Symbolic Dynamics

Siddhartha Bhattacharya

1 Introduction

In this chapter, we will study a class of topological dynamical systems known as symbolic dynamical systems. These systems play an important role in coding theory, combinatorial dynamics and theory of cellular automata. In Sect. [2,](#page-0-0) we introduce the basic concepts associated with such systems. In Sect. [3,](#page-3-0) we introduce the notion of entropy. In Sect. [4,](#page-6-0) we compute the measure theoretic entropy of Bernoulli shifts. In Sect. [5,](#page-10-0) we consider a class of symbolic dynamical systems related to tiling spaces, and prove a result due to M. Szegedy that asserts that any translational tiling of \mathbb{Z}^d by a finite set *F* is periodic when $|F|$ is prime. The last section is devoted to an algebraic dynamical system known as 3-dot system. Using the concept of directional homoclinic groups we show that \mathbb{Z}^2 -actions on symbolic spaces can exhibit strong rigidity property.

2 Basic Concepts

In this section, we review some basic concepts of symbolic dynamics (see [\[5\]](#page-15-0) for a comprehensive introduction).

Definition 2.1 Let *G* be a discrete group.

1. A *topological G-space* is a compact topological space *X* together with a continuous action σ of *G* on *X*. In other words, σ is a continuous map from $G \times X$ to *X* that satisfies the properties of a group action.

S. Bhattacharya (⊠)

School of Mathematics, Tata Institute for Fundamental Research, Mumbai, India e-mail: siddhart@math.tifr.res.in

[©] Hindustan Book Agency 2022

A. Nagar et al. (eds.), *Elements of Dynamical Systems*, Texts and Readings in Mathematics 79, https://doi.org/10.1007/978-981-16-7962-9_4

Notation 2.2 For any $g \in G$, the map $x \mapsto g \cdot x = \sigma(g, x)$ will be denoted by $\sigma(g)$.

- 2. If (X, σ) and (Y, ρ) are topological *G*-spaces, a map $f : X \longrightarrow Y$ is said to be *G-equivariant* if $f \circ \sigma(g) = \rho(g) \circ f$ for all $g \in G$.
- 3. A topological *G*-space (Y, ρ) is said to be a *factor* of a topological *G*-space (X, σ) if there exists a surjective *G*-equivariant map from *X* to *Y*.
- 4. Two topological *G*-spaces (X, σ) and (Y, ρ) are *topologically conjugate* if there exists a *G*-equivariant homeomorphism from *X* to *Y* .

Let $A = \{1, \ldots, k\}$ be a finite set and let $A^{\mathbb{Z}}$ be the set of all functions from \mathbb{Z} to *A*. The set $Y = A^{\mathbb{Z}}$ can also be viewed as the collection of all bi-infinite sequences taking values in *A*. For any $a \in A^{\mathbb{Z}}$, $\{a_i\}_{i \in \mathbb{Z}}$ will denote the corresponding bi-infinite sequence. Let *d* denote the discrete metric on *A*, i.e., $d(x, y) = 1$ if $x \neq y$ and $d(x, y) = 0$ if $x = y$. We define a metric d_y on *Y* by

$$
d_Y(a, b) = \sum_{i=-\infty}^{\infty} \frac{d(a_i, b_i)}{2^{|i|+1}}.
$$

We note that $d_Y(a, b)$ is small if and only if there exists a large $N > 0$ such that *a_i* = *b_i* for all *i* ∈ [−*N*, *N*]. Hence, *d_Y* induces the product topology on $Y = A^{\mathbb{Z}}$ with cylinder sets as basic open subsets (the choice of the metric is not relevant here as long as it induces the product topology).

Let $T: Y \longrightarrow Y$ be the shift map defined by $T(a)_i = a_{i+1}$. It is easy to see that (Y, d) is a compact metric space and $T : Y \longrightarrow Y$ is a self homeomorphism.

Definition 2.3 If $X \subset A^{\mathbb{Z}}$ is a closed shift invariant subset and *T* is the restriction of the shift map to *X* then (*X*, *T*) is called a *symbolic dynamical system*.

Example 2.4 $X = A^{\mathbb{Z}}$ and *T* is the shift map.

Example 2.5 Suppose we only have two symbols, i.e., $A = \{0, 1\}$. Let $X =$ $a \in \overline{A}^{\mathbb{Z}}$: there are no two consecutive 0's }.

Example 2.6 We fix finite sets *A* and $E \subset A \times A$. Let *G* denote the directed graph with *A* as the set of vertices and *E* as the set of edges. We define $X_G =$ graph with A as the set of vertices and E as the set of edges. We define $X_G = \{a \in A^{\mathbb{Z}} : (a_i, a_{i+1}) \in E \forall i\}$. The dynamical system $(X_G, T|_{X_G})$ is called the topo*logical Markov chain* corresponding to *G*. Note that Example [2.5](#page-1-0) can be seen as a special case where $A = \{0, 1\}$ and $E = \{(1, 0), (1, 1), (0, 1)\}.$

Example 2.7 Suppose $A = \{0, 1\}$ and *X* is the set of all bi-infinite sequences in {0, 1} such that between any two consecutive 1's there are even number of 0's. Then it is easy to verify that *X* is closed and shift-invariant.

Example 2.8 For any finite set *A* we define $L(A) = \bigcup_{n=1}^{\infty}$ *n*=1 *Aⁿ*. The set *L*(*A*) can be viewed as the collection of all finite words with *A* as the alphabet set. For any $S \subset L(A)$, we define

 $X_S = \{a \in A^\mathbb{Z} : s \text{ does not occur in } A \forall s \in S\}.$

Clearly, X_s is a closed shift-invariant subset of $A^{\mathbb{Z}}$.

Definition 2.9 Suppose $X \subset A^{\mathbb{Z}}$ is a closed shift-invariant subset and σ is the shift action of \mathbb{Z} on *X*. Then (X, σ) is called a *subshift of finite type* if $X = X_s$ for some finite set $S \subset L(A)$.

Definition 2.10 Suppose $Y \subset A^{\mathbb{Z}}$ is a closed shift-invariant subset such that the shift action of $\mathbb Z$ on *Y* is a factor of a subshift of finite type $X \subset A^{\mathbb Z}$. Then the shift action on *Y* is called a *sofic shift*.

Example 2.11 With three symbols, suppose $A = \{0, 1, 2\}$ and $E =$ { $(1, 1)$, $(1, 0)$, $(2, 1)$, $(0, 2)$, $(2, 0)$ }. Let *X* ⊂ *A*^Z be the topological Markov chain associated with (*A*, *E*). Let $\phi : A \longrightarrow \{0, 1\}$ denote the map defined by $\phi(1) = 1$ and $\phi(0) = \phi(2) = 0$. Then, ϕ induces a continuous shift equivariant map from *X* to $A^{\mathbb{Z}}$. It is easy to see that the image of ϕ is the system described in Example [2.7.](#page-1-1) Hence the system described in Example [2.7](#page-1-1) is a sofic shift.

