plants (A. thaliana, Hordeum vulgare, Oryza sativa,
Physcomitrella patens, Pinus tabulaeformis, Populus trichocarpa, and Solanum
lycopersicum) and only proteins with the two regular N- and C-terminal domains
(see below), identified 14 GST classes: phi (F) (Lallement et al. 2014). All kingdoms
share some of these classes, such as Zeta and Theta, but Lambda, Tau, and DHAR
are only found in plants. Although the phi class is commonly described as being
unique to plants, comparable sequences have been found in fungi, bacteria, and
protists (Morel et al. 2013). Despite its drawbacks, the primary sequence remains the
most practical criterion for categorizing these proteins to date. GST’s evolutionary
history appears to be somewhat complicated, and numerous theories have been
offered. Due to the presence of theta-class GSTs in bacteria, the initial evolutionary
model hypothesized in the early 1990s that canonical (soluble) GSTs of plants,
mammals, and fungi arose from this ancestral gene through duplications and diver-
gent development (Pemble and Taylor 1992). This idea was later disproved by
considering biochemical aspects such as the nature of the catalytic residue, as well
as the oligomeric state of the proteins and their tridimensional structure when solved
(Mashiyama et al. 2014). The structural data revealed that soluble GSTs’ N-terminal
domain adopted a TRX fold, implying that soluble GSTs’ evolutionary history is
linked to one of the TRX superfamily members. Soluble GSTs, according to this
concept, originated from a TRX/GRX progenitor to which a C-terminal helical
domain was added. The dimerization of some GSTs, the replacement of the original
catalytic cysteine by a serine, and finally the replacement of this residue by tyrosine
in many mammalian GST classes result in subsequent significant changes. Although
these major phases are expected to remain true, the current model is still incomplete
because it excludes newly discovered classes such as mPGES2, GHR, Metaxin,
Hemerythrin, Iota, and Ure2p, to name a few.
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11.3 Types of Plant Glutathione Transferases

Plant GSTs are categorized into six classes on the basis of gene sequencing, gene
organization, and protein homogeneity; phi, zeta, tau, theta, lamda and
dehydroascorbate reductase (DHAR) (Cummins et al. 2011a, b; Frova 2003). Mean-
while, GST iso-enzymes which contain the similar class share 40–60% resemblance
in their core molecular arrangements, while enzymes which belong to dissimilar
groups share less than 20% sequence identicalness (Armstrong 1997). The tau and
phi group are found to be more plant-specific, as they are extra numerous as compare
to others (Dixon et al. 2001). The function of the tau protein is to defend plant cells
from variety of living and non-living stressors (Moons 2003; Thom et al. 2002).
GSTs are abundant in the cytoplasmic matrix and classified into several groups
according to their origins, catalytic amino-acid branches, sequence resemblance, as
well as substrate selectivity (Kumar and Trivedi 2018; Labrou et al. 2015). Theta and
zeta have limited xenobiotic activeness and they are also found in animals (Kumar
and Trivedi 2018). Furthermore, phi, tau, zeta and theta have catalytic serine branch
while lambda and DHAR strictly maintained cysteine groups in their active position
motif (Lallement et al. 2014).

11.4 Plant GSTs’ Essential Properties

Plant GSTs are a broad collection of multifunctional enzymes that catalyse a variety
of processes involving the conjugation of glutathione (GSH; γ-Glu– Cys-Gly) into
electrophilic compounds to generate more soluble derivatives that can be transferred
to the vacuole and metabolized further (Labrou et al. 2015). Plant GSTs are divided
into three superfamilies (cytosolic, mitochondrial, and microsomal) and three clas-
ses: tau (U), phi (F), theta (T), zeta (Z), lambda (L), γ-subunit of eukaryotic
translation elongation factor 1B (EF1Bg), dehydroascorbate reductase (DHAR),
metaxin, tetrachlorohydroquinon dehalogenase (TCHQD), Ure2p, microsomal pros-
taglandin E synthase type 2 (mPGES-2), hemerythrin (GSTH), iota (GSTI), and
glutathionyl-hydroquinone reductases (GHRs) (Csiszár et al. 2016). GSTs make up a
significant portion of total soluble proteins in plant cells; for example, they account
for 2% of soluble protein in wheat seedlings (Pascal and Scalla 1999). In
Arabidopsis thaliana, Solanum lycopersicum, Oryza sativa, and Triticum aestivum,
for example, genome sequence data revealed numerous GST homologs arranged in
complicated supergene families (Labrou et al. 2015); for example, there are 55, 81,
83, and 98 members, respectively (Gallé et al. 2009a, b). The tau and phi classes are
the largest in plants and play critical roles in the remediation of environmental
pollution caused by organic xenobiotics such as herbicides and industrial chemicals
(Cicero et al. 2015a, b). In Arabidopsis thaliana, 42 of the 55 GSTs are characterized
as tau and phi (Dixon and Edwards 2010). The presence of a conserved Ser residue at
the catalytic region distinguishes biologically active tau and phi GSTs from other
GST classes (Nianiou-Obeidat et al. 2017). Glutathione-dependent hydroperoxidase
(GPOX) activity in fatty acid hydroperoxides and glutathione conjugation activity in
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lethal lipid peroxidation products are also seen in the tau and phi classes (Nianiou-
Obeidat et al. 2017). Because these enzymes are primarily involved in xenobiotic
metabolism, they have a high affinity for a wide range of harmful compounds,
including xenobiotics and endogenous stress metabolites, such as lipid peroxides
and reactive aldehydes, which may result in high abiotic stress tolerance (Gallé et al.
2009a, b). Some tau-class GSTs (AtGSTU19 and AtGSTU24) appear to be important
in safener-induced genome activation, according to thorough research. These genes’
induction kinetics describe two types of xenobiotic response (XR), a quick (20 min)
and a gradual (60 min) XR (Brazier-Hicks et al. 2018). The most recent findings
reveal that a rapid XR is functionally linked to herbicide safening and that testing of
oxylipid-inspired safeners with different electrophilic characteristics resulted in a
separate rapid XR (Brazier-Hicks et al. 2018). Other GST subgroups have a variety
of activities, including hormone signaling and peroxidase and isomerase activity
(Gallé et al. 2009a, b). The discoveries about phi- and tau-class GSTs, as well as their
proportions to other members of the GST superfamily, highlight their importance.
Simultaneously, the complex regulation of GST activity is dependent on transcrip-
tional and post-translational regulation, which is managed by several promoter
elements and transcription factors, as well as phosphorylation and
S-glutathionylation, which may be light-dependent (Dixon and Edwards 2010).

11.5 Plant GST Genes and Their Functions

In tau class, 28 genes were identified which are present inside cytosolic complex and
nucleus while their functions are still unknown (Estévez and Hernández 2020).
Thirteen genes detected in the phi class were found in cytosolic complex and
chloroplast with pigment transportation operation (Estévez and Hernández 2020;
Kitamura et al. 2004). Meanwhile, three genes related to theta group present in the
peroximase and nucleus and take part in hydroperoxide reduction reaction (Dixon
et al. 1998a, b; Estévez and Hernández 2020). Furthermore, two genes identified
from zeta class are situated in cytosol and operate in tyrosine degradation (Dixon and
Edwards 2006; Estévez and Hernández 2020). In addition, three genes related to
lambda group and present in cytoplasm, chloroplast, and peroxisome and functions
against salt stress (Estévez and Hernández 2020; Zhai et al. 2013). While four genes
identified from DHAR occur in cytosolic complex, chloroplast and peroxisome are
involved in ascorbate recycling (Estévez and Hernández 2020; Reumann et al.
2009). Moreover, various GST genes are recognized or discovered from miscella-
neous plant varieties including angiosperms, gymnosperms, and non-vascular plants
(Wang et al. 2019). For example, 55 GST genes were found in Arabidopsis thaliana
(Sappl et al. 2009a, b) and 79 in Oryza sativa (Jain et al. 2010; Soranzo et al. 2004).
Wang et al. (2019) determine 330 TaGST genes from the wheat genome and found
that tandem and segment duplicates were involved in the extension of TaGST family
while replicated genes might pass through wide sanctify selection. The gene-
expressing making and cis-substances in promoter section of 330 TaGST genes
implicit their functions in proliferation and advancement as well as tough conditions.
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The analysis of 14 TaGST genes exhibited that they could combat to several abiotic
tenses and hormones, particularly salt stress and abscisic acid (Wang et al. 2019).
Moreover, Hasan et al. (2021) classify a total of 92 putative MtGST genes in
Medicago truncatula that code for 120 proteins. All of these sets were divided into
12 classes according to phylogentic correlation and occurrence of structural
conserved area/theme. Among these classes, seven were found to have segmental
repetition. Transcriptional analysis indicated that MtGSTU5, MtGSTU8,
MtGSTU17, MtGSTU46, and MtGSTU48 upregulated significantly when exposed
to many abiotic and biotic pressures. In addition, strains of MtGSTU8, MtGSTU14,
MtGSTU28, MtGSTU30, MtGSTU34, MtGSTU46, and MtGSTF8 were greatly
upregulated when exposed under drought condition for 24 h and 48 h (Hasan et al.
2021). Moreover, the complete genome-wide sequence of the japonica and indica
rice subspecies was performed (Goff et al. 2002; Yu et al. 2002). EST and genomic
divisions of the Genbank/EMBL/DDBJ databank were screened through in silico,
in which 59 putative GST genes and 2 pseudogenes were recognized (Soranzo
et al. 2004). It was found that 40 from 59 rice alleles fitted into tau class of
GSTs. Meanwhile, additional potential tau GST alleles (GenBank Accession
No. AF309378) were found through homology explorations in the NCBI record
(Soranzo et al. 2004). A gene VvGSTF13 could increase salinity and drought stresses
in Arabidopsis (Xu et al. 2018). The expression examination of OsGSTL1,
OsGSTL2, and OsGSTL3 showed that rice lambda class not only improve plant
growth and development but also withstand against various biotic and abiotic
stresses as well as metalloids, low temperature, drought, and salt stress (Kumar
et al. 2013a, b). Genetically developed accession expressed PpGST, a zeta GST gene
contained in fruitlet of Pyrus pyrifolia Nakai cv. Huobali, exhibited comparatively
regular proliferation in drought, NaCl and metal treatments. Moreover, the T1
transgenic tobacco lines displayed remarkably decreased superoxide anion produc-
tion rate as compared to wild type exposed in abiotic conditions. The results showed
that upregulation of PpGST in tobacco increased the tolerance of T1 lines to
oxidative destruction under abiotic stresses (Liu et al. 2013). Examination of
Arabidopsis GST genes, the introduction of AtGSTU19 and AtGSTU24, and higher
GST functions were detected in the leaves and roots of 8-week-old plants when
treated with 100 mM NaCl in a solution culture experiment (Horváth et al. 2015).

11.6 Response to Stress by Glutathione Transferases

Plants, such as all living creatures, are subjected to predictable as well as unpredict-
able changes in the environment. Owing to their sedentary habits, plant development
and growth along with their survival depends on the plant’s capacity to modulate the
metabolic rate in order to offset these kinds of environmental changes. Nearly all
adverse ecological conditions result in cell oxidative injury that is caused by
excessive production of reactive oxygen species (ROS) during the stress-exposed
tissues. Undeniably, exactly how a species/variety handles with any certain environ-
mental stress is frequently because of its capability to sense alterations in the ROS
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concentrations and to activate the sufficient metabolic modifications (De Gara et al.
2003). It also is dependent upon the epigenetic signatures which alter the plant’s
ability to respond to specific stress conditions (Centomani et al. 2015). Glutathione is
perhaps one of the most significant metabolites participating in the defense responses
versus the environmental stresses. Indeed, glutathione as well as its associated
enzymes developed very early on in aerobic organisms, possibly in conjunction
with di-oxygenic photosynthesis (Deponte 2013). Because of its cysteine (Cys)
molecule, the tripeptide GSH1 (γ-L-glutamyl-L-cysteinylglycine) is a flexible redox
molecule. Nevertheless, its part extends beyond ROS scavenging as well as the
redox homeostasis. Glutathione is the main form of organic sulfur carried in phloem.
It plays a crucial role in an interaction between plants and mutually beneficial
nitrogen-fixing bacteria, in compartmentalizing and neutralizing of xenobiotics and
heavy metals, as well as in the vacuolar transportation of secondary metabolites
(Cheng et al. 2017; Noctor et al. 2012). GSH has also been proposed as the key
contributor of the diminished sulfur group meant for Glucosinolates biosynthesis in
Arabidopsis (Parisy et al. 2007). This non-exhaustive list of procedures involving
glutathione underlines its role to play in various plant defense tactics. Emphasis is
being placed on the three biggest abiotic stresses—drought, salinity, and heavy
metal contamination—due to the fact that their significance has been growing
under climate change as well as a result of anthropic events.

11.7 Glutathione Role in Abiotic Stress

Various approach and evidence feature that GSTs substantially contribute to the
adaption and tolerance to the abiotic environmental stresses like the drought, salin-
ity, and the cold stress. Various GSTs, and in particular members of Tau and Phi
classes, are differently expressed in response to abiotic stress indications (Csiszár
et al. 2014; Lan et al. 2009). On numerous occasions, higher GST expression is
associated with increased stress tolerance such as seen in tomato, wheat, as well as in
barley (Gallé et al. 2009a, b; Rezaei et al. 2013; Sun et al. 2010). Abiotic stress
tolerance facilitated by the chemical priming such as treating along with SA,
corresponds with a spike in GST expressions (Csiszár et al. 2014; Horváth et al.
2015). Genetically modified overexpression of GSTs has provided the additional
knowledge in their method of action that has contributed to the abiotic stress
adjustment. Oxidative stress tolerance via GPOX activity, initiation of antioxidant
equipment, and alterations in the redox state were observed following the
overexpression of a GST in tobacco belonging to tau class that resulted in salt, as
well as chilling stress tolerance in the tobacco seedlings (Roxas et al. 2000). Over-
expression of tau-class GSTs from several different species, as, for example, the
Glycine soja GsGSTU13, the A. thaliana AtGSTU19, as well as in the Prosopis
juliflora PjGSTU1, have resulted in the improved stress tolerance (George et al.
2010; Jia et al. 2016). Interestingly, salt and oxidative stress tolerance by the over-
expression of rice OsGSTU4 was accompanied by pleiotropic effects such as
reduced sensitivity to ABA and auxin, as well as upregulation of pathways related
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to defense responses, sulfate reduction, and phenylpropanoid and flavonoid biosyn-
thesis pathways (Sharma et al. 2014). This is indicative of multilevel interactions that
can merely be explained by the enzyme’s catalytic functions. Such pleiotropic
effects might be the cause of the increased tolerance to drought and salt stress of
transgenic tobacco plants overexpressing a sweet orange CsGSTU, despite the lack
of GPOX activity (Cicero et al. 2015a, b). Zeta-class GSTs have been identified,
through different approaches, as significant contributors to abiotic stress tolerance
despite the lack of significant GST/GPOX activity to standard GST substrates such
as CDNB. In rice, the presence of a naturally occurringOsGSTZ2 allelic variant with
significantly lower isomerase activity correlated with reduced cold tolerance (Kim
et al. 2011). Curiously, when the very same gene was over-expressed in rice, it
bestowed cold tolerance that coincided with increased GST as well as the GPOX
activity of rice leaf extracts (Takesawa et al. 2002). Likewise, over-expression of
Tamarix hispida “ThGSTZ1” improved drought and the salt stress tolerance with the
simultaneous increase of overall GST as well as in GPOX activity (Yang et al.
2014a, b). Possibly, GSTZ isomerase activity on the way to maleylacetoacetate, an
electrophile that could potentially alkylate a wide variety of macromolecules
(Blackburn et al. 2006), decreases an accumulation of oxidants under stress, ulti-
mately facilitating the homeostasis in control of plant antioxidant machinery. The
expression profiles of the rice GSTL class were thoroughly studied, exposing the
tissue and developmental stage-controlled expressions. OsGSTL2 presented the very
highest expression levels, and the induction under abiotic stress (Kumar et al.
2013a). OsGSTL2 over-expression offered increased tolerance to drought, salinity,
and the cold stress (Kumar et al. 2013b). Functional evaluation of soybean
GmGSTL1, which is upregulated in salt stress conditions, indicates that its protective
action against salinity possibly comes from its interactions with antioxidant
flavonoids—quercetin as well as kaempferol. GmGSTL1 remained conjectured to
serve as a catalyst for the reduction of oxidized flavonoids reestablishing their
antioxidant function and thereby contributing to the oxidative stress tolerance
(Chan and Lam 2014). So far, in studies referred to above, GST-protective roles
against abiotic stress exists in direct connection with its protein abundance sugges-
tive of the immediate role of its catalytic functions or protein interactions along with
cellular metabolites. Nevertheless, this is in contrast to the remark that the silencing
of AtGSTU17 stemmed in increased drought and the salt stress tolerance (Chen et al.
2012). Plants displayed anatomical and physiological alterations like the smaller
stomatal aperture which resulted in a lower transpiration rate and the increased
growth of primary and lateral roots. Moreover, AtGSTU17-silenced plants
demonstrated higher ABA and GSH contents (Chen et al. 2012). These findings
offer substantial evidence for the signaling roles of plant GSTs that expand beyond
their catalytic activities and could be further utilized to increase plant strength under
abiotic stress.

Biotechnological manipulation of plant GSTs can open up new opportunities
towards improving the reliability of crops versus the continuing climate change.
Technological developments in ~omics and other technologies may provide sub-
stantial information on GST-mediated stress tolerance mechanisms. For instance,
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metabolomics analysis of GST over-expressing plants proposed that these plants
reach an accustomed state as efficiently as possible (Kissoudis et al. 2015a, b). Such
adjustments may be further lessened by stress-inducible expression. For example,
co-engineering of a tau-class GST with a glutathione synthetase substantially
increased herbicide tolerance in contrast to single transformants (Skipsey et al.
2005). Comparable methods with Lambda GSTs as well as the antioxidant second-
ary metabolite overproduction, e.g., flavonoids (Nakabayashi et al. 2014)
co-engineering, can be far more effective in achieving robust stress tolerance. Fine
adjustment GST enzymatic characteristics as well as substrate availability may
materialize basic research towards biotechnology applications in agricultural crops.

11.8 Role of Plant Glutathione in Detoxification of Reactive
Oxygen Species and Methylglyoxal

Plants constantly exposed to variety of stress through extreme temperatures, drought
conditions, organic pollutants, heavy metals, and salt concentration leading to the
generation of reactive oxygen species (ROS), which may alter many physiological
mechanisms (Foyer and Noctor 2005b). Glutathione, being hydrophilic, highly
reactive, and stable compound, effectively scavenges ROS by inhibiting oxidation
of thiol (–SH) group and creating redox buffer that aids in the stabilization of cellular
redox state (Meyer and Hell 2005). Since GSH occurs in reduced, as well as in
oxidized forms (Mahmood et al. 2010), the cysteine thiol (–SH) group instantly
donates an electron to unstable ROS. As a result, GSH becomes reactive and
interacts with another GSH to produce GSSG, which directly assists in the detoxifi-
cation of hydrogen peroxide (H2O2). In the next step, glutathione reductase
(GR) acts on GSSG using nicotinamide adenine dinucleotide phosphate (NADPH)
and regenerate GSH (Jozefczak et al. 2012). However, it was documented that
increased stress reduces the capacity of GR to cope with the massive consumption
of GSH causing reduction in free GSH contents (Cuypers et al. 2011).

Glutathione not only actively participates in ROS scavenging but also regulates
antioxidant enzymes. Glutathione (GSH) and ascorbate (AsA) serve as redox buffers
and play an active role in the AsA-GSH cycle in plant cells (Smeets et al. 2005). The
oxidation and reduction of AsA and GSH enable ascorbate peroxidase (APX) to
convert H2O2 to H2O (Jozefczak et al. 2012). It was documented that AsA is
maintained in reduced state in plant cells owing to the activity of dehydroascorbate
reductase (DHAR), which utilizes GSH as an electron donor (Mittler et al. 2004;
Foyer and Noctor 2005a). Therefore, GSH and AsA pools in reduced forms are
necessary for optimum function of plant cell against stress; otherwise, APX is
instantly inhibited and unable to respond with H2O2 and may result in the toxicity
to the plants.

Methylglyoxal (MG, α-oxoaldehyde) is a cytotoxic highly reactive organic com-
pound produced as byproduct in plants as a consequence of numerous abiotic
stresses through multiple enzymatic and non-enzymatic processes. Methylglyoxal
not only causes oxidative stress through production of free radicals (photo reduction
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of O2 to O2˙
�) (Saito et al. 2011), which exacerbates damage to plant cells, but it also

disrupt antioxidant enzymes that are capable of scavenging ROS (Wang et al. 2009).
During stress conditions, the production of MG increased by two- to sixfolds leading
to disruption in various cellular functions (Yadav et al. 2005) and DNA damage
(Hasanuzzaman et al. 2017b). Therefore, emphasis also needs to be paced on
detoxification of MG while dealing with different types of abiotic stress (Hoque
et al. 2008). It was reported in the literature that glyoxalase system, which is
composed of lactoyl-glutathione lyase (Gly I) and hydroxyacyl-glutathione hydro-
lase (Gly II), detoxifies MG in a coordinated manner (two steps) utilizing GSH as
cofactor (Hasanuzzaman et al. 2017a). In the first step, MG produces hemithioacetal
through its reaction with GSH, which is subsequently transformed to S-D-lactoyl-
glutathione (SLG) mediated by Gly I. In the next step, SLG transformed to D-lactate
through hydrolysis mediated by Gly II, simultaneously producing GSH (Yadav et al.
2008).

11.9 Role of Plant Glutathione Transferase in Heavy Metals
Stress

Heavy metals (HMs) are the main abiotic stress which can cause harmful effects in
plants. HMs toxicity could lead to extreme accretion of reactive oxygen species
(ROS) and methylglyxol (MG) resulting in lipids peroxidation, protein oxidation,
enzymes inactivation, impairment of DNA, and/or affecting important components
of plant cells (Hossain et al. 2012, 2021; Rai et al. 2019; Xu et al. 2020). However,
higher plants contained well developed anti-oxidant defense mechanism and a
glyoxalase scheme to capture ROS and MG. Furthermore, HMs that have access
to a plant cell can be confiscated by amino acids, organic acids, GSH, and GSTs
(Hossain et al. 2012, 2021; Kumar and Trivedi 2018). GSH plays a main role in
controlling ROS and MG as well as their derivatives in plant cells, while GSH
enzymes such as glutathione S-transferase act cumulatively and uniformly in order
to efficiently protect the damage caused by ROS and MG; meanwhile GST also
detoxify HMs through complexation, chelation, and vacuolar sequestration pro-
cesses (Hossain et al. 2012). Furthermore, HMs’ stress increases GSH concentration
in plants; meanwhile a positive relationship was found between feedback induction
and improved expression of genes encoding groups of GST and glutathione
peroxides (GPX) gene families in metal stress (Shri et al. 2009). Many investigations
have showed enhanced tolerance to a number of environmental stresses, such as
heavy metals cadmium, and nickel in transgenic lines expressed GSTs in Aspergillus
nidulans, Indian mustard (Brasscia jucea), tobacco, and poplar tree (Populus
trichocarpa), among others (Rai et al. 2003). Zhang and Liu (2011) reported that
pKHCG transgenic alfalfa plants showed a significant resistant against the mixture of
cadmium and trichloroethylene.
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11.10 Role of Plant Glutathione Transferases in Salinity
and Drought Tolerance

The climate change scenario is a real threat to agriculture specially to the crop plants
as abiotic stresses have been attributed to up to 50% reduction in crop production
worldwide (Hasanuzzaman et al. 2012). Among the abiotic stresses, drought and
high salinity have significant impact on the crop yield around the globe. Solely, the
increasing drought spells in different areas will affect the two-thirds of world
population, and the salinity is expected to affect 50% of total cultivable lands by
2050 leading to food scarcity (Hasegawa 2013; Naumann et al. 2018). On the other
hand, about 45 million hectares irrigated area of the word has already been consid-
ered under salt stress that affect overall crop yield in those areas (Munns and Tester
2008). Abiotic stresses like drought and salinity affects the plant growth, physiology,
and biochemical process that are involved in different pathways. Drought causes the
stomatal closure that disturb the gaseous exchange, thermal conductance, and
photosynthetic efficiency of leaves leading to production of reactive oxygen species
(ROS), while salinity leads to ionic toxicity and also impart physiological drought
ultimately leading to reduction in production (Pinheiro and Chaves 2011; Seleiman
et al. 2021).

In plants, the expression of glutathione transferases (GSTs) have been observed
during different growth stages. GSTs have been found to be expressed under
different biotic and abiotic stresses including drought and salt stress (Xu et al.
2015). A detailed study of GSTs on the Arabidopsis showed that the expression of
these genes is induced by early stress and plays an important role in protection of
plants against the oxidative and hormonal stresses (Sappl et al. 2009a, b). A mutant-
based study showed that AtGSTU17 gene plays a negative role towards the drought
and salinity stress as an increased amount of ABA production was observed in the
mutant plants. Moreover, the application of glutathione resulted in induction of high
level of ABA and other phytohormones that play crucial role in different physiolog-
ical processes like seed germination, stomatal conductance, and transpiration rates
(Chen et al. 2012). Similarly, the exogenous application of GSH improved the
salinity tolerance in V. radiate due to production of antioxidants, while the tobacco
transgenic plants expressing GmSTU4 gene showed high amount of metabolites like
proline that is an osmo-protectant and have also been found to induce tolerance
against high salinity and herbicide under the stress conditions (Kissoudis et al.
2015a, b). The genome wide in–silico and expression analysis of glutathione
transferase genes in different crop species including cotton (Xu et al. 2017), tomato
(Islam et al. 2017), pumpkin (Kayum et al. 2018), brassica (Wei et al. 2019), wheat
(Hao et al. 2020), and melon (Wang et al. 2020) also reveal their role in conferring
the abiotic stress in higher crop plants. These studies showed the importance of
GSTs in regard to stress tolerance in plants and also encourage the further functional
studies of individual genes (Fig. 11.1).
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11.11 Mechanisms of Glutathione Transferases

Glutathione (GSH, γ-glutamylcysteinylglycine) is a key tripeptide hydrophilic
metabolite produced in a plant cell that plays an essential role in metabolic functions,
signal transduction, protection against oxidative stress, defense against extreme
temperatures, and electrophilic species detoxification (Schröder 2001; Hatzios
et al. 2005; Asgher et al. 2017). The formation of GSH is governed by two adenosine
triphosphate (ATP) dependent stages, initiating with the attachment of the carboxyl
group of glutamate to the amine of cysteine through peptide bond (Hasanuzzaman
et al. 2017a) catalyzed by γ-glutamylcysteinyl synthetase (GSH1) with subsequent
inclusion of glycine mediated by glutathione synthetase (GSH2) (Gill et al. 2013).
Glutathione exists in both reduced (GSH) and oxidized (GSSG) form, but it is
primarily maintained in reduced status inside plant cell owing to the enzymatic
action of glutathione reductase (GR) or glutathione peroxidase (GPX) (Mahmood
et al. 2010). More than 90% of total GSH is located in cytosol, while the remainder is
found in mitochondria or other organelles (Lu 2001). In addition, certain plant
species produce homoglutathione (hGSH, γ-glutamylcysteinyl-β-alanine), which
functions similarly to GSH (McGonigle et al. 1998). The details about the synthesis
of glutathione and its metabolism are presented in Fig. 11.2.

The detoxification of metals and xenobiotics mainly depends on the contents of
GSH and glutathione S-transferases (GSTs) activity in plants. Glutathione is
non-enzymatic scavenger of oxidative stress that not only inhibits protein denatur-
ation by safeguarding thiol (–SH) group, but also acts as precursor for GSTs
enzymes (Hasanuzzaman et al. 2017a; Sidhu and Bali 2021). Glutathione
S-transferases are multigene family of isozymes that play a range of functions in
plant developmental processes such as stress tolerance, endogenous metabolism, and
xenobiotic detoxification in phase II reactions (Schröder 2001; Noctor et al. 2002).
At present, seven classes of GSTs were reported in the literature: phi (GSTF), tau
(GSTU), zeta (GSTZ), theta (GSTT), lambda (GSTL), dehydroascorbate reductases
(DHARs), and tetrachlorohydroquinone dehalogenase (Cummins et al. 2011a, b).
Among them, GSTF and GSTU were the most widely reported class of GSTs that
were involved in xenobiotics detoxification in various plant species (Cummins et al.
2011a, b). Although GSTs were reported in various plant species, still there is a poor
understanding of their endogenous roles in cellular protection and as carrier proteins.
The capacity of GSTs to withstand various types of biotic and abiotic stress is
attributed not only to electrophilic species detoxification by glutathione and attenua-
tion of cellular redox status (Foyer and Noctor 2005b) but also to the production of
secondary metabolites and auxins, their restriction and transport within plant cell by
the following equation (Lamoureux et al. 1994; Lamoureux and Rusness 1993).

X� Zþ GSH ! GS� Xþ H� Z

Xenobiotics contain functional groups such as alkyl, amide, amino, carboxyl,
halogens, hydroxyl, and nitrile which are susceptible to enzymatic transformations.
Metabolism of xenobiotics in plants involve phase I, phase II, and phase III
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reactions, which are analogous to human hepatic metabolism (Sandermann Jr 1994).
Once xenobiotics enter plants, they undergo oxidative, reductive, or hydrolytic
reactions (phase I) by P450 monooxygenases and peroxidases, which activate
them to act as highly reactive intermediates for conjugation with glutathione
mediated by a wide array of GSTs that make these compounds less toxic (phase
II) (Wang et al. 2010) or peptidases degrade these glutathione conjugates back to
cysteine (McGonigle et al. 1997). It was documented in the literature that electro-
philic xenobiotics bind to GSH through the cleavage of halogens, nitro group or
double bonds in exchange for cysteinyl sulfur present in GSH, which is mediated
mostly by phi (GSTP) and Tau (GSTU) classes of GSTs. In the last step (phase III),
xenobiotics conjugates are either transported to the vacuole or apoplast of plant cells
via ATP-binding cassettes (ABC transporters), where they were further metabolized
by hydrolytic reaction to CO2 or deposited outside the cell (Edwards et al. 2011).
These final compounds interact with gamma-glutamyl transpeptidases, carboxypep-
tidase, or dipeptidases enzymes in the vacuole, resulting in further breakdown
(Schröder et al. 2008).

On the other hand, detoxification of heavy metals requires synthesis of chelators
and storage of metal complexes in plant cell (Hernández et al. 2015). Heavy metals
have a high affinity for the thiol (–SH) group of free cysteine, resulting in rapid
oxidation (Jozefczak et al. 2012). As a result, reduced metal may initiate a Fenton
reaction leading to the production of hydroxyl radicals (HO˙), which are toxic for
plants (Fahey and Sundquist 1991). Therefore, low levels of free cysteine (50 μM)
within plant cell is necessary for protection against hydroxyl radicals (HO˙), which
may produce from Fenton reaction (Fahey and Sundquist 1991). It was reported that
oxidation of thiol (–SH) is substantially decreased when free cysteine amino group
attach with glutamate and glycine to form GSH using GSH1 and GSH2
(Hasanuzzaman et al. 2017a). These chemical reactions help in maintaining low
concentration of cysteine and high concentration GSH inside plant cell by
preventing the production of hydroxyl radicals (HO˙) by Fenton reaction (Jozefczak
et al. 2012). In addition, heavy metals bind to thiol (–SH) group of GSH (nucleo-
philic in nature) upon entering in plants using GSTs (Ahmad et al. 2010) and make
non-toxic metal complexes and transport them to the vacuole of plant cells (Kumar
et al. 2013a, b, c) via ATP-binding cassettes (ABC transporters), where they were
further metabolized (Edwards et al. 2011). However, excessive consumption of GSH
for heavy metals sequestration reduces its cytosolic concentration, therefore, balance
in GSH/GSSG ratio is very critical for survival of plant (Yadav 2010).

11.12 Conclusion

Environmental stresses such as cold, salinity, drought, and heavy metals can damage
plant growth and yield. Plant GST genes may be significantly used for bioremedia-
tion of combined environmental pollutants. For instance, by developing transgenic
cultivars which are resistant to multi abiotic stresses, they can be used for future
agricultural productivity. As a result of their versatile qualities, GSTs are an essential
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and fascinating area of research for functional characteristics. Many GST member
genes need to be investigated to learn more about their roles in salt, drought and
metal stress, as they have significant impact on salt and drought tolerance as well as
heavy metal remediation.
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Role of Ascorbic Acid in Alleviating Abiotic
Stress in Crop Plants 12
Taghreed S. Alnusaire, Amina A. M. Al-Mushhin,
and Mona H. Soliman

Abstract

Environmental stresses cause significant damage to plant growth all over the
world thereby significantly declining the yield. The damaging effects of stresses
result from the alterations induced on key metabolic pathways including germi-
nation, root growth, water uptake, mineral assimilation, photosynthesis, protein
synthesis, and respiration. Among the main causes of stresses induced growth
damage is the excessive generation of toxic reactive oxygen species imparting
several damaging effects like degradation of enzymes, proteins, nucleic acids, etc.
Several responses are common to almost all stress factors however some are stress
specific. The indigenously existing tolerance mechanisms are upregulated to
alleviate the damaging effects of stresses. Among the key tolerance, metabolites
ascorbic acid has a central role in stress mitigation by its antioxidant property and
has been reported to alleviate the stress damage by strengthening the associated
tolerance mechanisms. With this backdrop, present review focuses on
summarizing the effects of stresses on plant growth and the role of ascorbic
acid there in.
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12.1 Introduction

Among the abiotic environmental factors are drought, salinity, temperature
extremes, metal(loid)s stresses, UV radiations, etc. All of these mentioned stress
factors impart damaging effects in the crop plants and also alter their distribution
(Ahmad et al. 2018; Abdel-Farid et al. 2020; Arif et al. 2020; Ahanger et al. 2021;
Fig. 12.1). Adverse effects of stresses can be stress specific while some are common
to all stresses like photo inhibition, reduced growth and yield. Stresses alter metabo-
lism of plants reflecting in significant decline in growth and yield potential. Altered
metabolism is linked directly with the reduced root growth, reduced absorption of
mineral ions and water from soil, reduced protein synthesis, altered cellular homeo-
stasis, and enzyme activity (Ahanger and Agarwal 2017a, b; El-Beltagi et al. 2020).
One of the key contributors to stress-induced damage to plant growth and metabo-
lism includes the increased generation of toxic reactive oxygen species (ROS,
Fig. 12.1). Among the key ROS are included: hydrogen peroxide, superoxide,
singlet oxygen, hydroxyl, nitric oxide, etc. Stress-induced increase in ROS triggers
oxidation of proteins, lipids, nucleic acids, and fatty acids thereby hampering the
functioning key cellular organelles including chloroplast, mitochondria, membranes,
etc. (Laxa et al. 2019; Huang et al. 2019). ROS-mediated damage to membrane
structural stability influences their function as well as other key organelles like

Environmental stresses
(Drought, Salinity, Heavy metals, UV radiations,

Temperature extremes)

• Restrict mineral uptake and assimilation.

• Destabilise membranes and proteins.

• Impede root growth.

Induce oxidative damage
by excess ROS
accumulation.

Growth and Yield
Reduction

• Hamper Photosynthesis and chloroplast
  functioning.

Fig. 12.1 Mechanistic illustration of stress effecting yield and growth of plants
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chloroplast and mitochondria thereby affecting the processes operating within them
(Dietz et al. 2016). There have been enough reports available confirming the
damaging effects of stress-generated ROS on the photosynthetic attributes, electron
transport, enzyme functioning, and overall growth performance of the plants (Huang
et al. 2016; Ahmad et al. 2018). Plants have developed mechanisms to counteract the
damaging effects of stresses so that the major functions of cellular metabolism can be
protected. Among the key mechanisms are included: (a) antioxidant system,
(b) osmolyte metabolism, (c) ion exclusion, (d) phyto-chelation, (e) secondary
metabolite accumulation, etc. These tolerance mechanisms are precisely regulated
at genetic and molecular levels. The strength of tolerance mechanism is obviously
reflected at the cellular and whole plant level in terms of plant functioning and yield
performance. All these mentioned, tolerance mechanisms are constituted of enzy-
matic and nonenzymatic components. Upregulation of antioxidant system (Singh
et al. 2016; Ahanger et al. 2017), osmolyte accumulation (Sharma et al. 2019;
Soliman et al. 2020), ion exclusion (Negrão et al. 2011), secondary metabolite
accumulation (Yadav et al. 2021), and phyto-chelating agents (Otero and Tupas
2018) have been reported in plants in response to environmental stresses. These
tolerance mechanisms protect plant metabolism from the damaging effects of
stresses by mediating the quick elimination of toxic ROS maintaining their levels
at optimal concentrations (Ahmad et al. 2010, 2021). Besides, having a role in ROS
scavenging, other roles include the maintenance of tissue water potential through
accumulation of compatible osmolytes leading to protection of structural and func-
tional integrity of key cellular components (Burg and Ferraris 2008), chelation of
toxic metal ions through accumulation of chelating agents/compounds (Angulo-
Bejarano et al. 2021), and exclusion and compartmentation of toxic ions into less
sensitive cellular spaces like vacuole or cytosol through upregulation of transport
proteins and exchangers (Wu and Li 2019). Considerable research work has been
done evaluating the physiological, biochemical and molecular mechanisms
regulating the abiotic stress potential of crop plants. Among the antioxidants,
ascorbic acid is having a key role in plant protection against stress. Ascorbic acid
regulates redox homeostasis, cell division, cellular expansion, signaling and cell wall
growth (Wang and Huang 2019; Chen et al. 2021). It has a vital role in alleviation of
the stress-mediated damage to plant growth through its active role in ROS neutrali-
zation via enzymatic and non-enzymatic detoxification pathways (Ahanger et al.
2017). Besides this, it is believed to serve as cofactor for enzymes involved in
photosynthesis, biosynthesis of phytohormone, secondary metabolites and
anthocyanins (Smirnoff 2001). For example, the enzymes of xanthophyll cycle
like violaxanthin de-epoxidase, ethylene biosynthesis like 1-aminocyclopropane-1-
carboxylic acid oxidase, and the abscissic acid and gibberellic acid biosynthesis like
2-oxoaciddependent dioxygenases (Smirnoff and Wheeler 2000).

Ascorbic acid is commonly known as vitamin C. It is water soluble and one of the
abundant and essential metabolites for plants and animals. For animals, it acts as an
important dietary supplement for humans and primates because of their inability to
synthesize it. Ascorbic acid concentration within a cell is determined by biosynthesis
and degradation potential in addition of the redox pathways (Akram et al. 2017;
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Bilska et al. 2019). There are evidences reporting the stress sensitivity of plants
exhibiting low ascorbic acid synthesis reflecting in significant restrictions in their
growth, development, and yield productivity. Moreover, several studies using trans-
genic approach including knockout, as well as overexpression have demonstrated
significant role of ascorbic acid in increasing the tolerance of plants to various
environmental stress (Medina et al. 2021). Improved tolerance to drought and
extreme temperature (Bao et al. 2016), salinity (Xue et al. 2018), and heavy metals
(Alamri et al. 2018) due to enhanced ascorbic acid accumulation/synthesis has been
widely reported. Four pathways for synthesis of ascorbic acid have been identified
which include (a) Smirnoff-Wheeler pathway (D-mannose/L-galactose pathway),
(b) D-galacturonate pathway, (c) the L-gulose pathway, and (d) the myo-inositol
pathway. It has been established that D-mannose/L-galactose pathway also known as
Smirnoff-Wheeler pathway is the dominant one (Fenech et al. 2019). The genes and
enzymes involved in the synthesis of ascorbic acid have been well characterized and
through various studies their roles have been established in contributing/regulating
the biosynthesis of ascorbic acid (Wang and Huang 2019). Manipulating the
ascorbic acid biosynthesis pathway through transgenic approaches has been reported
to influence growth performance and stress tolerance significantly (Fenech et al.
2019). The accumulation of ascorbic acid is fine regulated by orchestration of
biosynthesis, recycling, degradation, and transport pathways (Broad et al. 2020).
Biosynthetic pathway is connected between cytoplasm and mitochondria, while
degradation occurs within the apoplast (Mazid et al. 2011). Present review
summarizes the beneficial role of ascorbic acid in improving the tolerance potential
of plants to stresses by highlighting the effect on key stresses.

12.2 Ascorbic Acid and Drought Stress

Drought is one of the key damaging stress factors resulting due to reduced water
availability, and global climate change has further intensified the situation. Plants are
very much sensitive to drought and damage varies with the intensity and duration of
drought (Kapoor et al. 2020). Drought stress has been demonstrated to decline root
growth, germination, biomass, and yield production by influencing the key meta-
bolic pathways like photosynthesis, protein synthesis, mineral uptake, and assimila-
tion, etc. (Queiroz et al. 2019; Kapoor et al. 2020). Water deficit or drought
suppresses photosynthesis by directly affecting leaf area, stomatal movements, and
evapotranspiration which ultimately induce osmotic stress and hence arrest of
photosynthetic apparatus (Zare et al. 2011; Bhargava and Sawant 2013). Restricted
access to carbon dioxide following the stomatal closure directly influences the
activity of Rubisco, nitrate reductase, and other key enzymes. Besides, this drought
considerably alters the accumulation of secondary metabolites (Begum et al. 2021;
Ahanger et al. 2021) by affecting the enzymes involved in their metabolism. Drought
mediated alteration in redox homeostasis has been reported by several workers
(Kapoor et al. 2015; Shah et al. 2017) and hence alterations in metabolism and
growth of plants has been reported. Drought stress significantly affects the

262 T. S. Alnusaire et al.

https://sciprofiles.com/profile/1111828


antioxidant functioning and the accumulation of osmolytes thereby affecting the
tolerance potential to considerable extent (Zhang et al. 2020a, b; Hou et al. 2021). In
addition, the decline in uptake and assimilation of mineral elements is also an
important damaging consequence of drought. Drought affects the functioning of
transport proteins carrying uptake of mineral ions and the activity of enzymes
involved in metabolism of minerals (García-Caparrós et al. 2019). Drought has
been reported to affect the synthesis of ascorbic acid significantly and reports are
contradictory. Reports available have demonstrated increase (Parveen et al. 2021) as
well as decrease (Seminario et al. 2017) in content of ascorbic acid in plants under
drought. Increased synthesis of ascorbic acid directly affects the drought tolerance in
plants by influencing the activity of enzymes of key tolerance mechanisms like
ascorbate-glutahione cycle. Alteration in the content of ascorbic acid is directly
linked with the expression of genes involved in regulating the biosynthesis and
catabolism of ascorbic acid (Seminario et al. 2017). The active role of ascorbic acid
in mitigation of drought stress-induced growth decline has been confirmed through
the studies exploiting its exogenous application effects on several tolerance
mechanisms. For example, Shafiq et al. (2014) have demonstrated significant
improvement in growth, mineral uptake, and photosynthesis in Brassica napus
L. through modulation of antioxidant defense system and osmolyte accumulation
following the exogenous application of ascorbic acid. Ascorbic acid improves the
stomatal and non-stomatal attributes of photosynthesis by maintaining the redox
homeostasis thereby protecting major cellular functioning like enzyme functioning,
membrane structure, and stress signaling (Venkatesh and Park 2014). Upregulation
of key enzymes like ascorbate peroxidase, monodehydroascorbate reductase,
dehydroascorbate reductase, and glutathione reductase has been reported due to
exogenous application of ascorbic acid resulting in maintenance of redox homeosta-
sis and hence drought tolerance (Singh and Bhardwaj 2016). Under drought stress,
protection of membrane functioning due to exogenous application of ascorbic acid
has been attributed to upregulation of activity of antioxidant enzymes (Penella et al.
2017). Arabidopsis thaliana transgenic plants over-expressing the AtOxR gene
accumulated greater ascorbic acid and escaped the drought by declining the genera-
tion of hydrogen peroxide (Bu et al. 2016). Zhu et al. (2014) have demonstrated that
increased expression of stress inducible EsWAX1 from Eutrema salsugineum
imparts drought tolerance in Arabidopsis by promoting ascorbic acid synthesis by
significantly enhancing the expression of gene VTC1, GLDH and MIOX4 involved
in its synthesis. Ascorbic acid can also crosstalk with key phytohormones like ABA
to promote signaling for better alleviation of drought as has been reported by Zhang
et al. (2020a, b). In another study, Bao et al. (2016) have demonstrated that
co-expression of 9-cis-epoxycarotenoid dioxygenase (SgNCED1) and yeast D-
arabinono-1, 4-lactone oxidase (ALO) genes improve drought and chilling tolerance
by improving ascorbic acid content in Nicotiana tabacum and Stylosanthes
guianensis.