Let *A* be a finite set. Fix $k \ge 1$, and choose a map $\theta : A^{2k+1} \longrightarrow A$. Such maps are called *block codes*. Any block code θ induces a map $\overline{\theta}$: $A^{\mathbb{Z}} \longrightarrow A^{\mathbb{Z}}$ defined by $\overline{\theta}(x)_i = \theta(x_{i-k}, \ldots, x_{i+k})$. The map $\overline{\theta}$ is called the *sliding block code* corresponding to θ .

Example 2.12 Let $A = \{0, 1\}$ and q be the continuous shift-equivariant map from $A^{\mathbb{Z}}$ to $A^{\mathbb{Z}}$ defined by $q(x)_i = x_{i-1} + x_i + x_{i+1}$ (mod 2). Then $q = \overline{\theta}$, where θ : $A^3 \longrightarrow A$ is the block code defined by $\theta(a, b, c)$ *i* = $a + b + c$ (mod 2).

It is easy to see that for any block code θ , $\overline{\theta}$ is a continuous shift-equivariant map from $A^{\tilde{Z}}$ to $A^{\mathbb{Z}}$. The following result, known as the Curtis-Hedlund theorem, shows that the converse is also true.

Theorem 2.13 *Suppose A is a finite set and* $f : A^{\mathbb{Z}} \longrightarrow A^{\mathbb{Z}}$ *is a continuous shiftequivariant map. Then there exists k* ≥ 1 *and a block code* θ : $A^{2k+1} \longrightarrow A$ *such that* $f = \overline{\theta}$ *.*

Proof Since $A^{\mathbb{Z}}$ is compact, *f* is uniformly continuous, we choose a positive δ such that $d(f(x), f(y)) < \frac{1}{2}$ $\frac{1}{2}$ whenever $d(x, y) < \delta$. Since

$$
d(f(x), f(y)) = \sum \frac{d(f(x)_i, f(y)_i)}{2^i},
$$

it follows that $f(x)_0 = f(y)_0$ whenever $d(f(x), f(y)) < \frac{1}{2}$ $\frac{1}{2}$. We choose *k* such that $\sum_{i,j,k} \frac{1}{2^k} < \delta$. Then. $f(x)_0 = f(y)_0$ whenever $x_i = y_i$ for all *i* with $|i| \leq k$. This |*i*|>*k*

shows that there is a block code θ : $A^{2k+1} \longrightarrow A$ such that $f(x)_0 = \theta(x_{-k}, \dots, x_k)$. Since *f* is also shift-equivariant, we deduce that $f = \overline{\theta}$.

3 Entropy

We will now introduce a dynamical invariant called topological entropy for symbolic dynamical systems. We will need the following elementary result about sequences of real numbers.

Proposition 3.1 *Let* {*ai*} *be a sequence of non-negative real numbers such that* $a_{m+n} \le a_m + a_n$ *for all m and n. Then* $\lim_{n \to \infty}$ $\frac{a_n}{n}$ *exists.*

Proof Set $c = \inf_{n}$ $\frac{a_n}{n}$. For any $\epsilon > 0$, we choose *n* such that

$$
\left|\frac{a_n}{n}-c\right| < \epsilon.
$$

Let $D = \max\{a_1, \ldots, a_n\}$. Let $m \ge n$ be any positive integer. We write $m = kn + j$, where $0 \le j \le n - 1$. Now,

$$
\frac{a_m}{m} \le \frac{ka_n + a_j}{kn + j} \le c + \epsilon + \frac{D}{m}.
$$

This shows that $\frac{a_m}{m} \le c + 2\epsilon$ as $m \to \infty$. Since ϵ is arbitrary, we conclude that $\frac{a_m}{m} \to c$ as $m \to \infty$.

For $m \le n$, let $[m, n]$ denote the set $\{m, \ldots, n\}$. For any closed shift invariant subset $X \subset A^{\mathbb{Z}}$ and a finite set $S \subset \mathbb{Z}$, let π_S denote the projection map from $A^{\mathbb{Z}}$ to A^S . For $k \geq 1$, let *B_k* denote the set $\pi_{[0,k-1]}(X)$. The set *B_k* can also be described as the set of all blocks of length *k* that occurs in elements of *X*. Since *X* is shift invariant it follows that $\pi_{[0, n-1]}(X) = \pi_{[m, m+n-1]}(X)$ for all *m* and *n*. Since there is a natural injective map from $\pi_{[0, m+n-1]}(X)$ to $\pi_{[0, m-1]}(X) \times \pi_{[m, m+n-1]}(X)$, we deduce that $|B_{m+n}| \leq |B_m| \times |B_n|$. We define

$$
h(X) = \lim_{k \to \infty} \frac{\log(|B_k|)}{k}.
$$

The number $h(X)$ is called the *entropy* of the shift action of $\mathbb Z$ on X . By the previous proposition it is well defined.

Example 3.2 Suppose $X = A^{\mathbb{Z}}$. In this case $B_n = A^n$ and $|B_n| = |A|^n$. Hence, the entropy of the corresponding shift action is log |*A*|.

Example 3.3 Suppose $X = \{a \in \{0, 1\}^{\mathbb{Z}} : \text{there are no two consecutive 1's}\}.$ Let *T* denote the 2 \times 2 adjacency matrix of the associated graph. Then, $T_{11} = T_{12} = T_{13}$ $T_{21} = 1$ and $T_{22} = 0$. Hence *T* has two distinct eigenvalues $\frac{\sqrt{5} \pm 1}{2}$ $\frac{2}{2}$. It is easy to see that $|B_n|$ is the sum of entries of T^{n-1} . This implies that

$$
h(X) = \lim_{n \to \infty} \frac{\log |B_n|}{n} = \log \left(\frac{\sqrt{5} + 1}{2} \right).
$$

We now show that topological entropy is invariant under topological conjugacy.

Theorem 3.4 Let A be a finite set and for $i = 1, 2$, let X_i be a closed shift invariant *subset of* $A^{\mathbb{Z}}$ *such the corresponding shift actions of* \mathbb{Z} *are topologically conjugate. Then* $h(X_1) = h(X_2)$.

Proof Let f be a topological conjugacy between these two shift actions. From Curtis-Hedlund theorem, it follows that there exists $k > 1$, and a map $\theta : A^{2k+1} \longrightarrow A$ such that *f* is the sliding block code corresponding to θ . Hence for any $i \leq j$, the elements $f(x)_i, \ldots, f(x)_i$ are determined by the elements x_{i-k}, \ldots, x_{i+k} . In particular, $|B_n(X_2)| \leq |B_{n+2k}(X_1)|$. Taking logarithms, dividing by *n*, and letting *n* → ∞, we see that $h(X_1) \ge h(X_2)$. Similarly, we can show that $h(X_2) \ge h(X_1)$. \Box

Our next task is to define the notion of entropy for a more general class of dynamical systems.

Definition 3.5 Let *L* be an abelian semigroup with the property that $x + x = x$ for all $x \in L$. A *norm* on L is a map $\|\cdot\|$ from L to \mathbb{R}^+ satisfying

$$
||x|| \le ||x + y|| \le ||x|| + ||y|| \quad \forall x, y \in L.
$$

A *normed lattice* is an abelian semigroup L together with a norm map $\|\cdot\|: L \longrightarrow$ \mathbb{R}^+

Example 3.6 Let *S* be a set and let *L* be the collection of all finite subsets of *S*. For $A, B \in L$ set $A + B = A \cup B$, and $||A|| = |A|$, the cardinality of *A*.

Example 3.7 Let *V* be a vector space and let *L* be the collection of all finite dimensional subspaces of *V*. For *X*, $Y \in L$, define $X + Y$ to be the smallest subspace containing *X* and *Y*, and set $||X|| = \dim(X)$.

Example 3.8 Let *X* be a compact topological space. An open cover *C* of *X* is called *saturated* if for any two open subsets *U* and *V* of *X* with $U \in C$ and $V \subset U$, we have *V* ∈ *C*. Let *L* be the collection of all saturated open covers of *X*. For *C*, $C' \in L$, we define $C + C'$ to be the collection of all open subsets that belong to both *C* and *C*[']. It is easy to see that $C + C'$ is an element of *L*. For any $C \in L$, we define $||C|| = \log(n_C)$, where n_C is the smallest cardinality of a subcover of *C*.

Notation 3.9 For $x, y \in L$, we say $x \leq y$ if $x + y = y$.

It is easy to see that the above notation defines a partial order on *L*.

Definition 3.10 If $T: L \longrightarrow L'$ is a map between normed lattices then *T* is called an *isometry* if $T(x + y) = T(x) + T(y)$ and $||T(x)|| = ||x||$ for all *x*, *y*. Clearly, the collection of all normed lattices form a category with isometries as *morphisms*.

If $T: L \longrightarrow L$ is an isometry, then we define

$$
\|\cdot\|_T: L \longrightarrow \mathbb{R}^+ \text{ by } \|x\|_T = \lim_{n \to \infty} \frac{1}{n}(x + Tx + \dots + T^{n-1}x).
$$

Proposition 3.11 *The map* $\|\cdot\|_T$ *is well defined and it is a norm on L. Furthermore, it satisfies the following two properties:*

- *1.* $||x||_T \le ||x||$ for all x in L;
- 2. Both T and $I + T$ are isometries with respect to $\|\cdot\|_T$.

Proof Fix any $x \in L$ and define a sequence $\{a_n\}$ by

$$
a_n = \|x + Tx + \cdots + T^{n-1}x\|.
$$

Since *T* is an isometry, applying the sub-additivity of the norm, we see that $a_{m+n} \leq$ $a_m + a_n$ for all $m, n \geq 1$. From Proposition [3.1,](#page-3-1) we deduce that $|| \cdot ||_T$ is well defined. It is easy to see that $\|\cdot\|_T$ is a norm and satisfies property *1*. Since $x + x = x$ in *L*, we obtain

$$
\sum_{i=0}^{n-1} T^i(x+Tx) = \sum_{i=0}^{n} T^i(x),
$$

which proves the second property. \Box

Definition 3.12 For any isometry $T: L \longrightarrow L$, we define the *entropy* of *T* by

$$
h(T) = \sup \{ ||x||_T : x \in L \}.
$$

Definition 3.13 Let (X, μ) be a measure space with $\mu(X) = 1$. A *partition* $P =$ ${P_1, \ldots, P_m}$ of *X* is a finite collection of pairwise disjoint, non-empty, measurable subsets of *X* such that $\bigcup P_i = X$.

Notation 3.14 Let L_X be the set of all partitions of *X*. For $P, Q \in L_X$, we define

$$
P + Q = \{ P_i \cap Q_j : P_i \in P, Q_j \in Q \text{ and } P_i \cap Q_j \neq \varnothing \}.
$$

It is easy to see that L_X becomes an abelian semigroup and $P + P = P$ for all P. For $P = \{P_1, \ldots, P_m\} \in L_X$, we set

$$
||P|| = -\sum_{i=1}^m \mu(P_i) \log_2(\mu(P_i)).
$$

Proposition 3.15 L_X *is a normed lattice with respect to the above norm.*

Proof Choose $P = \{P_1, ..., P_m\}$ and $Q = \{Q_1, ..., Q_n\}$ in *L*. Set $p_i = \mu(P_i)$, $q_j = \mu(Q_j)$ and $r_{ij} = \mu(P_i \cap Q_j)$. Now,

Symbolic Dynamics 115

$$
||P + Q|| - ||P|| = \sum p_i \log p_i - \sum r_{ij} \log r_{ij} = -\sum r_{ij} (\log r_{ij} - \log p_i).
$$

Since log is an increasing function, this shows that $||P + Q|| > ||P||$. Define $\phi : [0, 1] \longrightarrow \mathbb{R}$ by $\phi(0) = 0$ and $\phi(x) = -x \log x$ if $x > 0$. Since $\phi''(x) = -\frac{1}{x} < 0$ in (0, 1), it follows that ϕ is a concave function. Put $c_{ij} = \frac{r_{ij}}{p_i}$ if $p_i > 0$ and 0 otherwise. Observe that $||P + Q|| - ||P|| = \sum p_i \phi(c_{ij})$. Since ϕ is concave, we deduce that

$$
\|P + Q\| - \|P\| \leq \sum_j \phi\left(\sum_i p_i c_{ij}\right) = \sum_j \phi(q_j) = \|Q\|.
$$

If $T : (X, \mu) \longrightarrow (Y, \nu)$ is a measure preserving map then, we define a map T^* : $L_Y \longrightarrow L_X$ by

$$
T^*(P) = \left\{T^{-1}(P_1), \ldots, T^{-1}(P_n)\right\}.
$$

It is easy to see that T^* is an isometry. Moreover, the correspondence $X \mapsto L_X$ and $T \mapsto T^*$ gives us a contravariant functor from the category of probability spaces to the category of normed lattices. If *T* is a measure preserving map from (X, μ) to itself then we define $h(T) = h(T^*)$, where T^* is the isometry of L_X induced by *T*. The number $h(T)$ is called the *entropy* of *T*. Clearly, entropy is a measurable conjugacy invariant.