Drought stress results in oxidative damage to plants by increasing the accumula-
tion of toxic reactive oxygen species including hydrogen peroxide, superoxide, etc.
(Sharma and Dubey 2005). Drought-mediated oxidative affects drastically damages
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the structural and functional integrity of key macromolecules and ultimately altering
the major cellular functioning and hence yield productivity (Sehgal et al. 2017).
Growth and photosynthetic inhibition in drought stressed plants is often a
culminated effect of the reduced water availability and the subsequent decline in
water use efficiency (Talbi et al. 2020). Drought severely affects the net photosyn-
thesis (Pn), light- and CO2-saturated net photosynthesis (Pmax), stomatal conduc-
tance, the maximal rate of Rubisco carboxylation (Vcmax), and ribulose
bisphosphate regeneration (J(max)) along with leaf carbon and nitrogen concentra-
tion in Deschampsia flexuosa (Albert et al. 2011). Moreover, drought-mediated
decline in photosynthesis results from the direct influence on the soil moisture and
field capacity reflected as reduced photosynthesis, light use, and relative growth rate
(Xu et al. 2009). Exogenous application of ascorbic acid has been reported to
significantly improve the photosynthesis by modulating the water relations, mem-
brane structure, antioxidant system, and accumulation of secondary metabolites and
osmolytes (Cevik and Unyayar 2015; Farooq et al. 2020). Exogenous application of
ascorbic acid alleviated the drought stress-induced damage in safflower by
eliminating ROS through upregulation of the antioxidant defense system, osmolyte
accumulation, and maintenance of redox components (Farooq et al. 2020). In
another study, Khazaei et al. (2020) have demonstrated better performance and
tolerance to drought in Capsicum annuum through significant enhancement in
water content, antioxidant functioning, and membrane stability due to exogenous
application of ascorbic acid. However, the exact mechanisms are largely unknown;
therefore, molecular and genetic studies are required to unravel the exact
mechanisms. Besides, this exogenous ascorbic acid improved the accumulation of
phenol peroxidases and total phenol content thereby strengthening the antioxidant
system for quick neutralization of toxic ROS so that growth is least affected (Farooq
et al. 2020). In wheat, Malik et al. (2015) have reported significant enhancement in
growth and membrane functioning through modulation of antioxidant enzymes,
proline accumulation, and tissue water content maintenance after treatment of
ascorbic acid either through foliar, priming, or rooting medium. Increased growth
and yield productivity under drought in ascorbic acid-treated wheat plants has been
direct effect on leaf area index, tissue water content, protein oxidation, and lipid
peroxidation (Kotb and Elhamahmy 2013). Ascorbic acid application improves
protein, carbohydrate content, and water use efficiency in chickpea under drought
stress (Farjam et al. 2015). Application of ascorbic acid reverses the influence of
drought on the ABA, polyamine, and proline accumulation, and reduces the accu-
mulation of ROS with concomitant enhancement in the leaf water status and
stomatal conductance (Terzi et al. 2015). Drought tolerance in ascorbic acid-treated
chickpea plants results from the significant enhancement in the activities of key
enzymatic antioxidants and the accumulation of non-enzymatic antioxidants as well
as osmolyte accumulation imparting a visible positive effect on the photosynthesis,
growth, and yield (El-Beltagi et al. 2020). Improved drought tolerance in rice was
demonstrated due to the upregulation of antioxidant system and osmolyte accumu-
lation, and among the antioxidant enzymes, the increased activity of ascorbate
peroxidase contributed more to hydrogen peroxide elimination as compared to
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catalase or peroxidase which was related with the greater accumulation of ascorbic
acid in tolerant cultivars (Wang et al. 2019). Ascorbic acid improves water stress
tolerance in common bean by enhancing pigments content, activity of carbonic
anhydrase and antioxidant enzymes, accumulation of secondary metabolites like
phenols, flavonoids, and tannins, thereby resulting in reduced oxidative damage and
increased free radical scavenging activity (Gaafar et al. 2020). Research unraveling
the molecular mechanisms is extensively needed to understand ascorbic acid-
mediated growth regulation under drought stress.

12.3 Ascorbic Acid and Salinity Stress

Salinity is another key environmental factor affecting the normal growth and devel-
opment in plants thereby restricting the yield potential of crop plants. Salinity stress
mainly arises due to excess accumulation toxic ions like sodium, chloride, etc. in the
soil solution (Isayenkov and Maathuis 2019). Among the key reasons for salinity
include the usage of bad waters or saline waters for irrigation, excessive use of
chemical fertilizers, and other improper management practices. The key damaging
consequences of salinity stress include osmotic and ionic stress resulting in oxidative
effects on plants (Isayenkov and Maathuis 2019). Excess salinity hampers germina-
tion, root growth, access to mineral ions, enzyme activity, and photoinhibition (Khan
et al. 2021). In response to salinity, stress plants trigger the tolerance mechanisms for
alleviating the damage to extent, and in this context, plants can be classified as
halophytes or glycophytes (Pan et al. 2020). Halophytes have special mechanisms to
tolerate excess salinity as compared to glycophytes which are sensitive to external
salinity. Halophyte including Atriplex, Aeluropus, Suaeda, Cakile, Mesembryanthe-
mum, Salicornia, Thellungiella, etc. are the potential candidates for the identification
and characterization of salt-responsive genes, and among the genes are included:
those coding for antiporters like SOS, NHX,HKT, ion channels like aquaporins, Cl�,
Ca2+, etc., antioxidant like SOD, CAT, APX, BADH, etc. and other novel genes
including SDR1, SRP, etc. (Mishra and Tanna 2017). There has been continuous
effort from researchers all over globe to exploit these genes for improvement of
salinity tolerance in glycophytes. In addition, the efficient sequestration and exclu-
sion of toxic ions has a key role in salinity tolerance in plants (Isayenkov and
Maathuis 2019). In addition, salinity stress alters the metabolite profile and triggers
transcriptional modulation regulating the key pathways of metabolism including
photosynthesis, signaling, and antioxidant system (Qin et al. 2021; Wang et al.
2021). Plants over-expressing the salinity stress responsive genes have been reported
to exhibit reduced oxidative damage through modulation in the activity of antioxi-
dant enzymes (SOD and CAT), accumulation of amino acid (proline and valine) and
organic acids (glyceric acid, phosphoenolpyruvic acid and ascorbic acid), and
secondary metabolites (Wang et al. 2021). Besides the modulations in the antioxi-
dant machinery, osmolyte accumulation, and ion compartmentalization, salinity
stress triggers significant alteration in the phytohormones metabolism and hence
their altered accumulation (Arif et al. 2020). It has been reported that significant
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enhancement in the synthesis of ABA as increase in ethylene has also been reported
(Nazar et al. 2014). Salinity-mediated modulation in polyamine metabolizing
enzymes has been reported (Ahanger et al. 2019) resulting in significant modulation
in their accumulation (Roychoudhury et al. 2011); hence, growth modulations are
evident. Salinity altered salicylic acid in glycophyte Solanum lycopersicum and the
wild-related halophyte Solanum chilense (Gharbi et al. 2016). On the other hand,
phytohormones have been shown to improve salinity stress tolerance significantly,
but only the optimal concentration can be beneficial. There have been considerable
reports demonstrating the alteration in the content of ascorbic acid in plants exposed
to salinity stress. For example, salinity exposed Solanum lycopersicum (Ahmad et al.
2018) and cherry tomato (Abdelgawad et al. 2019) exhibited decline in ascorbic acid
content, whereas maize (AbdElgawad et al. 2016), Limonium stocksii (Hameed et al.
2015), wheat (Ahanger et al. 2017), and Hordeum vulgare L (Hassan et al. 2021)
exhibited increase. Reports showing the essential role of ascorbic acid in protection
of plant growth and yield performance are available, and it has been shown that
exogenous application of ascorbic acid can be an active strategy to mitigate the
salinity-induced damage. Recently, Hassan et al. (2021) have demonstrated a signif-
icant beneficial role of exogenously applied ascorbic acid in improving the salinity
stress tolerance in Hordeum vulgare through modulation in the ion uptake, antioxi-
dant metabolism, osmolyte accumulation, and expression of stress responsive genes.
These modulations by ascorbic acid treatment alleviated the decline in photosynthe-
sis by mediating reduced accumulation of toxic ROS. Pretreatment of Vicia faba
with ascorbic acid improves salinity by increasing the synthesis of carbohydrates and
proteins reflecting in growth improvement (Mohsen et al. 2013). Mittal et al. (2018)
have reported increased protein, phenol content, and total antioxidant activity in
Brassica rapa pretreated with ascorbic acid. Ascorbic acid improves nitrate reduc-
tase activity and antioxidant enzyme activity in salinity stressed canola with con-
comitant increase in fatty acid content (Bybordi 2012). Increased growth and
biomass accumulation in Limonium stocksii due to ascorbic acid application has
been attributed to increased activities of superoxide dismutase, catalase, ascorbate
peroxide, and glutathione reductase and the accumulation of proline and total soluble
sugars resulting in maintenance of lesser ROS levels and higher tissue osmolarity
(Hameed et al. 2015). Saccharum spp. exposed to salinity stress were shown to
exhibit better salinity tolerance due to the upregulation of superoxide dismutase and
peroxidase activity and the accumulation of proline due to ascorbic acid treatment,
thereby resulting in increased growth and biomass production (Ejaz et al. 2012).
Singh and Sengar (2019) have demonstrated significant growth enhancement and
salinity tolerance in in-vitro grown Saccharum officinarum due to ascorbic acid-
induced enhancement in the activity of antioxidant enzymes (catalase and peroxi-
dase). Exogenous application of ascorbic acid potentially reduces the ROS accumu-
lation, and the endogenously existing factors can significantly contribute to
maintenance of ascorbic acid content; for example, increased expression of ABI4
gene has been reported to lessen ascorbic acid content by affecting the VTC2
expression and hence increasing salt sensitivity (Kakan et al. 2021), and such
regulatory interaction has also been confirmed by others as well (Luo et al. 2021).
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The involvement of transcription factors in ascorbic acid content and the stress
tolerance has been reported. Ethylene responsive factor (ERF98) imparts salinity
tolerance by increasing ascorbic acid content through activation of the genes
regulating the D-mannose/L-galactose pathway and the myo-inositol pathway gene
MIOX4, as well as of AsA turnover genes (Zhang et al. 2012). Exogenous ascorbic
acid protects photosynthesis and growth under salinity stress by upregulating anti-
oxidant enzyme activity and endogenous ascorbic acid content (Ekmekçi and
Karaman 2012). Applied ascorbic acid alleviates the detrimental effects of salinity
by maintaining higher K/Na ratio and proline accumulation thereby contributing to
maintenance of tissue water content with concomitant reduction in electrolyte
leakage (Aliniaeifard et al. 2016). Ascorbic acid application can potentially mitigate
the damaging effects of salinity through improved physiological and biochemical
attributes contributing to enhanced yield attributes (Ishaq et al. 2021a, b). Under
salinity stress, ascorbic acid application enhances germination, fresh and dry weight,
and reduces the oxidative damage by upregulating antioxidants system with con-
comitant increase in amylase and protease activities which was not consistent with
tie duration (Chen et al. 2021). Genetic and functional analysis studies of GDP-D-
mannose pyrophosphorylase in Glycine max have revealed its key role in plant
development and stress tolerance, and higher transcript levels were found in were
found in leaf than other tissues, besides its over-expression in Arabidopsis and
soybean increased salinity stress tolerance via increased ascorbic acid synthesis
resulting in significant decline in superoxide anion accumulation and hence lipid
peroxidation (Xue et al. 2018). It should be mentioned here that the modulations in
gene expression, biochemistry, and physiology of plants due to exogenous applica-
tion of ascorbic acid are largely unknown therefore further studies are required to
unravel the more detailed mechanisms.

12.4 Ascorbic Acid and Flooding Stress

Soil flooding is another factor that significantly affects the growth and plant func-
tioning. Flooding creates complex stress which is also known as submergence or
logging. Evapotranspiration and precipitation directly determines the distribution
pattern of plants all over the world (Panda and Barik 2021). Besides this, the rainfall
and level of groundwater table has considerable impact on maintenance of aquatic
ecosystems during dry periods and also affecting the physiological characteristics of
plants to altered water availability (Katerova et al. 2021). Floods are responsible for
significant damage to crop yield of major crops like rice, maize, sorghum, sugarcane,
etc. (Panda and Barik 2021). Flooding can be considered as waterlogging if water is
superficial, and when entire plant is covered by water, it is considered as submer-
gence (Panda and Barik 2021). Continuous submergence restricts the oxygen move-
ment thereby leading to hypoxia. Flooding affects germination, growth, and yield
significantly (Xiao et al. 2020). Reduced growth and yield under flooding can be
attributed to greater accumulation of ROS and hence triggering the cell damage
(Katerova et al. 2021). Synthesis of ATP and its management, metabolism of starch,
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ROS production and scavenging, element uptake and assimilation, and redox
homeostasis are affected by flooding stress (Zhou et al. 2020). Changes in photo-
synthesis, respiration, architecture, and the phytohormones signaling are triggered
due to flooding (Zhou et al. 2020). Plants tend to modulate the tolerance mechanisms
for protecting the major cellular pathways like photosynthesis from logging-induced
damage (Katerova et al. 2021).

The alteration in the synthesis of endogenous ascorbic acid and its role in
alleviation of flooding-induced growth restriction is less researched area. Exogenous
application of ascorbic acid to Vigna angularis has been reported to reduce the
logging-induced decline in growth by declining lipid peroxidation and elevating
levels of jasmonic acid (Ullah et al. 2017). Potential to delay the apparition of
oxidative damage under flooding stress has been reported to show correlation with
the antioxidant functioning, i.e., the activity of antioxidant enzymes and the accu-
mulation of non-enzymatic antioxidants including ascorbic acid (Arbona et al.
2008). It should be mentioned here that there are very rare reports on discussing
the role of ascorbic acid in flooding tolerance and the influence of flooding on the
endogenous ascorbic concentration of ascorbic acid.

12.5 Ascorbic Acid and UV Stress

Ultraviolet radiations severely influence the normal plant metabolism and growth
restricting the yield potential of crop plants (Valenta et al. 2020). UV radiations are
harmful to living organisms causing damage to key macromolecules like
membranes, proteins, lipids, and DNA. Due to damage to the ozone, the UV
radiations enter directly to the atmosphere (Hollosy 2002). Plants utilize sun light
for photosynthesis and cannot avoid the exposure to UV radiations due to their
sessile nature (Hollosy 2002). Reduced growth due to UV exposures is related to
decline in chlorophyll and protein content (Salama et al. 2011). Growth decline
under UV exposure results from the declined photosynthesis. The sites of UV
radiation damage within the photosynthetic apparatus include oxygen-evolving
complex, D1/D2 reaction center, and the donor and acceptor sides of PSII. In
addition to this, the light harvesting complex II is inactivated, and expression of
genes coding for PSII proteins is also affected (Khudyakova et al. 2019). The UV-B
radiation stress has been reported to affect primarily the Mn cluster of water
oxidation complex, whereas other sites including D1, D2, cytochrome, and quinone
molecules are the subsequent targets. Besides this decline in Rubisco, chlorophyll,
stomatal conductance, photosynthesis, maxima quantum efficiency, effective effi-
ciency of PSII, and formation of necrotic spots on leaves altering their morphology
are common effects (Mariz-Ponte et al. 2021). The photosynthetic damage due to
UV radiations is also attributed to increased ROS accumulation (Liu et al. 2018).
Radiation stress declines germination and growth significantly as it has been
reported in Triticum aestivum, Helianthus annuus, Glycine max, and Pinus
maximartinezii reflecting as altered length of radicle and plumule (Pournavab et al.
2019). Exposure to UV radiations reduces photosynthesis, ammonium uptake, and
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nitrated reductase activity inGracilaria lemaneiformis (Xu and Gao 2012) while UV
accumulation of absorbing compounds increased and the accumulation of these
compounds have significant correlation with NADP malic enzyme (Xu and Gao
2012). Exposure to UV radiations reduces reproduction but enhances the accumula-
tion of phenolics (Valle et al. 2020). The influence of UV radiations shows rather
varied effects on the activity of nitrate reductase and can improve its activity under
nutrient deficient conditions (Krywult et al. 2013), and this is believed to be due to
the presence of specific loci that are responsive to radiations (Morrison et al. 2010).
Treatment of UV-B radiation decreases the oxygen evolution rate, sugar content, and
nitrate reductase activity but showed no effect on the chloroplast ultrastructure and
plant weight (Quaggiottia et al. 2004). Cotton treatment of UV-B or UV-A hampers
the functioning of antioxidant system by declining the synthesis of ascorbic acid,
thereby negatively affecting the growth (Dehariya et al. 2011). However, Li et al.
(2017) have observed contrasting response to UV-C exposure in terms of ascorbic
acid accumulation in subtropical fruits including litchi, longan, and rambutan, with
litchi exhibiting increased ascorbic acid content while longan and rambutan
exhibiting decline, thereby having the similar impact on the radical scavenging
activity measured as DPPH and ABTS activity. Therefore, it is evident that the
plants show contrasting response to UV radiations, therefore knowing the exact
mechanisms involved need to be unraveled. Research studies discussing the role of
ascorbic acid treatment in mitigation of UV stress-induced damage in plants are not
available.

12.6 Heavy Metals and Ascorbic Acid

Heavy metal(loid)s are the nonessential metal ions that have been reported to
influence the plant growth negatively. Heavy metals include the metals that have a
density greater than 5 g/cm3. Nearly 53 heavy metals have been identified, and
among these, seventeen (17) are available for living cells based on their solubility
and are essential for organisms as well as the ecosystem (Anjum et al. 2014). At
optimal concentrations, the metal ions including Fe, Mn, and Mo are essential
micronutrients whereas others including Ni, Cu, Zn, V, Co, Cr, and W are trace
elements, however, at greater concentrations, they prove toxic for plant growth
(Angulo-Bejarano et al. 2021). Metals including Cd, As, Pb, Hg, Ag, U, etc. have
been reported to interrupt the normal growth and metabolism of plants through their
toxic and damaging effects (Angulo-Bejarano et al. 2021). In present times, heavy
metal pollution is increasing all over the world and is considered as one of the key
factors for loss of agricultural productivity (Anjum et al. 2014). Heavy metals are
mainly released from the industries as well as the bad agricultural activities and
vehicular activities. The presence of heavy metals in the soil solution influences
plant growth, energy synthesis mechanisms, and trigger senescence (Zu et al. 2016).
Heavy metals adversely affect root growth, absorption, transport, and assimilation of
key essential mineral ions and enzyme functioning, thereby hampering the normal
metabolism and hence significant decline in growth and reproduction follows
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(Ahmad et al. 2010, 2021). Reduction in chlorophyll synthesis, stomatal and
non-stomatal attributes of photosynthesis, Rubisco synthesis, and the alteration of
the redox components are evident effects of heavy metal stress (Ahanger et al.
2020a). Among the other common effects of heavy metals are included: reduced
growth and yield production, yellowing of leaves, hampered absorption, and assim-
ilation of mineral elements leading to reduction in photosynthesis and excessive
ROS generation, causing loss of membrane structure and function and oxidation of
proteins and lipids (Hameed et al. 2016). Heavy metals induce ROS generation by
stimulating the activity of NADPH oxidases, replacing cations from binding sites of
enzymes leading to enzyme activity inhibition by binding with the thiol (-SH) groups
(Shahid et al. 2014). The toxicity, response, and tolerance to heavy metals vary with
the plant species and the cultivars (Ahmad et al. 2021). Like other stresses, heavy
metal tolerance is also a complex event that is precisely regulated at molecular,
biochemical, and physiological levels (Ahmad et al. 2010). Therefore, coordination
among the key complex physiological and biochemical processes regulated by the
modulations in the gene expression and alterations in the metabolome is key to elicit
a proper stress signal and hence the tolerance (Ahanger et al. 2020b). Heavy metals
plant performance through their impact at different structural and functional levels.
Reduction in germination, shoot and root elongation under heavy metal stress can be
majority due to impaired cellular division. Reduced germination, shoot, and root
growth in terms of length and weight due to heavy metals has been reported by
several workers (Yao et al. 2021). Root becomes stubby, stunted, and brittle with
apices swollen and damaged. Heavy metals reduce the cell wall elasticity and
therefore get easily affected by the mechanical stress (Gall et al. 2015). The interac-
tion of heavy metals with the plant constituents intensifies the effects of metals.
Ahmad et al. (2018) have demonstrated significant decline in growth parameters,
photosynthesis, enzyme activity, and mineral uptake resulting in oxidative damage
to membranes due to mercury stress. Mercury stress impedes nitrogen and phospho-
rous mobilization in spinach (Gothberg et al. 2004). Mercury restricts growth,
photosynthesis, osmolyte accumulation, antioxidant metabolism, and functioning
of glyoxylase system thereby inducing oxidative stress (Ahmad et al. 2021). Per
et al. (2016) have observed significant decline in growth and phytocystatin activity
in mustard cultivars due to cadmium stress. Arsenic stress imparts damaging effects
on the growth and metabolism of plants by altering the key metabolic pathways
including mineral uptake and assimilation, photosynthesis, respiration, enzyme
functioning, and metabolite synthesis (Ahmad et al. 2010). Further the oxidative
damage resulting from excess accumulation of ROS in addition of the translocation
factor of particular heavy metal as well as the shoot and root tolerance index
determine the toxicity of heavy metals in plants (Ahmad et al. 2010). Among the
key determinants of phytoremediation potential and hence the heavy metal tolerance
are bioconcentration factor, bioaccumulation coefficient, and translocation factor
(Amin et al. 2018).

Modulations in the endogenous concentration of ascorbic acid due to heavy
metals have been reported to affect the tolerance potential of plants significantly.
The increased heavy metal sensitivity in ascorbic acid-deficient plants is notably due
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to alterations in the redox homeostasis triggering hindrances in normal metabolism
(Bielen et al. 2013). As an active component of ascorbate-glutathione cycle, ascorbic
acid regulates growth directly or indirectly by scavenging ROS, and the entire redox
system together with enzymes like ascorbate peroxidase, monodehydroascorbate
reductase, dehydroascorbate reductase, and glutathione reductase efficiently protect
plants against heavy metal stress-mediated damage (Ahmad et al. 2021). The
ascorbate-glutathione cycle functioning has been considered as one of the key
contributors for the maintenance of ascorbic acid content besides the identified
biosynthetic pathways (Ishikawa and Shigeoka 2008). In lead-stressed wheat,
Alamri et al. (2018) have reported significant alleviation of oxidative damage,
nitrogen, and sulphur assimilation through upregulated antioxidant metabolism
and mineral ion uptake due to exogenous ascorbic acid treatment. Further they
have attributed ascorbic acid-mediated growth enhancement to increased chloro-
phyll synthesis, Rubisco activity, RWC, and N, P, K, Mg, and Ca. Exogenous
ascorbic acid alleviated copper stress-induced growth decline in wheat by
modulating the protein, carbohydrate, proline, cellulose, lignin, and the content of
lipids and phospholipids (Al-Hakimi and Hamada 2011). Increased accumulation of
ascorbic acid is due to trehalose application contributed to copper stress tolerance by
maintenance of redox homeostasis (Mostofa et al. 2015). Research reports have
shown that plants exhibiting enhanced expression of ascorbic biosynthesis show
greater stress tolerance. Bu et al. (2016) have reported that over-expression of
AtOxR improves metal stress tolerance in Arabidopsis through increased accumula-
tion of ascorbic acid. However, the influence of ascorbic acid on the metal ion
transporters is largely unknown, and further research in this direction can provide
further understanding about the actual mechanisms.

12.7 Ascorbic Acid and Temperature Stress

Temperature extremes are also key environmental factors influencing growth and
development of plants and their productivity. High as well as low temperatures
impart decline in germination, cell proliferation, enzyme functioning, photosynthe-
sis, and mineral assimilation (Huang et al. 2016). Global climate change intensifies
the damaging effects by imparting sudden changes in variations in temperature
regimes. Alterations in optimal temperatures results in considerable damage in
productivity (Zhang et al. 2020a, b). By affecting the metabolic pathways like
respiration and photosynthesis, temperature stress shortens normal life cycle and
hence restricts the plant productivity (Barnabás et al. 2008). Early obvious
alterations induced by temperature fluctuations include hampered chloroplast protein
stability and the enzyme activity (Zhang et al. 2020a, b) and reduced import of small
subunit of Rubisco into plastids with significant change in electron transport and
chlorophyll fluorescence (Hu et al. 2020). Changes in cellular differentiation, elon-
gation, and proliferation under temperature stress result due to the damage to cell
membranes and microtubule organization (Koutalianou et al. 2016). Among the key
primary targets of high temperature stress include the chloroplast stroma and
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thylakoid membranes, thereby inducing significant decline in carbon flux (Wise
et al. 2004). Photosynthetic enzymes including those of C3 or C4 cycle are very much
sensitive to temperature stresses (Song et al. 2014). Proteomic studies have shown
considerable changes in photosynthetic and carbon metabolism proteins induced by
low temperature stress, and acclimation is related to energy dissipation in
photosystems in sensitive plants, while as an electron sink, the enhanced photosyn-
thetic carbon, assimilation can be a key factor for imparting tolerance in tolerant
plants. Besides the alterations of the thylakoid membranes, the accumulation of
starch granules can be also seen during cold stress (Calzadilla et al. 2019). Low
temperature induced decline in photosynthesis, stomatal conductance, and relative
water content and contribute maximally to growth decline in Brassica oleracea
genotypes (Rodríguez et al. 2015). Temperature stress-mediated increase in ROS
triggers chlorophyll decline and photoinhibition, thereby declining the carbon fixa-
tion rate. Besides this, decline in phenolic contents under temperature stress declines
the antioxidant potential which can also negatively influence the growth (Soengas
et al. 2018). Like other stresses, temperature extremes also induce the increased
accumulation of toxic ROS, thereby imparting significant damage to membranes,
proteins, lipids, nucleic acids, etc., hence leading to altered metabolism and plant
performance (Munjal 2019). Excess ROS generated due to temperature stress induce
oxidative damage to membranes affecting their fluidity and ion transport properties
besides influencing the enzyme functioning, protein synthesis, and also affects the
protein cross linking (Munjal 2019). ROS production under heat stress can integrate
the signaling mechanisms for triggering downstream mechanisms for improving the
temperature stress tolerance (Medina et al. 2021).

Tolerance to temperature extremes also depends on the efficient working of
pathways responsible for synthesis of key molecules having significant role in the
alleviation of damaging effects of extreme temperatures (Ljubej et al. 2021). The
upregulation of antioxidant system, accumulation of proline, sugars, free amino
acids, phenols, flavonoids, and the expression of temperature responsive genes
significantly determine the tolerance potential of plant to temperature fluctuations
(Leuendorf et al. 2020; Ljubej et al. 2021). Priming with ascorbic acid has been
reported to affectively ameliorate the chilling-induced oxidative stress and growth
decline in tomato through modulation in the accumulation of proline, endogenous
ascorbic acid content, mineral uptake, and the expression of catalase HSP70, HSP80,
and HSP90, reflecting in increased antioxidant potential and reduced oxidative stress
capacity and total oxidative capacity. Temperature stress (low or high) declines the
content of ascorbic acid (Elkelish et al. 2020). Zhang et al. (2018) have shown that
L-galactono-1, 4-lactone dehydrogenase (GLDH) over-expressing and mutant plants
exhibiting increased and deficient ascorbic acid synthesis have increased and
decreased photosynthesis respectively which was attributed to ascorbic acid-
mediated modulations in the chlorophyll, soluble sugars, Rubisco subunits, and
ROS production. Ascorbic acid has a key role in thermal energy dissipation in plants
to protect photosynthesis (Bilska et al. 2019). Temperature stress-induced alterations
in the endogenous ascorbic acid content are related to the effect on the expression
level of genes controlling its synthesis and recycling (Xiang et al. 2020). Foliar
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application of ascorbic acid to strawberry alleviated the temperature stress-induced
growth decline by enhancing chlorophyll content, relative water content, cell turgid-
ity, endogenous ascorbic acid, and the peroxides isozyme levels (Ergin et al. 2014).
Transgenic plants exhibiting increased expression of dehydroascorbate reductase
showed greater tolerance to low temperature by maintaining greater ascorbic acid
content, and it has been consolidated that transcriptional regulation mediates the
stress tolerance. Cold tolerance in plants reflected as reduced oxidative damage due
to upregulated functioning of ascorbate-glutathione cycle results from the mainte-
nance of higher concentrations of redox components (Xing et al. 2019). Reports
discussing the role of exogenous ascorbic acid application on modulation of toler-
ance mechanisms against temperature variations are scanty; therefore, it is impera-
tive to focus on these areas to further understand the mechanisms and underpin the
key crosstalk mechanisms. However, research studies have shown that
overexpression of enzyme components or other intermediate components
contributing to ascorbic acid synthesis or maintenance of its cellular concentration
contribute to temperature tolerance. Overexpression of ascorbate peroxides enhances
tolerance to heat and chilling in tomato (Wang et al. 2005, 2006). Overexpression of
GDP-mannose pyrophosphorylase in tobacco enhances the synthesis of ascorbic
acid imparting a significant positive effect on the antioxidant enzyme functioning,
thereby preventing ROS accumulation and hence the oxidative effects (Wang et al.
2011). Increasing expression of ascorbate peroxidase imparts chilling tolerance to
rice (Sato et al. 2011) and has been reported to protect the photoinhibition in
transgenic tobacco by improving PSII activity by lessening ROS accumulation and
lipid peroxidation under chilling and high temperature stress (Sun et al. 2010). The
protective role of ascorbic acid against heat stress-induced decline in photosynthesis
has been ascribed to its role as alternative PSII electron donor (Tóth et al. 2011).
Therefore, it can be concluded that ascorbic acid through its active involvement in
other key protective mechanisms assists in preventing the damage to photosynthetic
apparatus and plant metabolism significantly.

12.8 Conclusion and Future Prospects

Abiotic stresses prove to be damaging factors for the growth and development of
major crop plants. Growth and metabolic alterations posed due to stress factors
results from the oxidative damage, impeded mineral assimilation and photosynthe-
sis, and increased programmed cell death. Molecular mechanisms controlling the
physiological and biochemical pathways at a whole-plant level are triggered in
response to stress to cope up with the stress-induced damage. Modulation of the
tolerance mechanisms for alleviating the stress effect have been reported widely due
to ascorbic acid treatment (Fig. 12.2). Such beneficial effects have been confirmed
through transgenic research. Identification of key target genes for improving the
endogenous ascorbic acid levels for improved stress tolerance needs further research.
In addition to this, the downstream signaling targets of ascorbic acid-medicated
stress tolerance also need further investigation.
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CRISPR/Cas-Mediated Genome Editing
Technologies in Plants for Stress Resilience 13
Deepu Pandita

Abstract

Climate change can affect agriculture through various abiotic (temperature:
low/high, salinity, heavy metals, water submergence, and water deficiency) and
biotic (bacterial, viral, fungal) stress factors. Climate change leads to above 50%
of worldwide losses in the yield of major crops per year. Nutrition demand is
going to nearly double by the 2050. Recent genome editing approach of clustered
regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated
protein (Cas) system is a leading, powerful, versatile, ground-breaking, and
smart plant genome editing tool with greater efficiency for designing of stress
resilient crops. CRISPR/Cas can cause activation and interference of genes
related to stress regulatory networks for advanced tolerance to stress scenarios.

Keywords

CRISPR/Cas system · Abiotic and biotic stress · Stress resilient crops · Genetic
engineering · Genome editing

13.1 Introduction

Climate change is affecting agriculture in inestimable ways and threatens food
security by causing more than 50% of worldwide losses in the yields of major
crops every year. Food demand at worldwide levels is going to nearly double by
the 2050s (Tilman et al. 2011). In anticipation of Gregory Mendel’s breakthrough
discoveries, man-mediated natural selection of plants was a time-consuming and
labor-intensive process and achieved plant reproduction goals causing damage to
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gene pool diversity including genes related to abiotic (drought, salinity, cold, heat,
submergence, etc.) and biotic (pathogens) stress tolerance and resistance (Somssich
2019). Time (6–7 years) consuming due to intensive backcrossing and backbreaking
conventional crop breeding (Fig. 13.1) can improve crops, but it is not prolific in
climate resilience due to complex inheritance and high genotype � environmental
interactions and transfers accessory genes along with Gene of Interest (GOI) into
transgenic plant (Bhat et al. 2016). The genetically engineered plants can be divided
into three generations. The first generation of genetically engineered plants was
targeted towards traits of tolerance/resistance towards abiotic stress or herbicides.
The second generation of genetically engineered plants highlighted more on market-
able profits, for instance, shelf life or nutritive value. Third generation of genetically
engineered plants include functional foods boosted with pharmacological products
(Fernandez-Cornejo et al. 2014). Genetic engineering via RNA interference (RNAi)
and omics approaches of transgenic breeding are suitable strategies to improve stress
tolerance due to direct relationship of genotype with the phenotype studies, transfers
only gene of interest (GOI) into transgenic plant (Fig. 13.1) and to avoid decline in
crop yields caused by climate change during the twenty-first century (Tester and
Langridge 2010; Verma and Deepti 2016; Hyun 2020). Use of genetically modified
(GM) crops and transgenic breeding is limited because of public concerns about their
potential benefits, risks and safety, and efficacy of genetically modified organisms
(GMOs) (Fernandez-Cornejo et al. 2014; Prado et al. 2014; Raman 2017). Recent
genome editing technique of clustered regularly interspaced short palindromic
repeats (CRISPR)/CRISPR-associated protein (Cas) system has attracted attention
as a potent genome editing tool that can efficiently generate hereditary mutations by
targeting genes in a site-specific manner (Fig. 13.1) and produce high yielding
climate-resilient crops and to understand the molecular mechanisms of stress toler-
ance in crop plants (Hyun 2020). CRISPR/Cas system finds use in both the induction
(CRISPR activation) and repression (CRISPR interference) of genes. Consequently,
CRISPR/Cas can activate tolerance (T) genes besides suppressing sensitivity
(S) genes (Zafar et al. 2020a). CRISPRa-system-based OsNCEB3 overexpression
in Oryza sativa enhanced accumulation of abscisic acid and tolerance to salt and
water deficiency stress (Huang et al. 2018). The types, modes of action, and
biological mechanisms of various CRISPR/Cas systems have been elucidated in
our several chapters (Pandita et al. 2021; Pandita 2021a, b, c).

13.2 CRISPR/Cas-Mediated Genome Editing Technologies
in Plants for Abiotic Stress Resilience

Plants are domineering source of food, vegetables, fruits, and medicines for human
consumption (Pandita 2020a, b; Pandita et al. 2020; Pandita and Pandita 2020, 2021;
Zehra et al. 2020). Heat, salinity, heavy metals, and water deficiency abiotic stresses
(Fig. 13.2) stop growth of plants and source overwhelming yield damages (Pandita
2019; Pandita and Wani 2019). Plant sensitivity genes (Se genes) boost damaging
consequences of abiotic stresses. Genome editing approach of CRISPR/Cas system
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advances tolerance to abiotic stress in various species of grains, vegetable, fruits, and
crop plants by interference of Se genes (Ahmad et al. 2021).

13.2.1 Drought Stress

Drought and salt tolerance (DST) gene was modified by CRISPR/Cas9, and
366 base pairs were removed from the coding sequence in indica mega rice
cv. MTU1010. MTU1010 dst mutants generated showed resistance/tolerance to
water deficiency, osmotic, and salt stresses because of decrease in density of stomata
and expanded surface area of leaves for enhanced retention of water and light-use
efficiency (Santosh Kumar et al. 2020). CRISPR/Cas-edited SAPK2 knockdown
rice mutants were susceptible to water deficiency (Lou et al. 2017). CRISPR/Cas-
modified drought-responsive OsDREB and salt-sensitive OsERF922 genes (Liu
et al. 2012; Hoang et al. 2016). Editing of dehydration responsive element binding

Fig. 13.2 Different stresses which affect plants
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protein 2 (TaDREB2) and ethylene responsive factor 3 (TaERF3) enhanced toler-
ance to water deficiency in wheat (Kim et al. 2018). CRISPR/Cas editing system
produced ARGOS8-v1 and ARGOS8-v2 lines with remarkable increase in yield of
grains in ARGOS8 variants in Zea mays under drought and boosted tolerance to
water deficiency (Shi et al. 2017). CRISPR/Cas9-edited transcription factor
ZmWRKY40 conferred Arabidopsis tolerant to drought (Wang et al. 2018a). In
tomato, CRISPR/Cas9-modified slnpr1 developed tolerance to drought conditions
(Li et al. 2019a). CRISPR/Cas knockout lines in tomato produced by TEY
(Thr-GluThy) motifs in mitogen-activated protein kinases 3 (SlMAPK3) imparted
tolerance to water deficiency (Wang et al. 2017b). CRISPR/Cas9 mutation OST2
gene altered stomatal closing pattern and increased tolerance to water deficiency
stress in Arabidopsis (Osakabe et al. 2016).

13.2.2 Heat Stress

Tomato has efficient transformation system for achieving improvements in fruit
quality (Pan et al. 2016). The CRISPR/Cas-mediated modification of mitogen-
activated protein kinase 3 (SlMAPK3) and sl Agamous-Like 6 (SlAGL6) enhances
sensitivity in Solanum lycopersicum L. to high temperature stress and develops heat-
tolerant tomato. The SlAGL6 gene editing resulted in generation of parthenocarpic
fruits. ADP-ribosylation factor 4 (SlARF4) enhances salt sensitivity. CRISPR/Cas-
modified plants can tolerate various stresses (Klap et al. 2017; Bouzroud et al. 2020).
CRISPR-bzr1-mutant with reduced production of H2O2 and heat tolerance and
BZR1-overexpressing lines of tomato with enhanced production of H2O2 and
retrieval of thermo tolerance prove role of BZR1 in thermo tolerance through control
of homologs of Feronia (Fer) (Yin et al. 2018). CRISPR-based heat-stress sensitive
albino 1 (HSA1) deletion mutants show higher sensitivity to heat (Qiu et al. 2018).
The CRISPR/Cas-based modification of thermosensitive genic male sterile
5 (TMS5) develops thermosensitive male sterile Zea mays (Li et al. 2017).

13.2.3 Salt Stress

In rice, OsBBS1 gene has a role towards salt sensitivity, and OsMIR528 gene acts as
a positive regulator of salinity (Lan et al. 2019; Ganie et al. 2021; Sun et al. 2019).
OsNAC041 and OsRR22 genes also enhance tolerance to salinity in Oryza sativa
(Ganie et al. 2021; Lan et al. 2019; Sun et al. 2019). CRISPR/Cas-mediated
knockdown of SnRK2, SAPK-1, and SAPK-2 genes confer resistance to salinity
in Oryza sativa (Lou et al. 2017). SlMAP3 knockout in tomato decreases SlLOX,
SlGST, and SlDREB expression and induces resistance to salinity (Wang et al.
2017b).

13 CRISPR/Cas-Mediated Genome Editing Technologies in Plants for Stress Resilience 289



13.2.4 Cold Stress

In rice, B-amylase (BMY) genes control degradation of starch and maltose accumu-
lation to provide protection against cold. MYB transcription factor (OsMYB30) and
OsJAZ9 bind to promoter regions of B-amylase gene. CRISPR/Cas-edited
OsMYB30 produced tolerance to cold in Oryza sativa lines (Zeng et al. 2020b).
The CRISPR/Cas editing developed Ospin5b, gs3, and Osmyb30 mutants (Zeng
et al. 2020b). Editing of annexin (OsANN3) conferred cold tolerance to japonica rice
cultivar (Shen et al. 2017). The CRISPR/Cas9 editing of ABA activated protein
kinase 2 (SAPK2) made rice resistant to cold stress (Lou et al. 2017). The CRISPR/
Cas-generated cold-tolerant cbf1 mutants’ accumulated higher amounts of indole
acetic acid (IAA) and hydrogen peroxide in chilling sensitive plants of tomato
(Li et al. 2018).

13.2.5 Herbicide Stress

Herbicide-tolerant crops are beneficial for contemporary agriculture. CRISPR/Cas9
and prime editing of acetolactate synthase 1 (ZmALS1) and acetolactate synthase
2 (ZmALS2) boosted tolerance to chlorsulfuron herbicide in Zea mays (Nuccio et al.
2021; Svitashev et al. 2015). Fusion of Cas9 and VirD2 enables cleavage of OsALS
and synchronized HDR-mediated OsALS gene repair which lead to herbicide
tolerance in Oryza sativa (Ali et al. 2020). In rice, acetolactate synthase (OsALS)
precise nicking and HDR-mediated repair using prime editing has also improved
tolerance to herbicides (Butt et al. 2020). CRISPR/Cas9 (nCas9)-generated
mutations or nuclease-deficient Cas9 (dCas9) fused to Petromyzon marinus cytidine
deaminase (PmCDA1) developed rice mutant lines showing herbicide tolerance
(Shimatani et al. 2017). CRISPR-based editing of ALS1 improved herbicide toler-
ance in plants of Brassica napus, Solanum lycopersicum, and Oryza sativa (Wang
et al. 2021). CRISPR/Cas alongside single-stranded oligonucleotides induces toler-
ance to herbicides in Linum usitatissimum (Sauer et al. 2016).

13.2.6 Water Submergence Stress

Natural floods also set limitations on yield of crops (Voesenek and Bailey-Serres
2015). Introgression of submergence 1 A-1 (SUB1A-1) in high-yielding rice
varieties through marker-assisted breeding produced varieties tolerant to water
submergence (Dar et al. 2018).

13.2.7 Heavy Metal Stress

Heavy metals (Khan et al. 2020) pose serious hazards to plants. Metals accumulate
inside the grains and indirectly pose danger to human health. Plants can grow on
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contaminated soils by CRISPR/Cas-mediated prevention of transporter genes
involved in heavy metal translocation. CRISPR/Cas mutation of natural resistance-
associated macrophage protein 5 (OsNRAMP5) reduced Cd accumulation in Oryza
sativa and enhanced its growth and development (Yang et al. 2019; Khan et al.
2020). CRISPR/Cas9 of Auxin-Regulated Gene Involved in Organ Size
8 (ARGOS8) enhanced drought resistance in Zea mays (Shi et al. 2017). Innumera-
ble examples of CRISPR/Cas-based tolerance to plant abiotic stresses are précised in
Table 13.1.

13.3 CRISPR/Cas-Mediated Genome Editing Technologies
in Plants for Biotic Stress Resilience

Plant pathogens (bacterial, fungal, and viral) (Fig. 13.2) cause various plant diseases
(Taylor et al. 2004) that decrease plant yield. Insect herbivores also decline yield by
directly damaging and by acting as vectors of diseases. The changing climate
undesirably affects plant tolerance to different biotic stresses. Direct crop loss
(20–40%) is because of biotic stresses (Oerke 1994). CRISPR/Cas develops
disease-resistant and insect-resistant plants (Ahmad et al. 2020). Crop protection
can be achieved by introduction of dominant resistance (R) genes by breeding or
transgenics. Susceptibility (Su) genes can be targeted by CRISPR/Cas in plant
genomes. Su genes encode factors useful for infection to pathogens. Su gene
knockout through targeted mutagenesis decrease susceptibility of disease (Ahmad
et al. 2020). Su genes encoding sugar transporters can be targeted to enhance disease
resistance. Bacterial blight is caused by Xanthomonas oryzae pv oryzae. During
infection, transcription activator-like effectors (TALEs) escalate transcription of
OsSWEET11, OsSWEET13, and OsSWEET14. CRISPR/Cas edits connection
between TALEs and SWEET genes by mutation of TALE binding site in promoters
of OsSWEET11, OsSWEET13, and OsSWEET14 (Zhou et al. 2015; Li et al.
2020a, b; Zeng et al. 2020a, b). Rice lines generated have broad-spectrum tolerance
to bacterial blight (Oliva et al. 2019). Rice resistant to blast disease caused by
Magnaporthe oryzae has been generated by knocking out ethylene-responsive factor
(ERF) gene OsERF922 and Pi21 Su genes (Wang et al. 2016; Nawaz et al. 2020).
Resistance to powdery mildew due to Podosphaera xanthii in Triticum was devel-
oped by target of Mildew Locus O (MLO) gene through CRISPR/Cas (Wang et al.
2014). Rice tungro disease is caused by rice tungro spherical virus, and resistance
against this disease is governed by translation initiation factor 4 gamma gene
(eIF4G). Rice tungro disease resistant lines were generated by CRISPR/Cas disrup-
tion eIF4G (Macovei et al. 2018). The resistant lines of Triticum to powdery mildew
were produced by synchronized CRISPR/Cas editing of three mildew resistance
locus (MLO) homologues (Wang et al. 2014; Zhang et al. 2017). Resistant plants
had enhanced yield. Knockout of fungal pathogen genes of ALB1 (ALBINA 1),
RSY1 USTA, and UvSLT2 of rice blast and false smut was generated through
CRISPR/Cas (Foster et al. 2018; Liang et al. 2018). Cas variants of CRISPR/Cas
systems can target viral genomes of both the DNA or RNA nature. The CRISPR/
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Table 13.1 CRISPR/Cas-based designing of abiotic stress-resistant crop plants

Plant species Targeted gene/s Reference/s

Cold abiotic stress tolerance
Oryza sativa IFY1a, TIFY1b Huang et al. (2017)

Oryza sativa OsMYB30 Zeng et al. (2020a, b)

Oryza sativa OsAnn3 Shen et al. (2017); Romero and
Gatica-Arias (2019)

Drought abiotic stress tolerance
Arabidopsis
thaliana

AREB1 A. Roca-Paixão et al. (2019)

Arabidopsis
thaliana

Vacuolar H+pyrophosphatase
(AVP1)

Park et al. (2017)

Arabidopsis
thaliana

OST2 Osakabe et al. (2016)

Arabidopsis
thaliana

miR169a Zhao et al. (2016)

Brassica napus BnaA6.RGA (DELLA Protein) Wu et al. (2020a)

Cicer arietinum Coumarate ligase (4CL) and
Reveille 7 (RVE7)

Badhan et al. (2021)

Oryza sativa OsDST Santosh Kumar et al. (2020)

Oryza sativa OsEBP89 Zhang et al. (2020b)

Oryza sativa OsSAPK2 Lou et al. (2017)

Oryza sativa OsSRL1, OsSRL2 Liao et al. (2019)

Oryza sativa NAC14 Shim et al. (2018)

Oryza sativa DERF1, MSH1, PMS3, MYB5,
EPSPS, SPP

Zhang et al. (2014)

Oryza sativa OsmiR535 Yue et al. (2020)

Solanum
lycopersicum

NPR1 Wang et al. (2015); Li et al. (2019a)

Solanum
lycopersicum

MAPK3 Wang et al. (2017b)

Triticum aestivum DREB2, DREB3, ERF3 Kim et al. (2018)

Zea mays ARGOS8 Shi et al. (2017)

Heat abiotic stress tolerance
Solanum
lycopersicum

SlMAPK3 Yu et al. (2019)

Solanum
lycopersicum

SlAGL6 Klap et al. (2017)

Heavy metal stress tolerance
Oryza sativa OsNramp5 Tang et al. (2017)

Oryza sativa OsLCT1, OsNramp5 Songmei et al. (2019)

Oryza sativa OsNramp5 Yang et al. (2019)

Herbicide abiotic stress tolerance
Brassica napus BnALS1 Wu et al. (2020b)

Glycine max ALS1 Li et al. (2015)

Linum
usitatissimum

EPSPS Sauer et al. (2016)

(continued)
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Cas-based editing of replication of geminivirus resulted in tolerance against wheat
dwarf virus in Hordeum vulgare (Kis et al. 2019). Multiplex genome editing
enhanced resistance against Sclerotinia sclerotiorum by knockdown of BnWRKY11
(2 copies) and BnWRKY70 (4 copies) in Brassica napus (Sun et al. 2018). CRISPR/
Cas9 altered promoter sequence of canker susceptibility gene CsLOB1 in citrus plant
which leads to tolerance to canker (Jia et al. 2017; Peng et al. 2017). CRISPR/
Cas9-edited SlMlo1 gene in transgene-free tomato known as Tomelo provides
resistance to it from powdery mildew disease (Nekrasov et al. 2017). RNA targeting
CRISPR/LshCas13a interferes with Turnip mosaic virus (TuMV) and mediates
immunity against RNA-based viruses in plants (Aman et al. 2018a, b). Cas13d
system target and interfere TMV, potato virus X (PVX), and TuMV (Mahas et al.
2019) (Table 13.2).

Table 13.1 (continued)

Plant species Targeted gene/s Reference/s

Oryza sativa OsALS Zhang and Gao (2020)

Oryza sativa OsALS (novel allele G628W) Wang et al. (2020)

Oryza sativa OsALS Butt et al. (2020)

Oryza sativa OsALS1 Kuang et al. (2020)

Oryza sativa OsALS Sun et al. (2016)

Solanum
lycopersicum

SlALS Danilo et al. (2019)

Solanum
tuberosum

ALS1 Butler et al. (2016)

Triticum aestivum EPSPS Arndell et al. (2019)

Triticum aestivum MS26, MS45 Svitashev et al. (2015)

Triticum aestivum LIG1 Svitashev et al. (2015)

Zea mays ZmALS1, ZmALS2 Jiang et al. (2020)

Zea mays ZmALS1, ZmALS2 Li et al. (2020a, b)

Zea mays ZmALS2 Svitashev et al. (2015)

Salinity abiotic stress tolerance
Oryza sativa GTγ-2 Liu et al. (2020)

Oryza sativa PQT3 Alfatih et al. (2020)

Oryza sativa BGE3 Yin et al. (2020)

Oryza sativa SPL10 Lan et al. (2019)

Oryza sativa DOF15 Qin et al. (2019)

Oryza sativa OsRR22 Zhang et al. (2019)

Oryza sativa OsDST Santosh Kumar et al. (2020)

Oryza sativa qSOR1 Kitomi et al. (2020)

Oryza sativa OsSAPK2 Lou et al. (2017)

Oryza sativa OsmiR535 Yue et al. (2020)

Oryza sativa PIL14 Mo et al. (2020)

Solanum
lycopersicum

SlARF4 Bouzroud et al. (2020)

Solanum
lycopersicum

GGP1, WUS Li et al. (2018)
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Table 13.2 CRISPR/Cas-based designing of biotic stress-resistant crop plants

Plant species Biotic stress Targeted gene/s Reference/s

Bacterial biotic stress tolerance
Citrus �
paradisi

Citrus canker CsLOB1 Jia et al. (2017)

Malus
domestica

Fire blight disease (caused by
Erwinia amylovora)

DIPM-1,
DIPM-2, and
DIPM-4

Malnoy et al.
(2016)

Oryza sativa Bacterial Leaf Blight Xa13/host S
gene

Li et al. (2020a, b)

Oryza sativa Bacterial Leaf Blight OsSWEET13/
host S gene

Zhou et al. (2015)

Oryza sativa Bacterial Leaf Blight OsSWEET14/
host S gene

Zeng et al.
(2020a, b); Zafar
et al. (2020b)

Solanum
lycopersicum

Bacterial Speck SIDMR6-1/host
S gene

de Toledo
Thomazella et al.
(2016)

Solanum
lycopersicum

Bacterial Speck SlJAZ2/host S
gene

Ortigosa et al.
(2019)

Solanum
lycopersicum

Bacterial Spot SIDMR6-1/host
S gene

Ortigosa et al.
(2019)

Wanjincheng
orange

Citrus canker CsLOB1 Peng et al. (2017)

Fungal biotic stress tolerance
Banana Fusarium wilt caused by Fusarium

oxysporum f. sp. cubense tropical
race 4 (TR4)

RGA2, Ced9 Dale et al. (2017)

Oryza sativa False Smut USTA,
UvSLT2/fungal
gene

Liang et al. (2018)

Oryza sativa Rice blast OsERF922/host
S gene

Wang et al. (2016)

Oryza sativa Rice blast OsPi21/host S
gene

Nawaz et al.
(2020); Li et al.
(2019b, c)

Oryza sativa Rice blast OsALB1,
OsRSY1/fungal
gene

Foster et al. (2018)

Solanum
lycopersicum

Botrytis cinerea SlMYC2/host S
gene

Shu et al. (2020)

Solanum
lycopersicum

Phytophthora blight SIDMR6-1/host
S gene

Ortigosa et al.
(2019)

Solanum
lycopersicum

Powdery mildew SlMlo1/host S
gene

Nekrasov et al.
(2017)

Solanum
lycopersicum

Powdery mildew PMR4/host S
gene

Koseoglou (2017)

Triticum
aestivum

Powdery mildew TaMLO/host S
gene

Wang et al. (2014)

(continued)
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Table 13.2 (continued)

Plant species Biotic stress Targeted gene/s Reference/s

Triticum
aestivum

Powdery mildew TaEDR1/host S
gene

Zhang et al.
(2017)

Vitis vinifera Botrytis cinerea VvWRKY52 Wang et al.
(2017a)

Vitis vinifera Powdery mildew Mlo-7 Malnoy et al.
(2016)

Viral biotic stress tolerance
Arabidopsis
thaliana

Beet severe curly top virus (BSCTV) BSCTV
genome

Ji et al. (2015)

Arabidopsis
thaliana

Turnip mosaic virus Virus RNA
genome

Aman et al.
(2018a, b)

Arabidopsis
thaliana

Turnip mosaic virus EIF4E Pyott et al. (2016)

Banana Endogenous banana streak virus Virus sequences
in plantain
genome

Tripathi et al.
(2019)

Banana Clover yellow vein virus Eif4e1 Bastet et al. (2019)

Cucumis
sativus

RNA viral disease elf4E/host S
gene

Chandrasekaran
et al. (2016)

Glycine max Soybean mosaic virus GmF3H1,
GmF3H2, and
GmFNSII-1

Zhang et al.
(2020a)

Hordeum
vulgare

DNA viral disease MP, CP,
Rep/Rep,
IR/virus
genome

Kis et al. (2019)

Manihot
esculenta

African cassava mosaic virus AC2 and AC3 Mehta et al.
(2019)

Manihot
esculenta

Cassava brown streak disease nCBP-1, nCBP-
2

Gomez et al.
(2019)

Nicotiana
benthamiana

Beet severe curly top virus (BSCTV) BSCTV
genome

Ji et al. (2015)

Nicotiana
benthamiana

Tomato yellow leaf curl virus
resistance

TYLCV
genome

Ali et al. (2015)

Nicotiana
benthamiana

Cotton leaf curl Multan virus Rep and IR Yin et al. (2019)

Nicotiana
benthamiana

Chilli leaf curl virus virus DNA Rep,
IR, and Cp

Roy et al. (2019)

Oryza sativa Rice Tungro disease eIF4G Macovei et al.
(2018)

Solanum
lycopersicum

PVX, TMV, TMV DCL2/virus
genome

Wang et al.
(2018b, c)

Solanum
lycopersicum

Tomato yellow leaf curl virus
(TYLCV)

CP, Rep/virus
genome

Tashkandi et al.
(2018)

Solanum
lycopersicum

Yellow leaf curl virus IR and CP/virus
genome

Faal et al. (2020)

Solanum
lycopersicum

Pepper Mottle virus eIF4E1/host S
gene

Yoon et al. (2020)
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13.4 Conclusion

CRISPR/Cas is a potential and desirable tool for introducing desired traits in
economically important and commercial crop plants with greater efficiency and
specificity and may provide food security in the challenging climate-changing
scenarios. Several research studies discussed above show the success stories of
CRISPR/Cas-mediated tolerance towards single and multiple abiotic and biotic
stress factors. Thus, CRISPR genome editing tools can redesign the future of
agriculture and provide a way forward to designing of climate-resilient smart crops.
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Abstract

Drought is one of the hot topics needing urgent attention in the current era of
climate change. Crop plants are frequently exposed to a range of abiotic and biotic
stresses during the cropping season. Among the various abiotic stresses, drought
stress is a key environmental constrain that has detrimental effect on plant growth
and development. With the emergence of drought, plants give a plethora of
responses for survival resulting in modifying a series of reactions for survival,
resulting in changing physiological, molecular, and biochemical processes.
Drought affects most physiological functions including reducing CO2 assimila-
tion rates and disrupting primary photosynthetic processes and pigments. It also
accelerates reactive oxygen species production, which triggers the formation of
an antioxidative mechanism. The purpose of this chapter is to provide insight on
the effects of drought on plant growth and development, photosynthesis (decrease
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or increase photosynthesis directly influence the amount of assimilate produc-
tion), antioxidative defense mechanism (enzymatic, nonenzymatic antioxidant,
and other protective mechanisms), oxidative stress (elevated the formation of
reactive oxygen species under drought stress), ROS as a signaling molecule,
water relation of the plant (leaf water potential, water use efficiency), and the
development of transgenic drought plants.

Keywords

Antioxidants · Biotic and abiotic stress · Photosynthetic rate · Water use
efficiency · ROS · Osmolytes and drought

Abbreviations

ABA abscisic acid
DNA deoxyribonucleic acid
DREB dehydration-responsive element binding proteins
ERF ethylene-responsive element binding factor
EST expressed sequence tags based markers
H2O2 hydrogen peroxide
HO hydroxyl radical;
O2 reactive singlet oxygen
O2

� superoxide
PETC photosynthetic electron transport chain
PIP protein intrinsic of plasma membrane
ROS reactive oxygen species
TF transcription factors
TPS trehalose 6-phosphate synthase

Introduction

Drought is abiotic stress that significantly impacts plant growth and development,
particularly at the seedling stage. Drought at the seedling stage has been linked to
significant plant mortality events across the world (Carnicer et al. 2011; Martin-
StPaul et al. 2017; Park Williams et al. 2012). Plants can only grow if they have the
optimal combination of environmental variables, such as sunlight, temperature, air
humidity, and water availability. The slight variations in these parameters could
effect on growth and productivity.

Drought stress is a complicated abiotic stress factor that has a significant effect on
plant metabolic activities, growth, and yield (Osakabe et al. 2014) and is implicated
in crop yield reductions of up to 50% (Zlatev and Lidon 2012). Water stress is
characterized by changes in water relations, physiological processes, modifications
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in cellular membranes and ultrastructure of cellular components, and membrane
denaturation (Yordanov et al. 2003). Drought stress affects plants for two main
reasons: (1) a lack of water availability to the roots and (2) excessive transpiration
rates. The most common environments for these constrains are found in arid and
semiarid regions (Rahdari and Hoseini 2012). Plants employ stress avoidance and
stress tolerance mechanisms to cope with low water availability (Lawlor 2013).

Morphophysiological Responses of Plant Against Drought Stress

Drought is a major constraint in crop production and food security in modern
agriculture worldwide. This stress forces the plant to modify its architecture
(morphophysiological changes) and induces internal cellular mechanisms such as
biochemical changes, which ultimately cause low productivity and limit plant
growth and development. Drought stress restricts vegetative and reproductive plant
growth due to loss of turgidity and thus causes adverse effects on yield. Moreover,
the carboxylation efficiency, transpiration rate, water potential of leaves, stomatal
conductance, and net photosynthetic rate also diminish significantly during water
stress conditions (Fahad et al. 2017). The crop plant has acquired a wide range of
modifications and adaptations such as chemical, molecular, and
morphophysiological mechanisms to cope with the drought stress and other multiple
abtiotic stresses. These adaptations enable the plant to survive under harsh
environments and complex conditions of stress.

Generally, geneticists and breeders categorize drought tolerance mechanisms into
four strategies: drought recovery, drought avoidance, drought tolerance, and drought
escape. Drought tolerance and avoidance are the most effective mechanisms to cope
with drought stress (Khan et al. 2018). Drought avoidance is important because it
keeps physiological processes like plant root growth and stomatal regulation during
short-term moderate water deficits. Many quantitative trait loci (QTLs) and genes for
drought avoidance, escape, and tolerance-related phenotypes have been reported
(Martignago et al. 2019). In contrast, severe dehydration may be endured by
changing physiological processes such as osmotic modifications through
osmoprotectants and osmolyte accumulation (Luo 2010). Drought escape refers to
a plant’s capability to modify its life cycle and growth period in order to avoid
seasonal drought stress (Luo 2010; Bhatia et al. 2014). Drought recovery refers to a
plant’s capacity to restart growth performance after experiencing drought stress.
Plants have developed various morphological and physiological approach for deal-
ing with drought stress over time (Fig. 14.1).
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Influence of Plant Growth and Water Relation in Response
to Drought Stress

Drought is the most common stress that plants cope with; most of their yield is lost
due to this stress (Ramegowda and Senthil-Kumar 2015). Drought stress substan-
tially hindered growth parameters, which connected to a simultaneous drop in
photosynthetic pigment concentrations at both mild and severe drought stress. Plants
have less biomass and display less development due to the drought, which has also
reduced photosynthetic efficiency, photosynthetic pigments, and the number of
stomata in Tetraena Mandeville (Khan et al. 2019). Stomatal closure and reduction
in the number of stomata cause a decrease in chlorophyll content, photosynthetic
pigment, and stomatal opening, which also fetch change in the structure of chloro-
phyll (Jabeen and Ahmad 2017). Reduction in plant leaf size is observed as a result
of drought stress which is directly proportional to yield losses (Khan et al. 2019).
Drought stress also causes a reduction in leaf size which also causes a reduction in
chlorophyll and hence causes a reduction in carbon assimilation (Bashir et al. 2020).
Morphological parameters are also adversely affected by drought stress, including
fresh and dry weights, root shoot length, root/shoot ratio and dry matter

Fig. 14.1 Morphophysiological mechanisms to contend with the effects of the drought
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accumulation, leaf thickness, and leaf width and leaf area (Jabeen and Ahmad 2017).
Abscisic acid, methyl jasmonate, and antioxidant system are generated to protect
plants from various kinds of stresses, including drought stress (Saleem et al. 2020).
Drought stress induces the production of ascorbic acid and GSH, which trigger plant
stress tolerance by regulation of ROS homeostasis (Alharby and Fahad 2020).
Osmoprotactants and ascorbate neutralize H2O2 and scavenge peroxides, and they
are essential components of the glutathione cycle, particularly in redox reactions
(Rana et al. 2020: Rehman et al. 2019). Drought stress also results in a decline in the
uptake of essential nutrients such as phosphorous calcium and potassium.

Abiotic stress impairs antioxidant response induce overaccumulation of hydrogen
peroxide (H2O2) and malondialdehyde (MDA) in plants. The photosynthetic
characteristics and biochemical indicators such as proline, soluble sugars, total
soluble proteins, amino acids, and glycine betaine levels were drastically changed
due to soil moisture deficit. The apoplastic pathway or the symplastic pathway is
used to transport water in plant roots. The latter comprises the plasma membrane,
where the transport is arbitrated by the expression of aquaporins (Wang et al. 2003).
Plants go through a variety of modifications to prevent being harmed by water stress.
Morphological changes include the growth of root hairs, the depth of roots, and the
rolling of leaves (Taji et al. 2004). The net photosynthetic rate to transpiration rate
ratio, or biomass production to transpiration rate ratio, is a common way to assess
water usage efficiency (WUE). Drought stress is one of the most significant
limitations of crop productivity, and stress tolerance can be improved by adjusting
fundamental variables approximating osmotic pressure (Praba et al. 2009). One of
the essential constituents of drought tolerance in agricultural plants is an osmotic
adjustment, which includes the deposition of solutes. Due to osmotic adjustment,
plants can retain a high relative water content (RWC) despite a low leaf water
potential (Farooq et al. 2009a, b). Many crops have shown osmotic adjustment in
their leaves, including Triticum Aestivum (Budak et al. 2013), Zea mays (Pei et al.
2010), Sorghum bicolor (Assefa et al. 2010), Phaseolus vulgaris (Guler et al. 2012),
Oryza sativa, (Bunnag and Pongthai 2013), Hordeum vulgare (Witcombe et al.
2008), Cicer arietinum (Krouma 2010), Pisum sativum (Zlatev and Lidon 2012),
Helianthus (Rauf and Ahmad Sadaqat 2008), and Pennisetum glaucum (Boyer et al.
2008).

Antioxidants such as catalase, peroxidase, and proline function as ROS
scavengers help plants to cope with abiotic stresses by higher activity of these
enzymes. Plants grown in well-watered conditions survived longer, although several
researchers have found poor performance in reduced growth and yield under water
stress conditions (Nezami et al. 2008). After nitrogen (N), phosphorus (P) is the
second most important nutrient, and it is in short supply in Pakistani soils. Many
field crops benefit from (P), which increases their development and output while
boosting root growth in drought-stricken crops (Yaseen and Malhi 2009). The usage
of phosphorus helps to mitigate adverse effects of drought stress and improve crop
productivity (Singh et al. 2021).
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Impact of Drought on Plant Photosynthesis and CO2
Assimilation Rate

Water availability is critical for plant growth and development, and a decrease in
water availability during critical growth stages of plants may impair plant growth
and development. Another study found similar results when stomatal restriction was
used under mild water stress and non-stomatal restriction was used under severe
water stress circumstances (Misson et al. 2010). Low moisture conditions have a
substantial effect on many metabolic activities, including carbon assimilation and
biogeochemical processes. Water stress causes damage to the fundamental structure
of macromolecules and food-producing machinery, limiting carbon fixation by
photosynthesis (Golldack et al. 2011; Ali and Ashraf 2011).

Water deficit has a detrimental effect on the photosynthesis rate, water use
efficiency, and transpiration rate of maize, brassica, and mung bean plants (Ahmed
et al. 2002; Kauser et al. 2006; Ashraf et al. 2007). Carotenoids, on the other hand,
are essential for water stress tolerance (Jaleel et al. 2009). A decrease in photosyn-
thetic activity combined with increased absorption of light compromises the photo-
synthetic activities of plants. Therefore, this high light energy may result in an
overaccumulation of reactive oxygen species (ROS) such as H2O2 and O2•, thus
impeding the synthesis of D1 (Murata and Takahashi 2008). This inhibition of D1
synthesis further reduces PETC activity, interfering with CO2 fixation in many plants
(Altaweel et al. 2007) (refer to Fig. 14.2).

Osmotic Adjustment

Water stress directly affects the internal mechanisms at the cellular level and
modifies the turgidity and osmotic balance of the crop plants (Saud et al. 2017).
The plant adapts to water stress conditions through osmotic adjustments to diminish
the plant damage. In response to drought conditions, the plant defense mechanisms
trigger the accumulation of osmoprotectants and osmolytes, which further regulate
the water status and ROS homeostasis at the cellular level. Osmotic balance is
negatively associated with drought stress (Ma et al. 2019).

Among osmoprotectants, organic substances such as sugar (e.g., trehalose,
fructan, etc.), polyol, alkaloids, mannitol, sorbitol, betaines, polyamines,
D-mannitol, ectoine, and proline are directly involved in osmotic adjustment in
response to drought stress. Moreover, certain inorganic compounds and glycine
also participate in this response (Ma et al. 2019; Mehrotra et al. 2014). These
mentioned osmolytes assist the plant’s internal cellular systems by protecting the
plant’s integral proteins. Moreover, membrane integration from the damage of
higher concentrations of oxidative and inorganic ions relieves the plant from drought
stress (Khan et al. 2019).

The contrasting role of osmoprotectants (like proline and glycine betaine) has
been verified by exogenous application to improved drought stress tolerance (Caine
et al. 2019). Furthermore, exogenous application of proline and GB has been
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observed to upregulate the antioxidant-based plant defense mechanisms. These
osmoprotectants also reduce the superoxide dismutase (SOD), glyoxalase II (Gly
II), and glutathione S-transferase (GST) activities which elevate during the drought
stress (Caine et al. 2019).

Various researchers have exploited the role of osmoprotectants and osmolytes in
rice water stress tolerance to develop drought-tolerant genotypes (Li et al. 2018). The
transgenic lines were more tolerant of drought. The OsERF71 is a localized nuclear
protein that reduces water loss and regulates proline and ABA responses biosynthe-
sis genes during drought stress in rice. Hence, it is evident that the transgenic
approaches using such proteins can play a role in developing water stress-tolerant
rice genotypes.

Role of Oxidative Stress in Plants

Oxidative stress is a secondary constraint that a plant faces as a result of basic
stresses such as drought, salinity, extreme temperatures, results in overaccumulation
of ROS in mitochondria, peroxisomes, and chloromycetin. ROS disrupts the plant’s
macromolecular processes, resulting in failure cellular functionalities (Demidchik
2015). Oxidative stress disrupts the equilibrium of components that decrease and
oxidize (Potters and Horemans 2010). Cellular organelles are highly sensitive to
overproduction of ROS by plants, which facilitate transmission of electron via
peroxisomes, chloroplasts, and mitochondria in the photosynthesis (Triantaphylides
and Havaux 2009; Gill and Tuteja 2010).

Abiotic stimuli induce oxidative stress, which affects photosynthesis by decreas-
ing stomatal conductance and CO2 absorption in plants, resulting in an increased rate
of ROS production and accumulation in plants (Noctor et al. 2002). It has been
observed that plants experiencing extreme moisture deficiency acquire a greater
amount of H2O2 through photorespiration. By contrast, plants experiencing moder-
ate moisture deficiency shut their stomata to minimize water loss through transpira-
tion, reducing carbon dioxide input and delaying photosynthesis (Noctor et al. 2002;
Nayyar and Gupta 2006). When ROS levels are low, they function as a signaling
agent, activating a range of cellular processes, but when ROS levels are high, they
cause damage to deoxyribonucleic acid (DNA), lipids, and proteins inside plant
cellular organelles, resulting in reduced crop production (Sharma et al. 2012a, b).

As a significant stressor on plants, ozone promotes apoplast disintegration and
stimulates O2, H2O2, and HO (Fiscus et al. 2005). On the other hand, UV-B light
causes oxidative stress by converting H2O2 to HO, which leads to a variety of plant
metabolic disruptions and tissue damage. Ionic channels, mitogen-activated protein
kinases, Ca2+-activated NADPH, transcription factors, calmodulin, and Ca2+-
dependent protein kinases are all triggered by overproduction of ROS. Furthermore,
the antioxidant defense mechanism protects plant macromolecules by scavenging
reactive oxygen species (ROS) (Demidchik 2015) (Fig. 14.2).
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Effects of Antioxidants on Plants Under Drought Stress

Drought stress causes to increase the production of oxygen and nitrogen species in
plants which initiates the antioxidant mechanisms by increasing the amount of
antioxidant production. It is assumed that drought stimulates ascorbate-dependent
antioxidant action of the plant compared to thiol-based redox switch and regulatory
network (Laxa et al. 2019). Drought stress caused reduced turgor pressure and
wilting by reducing water contents, stomatal closure, and reduced carbon fixation
in plants. This depleted CO2 causes ribulose bisphosphate to oxidize and produce
internal H2O2 (Noctor et al. 2002). The unavailability of carbon dioxide, also known
as an electron acceptor, leads to slow down the oxidation of nicotinamide adenosine
dinucleotide phosphate in the Kelvin Benson physiological cycle of plants.
Decreased NADP+ causes the increasing number of electrons leading to elevated
ROS species (Tarafdar and Pula 2018). This type of stress-tolerant varieties pro-
duced more H2O2 to cope with the water stress via initiating the defense mechanism.

In contrast, reactive oxygen species are made in the apoplast and are closely
linked to calcium signaling pathways. Some respiratory burst oxidase homolog
(RBOH) proteins (calcium and phosphorylation-dependent proteins) are present on
the plant plasma membrane, which is predominantly responsible for anionic perox-
ide and superoxide production in retort to drought and additional stresses (Evans
et al. 2016: Sierla et al. 2016). The other signaling enzymes are also involved in
phosphorylation, such as cell wall-associated kinases which participated in receiving
the signal of change or decrease in turgor pressure of the plant. These kinases are
directly linked to the release of the reactive oxygen species during the phosphoryla-
tion of RBOHS proteins (Sun et al. 2020). A particular class of plant proteins (SNF1-
related kinases 2) is the primary regulators of plant stress and the slight change in
osmotic pressure. MAPKKK stimulates the RAF-like proteins SNF1, which is
involved in coping with the drought stress in the plant via a signaling mechanism
(Soma et al. 2020).

The antioxidant system is necessarily stimulated by getting signals from drought
stress in the form of kinases or other regulators. The plant has a defense system of
antioxidants which keep regulated by reactive oxygen species. These antioxidants
are small molecules, for instance, glutathione (GSH), tocopherol, ascorbate, and
carotenoids. Enzymes are a minor proteomic nature having an antioxidant-based
system including superoxide dismutase (SOD), catalase (CAT), thiol peroxidases,
and glutathione peroxidases (Hussain et al. 2016). Drought stress caused the
upregulation of all antioxidant enzymes. The upregulation of enzymes is depicted
at post-transcriptional and transcriptional stages. This upregulation also stimulates
the production of nonprotein enzymes during drought stress. Major antioxidant
enzymes including CAT, APX, and GPX were produced during drought stress in
plants. These enzymes play an important role in scavenging reactive oxygen species
(Mittler and Zilinskas 1994). Among the most significant antioxidant compounds,
ascorbate peroxidase is linked to the glutathione pathway and a major player to
detoxify H2O2. The APX1 gene is responsible for the overexpression of ascorbate
and seems to confer drought resistance to plants as reported in Brassica juncea
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(Saxena et al. 2020). The detailed function of APX related to drought stress was
reported in Arabidopsis thaliana (Kaur et al. 2021). Ascorbic acid and proline were
the best antioxidants that help plants (Echinochloa frumentacea) survive under
drought stress (Singh et al. 2021).

CAT is the iron-containing important antioxidant enzyme that stimulates the
detoxification of H2O2 to water and oxygen. It plays a crucial role in drought stress
at the post-transcriptional level (Luna et al. 2005); for instance, the CAT1 gene was
observed in drought-grown wheat (Eftekhari et al. 2017). CAT1 expression is linked
to MAPK cascade, an ABA (abscisic acid)-dependent stress-related hormone (Xing
et al. 2008). Glutathione reductase, glutathione transferase, and CAT work together
in drought stress to mitigate the effects of H2O2 (Lou et al. 2018). PRX are iron-
containing enzymes called oxidases; these are produced under drought stress with
co-release of stress-relating hormones like methyl jasmonate and abscisic acid, for
instance, in tea plants (Li et al. 2020). SOD are metalloenzyme played an essential
role in various abiotic stress including drought-type stress. SOD causes the
dismutation of two molecules of negatively charged oxygen ions to produce water
and neutral molecular oxygen. There are a lot of isoforms of SOD based on metal
which is involved in forming complexes. These isoforms (Mn-SOD, Fe-SOD, Cu,
Zn-SOD) are activated in stress conditions in different plants like Triticum aestivum
(Khayatnezhad and Gholamin 2021), Pisum sativum (Mohammadi et al. 2020), Zea
Mays (Moharramnejad et al. 2019), Solanum lycopersicum (Jangid and Dwivedi
2017), and cassava cultivars (Zhu et al. 2018).

Molecular Responses of Plant Against Drought Stress

As a major problem for crop productivity, drought causes a variety of stress-related
reactions in plants at all levels, from cell to biochemical to physiological to molecu-
lar. Increased synthesis of a wide variety of reactive oxygen species (ROS) in various
cellular compartments, such as mitochondria, peroxisomes, and chloroplasts, is
induced by water stress (Kaur and Asthir 2017). Plants utilize their antioxidant
defense systems as a defensive mechanism to regulate intracellular ROS homeostasis
and maintaining cellular redox equilibrium. Overaccumulation of ROS is
characterized as a signal to activate their defence system, with H2O2 acting as a
secondary messenger. Similarly, Ca2+ fluxes and abscisic acid (ABA) content
regulate signaling against increased redox state (Kaur and Asthir 2017).
Desiccation-related genes, dehydrins, transcription factors (TF), heat shock proteins,
aquaporin, and late embryogenesis abundant proteins all play important roles in the
acclimation process of plants when they are exposed to drought (Kaur and Asthir
2017). Drought-stressed plants receive and transmit signals that activate the defence
system through osmotic adjustment and resynthesis of stress-responsive genes such
as CBF and dehydration response element binding proteins (DREB), dehydrins, and
NCED genes (Chen et al. 2016).

Transcriptome research showed that plants close their stomata to adapt in reduced
moisture conditions by altering gene expression involved in glycan metabolism. The
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plant maintains its stress memory, and these genes respond to other stimuli, such as
high temperature and intense light. Furthermore, analysis of 300 genes confirmed
that all of these genes were involved/expressed under combined stress conditions
(Anbazhagan et al. 2014). Numerous genes, such as the DRED transcription factors
and the ERF/AP2 family, have been discovered to play a crucial role in plant growth
and development and single and combined stressful environments.

Under moderate drought conditions, overexpression of DREB1A is reported in
transgenic chickpea plants (Anbazhagan et al. 2014). The previous study has shown
the effectiveness of rd29A: DREB1A on processes linked to transpiration efficiency,
stomatal regulation gas exchange, root architecture, and water absorption under low
moisture conditions, therefore indicating water stress resistance when compared to
controls. Other drought stress studies revealed 106 EST-based markers, units
markers, and SSR markers. These markers generate high-quality transcripts that
may be used to identify various kinds of genes that improve drought resistance
(Varshney and Dubey 2009). Correspondingly, a study of 147 stress-induced
proteins and 205 protein spots in chickpea plants identified several additional
drought-related proteins that are required for molecular chaperones, cell wall modi-
fication, nucleocytoplasmic transport, chromatin remodeling and gene transcription,
the ROS pathway, and signal transduction under drought conditions. CaN-600
dehydrins were synthesized, which act as scavengers of reactive oxygen species
and protect enzyme and cellular functions under stress environments (Liu et al.
2015).

The “dehydration-responsive element binding proteins” (DREB) family is a
member of the “ethylene-responsive element binding factor” (ERF) family, and it
was discovered that AREB and DREB regulate assimilate translocation in plants
under drought stress (Agarwal et al. 2006). Under water stress conditions, plant
molecular responses are primarily controlled by producing ABA-related element
binding proteins and transcription factors which are associated with the “leucine
zipper” gene subfamily (Delorge et al. 2014). Furthermore, certain enzymes, such as
“trehalose 6-phosphate synthase” (TPS) and “protein intrinsic of plasma membrane”
(PIP), play a role in reducing drought-induced cell death by controlling membrane
pores and channels and regulating water and solute movements (Maurel et al. 2008).

Transgenic Approach to Cope with the Drought Stress in Plants

The plants alter the gene expression via upregulating or downregulating its gene
expression to respond to various abiotic stress settings (Gao et al. 2018). This
alteration in gene expression in retort to many stresses designates the drought
tolerance (Khan et al. 2018). Thousands of genes are involved in coping with abiotic
stresses, and several of them have a role in plant-drought resistance. However, the
rice plant retorts to drought stress via downregulating more than 6000 genes and
upregulating above 5000 genes (Todaka et al. 2015). Different metabolites are
accumulated in the plant during drought stress in rice. The comparative studies
showed that a higher expression level of genes encodes two compounds, that is,
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isocitrate lyase and malate synthase, under drought stress in the glycolate cycle with
glucose accumulation in rice but not observed in Arabidopsis. In contrast, the
downregulation of genes reduces cytochrome P450 735A which is directly
associated with the cytokinin levels in rice but not Arabidopsis (Todaka et al.
2015) (Table 14.1).

Although certain transgenic plant types are drought resistant, many plants suffer a
reduction in height and crop production due to drought stress (Kudo et al. 2017).
Multiple genes also provide resistance to drought stress. For instance, drought-
response element binding (DREB)-like transcription factors can substantially
improve plant water stress tolerance. DRAB1A gene is inserted to make the plant
variety drought resistant, as in rice (Kudo et al. 2017). DREB also conferred drought
resistance in transgenic wheat plants has shown reduced membrane damage,

Table 14.1 Genes involved in conferring drought resistance in different crops

Abbreviations
of genes and
transcription
factors Full name

Characters offered to
plant for drought
tolerance

Crop to which
providing
tolerance Reference

DREB Drought
response
element
binding

Reduction of
membrane damage
and enhanced osmotic
pressure, increased
yield

Rice,
Arabidopsis
Moso Bamboo
Wheat

Kudo et al.
(2017);
Zhou et al.
(2020)

WRKY Tryptophan-
arginine-
lysine-tyrosine
(WRKY)
transcription
factors

Lower membrane
damage greater
profiles of antioxidant
enzymes and proline
following ABA
pathway
Accumulate osmolytes
soluble sugar, root
growth

Chrysanthemum,
glycine max,
alfalfa, and
Arabidopsis,
cotton

Martignago
et al.
(2020);
Sharma
et al.
(2012a, b)

SST, Ta6-SFT,
and Ta1-FFT

Fructan-
producing
genes

Increase fructan
content as
osmoregulators to
induce drought
tolerance

Tobacco Pilon-Smits
et al. (1995)

bZIP or
SlbZIP

Basic leucine
zipper
transcription
factor SlbZIP

Enhanced ABA
content, CAT enzyme,
and MDA content
Increased cholorophyl
content
Following ABA
pathway

Tomato
Arabidopsis

Zhu et al.
(2018);
Zhong et al.
(2015)

(AtTGA4) (TGACG
motif-binding
factor 4)

Drought tolerance was
aided by increased
nitrogen transport and
absorption activities in
the ABA pathway

Arabidopsis
Tomato

Wang et al.
(2016);
Zhong et al.
(2015)
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enhanced osmotic pressure, and enhanced production as equated to non-transgenic
plants (Zhou et al. 2020). GsWRKY20 genes offer resistance to drought in glycine
max, alfalfa and Arabidopsis under cauliflower mosaic virus p32S promoter control.
Transgenic plants have shown lower membrane damage and greater profiles of
antioxidant enzymes, and proline were screened in transgenic plants as compared
to non-transgenic (Martignago et al. 2020) (Table 14.1).

Fructan-producing genes are inserted in tobacco for resistance against drought
stress conditions (Pilon-Smits et al. 1995). Primary leucine zipper transcription
factor SlbZIP confers drought tolerance in tomatoes by enhancing plant stress-
related physiological states by elevated ABA content, CAT enzyme, and MDA
content (Zhu et al. 2018). Wheat was transformed with TaWRKY2 and exhibited
high proline, soluble sugar, and chlorophyll profiles and conferred drought resis-
tance (Table 14.1).

Conclusions

Drought stress is one of the problematic environmental situations that limit the yield
of agricultural plants worldwide. The primary issue is improving plant productivity
as water scarcity decreases, which can be consummate. Understanding how
variations in osmotic potentials activate various metabolic and molecular responses
involved in plant defense under diverse environmental circumstances is one way of
solving the problem.

Drought stress tolerance in agricultural plants is further closely linked to the
plants’ ability to adjust to the changes of the environment and the litheness of their
cellular metabolism under stress conditions. ROS regulates many cellular functions
associated with environmental changes. Initially, ROS were thought to be harmful
by-products of aerobic metabolism that were removed by two types (enzymatic and
nonenzymatic antioxidants). With the exception of the fact that they are toxic, ROS
are important signaling molecules in many processes, including growth, develop-
ment, adaptations to abiotic and biotic stress stimuli, and programed cell death. Like
calcium signaling, which is organized by storage and release, ROS signaling is
measured by the balance of their synthesis and scavenging. A few lineages are still
unknown, such as the routes that maintain an optimal level and the role of reactive
oxygen species (ROS) in arbitrating plant defense systems.

Furthermore, the function of ROS in cell-to-cell contacts, network assimilation
linked to the abiotic stress retort, and potential interactions among ROS and reactive
nitrogen species remain unsolved. Focusing on these features will provide complete
knowledge on drought tolerance mechanisms, and applying these parameters to crop
plants worldwide will result in the creation of drought-tolerant agricultural plants.
ROS regulates a variety of cellular activities that are involved in responding to
environmental changes.
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Role of Brassinosteroids (BRs)
in Modulating Antioxidative Defense
Mechanism in Plants Growing Under
Abiotic and Biotic Stress Conditions
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Abstract

Brassinosteroids (BRs) are a group of steroidal phytohormone that plays an
essential role in regulating various chemical and physiological processes
involved in plant growth and development. Furthermore, physiological and
molecular studies of BRs have revealed their potential of enhancing yield and
productivity of crops by regulating variety of genes. But as per current scenario,
variety of abiotic and biotic environmental stresses acts as major constraints in
yield and productivity of crops. Furthermore, BRs act as nontoxic, environmen-
tally safe steroidal compounds that has the potential in modulating plant
responses against abiotic and biotic stresses. When applied exogenously at
specific dose and at particular developmental stage of plant, they are known to
enhance both quality and quantity of the crop plants. Moreover, BRs are also
known to have antifungal, antiviral, and anti-ecdysteroidal properties, which
make them potential alternate of chemical fungicide, pesticide, and herbicides.
Therefore, keeping in view all these properties of BRs, the current book chapter
focuses on the role of BRs in modulating enzymatic and nonenzymatic antioxi-
dant defense mechanism of plants under abiotic and biotic stress conditions.
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15.1 Introduction

Various abiotic and biotic stresses elicit threatening impact on productivity and yield
of crops. Various abiotic stresses include thermal (high and low temperature), water
(drought and flooding), heavy metal toxicity, salinity, and UV radiation stresses, and
the biotic stress includes pathogenic stress. All these stresses have contributed in
converting arable lands to unproductive barren lands, thus ultimately resulting in
economic loss in agricultural field (Ahanger et al. 2018). All these stresses affect
germination, growth, and various physiological processes in plants, and moreover, it
has been predicted that if the similar situation continues, there will be scarcity of
staple crops for human population (which is growing at an alarming rate) by 2050
(Ahanger et al. 2014). Keeping in mind, all these changes, biologists are trying to
meet all these challenges by using various environmentally stable strategies like the
use of biological components, drainage, water management, etc. One such strategy is
the application of phytohormones, since various phytohormones play an essential
role in regulating the normal and developmental processes and are also involved in
combatting the effects caused due to various biotic and abiotic stresses by
modulating several signaling pathways to evoke plants responses.

Among all plant hormones, brassinosteroids (BRs), a group of steroidal hormones
found in lower as well as higher plants, are involved in regulating various
mechanisms involved in growth and developmental processes in plants (Liu et al.
2017). BRs act as an essential regulator involved in photosynthesis, antioxidant
defense system, and plant-water relation under normal as well as stress conditions,
thus ultimately regulating the growth and developmental processes under normal as
well as stress conditions. Furthermore, in the case of plants having mutations in BR
biosynthesis, abnormal developmental phenotypes are generated, thus confirming
the potencies of BRs (Sahni et al. 2016). Moreover, BR-induced ameliorating stress
responses have been reported in various plants that were exposed to thermal, water,
heavy metal, and pathogen stress (Hayat et al. 2010; Singh et al. 2012; Talaat et al.
2015; Zhao et al. 2016; Jasrotia and Ohri 2017a). BRs are applied exogenously to
plants and are reported to have ability of mitigating different stresses in
concentration-dependent manner and also on the developmental stage of plants as
well as on the treated plant organs (Bao et al. 2004). So, in the current book chapter,
efforts have been made to examine the potential of BRs in modulating antioxidant
defense in plants growing under stress conditions. Moreover, cross talks of BRs with
other phytohormones have also been summarized here.

15.2 Plant Responses to Environmental Stresses

Plants respond to various environmental stresses which include abiotic factors like
heavy metals, drought, wounding, salinity, changes in temperature and light,
pesticides, and nutrient stress and biotic factors such as pest and pathogen attack
(Gull et al. 2019). Abiotic and biotic stresses induce morphological, biochemical,
molecular, and physiological changes in plants. Extreme temperature, salinity
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drought, and oxidative stress are often interconnected and may lead to similar
cellular damage. For example, salinity and drought condition are primarily
evidenced as osmotic stress, leading to disruption of ion homeostasis in the cells
(Samynathan et al. 2021). Denaturation of structural and functional proteins is
caused by oxidative stress, which often accompanies high temperature, drought, or
salinity stress (Chaki et al. 2020). As a result, various environmental stresses often
activate similar cellular responses and cell signaling pathways (Sewelam et al. 2016),
such as accumulation of compatible solutes, upregulation of antioxidants, and
production of stress proteins (Kosová et al. 2018; Dumont and Rivoal 2019;
Hasanuzzaman et al. 2020). Plants also undergo certain biochemical adaptations
which involve various changes in cell biochemistry. These changes include detoxi-
fication mechanism, synthesis of special proteins, evolution of new metabolic
pathways, accumulation of the metabolites, and changes in phytohormone level
(Fujita et al. 2006) (Fig. 15.1).