Suppose *X* is a compact topological space and *T* is a homeomorphism of *X*. As in the Example [3.8,](#page-4-0) let *L* denote the collection of all saturated open covers of *X*. For any *C* ∈ *L*, we define $T^*(C) = \{T^{-1}(U) : U \in C\}$. It is easy to see that $T^*(C) \in L$ for all $C \in L$ and T^* is an isometry of L. The number $h(T^*)$ is called the *topological entropy* of *T*. It is a topological conjugacy invariant. In the special case when (X, T) is a one-dimensional shift, this coincides with the more explicit definition presented earlier.

4 Computations of Entropy

In this section, we compute the entropy of Bernoulli shifts and translations on tori. If *X* is a set and *A* is a collection of subsets of *X* then by $\sigma(A)$ we denote the smallest σ -algebra on *X* that contains *A*. We begin with the following approximation lemma.

Lemma 4.1 *Suppose* (X, \mathcal{B}, μ) *is a probability space and suppose* $\mathcal{A} \subset \mathcal{B}$ *is an algebra such that* $\sigma(\mathcal{A}) = \mathcal{B}$ *. Then for any* $P \in L_X$ *and* $\epsilon > 0$ *, there exist a partition* $P_1 \subset A$ *and* $Q \in L_X$ *with* $||Q|| < \epsilon$ *such that* $P \leq P_1 + Q$.

Proof We first consider the case when *P* has only two elements, i.e., $P = \{B, B^c\}$ for some measurable set *B*. Note that *x* log $x \to 0$ as $x \to 0$ or $x \to 1$. Hence, we can find $\delta > 0$ such that $\mu(E) < \delta$ implies $\| \{E, E^c\} \| < \epsilon$. As $\sigma(\mathcal{A}) = \mathcal{B}$, we can find $A \in \mathcal{A}$ such that $\mu(F) < \delta$, where $F = (B \setminus A) \cup (A \setminus B)$. Define $P_1 = \{A, A^c\}$ and $Q = \{F, F^c\}$. It is easy to see that P_1 and Q have the required properties.

Now suppose $P = \{B_1, \ldots, B_n\}$. For $1 \le i \le n$, define $P^i = \{B_i, B_i^c\}$. Find P_1^i , Q^i as above with $||Q^i|| < \frac{\epsilon}{n}$ and put $P_1 = \sum P^i$ and $Q = \sum Q^i$. — П

We note the following consequence of the previous lemma.

Proposition 4.2 *Let* (X, \mathcal{B}, μ) *be a probability space and let* $T : X \longrightarrow X$ *be a measure preserving map. Suppose* A *is an algebra such that* $\sigma(A) = \mathcal{B}$ *. Then* $h(T) =$ $\sup \{ ||P||_T : P \subset \mathcal{A} \}.$

Proof Fix $\epsilon > 0$ and choose *P*['] such that $h(T) \leq ||P||_T + \epsilon$. Applying the previous lemma, find P_1 and Q such that $P' \leq P_1 + Q$, $P_1 \subset A$ and $||Q|| < \epsilon$. Since $||Q||_T \leq$ $||Q||$, it follows that

$$
h(T) \leq \|P_1\|_T + \|Q\|_T + \epsilon = \|P_1\|_T + 2\epsilon.
$$

As ϵ is arbitrary, this proves the proposition.

Definition 4.3 Let (X, \mathcal{B}, μ) be a probability space and let $T : X \longrightarrow X$ be an invertible measure preserving map. A partition *P* is said to be a *generator* if *B* is the smallest σ -algebra that is invariant under the \mathbb{Z} -action generated by *T* and contains $\{P_1, \ldots, P_n\}.$

Theorem 4.4 *If P is a generator, then* $h(T) = ||P||_T$.

Proof For any partition *P*, let *A*(*P*) denote the collection of all subsets which can be expressed as unions of elements of *P*. It is easy to verify that $A(P)$ is a finite algebra and $Q \leq P$ if and only if $Q \subset A(P)$. We define an algebra A_{∞} by

$$
A_n = A\left(\sum_{-n}^n T^{*i}\right), \quad A_\infty = \bigcup_{n=1}^\infty A_n.
$$

Note that A_{∞} is the smallest *T*-invariant algebra containing *P*. Hence. $\sigma(A_{\infty}) = \mathcal{B}$. If a partition *Q* is contained in A_{∞} then $Q \subset A_n$ for some *n*. Hence,

$$
\|Q\|_T \ \leq \ \left\| \sum_{i=-n}^n T^{*i} P \right\|_T \ = \ \left\| \left(I + T^*\right)^{2n+1} (P) \right\|_T \ = \ \|P\|_T.
$$

From the previous lemma it then follows that $h(T) = ||P||_T$.

Definition 4.5 Let (X, μ) be a probability space and let $P, Q \in L_X$. Then *P* and *Q* are said to be *independent* if $\mu(P_i \cap Q_j) = \mu(P_i) \mu(Q_j)$ for all *i* and *j*.

It is easy to see that if *P* and *Q* are independent then $||P + Q|| = ||P|| + ||Q||$.

$$
\qquad \qquad \Box
$$

4.1 Entropy of Shifts

Let $Y = \{y_1, \ldots, y_n\}$ be a finite set and let ν be a probability measure on *Y*. Let $(X, \mathcal{B}, \mu) = (Y, \nu)^{\mathbb{Z}}$ and let $T : X \longrightarrow X$ be the shift map. We define a partition $P = \{P_1, \ldots, P_n\}$ of *X* by

$$
P_i = \{x \in X : x(0) = y_i\}.
$$

Let *A* be the smallest *T*-invariant σ -algebra containing *P*. Since $P \subset A$, the coordinate projection corresponding to 0th co-ordinate is a *A*-measurable map. Since *A* is *T*-invariant, all co-ordinate projections are measurable. Hence $A = B$, i.e., *P* is a generator. We observe that for any *k*, the partitions $P + \cdots + T^{*k-1}P$ and $T^{*k}P$ are independent. Applying induction on *k*, we see that $\left\| \sum_{i=0}^{k-1} T^{*i} P \right\| = k \|P\|$.
 Hence $h(T) = \|P\|$ is the gracial association is the uniform measure on Hence, $h(T) = ||P||_T = ||P||$. In the special case, when *v* is the uniform measure on *Y*, $h(T) = \log n$.

Proposition 4.6 *Let* (X, \mathcal{B}, μ) *be a probability space and let* $T : X \longrightarrow X$ *be a measure preserving map.*

- *1.* $h(T^n) = nh(T)$ for all $n > 1$.
- *2. If T* is invertible then $h(T^{-1}) = h(T)$.

Proof We will prove the statements for any lattice isometry $T : L \longrightarrow L$.