15.3 Biosynthesis of BRs

The pathway leading to the biosynthesis of BRs and different genes involved in BR
biosynthesis has been identified in Arabidopsis as well as in rice and tomato (Divi
and Krishna 2009). Initially, BR-biosynthetic pathway was established by feeding

Environmental Stresses
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Biotic Stresses

Plants

Activate

Upregulation of Antioxidant
enzymes

Production of Stress
Proteins

Accumulation of Compatible
solutes

Cellular Responses and Cell Signaling Pathways

Fig. 15.1 Response of plants to different environmental stresses
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cultured cells of Catharanthus roseus and Arabidopsis seedlings with deuterium-
labeled substrates followed by identification of various metabolites and reaction
sequences involved in biosynthetic pathway by utilizing gas chromatography-mass
spectrometry (GC-MS) (Choi et al. 1996; Fujioka et al. 2000; Noguchi et al. 2000).
The precursor for the biosynthesis of brassinolide (BL), the most active BR, is
campesterol (CR). Earlier, BRs were thought to be biosynthesized from two parallel
pathways, namely, early C-6 and late C-6 oxidation pathways (Fujioka et al. 1998).
According to these pathways, CR is first converted to campesterol (CN), then to
castasterone (CS), and finally to BL (Fig. 15.2). In early C-6 oxidation pathway, CN
is first converted to 6-oxocampestanol, then to cathasterone, teasterone,
3-dehydroteasterone, typhasterol, and then CS. In late C-6 oxidation pathway, CN
is first hydroxylated at C-22 to form 6-deoxocathasterone and is then converted to
corresponding intermediates as in early C-6 oxidation pathway but in C-6 deoxy
forms. These two pathways ultimately converge at CS, which is eventually
converted to BL (Zhao and Li 2012). Another branching pathway termed as
CN-independent pathway, which is an early C-22 oxidation branch, has been
reported (Fujioka et al. 2002). Recently, a shortcut route involving C-23 hydroxyl-
ation leading to the conversion of CR to 6-deoxytyphasterol has been described
(Ohnishi et al. 2006). Experimental data on different plant species have revealed that
the CN-independent and late C-6 oxidation pathways are the predominant
BR-biosynthetic pathways (Zhao and Li 2012). Different genes involved in
BR-biosynthesis are constitutive photomorphogenesis and dwarfism (CPD),
de-etiolated-2 (DET2), and DWARF4 (DWF4) (Bartwal and Arora 2020). Constitu-
tive expression of these genes can be modulated to regulate the endogenous levels of
BR in plants (Fig. 15.2).

Fig. 15.2 Biosynthesis of brassinosteroids
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15.4 Role of BRs in Plant Growth and Development

BRs are steroidal phytohormones that are analogous to animal steroidal hormones.
Mass spectrophotometric analysis such as UHPLC-ESI-MS/MS determined a total
of around 22 natural BRs in a minute sample of plant tissue which exhibited a highly
significant growth-promoting influence in plants (Tarkowska et al. 2016). They play
imperative roles in divergent aspects of plant biology ranging from elongation and
division of cell, root growth, photomorphogenesis, stomatal and vascular differenti-
ation, seed germination, plant immunity, and its reproduction (Gudesblat and
Russinova 2011; Vardhini and Anjum 2015; Wei and Li 2016) (Table 15.1).
Besides, BRs regulate the production and oxidation of radicals and root gravitropic
response and mediate plant responses to environmental cues (Krishna 2003; Bajguz
and Hayat 2009; Vardhini 2019). Table 15.1 describes the physiological role of BRs
in growth and development of different plant species.

15.5 Cross Talk of BRs with Other Plant Hormones

Several stress-responsive phytohormones act as a molecular regulatory element that
assist sessile plants to maintain their growth plasticity and provide ability to adapt in
tough environmental conditions. A cascade of interactions (occur mainly through
phosphorylation/a common second messenger) that helps in regulating signaling
network and persists among varied plant hormones which alter cellular dynamics is
known as cross talk. This cross talk between phytohormones helps in revealing and
targeting host resistance mechanisms under stress (Kohli et al. 2013; Wani et al.
2016; El-Esawi 2017; Li et al. 2021). On the basis of their action, phytohormones are
grouped into two main categories: First group includes auxins (AUX), gibberellins
(GA), brassinosteroids (BRs), strigolactones (SL), and cytokinins (CK) that coordi-
nate during plant growth and development, while others play a vital role under
environmental cues, namely, abscisic acid (ABA), brassinosteroids, ethylene (ET),
jasmonic acid (JA), and salicylic acid (SA) (Pieterse et al. 2009; Santner et al. 2009;
Denance et al. 2013; Fahad et al. 2015). Thus, BRs play a dual role in plants both
under stress as well as during normal growth.

15.5.1 Interplay Between Brassinosteroids and Auxins

BRs and auxins are master hormones with coordinated effects on innumerable
phases of plant growth and developmental pathways including the biosynthesis of
BRs mediated by auxins (Yoshimitsu et al. 2011; Hao et al. 2013; Chaiwanon and
Wang 2015). Physiological and genetic assays demonstrate opposite role of BR and
AUX for controlling root growth by directing the expression of DWF4 (DWARF4)
and BZR1 (BRASSINAZOLE-RESISTANT 1). On one hand, in roots where auxins
enhance DWF4 expression, BRs suppress it through feedback mechanism
(Yoshimitsu et al. 2011; Chaiwanon and Wang 2015). Also, during lateral root
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Table 15.1 Effect of BRs on the various physiological aspects of plant growth and development in
different plant species

Physiological
parameters Plant species

BR analogues/inhibitors
used Reference

Seed germination/
seedling growth

Brassica juncea
L.

24-Epibrassinolide
(EBL);
28-Homobrassinolide
(HBL)

Sirhindi et al. (2009,
2011), Kumar et al.
(2012), Soares et al.
(2020)

Raphanus sativus
L.

EBL;
HBL

Mahesh et al. (2013)

Leymus chinensis EBL Guo et al. (2014)

Acer
pseudoplatanus
L.; Fraxinus
excelsior L.

EBL Procházka et al.
(2015)

Tobacco EBL Bukhari et al. (2016)

Picea abies, Pinus
sylvestris,
Pseudotsuga
menziesii, and
Quercus robur

2α,3α,17β-trihydroxy-
5α-androstan-6-one
(a Synthetic BR)

Kuneš et al. (2016)

Solanum
lycopersicum L.

EBL Ahammed et al.
(2012a), Shu et al.
(2016)

Solanum
melongena

EBL Xue-Xia et al.
(2011), Wu et al.
(2015), He et al.
(2016), Wu et al.
(2016)

Cucumis sativus EBL Yuan et al. (2012a)

Arabidopsis
thaliana

Brassinazole Yamagami et al.
(2017)

Vigna radiata L. BL Lalotra et al. (2017)

Oryza sativa L. 7,8-Dihydro-
8α-20-hydroxyecdysone
(αDHECD; a BR mimic)

Sonjaroon et al.
(2018)

Pisum sativum BL; EBL Jiroutová et al.
(2019)

Triticum aestivum
L.

BL Toman et al. (2019)

Gossypium
hirsutum

EBL Chakma et al. (2021)

Shoot and root
growth

Arachis hypogaea
L.

BR Verma et al. (2012)

Capsicum
annuum L.

EBL Abbas et al. (2013)

Phaseolus
vulgaris

EBL Cheng et al. (2014)

Oryza sativa BR Fahad et al. (2016)

(continued)
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Table 15.1 (continued)

Physiological
parameters Plant species

BR analogues/inhibitors
used Reference

Potatoes BL Hu et al. (2016)

Arabidopsis
thaliana

BL; Brassinazole Vragovic et al.
(2015), Yamagami
et al. (2017)

Vigna radiata L. BL Lalotra et al. (2017)

Carica papaya L. BR de Assis-Gomes et al.
(2018)

Gossypium
hirsutum

EBL Chakma et al. (2021)

Zea mays EBL Trevisan et al. (2020)

Chenopodium
quinoa Willd

BR Sadak et al. (2020)

Solidago
canadensis

BR El-Sayed et al. (2020)

Pyrus ussuriensis BL Zheng et al. (2020)

Solanum
lycopersicum L.

EBL Shu et al. (2016);
Nazir et al. (2021)

Berberis
thunbergii L.

BL; EBL Pacholczak et al.
(2021)

Photomorphogenesis Arabidopsis
thaliana

BL Kim et al. (2012);
Zhiponova et al.
(2013); Youn et al.
(2016)

Solanum
melongena

EBL Xue-Xia et al. (2011)

Capsicum
annuum L.

EBL Abbas et al. (2013)

Camellia oleifera BL Zhou et al. (2013)

Solanum
lycopersicum L.

EBL Xia et al. (2014), Li
et al. (2015), Nazir
et al. (2021)

Dwarf pear BL Chen et al. (2014)

Leymus chinensis
(Trin.) Tzvel.

BL Niu et al. (2016);
Wang et al. (2016)

Oryza sativa EBL; BR; 7,8-Dihydro-
8α-20-hydroxyecdysone
(αDHECD; a BR mimic)

Sun et al. (2015),
Tong and Chu
(2016), Fahad et al.
(2016), Sonjaroon
et al. (2018)

Brachypodium
distachyon L.

24-Epicastasterone Xu et al. (2015)

Chenopodium
quinoa Willd

BRs Sadak et al. (2020)

Tobacco EBL Zhang et al. (2021)

(continued)
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Table 15.1 (continued)

Physiological
parameters Plant species

BR analogues/inhibitors
used Reference

Photoperiodism and
flower development

Arabidopsis
thaliana

BR Domagalska et al.
(2010)

Cucurbita pepo Brassinozole Manzano et al.
(2011)

Brassica napus BL Belmonte et al.
(2011)

Arachis hypogaea
L.

BR Verma et al. (2012)

Solidago
canadensis

BR El-Sayed et al. (2020)

Photosynthesis Carica papaya L. BR de Assis-Gomes et al.
(2013)

Secale cereale L. EBL Pociecha et al. (2016)

Pisum sativum EBL Dobrikova et al.
(2013)

Helianthus
annuus L.

EBL Filova et al. (2013),
Kaplan-Dalyan and
Sağlam-Çağ (2013)

Vigna radiata HBL Yusuf et al. (2014),
Alyemeni and
Al-Quwaiz (2016)

Oryza sativa L. BL; BR; 7,8-Dihydro-
8α-20-hydroxyecdysone
(αDHECD; a BR mimic)

Cao and Zhao
(2008); Fahad et al.
(2016); Sonjaroon
et al. (2018)

Glycine max L. EBL Bariş and Sağlam-
Çağ (2016)

Triticum aestivum
L.

EBL; BL Sağlam-Çağ (2007);
Toman et al. (2019)

Capsicum
annuum L.

EBL Yang et al. (2019)

Solidago
canadensis

BR El-Sayed et al. (2020)

Chenopodium
quinoa Willd

BRs Sadak et al. (2020)

Solanum
lycopersicum L.

EBL Carvalho et al.
(2013), Shu et al.
(2016), Nazir et al.
(2021)

Nitrogen
metabolism

Cajanus cajan
(L.) Millsp.

EBL Dalio et al. (2013)

Vigna radiata L. HBL Yusuf et al. (2014)

Solanum
lycopersicum L.

EBL Shu et al. (2016)

Arabidopsis
thaliana

BL Zhao et al. (2016)

(continued)
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formation, BIN2 (BRASSINOSTEROID-INSENSITIVE2; a key component that
mediate BR and auxin signaling during root development) plays an important role in
auxin signaling, but BR signaling retards BIN2 activity which in turn couldn’t
activate transcription factors BES1 (BRI1-EMS-SUPPRESSOR 1) and BZR1 lead-
ing to downstream control of plant growth and development. But BIN2 causes the
phosphorylation of ARF7 and ARF19 (AUXIN RESPONSE FACTOR), thereby
enhancing their DNA-binding capacity at lower levels of BR (He et al. 2002; Yin
et al. 2002; Cho et al. 2014). In shoot elongation, brassinosteroid treatment
downregulates transcription factor ARF genes ARF4 and ARF8 in Arabidopsis
wild-type (WT) seedlings in contrast to increased level of expression in
BR-deficient mutants (Jung et al. 2010); however, the overexpression of ARF8
could suppress growth of hypocotyl resulting into a weaker apical dominance
(Tian et al. 2004; Peres et al. 2019) (Fig. 15.3). These outcomes clearly indicated
an elaborated and a dynamic interaction of ARFs through BZR1 and BIN2 both
transcriptionally and post-transcriptionally to regulate plant growth and its develop-
ment via BR-auxin cross talk (Peres et al. 2019).

15.5.2 Interplay Between Brassinosteroids and Gibberellins

A cooperative and an interdependent relationship exists between BRs and GAs, with
multiple layers that interact in a species, tissue, and in a dose-dependent manner. The

Table 15.1 (continued)

Physiological
parameters Plant species

BR analogues/inhibitors
used Reference

Capsicum
annuum L.

EBL Yang et al. (2019)

Vigna
unguiculata L.

EBL Cardoso et al. (2019)

Senescence Triticum aestivum
L.

EBL Sağlam-Çağ (2007)

Helianthus
annuus L.

EBL Kaplan-Dalyan and
Sağlam-Çağ (2013)

Citrus unshiu EBL Zhu et al. (2015)

Solanum
lycopersicum L.

EBL Carvalho et al.
(2013); Nazir et al.
(2021)

Glycine max L. EBL Bariş and Sağlam-
Çağ (2016)

Pisum sativum L. EBL Fedina et al. (2017)

Carica papaya L. BR de Assis-Gomes et al.
(2018)

Capsicum
annuum L.

EBL Yang et al. (2019)

Lilium orientalis BR Nergi and Ali (2020)
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studies revealed that the DELLA proteins (a key negative regulator of gibberellin
signaling) have a suppressing effect on BZR1 transcriptional activity while
interacting with BZR1/BES1 (Bai et al. 2012; Gallego-Bartolome et al. 2012; Li
et al. 2012a; Peres et al. 2019). In Arabidopsis seedlings with lower levels of BR
biosynthesis, hypocotyl elongation was promoted by GA or brassinazole treatment
revealing the cooperative role of both hormones though it depends on the stage of
growth, physiological conditions, and on the branched BR-regulated GA pathway
(Gallego-Bartolome et al. 2012; Stewart Lilley et al. 2013; Unterholzner et al. 2015).
BR influences GA biosynthesis not only in dicots but also in monocot plants as
evident through the bioinformatics, chromatin immunoprecipitation (ChIP), and
in vitro DNA binding studies, suggesting a direct binding of BZR1/BES1 to the
target expression levels of two genes GA20ox, GA3ox, and GA2ox (encode
enzymes in the rate-limiting step of GA production) from Arabidopsis and rice
plants, respectively (Tong et al. 2014; Unterholzner et al. 2015; Peres et al. 2019).
Thus, as per the postulates of the proposed model of BR-GA signaling involving the
interaction between BZR1/BES1 and DELLA, BZR1/BES1 are activated post-
translationally by BR to promote GA biosynthesis; further the escalated GA
enhances DELLA degradation and releases the BZR1/BES1 activity. The stability
of this proposed interaction is dependent upon the phosphorylation state of BZR1/
BES1 proteins and the cellular localization of these processes (Ross and Quittenden
2016; Tong and Chu 2016; Unterholzner et al. 2016; Allen and Ptashnyk 2017)
(Fig. 15.4). Additionally, the homeostasis between BR-GA is also affected during
biotic stress where the biotic agents cause an interruption in the interplay between
the hormones by producing hormonal mimicking signals for their own survival
thereby disarming the immunity of their host (De Vleesschauwer et al. 2012; Peres
et al. 2019).

Fig. 15.3 A schematic model showing different signaling and biosynthesis genes during
brassinosteroid-auxin interaction
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15.5.3 Interplay Between Brassinosteroids and Cytokinins

An indirect cross talk exists between brassinosteroids and cytokinins to regulate
growth and development of plants. During lateral root formation, auxin transport is
employed, and at molecular level, BR induces the expression of PIN genes (auxin
efflux carriers) required for the development of root primordium, while CK
suppresses its establishment by downregulating the expression of PIN genes, thus
disturbing the auxin accumulation (Bao et al. 2004; Benjamins and Scheres 2008;
Vercruyssen et al. 2011). Enzymatic targets of BR-mediated responses such as
isopentenyl transferases (IPTs) and CKXs (CK oxidases/dehydrogenases) are
responsible for the biosynthesis of bioactive cytokinins as well as its inactivation
respectively. For example, in Arabidopsis, CKX3 gene directs the breakdown of
CKs, and its overexpression under PYK10 (a root-specific promoter) reduces the
levels of CKs in roots, causing minimal leaf and root growth. Reversibly, ectopic
expression of CKX3 and BRI1 showed synergistic elevation in the leaf and root
growth of plants (Werner and Schmülling 2009; Werner et al. 2010; Vercruyssen
et al. 2011). In the regulation of several stress responses, negative role of CKs has
been observed stating the gain and loss of function of CKX and IPT. On one hand,
the overexpression of CKX implicated a deficiency of CK along with an elevated
tolerance for drought and salinity; the suppression of IPT resulted in reduced levels
of bioactive CK with enhanced stress tolerance. This negative relation may further
be attributed to much repression of CK signaling pathway and inducing ABA
signaling marker genes (such as AIL1, COR47, RAB18, RD29B, and SAG29)
during cross talk between ABA and CK where ABA demonstrated similar results
of increased stress tolerance via exogenous application (Nishiyama et al. 2011, 2012;
Peres et al. 2019). Alternately, the role of BR can also be seen in drought stress such
as in transgenic rice where it depends upon the physiological state of plant. The
transgenic lines with IPT driven by PSARK (a stress- and maturation-induced
promoter) showed increased CK levels before the start of senescence and BR

Fig. 15.4 A schematic diagram showing interaction between different signaling and biosynthesis
genes during brassinosteroid-gibberellin cross talk
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signaling genes (BRL3, BRI1, BH1, BIM1, and SERK1) and its biosynthesis genes
[DWF5 and HYD1 (HYDRA1)] were also upregulated under/no stress (Peleg et al.
2011) (Fig. 15.5).

15.5.4 Interplay Between Brassinosteroids and Ethylene

Cross talk between brassinosteroid and ethylene suggested indirect controls of
different facets of plant growth and development. On one side, BR negatively
regulates shoot gravitropism, and ethylene promotes shoot gravitropic reorientation
through the involvement of auxin signaling genes (Guo et al. 2008; Vandenbussche
et al. 2013). This is mainly achieved by activating and inhibiting negative and
positive auxin signaling genes such as AUX/IAA and ARF7 and AR F19, respec-
tively. However, ethylene works antagonistically by enhancing ARF7 and ARF19
and suppresses AUX/IAA to control shoot gravitropic responses (Vandenbussche
et al. 2013). In case of root gravitropic responses also, the two hormones interact in
opposite ways where BR increases root gravitropism while ET retards it by
revamping auxin transport in the BR and ET mutants (Buer et al. 2006; Kim et al.
2007; Vandenbussche et al. 2013). Besides it, exogenously applied BR increases ET
production in Arabidopsis seedlings by upregulating the expression of its key gene
ACS (1-aminocyclopropane-1-carboxylate synthase) and stability of its proteins
(mainly ACS5, ACS6, and ASC9) during external and internal stimuli thereby
adjusting the ethylene synthesis in the plant tissues (Hansen et al. 2009; Muday
et al. 2012). During root cell elongation, BRs and ET interaction has been observed
in the root hair as well as the non-hair cells. In the case of root hair cells, the targeted
expression of BRI1 activates the cell elongation in all tissues; however, it is retarded
in non-hair cells due to elevation in the expression of two ACS genes: ACS5 and
ACS9. Consequently, ACS genes catalyze the rate-limiting step of ET synthesis by
forming ACC (1-aminocyclopropane-1-carboxylate) that accumulates and enhances

Fig. 15.5 Diagrammatic representation showing different signaling and biosynthesis genes during
brassinosteroid-cytokinin interplay
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ethylene signaling, thereby inhibiting unidirectional cell expansion (Fridman et al.
2014; Zhu et al. 2016). On the contrary, synergistic relationship also exists between
BR and ET in controlling hyponastic growth being employed by plants to cope the
environmental strains. Here, ET is the main regulator and in turn is regulated by
BR. C-23 hydroxylation of BR synthesis is mediated by ROT3 (ROTUNDIFOLIA3/
CYP90C1), and any change in it impairs local cell expansion and inhibits BR
synthesis which further lowers ethylene-induced upward leaf movement (Polko
et al. 2013) (Fig. 15.6).

15.5.5 Interplay Between Brassinosteroids and Abscisic Acid

In plants, seed germination, root elongation, and even during stomatal closing, plants
with defective BR signaling show enhanced sensitivity for ABA, thus showing
antagonistic relationship between BRs and ABA (Steber and McCourt 2001;
Zhang et al. 2009; Li et al. 2012b; Wang et al. 2020). During signaling process
also, BR signaling opposes the ABA biosynthesis. This is evident through the
removal of BSK5 (a positive regulator of BR signaling) which causes the induction
of ABA3 and NCED3 (ABA biosynthesis-related genes) (Ha et al. 2016; Ha et al.
2018). Additionally, during BR-ABA cross talk, upstream of BIN2 kinase causes the
downstream of BR receptor complex. In this, two negatively regulating ABA genes,
ABI1 and ABI2, interact as well as dephosphorylate BIN2 (a negative regulator of
BR signaling) to further regulate the phosphorylation of BES1. However, an in vitro
ABA signal transduction mimicking showed that ABA through its receptors inhibit
ABI2 which further promotes BIN2 phosphorylation (Zhang et al. 2009; Wang et al.
2018; Bulgakov and Avramenko 2020). Even under drought stress, BES1 impedes
ABA induction of a drought-related transcription factor RD26 (RESPONSIVE TO
DESICCATION 26) and it reciprocatively exhibits antagonism by modulating
BES1-regulated transcription which hinders brassinosteroid-regulated growth
(Chung et al. 2014; Ye et al. 2017). Moreover, early signaling of ABA is modified

Fig. 15.6 A schematic representation of different signaling and biosynthesis genes in
brassinosteroid-ethylene relationship
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by BR as in the case of Arabidopsis, by directly affecting phosphorylation of the
active ABA signaling participants such as SnRK2.2, SnRK2.3, and SnRK2.6. Here
too, BIN2 kinase signaling acts as an interacting protein of SnRK2.2 causing its
phosphorylation along with SnRK2.3 (Belin et al. 2006; Yoshida et al. 2010; Fujita
et al. 2013; Cai et al. 2014) (Fig. 15.7).

15.5.6 Interplay Between Brassinosteroids and Salicylic Acid

The existence of the cross talk between BR and SA plays a key role in plants under a
variety of environmental constraints. During biotic stress, though BR acts as an
enhancer in vast range of disease resistance, this BR-mediated boosted resistance
does not depend upon SA. However, the joint effect of BR and SAR (systemic
acquired resistance) provides an additive protection against pathogens (Nakashita
et al. 2003; Saini et al. 2015). Under biotic stress, APETALA2/ETHYLENE-
RESPONSIVE FACTOR gene GhTINY2 is strongly enhanced. Its overexpression
boost the plant’s tolerance, and its underexpression makes the plant susceptible to
infection. This is mainly because of more SA accumulation and its signal transduc-
tion through WRKY51 (WRKY transcription factor 51). However, the
overexpression of GhTINY2 retards growth, knockdown of genes induced by
BRs, and upregulation of BR-repressed genes. This occurs because of its interaction
with BZR1 along with restraining of the transcriptional activation of IAA19
(INDOLE-3-ACETIC ACID INDUCIBLE 19) (Xiao et al. 2021). NPR1
(NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1) regulate BR
signaling genes; BIN2 and BZRI induces stress tolerance in plants, and the interplay
between BR and SA may be due to the NPR1 gene which stimulates expression of
the SA-related genes involved in plant defense (Divi et al. 2010; Ohri et al. 2015).
Additionally, negative cross talk also exists between SA and BR signaling pathways
that resulted in the immune-suppressive effect of BR. Moreover, the external

Fig. 15.7 Diagrammatic model showing interaction of signaling and biosynthesis genes during
brassinosteroids-abscisic acid interlinkage
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application of BRs activated the master defense regulators of SA pathway such as
NPR1 and OsWRKY45 (WRKY transcription factor) (De Vleesschauwer et al.
2012) (Fig. 15.8).

15.5.7 Interplay Between Brassinosteroids and Jasmonic Acid

BR modulates JA signaling and inhibits JA-dependent growth and plays a vital role
in both abiotic/biotic stresses in plants. Induced OPR3 (encodes 12-oxophytodienoic
acid reductase) jointly by BRs and JA signifies a potential integration node between
BR action and JA synthesis (Zhang et al. 2009; Saini et al. 2015). In Arabidopsis,
restoration of the sensitivity and hypersensitive reaction of JA was seen during a
leaky mutation of DWF4 in coi1 mutant and a hypersensitive reaction in the wild
type toward JA. But when BRs were applied exogenously, it mitigated root growth
inhibition of JA because of downregulation of DWF4 in a COI1-dependent
(CORONATINE INSENSITIVE1) manner by jasmonate (Ren et al. 2009; Jang
et al. 2020). Jasmonate-induced anthocyanin accumulation is a hallmark of jasmonic
acid-induced responses which reduces in BR-biosynthetic mutants, but the BR
application helps plants accumulate anthocyanin. This occurs because of the mini-
mal expression of MYB (transcription factor) genes PAP1 and PAP2 (PRODUC-
TION OF ANTHOCYANIN PIGMENT1) (Peng et al. 2011; Song et al. 2011;
Wasternack and Hause 2013). In rice, thionin genes known for encoding antimicro-
bial peptides were greatly induced by JA but were enhanced by BR during stress
(Kitanaga et al. 2006). Against insect herbivory also, BR-JA cross talk showed the
defensive role of JA for anti-herbivory, while BR impedes it (Campos et al. 2009). In
Oryza sativa, exogenous application of JA decreased expression of BR signaling
gene, OSBRI1 and BR biosynthesis gene, and OsDWF4, during nematode infection
revealing antagonistic interplay between JA and BR (Nahar et al. 2013) (Fig. 15.9).

Fig. 15.8 A simplified model showing different signaling and biosynthesis genes during
brassinosteroids-salicylic acid interaction
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15.5.8 Interplay Between Brassinosteroids and Strigolactones

Cross talk between BR and SL is still in its budding stage, and the inter-hormonal
interaction pathways have been demonstrated recently (Faizan et al. 2020). Both
BRs and SL help in regulating shoot branching in plants. This is achieved through
the SL’s key signaling component E3 ubiquitin ligase MAX2 (a shoot branching
inhibitor) that continuously interacts with BR’s transcription factors BZR1 and BRI1
EMS SUPPRESOR1 (BES1) by binding directly with them and causing their
degradation. However, MAX2-mediated degradation of BR transcription factors is
promoted by SL signaling resulting in suppressed shoot branching (Yin et al. 2002;
He et al. 2005; Kim and Wang 2010; Wang et al. 2013). However, this has been
contradicted in bes1-D mutant, where the role of BES1 was re-examined. The
chosen phenotype with enhanced shoot branching does not show any association
with the characteristic bes1-D leaf phenotype, thereby advocating that the branching
defect described earlier might be wrongly referred to as a mutation in BES1 only
(Bennett et al. 2016). Further, it is expected that advances in the studies of this new
class of phytohormone will help in explaining the key underline players of the
hormonal cross talk between BRs and SLs (Fig. 15.10).

15.6 BR-Mediated Modulation of Plant Antioxidant Defense
System Under Abiotic Stress

Reactive oxygen species (ROS) are key regulatory and signaling molecules that play
important role in plant growth and development. ROS, such as superoxide radical
(O2

..), hydrogen peroxide (H2O2), and hydroxyl radical (.OH) production, elevates
when plant is exposed to certain stressed conditions. Brassinosteroids improve the
scavenging mechanism of these ROS by modulating the antioxidative as well as

Fig. 15.9 A schematic representation showing different signaling and biosynthesis genes of
brassinosteroids-jasmonic acid cross talk
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non-antioxidative system, thus playing an essential role in plant stress tolerance
(Table 15.2).

15.6.1 Thermal Stress

In present scenario, with the increase in global greenhouse effect, changes in climatic
conditions lead to rise in temperature, which has become one of the major detrimen-
tal stresses amid of constantly fluctuating environmental factors (Luo and Lau 2019;
Karwa et al. 2020). Transcriptomic studies reveal that thermal/heat stress causes
downregulation of critical gene(s) involved in the synthesis of cell wall, carbon
assimilation, transport and accumulation of starch, and many metabolic pathways
(Kothari and Lachowiec 2021). Plants in the environment are inevitable to such
conditions but undergo some series of mechanisms to cope up with increased
temperature, namely, osmoprotectants, ion transporters, antioxidant system, late
embryogenesis abundant (LEA) proteins, heat shock proteins, signaling messenger,
and factors of transcriptional machinery (Rodríguez et al. 2005). Various reports are
available which depict BR-induced heat tolerance in plants. Though the underlined
mechanism activated by BR for providing thermal stress tolerance is still not so
clear, but different studies suggest that a signaling cascade is initiated by BR
application which activates and brings together the small polypeptides and proteins,
such as heat shock proteins (HSPs) or stress-induced proteins, to alleviate stress
conditions (Bhandari and Nailwal 2020). BRs are believable to act as
immunomodulators, protecting plants from injuries of HT stress. Several reports
showed that BRs increase the production of heat shock proteins (HSPs) under
thermal stress, thereby protecting proteins against irreversible heat-induced damage
by preventing denaturation and facilitating the refolding of damaged proteins
(Chauhan et al. 2011). BRs elevate the activities of various enzymes involved in
the ascorbate–glutathione (AsA-GSH) cycle and maintain the homeostatic redox

Fig. 15.10 Diagrammatic representation showing signaling and biosynthesis genes during
brassinosteroid-strigolactone interaction
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potential during thermal stress in plants. BRs enhanced the expression of various
genes encoding these enzymes (Zhang et al. 2014; Yadava et al. 2016; Kaur et al.
2018; Li et al. 2018; Surgun-Acar and Zemheri-Navruz 2019). Brassinosteroids
alleviate the heat stress by regulating the glyoxylate and antioxidative system in
the case of Ficus seedlings (Jin et al. 2015; Anwar et al. 2018). A study conducted by
Sonjaron et al. (2018) revealed that 7,8-dihydro-8a-20-hydroxyecdysone
(aDHECD), a mimic of brassinosteroid, improve the photosynthetic activity and
carbohydrate content in rice seedlings under high temperature conditions. The
mechanism of BR that contributes to plant heat stress (HS) tolerance is mediated
by various essential complicated processes, namely, enhancing photosynthetic effi-
ciency by maximizing the rate of carboxylation by Rubisco and improving the
efficiency of PSII photochemistry; elevating photosynthetic pigments, stomatal
conductivity, and membrane stability; activating antioxidant mechanisms; and
maintaining redox homeostasis. Contrary to this, reduction in lipid peroxidation
and production of ROS is observed (Hayat et al. 2010; Kaur et al. 2018; Kaya et al.
2019). Although a large number of studies demonstrated the heat stress-protective
role of BR using exogenous applications, only a small number of studies are focused
on molecular mechanism involved in heat stress tolerance (Ahammed et al. 2014;
Zhou et al. 2014). It has been reported that a transient H2O2 production in the
apoplast functions as a critical signal to mediate BR-induced heat stress tolerance
in tomato (Zhou et al. 2014).

15.6.2 Heavy Metal Stress

Presently, heavy metals (HM) are regarded as major pollutants in the environment
due to their toxic effect at very low concentration. “HM” is collective term, which
applies to the group of metals and metalloids with greater atomic density than 4 g/
cm3, or five times, greater than water (Hawkes 1997; Gjorgieva Ackova, 2018). A
number of HMs include cobalt (Co), nickel (Ni), lead (Pb), silver (Ag), iron (Fe),
cadmium (Cd), chromium (Cr), zinc (Zn), arsenic (As), and the platinum group
elements that are present in the environment affecting all its living components
(Nagajyoti et al., 2010). Plants being sessile are exposed to various stress conditions
in the environment, and HM constitutes one of the major obstacles in growth and
development of plants. Anthropogenic activities and improper use of fertilizers and
pesticides, urbanization, industrialization, and fossil fuel combustion have led to
tremendous increase in concentrations of various hazardous chemicals in agricultural
soils (Chen et al. 2015; Zhao et al. 2018). Toxic effect of HMs varies according to
plant species, their concentrations, and chemical nature. HM reduces the rate of
photosynthesis and the required precursors for the process. Also, there is significant
reduction in quality and quantity of yield cultivated in polluted area with high risk of
chemical consumption by human population (Wu et al. 2017; Hasan et al. 2019).

Recently, BRs, as an alternate eco-friendly tool for improving heavy metal
(HM) stress tolerance in plants, have gained momentum (Bücker-Neto et al.
2017). BRs are reported for assimilation and metabolizing capacity for these
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chemicals (Santos et al. 2018). Plant exposed to HMs showed varied responses at the
morphological, cellular, and molecular levels, and to study the complex mechanism
underlining the improved tolerance by application of BRs, various studies have been
conducted by worldwide scientists showing ameliorating effect of BRs during HM
stress (Nawaz et al. 2017; Santos et al. 2018; Sharma et al. 2018; Wu et al. 2019;
Ahammed et al. 2020; Soares et al. 2020; Betti et al. 2021). Study conducted by
Jakubowska and Janicka (2017) decipher the potent role of BRs to provide stress
tolerance during cadmium stress in cucumber plants. It has been observed that the
BR stress tolerance is induced by the induction of plasma membrane NADPH
oxidase and H+ ATPase pump enzyme in cucumber during Cd stress. Similarly,
BRs improve the tolerance against Cd in cowpea plants (Santos et al. 2018).

Exogenous application of EBL enhances the lead tolerance in both seeds and
seedlings of Brassica juncea L. EBL alters the antioxidative enzyme activity and
enhances the rate of ROS scavenging by their increased activity (Soares et al. 2020).
Similar results have also been obtained by Wu and his coworkers (2019) in which
EBL showed ameliorative effect against metalloid stress. Exogenously applied EBL
(foliar spray) altered various enzymes and decreased the ROS level in wild
Arabidopsis thaliana seedlings which improves stress tolerance against antimony.
Similarly, EBL plays an important role in providing strength to rice plants against
iron stress. Exogenous application of EBL can alter the light-capturing capacity and
stomata conductance, increase thickness of epidermis of leaves, and maintain mem-
brane integrity of leaves under Fe toxicity (Tadaiesky et al. 2021). Similarly,
application of 28-Homobrassinolide improves the stress tolerance against Pb, Cd,
and Zn and attenuates their toxic effect on growth and development of seedlings
(Xu et al. 2019). Tolerance to high level of Zn has been reported in Solanum nigrum
L by the foliar application of EBL, contributing in better physiological status and
redox homeostasis in Zn-stressed seedlings (Sousa et al. 2020). BRs in combination
with calcium play important role in amelioration of aluminum stress in plants
(Ashraf et al. 2019). Improved root/shoot length and enhanced carotenoid, glutathi-
one, ascorbic acid, and tocopherol content were reported with elevation in the
expression catalase, peroxidase, glutathione reductase, and glutathione-S-transferase
genes by EBL application during lead stress (Kohli et al. 2018). In conclusion,
exogenous application of BR induce enhancement of tolerance to heavy metals is
their involvement in substantial improvement in carbon metabolism, photosynthetic
pigment content, antioxidative defense system, ROS scavenging capacity, glutathi-
one content etc. (Choudhary et al. 2012; Rajewska et al. 2016). Though there are
many reports available for stress tolerance properties of steroidal hormone
(brassinosteroids), but there is still uncertainty about endogenous BR levels being
modulated by exogenous BR under heavy metal stress.

15.6.3 Drought Stress

Water scarcity, which is one of the most deleterious of all environmental stresses,
checks the growth of many crop varieties and declines the quality and quantity of
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crop production (Todorova et al. 2016). Severe drought stress conditions lead
osmotic stress due to overproduction of reactive oxygen species (ROS) thereby
reducing photosynthetic rate; revamping nitrogen and antioxidant metabolism, sec-
ondary metabolite accumulation, and mineral nutrition; and ultimately causing
growth reduction in plants (Jatav et al. 2014; Ahanger et al. 2015; Ahanger et al.
2018). Various studies have reported that the exogenous application of plant growth
regulators like BRs can mitigate the drought-induced adverse effects on the growth
and metabolism of plants (Behnamnia 2015; Nawaz et al. 2015; Talaat et al. 2015;
Ahanger et al. 2018). They enhance the antioxidative defense of plants to combat
water deficiency. Exogenous application of BRs to plants suffering from drought
stress causes reduction in H2O2 (hydrogen peroxide) and MDA (malondialdehyde)
contents as a result of scavenging activities of antioxidative enzymes such as
peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), and ascorbate
peroxidase (APX) (Li and Feng 2011; Vayner et al. 2014; Nawaz et al. 2017). Foliar
application of EBL (0.01 mg/L) can also improve the antioxidant activity and
drought-induced inhibition of photosynthetic functioning in Capsicum annuum
(Hu et al. 2013).

It has been observed that exogenously applied BRs increase the concentration of
abscisic acid and negate the toxic effects of water stress on plants (Wang et al. 2019).
Supplementation of BRs (24-EBL and 28-HBL) alleviates the toxic effects of
polyethylene glycol-6000 (PEG)-induced drought stress by enhancing seed germi-
nation, seedling length, and biomass (fresh and dry weight) in Cajanus cajan by
increasing abscisic acid, glycine betaine, and proline accumulation (Shahana et al.
2015). It has been observed that the application of EBL and HBL to drought-stressed
pigeon pea significantly decreases H2O2 and MDA accumulation by increasing
antioxidative activities of SOD, CAT, POD, APX, and GR (glutathione reductase)
(Shahana et al. 2015). Earlier, both EBL and HBL treatments have been found to
reverse the inhibitory effects of PEG-6000-induced water stress on radish seedlings
by increasing seed germination and seedling growth associated with enhanced levels
of nucleic acids and soluble proteins and decreased activities of RNase. They also
maintained the membrane integrity by lowering lipid peroxidation and MDA content
(Mahesh et al. 2013). Recently, Tanveer et al. (2019) discussed the potential role of
EBL in improving drought stress tolerance in plants. EBL ameliorates the negative
effects of water stress by increasing carbon assimilation rate, perpetuating balance
between ROS and antioxidants, and accumulating solutes especially proline
(Tanveer et al. 2019). It enhances photosynthesis and other leaf gas exchange traits
by protecting the ultrastructure of photosynthetic pigment apparatus from degrada-
tion (Tanveer et al. 2019).

BRs mediated plant defense mechanism against oxidative stress by maintaining
the expression of genes involved in encoding xyloglucan endotransglucosylase/
hydrolases (XTHs) or by escalating the activity of H+-ATPase, sucrose synthase,
and cellulose synthase (Clouse 2011; Nawaz et al. 2017). Application of BRs
transmutes the expression of genes responsible for encoding both structural and
regulatory proteins (Ahammed et al. 2020). It was studied that the overexpression of
Arabidopsis BR biosynthetic gene DWF4 in Brassica napus increased seed yield,
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root biomass, and length and enhanced stress tolerance caused by dehydration (Sahni
et al. 2016). Duan et al. (2017) cloned a BR biosynthetic gene, SoCYP85A1, from
Spinacia oleracea and studied its effect on abiotic stress tolerance in tobacco. They
found that overexpression of the cloned gene improved drought tolerance and
resulted in longer primary root and more lateral roots in transgenic tobacco as
compared to wild types by eliminating ROS and MDA accumulation and improving
proline content along with antioxidant enzyme activities (Duan et al. 2017).

15.6.4 Salinity Stress

Salinity is a major abiotic stress that renders most of the agricultural lands as barren
wastelands resulting in food scarcity. It affects the water absorption capacity of
plants that leads to overall decrease in plant growth (Bartwal and Arora 2020).
Salinity stress, often termed as physiological drought, negatively affects plant
development and productivity by inducing osmotic and ionic imbalances (Ahanger
and Agarwal 2017; Kaur et al. 2018; Ahammed et al. 2020). Salt stress-induced toxic
effects on plants include osmotic stress, ionic toxicity, truncated nitrogen metabo-
lism, increased production of ROS that leads to oxidative damage, retarded photo-
synthetic functioning, and hindrance in uptake and translocation of mineral nutrients
(Ahmad et al. 2010; Iqbal et al. 2015; Ahanger and Agarwal 2017). It is well
established that exogenous application of BRs can reverse the negative effects
induced by saline conditions on growth and development of plants. Time and
again various studies have reported the role of BRs in mitigating the toxic effects
of salt stress in wide range of plants including A. thaliana, rapeseed (Brassica
juncea), mustard (B. napus), eggplant (Solanum melongena), pepper (Capsicum
annuum), cucumber (Cucumis sativus), maize (Zea mays), and common bean
(Phaseolus vulgaris) (Yuan et al. 2012a; Yue et al. 2018; Ahammed et al. 2020).

BRs help plants to cope up with salt stress by regulating antioxidative defense
system. They activate the antioxidative defense machinery by influencing or
controlling the transcription and/or translation of specific genes to improve the
oxidative stress tolerance potential of plants (Cheng et al. 2015; Fariduddin et al.
2014). In a study, it was found that 24-EBL application enhanced growth, soluble
proteins, and antioxidant activities of Solanum tuberosum suffering from salinity
stress (Khalid and Aftab 2016). In another study, it was observed that exogenous
application of BR conferred tolerance and mitigated the negative effects of NaCl-
induced salt stress in cucumber by improving growth, chlorophyll content, and
photosynthetic efficiency; promoting the activities of antioxidative enzymes,
namely, CAT, SOD, POD; and increasing proline content (Fariduddin et al. 2013).
In the same plant NaCl-induced production of ROS like O2

¯ and H2O2 was mitigated
by the enhancement of antioxidative defense system by EBL application (Lu and
Yang 2013). Supplementation of watermelon with 24-EBL increased its salt toler-
ance by enhancing CO2 accumulation and water use efficiency; BRs were suggested
to promote photosynthesis through activation of photosynthetic enzymes like
Rubisco under salt stress conditions (Cheng et al. 2015).
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It is well documented that salinity stress reduces the percentage of seed germina-
tion and overall biomass of crops, but after treating stressed plants with brassinolide,
an increase in germination rate as well as root and shoot length was seen, and nitrate
reductase activity was also increased as compared to stressed plants (Lalotra et al.
2017). Apart from exogenous application of BRs, harmful effects of high salt content
have been ameliorated, and stress tolerance has been improved by employing seed
priming techniques (Ahanger et al. 2018). In an experiment Zhang and his
co-workers pre-treated the seeds of Medicago sativa with EBL and then exposed
them to saline conditions. They noticed that under the influence of EBL, seed
germination increased and oxidative damage reduced by enhanced activities of
antioxidant enzymes, namely, SOD, POD, and CAT (Zhang et al. 2007). It has
been seen that BRs regulate DNA methylation that plays a pivotal role in salinity
tolerance. In a study, cytosine DNA methylation was found to be decreased in Linum
usitatissimum (flax) upon NaCl (150 mM) exposure; however, seed priming with
24-EBL induced total methylation and enhanced salt tolerance, suggesting its role in
epigenetic modification under salinity stress (Amraee et al. 2019).

15.6.5 Other Major Abiotic Stress

Aside from the above discussed major abiotic stressors, BRs and related compounds
can also play notable roles in plants to cope up with other abiotic stressors like
pesticides, photoinhibition/light stress, nutrient stress, and water-logging/water-
flooding stress (Ahammed et al. 2012b; Sharma et al. 2013, 2017; Xia et al. 2006;
Ogweno et al. 2010; Ahanger et al. 2018; Janeczko et al. 2010; Kang et al. 2006,
2009; Liang and Liang 2009; Lu et al. 2006; Lu and Guo 2013). 24-Epibrassinolide
can enhance the tolerance of Oryza sativa and Brassica juncea to stress generated by
pesticide imidacloprid (IMI) by decreasing lipid peroxidation via enhanced activity
of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT),
ascorbate peroxidase (APOX), guaiacol peroxidase (GPOX), glutathione reductase
(GR), and monodehydroascorbate reductase (MDHAR), upregulating the expression
of some genes like Fe-SOD, Mn-SOD, Cu/Zn-SOD, CAT, APOX, and GR (Sharma
et al. 2013; Sharma et al. 2017). In Ca (NO3)2-exposed Cucumis sativus, EBL
upregulated the ROS-scavenging metabolism of antioxidant enzymes and protected
the photosynthetic membrane system (Yuan et al. 2012b). Mitigation of impacts
caused by pyrene and phenanthrene toxicity in tomato has been observed as result of
EBL-mediated decreased content of MDA and increased activity of CAT, APOX,
GPOX, and GR (Ahammed et al. 2012a). Application of EBL decreased the lipid
peroxidation and increased H2O2 metabolism via enhanced activity of GST and GSH
content which were asserted to help Solanum tuberosum to counteract phenanthrene-
accrued consequences (Ahammed et al. 2012b, c). In tomato exposed to phenan-
threne and Cd co-contamination, decrease in lipid peroxidation and enhanced
antioxidant defense system by EBL were reported by Ahammed et al. (2013a).
Recently, Ahammed et al. (2013b) evidenced that EBL benefited the tomato to
maintain photochemical quenching coefficient (Pq), quantum efficiency of PSII
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phytochemistry {(PS II)}, and photochemical efficiency of PSII (Fv/Fm) under
polychlorinated biphenyls induced oxidative stress by enhancing the activities of
antioxidant enzymes. Phytotoxicities of nine pesticides (abamectin, chlorpyrifos,
Cuproxat, cyazofamid, Fluazifop-p-butyl, flusilazole, haloxyfop, imidacloprid, and
paraquat) had been alleviated by pre-treating Cucumis sativus with EBL. EBL
increased the CO2 assimilation capacity and antioxidant enzyme activity in
C. sativus (Xia et al. 2006). Application of EBL under light stress in tomato
(Lycopersicon esculentum) enhanced the activity SOD, CAT, APOX, and GPOX
enzymes and benefited the plants to maintain photochemical quenching (qP), quan-
tum efficiency of PSII (PS II), and net photosynthetic rate (Pn) by decreasing lipid
peroxidation (Ogweno et al. 2010). Significant role of EBL in enhancing the activity
of antioxidant enzymes was evidenced in plants exposed to chlorpyrifos (Xia et al.
2009). Similarly, application of 24-epiBL to Arachis hypogea mitigated the oxida-
tive stress induced by Fe-deficiency and reduced ROS production by enhancing
activity of nitrate reductase, antioxidant system, and osmolyte accumulation (Song
et al. 2016). Exogenous application of EBL (soaking and foliar) reduced uptake of
iron and sodium and increased uptake of magnesium, calcium, and potassium in
wheat (Janeczko et al. 2010). Foliar spray of EBL in C. sativus mitigated toxic
effects of excess calcium on the uptake of necessary mineral elements such as
potassium, magnesium, phosphorus, and manganese (Yuan et al. 2015). BRs and
related compound were evidenced to furnish tolerance to water-logging/water-
flooding stress to different crops such as oilseed rape (Liang and Liang 2009),
soybean (Lu et al. 2006), and cucumber (Kang et al. 2006, 2009; Lu and Guo
2013) mainly by decreasing oxidative damage via increased activities of SOD and
POD (peroxidase).

15.7 BR-Mediated Modulation of Plant Antioxidant Defense
System Under Biotic Stress

Under natural conditions, plants are exposed to both abiotic stress (discussed above)
and biotic stress (viruses, bacteria, fungi, insects, nematodes, parasites, and weeds).
Plants use inducible defense mechanism to effectively tolerate different types of
stress. Induced defense mechanism of plants against biotic stress is similar to defense
induced against abiotic stress (Anwar et al. 2018). BRs and related compound not
only help the plants to cope up with abiotic stresses but also play an important role to
enhance the tolerance against biotic stresses (Krishna 2003; Ali et al. 2007; Jager
et al. 2008; Bajguz and Hayat 2009; Nawaz et al. 2017) (Table 15.3). They involve
complex signaling cascade to positively regulate antioxidant defense metabolism
(Belkhadir et al. 2012) and induce innate immune response to protect the cells from
different biotic stresses (Wang et al. 2012). Application of brassinolide (BL) in
A. thaliana infected with cucumber mosaic virus (CMV) increased the activity of
antioxidant enzymes like CAT, SOD, POD, and APOX; decreased photosystem
damage; and modulated expression of genes related to defense (Zhang et al. 2015).
Growth and activity of antioxidant enzymes in tomato also enhanced by
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Table 15.3 Role of BRs in modulation of plant antioxidant defense system under various biotic
stress

Type of biotic
stress

BR
source

Mode of BR
treatment Plant species Effects References

Bacteria EBL Injected in
leaves

Arabidopsis
thaliana

Inhibition of
FLS2-mediated
immune
signaling

Albrecht et al.
(2012)

Fusarium
culmorum

EBL Soil and
foliar
application

Hordeum
vulgare

Inhibition of
Fusarium head
blight

Ali et al. (2013)

Oidium
sp. and
Pseudomonas
syringae and
TMV

EBL Hydroponic
system

Hordeum
vulgare

Increased
resistance
against
powdery
mildew fungus
Oidium
sp. bacterium
Pseudomonas
syringae and
TMV

Ali et al. (2014)

TMV BL Leaf
treatment

Nicotiana
benthamiana

Increased
systemic TMV
resistance

Deng et al.
(2016)

Fusarium EBL Root and
foliar
application

Cucumber
sativus

Reduced
infection of
Fusarium wilt

Ding et al.
(2009)

Verticillium
dahlia

BL Soil
application

Gossypium
barbadense
and
Gossypium
hirsutum

Enhanced
resistance
against wilt
causing fungus

Gao et al.
(2013)

Meloidogyne
incognita

EBL Seed dipping Solanum
lycopersicum

Increased
tolerance
against
M. incognita
by enhancing
activity of
antioxidant
enzymes

Jasrotia and
Ohri (2014,
2017a, b)

Meloidogyne
graminicola

BL Foliar
application

Oryza sativa Enhanced
innate
immunity
against
M. graminicola

Nahar et al.
(2013)

Meloidogyne
incognita

HBL
EBL

Seed
treatment

Brassica
juncea

Increased
tolerance
against
M. incognita

Ohri and Kaur
(2011); Ohri
et al. (2011)

(continued)
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28-homobrassinolide (HBL) application and resulted in reduced oxidative stress
caused by nematodes (Kaur et al. 2013, 2014). In rice, induced systemic defense
against nematode stress was stimulated by exogenous application of epibrassinolide
(Nahar et al. 2013). At low temperature, management of Botrytis cinerea in posthar-
vest grapes was reported by Liu et al. (2016) when EBL was applied exogenously.
Similarly, Zhu et al. (2010) reported that exogenously applied brassinosteroid
solution enhanced the activity of antioxidant enzymes like CAT, SOD, and POX
and inhibited the development of blue mold decay caused by Penicillium expansum
in harvested jujube fruit. Additionally, improved fruit quality and delayed senes-
cence due to reduced ethylene production were observed suggesting that
BR-mediated detain in fruit decay might be related with induction of disease
resistance. Citrus unshiu fruit dipped in EBL manifested enhanced resistance against
citrus disease due to increased activity of stress-related metabolites (Zhu et al. 2015).
Reduced susceptibility against leaf blight and rice blast diseases in barley seedlings
grown under hydroponic system containing EBL was also observed (Ali et al. 2014).
Moreover, resistance in uzu barley lines against powdery mildew fungus Oidium sp.,
bacterium Pseudomonas syringae pv. Tabaci and tobacco mosaic virus (TMV) was
also induced by EBL. Application of BL in tobacco and rice showed similar effects
(Nakashita et al. 2003). Application of BR-containing extract of Lychnis viscaria
seeds caused an enhanced resistance of tomato, cucumber, and tobacco to fungal and
viral pathogens (Botrytis, Sphaerotheca fuliginea, and TMV, respectively) (Roth
et al. 2000).

15.8 Conclusion

It is a well-established fact that different environmental stressors (biotic and abiotic)
are responsible for negatively affecting the agricultural economy by directly reduc-
ing the productivity of different crop plants. Moreover, this decline in productivity is
becoming more severe with passing times. Since, these stressors generate ROS in

Table 15.3 (continued)

Type of biotic
stress

BR
source

Mode of BR
treatment Plant species Effects References

Pythium
graminicola

BL Media
augmentation

Oryza sativa Inhibited
infection
caused by root
oomycete
Pythium
graminicola

De
Vleesschauwer
et al. (2012)

Cucumber
mosaic virus
(CMV)

BL Foliar spray Arabidopsis
thaliana

Enhanced
tolerance
against CMV

Zhang et al.
(2015)

Citrus disease EBL Fruit dipping Citrus
unshiu

Improved
disease
resistance and
postharvest
quality

Zhu et al.
(2015)
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affected plants, this further leads to destructive effects on physiological and meta-
bolic processes of plants. In order to overcome this ROS generation, various
strategies have been developed, and one such strategy is the application of plant
growth regulators, which can act as a feasible environmentally safe alternative. In
this continuation phytohormones like BRs and its associated components have been
reported to induce antioxidant defense system of plants under different stressful
conditions. Furthermore, BRs have also the efficiency of interacting with other
phytohormones under normal and stressed conditions thus making them more potent
for the resistance in plants against different environmental stresses.
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Abstract

Being stalkless organism, agricultural crops are constantly confronted by envi-
ronmental stresses such as heavy metals (HMs) which severely affect the growth,
productivity and thus yield losses. To minimize the HMs-induced phytotoxic
effects and improve the HM tolerance by plants, the utilization of beneficial
elements such as selenium (Se) as antioxidant defense agent can be effective
solutions. At low concentrations, Se compounds (selenite or selenate) can pro-
mote plant growth and stress tolerance. The key mechanism is that lower Se doses
can activate the antioxidant defense capacity (by stimulating the activities of
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enzymatic or nonenzymatic antioxidants); reduce the extra accumulation of
reactive oxygen species, malondialdehyde (stress marker); and scavenge
associated damages due to oxidative stress as well as membrane lipid peroxida-
tion, ultimately enhancing the plant tolerance against HMs stress. Here, we have
overviewed the available literature concerning the physiological roles of Se
species via the involvement of enzymatic or nonenzymatic antioxidant systems
in the alleviation of HMs-induced toxic effects in plants. The aim of the present
chapter is to apprise our understandings regarding the beneficial and protective
roles of inorganic Se forms (selenite and selenate) on the mitigation of HM stress
(via involving antioxidant defense systems) in different plants. In this way, the
exploitation of Se as antioxidative agent in HMs-susceptible crops can be ideal
strategy to ameliorate HMs stress and Se-exposed plants can display improved
growth under environmental stress conditions. Hence, Se-supplementation
should be focused to develop stress-tolerant genotypes.

Keywords

Selenium · Heavy metals · Plants · Antioxidants · Oxidative stress

16.1 Introduction

Edaphic selenium (Se) exists in different states such as nano-selenium (Se�), ele-
mental Se [selenide (Se�2)], inorganic Se [selenite (Se+4) and selenate (Se+6)], and
organic Se [selenomethionine (SeMet), selenocysteine (SeCys), methylselenol, and
Se-methylselenocysteine (MetSeCys)] in plants (Wu et al. 2016). The distribution
and bioaccumulation of above-reported Se forms in plant tissues are decided by
specific plant (Yin et al. 2019). Soil pH, organic matter, redox capacity, and clay
levels governed the Se bioavailability (Dhillon and Dhillon 2003). Lower adsorption
capacity of Se+6 mediates higher solubility in water than Se+4 (Mayland et al. 1991).
This indicated that Se+4 is dominant species in acidic soils or reducing conditions
and alkaline soils or oxidizing conditions favor Se+6. Therefore, a higher bioavail-
ability/mobility was noticed in oxidizing conditions and thus lower mobility in
reducing conditions.

Mostly plants take up Se in the form of inorganic Se such as Se+4 and Se+6, and
then convert them into organic Se forms such as SeMet and SeCys (Gupta and Gupta
2016). Se speciation may differ in absorption capacity from soils and transport
pathways. Plants are unable to take up elemental Se forms due to their insolubilities
in water systems, while organic forms have relatively higher solubilities and thus can
easily be assimilated by plants (Natasha et al. 2018). Se+4 competes for phosphorus
ions for their uptake by plant roots, thus transporting via phosphate transporters and
utilizing passive transport for absorption (Li et al. 2008; Wan et al. 2016; Ulhassan
et al. 2019b). Se+6 (via active transport) competes with sulfate (S) for its uptake by
plants which suggested the involvement of sulfate transporters in its transport
mechanism (Gupta and Gupta 2016). Largely, Se has been regarded as essential

370 Z. Ulhassan et al.



element for plants having higher Se accumulation capacity and easily assimilates due
to chemical similarity with sulfur (Terry et al. 2000). Numerous indications
suggested that Se is required for Se accumulators which are prevalent in Se-rich
soils (Terry et al. 2000; Gupta and Gupta 2016). Se essentiality in higher plants is
still controversial and debatable.

In response to adverse environmental conditions such as heavy metals stress,
plants boost their endogenous defense system (Hassan et al. 2017a, b; Ali et al.
2018a, b; Mwamba et al. 2020; Hussain et al. 2021a, b; Sheteiwy et al. 2021; Yang
et al. 2021; Zhang et al. 2021). Usually, hyperaccumulators had potential to stimu-
late the antioxidant defense systems to cope with the extra accumulation of reactive
oxygen species (ROS) caused by excessive Se levels in cellular organs. The exces-
sive accumulation of Se in plant tissues can desynchronize the cellular redox status
by overproducing the ROS that impairs the protein structures, lipid peroxidation, and
oxidative injuries (Gupta and Gupta 2016; Mostofa et al. 2017, 2020; Ulhassan et al.
2018, 2019a, b). In contrary, low Se levels can enhance the plant defense system by
minimizing the abiotic stress-induced oxidative stress (Hasanuzzaman et al. 2012;
Malik et al. 2012; Feng et al. 2013a; Ulhassan et al. 2019c). Previous studies
documented that Se is involved in antioxidant defense metabolism in
hyperaccumulators (Freeman et al. 2010; Hasanuzzaman et al. 2012; Malik et al.
2012; Ulhassan et al. 2019a, c). It was noticed that hyperaccumulator plants such as
Spondias pinnata had 1.5-fold higher antioxidant potential than
non-hyperaccumulators such as Stanleya albescens (Freeman et al. 2010). Being a
micronutrient, Se exerts beneficial effects at low concentrations (Ulhassan et al.
2019a, c) and can promote plant growth and development against harsh environ-
mental conditions (Feng et al. 2013a, 2021; Handa et al. 2019; Ulhassan et al.
2019c). In this chapter, we have discussed the growth-enhancing roles of Se and
its involvement in improving the heavy metals tolerance in plants by reducing the
oxidative stress and modulating the antioxidant defense system (mainly). The
outcomes of this chapter can be helpful to boost the remediation efficacy of heavy
metals-contaminated soils and thus improves the cultivation of plants in these
contaminated areas.

16.2 Physiological Roles of Selenium in Plants and Involvement
of Antioxidant Defense Machinery

The extra production of ROS indices such as hydrogen peroxide (H2O2), superoxide
anion (O2

•–), hydroxyl free radical (OH�), singlet oxygen, and lipid peroxidation
free radicals is the ultimate outcome of heavy metals stress (Ahmad et al. 2017; ul
Hassan et al. 2017a, b; Ali et al. 2018c; Aslam et al. 2021; Salam et al. 2021). The
overgeneration of ROS caused membrane lipid peroxidation as MDA which is a
marker of lipid damages. To fight against oxidative stress in plant metabolism, plants
stimulate their intrinsic antioxidant enzyme activities such as superoxide dismutase,
catalase, glutathione reductase, and ascorbate peroxidase (Silva et al. 2018; Nazir
et al. 2020). Low Se levels improve the plant defense mechanisms by the
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detoxification of oxidative free radicals and increase the enzymatic and nonenzy-
matic antioxidant enzymes which help in the reduction of ROS and induced oxida-
tive stress (Schiavon and Pilon-Smits 2017; Ulhassan et al. 2019c). The key
involved mechanisms are the regulation of enzymatic and non-enzymatic antioxi-
dant defense systems, direct scavenging of ROS, improving the photosynthetic
apparatus and mitigation of ROS via the dismutation of O2

•– into H2O2 (Silva
et al. 2020).

Nonenzymatic antioxidants such as glutathione peroxidase (GSH), ascorbate
(AsA), phytochelatins (PCs), carotenoids, flavonoids, proline, and alkaloids also
minimized the extra production of ROS (Foyer and Noctor 2012; Nazir et al. 2020).
The activation of antioxidant and H2O2 reduction efficacy of Se are mediated by
GSH via using AsA. A key enzyme, GSH-Px, is involved in the activation of plant
defense systems and sequestration of H2O2, O2

•– and MDA (Hartikainen et al. 2000).
The forms of AsA displayed multifunctional role in plants such as induction of
secondary metabolites and osmolyte accumulation (Foyer and Noctor 2012). The
lower levels of Se can increase the AsA level that results in the reduction of H2O2 via
maintaining enhanced activity of antioxidant enzymes and reduction in the biosyn-
thesis of zeaxanthin and α-tocopherols (Hasanuzzaman et al. 2019). Vitamin E,
α-tocopherol, can minimize the accumulation of O2

•– and lipid peroxidation free
radicals (Hartikainen et al. 2000). In this way, α-tocopherol prevented the peroxida-
tion of lipid membranes.

16.3 Selenium Mediated Alleviation of Heavy Metals Toxicity
in Plants

Sessile plants are encountered by various forms of environmental stress factors
including heavy metals which are phytotoxic especially at excessive concentrations.
Plants utilize different strategies to mitigate their inhibitory effects and maintain
cellular homeostasis (Xie et al. 2019). In the following section, the potential benefi-
cial roles of Se in alleviating the heavy metals-induced phytotoxic effects have been
documented. For this purpose, the involvement of antioxidant defense systems will
be mainly targeted.

16.3.1 Cadmium

Cadmium (Cd) is the third most toxic element and carcinogenic for human health
(Clemens et al. 2013). Numerous studies confirmed that Cd causes severe damages
to morphological, physio-biochemical, and cellular attributes (Rizwan et al. 2019;
Mwamba et al. 2020; Zwolak 2020; Hamid et al. 2021; Riaz et al. 2021). In response
to Cd-facilitated extra production of ROS, plants activate their antioxidative defense
system in the form of antioxidant enzyme activities (Riaz et al. 2021). It has been
documented that Se can mitigate the oxidative damages induced by Cd (Wan et al.
2019; Zwolak 2020; Riaz et al. 2021). Recent investigation suggested that
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exogenous supply of Se stimulated the activities of superoxide dismutase (SOD),
peroxidase (POD), glutathione reductase (GR), and ascorbate peroxidase (APX)
enzymes and minimized the over accumulation of ROS in the tissues of rice plants
(Qingqing et al. 2019; Wan et al. 2019).

In Brassica campestris, the exogenous applications of Se increase the activities of
catalase (CAT), key antioxidant enzyme, by scavenging the excessive generation of
ROS within cells (Ding et al. 2017). In rice plants, the supplementation of Se
enhanced the Cd tolerance by increasing the levels of glutathione and phytochelatins
and reducing the ROS and MDA contents in both shoots and roots (Huang et al.
2021). Tang et al. (2020) determined that foliar spray of Se as sodium selenite can
reduce the ROS and MDA contents by activating the SOD, POD, and CAT activities
in spinach. In the shoots and roots of wheat plants, the foliar applications of Se as
sodium selenate upregulated the SOD, POD, CAT, and APX activities and reduced
the MDA contents under Cd exposed soil conditions (Wu et al. 2020). In Cd-treated
mustard families including Brassica napus and Brassica juncea, the supplementa-
tion of Se IV or Se VI notably enhanced plant tolerance. Interestingly, Cd alone
applications enhanced the SOD and POD activities but declined the CAT activity,
which was reversed by Se treatments in the leaves and roots of both Brassica
species. Their findings suggested that plants (mediated by Se) greatly activated
their defense system to handle oxidative or membrane damages (induced by ROS
and MDA) and maintain redox balance against Cd stress (Zhang et al. 2020). These
above-reported observations suggested that both inorganic Se forms can be effective
in the detoxification and remediation of Cd toxicity and contamination, respectively.

16.3.2 Chromium

Chromium (Cr) exists in trivalent and hexavalent ionic forms, and its excessive
amounts in soil environment caused severe toxic effects on plant growth and
development. The key mechanism of Cr phytotoxicity is the overproduction of
ROS and lipid peroxidation as MDA, thus causing oxidative damages and injuries
to cellular membranes (Ahmad et al. 2017; Handa et al. 2019; Singh and Prasad
2019; Ulhassan et al. 2019c). To cope with these Cr-triggered ROS or
MDA-governed cellular or membrane damages, various approaches in the form of
antioxidants such as biomolecules, osmoprotectants, and enzymatic or nonenzy-
matic activities have been well documented. Here, we will discuss the potentials
of beneficial elements such as Se to mitigate the Cr toxic effects in different plant
species. In Brassica napus, the supplementation of Se as sodium selenite mitigated
the Cr toxicity by activating the enzymes of AsA-GSH cycle (SOD, CAT, APX, GR,
DHAR, and MDHAR), glyoxalase defense system (Gly I and Gly II), and GSH and
AsA contents and reducing the accumulation of ROS (H2O2 and O2

•–), MDA, and
methylglyoxal contents in both leaves and roots. In addition, Se (IV) improved the
other defense systems such as carotenoids and stimulated the thiol biosynthesis such
as essential amino acids in order to enhance the Cr tolerance (Ulhassan et al. 2019c).
Handa et al. (2019) investigated that exogenous supply of Se as sodium selenate
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alleviated the Cr toxicity in the tissues of Brassica juncea by upregulating the gene
expressions of SOD, POD, CAT, GR, and GST enzymes and reducing the oxidative
damages by minimizing the generation of ROS (H2O2 and O2

•–) and lipid peroxida-
tion as MDA. Moreover, Se (VI) applications elevated the levels of secondary
metabolites such as carotenoids, total phenols, flavonoids, and anthocyanins as
well as transcript levels of phenylalanine and chalcone synthase and thus help to
improve the Cr tolerance.

16.3.3 Lead

Lead (Pb) is classified as harmful contaminant for soil, plant, and human health
(Aslam et al. 2021). Balakhnina and Nadezhkina (2017) explained that alone Pb
treatments intensified the rates of peroxidation. As compared to non-stress
conditions, Se supply reduced the oxidative stress or degradation and enhanced the
activities of APX, GR, and GPX enzymes in the leaves and roots of Triticum
aestivum under Pb stress. Their findings confirmed the Se-mediated adaptive
responses against Pb stress and indicated that soil Pb levels decide the plant adaptive
potential. Under alone Pb-treated Brassica napus seedlings, SOD and GPX activities
were depressed in leaves and roots. The addition of Pb-containing nutrient solution
displayed positive effects on these activities (Wu et al. 2016). Mroczek-Zdyrska and
Wójcik (2012) explained that alone applications of Pb decreased the guaiacol
peroxidase (GPOX) and increased the glutathione peroxidase (GSH-Px), and no
difference in the activity of CAT enzyme was noticed in the tissues of Vicia faba.
The exogenous supplementation of Se in Pb-contaminated Hoagland solution
reversed the trends of these enzyme activities, increased the synthesis of thiol
compounds, and reduced the extra accumulation of lipid peroxidation and O2

•–.
Their outcomes suggested that low concentrations of Se act as antioxidant enzyme
against Pb-triggered peroxidation and oxidative stress. In Zingiber officinale plants,
alone treatments of Pb in soil conditions drastically overproduced the oxidative
stress and membrane damages by inducing the production of ROS and MDA
along with drastic changes in the activities of antioxidant enzymes. Their findings
confirmed that Se reduces the accumulation of ROS (H2O2 and O2

•–) and MDA
while maintaining the ROS balance or antioxidant defense system by improving the
activities of SOD, POD, and CAT enzymes and thus reduced the Pb-induced toxic
effects in Zingiber officinale (Chen et al. 2019).

16.3.4 Mercury

Mercury (Hg) has great bioaccumulation for living organisms and persistently reside
in environment mainly from anthropogenic activities (Chang et al. 2009). Overall, a
few studies have been reported concerning the potential roles of inorganic Se forms
in alleviating the Hg-induced toxic effects (via involvement of antioxidant enzymes)
in different plant species. Li et al. (2018) investigated the molecular elucidation of
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antagonistic effects between Se and Hg in the tissues of 2-week-old rice seedlings.
Their outcomes revealed that the addition of Se modulated the proteins interlinked
with Hg stress responses, DNA replication, cell cycle, energy, and carbohydrate
metabolisms, demonstrating that these proteins facilitated the antagonistic effects of
Se in response to inorganic Hg toxicity. In the tissues of Hg-exposed rice seedlings,
the applications of Se increased the activities of SOD, POD, CAT, APX,
glyoxalase I, and glyoxalase II and levels of proline and soluble sugar and decreased
MDA and O2

•– contents. The key mechanism is that Se effectively improved the
antioxidant capacity and osmotic adjustments by decreasing the oxidative stress,
membrane damages, and stimulation in the activities of protective enzymes, thus
minimizing the Hg-mediated toxic effects (Zhou et al. 2017). Besides the involve-
ment of antioxidant enzyme activities, Tran et al. (2018) reported that Se IV and Se
VI effectively inhibited the Hg toxicity by reducing the bioaccumulation and
bioavailability or absorption of total Hg levels in the shoots and roots of pak choi
(Brassica chinensis). In this way, both inorganic Se forms can be utilized as
beneficial Se fertilizer to mitigate the toxic effects of Hg in Brassica chinensis or
possibly other plants in dry lands.

16.3.5 Antimony

Antimony (Sb) is pervasive toxic metal ion. The cultivation of crops, especially in
mining areas, contains excessive amounts of Sb in their edible parts, thus causing
human health problems (Feng et al. 2013a, b). It has been suggested that Se
alleviates Sb-mediated toxic effects in rice seedlings by reducing the extra accumu-
lation of ROS (H2O2 and O2

•–) and lipid peroxidation as MDA in plant tissues.
Relatively higher activities of CAT and APX enzymes suggested their involvement
in Sb tolerance mechanisms. Overall, SOD and POD activities displayed decreasing
trends in values, indicating their nonavailability in Sb resilience in rice plants (Feng
et al. 2016). In addition to few studies about the participation of antioxidant enzyme
activities, various other mechanisms have been reported in order to detoxify Sb
toxicity by inorganic Se forms. Moreover, Se mediated increase in the synthesis of
pectin, lignin, and hemicellulose and formation of iron plaque in roots (Liu et al.
2019) and decrease the subcellular distribution of Sb in cell wall and cytosol (Ding
et al. 2015) to regulate or mitigate Sb toxic effects in rice seedlings. These
observations suggested that certain concentrations of inorganic Se can effectively
alleviate the Sb-induced phytotoxic effects via diverse mechanisms. The recent
reports on the potential roles of selenium in enhancing the heavy metals tolerance
via the involvement of antioxidant enzyme activities are documented (Table 16.1).
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Table 16.1 The potential roles of selenium in improving the heavy metals tolerance by the
involvement of antioxidant enzyme activities

Applied dose of Se
species Plant species

Heavy metals
stress

Modulation in
antioxidant enzyme
activities References

0,10, 20, and
40 mg/L Se (VI)

Triticum
aestivum

Cd-
contaminated
soils

" SOD, POD, CAT,
and APX
# MDA levels

Wu et al.
(2020)

0.02 (w/v) Se (IV) Spinacia
oleracea

Cd-
contaminated
soils

" SOD, POD, and
CAT
# MDA

Tang et al.
(2020)

Soil (0.5–1 mg/kg),
foliar
(0.125–0.250 mM)
Se (IV)

Triticum
aestivum

Cd-
contaminated
soils

" SOD and POD
# MDA

Zhou et al.
(2021)

0, 1, 5, and 10 uM
Se (IV)

Solanum
lycopersicum

0.50 mM Cd " SOD, APX, CAT
and GR
# H2O2, MDA

Alves et al.
(2020)

2.5 μM Se (IV) Pfaffia
glomerata

50 μM Cd " SOD, guaiacol
peroxidase (GPOX)
#lipid peroxidation

Pereira et al.
(2018)

0, 5 and 10 μM Se
(IV)

Brassica
napus

100 μM Cr " Enzymes of
AsA-GSH cycle,
carotenoids, proline,
GSH and AsA
# ROS (H2O2 and
O2

•–) and MDA

Ulhassan
et al.
(2019c)

0, 2, 4, and 6 μMSe
(VI)

Brassica
juncea

300 μM Cr " lipid-water
antioxidants,
carotenoids,
anthocyanins, free
proline, glycine
betaine, trehalose,
non-protein thiols
#ROS (H2O2 and
O2

•–) and MDA

Handa et al.
(2018)

0, 2, 4, and
6 μM kg�1 Se (VI)

Brassica
juncea

300 μM kg�1

Cr
" SOD, POD, CAT,
GR, GST, total
phenols, flavonoids
and anthocyanins
#ROS (H2O2 and
O2

•–) and MDA

Handa et al.
(2019)

0.4 and 0.8 mg Se
(VI)

Triticum
aestivum

50 and
100 mg kg�1

Pb

" APX, GR and GPX
# Peroxidation rate as
thiobarbituric acid
reactive substances
(TBARs)

Balakhnina
and
Nadezhkina
(2017)

5, 10 and
15 mg kg�1 Se (IV)

Brassica
napus

300 and
500 mg kg�1

Pb

" SOD and GPx
# ROS (H2O2 and
O2

•–) and lipid
peroxidation

Wu et al.
(2016)

(continued)

376 Z. Ulhassan et al.



16.4 Conclusions and Future Prospects

A number of investigations have targeted the physiological importance of Se and its
governed protective roles against abiotic stress mainly HMs. Inorganic Se forms
(selenite and selenate) are considered essential micronutrients and beneficial
elements mainly at low concentrations with optimal Se doses varied with target
plant species. Recently, the roles of Se as antioxidant agent have gained worldwide
interest. Se confers beneficial effects on plants under HMs stress and activates
antioxidant defense machinery to restore the plants against oxidative stress or
induced cellular damages. Still the antioxidant role of Se is unpredictable and furtive.
Possibly, Se shuttles metabolic equivalents during HMs stress and triggers antioxi-
dant defense machinery which helps to reduce the oxidative damages. A thorough
research elucidating the molecular mechanisms of antioxidative defense system of
both inorganic Se forms is perquisite, which can broaden our knowledge concerning

Table 16.1 (continued)

Applied dose of Se
species Plant species

Heavy metals
stress

Modulation in
antioxidant enzyme
activities References

1.5 and 6 μM Se
(IV)

Vicia faba 50 μM Pb " Total sulfhydryl
group, guaiacol
peroxidase (GPOX)
# CAT activity, lipid
peroxidation as MDA,
O2

•–

Mroczek-
Zdyrska and
Wójcik
(2012)

1 ml kg�1 Se (VI) Zingiber
officinale

500 mg kg�1

Pb
" SOD, POD and
CAT activity
# ROS (H2O2, OH

�

and O2
•–) and lipid

peroxidation

Chen et al.
(2019)

0, 1, 2, 3, and 4 μM/
L

Oryza sativa 0.5 mg/L Hg " SOD, POD, CAT,
APX, Gly I and Gly II
activity
# ROS (H2O2 and
O2

•–) and lipid
peroxidation

Zhou et al.
(2017)

0.1, 1, and 5 mg/L
Se (IV)

Oryza sativa 5 mg/L Sb " Biomass
accumulation,
Sb-detoxification
# membrane lipid
peroxidation as MDA

Feng et al.
(2011)

0.1, 0.305, 0.8, and
1.295 mg/L Se (IV)

Oryza sativa 1, 2.171,
5, 7.829, and
9 mg/L Sb

" CAT and APX
activity
# ROS (H2O2 and
O2

•–) and cellular
membrane lipids

Feng et al.
(2016)
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the management of oxidative stress. The essentiality of Se as micronutrient is still
controversial as it can be phytotoxic at particular higher doses. Therefore, selection
of particular Se level is crucial, and risk-free supply of Se species should be targeted
in future research. More rigorous research related to the participation and interaction
of Se with plant metabolism can open new avenues regarding human nutritional
status or quality.
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Abstract

Globally, biotic stress has led to massive damage to the agricultural products and
increases the risk of hunger in many regions. To counteract biotic stress, plants
have evolved a defense mechanism via various pathways, which mainly includes
pathogen-associated molecular patterns (PAMPs) and plant resistance proteins.
The defense machinery in plants is influenced by both abiotic and biotic factors
and draws impact on crop yield and quality. Like abiotic stress, biotic factors of
plant stress impart a crucial role in enhancing the generation of ROS in plant
system. ROS as a consequence of stress metabolism causes damage because of
oxidative stress. However, the significance of ROS as signaling molecule in
controlling various biological activities associated with growth and development
and other pathways that have a role in adaptation to various biotic stresses has
also been studied. To limit invasion of pathogens, a balance of ROS-scavenging
and ROS-producing pathways is necessary for proper defense mechanism. Addi-
tionally, plants have evolved nonenzymatic and enzymatic components for sur-
vival against stress. Both these antioxidant systems work in coordination, and the
proteins generated are overexpressed during attack by pathogens to ensure
defense response in tolerant plant species.
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17.1 Introduction

Plants show certain physiological and molecular responses to overcome the stress
conditions, under biotic stress such as attack by phytophagous insects or pathogen
infections (virus, fungi, and bacteria) that could have damaging effect on agriculture
as it restricts the growth of plants and reduces the yield. Therefore, it is important to
understand the impact of biotic stress in plants and defense strategies that plants
utilize to counter attack these unsuitable conditions. The plants recognize pathogens
by pattern recognition receptor present on plant cells that detects pathogen-
associated molecular patterns (PAMPs) associated with pathogens. This type of
immunity is termed as PAMP-triggered immunity (PTI) (Monaghan and Zipfel
2012). The second type of immunity is termed as effector-triggered immunity
(ETI), where plant resistance proteins detect pathogen-specific effectors (Avr
proteins) of pests or pathogens. ETI also activates hypersensitive response
(HR) which causes apoptosis of cells at infection site and cells of its surrounding
areas. Both ETI and PTI induce release of phytohormones like salicylic acid (SA),
jasmonic acid (JA), and ethylene (ET). SA hormone activates systemic acquired
resistance (SAR), while JA and ET activate induced systemic response (ISR) (Grant
and Lamb 2006; Spoel and Dong 2012; De Vleesschauwer et al. 2014).

Cells maintain redox homeostasis for normal functioning, as exaggerated reduc-
tion and oxidation are detrimental for cellular components (Foyer and Shigeoka
2011). Plants have evolved antioxidant defense system inside them as an adaptation
to counteract generation of reactive species. Protection from reactive species varies
in plants from species to species (Díaz-Vivancos et al. 2010). Antioxidants are those
molecules that have an ability of quenching or inhibiting reactive radical species and
therefore preventing the damage to cellular components (Dumont and Rivoal 2019).
The prominent antioxidants are glutathione (GSH), tocotrienols, tocopherols,
carotenoids, ascorbate (Asc), and phenols and are among the low molecular mass-
based antioxidants. These molecules self-react with free radicals and aid in the
removal of reactive species, but those reactions catalyzed by enzymes like superox-
ide dismutase (SOD), ascorbate oxidase, ascorbate peroxidase [APX
(EC 1.11.1.11)], catalase (CAT), and glutathione peroxidase (GPX) are more effi-
ciently removed than those without enzyme involvement (Noctor et al. 2018).
Antioxidants having low molecular mass remove the reactive species via direct
and indirect mechanisms. Indirect method involves transition metal chelation,
which inhibits the involvement within Fenton or Haber-Weiss reaction (Oztetik
2011), while direct method involves receiving and donating of electrons, free radical
scavenging, and thus preventing their interaction with biomolecules.

ROS are by-products of metabolic pathways like photorespiration, photosynthe-
sis, and respiration. Reduction of molecular oxygen (O2) to water (H2O) promotes

384 N. Tarfeen et al.



the production of ROS. The ROS that induces oxidative damage includes 1O2, O2
�,

H2O2, OH  , RO  , ROO  , and ROOH (Bhattacharjee 2005). ROS production in
response to elicitors and pathogens has their role in various defensive processes
which include lignifications, formation of papillae, and cross-linking of hydroxy-
proline glycoproteins (HPGP) (Olson and Varner 1993). Following generation of
ROS in plants, various metabolites and enzymes are released to quench ROS to
protect the cell from damage. In this chapter, we have highlighted the role of
antioxidants and ROS in the defense against biotic stress as well as interplay between
ROS-generating and ROS-scavenging pathways.

17.2 Plant Defense System Against Biotic Stress

Biotic stress is a term that describes the damage that is caused by live organisms such
as bacteria, viruses, fungi, insects, nematodes, and weeds. The severity of the stress
depends on environmental conditions, casual organisms, and the level of crops
(Walters 2010). To cope up with the biotic stress, plants have physical barriers in
the form of waxes, trichomes, and cuticles to stop pathogenic invasion. Besides that,
plants produce chemicals to shield themselves against pathogens and herbivorous.
Furthermore, plants recognize pathogens through two pathways that stimulate
immune responses. The first is receptor recognition of pathogens known as
pathogen-associated molecular patterns (PAMPs), which includes
lipopolysaccharides (LPS), flagellin, peptidoglycan, and fungal chitin. This type of
defense system is called as PAMP-triggered immunity (PTI) (Monaghan and Zipfel
2012). The second mechanism is effective triggered immunity (ETI), where there
occur plant resistance proteins that identify pathogen-specific effectors known as
Avr proteins. This pathway stimulates hypersensitive response (HR) which causes
apoptosis of localized and its surrounding cells (Spoel and Dong 2012).

Signal transduction, whether ETI or PTI induced, activates many phytohormones
which include salicylic acid (SA), ethylene (ET), and jasmonic acid (JA). Salicylic
acid pathway stimulates the defense against biotrophic and hemi-biotrophic
pathogens, while jasmonic acid and ethylene exhibit defense against necrotrophic
pathogens and also against chewing insects in Arabidopsis (De Vleesschauwer et al.
2014).

For plant pathogens, there are two effective defense mechanisms: One is systemic
acquired resistance (SAR), and the other is induced systemic resistance (ISR). In
SAR, there occur increased levels of salicylic acid, when a necrotizing pathogen
infects plants (Grant and Lamb 2006). In ISR, activation of ET and JA signaling
takes place, due to specific strains of root-colonizing bacteria (nonpathogenic) (Van
Loon et al. 1998). Additionally, plants recognize herbivore-associated elicitors
(HAE) released by phytophagous insects that cause them to exhale certain volatiles
that tend to attract their enemies and also warn the neighboring plants to the
approaching threats (Santamaria et al. 2013).
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17.3 ROS Signal Transduction Under Biotic Stress

ROS are by-products of metabolic pathways like photorespiration, photosynthesis,
and respiration. Stepwise reduction of oxygen molecule (O2) because of leakage of
electrons from mitochondria, chloroplast, and plasma membrane electron transport
results in the production of toxic ROS (Alscher et al. 1997; Bhattacharjee 2005) in
non-stressed cells of plants, which gets intensified under abiotic and biotic stimuli.
The ROS that induces oxidative damage includes 1O2, O2

�, H2O2, OH
 , RO  , ROO  ,

and ROOH. Reduction of molecular oxygen (O2) to water (H2O) promotes the
production of ROS (Bhattacharjee 2005). Consequent to ROS production, plants
utilize several metabolites and enzymes to quench ROS to protect the cellular
compartments of cell. The plants have evolved multiple defense response pathways
against biotic stress by expressing diverse types of genes, which are modulated by
surrounding microclimate, humidity, and temperature. Among various types of
pathways that are linked to the regeneration of ROS, NADPH oxidase is regarded
as a vital enzyme in controlling the pathway. NADPH oxidase is stimulated by Ca2+

and provokes synthesis of O2
� and is transformed into H2O2 in cell membrane by

abiotic factors (Fraire-Velázquez et al. 2011). Studies revealed that the concentration
of Ca2+ ion and ROS component within the cell is seen to be higher and is known to
cause activation of signaling pathways under biotic and abiotic stimuli especially by
phytophagous animals (biotic). Thus the influx of Ca2+ ion is raised high to a level
where it is involved in signaling through other parallel molecular events by
associating with Ca2+ sensor proteins especially calcineurin B-like proteins
(CBLs) and calcium-dependent protein kinases (Kim et al. 2009).

Attack of pathogens on plants activates the first level of defense response, that is,
hypersensitive response (HR). In this response system, H+ and Ca2+ influx is
equilibrated at higher rate with the efflux of Cl� and K+ ion due to which reactive
nitrogen species (RNS) and reactive oxygen species (ROS) are generated. The ROS
so generated is involved in diverse functions as a part of HR such as microcidal
activities and cell wall lignification process. NO and H2O2 produced by RNS and
ROS, respectively, activate the gene expression of some viral defense responsive
genes such as glutathione S transferase (GST), phenylalanine lyase (PAL), and other
pathogenesis related genes (PR genes), when both these species are available
simultaneously in proper balance (Desikan et al. 1998; Delledonne et al. 1998;
Hancock et al. 2002).

During oxidative stress, ROS consumes electrons from target molecules which
cause delirious impact on macromolecules in cells. ROS has negative impact on
proteins, unsaturated lipids, and DNA and also modulates their structure and func-
tion. This negative impact leads to dysfunction of cell and then death (Taylor et al.
2002). Besides that, ROS also acts as a secondary messenger in signaling pathways.
This depends on the interaction with cell sensors that controls various biological
processes like transcription and translation. This sensor system affects not only
growth and development but also apoptotic signals in response to abiotic and biotic
stimuli (Kovtun et al. 2000).
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17.4 Role of ROS in Plant Pathogenesis

The consumption of O2 to generate ROS is known as oxidative burst, which is
known to be the primary cellular response during recognition of pathogens and
activation of defense machinery of plant. Avirulent pathogens cause induction of
biphasic ROS production with short transient first phase succeeded by continuous
phase of higher magnitude that is correlated with resistance to disease. In some
fungal studies tri-phasic ROS production has also been observed. These variations
can be associated with the complicated development of pathogens and effect of host
genotype. Pathogens that are virulent. Virulent pathogens suppress or avoid host
recognition, activates only first phase of ROS production. Elicitors of defense
responses that are termed as PAMPs also cause oxidative burst (Shetty et al. 2003;
Hückelhoven and Kogel 2003; Chisholm et al. 2006). Production of ROS by
peroxidases or NADPH oxidases after pathogen infection is a well-recognized
process. NADPH oxidase, a plasma membrane-bound enzyme, causes generation
of superoxide anions by electron transfer process from NADPH present in the
cytoplasm to the O2 available in apoplastic site which then dismutate to O2

� and
H2O2 (Bolwell et al. 2002). Peroxidases that are present in cell wall have
ROS-scavenging activity; in addition to that, they act as NADPH oxidases and
cause formation of H2O2 and O2

� (Baker and Orlandi 1995). Production of ROS
in response to elicitors and pathogens has been implicated in many defensive
processes related to interaction of pathogen to their host plant. ROS has been
demonstrated to have antimicrobial effects during defense responses, important
being H2O2 (Walters 2003; Custers et al. 2004). However in plant-pathogen interac-
tion, ROS toxicity depends on pathogen sensitivity to the concentration of ROS
present (Levine et al. 1994). The levels of H2O2 generated rely on many factors
which include age, type of plant species, and nature of elicitor (Legendre et al. 1993;
Nürnberger et al. 1994; Shetty et al. 2007).

ROS generation during initial phases of oxidative burst is involved in the
strengthening of cell wall. Process of cell wall strengthening is described by papilla
formation, lignifications, and cross-linking of (hydroxyproline-rich glycoprotein
HPRG) monomers (Olson and Varner 1993). Papilla serves as a barrier to penetra-
tion of pathogens. Studies indicated that protein cross-linking in cell wall is induced
by elevated production of ROS during pathogen attack (Kumudini and ShettyA
2002). Cross-linking network of HRGP monomers provides anchorage for
lignifications that might block formation of haustoria and lead to nutrient shortage
which may be disadvantageous for biotrophic pathogens (Shailasree et al. 2004).
Besides that, cell wall strengthening checks the movement of pathogen toxin inside
the cells of plants and blocks the availability of nutrients and also limits the spread of
infection.

Hypersensitive response (HR) is characterized by sudden cell death of the host
cell at the site of infection (Lam et al. 2001). HR is achieved by activation of
resistance genes, observed in plant species against microbial pathogenic attack
(van’t Slot and Knogge 2002; Hammond-Kosack and Parker 2003). HR has proven
to be productive against biotrophic pathogens, and because of nutrient shortage,
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death of host cell occurs. It is reported that HR is not effective against fungal
necrotrophic pathogens as the dead cell facilitates pathogenesis that results in
increased colonization of necrotrophs (Greenberg and Yao 2004). HR is
characterized by oxidative burst followed by cellular lesions. The mechanism of
HR involves various steps including condensation of chromatin, membrane bleb-
bing, DNA cleavage, disruption of cell membrane, and finally release of cellular
contents. Various studies have proposed the correlation between HR and ROS, but
the exact mechanism is unclear. It is postulated that there occurs a cooperation
between ROS and phytohormones such as ET, JA, SA, and ABA which influences
the induction of HR (Shetty et al. 2003).