1. Fix $x \in L$ and put $y = x + Tx + \cdots + T^{n-1}x$. Note that

$$
\sum_{i=0}^{k-1} T^{in} x \le \sum_{i=0}^{nk-1} T^i x = \sum_{i=0}^{k-1} T^{ni} y.
$$

This shows that $||x||_{T^n} \le n ||x||_T = ||y||_{T^n}$. Since *x* is arbitrary, we conclude that $h(T^n) = nh(T)$.

2. If *T* is invertible then for any $x \in L$,

$$
\left\| \sum_{i=0}^{k-1} T^{-i} x \right\| = \left\| T^{1-k} \left(\sum_{i=0}^{k-1} T^{i} x \right) \right\| = \left\| \sum_{i=0}^{k-1} T^{i} x \right\|.
$$

Hence $||x||_T = ||x||_{T^{-1}}$ for all *x* and $h(T) = h(T^{-1})$.

 \Box

For $i = 1, 2$, let $(X_i, \mathcal{B}_i, \mu_i)$ be a probability space and let $T_i : X_i \longrightarrow X_i$ be a measure preserving map. We define $T_1 \times T_2 : X_1 \times X_2 \longrightarrow X_1 \times X_2$ by $(T_1 \times T_2)(x, y) = (T_1x, T_2y)$. It is easy to see that $T_1 \times T_2$ preserves the measure $\mu_1 \times \mu_2$.

Proposition 4.7 *h* ($T_1 \times T_2$) = *h* (T_1) + *h* (T_2)*.*

Proof For $i = 1, 2$, let π^{i} denote the projection map from $X_1 \times X_2$ to X_i . Since π^{i} is measure-preserving, π^i is an isometry from L_{X_i} to $L_{X_1 \times X_2}$. It is easy to see that $(T_1 \times T_2)_*^k \pi_*^i(P) = \pi_*^i(T_{ik}^k P)$ for any *P* in L_{X_i} . We note that for any $P \in L_{X_1}$ and $Q \in L_{X_2}$, the partitions $\pi^1_*(P)$ and $\pi^2_*(Q)$ are independent. Hence, for arbitrary *P* and *Q*,

$$
\|\pi_*^1(P)+\pi_*^2(Q)\|_{T_1\times T_2} = \|P\|_{T_1} + \|Q\|_{T_2}.
$$

This implies that $h(T_1 \times T_2) > h(T_1) + h(T_2)$.

Let *A* denote the algebra of all subsets of $X_1 \times X_2$ that can be expressed as a finite union of measurable rectangles. If *R* is a partition of $X_1 \times X_2$ such that $R \subset A$, then we can find $P \in L_{X_1}$ and $Q \in L_{X_2}$ such that $R \leq \pi^1_*(P) + \pi^2_*(Q)$. Since $\sigma(A)$ is the product σ -algebra on $X_1 \times X_2$, applying Proposition [4.2](#page-7-0) and the above equality, we see that $h(T_1 \times T_2) \leq h(T_1) + h(T_2)$.

Lemma 4.8 *Let* $P = \{P_1, \ldots, P_n\}$ *be a partition of a probability space* (X, μ) *. Then* $||P|| < \log n$.

Proof Put
$$
p_i = \mu(P_i)
$$
. Then $||P|| = \sum p_i \log \left(\frac{1}{p_i}\right)$. As $x \mapsto \log x$ is a concave function, we see that $||P|| \le \log \left(\sum p_i \cdot \frac{1}{p_i}\right) = \log n$.

4.2 Entropy of Translations

Let $n \ge 1$ and let $\theta = (\theta_1, \ldots, \theta_n)$ be an element of the *n*-torus \mathbb{T}^n . Let *T* : $\mathbb{T}^n \longrightarrow \mathbb{T}^n$ denote the map $x \longmapsto \theta \cdot x$. We claim that $h(T) = 0$. Note that $T =$ $T_1 \times \cdots \times T_n$, where $T_i : \mathbb{T} \longrightarrow \mathbb{T}$ is the translation by θ_i . By Proposition [4.7,](#page-8-0) $h(T) = \sum h(T_i)$. Hence, without loss of generality, we may assume that $n = 1$.

Case 1. $\theta^k = 1$ for some *k*. Since $P + P = P$ for all *P*, it follows that $||P||_{\text{Id}} = 0$ for all *P*, i.e., $h(\text{Id}) = 0$. Since $T^k = \text{Id}$, applying Proposition [4.6,](#page-8-1) we see that $h(T) = 0$.

Case 2. θ is not a root of unity. We consider the partition $P = \{P_1, P_2\}$ where

$$
P_1 = \{z : 0 \le z < \pi\}, \quad P_2 = \{z : \pi \le z < 2\pi\}.
$$

Since $\{\theta^n : n \in \mathbb{Z}\}\$ is dense in \mathbb{T} , it follows that *P* is a generator for *T*. Hence, *h*(*T*) = $||P||_T$. Note that for any *k* ≥ 1, the partition $P + \cdots + T_*^{k-1}P$ has 2*k* sets. By the previous lemma, $||P||_T \le \lim_{k \to \infty}$ $\frac{\log 2k}{k} = 0$, which proves the claim.

5 Tilings

For any finite set *A* and $d \ge 1$, the compact space $A^{\mathbb{Z}^d}$ admits a shift action of \mathbb{Z}^d . If $d > 1$, and X is a closed shift invariant subset of $A^{\mathbb{Z}^d}$ then the restriction of the shift action to *X* is called a *higher-dimensional shift*. In this section, we consider a class of such systems that arises from tilings of \mathbb{Z}^d .

Notation 5.1 For $d \geq 1$, let *A*, *B* and *C* be subsets of \mathbb{Z}^d . We will write $A \oplus B = C$ if every element of *C* can be uniquely expressed as $a + b$, with $a \in A$ and $b \in B$.

Definition 5.2 If $F \subset \mathbb{Z}^d$ is a finite set, then a *tiling* of \mathbb{Z}^d by F is a subset C of \mathbb{Z}^d satisfying $F \oplus C = \mathbb{Z}^d$.

It is easy to see that *F* tiles \mathbb{Z}^d if and only if \mathbb{Z}^d can be written as a disjoint union of translates of *F*.

Definition 5.3 A set $E \subset \mathbb{Z}^d$ is said to be *periodic* if there exists a finite index subgroup $\Lambda \subset \mathbb{Z}^d$ such that $E + \Lambda = E$.

Let $F = \{g_1, \ldots, g_n\}$ be a finite subset of \mathbb{Z}^d . We equip $\{0, 1\}^{\mathbb{Z}^d}$ with the product topology and define $X(F) \subset \{0, 1\}^{\mathbb{Z}^d}$ by

$$
X(F) = \{1_C : F \oplus C = \mathbb{Z}^d\}.
$$

It is easy to see that $x \in X(F)$ if and only if for each $g \in \mathbb{Z}^d$ there exists exactly one $g' \in g - F$ such that $x(g') = 1$. This shows that $X(F)$ is a closed subset of the compact space $\{0, 1\}^{\mathbb{Z}^d}$. Moreover, $X(F)$ is invariant under the shift action of \mathbb{Z}^d . The space $\overline{X}(F)$ can be viewed as the space of all tilings of F . It is non-empty if and only if \mathbb{Z}^d can be tiled by *F*.

Example 5.4 Suppose $d = 2$, and $F = \{(0, 0), (1, 0), (-1, 0), (0, -1)\}$. If an element $(m, n) \in \mathbb{Z}^2$ corresponds to the square $(m, m + 1] \times (n, n + 1] \in \mathbb{R}^2$, then the set *F* corresponds to a *T*-shaped set in \mathbb{R}^2 . It is easy to verify that there is a unique *C* ∈ \mathbb{Z}^2 such that $(0, 0)$ ∈ *C* and *F* ⊕ *C* = \mathbb{Z}^2 . This implies that any tiling of *F* is a translate of *C* by an element of $-F$. In particular, *F* admits exactly 4 tilings, and all tilings of *F* are periodic.

Example 5.5 Suppose $d = 2$, and $F = \{(0, 0), (1, 0)\}\)$. Then the tilings of \mathbb{Z}^2 by F are in bijective correspondence with the tilings of the plane by 2×1 rectangle. We fix an element $\mathbf{1}_C$ of $X(F)$ and define a map $h_C : \mathbb{Z} \longrightarrow \{0, 1\}$ by $h_C(i) = \mathbf{1}_C((0, i))$. It is easy to see that the $C \mapsto h_C$ is a bijective correspondence between $X(F)$ and the set of all maps from $\mathbb Z$ to $\{0, 1\}$. Hence $X(F)$ can be identified with the compact space $\{0, 1\}^{\mathbb{Z}}$. The shift action of \mathbb{Z}^2 on $X(F) = \{0, 1\}^{\mathbb{Z}}$ can be explicitly described. The element (0, 1) acts by the shift map on $\{0, 1\}^{\mathbb{Z}}$, and the element (1, 0) acts by flipping the symbols.

We note that in the previous example the space $X(F)$ is infinite but every element of $X(F)$ is periodic in the direction of $(1, 0)$. The following example shows that this need not be true in general.

Example 5.6 Suppose $d = 2$, and $F = \{(0, 0), (2, 0), (0, 2), (2, 2)\}$. We define $E_1 = \{(m, n) : m \text{ is even } \}$ and $E_2 = \{(m, n) : m \text{ is odd } \}$. We note that the tilings of *E*₁ by *F* are in bijection with the tilings of \mathbb{Z}^2 by $F' = \{(0, 0), (1, 0), (0, 2), (1, 2)\}.$ Hence as in the previous example, we can find $C_1 \subset \mathbb{Z}^2$ such that $C_1 \oplus F = E_1$ and C_1 is periodic in the direction of $(1, 0)$ but not in the direction of $(0, 1)$. Similarly we can find C_2 such that $C_2 \oplus F = E_2$ and C_2 is periodic in the direction of (0, 1) but not in the direction of $(1, 0)$. If we define *C* to be the disjoint union of C_1 and C_2 then $C \in X(F)$ and it is not periodic in any direction.

The following conjecture is due to Lagarias and Wang [\[6](#page-15-1)]:

Conjecture 5.7 (Periodic tiling conjecture) *Suppose d* > 1 *and* $F \subset \mathbb{Z}^d$ *is a finite set such that* $F \oplus C = \mathbb{Z}^d$ *for some* $C \in \mathbb{Z}^d$. Then there exists a periodic set $E \subset \mathbb{Z}^d$ *such that* $F \oplus E = \mathbb{Z}^d$.

The following proposition shows that a stronger version is true in the 1-dimensional case.

Proposition 5.8 Let F and C be subsets of Z such that F is finite and $F \oplus C = \mathbb{Z}$. *Then C is periodic.*

Proof Without loss of generality we may assume that $0 \in F$. Let *k* denote the diameter of *F*. From the condition $F \oplus C = \mathbb{Z}$, we deduce that for any $i \in \mathbb{Z}$, $\sum \mathbf{1}_C(i + j) = 1$. Let *B* denote the block $(0, \ldots, k - 1)$. Suppose *C* and *C*['] are

j∈*F* two tilings of Z by *F* such that the restrictions of **1***^C* and **1***C* to *B* are equal. Then the above condition implies that $\mathbf{1}_C(k) = \mathbf{1}_{C}(k)$. By taking $i = 1, 2, \dots$ and applying this argument repeatedly we see that $\mathbf{1}_C(j) = \mathbf{1}_{C'}(j)$ for all $j \ge 0$. A similar argument shows that $\mathbf{1}_C(j) = \mathbf{1}_{C}(j)$ for all $j \leq 0$. Combining these two observations, we deduce that $C = C'$. Since *B* is a block of length *k*, this implies that there are only finitely many *C* ⊂ Z such that $F \oplus C = \mathbb{Z}$. As any translate of a tiling is again a tiling, we conclude that every tiling of \mathbb{Z} by *F* is periodic. a tiling, we conclude that every tiling of $\mathbb Z$ by F is periodic.

Definition 5.9 A subset $F \subset \mathbb{Z}^d$ is sdid to be *non-degenerate* if $0 \in F$ and the elements of *F* generate a finite index subgroup of \mathbb{Z}^d .

The following theorem due to M. Szegedy (see [\[8\]](#page-15-2)) describes the tilings of a nondegenerate set *F* when the number of elements of *F* is prime.

Theorem 5.10 *Let F, C be subsets of* \mathbb{Z}^d *such that F is finite and F* \oplus *C =* \mathbb{Z}^d *. If F is non-degenerate and* |*F*| *is a prime number then, C is periodic.*

Proof Let M_d denote the set of all functions from \mathbb{Z}^d to R. There is a natural action θ of \mathbb{Z}^d on M_d defined by

$$
\theta(g)(f)(x) = f(x-g) \forall x, g \in \mathbb{Z}^d.
$$

It is easy to see that $F \oplus C = \mathbb{Z}^d$ if and only if $\sum \theta(g)(\mathbf{1}_C) = \mathbf{1}_{\mathbb{Z}^d}$. If $F =$ ${g \in F \{g_1, \ldots, g_p\}}$, where *p* is a prime number, then this shows that

$$
\left(\sum_{g\in F}\theta(g)\right)^p(\mathbf{1}_C) = \left(\sum_{g\in F}\theta(g)\right)^{p-1}(\mathbf{1}_{\mathbb{Z}^d}) = p^{p-1}\mathbf{1}_{\mathbb{Z}^d}.
$$