ROS particularly H2O2 in coordination with salicylic acid was reported to enable
the initiation of SAR (Durrant and Dong 2004). The SA and SAR are linked with the
expression of defense-related genes which include PR proteins. It is believed that
ROS mediates SAR by associating with non-expressor of PR-1(NPR1) and controls
the systemic responses by regulating NPR1 redox state. SAR furnishes persistent,
broad spectrum resistance caused by broad range of elicitors or pathogens (Ryals
et al. 1996; Mou et al. 2003; Kanzaki et al. 2003). Activation of signaling occurs at
the primary site of infection, which then translocate to other uninfected areas. The
involvement of SA in generation of H2O2 has been established by various studies
showing the negative impact of SA on catalase (CAT) activity (Chen et al. 1993). In
SAR, the activity of SA is mediated likely by heightened levels of H2O2. On the
other side, activation of SA synthesis by H2O2 was also demonstrated by various
studies, indicating that H2O2 may act upstream of SA (Leon et al. 1995).

17.5 Interplay Between ROS-Producing and ROS-Scavenging
Pathways

Rapid ROS production has an important part in disease resistance responses. Excess
ROS can lead to cellular injury or death. To mitigate the harmful effect of this
“double-edged sword,” nature has maintained their homeostasis by an equal scav-
enging process known as antioxidant defense system which basically is enzyme
mediated consisting of SOD, CAT, APX, and GPX and is needed to maintain steady-
state concentration of ROS (Apel and Hirt 2004). APX-1 enzyme in Arabidopsis
mutant was confirmed to be an important element of ROS-scavenging gene products
leading to the raised levels of H2O2, oxidation of proteins, and stunted growth of
plant (Caverzan et al. 2016). This antioxygen defense machinery comprises of two
branches, enzymatic antioxidants and nonenzymatic antioxidants (Das and
Roychoudhury 2014) (Fig. 17.1).

17.5.1 Different Antioxidants Produced in Plants

The enzymatic defense systems include superoxide dismutase (SOD), catalase
(CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase
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(GR), glutathione peroxidase (GPX), superoxide, and nonenzymatic metabolites,
namely, ascorbate (ASC), coordination in giving protection against the toxic effect
of ROS (Tarafdar et al. 2018; Mithöfer et al. 2004; Navrot et al. 2006). The role of
these enzymatic and nonenzymatic defense machinery is to convert these free
radicals into reduced forms like water (H2O) which no longer have a potential to
cause cellular damage (Hasanuzzaman et al. 2020). This operating machinery are
basically the subprocesses of some cellular pathways like Asada–Halli well cycle or
AsA-GSH cycle, peroxidase cycle or water-water cycle, photorespiration, and the
processes involving β-oxidation of fatty acids (Biswas et al. 2020). The information
about them is briefed as under:

Enzymatic Antioxidant Machinery

1. Superoxide dismutase (SOD): It is the first line of defense operating during ROS
damage and functions in dismutation of O2

� to H2O2 through cyclic oxidation
and reduction of metal ions such as zinc, copper, and manganese (McCord and
Fridovich 1969). This enzyme is found in all aerobic cells and usually exists in
three metallic forms:
• Cu/ZnSOD: found in stroma, chloroplast, cytosol, peroxisomes, and apoplast
• Mn-SOD: found in peroxisomes, mitochondria, and also in apoplast and

cell wall
• Fe- SOD: found to some extent in chloroplast and stroma

Peroxidases

ROS scavenging pathways
GPX, SOD, CAT, APX,

GR

NADPH
oxidation

SAR

Apoptosis
Strengthening

of cell wall
Chromatin condensation,

DNA cleavage, disruption of
cell membrane

Gene activation for
defense mechanism

(PAL, GST, PR genes)

Papillae formation,
Crosslinkage

(HPRG)

H2O2 O2–
ROS

OH

Biotic Stress
(Pathogens)

Fig. 17.1 Interplay between ROS-producing and ROS-scavenging pathways [Abbreviations SAR
systemic acquired resistance, GPX glutathione peroxidase, SOD superoxide dismutase, CAT cata-
lase, APX ascorbate peroxidase, GR glutathione reductase, ROS reactive oxygen species, PAL
phenylalanine lyase, GST glutathione S transferase, HPRG hydroxyproline-rich glycoprotein]
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These SODs convert superoxide radical O2- into H2O2 which is further
converted into H2O via CAT, APX, and GPX in AsA–GSH cycle (Biczak
et al. 2016; Luis et al. 2018).

O2
•� SOD! H2O2

H2O2 CAT,APX, GPX
!

H2O

2. Catalases (CATs): It is generally found in peroxisomes and mitochondria. It was
considered that this enzyme is not found in chloroplast, but recent studies have
also found this enzyme to be present in chloroplast though in minute quantities.
CAT also eliminates H2O2, by its conversion into H2O and O2. (Frugoli et al.
1996). The cellular pathways in which ROS scavenging is predominant are
photorespiration and β-oxidation of fatty acids. They contain four heme subunits
Fe2+reducing H2O2 into H2O and O2. These are the only antioxidant enzymes
which do not have any reducing equivalent in ROS-scavenging process making
them unique in this activity (Arora et al. 2002). It has been seen that CATs have
low affinity toward organic peroxides compared to enzyme peroxidase, which can
remove H2O2 even if present in minute concentrations. The processes again
involve the coordination of nonenzymatic defense machinery like GSH and Asc
which act as electron donors removing one H2O2 molecule by two molecules of
GSH (Kohen and Nyska 2002).

3. Ascorbate peroxidase (APX): Its role can be summarized in AsA–GSH cycle in
which APX acts as a key enzyme in reducing H2O2 to water (Asada 1992). What
catalase does in peroxisomes APX do it in chloroplast due to their lower ability in
the later. Thus, it is the only enzyme responsible for scavenging H2O2 into H2O in
chloroplast using ascorbic acid as the reducing agent a nonenzymatic antioxidant.
Their importance within the plants can be seen by the presence of their family
consisting of five classes of these peroxidases. These isoforms are distributed
throughout the plant organs in different compartments, namely: stroma (sAPX)
and thylakoids (tAPX) in chloroplasts, microbodies (including glyoxysomes and
peroxisomes; mAPX), cytosol (cAPX), and mitochondria (mitAPX, as a
membrane-bound form, which respond in different manner to different physio-
logical and environmental stresses (Gangwar et al. 2014).

Nonenzymatic Defense Machinery

1. Ascorbic acid: Among nonenzymatic defense system, it plays the predominant
role than others due to its diverse electron donating capacity (Barnes et al. 2002).
The AA in plants is present in mitochondria, cytosol, and apoplast, but they are
not present in vacuoles. It is usually synthesized via basic pathway called
Smirnoff-Wheeler pathway catalyzed by L-galactano-γ-lactone dehydrogenase
and D-galacturonic acid (Das et al. 2014). It can donate two electrons: One leads
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to the formation of ascorbate, and other leads to the formation of DHA. AA has
the affinity for H2O2, OH•, O

�
2O•� 2 there by reacting with these free radicals it

can generate α-tocopherol eventually protecting the membranes from oxidative
damage (Shao et al. 2008).

2. Reduced glutathione (GSH): It is almost found in all cellular compartments like
cytosol, mitochondria, ER, vacuoles, chloroplasts, peroxisomes, and in the
apoplast. The reducing power of GSH is attributed to its central cysteine residue.
The GSH prevents the cell in oxidative damage by two ways, through metal ion
chelation which is another source of ROS in plants and by acting as an excellent
scavenger of the free radicals like H2O2,OH•, and O•� (Zlobin et al. 2017;
Krasnovsky Jr 1998). In order to prevent the plant cell due to harmful effects of
ROS, the balance between GSH and GSSG (glutathione disulfide) is an utmost
precondition. This is done by regenerating AA (ascorbic acid) and yielding GSSG
which is further converted into GSH by GR (glutathione reductase). Thus, it has
been seen that GSH not only acts as a good free radical scavenger but also helps in
the generation of AA another key player of nonenzymatic defense machinery.
Furthermore, it is one of the major antioxidant molecules in antioxidant defense
system through AsA–GSH cycle. Apart from preventing cell in oxidative dam-
age, it also helps in general growth and development of plant cells (Mullineaux
and Rausch 2005).

3. Phenolic compounds: Phenols are diverse chemical compounds, which have
versatile affinity free radicals thanks to their unstable benzene rings with the
power of donating an electron. This group consists of secondary metabolites like
esters, lignin, tannins, and flavonoids. They can form complexes with metal ions
restricting the formation of ROS and thus hampering Haber-Weiss reaction
(Fenton 1894). Phenolic compounds have been seen to hinder the processes
like lipid peroxidation, H2O2 capture cascade and Asc, phenol synergestic gener-
ation pathways involved in free radical capture thus preventing the cell from
oxidative damage (Takahama and Oniki 1992; Sakihama et al. 2000; Sharma
et al. 2012).

17.6 Conclusion

This chapter gives a description related to how plant’s defense machinery responses
to biotic stress. A number of experimental evidences revealed that a diverse variety
of enzymes (regulatory and antioxidants) and functional proteins works in a coordi-
nated manner to respond to biotic stress via ROS and other signaling pathways of
hormone involvement. The combined effect of antioxidants and other metabolites of
non-antioxidant nature leads to diminished cellular damages caused by ROS
molecules generated because of pathogenic attack as well as by other biotic stimuli.
Additionally, damaging impact of ROS triggers hypersensitive response (HR) as first
level of defense response. ROS also acts as a second messenger in the establishment
of communication between pathogen avirulent genes (avr) and disease resistance
(R) genes enhancing disease response. Notwithstanding the intercommunication
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between ROS-scavenging and ROS-producing network systems, the interconnection
of ROS with other regulatory network is also well elucidated and needs to be
discovered more to understand the key secrets of their equilibrium at molecular
level.
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Abstract

Global climate change and abiotic stresses, like waterlogging, salinity, heavy
metals, high temperature, etc., greatly affect plant growth, development, and
ultimately crop yield. Oxygen radicals and their derivatives produced by plant
cells, known as ROS, result in abiotic stress. Plants contain complicated
antioxidative defense mechanism, consisting of nonenzymatic and enzymatic
components, which check ROS accumulation and induce plant defense. This
chapter focuses on deleterious effects of ROS and antioxidant defense mechanism
under various abiotic stresses responsible for ROS detoxification and transcrip-
tion factors associated with ROS and micro-RNA production under abiotic stress.
In addition, it also focuses on crop engineering for abiotic stress resistance in
relation to antioxidant machinery and reactive species.
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18.1 Introduction

Abiotic stresses like drought, salinity, metals toxicity, waterlogging, high tempera-
ture, etc. are worldwide problems which arise due to harsh climatic conditions (Raza
et al. 2019). The sustainable crop production may have serious threats due to
environmental stresses. Excessive ROS accumulation, including free radicals (super-
oxide anion, O2, H2O2, hydroperoxyl radicals), adversely affects the plants and leads
to oxidative stress like OH, alkoxy radical, and non-radical molecules
(Hasanuzzaman et al. 2019). ROS production occurs mainly in chloroplasts,
peroxisomes, apoplast, mitochondria, and plasma membranes (Singh et al. 2019).
Though ROS are produced inside plants as part of normal cellular metabolism, its
reactive nature and excessive accumulation lead to cellular component breakdown
like carbohydrates, DNA, proteins, and lipids (Raja et al. 2017). It triggers nitrogen-
activated protein kinase pathway and transmits signals through redox reactions in
nucleus to develop various abiotic stress resistance, and ROS help in plants’
acclimation process under environmental stimuli (Singh et al. 2019).

Both antioxidant methods (nonenzymatic and enzymatic) work in elimination or
detoxification of the excess ROS. Antioxidant enzymes are catalase (CAT), super-
oxide dismutase (SOD), enzymes of AsA-GSH (ascorbate-glutathione), guaiacol
peroxidase (GPX), tocopherols, glutathione (GSH), ascorbate peroxidase (APX),
and ascorbate (AsA), while carotenoids and phenolic compounds are powerful
cellular nonenzymatic antioxidants. High antioxidant capacity maintenance
eliminates lethal ROS that is related to plant resistance against environmental
stresses (Jaspers and Kangasjärvi 2010a, b). The various levels of ROS cause
oxidative stress, which destroys lipids, proteins, and DNA. Conversely, it has been
observed in recent two decades that physiological and biological processes are also
regulated by ROS signaling molecules. It has been found that, in early stages of
evolution, ROS act as a signaling mechanism to adapt under changed environmental
conditions. Prokaryotes possess a well-developed mechanism through which ROS
directly activate transcription factors to adapt under stress condition (Liu et al. 2007;
Jaspers and Kangasjärvi 2010a, b).

Transcription factors (TFs) regulate stress-induced gene expression involved in
domestication and stress resistance through interchange of gene cis-elements.
Microarray studies revealed that TFs are induced by 32 different kinds of oxidative
stress treatments that were fivefold upregulated. From these, seven belongs to
NAM/NAC, six to WRKY family, and eight to AP2/ERF (Gadjev et al. 2006; Liu
et al. 2007). In addition, some TFs are found to modulate abiotic stress response
(Jaspers and Kangasjärvi 2010a, b). This chapter summarizes harmful effects of
ROS and focuses on molecular methods that enhance ROS-mediated antioxidant
defense and survival mechanism against various environmental stress.
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18.2 Reactive Oxygen Species (ROS) Signature Molecules
for Plant Acclimation to Stress

ROS is also directly involved in regulating the redox state of the cell by modifying
its proteins and transcription and translation resulting in the instigation of an
acclimation response that would alleviate the effects of stress on metabolism and
reduce the level of metabolically produced ROS (Choudhury et al. 2017). The two
main cradles of ROS during stress, metabolic and signaling ROS, are shown to
interact and form a ROS signature that controls plant acclimation to stress through
redox reactions that regulate transcription and translation of stress acclimation
proteins and enzymes (Fig. 18.1). Some ROS are produced as a result of destructions
in the metabolic activity (metabolic ROS) and consequent signaling as an integral
process to respond against abiotic stress (signaling ROS). Metabolic ROS could
unswervingly modify the redox active status of some rate-limiting enzymes and
control metabolic fluxes in the cell (flux control), thus altering various metabolic
reactions in order to hostage the effect(s) of stress. Moreover, it also activates
transcription and/or translation process by transforming the function of key regu-
latory proteins (Foyer and Noctor 2016). On the other hand, signaling ROS is
accumulated as a reaction to stress perception by stress sensor molecules (e.g., cyclic
nucleotide-gated channels activated by heat stress (Mittler et al. 2012) and is
mediated by calcium- and/or phosphorylation-derived activation of NADPH
oxidases (RBOH) at the plasma membrane (PM) (Gilroy et al. 2014).

Stress

Sensor

Signaling
ROS

Transcription
Translation

Acclimation
Protein

Metabolic Regulation

Signal Transduction

Metabolic
ROS

Redox Redox

Flux
Control

ROS Signature

Metabolism

Fig. 18.1 The mechanism of
reactive oxygen species
(ROS) in acclimation against
abiotic stress
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18.3 Subcellular Localization of ROS

Metabolic and signaling ROS could be generated in many subcellular compartments
(e.g., metabolic ROS mainly in the chloroplast and signaling ROS at the apoplastic
region). Nonetheless, they can have an impact on each other and even move between
compartments (e.g., H2O2 that can move across membranes in a regulated process
via aquaporins (Tian et al. 2016). ROS are produced enzymatically and
nonenzymatically in plants. Plasma membrane is equipped with essential players
like NADPH oxidases (NOXs), also recognized as respiratory burst oxidase
homologues (RBOHs), against ROS. RBOHs quench electron from cytoplasmic
NADPH and transfer to O2 to generate anionic form of oxygen (O2

•�), which upon
activation of superoxide dismutase (SOD) in the apoplastic region rapidly converts
to H2O2 (Suzuki et al. 2011; Chen and Yang 2020). Recent discoveries reveal that
under stress, chloroplast, peroxisomes, and mitochondria can outspread membrane
structures that will commence the nuclear envelope and could directly modify the
ROS status of the nuclei (Foyer and Noctor 2016). However, in the presence of labile
cytosolic Fe2+, ROS (H2O2) can interact with it to convert into highly toxic hydroxyl
radical, resulting in oxidative damage at cellular level. Despite the fact that vacuole
occupies a comparatively large volume of the plant cell and could have a significant
buffering capacity of ROS, the role of the vacuole in ROS signaling and metabolism
is currently unknown (Fig. 18.2).

Fig. 18.2 The interaction of ROS generated in different compartments during abiotic stress.
Abbreviations: Cp chloroplast, Mt mitochondria, Pr peroxisome, RBOH respiratory burst oxidase
homolog, TF transcription factor, SOD superoxide dismutase
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18.4 Oxidative Stress Under Abiotic Stress

A number of abiotic stresses like heat stress induce oxidative stress through exces-
sive ROS production. Chloroplasts, peroxisomes, mitochondria, plasma membranes,
and apoplast are cellular sites for ROS formation, but main production sites of ROS
are chloroplasts (Singh et al. 2019). Mostly abiotic stresses lower CO2 availability,
restrain carbon fixation, and resulted in molecular oxygen reduction. This ultimately
leads to ROS synthesis, which affects chloroplast performance and disturbs photo-
synthetic processes (Gill and Tuteja 2010). Furthermore, ROS production varies
within genotypes, plant species, stress duration, and stress tolerance level.

18.4.1 Salinity Induced Oxidative Stress

Salinization influences plant growth by disturbing ion toxicity, nutrient deficiency,
osmotic stress, and genetic toxicity, which lead to excessive ROS production and
cause stress. For example, Rehman et al. (2019) observed an increase in H2O2

production by 2.5 and 3 times at concentrations of thiobarbituric acid reagents
(TBARS) below 100 mM and two to three times at a sodium chloride concentration
of 200 mM. However, under salt stress, oxidative stress varies within plant tissues,
for example, root tissue is more affected by salt oxidative stress. Cheng et al. (2020)
reported that under salt stress in rice root tissues, lipid peroxidation, total ROS, and
electrolyte leakage (EL) increased two times as compared to control condition. In
another study, Ahanger et al. (2020) reported the accumulation of O2

•� and H2O2 in
the different parts of the plants which caused to increase the contents of
malondialdehyde and EL. This confirmed that salinity (100 mM NaCl) causes
oxidative stress in tomatoes. Likewise, in sweet pepper, under salt stress (0.4%),
MDA and EL increased by two times (Abdelaal et al. 2020), while MDA, EL, and
H2O2 increased by twofold and in mung bean O2

•� contents which were found under
salinity stress (Ahmad et al. 2019). Moreover, in maize, MDA increased by 25% and
H2O2 by 50% contents under 120 mM NaCl salt stress as compared to control
condition. Though oxidative stress varies by genotypes within a species, Lalarukh
and Shahbaz (2020) found that under 120 mM NaCl salt stress, H2O2 concentration
increases (by 78%) in genotype FH-572 and decreased in genotype in FH-621
(by 20%). Tariq and Shahbaz (2020) analyzed two Sesamum indicum genotypes
(TS-5 and TH-6) resistant to salinity with 70 mMNaCl and observed that the “TS-5”
genotype was salt tolerant as compared to control (TS-6). This clearly revealed that
different plant species respond differently under salt-induced oxidative stress
conditions.

18.4.2 Chilling Induced Oxidative Stress

In plants, overproduction of ROS caused by chilling/low temperature (LT) leads to
EL and lipid peroxidation and resulted in retardation of photosynthetic apparatus
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activity, degradation of membrane fluidity, and imbalanced ROS scavenging
(Repetto et al. 2012). Han et al. (2017) showed an increase in the content of EL
(by 49%) and MDA (by 180%) in 14-day-old rice plantlets exposed to cold stress
(12 �C, 6 days). Similarly, significantly high concentrations of MDA and H2O2 were
found in the cold-sensitive genotype Solanum lycopersicum (Jinpeng No. 1) under
LT stress (15 �C/8 �C day/night; 24 and 48 h), as controls (Liu et al. 2020). Wild type
(WT) of Ammopiptanthus mongolicus when exposed under the influence of LT
stress in a controlled system showed H2O2 accumulation compared to with trans-
genic plants (G-1 and G-2) (Xue et al. 2019).

18.4.3 Heat Induced Oxidative Stress

High temperature (HT) decreases cellular metabolism, inhibits oxygen-evolving
complex (OEC), damages cellular membranes through rapid lipid peroxidation and
DNA damage, and ultimately causes the death of the cell (Hasanuzzaman et al.
2013). Moreover, it retarded PSII and electron flux, decreased quantum efficiency
(Fv/Fm), and reduced PSII photochemistry in plants under high temperature
fractions (35 �C/32 �C day/night) (Fahad et al. 2016). Overproduction of O2

•�

radical by 79.9% and 50% drives to heat-induced oxidative damages in tobacco
and cucumber seedling under heat temperature (i.e., 35 �C and50

�
C), respectively

(Ding et al. 2016). Similarly, in sorghum, heat stress also enhanced O2 level by 2.3-
and 3.5-fold in pistils and pollen (Djanaguiraman et al. 2018). In contrast, rice grain
did not exhibit any remarkable changes in O2 content and MDA content under high
temperature stress, but H2O2 content increased under HT stress as compared to
control (Rasheed et al. 2018).

18.4.4 Waterlogging/Waterflooding Induced Oxidative Stress

Flooding or waterlogging (WL) induces anoxic or hypoxic conditions which are
consequences of the accumulation of toxic compounds in the different parts of the
plant which impose the influence on plant metabolism and overproduction of ROS,
thus resulting in oxidative stress (Loreti et al. 2016). In sorghum bicolor
WL-sensitive genotypes (JN31), MDA content accumulation increased compared
with WL-tolerant genotypes (JN01) under various conditions of waterlogging at
intervals of 6, 9, and 12 days (Zhang et al. 2019). Likewise, Anee et al. (2019) also
observed remarkable increase of MDA and H2O2 contents in Sesamum indicum
L. cv. BARI Til-4 (WL-sensitive) under WL stress of different durations (i.e., 2, 4,
6, and 8 days). However, waterlogging was also associated with higher production
oxidative stress, as reported in lycopersicum and an Antarctic plant called
Deschampsia Antarctica (Park and Lee 2019).
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18.5 Antioxidant Pool in Plants

A complex defense antioxidant system is observed in plants that contain enzymatic
and nonenzymatic constituents that help to eliminate ROS. ROS production occurs
in various plant cell organelles, like peroxisomes, chloroplasts, and mitochondria,
and various cellular compartments (Pang and Wang 2008). The synthesis of various
toxic oxygen metabolites at low levels and ROS production and quenching balance
exist under normal conditions. This production of ROS and quenching balance get
disturbed by number of environmental factors that increase intracellular ROS levels
and resulted in oxidative destruction to various biochemical molecules (Sharma et al.
2010).

The ascorbate (AsA), cellular redox buffer glutathione (GSH) and carotenoids,
tocopherol, and phenolic compounds are the various components of nonenzymic
antioxidative defense system. These components are associated with various cellular
components and directly associated with plant development and growth by
regulating processes of elongation, mitosis, cell death, and aging (De Pinto and De
Gara 2004). Mutations with reduced content of nonenzymatic antioxidant revealed
by stress hypersensitivity (Semchuk et al. 2009).

18.5.1 Ascorbate and Glutathione Cycle

The antioxidant ascorbate (AsA) performs a very important role to cope the oxida-
tive stress caused by elevated level of ROS and protects macromolecules from
oxidative damage. It is a dominant antioxidant and directly related to boost up
antioxidant reactions (enzymatic and nonenzymatic) by donating electrons. AsA
also influences the physiological processes of plant such as in metabolism, growth,
and development. The Smirnoff-Wheeler pathway introduced AsA in plants which
flows through GDP-L-galactose, L-galactose, GDP-D-mannose, L-galactono-1, and
4-lactone (Wheeler et al. 1998). This pathway also involved to convert D-the
galacturonic acid to L-galactonic acid with the help of galacturonic acid reductase
and finally L-galactone-1,4-lactone, L-galactono-1, 4-lactone oxidized to AsA by
the enzyme L-galactono-1, 4-lactone dehydrogenase (GALDH). In mitochondria,
the transportation of L-galactono-γ-lactone dehydrogenase by electroporation
facilitated diffusion of protons to other components of the cell. These enzymes are
also present in various parts of plants including organelles, apoplast, cell types, and
abundantly in photosynthetic tissues (Shao et al. 2008). Apoplastic ASA involved to
defend plants against a variety of external deleterious oxidants (Barnes et al. 2002).
Under normal condition, AsA are present in low level in chloroplast and effect as
cofactor (violaxanthin de-epoxidase) which directly influence the indulgence of
extra excitation energy (Smirnoff 2000). Protects membranes by reacting with
O2

•�, H2O2 and regenerates α-tocopherol of the toco-pheroxyl radical protect the
function of prosthetic transition metal ions containing enzyme. AsA plays a key role
in the removal of H2O2 through the AsA GSH cycle (Pinto et al. 2003). MDHA is a
short-lived radical which degrades into DHA and AsA or be reduced to AsA by
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NADP (H)-dependent enzyme MDHAR spontaneously. Above the pH 6.0 DHA is
very unstable and degrades into oxalate and tartrate (Miyake and Asada 1994). To
keep away from this, DHA is rapidly reduced to AsA by the catalyst (DHAR
utilizing lessening reciprocals) from GSH (Asada 1996). AsA level changes in
response to various stresses (Srivastava and Dubey 2011). Under stress condition,
AsA level depends on balance of performance, and rate of AsA biosynthesis and
turnover depend on the need for antioxidants (Chaves et al. 2002). The excess AsA
biosynthesis is related with tolerance to abiotic stresses in plants, ranging from
GDP-mannose to GDP-L-galactose, a significant stage in the pathway of AsA
biosynthesis according to Smirnoff-Wheeler in higher plants. Ascorbate accumula-
tion increased as result of overexpression of GME family, which was found in
tomato plants to improve resistance against abiotic stresses (Zhang et al. 2011). In
Arabidopsis, AsA accumulation increases under oxidative stress and leads to toler-
ance. The vtc-1 mutant lacks the activity of GDP-mannose pyro-phosphorylase, an
enzyme found in the ascorbate biosynthetic pathway, because it involved in ascor-
bate synthesis (Wang et al. 2010).

18.5.2 Phenolic Compound Activation

Phenolic compounds are the secondary metabolites found in the plants and involved
in various antioxidant activities. The tannins, hydroxycinnamate esters, lignin, and
flavonoids are some phenolic compounds which have antioxidant properties.
Polyphenols are composed of aromatic rings with substituents -OH or -OCH3 that
increase biological activity, including antioxidant activity. Polyphenols inhibit lipid
peroxidation by chelating transition metal ions to scavenge free radicals and trapping
lipid alkoxyl radicals. They decrease membrane fluidity and modify lipid packing
order (Arora et al. 2000). These modification and changes limit the peroxidation
reaction by checking the diffusion off free radicals. In plants multiple stresses
resulted in phenolic metabolism induction as a response. Janas et al. (2009) also
perceived that the activity of ROS as a signal for adaptation to abiotic stress
especially Cu2+ stress leads to the accretion of total phenolic compounds in the lentil
roots which grown in the dark. Defects of one gene in the Arabidopsis L. mutants
showed significantly improved sensitivity to UV-B radiation as compared to control.
High flavonoid concentrations in transgenic potato plants showed further developed
antioxidant capacity (Lukaszewicz et al. 2004).

18.6 Enzymatic Components

Enzymatic components of antioxidant defense system include catalase (CAT),
monodehydroascorbic acid reductase (MDHAR), superoxide dismutase (SOD),
ascorbic acid glutathione (AsAGSH), and cycle ascorbic acid peroxidase (APX). It
is composed of guaiacol peroxidase (GPX), glutathione reductase (GR), and
dehydroascorbic acid reductase (DHAR) and various antioxidant enzymes (Noctor
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and Foyer 1998). With the emergence of oxidative stress, the plant defense mecha-
nism activates the gene expression and synthesis enzymes in various subcellular
compartments to cope the stress. Different plant-based antioxidant enzymes perform
vital roles in limited stress-induced ROS.

18.6.1 Superoxide Dismutase

Superoxide dismutase (SOD) is directly involved to cope the oxidative stress of
aerobic organisms. (Scandalios 1993). The SOD enzyme is the member of
metalloenzyme group and involved in various catalytic activities such as the break-
down of O2

•� to O2 and H2O2. It is located in subcellular compartments of the plant
and produces activated oxygen. SOD is targeted to each intracellular compartment
by a nuclear-encrypted amino-terminal targeting sequence. Mn-SOD was found to
be present in mitochondria and chloroplast of Fe-SOD. Three isoforms of Cu/Zn-
SOD are present in various parts of plants including chloroplast, cytosol, peroxi-
some, and mitochondria (Bowler et al. 1992). Eukaryotic Cu/Zn-SOD is present in
dimer form in plants and sensitive to cyanide, while Mn-SOD and Fe-SOD are found
in dimer or tetramers and not sensitive to cyanide (Scandalios 1993). The activity of
SOD exceeded in plants under different environmental stresses like metal toxins and
drought (Mishra et al. 2011). The plant shows the tolerance against stress when SOD
activities elevated. Oxidative stress enhanced with SOD concentration in plants;
therefore it cannot be used as a direct selection criterion for drought tolerance plant
material (Zaefyzadeh et al. 2009).

18.6.2 Guaiacol Peroxidase

Guaiacol peroxidase (GPX) is a protein-containing heme which involved to oxidize
aromatic electron donors (guaiacol and pyrogallol) at the expense of hydrogen
peroxide. It is mainly present in microorganisms, animals, and plants. These
enzymes contain two structural Ca2+ ions and four conserved disulfide bonds
(Schuller et al. 1996). In plant tissues a number of GPX isoenzymes are present
and localized in cell wall, cytosol, and vacuoles. Various biosynthetic processes are
associated with GPX, like cell wall lignification, wound healing, and biosynthesis of
ethylene which involved to protect plants during abiotic and biotic stresses and
degradation of IAA (Kobayashi et al. 1996). GPX plays a role in effectively
removing reactive forms of O2 and radical peroxides under stress conditions.
Under stress conditions, it induces GPX activity (Han et al. 2009). Radotic et al.
(2000) found that the elevated activity of GPX is associated with metal toxicity and
suggest its potential as a biomarker of metal toxicity to plants. Moreover, Tayefi-
Nasrabadi et al. (2011) observed that under salinity condition, salt-resistant safflower
plants perform best and least damaged due to salt-induced oxidative damage results,
through increasing the activity of GPX, catalytic efficiency, and specific isoenzyme
induction compared to salt-sensitive plants.

18 Revisiting the Crucial Role of Reactive Oxygen Species and Antioxidant. . . 405



18.7 Antioxidant-Based Abiotic Stress Tolerance

Plants usually generate antioxidants (enzymatic/nonenzymatic) to trigger oxidants
produced during unfavorable condition (Farhat et al. 2021). Plants like Phaseolus
vulgaris (Zlatev et al. 2006), Oryza sativa (Sharma and Dubey 2005), and Trifolium
repens L. (Chang-Quan and Rui-Chang 2008) regulate their antioxidant (SOD)
response to attain survival under drought stress. Similar trend was observed in
chickpea (Kukreja et al. 2005) and tomato Gapiñska et al. 2008), under saline stress.
UV-B irradiation enhanced SOD activity in Arabidopsis, pea, rice, and wheat, but
has no or little effect on cereals and soya bean. In a field experiment, UV-B-induced
stress substantially enhanced SOD activity in wheat and chickpeas and soybean
varieties (Agrawal et al. 2009). Catalase (CAT) activity showed similar response
under drought and salt stress in wheat (Simova-Stoilova et al. 2010) and chickpea
(Kukreja et al. 2005; Eyidogan and Öz 2007), respectively. Oxidative damage in
Nicotiana tabacum is effectively overcome by higher accumulation of chlAPX
under both drought and saline stress (Badawi et al. 2004). Roychoudhury et al.
(2012) reported the salt-sensitive and salt-tolerant rice cultivars against Cd stress and
also observed the antioxidative enzyme activities; however, salt-tolerant cultivars
showed more accumulation of antioxidants. Contrary to other antioxidants, CAT
activity showed marked reduction under Cd-induced stress in salt-sensitive rice
cultivars. In another study, Roychoudhury and Ghosh (2013) suggested a gradual
enhancement of the catalase and peroxidase action with the swelling level of CdCl2
in Vigna radiate. Vaccinium myrtillus L. considered as tolerant plant by colonizing
successfully heavy metal-contaminated soil. A careful examination of plants grown
in contaminated soil, a high pool GSH contents, and non-protein thiol, proline, and
GPX activities were observed. GPX activity seems to be mutual, complex, and
closely related to heavy metal stress response (Kandziora-Ciupa et al. 2013).
MDHAR overexpression in tobacco and of DHAR in Arabidopsis correlated to
enhanced salt tolerance (Eltayeb et al. 2007). Moreover, salt-tolerant plant species
show more accumulation of GR and APX than salt-sensitive varieties (Aghaei et al.
2009). The exogenous application of AsA enhanced photosynthetic metabolism of
wheat under limited supply of water (Malik and Ashraf 2012). Similarly, the foliar
treatment of AsA on tomato leaves mitigated the adverse effects of salt and ensured
the long-term survival (Shalata and Neumann 2001). Remarkable reduction in
GSH/GSS ratio revealed that susceptible varieties (IR-29 and Pusa Basmati) are
more sensitive to moisture stress than the tolerant variety of Pokkali (Basu et al.
2010). Increased values of AA and GSH in salt-tolerant cultivar Pokkali were
observed than those of sensitive cultivar Pusa Basmati (Vaidyanathan et al. 2003).
Arsenic (III) is mitigated by phytochelatins. It remarkably reduces the GSH contents
in rice roots. Due to anti-oxidative property, GSH addition suppresses MDA
contents and ultimately resulted in protection and restoration of growth against
arsenic stress (Roychoudhury and Basu 2012). Wheat plants exposed to heat stress
caused rapid accumulation of reduced form of glutathione (GSH) by upregulating
GSH gene expression (Hasanuzzaman et al. 2013). Transgenic tobacco plants having
tocopherol gene (VTE1) reduced impact of lipid peroxidation by maintaining the
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membrane integrity and H2O2 balance and enhancing photosynthetic activity com-
pared to parents and wild relatives (Liu et al. 2008). In Arabidopsis, it has been
proved that vte1 and vte4 mutants were susceptible to salt stress by showing poor
growth due to oxidative stress. α-Tocopherol regulates intracellular Na+/K+ trans-
location and hormone balance (Ellouzi et al. 2013). Lack of α-tocopherol in plants
caused more production of polyunsaturated fatty acids in response to UV-B
radiations. Carotenoid molecules per chlorophyll positively correlates with
drought-mediated resistance in plants (Jain et al. 2003).

Two isolines of soybean with medium to low flavonoid contents irradiated with
natural UV-B levels exhibited an increase of both enzymatic and nonenzymatic
antioxidant (APX, CAT, GR) activities but reduced its SOD and ascorbate activity
(Xu et al. 2008). Proline performs vital role in osmoprotection and absorb energy to
regulate redox potentials under different moisture regimes. Drought-resistant chick-
pea cultivars respond to different moisture conditions with rich pool of proline than
sensitive cultivars (Mafakheri et al. 2010). Among rice seedlings exposed to high
salt (200 mM NaCl) stress, the salt-sensitive cultivar showed tolerance by
accumulating proline and anthocyanin compared to the salt-tolerant cultivars
(Roychoudhury et al. 2008). It was suggested that the flavonoids and proline
contents have fundamental significance in regulating antioxidant response to tolerant
and sensitive rice cultivars against salt, which can be attributed to the reduction of
excessive membrane permeability (Chutipaijit et al. 2009) (Table 18.1).

18.8 Transcription Factors for Regulating Oxidative Stress

Transcription factors (TF) manipulate the expression pattern of stress-related genes
against ROS. Expression patterns showed that multiple genes are associated to cope
the abiotic stress tolerance process in plants. The microarray analysis revealed
32 transcription factors (TFs), common to many abiotic stresses. Among 32 tran-
scription factors, six belongs to WRKY, seven to NAM/NAC, and eight to AP2/ERF
family (Gadjev et al. 2006). In addition, many endoplasmic reticulum-associated
TFs have been discovered which are associated to cope the environmental stress in
plants (Jaspers and Kangasjärvi 2010a, b). AtbZIP17 and AtbZIP28 genes
upregulated during salinity and heat stress, respectively (Liu et al. 2007). In addition,
redox transcription factors 1 (RRTF1) and AtERF6 are also involved in activating
immune system of plants by activating reactive oxygen species, bind to the promoter
region (GCC), which leads to changes in gene expression (Wang et al. 2013; Matsuo
et al. 2015). An AP2/ERF TF, a cytokinin reaction factor 6, suppresses the
cytokinin-associated genes which are responsible to cause oxidative stress (Zwack
et al. 2016). Some more transcription factors such as zinc finger TFs, WRKY family
NAM or NAC (no apical meristem), RAV, Zat, Myb, and GRAS families mediated
ROS response (Chen et al. 2010). Although Zat10 is a gene repressor to suppress the
activity of ROS (Mittler 2006), Zat12 and Zat6 positively influenced in the expres-
sion of Apx1 (Shi et al. 2014). LSD1 and LOL1 paralogs of zinc finger limit the
accumulation of O2 and SOD (Epple et al. 2003). In addition, the transcription
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factors (NAC) produce resistance to environmental stress by the ABA signaling
pathways in Arabidopsis (Puranik et al. 2012; Vermeirssen et al. 2014). Gene
expression patterns vary in response to deviations in redox properties which are
attained through the TF’s activation and suppression with stress-sensitive/stress-
tolerant cis-acting factors. To activate transcriptional factors, sense kinases are
contained in the autophosphorylating plasma membrane in response to an external
stimulus, after which they are supplied with a phosphoryl group, which leads to
conformational changes in TFs, allowing them to bind to promoter of the cis-element
and gene expression. Since various types of reactive oxygen species respond to
various cysteinyl residues, the same transcriptional factor can influence the gene
regulation of various genes under stress. Tyrosine phosphatase (PTP1) is regulated
by the concentration of H2O2 in Arabidopsis via upregulation of MPK6 (Gupta and
Luan 2003).

18.9 Impact of Micro-RNA to Cope Abiotic Stress

MicroRNAs are involved in the plant’s development and adaptation to different
stresses by regulating interactions between plants and environmental components
(Ferdous et al. 2015). The molecular mechanism of miRNA action on abiotic stress
is a powerful tool for plant breeding, especially in changing climatic conditions
(Shriram et al. 2016).

18.10 Impact of Transgenic Approaches to Explore Reactive
Species and Antioxidant Machinery Abiotic Stress in Plants

The plant faced various stresses especially abiotic stress which leads to the modifi-
cation in stress-sensitive metabolites, genes, and proteins that regulate the growth of
plant and cope the harmful effects of stress. Therefore, understanding molecular or
biochemical mechanisms under stressful environmental conditions may be the key to
creating stress-resilient plants. Traditional molecular breading strategy involves
identifying QTLs related to stress resistance. However, traditional disadvantages
of molecular breading include agronomic transmission of unwanted traits. Trans-
genic approaches also have negative impact on the plant and influence the gene
expression antioxidant enzymes in plants and also limit the activity osmoprotectants.
To explore this activity, it needs to observe the single gene expression for detoxifi-
cation enzymes, osmolyte biosynthesis pathway enzymes, aquaporins or osmolyte
biosynthesis pathway enzymes, or transfer of several genes that activate TF to
regulate abiotic stress expression (Wani et al. 2016). It is important to use them as
effective targets for engineering crops against abiotic stress. APX, CAT, and SOD
are important antioxidant stress-responsive genes (MDAR, POX, GR, GPX, and
DHAR.) in crops. In transgenic peas Mn-SOD overexpression resulted in drought
tolerant (Wang et al. 2005). The overexpression of APX and Cu-Zn-SOD gene
fescue plants resulted in ROS removal and increase resistance against various
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stresses (Lee et al. 2007). The simultaneous overexpression of NDPK2, APX, and
Cu-Zn-SOD enabled the plant to survive under harsh and stressful environment
(Kim et al. 2010). The overexpression of various enzymes including aldehyde
reductases (ALR), aldose reductase (ADR), aldo–keto reductases (AKRs), and
glyoxalases detoxifies RCS. PsAKR1, MG, and OsALR1 MDA overexpression
detoxifies under saline condition in rice and tobacco (Nisarga et al. 2017). By
detoxifying reactive aldehyde, the overexpression of AKR4C8 and AKR4C9 in
Arabidopsis increases oxidative stress resistance (Simpson et al. 2009)]. The
overexpression of ALDH3H1, ALDH7B4, and ALDH3I1 decline the lipid peroxi-
dation rate and enhanced the resistance against abiotic stress in Arabidopsis
(Kotchoni et al. 2006). The UV-B irradiation and drought methyl viologen
(MV) increase with the overexpression of AKR and MsALR in the cytotoxic
RCC. Glyoxalase pathway improves resistance to abiotic stress by the reduction of
oxidative damage through rapid MG formation through overexpression of (Gly I, II,
and III) genes. Similarly, the overexpression of ZmLEA3 enhances the tolerance
against osmatic and oxidative stress in tobacco plants (Liu et al. 2016). In
Arabidopsis overexpression of AtRZFP showed higher superoxide dismutase and
peroxidase activity, reduced ROS accumulation, and increased the contents of
proline and soluble sugars because AtRZFP associated directly with osmotic stress
and salinity (Zang et al. 2016).

Likewise, mi-RNAs play an important role in regulating gene expression that is
involved in osmotic regulations and stress responses in recent years, and miRNAs
have been used to developing abiotic stress-resistant crops (Shriram et al. 2016). The
H2S downregulates the transcription levels of miR393a and miR393b, while NaHS
treatment showed different miRNA expression related to drought stress of
miRNA398, miRNA167, and miRNA396 at seedling stage in Arabidopsis. In
maize the overexpression of miRNA and ZmmiR156 induced the tolerance against
oxidative stress in tobacco plants under drought and salinity stress. The high
concentration of SOD, CAT, and APX and the lower levels of MDA were observed
in miRNA and ZmmiR156 transgenic maize plant (Kang et al. 2020). The
overexpression of free radical in transgenic plant scavengers showed better stress
tolerance, and some contradictory results have been obtained, maybe due to reduc-
tion of radical scavenging machinery. McKersie et al. (1996) describe that
overexpression of Mn-SOD in alfalfa increased dis-mutation of superoxide radicals
and improves plant survival at low temperature but disease resistance decreased.
However, Creissen et al. (1999) studied that transgenic tobacco plant showed more
capacity of glutathione biosynthetic in chloroplasts which lead to oxidative stress.
Light et al. (2005) describe that a genetically modified cotton line (Gossypium
hirsutum L.) indicating tobacco GST, that results in salinity, cold and herbicides
resistance.
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18.11 Conclusion

Abiotic stresses are main limiting factor affecting plant growth and development all
over the world. To decipher biochemical, physiological, molecular, cellular
mechanisms of abiotic stress reaction and tolerance development is need of the
time to develop sustainable agricultural production. Abiotic stress leads to ROS
gathering, which resulted in plant oxidative damage. Primarily, ROS were consid-
ered lethal molecules, and aerobic metabolites are present in various subcellular
compartments. ROS metabolism is essential under stress condition, for plant adap-
tation, survival, growth, and development. Under stress conditions, antioxidant
systems of enzymatic and nonenzymatic sustain and balance among detoxification
and ROS production. In contradiction, ROS are observed as double function in plant
biology as result of molecular cross-talk with other signaling molecules, that is, RSS
and RNA. They perform signaling functions at low concentrations, but high oxida-
tive stress may result in cell death, and as result of signaling pathway activation,
ROS toxicity obviously kills cells. In addition, modern genome editing tools such as
CRISPR/Cas are helping tools for mutant plant development for one or more genes
(ROS detoxification regulators) to improve antioxidant defense system activity and
increase development and growth of plants. Recently, rapid propagation is powerful
tool for plant development and growth acceleration under required conditions.
Therefore, genome editing and rapid plant breeding techniques can be used to
develop genetically modified plants with stress-induced antioxidant.