On the other hand,

$$
\left(\sum_{g \in F} \theta(g)\right)^p (\mathbf{1}_C) = \left(\theta(g_1)^p + \dots + \theta(g_p)^p\right) (\mathbf{1}_C)
$$

= $\left(\theta(pg_1) + \dots + \theta(pg_p)\right) (\mathbf{1}_C) \pmod{p}.$

Hence *C* satisfies the equation

$$
\sum_{g \in F} \theta(pg) \left(1_C\right) = 0 \pmod{p}.
$$

Now let w be an arbitrary element of \mathbb{Z}^d . Then $\theta(pg)(\mathbf{1}_C)(w) \in \{0, 1\}$ for all $g \in F$. Since their sum is divisible by *p*, we conclude that either $\theta(pg)(\mathbf{1}_C)(w) = 1$ for all $g \in F$ or $\theta(pg)(1_c)(w) = 0$ for all $g \in F$. In particular, $\theta(pg)(1_c) = 1_c$ for all $g \in F$. Hence $\mathbf{1}_C$ is invariant under the translations by elements of the subgroup generated by $\{pg_i - pg_j : g_i, g_j \in F\}$. Since *F* is non-degenerate, it follows that this subgroup has finite index. This implies that C is periodic. \Box

Let *F* be a finite non-degenerate subset of \mathbb{Z}^d such that $|F|$ is a prime number and let *H* denote the subgroup generated by *F*. We pick a finite set $E \subset \mathbb{Z}^d$ such that *E* contains exactly one element from each coset of *H*. It is easy to see that subsets of *E* are in bijective correspondence with the *H*-invariant subsets of \mathbb{Z}^d . The proof of the previous theorem shows that *X*(*F*) is finite and has at most $2^{|Z^d/H|}$ elements.

6 3-Dot Shifts

Let \mathbb{Z}_2 denote the group $\mathbb{Z}/2\mathbb{Z}$ and let *Y* denote the set $\mathbb{Z}_2^{\mathbb{Z}^2}$. It is easy to see that *Y* is a compact abelian group with respect to pointwise addition and the product topology. We define the shift action σ of \mathbb{Z}^2 on *Y* by $(\sigma(n)(x))(m) = x(m+n)$ for

all $m, n \in \mathbb{Z}^2$. It is easy to see that $\sigma(n)$ is an automorphism of *Y* for all $n \in \mathbb{Z}^2$. Let $R_d = \mathbb{Z}_2[\mathbb{Z}^d]$ denote the group-ring of \mathbb{Z}^d with coefficients in \mathbb{Z}_2 . Alternatively, one can identify R_d with $\mathbb{Z}_2[U_1^{\pm}, \ldots, U_d^{\pm}]$, the ring of Laurent polynomials in *d* commuting variables with coefficients in \mathbb{Z}_2 . For any $f = \sum$ *ⁿ*∈Z*^d* $c_n u^n$ and $y \in Y$, we

define $f \cdot y \in Y$ by

$$
f \cdot y = \sum_{n \in \mathbb{Z}^d} c_n \sigma(n)(x).
$$

It is easy to see that *Y* becomes a module with respect to this operation. For any ideal $I \subset R_d$, let $Y(I) \subset Y$ denote the closed subgroup defined by $Y(I) =$ $\{y \in Y : f \cdot y = 0 \forall f \in I\}$. It is easy to see that $Y(I)$ is a σ -invariant subgroup for any *I*. Using Pontryagin duality, one can show that this correspondence between closed shift invariant subgroups of *Y* and ideals of R_d is bijective.

In this section, we will look at a specific higher dimensional shift that arises this way. Let $d = 2$, $f = 1 + U_1 + U_2$ and $I \subset R_2$ be the principal ideal generated by *f*, i.e., $I = f R_2$. Then $X = Y(I)$ is called the 3-dot system. We note that if τ denotes the automorphism of *Y* defined by $\tau = \sigma(1, 0) + \sigma(0, 1) + I$, then *X* = ${x \in Y : \tau(x) = 0}$. This system was first introduced by F. Ledrappier in order to study mixing properties of algebraic dynamical systems (see [\[4,](#page-15-3) [7\]](#page-15-4) for more details). Using Pontryagin duality theory, one can show that (X, σ) is irreducible in the sense that every proper closed shift invariant subgroup of *X* is finite.

Definition 6.1 Suppose *G* and *H* are abelian topological groups. A continuous map $\phi: G \longrightarrow H$ is called *affine* if there exists a continuous homomorphism $\theta: G \longrightarrow$ *H* and $b \in H$ such that $\phi(g) = \theta(g) + b$ for all $g \in G$.

For any $f: G \longrightarrow H$, we define $\hat{f}: G \times G \longrightarrow H$ by $\hat{f}(x, y) = f(x + y)$ $f(x) - f(y) + f(0)$.

Lemma 6.2 *A continuous map f is affine if and only if* $\hat{f} = 0$ *.*

Proof It is easy to see that if *f* is affine then \hat{f} vanishes. Conversely suppose \hat{f} is identically zero. Set $b = f(0)$ and define $\theta : G \longrightarrow H$ by $\theta(x) = f(x) - f(0)$. Clearly $f(x) = \theta(x) + b$ for all $x \in G$. Moreover, for any $x, y \in G$, $\theta(x + y) \theta(x) - \theta(y) = \hat{f}(x, y) = 0$. This proves the given assertion.

Definition 6.3 Suppose $d \ge 1$ and σ is a continuous action of \mathbb{Z}^d on a compact metric space *X*. For $x, y \in X$, the pair (x, y) is called *homoclinic* if $d(\sigma(m)(x))$, $\sigma(m)(y) \rightarrow 0$ as $||m|| \rightarrow \infty$.

Example 6.4 Suppose $d = 1$, $X = T$ and σ is given by a rotation. Since every rotation is an isometry, (x, y) is a homoclinic pair if and only if $x = y$.

Example 6.5 Suppose $d = 1$ and σ is the shift action on $\{0, 1\}^{\mathbb{Z}}$. Then (x, y) is a homoclinic pair if and only if $x_i = y_i$ for all but finitely many *i*'s.

If *X* is a compact abelian group then (x, y) is a homoclinic pair if and only if $(x - y, 0)$ is a homoclinic pair. If σ is a continuous action of \mathbb{Z}^d on a compact abelian group *X* by automorphisms of *X*, then we define

$$
\Delta_{\sigma}(X) = \{x \in X : \sigma(n)(x) \to 0 \text{ as } ||n|| \to \infty\}.
$$

It is easy to see that $\Delta_{\sigma}(X)$ is a subgroup of X. It is called the *homoclinic group* of the action σ .