References

Abdelaal KA, El-Maghraby LM, Elansary H, Hafez YM, Ibrahim EI, El-Banna M, El-Esawi M,
Elkelish A (2020) Treatment of sweet pepper with stress tolerance-inducing compounds
alleviates salinity stress oxidative damage by mediating the physio-biochemical activities and
antioxidant systems. Agronomy 10:26

Aghaei K, Ehsanpour AA, Komatsu S (2009) Potato responds to salt stress by increased activity of
antioxidant enzymes. J Integr Plant Biol 51:1095–1103

Agrawal SB, Singh S, Agrawal M (2009) Ultraviolet-B induced changes in gene expression and
antioxidants in plants. Adv Botan Res 52:47–86

Ahanger MA, Qin C, Begum N, Maodong Q, Dong XX, El-Esawi M, El-Sheikh MA, Alatar AA,
Zhang L (2019) Nitrogen availability prevents oxidative effects of salinity on wheat growth and
photosynthesis by up-regulating the antioxidants and osmolytes metabolism, and secondary
metabolite accumulation. BMC Plant Biol 19(1):1–12

Ahanger MA, Mir RA, Alyemeni MN, Ahmad P (2020) Combined effects of brassinosteroid and
kinetin mitigates salinity stress in tomato through the modulation of antioxidant and osmolyte
metabolism. Plant Physiol Biochem 147:31–42

Ahmad P, Ahanger MA, Alam P, Alyemeni MN, Wijaya L, Ali S, Ashraf M (2019) Silicon
(Si) supplementation alleviates NaCl toxicity in mung bean [Vigna radiata (L.) Wilczek]
through the modifications of physio-biochemical attributes and key antioxidant enzymes. J
Plant Growth Regul 38:70–82

Anee TI, Nahar K, Rahman A, Mahmud JA, Bhuiyan TF, Alam MU, Fujita M, Hasanuzzaman M
(2019) Oxidative damage and antioxidant defense in Sesamum indicum after different
waterlogging durations. Plan Theory 8:196

412 M. M. Aslam et al.



Anjum SA, Ashraf U, Tanveer M, Khan I, Hussain S, Shahzad B, Zohaib A, Abbas F, Saleem MF,
Ali I (2017) Drought induced changes in growth, osmolyte accumulation and antioxidant
metabolism of three maize hybrids. Front Plant Sci 8:69

Arora A, Byrem TM, Nair MG, Strasburg GM (2000) Modulation of liposomal membrane fluidity
by flavonoids and isoflavonoids. Arch Biochem Biophys 373(1):102–109

Asada K (1996) Radical production and scavenging in the chloroplasts. In: Baker NR
(ed) Photosynthesis and the environment. Kluwer, Dordrecht, The Netherlands, pp 123–150

Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R, Kubo A et al (2004) Overexpression of
ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water
deficit. Physiol Plant 121:231–238

Barnes JD, Zheng Y, Lyons TM (2002) Plant resistance to ozone: the role of ascorbate. In:
Omasa K, Saji H, Youssefian S, Kondo N (eds) Air pollution and plant biotechnology. Springer,
Tokyo, Japan, pp 235–254

Basu S, Roychoudhury A, Saha PP, Sengupta DN (2010) Comparative analysis of some biochemi-
cal responses of three indica rice varieties during polyethylene glycol-mediated water stress
exhibits distinct varietal differences. Acta Phys Plant 32:551–563

Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev
Plant Physiol Plant Mol Biol 43(1):83–116

Cen H, Wang T, Liu H, Tian D, Zhang Y (2020) Melatonin application improves salt tolerance of
alfalfa (Medicago sativa L.) by enhancing antioxidant capacity. Plan Theory 9(2):220

Chang-Quan W, Rui-Chang L (2008) Enhancement of superoxide dismutase activity in the leaves
of white clover (Trifolium repens L.) in response to polyethylene glycol-induced water stress.
Acta Phys Plant 30:841–847

Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, OsÓRio ML, Carvalho I, Faria T,
Pinheiro C (2002) How plants cope with water stress in the field? Photosynthesis and growth.
Ann Bot 89:907–916

Chen Q, Yang G (2020) Signal function studies of ROS, especially RBOH-dependent ROS, in plant
growth, development and environmental stress. J Plant Growth Regul 39(1):157–171

Chen L, Zhang L, Yu D (2010) Wounding-induced WRKY8 is involved in basal defense in
Arabidopsis. Mol Plant-Microbe Interact 23(5):558–565

Cheng YW, Kong XW,Wang N, Wang TT, Chen J, Shi ZQ (2020) Thymol confers tolerance to salt
stress by activating anti-oxidative defense and modulating Na+ homeostasis in rice root.
Ecotoxicol Environ Saf 188:109894

Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress
and stress combination. Plant J 90(5):856–867. https://doi.org/10.1111/tpj.13299

Chutipaijit S, Cha-Um S, Sompornpailin K (2009) Differential accumulations of proline and
flavonoids in indica rice varieties against salinity. Pak J Bot 41:2497–2506

Creissen G, Firmin J, Fryer M, Kular B, Leyland N, Reynolds H, Pastori G, Wellburn F, Baker N,
Wellburn A, Mullineaux P (1999) Elevated glutathione biosynthetic capacity in the chloroplasts
of transgenic tobacco plants paradoxically causes increased oxidative stress. Plant Cell 11(7):
1277–1292

De Pinto MC, De Gara L (2004) Changes in the ascorbate metabolism of apoplastic and symplastic
spaces are associated with cell differentiation. J Exp Bot 55:2559–2569

Ding X, Jiang Y, He L, Zhou Q, Yu J, Hui D, Huang D (2016) Exogenous glutathione improves
high root-zone temperature tolerance by modulating photosynthesis, antioxidant and osmolytes
systems in cucumber seedlings. Sci Rep 6:35424

Djanaguiraman M, Perumal R, Jagadish S, Ciampitti I, Welti R, Prasad P (2018) Sensitivity of
sorghum pollen and pistil to high-temperature stress. Plant Cell Environ 41:1065–1082

Ellouzi H, Hamed K, Cela J, Müller M, Abdelly C, Munné-Bosch S (2013) Increased sensitivity to
salt stress in tocopherol deficient Arabidopsis mutants growing in a hydroponic system. Plant
Signal Behav 8:e23136

18 Revisiting the Crucial Role of Reactive Oxygen Species and Antioxidant. . . 413

https://doi.org/10.1111/tpj.13299


Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T et al (2007)
Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced
tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264

Epple P, Mack AA, Morris VR, Dangl JL (2003) Antagonistic control of oxidative stress-induced
cell death in Arabidopsis by two related, plant-specific zinc finger proteins. Proc Natl Acad Sci
100(11):6831–6836

Eyidogan F, Öz MT (2007) Effect of salinity on antioxidant responses of chickpea seedlings. Acta
Phys Plant 29:485–493

Fahad S, Hussain S, Saud S, Khan F, Hassan S, Nasim W, Arif M, Wang F, Huang J (2016)
Exogenously applied plant growth regulators affect heat-stressed rice pollens. J Agron Crop Sci
202:139–150

Farhat F, Arfan M, Tariq A, Riaz R, Tabassum HN, Aslam MM (2021) Moringa leaf extract and
ascorbic acid evoke potentially beneficial antioxidants especially phenolic in wheat grown under
cadmium. Pak J Bot 53(6):2033–2040. https://doi.org/10.30848/pjb2021-6(16)

Ferdous J, Hussain SS, Shi B-J (2015) Role of microRNAs in plant drought tolerance. Plant
Biotechnol J 13:293–305

Foyer CH, Noctor G (2016) Stress-triggered redox signalling: what’s in pROSpect? Plant Cell
Environ 39(5):951–964

Gadjev I, Vanderauwera S, Gechev TS, Laloi C, Minkov IN, Shulaev V, Apel K, Inzé D, Mittler R,
Van Breusegem F (2006) Transcriptomic footprints disclose specificity of reactive oxygen
species signaling in Arabidopsis. Plant Physiol 141(2):436–445

Gapiñska M, Skłodowska M, Gabara B (2008) Effect of short-and long-term salinity on the
activities of antioxidative enzymes and lipid peroxidation in tomato roots. Acta Phys Plant
30:11–18

Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress
tolerance in crop plants. Plant Physiol Biochem 48:909–930

Gilroy S, Suzuki N, Miller G, Choi W-G, Toyota M, Devireddy AR, Mittler R (2014) A tidal wave
of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci
19(10):623–630

Gupta R, Luan S (2003) Redox control of protein tyrosine phosphatases and mitogen activated
protein kinases in plants. Plant Physiol 132:1149–1152

Hamim H, Violita V, Triadiati T, Miftahudin M (2017) Oxidative stress and photosynthesis
reduction of cultivated (Glycine max L.) and wild soybean (G. tomentella L.) exposed to drought
and paraquat. Asian J Plant Sci 16(2):65–77

Han C, Liu Q, Yang Y (2009) Short-term effects of experimental warming and enhanced
ultraviolet-B radiation on photosynthesis and antioxidant defense of Picea asperata seedlings.
Plant Growth Regul 8(2):153–162

Han Q-H, Huang B, Ding C-B, Zhang Z-W, Chen Y-E, Hu C, Zhou L-J, Huang Y, Liao J-Q,
Yuan S, Yuan M (2017) Effects of melatonin on anti-oxidative systems and photosystem II in
cold-stressed rice seedlings. Front Plant Sci 8

Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, bio-
chemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–
9684

Hasanuzzaman M, Nahar K, Anee TI, Fujita M (2017a) Exogenous silicon attenuates cadmium-
induced oxidative stress in Brassica napus L. by modulating AsA-GSH pathway and glyoxalase
system. Frontiers. Plant Sci 8:1061

Hasanuzzaman M, Nahar K, Hossain MS, Anee TI, Parvin K, Fujita M (2017b) Nitric oxide
pretreatment enhances antioxidant defense and glyoxalase systems to confer PEG-induced
oxidative stress in rapeseed. J Plant Interact 12(1):323–331

Hasanuzzaman M, Nahar K, Rahman A, Al Mahmud J, Alharby HF, Fujita M (2018) Exogenous
glutathione attenuates lead-induced oxidative stress in wheat by improving antioxidant defense
and physiological mechanisms. J Plant Interact 13(1):203–212

414 M. M. Aslam et al.

https://doi.org/10.30848/pjb2021-6(16)


Hasanuzzaman M, Bhuyan M, Anee TI, Parvin K, Nahar K, Mahmud JA, Fujita M (2019)
Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under
abiotic stress. Antioxidants 8:384

Jahan B, AlAjmi MF, Rehman MT, Khan NA (2020) Treatment of nitric oxide supplemented with
nitrogen and sulfur regulates photosynthetic performance and stomatal behavior in mustard
under salt stress. Physiol Plant 168(2):490–510

Jain K, Kataria S, Guruprasad KN (2003) Changes in antioxidant defenses of cucumber cotyledons
in response to UV-B and to the free radicals generating compound AAPH. Plant Sci 165:551–
557

Janas KM, Amarowicz R, Zielinska-Tomaszewska J, Kosinska A, PosmykMM (2009) Induction of
phenolic compounds in two dark-grown lentil cultivars with different tolerance to copper ions.
Acta Physiol Plant 31(3):587–595

Jaspers P, Kangasjärvi J (2010a) Reactive oxygen species in abiotic stress signaling. Phys Planet
138(4):405–413

Jaspers P, Kangasjärvi J (2010b) Reactive oxygen species in abiotic stress signaling. Physiol Plant
138(4):405–413

Kandziora-Ciupa M, Ciepal R, Nadgórska-Socha A, Barczyk G (2013) A comparative study of
heavy metal accumulation and antioxidant responses in Vaccinium myrtillus L. leaves in
polluted and non-polluted areas. Environ Sci Pollut Res 20:4920–4932

Kang T, Yu CY, Liu Y, Song WM, Bao Y, Guo XT, Li B, Zhang HX (2020) Subtly manipulated
expression of ZmmiR156 in tobacco improves drought and salt tolerance without changing the
architecture of transgenic plants. Front Plant Sci 10:1664

Kim MD, Kim YH, Kwon SY, Yun DJ, Kwak SS, Lee HS (2010) Enhanced tolerance to methyl
viologen-induced oxidative stress and high temperature in transgenic potato plants
overexpressing the CuZnSOD, APX and NDPK2 genes. Physiol Plant 140(2):153–162

Kobayashi K, Kumazawa Y, Miwa K, Yamanaka S (1996) ε-(γ-Glutamyl)lysine cross-links of
spore coat proteins and transglutaminase activity in Bacillus subtilis. FEMSMicrobiol Lett 144:
157–160

Kotchoni SO, Kuhns C, Ditzer A, Kirch HH, Bartels D (2006) Over-expression of different
aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and
protects plants against lipid peroxidation and oxidative stress. Plant Cell Environ 29(6):
1033–1048

Kukreja S, Nandwal AS, Kumar N, Sharma SK, Unvi V, Sharma PK (2005) Plant water status,
H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots
as affected by salinity. Plant Biol 49:305–308

Lalarukh I, Shahbaz M (2020) Response of antioxidants and lipid peroxidation to exogenous
application of alpha-tocopherol in sunflower (Helianthus annuus L.) under salt stress. Pak J
Bot 52:75–83

Lee SH, Ahsan N, Lee KW, Kim DH, Lee DG, Kwak SS, Kwon SY, Kim TH, Lee BH (2007)
Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in
transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J
Plant Physiol 164(12):1626–1638

Light GG, Mahan JR, Roxas VP, Allen RD (2005) Transgenic cotton (Gossypium hirsutum L.)
seedlings expressing a tobacco glutathione S-transferase fail to provide improved stress toler-
ance. Planta 222(2):346–354

Liu JX, Srivastava R, Che P, Howell SH (2007) Salt stress responses in Arabidopsis utilize a signal
transduction pathway related to endoplasmic reticulum stress signaling. Plant J 51(5):897–909

Liu X, Hua X, Guo J, Qi D, Wang L, Liu Z et al (2008) Enhanced tolerance to drought stress in
transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from
Arabidopsis thaliana. Biotechnol Lett 30:1275–1280

Liu Y, Liang J, Sun L, Yang X, Li D (2016) Group 3 LEA protein, ZmLEA3, is involved in
protection from low temperature stress. Front Plant Sci 7:1011

18 Revisiting the Crucial Role of Reactive Oxygen Species and Antioxidant. . . 415



Liu J, Hasanuzzaman M, Wen H, Zhang J, Peng T, Sun H, Zhao Q (2019) High temperature and
drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed
germination growth in rice. Protoplasma 256(5):1217–1227

Liu T, Ye X, Li M, Li J, Qi H, Hu X (2020) H2O2 and NO are involved in trehalose-regulated
oxidative stress tolerance in cold-stressed tomato plants. Environ Exp Bot 171:103961

Loreti E, van Veen H, Perata P (2016) Plant responses to flooding stress. Curr Opin Plant Biol 33:
64–71

Lukaszewicz M, Matysiak-Kata I, Skala J, Fecka I, Cisowski W, Szopa J (2004) Antioxidant
capacity manipulation in transgenic potato tuber by changes in phenolic compounds content. J
Agric Food Chem 52(6):1526–1533

Mafakheri A, Siosemardeh A, Bahramnejad B, Struik PC, Sohrabi Y (2010) Effect of drought stress
on yield, proline and chlorophyll contents in three chickpea cultivars. Aust J Crop Sci 4:580–
585

Malik S, Ashraf M (2012) Exogenous application of ascorbic acid stimulates growth and photosyn-
thesis of wheat (Triticum aestivum L.) under drought. Soil Environ 31:72–77

Matsuo M, Johnson JM, Hieno A, Tokizawa M, Nomoto M, Tada Y, Godfrey R, Obokata J,
Sherameti I, Yamamoto YY, Böhmer FD (2015) High REDOX RESPONSIVE TRANSCRIP-
TION FACTOR1 levels result in accumulation of reactive oxygen species in Arabidopsis
thaliana shoots and roots. Mol Plant 8(8):1253–1273

McKersie BD, Bowley SR, Harjanto E, Leprince O (1996) Water-deficit tolerance and field
performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 111:
1177–1181

Mishra S, Jha AB, Dubey RS (2011) Arsenite treatment induces oxidative stress, upregulates
antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248(3):
565–577

Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci
11(1):15–19

Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37(3):
118–125

Miyake C, Asada K (1994) Ferredoxin-dependent photoreduction of the monodehydroascorbate
radical in spinach thylakoids. Plant Cell Physiol 35(4):539–549

Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Mahmud J-A, Suzuki T, Fujita M (2017a)
Insights into spermine-induced combined high temperature and drought tolerance in mung bean:
osmoregulation and roles of antioxidant and glyoxalase system. Protoplasma 254(1):445–460

Nahar K, Hasanuzzaman M, Suzuki T, Fujita M (2017b) Polyamines-induced aluminum tolerance
in mung bean: a study on antioxidant defense and methylglyoxal detoxification systems.
Ecotoxicology 26(1):58–73

Nisarga KN, Vemanna RS, Kodekallu Chandrashekar B, Rao H, Vennapusa AR, Narasimaha A,
Makarla U, Basavaiah MR (2017) Aldo-ketoreductase 1 (AKR1) improves seed longevity in
tobacco and rice by detoxifying reactive cytotoxic compounds generated during ageing. Rice
(New York, NY) 10(1):11

Noctor C, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu
Rev Plant Biol 49:249–279

Pang CH, Wang BS (2008) Oxidative stress and salt tolerance in plants. In: Luttge U, Beyschlag W,
Murata J (eds) Progress in botany. Springer, Berlin, Germany, pp 231–245

Park JS, Lee EJ (2019) Waterlogging induced oxidative stress and the mortality of the Antarctic
plant, Deschampsia antarctica. J Ecol Environ 43:29

Parvin K, Nahar K, Hasanuzzaman M, Bhuyan MHMB, Mohsin SM, Fujita M (2020) Exogenous
vanillic acid enhances salt tolerance of tomato: insight into plant antioxidant defense and
glyoxalase systems. Plant Physiol Biochem 150:109–120

416 M. M. Aslam et al.



Pinto E, Sigaud-Kutner TCS, Leitao MAS, Okamoto OK, Morse D, Colepicolo P (2003) Heavy
metalinduced oxidative stress in algae. J Phycol 39(6):1008–1018

Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress
tolerance. Trends Plant Sci 17(6):369–381

Qin C, Ahanger MA, Zhou J, Ahmed N, Wei C, Yuan S, Ashraf M, Zhang L (2020) Beneficial role
of acetylcholine in chlorophyll metabolism and photosynthetic gas exchange in Nicotiana
benthamiana seedlings under salinity stress. Plant Biol 22:357–365

Radotic K, Du T, Mutavd ´ ziˇ c, D. (2000) Changes in peroxidase activity and isoenzymes in spruce
needles after exposure to different concentrations of cadmium. Environ Exp Bot 44(2):105–113

Rady MM, Belal HEE, Gadallah FM, Semida WM (2020) Selenium application in two methods
promotes drought tolerance in Solanum lycopersicum plant by inducing the antioxidant defense
system. Sci Hortic 266:109290

Raja V, Majeed U, Kang H, Andrabi KI, John R (2017) Abiotic stress: interplay between ROS,
hormones and MAPKs. Environ Exp Bot 137:142–157

Rasheed R, Iqbal M, Ashraf MA, Hussain I, Shafiq F, Yousaf A, Zaheer A (2018) Glycine betaine
counteracts the inhibitory effects of waterlogging on growth, photosynthetic pigments, oxida-
tive defence system, nutrient composition, and fruit quality in tomato. J Hortic Sci Biotechnol
93:385–391

Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019) Impact of climate change on
crops adaptation and strategies to tackle its outcome: a review. Plan Theory 8:34

Rehman S, Abbas G, Shahid M, Saqib M, Umer Farooq AB, Hussain M, Murtaza B, Amjad M,
Naeem MA, Farooq A (2019) Effect of salinity on cadmium tolerance, ionic homeostasis and
oxidative stress responses in conocarpus exposed to cadmium stress: implications for
phytoremediation. Ecotoxicol Environ Saf 171:146–153

Repetto M, Semprine J, Boveris A (2012) Lipid peroxidation: chemical mechanism, biological
implications and analytical determination. In: Lipid peroxidation, InTech

Roychoudhury A, Basu S (2012) Ascorbate-Glutathione and plant tolerance to various abiotic
stresses. In: Anjum NA, Umar S, Ahmad A (eds) Oxidative stress in plants: causes,
consequences and tolerance. IK International Publishers, New Delhi, pp 177–258

Roychoudhury A, Ghosh S (2013) Physiological and biochemical responses of mungbean (Vigna
radiata L. Wilczek) to varying concentrations of cadmium chloride or sodium chloride. Unique
J Pharm Biol Sci 1:11–21

Roychoudhury A, Basu S, Sarkar SN, Sengupta DN (2008) Comparative physiological and
molecular responses of a common aromatic indica rice cultivar to high salinity with
non-aromatic indica rice cultivars. Plant Cell Rep 27:1395–1410

Roychoudhury A, Basu S, Sengupta DN (2012) Antioxidants and stress-related metabolites in the
seedlings of two indica rice varieties exposed to cadmium chloride toxicity. Acta Phys Plant 34:
835–847

Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101(1):7–12
Schuller DJ, Ban N, Van Huystee RB, McPherson A, Poulos TL (1996) The crystal structure of

peanut peroxidase. Structure 4(3):311–321
Semchuk NM, Lushchak OV, Falk J, Krupinska K, Lushchak VI (2009) Inactivation of genes,

encoding tocopherol biosynthetic pathway enzymes, results in oxidative stress in outdoor grown
Arabidopsis thaliana. Plant Physiol Biochem 47(5):384–390

Shalata A, Neumann PM (2001) Exogenous ascorbic acid (vitaminC) increases resistance to salt
stress and reduces lipid peroxidation. J Exp Bot 52:2207–2211

Shao HB, Chu LY, Lu ZH, Kang CM (2008) Primary antioxidant free radical scavenging and redox
signaling pathways in higher plant cells. Int J Biol Sci 4(1):8–14

Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of
antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46:209–221

Sharma P, Jha AB, Dubey RS (2010) Oxidative stress and antioxidative defense system in plants
growing under abiotic Stresses. In: Pessarakli M (ed) Handbook of plant and crop stress. CRC
Press, Taylor and Francis Publishing Company, pp 89–138

18 Revisiting the Crucial Role of Reactive Oxygen Species and Antioxidant. . . 417



Shi H, Wang X, Ye T, Cheng F, Deng J, Yang P, Zhang Y, Chan Z (2014) The Cys2/His2-type zinc
finger transcription factor ZAT6 modulates biotic and abiotic stress responses by activating
salicylic acid-related genes and CBFs in Arabidopsis. Plant Physiol 165(3):1367–1379

Shriram V, Kumar V, Devarumath RM, Khare TS, Wani SH (2016) MicroRNAs as potential targets
for abiotic stress tolerance in plants. Front Plant Sci 7:817

Simova-Stoilova L, Vaseva I, Grigorova B, Demirevska K, Feller U (2010) Proteolytic activity and
cysteine protease expression in wheat leaves under severe soil drought and recovery. Plant
Physiol Biochem 48:200–206

Simpson PJ, Tantitadapitak C, Reed AM, Mather OC, Bunce CM, White SA, Ride JP (2009)
Characterization of two novel aldo-keto reductases from Arabidopsis: expression patterns,
broad substrate specificity, and an open active-site structure suggest a role in toxicant metabo-
lism following stress. J Mol Biol 392(2):465–480

Singh A, Kumar A, Yadav S, Singh IK (2019) Reactive oxygen species-mediated signaling during
abiotic stress. Plant Gene 18:100173

Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr
Opin Plant Biol 3(3):229–235

Srivastava S, Dubey RS (2011) Manganese-excess induces oxidative stress, lowers the pool of
antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. Plant Growth
Regul 2:1–16

Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases:
the engines of ROS signaling. Curr Opin Plant Biol 14(6):691–699

Tariq A, Shahbaz M (2020) Glycinebetaine induced modulation in oxidative defense system and
mineral nutrients sesame (Sesamum indicum L.) under saline regimes. Pak J Bot 52:775–782

Tayefi-Nasrabadi H, Dehghan G, Daeihassani B, Movafegi A, Samadi A (2011) Some biochemical
properties of guaiacol peroxidases as modified by salt stress in leaves of salt-tolerant and salt-
sensitive safflower (Carthamus tinctorius L.cv.) cultivars. Afr J Biotechnol 10(5):751–763

Tian S, Wang X, Li P, Wang H, Ji H, Xie J, Qiu Q, Shen D, Dong H (2016) Plant aquaporin
AtPIP1;4 links apoplastic H2O2 induction to disease immunity pathways. Plant Physiol
171:1635–1650

Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G (2003) Scavenging of reactive oxygen
species in NaCl-stressed rice (Oryzasativa L.) differential response in salt-tolerant and sensitive
varieties. Plant Sci 165:1411–1418

Vermeirssen V, De Clercq I, Van Parys T, Van Breusegem F, Van de Peer Y (2014) Arabidopsis
ensemble reverse-engineered gene regulatory network discloses interconnected transcription
factors in oxidative stress. Plant Cell 26(12):4656–4679

Wang FZ, Wang QB, Kwon SY, Kwak SS, Su WA (2005) Enhanced drought tolerance of
transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol
162(4):465–472

Wang Z, Xiao Y, Chen W, Tang K, Zhang L (2010) Increased vitamin C content accompanied by
an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. J Integr Plant
Biol 52(4):400–409

Wang P, Du Y, Zhao X, Miao Y, Song CP (2013) The MPK6-ERF6-ROSE7/GCC-box complex
modulates oxidative gene transcription and the oxidative response in Arabidopsis thaliana.
Plant Physiol 161(3):1392–1408

Wani SH, Sah SK, Hussain MA, Kumar V, Balachandra SM (2016) Transgenic approaches for
abiotic stress tolerance in crop plants. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances
in plant breeding strategies, agronomic, abiotic and biotic stress traits. Springer International
Publishing, Switzerland

Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants.
Nature 393:365–369

Xu C, Sullivan JH, Garrett WM, Caperna TJ, Natarajan S (2008) Impact of solar Ultraviolet-B on
proteomein soybean lines differing in flavonoid contents. Phytochemistry 69:38–48

418 M. M. Aslam et al.



Xue M, Guo T, Ren M, Wang Z, Tang K, Zhang W, Wang M (2019) Constitutive expression of
chloroplast glycerol-3-phosphate acyltransferase from Ammopiptanthus mongolicus enhances
unsaturation of chloroplast lipids and tolerance to chilling, freezing and oxidative stress in
transgenic Arabidopsis. Plant Physiol Biochem 143:375–387

Zaefyzadeh M, Quliyev RA, Babayeva SM, Abbasov MA (2009) The effect of the interaction
between genotypes and drought stress on the superoxide dismutase and chlorophyll content in
durum wheat landraces. Turk J Biol 33(1):1–7

Zang D, Li H, Xu H, Zhang W, Zhang Y, Shi X, Wang Y (2016) An arabidopsis zinc finger protein
increases abiotic stress tolerance by regulating sodium and potassium homeostasis, reactive
oxygen species scavenging and osmotic potential. Front Plant Sci 7:1272

Zhang C, Liu J, Zhang Y, Cai X, Gong P, Zhang J, Wang T, Li H, Ye Z (2011) Overexpression of
SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance
in tomato. Plant Cell Rep 30(3):389–398

Zhang R, Zhou Y, Yue Z, Chen X, Cao X, Xu X, Xing Y, Jiang B, Ai X, Huang R (2019) Changes
in photosynthesis, chloroplast ultrastructure, and antioxidant metabolism in leaves of sorghum
under waterlogging stress. Photosynthetica 57:1076–1083

Zhang T, Shi Z, Zhang X, Zheng S, Wang J, Mo J (2020) Alleviating effects of exogenous
melatonin on salt stress in cucumber. Sci Hortic 262:109070

Zlatev ZS, Lidon FC, Ramalho JC, Yordanov IT (2006) Comparison of resistance to drought of
three bean cultivars. Plant Biol J 50:389–394

Zwack PJ, De Clercq I, Howton TC, Hallmark HT, Hurny A, Keshishian EA, Parish AM,
Benkova E, Mukhtar MS, Van Breusegem F, Rashotte AM (2016) Cytokinin response factor
6 represses cytokinin-associated genes during oxidative stress. Plant Physiol 172(2):1249–1258

18 Revisiting the Crucial Role of Reactive Oxygen Species and Antioxidant. . . 419



Plant Life Under Changing Environment:
An Exertion of Environmental Factors
in Oxidative Stress Modulation
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Abstract

The environment entails set of relationships between biotic and abiotic modules
that are impeccably well adjusted by various natural processes. Being static, land
floras are wide open to an array of harsh environmental settings particularly
abiotic stresses (salinity, drought, temperature fluctuations, heavy metal, ozone,
ultraviolet radiation, as well as nutrient deficits). Oxidative stress promulgated by
the environmental stressors has been considered as a serious constraint that
impacts the development, growth, and reproduction in plants. Due to upsurged
and alarming setup of global warning, the frequency, duration, and intensity of
hostile environmental conditions are projected to be enhanced that will ultimately
have a deleterious bearing on yield and world food production. Plants subjected
to contrary environmental factors promote oxidative stress through reactive
oxygen species (ROS) generation that activates signaling pathways impacting
physiological, biochemical, and molecular processes. In order to maintain a
proper physiological level in plants, ROS is crucial which in turn heavily relies
on enzymatic and nonenzymatic antioxidant operations. So, reinforcing the
understanding and comprehension of oxidative stress and antioxidant system in
plants can aid in improving its tolerance toward punitive environment. In this
book chapter, contemporary outcomes on the metabolism of ROS and anti-
oxidative defense of plants will be elucidated in addition to antioxidant regulation
under adverse environmental factors.
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19.1 Introduction

Natural processes flawlessly balance the environment, which is made up of a system
of relationships between living and nonliving entities. Each species has an impact on
its surroundings and is influenced by it. Salinity, drought, harsh temperatures, metal
toxicity, air pollution, UV light (Choudhury et al. 2013), excessive pesticide levels,
and pathogen infection are all examples of environmental variables that can cause
oxidative stress (OS) (Fig. 19.1) in plants (Al-Gubory and Laher 2018; Foley et al.
2016). OS is triggered by either direct or indirect environmental stresses, such as the
production and buildup of reactive oxygen species (ROS), which harm a cell prior to
its removal. To avoid stimuli, animals have the capacity to migrate and flee. As
sessile animals, plants, on the other hand, have evolved sophisticated stress-relieving
methods. The plant cells exhibit the state of “oxidative stress” if the amount of ROS
generated surpasses the internal defense systems.

Superoxide radical (O2), hydroxyl radical (OH), hydrogen peroxide (H2O2),
singlet oxygen (1O2), and others are examples of reactive oxygen species (ROS)
(Khan and Khan 2017). They are made in cellular parts such as chloroplasts,
peroxisomes, mitochondria, and plasma membrane and are considered natural
byproducts of the aerobic pathway (Apel and Hirt 2004). The fact is that the rise
in ROS levels impacts cellular, physiological, and biochemical processes (S. Li et al.
2018; Martínez et al. 2017; Van Ruyskensvelde et al. 2018). This has a substantial
effect on crop productivity and value (Singh et al. 2017). Taking an example such as
more expression of AtCYP21-4, a protein associated with oxidative stress tolerance,
leads to heftier tubers in potatoes (Solanum tuberosum L.) (Park et al. 2017).
Furthermore, overexpression of CitERF13 in the citrus fruit crust of sweet oranges

Fig. 19.1 Environmental factors and oxidative stress in plants
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(Citrus sinensis L. Osbeck) stemmed in fast chlorophyll decay besides materializa-
tion of ROS (Xie et al. 2017). Similarly, mutations of the singlet oxygen (1O2) over-
generating flu and chlorina1 (ch1) in Arabidopsis (Arabidopsis thaliana) have
revealed that 1O2 caused alterations in gene expression (Shumbe et al. 2016). To
finish, we can state that ROS has a major effect on crop productivity as well as crop
quality.

Over time, oxidative stress exploration has primarily concentrated on Escherichia
coli. However, in the last 10 years, it has shifted from mammals (such as humans) to
plants, predominantly model crops (e.g., Arabidopsis thaliana, rice). This led to a
noteworthy improvement in our knowledge about the functioning and working of
oxidative stress toward developmental, defensive, and environmental factors
(G. Guan and Lan 2018). Over the counteraction of ROS results in the shortfall of
an essential intracellular signaling molecule, henceforth plants developed an antiox-
idant defense system to retain a dynamic balance of ROS.

This chapter focuses on the ROS metabolism in plants besides providing a quick
overview of ROS types, production sites, and induced oxidative stress. Then, we’ll
go through the antioxidative defense machinery’s role in preventing overproduction
of ROS in adverse conditions, as well as a review of recent studies on several
environmental factors that affect oxidative stress regulation.

19.2 The Metabolism of ROS in Plants

19.2.1 Production of ROS

Out of ROS types, H2O2 has garnered a lot of research attention as it is has been
found extremely important for regulations of processes such as senescence (Jajic
et al. 2015), functioning of stomata (Rodrigues et al. 2017), cell wall cross-linking
(J. Li et al. 2017a), controlling of cell cycle (Pokora et al. 2017), photosynthesis
(Exposito-Rodriguez et al. 2017), stress tolerance (Lv et al. 2018), and antioxidative
defense (Liu et al. 2016). H2O2 has also been shown to interact with other signal
molecules critical for plant development and senescence, for instance, abscisic acid,
auxin, brassinosteroid (BR), and ethylene (Alqurashi et al. 2017). Response meticu-
lousness allows diverse signaling transduction routes to work in response to per-
ceived environmental cues, besides changes in H2O2 generation and accumulation
are thought to affect the physiological status of the plants. H2O2 can trigger several
acclamatory reactions with respect to stress signal which strengthen endurance to
diverse stressors, according to several recent studies.

Both stressed and unstressed plant cells generate reactive oxygen species (ROS).
The generation of highly reactive ROS is caused by the gradual depletion of oxygen
caused by high-energy contact or electron transferal processes. The triggering of
ROS in plants is reliant on energy and requires a continuous outflow of electrons
from electron transport actions. These electron transport activities take place in
numerous metabolic conduits positioned in special cellular sections (Das and
Roychoudhury 2014; Gupta et al. 2015). In the presence of light, chloroplasts and
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peroxisomes are the primary ROS generators, whereas mitochondria are the primary
ROS producers in the absence of light (Choudhury et al. 2013). The effective light-
capturing photosynthetic machinery is housed in the chloroplast, which is made up
of an extremely systematized structure of thylakoids. PS I and PSII are the principal
foundations of ROS making in thylakoids and comprise the basis of their light-
harvesting systems (Khan and Khan 2017). When chlorophyll is overexcited under
stress conditions, O2 may generate 1O2 adjacent the response spots of PSII. Many
additional cellular sites also play a role in the production of reactive oxygen species.
Localized NADPH-dependent oxidase transports electrons from NADPH on the
cytoplasmic side to O2, resulting in O2 at the plasma membrane, which is critical
for environmental sensing (P. Sharma et al. 2012). ER is also involved in Cyt P450’s
generation of O2. During unfavorable climatic conditions, stress signals combined
with ABA render the apoplast for H2O2 production (Hu et al. 2006).

19.3 Oxidative Damage

Reduced ROS levels mediate events like stomatal closure, programmed cell death
(PCD) (Petrov et al. 2015), gravitropism (Wassim et al. 2013), and stress tolerance
(Nath et al. 2017) in plant cells. Plants produce excess ROS as a result of constant
environmental stressors, which will not be entirely disposed of by the active oxygen
scavenging mechanism. As a result, important physiological actions such as lipid
peroxidation, nucleic acid oxidation, protein denaturation, enzyme inhibition, as
well as PCD pathway activation should be performed (Das and Roychoudhury
2014; Nath et al. 2017).

Lipids and proteins in plant cells are primary recipients of oxidative harm due to
ROS. Lipid peroxidation, or the oxidative degradation of polyunsaturated lipids in
the plasma membrane, takes place in each organism and is often used as a marker to
measure levels of lipid injury during severe settings (Gaschler and Stockwell 2017).
It has recently been established that lipid peroxidation initiates a cascade of reactions
that can produce other reactive chemicals, for example, ketones, aldehydes, and
hydroxyl acids, as well as change proteins through the oxidation of certain amino
acid residues (Reginato et al. 2015). Modifications like glutathionylation, carbonyl-
ation, nitrosylation, and disulfide link development affect the protein’s activity
(Grimm et al. 2012).

19.4 Antioxidative Defense System in Plants

Increased ROS production in plant cells is caused by salinity, drought, cold, metal
toxicity, air pollution, UV-B radiation, and excessive pesticide concentrations as
well as pathogen presence (Molassiotis et al. 2016). Numerous studies (Cavallini
et al. 2016; Delaunay-Moisan and Appenzeller-Herzog 2015) have established the
importance of intracellular antioxidant defense mechanisms in the face of various
stresses. This antioxidant defense mechanism, which works in diverse subcellular
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sections to scavenge ROS, is made up of enzymatic and nonenzymatic components
(Sharma et al. 2012).

Due to the limitations of the experimental settings, the majority of research on the
antioxidative defense system originally focused on enzymatic features. SOD, APX,
CAT, and other antioxidative defense enzymes have all been studied extensively to
get a better knowledge of how the body responds to oxidative stress caused by a
range of environmental conditions. Many transgenic plants have been created in
recent years with altered antioxidant enzyme expression, leading in improved
tolerance to salt, high temperatures, and drought stress, including Arabidopsis,
tomato, rice, tobacco, and maize (Khan and Khan 2017). Plants may enhance their
resistance to a range of stressors by overexpressing a single gene, and transgenics
that overexpress SOD to improve stress tolerance have been investigated (Cavallini
et al. 2016).

Many plant species have had their genes producing antioxidative defense
enzymes investigated extensively. The majority of research on oxidative stress-
related transcription factors including AP2/ERF, NAC, MYB, and the bHLH family
(Marinho et al. 2014) has concentrated on antioxidant enzyme transcriptional regu-
lation. Overexpression of the buckwheat (Fagopyrum tataricum) FtbHLH3 gene
increased drought tolerance in Arabidopsis, which was ascribed to reduced H2O2

levels, greater SOD and CAT activities, and improved photosynthetic efficiency in
transgenic lines compared to WT (Yao et al. 2017). In response to high levels of
H2O2, rice miR529a overexpression resulted in enhanced seed germination,
increased SOD and POD activity, and decreased leaf rolling rate and chlorophyll
content (Yue et al. 2017). However, the fundamental regulation systems for antioxi-
dant enzymes are unknown and must be investigated.

19.5 Exertion of Environmental Elements in Oxidative Stress
Modulation

19.5.1 Salinity

In several dry and semidry areas globally, soil salinity remains a chief concern which
inhibits the yield and superiority of cultivated harvests. Hypersaline environments
have a variety of effects on stressed crops, including oxidative stress, genotoxicity,
ionic unevenness plus toxicity, nutrient shortage, and osmotic stress, all of which
contribute to the plants’ poor health (Shah et al. 2017). Plant cells reduce photosyn-
thetic electron transport thereby producing disproportionate ROS (Fig. 19.2). Plants
establish multiple means to avert the negative impacts listed above, containing salt
compartmentalization and elimination (W.-H. Wang et al. 2016).

In plants, each enzymatic scavenger works together to combat salt stress and
promote better growth and development. Following NaCl treatment, the activities of
CAT and DHAR rose in all structures of salt-treated maize sprouts, including roots
and developed and underdeveloped leaves, while SOD, APX, GST, and GR
increased mainly in the roots (AbdElgawad et al. 2016). Two native wheat
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salt-tolerant cultivars, BARI Gom 27 and 28, exhibited lower H2O2 accretions and
higher CAT, peroxidase, and APX activities than salt-sensitive cultivars due to
decreased oxidative damage (Siddiqui et al. 2017). The increased expression of
enzymatic antioxidants caused by salt therapy in the studies above implies that salt
treatment is an effective strategy to reduce saline toxicity. However, several
investigations have found that the expression levels of these enzyme genes vary
depending on the salt level, exposure time, and plant developmental stage (Cunha
et al. 2016).

Because antioxidant enzymes are so important, genetic engineering may be
utilized to increase salt tolerance in a variety of plants by overexpressing antioxidant
enzyme pathway genes (Cunha et al. 2016). For example, STRK1 activates Tyr-210,
a critical phosphorylation site in CatC. (receptor-like cytoplasmic kinase). Further-
more, STRK1 overexpression phosphorylated and activated CatC, enhancing salt
and oxidative tolerance while also regulating H2O2 homeostasis. Rice seedling

Fig. 19.2 Exertion of environmental factors in oxidative stress modulation
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growth was boosted by overexpression of STRK1, while rice seedling development
was hampered by deletion of STRK1 (Cunha et al. 2016). In Puccinellia tenuiflora,
long-term exposure to NaHCO3, NaCl, H2O2, and PEG6000 increased PutAPX
expression. Transgenic Arabidopsis plants overexpressing PutAPX showed
improved salt toxicity tolerance and lower levels of lipid peroxidation when
cultivated with 150 or 175 mM NaCl (Q. Guan et al. 2015).

19.5.2 Drought

Drought is a significant environmental stress for plant development in a constantly
warming world and leads to a decline in crop output, particularly for saleable crops
such as rice, wheat, and maize (Hossain et al. 2016). Plants, on the other hand, have
evolved a variety of ways to mitigate the effects of drought (Shah et al. 2017). The
generation of reactive oxygen species (ROS) is shown to be a fundamental mecha-
nism in plants’ physiological response to drought, causing increasing oxidative
damage, restricted development, and final cell death as soon as ROS levels approach
a particular onset (Molassiotis et al. 2016).

ROS scavenging related genes/enzymes with increased expression has been
shown in many studies to assist in the development of long-term drought tolerance
(W.-B. Wang et al. 2009). Activating 10 ROS scavenging related genes in the OE
lines, and downregulating their expression in the RNAi lines, for example, improved
rice drought tolerance via changing ROS homeostasis (Xiong et al. 2018). Drought
treatment reduced leaf water loss, depleted H2O2 concentration, increased leaf water
matter, and enhanced POD and CAT activities in Arabidopsis ZAT18 (a C2H2 zinc
finger protein) OE plants (Yin et al. 2017).

Oxidant enzymes have a major role in ROS scavenging, according to studies
using transgenic plants. In comparison to wild-type (WT) leaf slices, overexpression
of pea (Pisum sativum) MnSOD in rice decreased electrolyte outflow following
polyethylene glycol 6000 usage, which can cause drought stress (Wang et al. 2005).
Overexpression of APX and Cu/ZnSOD in sweet potato chloroplasts enhanced
drought resistance and retrieval, according to another research. When compared to
WT, it also exhibited enhanced photosynthetic activity when exposed to drought
stress (Lu et al. 2010).

19.5.3 Chilling

Crop development, output, and distribution are all hampered by chilling stress. Crop
chilling tolerance must therefore be improved in order to increase crop yields.
Chilling tolerance is generally linked to antioxidant enzyme activity augmentation
plus equivalent H2O2 accretion drop since chilling promotes oxidative stress
resulting in lipid peroxidation, chlorophyll deterioration, and so on.

As typical oxidoreductases, glutaredoxins (GRXs) primarily use glutathione’s
reducing capacity to break disulfide bonds in substrate proteins as well as uphold
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cellular redox evenness. The expression of AtGRXS17 in tomato has been shown to
confer transgenic tomato chilling stress resistance lacking several developmental
abnormalities. When exposed to cold, tomato plants expressing AtGRXS17 have
reduced ion outflow and higher utmost photochemical efficacy than wild-type plants
(Hu et al. 2006). In such transgenic tomato plants, soluble sugar accumulates at a
faster rate as well. To improve resistance to oxidative stress initiated via chilling
stressors, it has been reported that co-expression of MeCu/ZnSOD and MeAPX2 in
cassava (Manihot esculenta Crantz). increased concentrations of antioxidative
enzyme activity in addition to reduced quantities of chlorophyll deficit, lipid peroxi-
dation, and H2O2 buildup (Xu et al. 2014). Similarly, in Brassica rapa,
co-expression of BrMDHAR and BrDHAR increased plant resilience to freezing
via hybridization (Shin et al. 2013).

19.5.4 Metal Toxicity

Heavy metal contamination has become so significant since the industrial revolution
that a growing number of scientists are doing important scientific research. Heavy
metals’ harmful effects on plants and the environment are usually determined by
their concentrations (Stankovic et al. 2014). At normal concentrations of heavy
metals, plants demonstrate their ability to prevent negative consequences (Juknys
et al. 2012). Excessive levels of heavy metals have previously been shown to disrupt
homeostasis and enhance ROS generation in plant cells (Shahid et al. 2014).

Heavy metals ingested by plants are engaged in numerous pathways which
generate free radicals due to their redox activity. Iron (Fe), copper (Cu), chromium
(Valko et al. 2005), and other redox-active elements can take part in a redox-cycling
reaction, causing creation of deadly hydroxyl radicals that cause substantial
impairment to existing cells. When wheat (Triticum aestivum L.) is stressed by Cr,
mannitol has the capability to stimulate an antioxidant enzyme that may aid to
alleviate pathological symptoms (Adrees et al. 2015). Other metals with no redox
capability, for example, lead, cadmium, mercury, zinc, and nickel, depress the
antioxidative system by exhausting glutathione and binding sulfhydryl clusters of
antioxidative enzymes such as reductases, superoxide dismutases, and catalases
(Fryzova et al. 2017). They similarly tamper by means of photosynthetic processes
(Sharma and Dietz 2009). Several writers have pointed out that the severity of
oxidative stress caused by heavy metals differs by species plus among genotypes,
tissues, and/or developing phases. Metal prone vegetation shows severe signs when
exposed to oxidative strain, whereas metal-resilient vegetation shows relatively
minor to no oxidative damage (Juknys et al. 2012).

A number of compounds have been found that may minimize heavy metal uptake
and alleviate oxidative stress in plants, in addition to antioxidant responses in plants.
Abelmoschus esculentus was suppressed by biochar made from Citrus epicarp (L.).
Copper toxicity in rice seedlings was reduced by reducing Cu absorption and
oxidative harm using exogenous SNP (sodium nitroprusside) and GSH (glutathione)
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(Mostofa et al. 2014). Furthermore, some fungi can protect plants through
mycorrhization (Schutzendubel and Polle 2002).

19.5.5 UV-B Radiations

UV-B radiation acts as a preordained abiotic component for photosynthetic plants on
exposure to sunshine. On exposure to excessive quantities of UV-B radiation, many
cellular constituents, especially macromolecules (DNA and protein), are disrupted,
resulting in the formation of oxygen radicals in plants. Crop plants subjected to
physical radiations, such as ionizing and nonionizing UV-B, have been known for
many years to create disproportionate free radicals, which induce chromosomal
changes in the plants (Agrawal et al. 2009). Almost all UV-B irradiation dosages
interfered with meiotic-pollen mother cells and pollen grains in Vicia faba L. (Abdel
Haliem et al. 2013), resulting in a genotoxic effect. Because it acts in the UV-B-
sensing conduit in the roots, the RUS1/RUS2 (Root UV-B Responsive) complex in
Arabidopsis is engaged in seedling morphogenesis and development during the early
stages of development. Seedling development is hampered in the absence of the
RUS1/RUS2 complex because photoreceptors produce a considerably enhanced
signal after UV-B sensing (Leasure et al. 2009).

19.5.6 Pathogens

Plant diseases and epidemics caused by pathogen infection have posed a threat to
plant development, agricultural productivity, and food security around the world.
Pathogens are one of the most dangerous hazards to plants because of their diverse
and constantly developing characteristics. Sessile plants, unlike vertebrates, evolved
a conserved, unique, and complex immune system to battle invading diseases. The
majority of microorganisms are dealt with by physical and chemical barriers, while
the rest are dealt with by particular resistance responses known as host resistance.
Plants respond to PAMPs (pathogen-associated molecular patterns) by triggering a
variety of immunological responses in the cells (Luo et al. 2017).

The role of RBOH in stress feedback has received a lot of attention. ACD11, for
example, controls the ROS-related defense response with Arabidopsis BPA1 and its
homologs as binding partners. Those binding allies are capable of being guided by
RxLR207, a Phytophthora capsici effector, resulting in ROS-mediated cell death,
which is essential for P. capsici pathogenicity (Li et al. 2019).

One more strategy to improve plant disease tolerance is by stopping peroxidase-
catalyzed H2O2 breakdown and enhancement of ROS spurt to exterminate attacking
pathogens. A spontaneous alteration of the transcription element which lowers
peroxidase production besides imparts broad-spectrum blast resistance in rice has
been discovered recently (Li et al. 2017b).

Even though ROS bursts plus buildup injure plant cells, ROS production is
necessary for plant immunity. Interim oxidative stress is used by the plant immune
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system to defend against pathogens because of the signaling and bactericidal
activities of ROS. Plants can detect pathogen invasion thanks to ROS’ dual involve-
ment in signal transduction. However, in order to govern ROS function, its produc-
tion must be strictly regulated.

Swift systemic signaling is critical for plant tolerance to abiotic stressors, which is
aided by ROS and Ca2+ waves (Gilroy et al. 2014). Abiotic stress factors can also
reduce or increase plant tolerance to infections (Bai et al. 2018). After immunogenic
treatment, ROS production spikes in a matter of minutes; consequently, this
biological course may be monitored to determine the role of plant constituents in
the spurt of beforehand immunological feedbacks (Zipfel 2014).

19.6 Conclusions

During their growth, plants are exposed to a range of environmental stresses which
help them to attune to those settings by making molecular, biochemical, and
physiological changes, particularly through antioxidant systems. Due to exceedingly
responsive characteristic and quick half-life of ROS, it is yet unknown in what way
plants perceive pressures then plan for approaching threats. Genetically engineered
plants with overexpressed functional genes have showed promise in mitigating
oxidative stress in recent research. Furthermore, attempts need to increase in order
to develop transgenic florae that co-express numerous beneficial genes in order to
attain high tolerance against various adverse situations.
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Beneficial Role of Phytochemicals
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Abstract

Both biotic and abiotic stresses cause a great harm to plants by hampering growth
and reducing yield. Various unfavorable conditions such as drought and saliniza-
tion lead to an increased production of free radicals (●OH, O2

●�, ●NO) and
imbalances in cellular redox homeostasis. This imbalance results in oxidative
stress and subsequent stress responses in the plant. Oxidative stress can be the
cause of oxidative damage to the biomolecules like proteins, lipids, and
deoxyribonucleic acid (DNA); photosynthetic systems; and cell death. The stress
responses include diverse signaling pathways leading to various molecular,
physiological, biochemical, and morphological adaptations that help the plants
to withstand the stress. In addition to primary metabolites, plants produce various
secondary metabolites that aid in plant survival during stress. Secondary
metabolites such as polyphenols, flavonoids, carotenoids, phenolic acids,
terpenoids, and alkaloids enhance the plant survival by acting as antioxidants,
direct free radical scavenging, indirect ROS signaling, UV absorbing, and
improving structural and functional stabilization and anti-proliferative and
defense against bacteria, fungi, and viruses. Terpenes directly detoxify ROS,
cause membrane stabilization, and lead to stress-induced senescence. Alkaloids
have an antioxidant potential of scavenging free radicals and inhibit H2O2-
induced oxidation. Phenolic compounds efficiently scavenge ROS and act as
potential nonenzymatic antioxidants. In addition to this, these improve plant
metabolism, growth and development, seed germination, and biomass
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accumulation. Increase in secondary metabolite levels in response to various
stresses has been reported in various plants, for example, Catharanthus roseus,
Hypericum perforatum, Artemisia annua, Rauvolfia tetraphylla, Solanum
nigrum, and Achillea fragrantissima.

Keywords

Phytochemicals · Secondary metabolites · Reactive oxygen species · Oxidative
stress · Mitigation

20.1 Introduction

The recent times have aimed at production of more food and prevention of crop
losses in order to meet the demands of ever-increasing human populations. Abiotic
stresses (salinity, drought, heat, cold, UV radiation, heavy metal toxicity) affect a
large portion of arable land, and these are expected to increase due to the impact of
climate change and anthropogenic activities. Abiotic stresses affect plant growth and
yield. These result in imbalances of cellular redox homeostasis with excessive
reactive oxygen species (ROS) production. The balance between ROS generation
and scavenge is disturbed in addition to an accelerated ROS propagation. This leads
to the damage of vital macromolecules (nucleic acids, carbohydrates, proteins, and
lipids) and eventually cell death. Protein damage by ROS is caused by amino acid
oxidation resulting in disulfide bond formation (cysteine), irreversible carbonylation
in side chains (arginine, lysine, and threonine), and methionine sulfoxide formation
(methionine). ROS production hampers the CO2 fixation in the chloroplasts and also
reacts with chlorophyll resulting in the formation of chlorophyll triplet state which
can rapidly give rise to singlet oxygen (1O2), thereby damaging the photosynthetic
complexes (Hasanuzzaman et al. 2020; Sharma et al. 2019b). Phytochemicals are the
biologically active components of plants that are derived from different parts of the
plant such as leaves, barks, seed, seed coat, flowers, roots, and pulps and are used for
various medical purposes (Ingle et al. 2017). These naturally occurring chemical
compounds provide the plants with protection from various diseases and damage.
Besides contributing to the plant’s color, flavor, and aroma, these also protect the
plants from environmental hazards such as various stresses including drought,
salinity, UV exposure, pathogen attack, and pollution (Koche et al. 2016). Among
the tens of thousands of phytochemicals, a small number have been identified and
isolated. These phytochemicals include primary metabolites (amino acids, sugars,
proteins, purines, and pyrimidines) and secondary metabolites such as polyphenols,
flavonoids, lignans, plant steroids, carotenoids, phenolic acids, terpenoids,
isoflavones, phenylpropanoids, and so on (Xiao and Bai 2019).

Secondary metabolites are powerful hydrogen-donating antioxidants that scav-
enge ROS and are accumulated in plants in response to various stresses such as
ultraviolet B, salt, drought, and cold (Kusvuran 2021). Secondary metabolites play a
photo protective role due to the presence of conjugative double bonds (Edreva et al.
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2008). Secondary metabolite synthesis and concentration are affected by plant
physiology, stage of development, genotype, and environmental factors. Secondary
metabolite biosynthesis is accelerated during various potential stresses. Reportedly
more than 100,000 secondary metabolites are synthesized in plants under various
unfavorable conditions (Khare et al. 2020). Major secondary metabolites such as
alkaloids, phenolics, terpenoids, and tannins are potential antimicrobial, antioxidant,
anti-inflammatory, and anti-cancerous agents (Koche et al. 2016). Secondary
metabolites help the plants in surviving various abiotic stresses such as drought
and salinity. Salinization is one of the most destructive abiotic stresses which
induces various morphological, physiological, and biochemical processes in a
plant. Salinization results in high production of ROS leading to oxidative stress. In
order to scavenge ROS, plants produce a large number of secondary metabolites
(Yang et al. 2018). The activation of downstream pathways by drought stress is
mainly the result of phytohormone synthetic networks that initiate the secondary
metabolite biosynthesis. The drought stress is sensed by roots, and the signal is
transmitted to the aboveground tissues that induce efficient phytohormone signaling.
In addition to the scavenging of ROS, drought-induced secondary metabolites also
trigger various mitigation functions in plant tissues. Rise in secondary metabolite
levels in response to drought stress has been reported in various medicinal plants, for
example, Catharanthus roseus, Hypericum perforatum, and Artemisia annua
(Jogawat et al. 2021).

Water scarcity led to an increase in the quantity of secondary metabolites
artemisinin in Artemisia and betulinic acid, quercetin, and rutin in Hypericum
brasiliense. Water deficiency decreased the total flavonoid content in Glechoma
longituba. Salinity causes both ionic and osmotic stress in plants and leads to an
increase or decrease of secondary metabolites. Salt stress increased the reserpine and
vincristine (alkaloids) concentration in Rauvolfia tetraphylla and C. roseus, respec-
tively. An increase in alkaloid content in Solanum nigrum, C. roseus, and Achillea
fragrantissima due to salt stress has been reported. Increased salinity resulted in an
increase in phenolic acid in A. fragrantissima (Verma and Shukla 2015). A signifi-
cant contribution of various flavonoids (catechin, naringenin, ruitin, quercetin) in the
upregulation of enzyme activity of Halliwell-Asada pathway specially glutathione
reductase (GR) and dehydroascorbate reductase (DHAR) has been reported in salt-
tolerant rice cultivar. This resulted in better ROS scavenging and mitigation of
oxidative stress (Banik and Bhattacharjee 2020). Casuarina glauca can thrive
under extreme environments like high salinity. It was seen that in addition to an
effective antioxidant machinery, a flavonoid-based secondary antioxidant system
was activated by C. glauca plants in order to cope with the oxidative stress thereby
enhancing the plant tolerance (Jorge et al. 2019).

20 Beneficial Role of Phytochemicals in Oxidative Stress Mitigation in Plants 437



20.2 Phytochemicals

On the basis of biological requirements, phytochemicals are broadly classified as
primary metabolites and secondary metabolites. The primary metabolism in plants
leads to the production of primary metabolites like fats, carbohydrates, amino acids,
and nucleic acids. Primary metabolites are required for important biological
functions such as growth, development, and reproduction of plant cell. Secondary
metabolites are produced via secondary metabolism processes, and they in return
provide the plant with protection against pathogens, herbivores, and a number of
abiotic stresses (Velu et al. 2018). Secondary metabolites are low molecular weight
compounds that are abundant in the plant kingdom. Secondary metabolites are very
specific and are found in large numbers among the various groups of plants. These
are synthesized from primary metabolites in different chemical configurations by
regulating the primary pathway metabolism. The three major classes of secondary
metabolites present in edible plants are terpenoids, phenolic compounds, and nitro-
gen- and sulfur-containing compounds like alkaloids and glucosinolates.
Phytochemicals like anthocyanins give color, and volatile phytochemicals like
monoterpenes, sesquiterpenes, and some phenylpropanoids are responsible for
taste and aroma (Holopainen et al. 2018).

Terpenes also known as terpenoids are the largest class of secondary metabolites
that are generally insoluble in water. The basic structural element of terpene is
known as an isoprene unit, and all the terpenes are derived from the union of a
five-carbon atom having a branched carbon skeleton. Phenolic compounds contain a
phenol group-hydroxyl group attached to a carbon atom in a benzene ring. The
various derivatives of phenolic compounds are simple phenylpropanoid, benzoic
acid derivatives, anthocyanin, isoflavones, tannins, lignin, and flavonoid
compounds. Secondary metabolites having nitrogen in their structure include
alkaloids, cyanogenic glucoside, and glucosinolate. In alkaloids the nitrogen atom
is usually a part of the heterocyclic ring containing both nitrogen and carbon atoms
(Anulika et al. 2016). Secondary metabolites do not play any role in the primary
metabolic requirements of the plant, but they play an important role in increasing the
plant’s ability to withstand the environmental challenges. These play protective roles
such as antioxidative, free radical scavenging, UV absorbing, and antiproliferative
and defense against bacteria, fungi, and viruses (Kennedy and Wightman 2011).
Plant’s interaction with their living environment takes places via secondary
metabolites. For example, polyphenols help in nutrient mobilization and also in
root to shoot signal transduction. Phenolic compounds in the root exudates alter the
physiochemical properties of the rhizosphere. Phenolics help in humus formation,
nitrogen fixation, and nutrient uptake via the chelation of metallic ions; enhanced
active absorption sites; and accelerated mobilization of elements calcium (Ca),
magnesium (Mg), potassium (K), zinc (Zn), iron (Fe), and manganese (Mn).
Flavonoids play an important role in the maturation of the pollen (Sharma et al.
2019a). In the plant, secondary metabolites can be present in the root, stem, leaves,
or the bark, depending on the type of secondary metabolite. Secondary metabolites
have a restricted distribution in the plant kingdom, that is, a particular secondary
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metabolite can be one in a single or related group of species (Anulika et al. 2016).
Secondary metabolites are translocated from one cell to another via xylem or
phloem. These are accumulated in vacuoles, idioblasts, laticifers, trichomes, and
ducts (Hadacek 2002). In plants the biosynthesis and accumulation of secondary
metabolites are influenced by various genetic, ontogenic, morphogenetic, and envi-
ronmental factors (light, temperature, salinity, soil water, soil fertility) which imply
toward their role in the adaptation and survival of the plant during various environ-
mental stresses (Yang et al. 2018). Secondary metabolite biosynthesis is organ, cell,
or development dependent, and the regulation of genes involved in the biosynthesis
is linked to various environmental, seasonal, and external factors. Alkaloids,
quinolizidines, caffeine, and some terpenes are reportedly synthesized in the chloro-
plast, while the biosynthesis of lipophilic compounds is linked to endoplasmic
reticulum. After the synthesis in a single organ such as roots, roots, or leaves,
secondary metabolites are transported within the plant via xylem and are stored
according to their polarity. Alkaloids, glycosylates, and tannins being hydrophilic
compounds are stored in vacuoles or idioblasts, while terpene-based lipophilic
compounds are stored in trichomes, glandular hairs, resin ducts, thylakoid
membranes, or on the cuticle. Some defense-related compounds (alkaloids,
flavonoids, cyanogenic glycosides, coumarins) may be stored in the epidermis itself.
The storage can be tissue or cell specific. Reportedly in annual plants secondary
metabolites are mostly stored in flowers, fruits, and seeds. On the other hand, bulbs,
roots, rhizomes, and barks in perennial species contain high levels of secondary
metabolites (Acamovic and Brooker 2005). Secondary metabolites provide the
plants with adaptive capacity by the production of complex chemical types and
improving structural and functional stabilization. Plant bioactive compounds are
high in nutritional value and are used as flavoring agents and pharmaceuticals having
industrial value. Recent studies have suggested the antioxidant and anti-radical role
of plant secondary metabolites in oxidative stress defense response. This involves
the production of lipoic and ascorbic acid, flavonoids having o-dihydroxy group
(carotenoids, arylamines, quercetin), and various aliphatic and unsaturated fatty
acids. The defense response system in the family Solanaceae leads to the production
of sesquiterpenes; Brassicaceae members produce glucosinolate-myrosinase;
Fabaceae produce isoflavones; Rutaceae and Meliaceae produce limonoids.
Flavonoids, phenolics, and polyphenolics play a vital role in plant antioxidant
responses, signaling, pigment, and lignin biosynthesis (Isah 2019). Various elicitors
or signal molecules and abiotic stresses induce the secondary metabolite production.
Elicitors are biotic or abiotic factors that induce physiological and morphological
responses in the plants and accumulation of secondary metabolites such as phyto-
alexin. The abiotic elicitors comprise of various chemicals, metal ions, and inorganic
compounds, while the fungi, bacteria, viruses, and herbivores are biotic elicitors.
Elicitors can act as avirulent determinants and are recognized by plant receptors
(R-proteins) that are localized on the plasma membrane or cytoplasm. Elicitors cause
changes in receptor conformation leading to the activation of their corresponding
effectors (ion channels, G-proteins, lipases, and kinases). These initiate signaling
pathways and various defense reactions such as synthesis of defense secondary
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metabolites (Zhao et al. 2005). More than 100,000 secondary metabolites are
produced by the limited taxonomic groups of the plant kingdom. On the basis of
photosynthetic pathway, these are grouped into terpenes (or isoprenoids), phenolic
compounds (phenylpropanoids and flavonoids), and nitrogen-containing
compounds (alkaloids, glucosinolates, and cyanogenic glycosides). The factors
influencing the concentration of secondary metabolites are broadly divided into
four groups: (1) genetic, (2) ontogenic, (3) morphogenetic, and (4) environmental.
The environmental factors include several abiotic factors like temperature, drought,
salinity, seasonality, circadian rhythm, altitude, light, UV radiation, metal ions,
wounding, and nutrient deficiencies and biotic factors (pathogen attack) (Verma
and Shukla 2015).

20.2.1 Terpenoids

Terpenes or terpenoids are the largest group of secondary metabolites, comprising
more than 25,000 substances. These are generally insoluble in water and are
synthesized from primary metabolites by two pathways, that is, mevalonate pathway
(joining three molecules of acetyl-CoA) and methylerythritol 4-phosphate (MEP)
pathway. Terpenoids are polymeric isoprene derivatives that are synthesized from
acetyl coenzyme-A (acetyl Co-A). The number of isoprene units (C5 units) that are
linked in head to tail fashion is the basis for their classification. Monoterpenes (ten
carbons or two C5 units), sesquiterpenes (three C5 units), diterpenes (four C5 units),
triterpenes (six C5 units), tetraterpenes (eight C5 units), and polyterpenoids ([C5]n).
Terpenes include menthol (monoterpenes); gibberellins (diterpenes); sterol, digi-
toxin, digoxin, gitoxin, and brassinosteroids (triterpenes); carotene (tetraterpenoids);
and rubber (terpene polymers) (Bhatla 2018). Essential oils are chiefly composed of
monoterpenes. These are the major components of Angelica species (73%), hyssop
(70%), rose (54%), and mint (45%). In essential oils monoterpene hydrocarbons (α-
and β-pinene, limonene, Δ3-carene, and myrcene) are present as complex mixtures.
Like monoterpenes, sesquiterpenes are also essential oil components and are pre-
dominantly found in cedarwood (98%), vetiver (97%), sandalwood (90%), patchouli
(71%), myrrh (62%), and ginger (59%). These are most prevalent in the family
Asteraceae. Comparatively diterpenoids have a limited distribution. Gibberellic acid
and phytol are the two universally distributed diterpenes. A relatively smaller group
of terpenes are the sesterterpenoids which have both biomedical and synthetic
applications. Triterpenes are of widespread distribution and include α- and
β-amyrin and the derived acids, ursolic, and oleanolic acids. These are present in
the waxy coatings of leaves and also on fruits. Tetraterpenoids and carotenoids
function as accessory pigments in photosynthesis and also give color to fruits
(mostly orange or red) and flowers (mostly yellow). Natural rubber is composed of
polyterpenoids and is present as latex for example, rubber tree (Hevea brasiliensis,
Euphorbiaceae) (Ludwiczuk et al. 2017). In plants volatile terpenes help in the
mitigation of oxidative stress by modulating the oxidative status of plants. High
reactivity of some monoterpenes and sesquiterpenes with ozone suggested the role of
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volatile organic compounds (VOC) in alleviation of oxidative stresses (Holopainen
and Gershenzon 2010). One of the most prominent responses of stressed plants is the
volatile emission profile. The reaction of terpenes with other oxidants mediates the
abiotic stress protection in plants and is also involved in indirect ROS signaling. In
response to photoinhibition, antioxidants such as tocopherol and carotenoids (zea-
xanthin, neoxanthin, and lutein) can directly detoxify ROS. In stress conditions
volatile terpenes in association with phytohormones mediate a process called pre-
mature or stress-induced senescence which may lead to senescence, apoptosis, and
abscission in plants in addition to the economization of available resources. Due to
their amphipathic nature, isoprene causes membrane stabilization by transiently
inserting in the membrane thereby enhancing the hydrophobic interactions of large
protein complexes between themselves or with membrane lipids (Boncan et al.
2020). Solid-phase microextraction-gas chromatography-mass spectrometry
(SPME-GC-MS) analysis of volatile terpenes produced by rice seedlings subjected
to oxidative stress by various abiotic factors revealed a mixture of monoterpenes
(limonene, sabinene, myrcene, α-terpinene, β-ocimene, ɣ-terpinene, and
α-terpinolene) emitted by rice seedlings in a time-dependent manner indicating
toward the antioxidative roles of terpenes (Lee et al. 2015). A higher accumulation
of oleuropein (terpene family secondary metabolite) in leaves and roots of salt-
stressed olive tree suggests its role in the mitigation of oxidative stress. Diterpene,
and carnosic acid in association with α-tocopherol and ascorbate (low molecular
weight antioxidant molecules) protect the Labiatae species from oxidative damage
induced by water stress (Akhi et al. 2021).

In plants, terpenes are involved in the adaptation to various biotic and abiotic
stresses. Being volatile, these help the plants in communicating with neighboring
plants, pollinators with the help of airborne infochemicals (Kabera et al. 2014).
Aromatic monoterpenes are widely present in Asteraceae, Apiaceae, Burseraceae,
Dipterocarpaceae, Lamiaceae, Myricaceae, Myristicaceae, Poaceae, Rutaceae,
Verbenaceae, and resin of conifers. In flowering plants these are used to attract the
pollinating arthropods. These are extracted from plants as essential oils and are used
in perfumes and phytomedicine for treating rheumatism, infections (bacterial, fun-
gal), cold, and intestinal spasms. Carotenoids are the most important tetraterpenes
which are used as accessory pigments for photosynthesis, provide the plants with
protection against UV light, and are powerful antioxidants (Wink 2015). Isoprene
and monoterpene substantial emissions protect various vascular and nonvascular
plants from thermal stress. These volatile compounds are present in an intercalation
with the photosynthetic membranes and hence enhance the membrane functionality.
Volatile monoterpenoids are known to protect photosynthetic tissues of Chrysanthe-
mum morifolium via their herbivore deterrent effects. Volatile terpene mixtures can
also act as interspecific, intraspecific, and intraplant signals in order to induce
defense responses in tissues of the same plant or neighboring plants (Tholl 2015).
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20.2.2 Alkaloids

The most active secondary metabolites include the alkaloids which are widely
distributed in the plant kingdom especially in the angiosperms. These are composed
of one or numerous nitrogen atoms. When the alkaloids are derived from amino
acids and the nitrogen atoms are arranged in a ring structure, these are known as true
alkaloids (e.g., nicotine, atropine), while when present in a side chain, without an
amino acid origin, these are known as pseudoalkaloids (caffeine, theobromine, etc.).
True alkaloids are further divided into several subtypes on the basis of the ring
structure (Wink 2015). Contrary to other secondary metabolites, alkaloids have
independent biosynthetic pathways and may originate from different amino acids.
Alkaloids play a defensive role in plants as they are generally toxic and inhibit
herbivory. Some important alkaloids like morphine, berberine, vinblastine, and
scopolamine are known to have important medicinal properties, while others like
cocaine, caffeine, and nicotine are used as stimulants or sedatives (Olivoto et al.
2017). Approximately 5500 alkaloids are known by far, and these are included in the
most efficient, diverse, and therapeutically important plant substances. Flowering
plants, that is, angiosperms, are the major sources of alkaloids, and as low as 20%
plant species contain alkaloids. These are extremely toxic and bitter but have a
remarkable therapeutic effect when used in small quantities. They protect the plants
against various microorganisms (bacteria and fungi), provide feeding deterrence
against various insects and herbivores, and act as allelochemicals against other
plants. Biosynthetic precursor and heterocyclic ring system classify alkaloids into
various categories such as indole, piperidine, tropane, purine, pyrrolizidine, imidaz-
ole, quinolizidine, isoquinoline, and pyrrolidine alkaloids (Roy 2017). Alkaloids
have an antioxidant potential of scavenging free radicals and inhibit hydrogen
peroxide (H2O2)-induced oxidation (Hasanuzzaman et al. 2020). Root alkaloids in
Catharanthus roseus (L.) (rosea variety) increased significantly under drought stress
(Jaleel et al. 2008a). C. roseus is a source of about 130 terpenoid indole alkaloids
including vincristine and vinblastine, which are used as anticancer drugs. Chromium
toxicity in the plant generated oxidative stress and resulted in antioxidant responses.
This included an increase in concentration of vincristine and vinblastine alkaloids,
which shows their good antioxidant potential (Rai et al. 2014). Drought conditions
led to oxidative stress in Catharanthus roseus (L.) and subsequent antioxidant
responses. The alkaloid ajmalicine significantly increased in drought-stressed
C. roseus plants (Jaleel et al. 2008b). Drought stress in Senecio jacobaea and
Senecio aquaticus led to the accumulation of pyrrolizidine alkaloids in the plants
(Akhi et al. 2021).

20.2.3 Phenolics

A variety of secondary metabolites produced by the plants containing a hydroxyl
functional group into an aromatic ring are known as phenolic compounds. This large
group of compounds can be divided into five subgroups: coumarins, lignins,
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flavonoids, phenolic acids, and tannins. Among these lignins and flavonoids are the
most widespread in plants. Phenols are synthesized by two basic metabolic
pathways: (1) shikimic acid/phenylpropanoid pathway and (2) malonic acid path-
way. Majority of the phenolic compounds are synthesized from phenylalanine which
is a product of the shikimic acid pathway. As a result, these are also known as
phenylpropanoids. Phenylalanine is formed by the combination of erythrose
4-phosphate with phosphoenolpyruvate (PEP). It is then converted into trans-
cinnamic acid by phenylalanine ammonia-lyase (PAL). Further this pathway also
leads to the formation of various other phenolic compounds such as flavonoids,
coumarins, lignans, hydrolysable tannins, monolignols, and lignins. Flavonoids are
potential antioxidants and are further classified into anthocyanins, flavones,
flavonols, and isoflavones. Under optimal and suboptimal conditions, phenolics
produced by the plants play important roles in plant developmental processes such
as cell division, photosynthetic activity, hormonal regulation, reproduction, and
nutrient mineralization. In addition to this plant phenolics impact various physiolog-
ical processes that enhance tolerance and adaptability of plants under stressed
conditions (Olivoto et al. 2017; Sharma et al. 2019a; Cheynier et al. 2013). Abiotic
stresses affect plant growth and result in reduced crop production and crop yield by
50% and 70%, respectively. Secondary metabolism stimulation in plants improves
crop performance, and plants accumulate various polyphenols in order to sustain
various unfavorable environments. Phenolic concentration in plant tissue can be
used as a good indicator to determine the abiotic stress tolerance in plants. Phenols
improve plant metabolism, growth and development, seed germination, and biomass
accumulation. Accumulation of phenolic compounds is a consistent feature of stress
conditions which improves tolerance and adaptability (Sharma et al. 2019a).

Phenolic compounds efficiently scavenge ROS and act as potential nonenzymatic
antioxidants. Owing to their ideal chemical structure, polyphenols are more efficient
antioxidants in vitro than tocopherols and ascorbate. The antioxidative properties of
polyphenols are attributed to their high reactivity as hydrogen and electron donors,
chain breaking function (stabilization and delocalization of the unpaired electrons by
the polyphenol derived radicals), and chelation of the transition metals (Fenton
reaction). The oxidation of lipids and other molecules is prevented by phenolic
antioxidants (PhOH) by rapid donation of hydrogen atoms to radicals, that is,
ROO • + PhOH ! ROOH + PhO•. The phenoxy radical thus formed is relatively
stable and does not further initiate radical reactions. Flavonoids on the other hand are
important phenolic compounds that have the ability to prevent peroxidation by
modifying the lipid packing order and decrease the fluidity of the membranes.
This causes a delay in the diffusion of free radicals, thereby restricting peroxidative
reactions. The functionality of flavonoids depends on the number and arrangement
of their hydroxyl groups attached to ring structures (Tiwari and Sarangi 2015). Study
on Moringa oleifera provided a reaffirmation on the involvement of phenolic
compounds as the first line of defense against oxidative stress (Ramabulana et al.
2016). Arsenic (As) phytotoxicity in Oryza sativa L. was ameliorated by selenium
by the modulation of phenolic compounds and enhanced uptake of nutrient
elements. The increased phenolic compounds include gallic acid, protocatechuic
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acid, ferulic acid, rutin, and thiol metabolism-related enzymes (Chauhan et al. 2017).
The toxicity of free radicals is significantly reduced by phenolic compounds. Nitric
oxide applied to salt-stressed broccoli plants enhanced the total phenolics, chloro-
phyll a, glycine betaine, and activities of antioxidant enzymes. This resulted in
lowering of H2O2 and malondialdehyde (MDA) levels (Akram et al. 2020). The
use of phenolic acids (gallic acid, ferulic acid, p-coumaric acid, caffeic acid, and
salicylic acid) as priming agents had stress alleviating effects on water-stressed
wheat seedlings. These lead to an upregulation of antioxidant enzyme activity with
an increase in total phenolic content resulting in a decrease in H2O2 and MDA levels
and alleviating oxidative damage induced by drought stress (Bhardwaj et al. 2017).

20.3 Oxidative Stress in Plants

Plants are sessile and are exposed to a number of environmental stresses throughout
their life span. These environmental constrains include pathogen attack, temperature
fluctuations, water scarcity, salinization, and high light intensity. When these factors
exceed a certain limit, plants undergo stress. This stress leads to reduced plant
growth and lower productivity. Environmental stresses are responsible for crop
losses worth billions of dollars. Environmental stresses can either be biotic or
abiotic. Biotic stress includes pathogenic microorganisms, predators, fungi, etc.
Abiotic stress is caused by air pollutants, drought, salinity, high light intensity,
and extreme temperatures. Abiotic stress causes various physiological and molecular
changes in the cells including reduced photosynthetic activity, excessive ROS
production, turgor loss, changes in membrane fluidity, composition, concentration
of solutes, accumulation of organic solutes, and specific osmolytes. ROS detoxifica-
tion and cell homeostasis are maintained by accumulation of osmoprotectants
(amino acids, polyols, quaternary ammonium, and tertiary sulfonium compounds)
(Bartwal et al. 2013). Biotic and abiotic signal perception by plant cells leads to the
activation of signaling pathways resulting in phosphorylation cascades, accumula-
tion of jasmonic acid (JA), salicylic acid (SA), abscisic acid (ABA), ethylene, nitric
oxide (NO), and ROS generation. Phytohormone ABA plays important role in
abiotic signaling, while JA, SA, NO, and ethylene are involved in biotic signaling
(Fujita et al. 2006). Ca2+ and ROS are the secondary messengers that play important
roles in stress signaling and secondary metabolite production (Qiao et al. 2021).
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) include radical
species such as hydroxyl radical (●OH), superoxide radical anion (O2

●�), and nitric
oxide radical (●NO), having unpaired electrons and exhibiting short biological half-
lives as well as non-radical species like singlet oxygen (1O2), peroxynitrite
(ONOO�), and hydrogen peroxide (H2O2), which can also be transformed into
some of the mentioned radical species. When the production of ROS and RNS
exceeds the antioxidant capacity of cells, it leads to oxidative stress. Oxidative stress
can be the cause of oxidative damage to the biomolecules like proteins, lipids, and
deoxyribonucleic acid (DNA) (Tavares and Seca 2019). When the excessive pro-
duction of reactive species exceeds antioxidant defenses, the redox balance is
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disturbed, and this gives rise to oxidative stress. Ion imbalance due to environmental
challenges leads to high energy state electrons transferred to molecular oxygen
giving rise to reactive forms such as singlet oxygen, hydroxyl radicals, superoxide
ions, hydroxyl radicals, and peroxides (H2O2). Antioxidant defenses enzymatic and
nonenzymatic components. Ascorbate peroxidase (APX), superoxide dismutase
(SOD), catalase (CAT), glutathione peroxidase, and glutathione reductase
(GR) form the enzymatic component. Nonenzymatic component comprises of
vitamin E, glutathione, ascorbic acid, and a number of secondary metabolites that
help in the mitigation of oxidative stress by scavenging excessive ROS (Matsuura
et al. 2014). It has been reported that abiotic stresses cause more than 50% loss of
average yields in major cereal crops, with 21% reduction reported in maize and 40%
in wheat. Drought tolerance involves better osmoprotection and antioxidant capac-
ity. Secondary metabolites and osmoprotectants reduce the detrimental effects of
stress-induced ROS. During drought stress signaling networks in plants initiate
secondary metabolite biosynthesis that scavenge the ROS and prevent lipid peroxi-
dation. The drought-induced secondary metabolites also alert other plant tissues in
order to perform stress mitigating functions. Secondary metabolites significantly
enhance the plant growth and survival chances during stress conditions. In stressed
environmental conditions such as drought, pyruvate and other intermediates of
glycolysis pathway are diverted for SM synthesis via shikimic acid, melonic acid,
and methylerythritol phosphate pathway (Jogawat et al. 2021). Highly active cell
organelles like chloroplasts, mitochondria, and peroxisomes produce 1–2% of ROS
out of total consumed O2. Chloroplasts are the main sites for ROS generation were
increased ROS limits CO2 fixation. ROS reaction with chlorophyll results in the
generation of (1O2), which in turn damages photosynthetic systems. One to five
percent of consumed O2 in mitochondria leads to H2O2 formation which leads to the
detrimental •OH production. Peroxisomes have a 2- to 50-fold higher concentration
of H2O2 as compared to chloroplasts and mitochondria. Increased ROS production
overwhelming the defense system results in oxidative stress, cell damage, and cell
death (Das and Roychoudhury 2014).

20.4 Role of Phytochemicals in Oxidative Stress Mitigation

Secondary metabolites reportedly play an important role in plant tolerance and
adaptation to various environmental stresses. Environmental factors such as altitude,
salinity, high/low temperature, drought, and light conditions significantly influence
the quality and quantity of secondary metabolites in plants. Combination of various
environmental stresses disrupts cell homeostasis leading to an increase of reactive
oxygen species (ROS) and ultimately oxidative stress. Oxidative stress causes
oxidative damage to the plant, and many plant enzymes such as ascorbate peroxi-
dase, catalase, superoxide dismutase, and glutathione reductase with antioxidative
activity scavenge different ROS (superoxide, hydroxyl radicals, and singlet oxygen).
Qualitative and quantitative increase in secondary metabolites (flavonoids, phenolic
compounds, alkaloids, carotenoids, steroids, tannins, and terpenoids) was observed
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in endemic species grown at higher altitudes, where these withstand various abiotic
stresses. Phenolic antioxidants trapped free radicals inhibiting lipid peroxidation,
prevented the free radical diffusion, and restricted the peroxidative reactions.
Tannins minimized the oxidative damage by scavenging the free radicals and thus
increasing the adaptation to the oxidative stress (Hashim et al. 2020). The antioxi-
dant and antiradical functions of secondary metabolites are attributed to the
available –OH, –NH2, and –SH groups; aromatic nuclei; and unsaturated aliphatic
chains. Flavonoids such as quercetin chelate the transition metals (Fe) and thus
interfere with the production of ROS via Fenton reaction. Tobacco and bean when
subjected water stress and heat shock showed accumulation of polyamines and
phenyl amide formation with ROS scavenging ability. Similarly, anthocyanin accu-
mulation in cotton leaves suffering Na/K imbalance results in higher ROS scaveng-
ing (Edreva et al. 2008). Tryptophan and terpene condensation by strictosidine
synthase leads to the production of monoterpene indole alkaloids (MIA) which are
important bioactive compounds. These include ajmalicine, camptothecin, vincris-
tine, and vinblastine. Reportedly oxidative stress is directly liked to MIA biosynthe-
sis. Osmotic stress in C. roseus cells leads to higher ajmalicine content, which
implies that oxidative stress is significantly correlated with alkaloid production.
Hence, MIA can play antioxidant responses in stressed plants (Matsuura et al.
2014). Increasing salinity led to a significant increase of phenolic compounds and
flavonoids in black mustard. There was an increase of about 159% and 103%
phenols and flavonoids, respectively, as compared to the non-saline condition
(Ghassemi-Golezani et al. 2020). Brassica juncea under oxidative stress due to
copper (Cu) toxicity showed a significant increase in the ascorbate and flavonoid
levels. This indicates that these antioxidants act as internal chelators and stabilize
toxic metal ions (Sharma et al. 2019c). Drought stress in safflower resulted in
increased PAL activity which is a key enzyme for phenolics biosynthesis such as
flavonoids and anthocyanins. The chemical nature of phenolic compounds protects
the cells against oxidative stress by metal chelation and free radical binding.
Flavonoids inhibit lipid peroxidation and increase membrane fluidity and stability
hence preventing the ROS release (Chavoushi et al. 2020). The increased phenolic
and flavonoid contents in two pepper genotypes (BIB-6 and BIB-8) can be linked to
their higher salt tolerance (Kusvuran et al. 2021).

Reportedly isoprene biosynthesis in plants is activated by high temperature, solar
radiance, and water scarcity. Isoprene is capable of quenching various ROS and
NOS species and enhancing the thylakoid membrane stability. O3 stressed Salvia
officinalis plants showed enhanced biosynthesis of phenylpropanoids especially
rosmarinic acid which serves as an effective antioxidant because of its two catechol
groups in the benzene rings. It is concluded that amplified biosynthesis and accumu-
lation of phenolic compounds may serve as secondary antioxidant defense system
and compliment the primary antioxidants in order to protect the plants against the
oxidative injury. Superior heat tolerance in transgenic sweet potato plants was
attributed to higher carotenoid content especially β-carotene and cryptoxanthin.
β-carotene is suitable for singlet oxygen scavenging, while cryptoxanthin maintains
thylakoid membrane stability (Guidi and Tattini 2021). Drought and heat stress
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affect plant growth and productivity, and this combination of stress is one of the
most recurring stresses in the natural environment. Two citrus species Carrizo
citrange and Cleopatra mandarin withstanding heat and drought conditions showed
the accumulation of various metabolites. In response to stress, Cleopatra showed
increased accumulation of phenylpropanoids, flavonols, and glycosylated and
polymethoxylated flavones (tangeritin). Accumulation of sinapic acid and sinapoyl
aldehyde, which are the precursors of lignin, was seen in stress-tolerant Carrizo. The
observed metabolite changes suggested the accumulation of antioxidative and
photoprotective secondary metabolites in order to mitigate the detrimental effects
of stress (Zandalinas et al. 2017). Barium toxicity leads to oxidative stress in plants.
Barium stress in Brassica juncea and Cakile maritima leads to the activation of
antioxidant defense system including the antioxidant enzymes and secondary
metabolites. The metal chelating and ROS scavenging properties of phenols enable
them to slow down the free radical formation. A significant increase in total phenols
and flavonoids was seen especially in the aerial parts of the plants in order to
overcome barium toxicity (Bouslimi et al. 2021). Melatonin application to
drought-stressed Moldavian balm plant mitigated the oxidative stress directly and
indirectly by increased concentration of nonenzymatic antioxidants (flavonoids,
polyphenol compounds, anthocyanin) and enhancement of enzyme activity of phe-
nylalanine ammonia-lyase and polyphenol oxidase (Naghizadeh et al. 2019). Stress-
ful environments reportedly witnessed an upregulation of genes of key phenolic
biosynthetic enzymes such as PAL, C4H (cinnamate 4-hydroxylase), 4CL
(4-coumarate: CoA ligase), CHS, CHI (chalcone isomerase), F3H (flavanone3-
hydroxylase), F30H (flavonoid30 hydroxylase), F3050H (flavonoid 3050-hydroxylase),
DFR (dihydroflavonol 4-reductase), FLS (flavonol synthase), IFS (isoflavone
synthase), IFR (isoflavone reductase), and UFGT (UDP flavonoid
glycosyltransferase) (Sharma et al. 2019a). Triterpenes, ursolic acid (UA), oleanolic
acid (OA), phenolic acid, and rosmarinic acid (RA) increased in Prunella vulgaris
L. species under drought stress which indicates toward and important antioxidant
response toward drought stress (Chen et al. 2011). Increased phytoene synthase and
β-lycopene cyclase expression led to an increased accumulation of carotenoids in
Daucus Carota and Bixa Orellana in response to salt stress. Salinity stress in cotton
showed an increase in tannic acid, flavonoids, and gossypol. Rauvolfia tetraphylla
and Catharanthus roseus showed an accumulation of alkaloids reserpine and vin-
cristine under salt stress. Cu toxicity in Panax ginseng Meyer and Withania
somnifera L. led to an increase in phenolic and lignin components. Drought-caused
oxidative stress in willow leaves led to an increase in flavonoids and phenolic acids
(Khare et al. 2020). Foliar spray of ascorbic acid on water stressed common bean
(Phaseolus vulgaris L.) helped in the mitigation of adverse drought effects by
enhancing photosynthetic pigments (carotenoids and chlorophyll) and secondary
metabolites content (flavonoids, phenolics and tannins) (Gaafar et al. 2020). Mono-
terpene indole alkaloid, brachycerine, is an antioxidant which is induced by osmotic
stress, wounding, metal stress, and abscisic acid. Heat stress in Psychotria
brachyceras led to a 4.5-fold increase in brachycerine concentration which mitigated
oxidative stress by reducing lipid peroxidation and hydrogen peroxide concentration
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(da Silva Magedans et al. 2017). The salt tolerance mechanism in safflower
(Carthamus tinctorius L.) is attributed to increased antioxidant enzyme activities,
osmolytes, and accumulation of secondary metabolites (flavonoids) (Gengmao et al.
2015). Volatile isoprenoids provide the plants with protection against the oxidative
stress caused by high light, temperature, drought, and oxidizing conditions of the
atmosphere. These help the plants in withstanding the stress by (1) stabilization of
membrane, (2) direct scavenging of oxidizing species by isoprenoids, and (3) indirect
role in ROS signaling (Vickers et al. 2009).

20.5 Conclusion

Various biotic (herbivores, pathogens) and abiotic factors such as drought, salinity,
and extreme temperatures are potential factors that affect the pathways of several
plant secondary metabolites. In response to stress, plants synthesize various second-
ary metabolites that aid in plant adaptation. This can be attributed to their structural
diversity and function. Recent literature reports suggest that plant secondary
metabolites play a crucial role in stress responses and act as potential antioxidants
that help in coping with oxidative stress. Secondary metabolites play an active role in
the inhibition of photooxidation of chlorophyll, detoxification of free radicals and
hence provide protection against lipid peroxidation. Manipulation of production and
action of secondary metabolites by the improved use of biotechnology can help in
enhancing the tolerance level and adaptiveness of sensitive plants under stress.
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