Lemma 6.6 *Let* (X, σ) *denote the* 3*-dot system. Then,* $\Delta_{\sigma}(X) = \{0\}$ *.*

Proof As $[\sigma(1, 0) + \sigma(0, 1) + \sigma(0, 0)]$ (*x*) = 0 for all *x* $\in X$ and every element of *X* has order 2, it follows that for all $k > 1$,

$$
[\sigma(1,0) + \sigma(0,1) + \sigma(0,0)]^{2^{k}} = \sigma(2^{k},0) + \sigma(0,2^{k}) + \sigma(0,0) = 0.
$$

This implies that for any $x \in X$ and $(m, n) \in \mathbb{Z}^2$, $x(m + 2^k, n) + x(m, n + 2^k) +$ $x(m, n) = 0$. If *x* is homoclinic to 0 then the first two terms vanish for large *k*, and hence $x = 0$. hence $x = 0$.

Definition 6.7 Let *X* be a compact abelian group and σ , an action of \mathbb{Z}^d on *X* by continuous automorphisms. Suppose v is an element of the unit sphere $S^{d-1} \subset \mathbb{R}^d$. An element $x \in X$ is called *v*-homoclinic if $\sigma(g)(x) \to 0$ as $\langle v, g \rangle \to \infty$.

For any $v \in S^{d-1}$, the collection of all *v*-homoclinic points are denoted by $\Delta_v(\sigma)$. It is easy to see that $\Delta_v(\sigma)$ is a subgroup of *X*. As we will see shortly, these groups can be non-trivial, even when the homoclinic group of the action σ is trivial.

Suppose σ is the shift action of \mathbb{Z}^2 on $Y = \mathbb{Z}_2^{\mathbb{Z}^2}$ and $v = (1, 0)$. Then, $\Delta_v(\sigma)$ is the collection of all points *x* for which there exists a $k \in \mathbb{Z}$ with the property that $x(m, n) = 0$ whenever $m > k$. For explicit examples in a more general setting, see [\[2\]](#page-15-5).

Proposition 6.8 *Let* (X, σ) *denote the* 3*-dot system. Then both* $\Delta_{(-1, 0)}(\sigma)$ *and* $\Delta_{(0,-1)}(\sigma)$ *are infinite but* $\Delta_{(-1,0)}(\sigma) \cap \Delta_{(0,-1)}(\sigma) = \{0\}.$

Proof Let $\{a_i\}$ be an arbitrary sequence taking values in $\{0, 1\}$. From the defining property of the 3-dot system, it is easy to see that there exists a unique $x \in X$ such that $x(m, n) = 0$ whenever $m \ge 0$ and $x(-m, 0) = a_m$ for $m > 0$. Clearly any such *x* lies in $\Delta_{(-1, 0)}(\sigma)$. Hence $\Delta_{(-1, 0)}(\sigma)$ is infinite.

Similarly, there exists a unique $x \in X$ such that $x(m, n) = 0$ whenever $n > 0$ and $x(0, -n) = a_n$ for $n > 0$. This shows that $\Delta_{(0, -1)}(\sigma)$ is also infinite.

Now suppose *x* is an element of $\Delta_{(-1, 0)}(\sigma) \cap \Delta_{(0, -1)}(\sigma)$. Since $x \in X$, we deduce that for all *m*, *n* and *k*, $x(m + 2^k, n) + x(m, n + 2^k) + x(m, n) = 0$. As the first two terms vanish for large values of *k*, we conclude that $x = 0$. terms vanish for large values of k , we conclude that $x = 0$.

We now show that the topological centraliser of the 3-dot system consists of algebraic maps. This is a form of topological rigidity. Similar rigidity properties holds even in the measure theoretic setting for a large class of actions of discrete groups $[1, 3]$ $[1, 3]$ $[1, 3]$.

Theorem 6.9 *Let* (X, σ) *denote the* 3*-dot system and let* $f : X \longrightarrow X$ *be a continuous* \mathbb{Z}^2 -equivariant map. Then f is a continuous homomorphism.

Proof We define \hat{f} : $X \times X \longrightarrow X$ by $\hat{f}(x, y) = f(x + y) - f(x) - f(y) + f(0)$. It is easy to see that \widehat{f} is a \mathbb{Z}^2 -equivariant map from $X \times X$ to X. Since \widehat{f} is continuous and $X \times X$ is compact, it is also uniformly continuous.

It is easy to see that $\widehat{f}(x, y) = 0$ whenever $x = 0$ or $y = 0$. From uniform continuity of \widehat{f} , it follows that if $x \in \Delta_{(-1,0)}(\sigma)$ and $y \in \Delta_{(0,-1)}(\sigma)$ then $\widehat{f}(x, y)$ lies in $\Delta_{(-1, 0)}(\sigma) \cap \Delta_{(0, -1)}(\sigma)$. As every infinite shift-invariant subgroup of *X* is dense, from the previous proposition, we deduce that $\Delta_{(-1, 0)}(\sigma) \times \Delta_{(0, -1)}(\sigma)$ is a dense subgroup of $X \times X$, and \widehat{f} maps it to {0}. Hence \widehat{f} is identically zero.

This implies that *f* is affine, i.e., there exists a continuous homomorphism θ : *X* → *X* and *b* ∈ *X* such that $f(x) = \theta(x) + b$. As *b* = *f*(0) and *f* is shift equivariant, it follows that *b* is invariant under the shift action. Hence $b = 0$ and f is a continuous homomorphism is a continuous homomorphism.

References

- 1. Bhattacharya, S. (2008). Isomorphism rigidity of commuting automorphisms. *Transactions of the American Mathematical Society, 360,* 6319–6329.
- 2. Einsiedler, M., Lind, D., Miles, R., & Ward, T. (2001). Expansive subdynamics for algebraic Z*^d* -actions. *Ergodic Theory and Dynamical Systems, 21,* 1695–1729.
- 3. Lindenstrauss, E. (2005). Rigidity of multiparameter actions. *Israel Journal of Mathematics, 149,* 199–226.
- 4. Ledrappier, F. (1978). Un champ Markovien peut être d'entropie nulle et mélangeant. *Comptes Rendus de l'Académie des Sciences Paris Série A-B, 287*, 561–563.
- 5. Lind, D., & Marcus, B. (1995). *An introduction to symbolic dynamics and coding*. Cambridge University Press.
- 6. Lagarias, J., & Wang, Y. F. (1996). Tiling the line with translates of one tile. *Inventiones Mathematicae, 124*, 341–365.
- 7. Schmidt, K. (1995). *Dynamical systems of algebraic origin*. Birkhauser Verlag.
- 8. Szegedy, M. (1998). Algorithms to tile the infinite grid with finite clusters. *Proceedings of the 39th Annual Symposium on Foundations of Computer Science (FOCS '98)* (pp. 137–145).