
Symbolic Dynamics

Siddhartha Bhattacharya

1 Introduction

In this chapter, we will study a class of topological dynamical systems known as
symbolic dynamical systems. These systems play an important role in coding theory,
combinatorial dynamics and theory of cellular automata. In Sect. 2, we introduce the
basic concepts associated with such systems. In Sect. 3, we introduce the notion of
entropy. In Sect. 4, we compute the measure theoretic entropy of Bernoulli shifts. In
Sect. 5, we consider a class of symbolic dynamical systems related to tiling spaces,
and prove a result due to M. Szegedy that asserts that any translational tiling of Z

d

by a finite set F is periodic when |F | is prime. The last section is devoted to an
algebraic dynamical system known as 3-dot system. Using the concept of directional
homoclinic groups we show that Z

2-actions on symbolic spaces can exhibit strong
rigidity property.

2 Basic Concepts

In this section, we review some basic concepts of symbolic dynamics (see [5] for a
comprehensive introduction).

Definition 2.1 Let G be a discrete group.

1. A topological G-space is a compact topological space X together with a contin-
uous action σ of G on X . In other words, σ is a continuous map from G × X to
X that satisfies the properties of a group action.
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Notation 2.2 For any g ∈ G, the map x �−→ g · x = σ(g, x) will be denoted by
σ(g).

2. If (X, σ ) and (Y, ρ) are topological G-spaces, a map f : X −→ Y is said to be
G-equivariant if f ◦ σ(g) = ρ(g) ◦ f for all g ∈ G.

3. A topological G-space (Y, ρ) is said to be a factor of a topological G-space
(X, σ ) if there exists a surjective G-equivariant map from X to Y .

4. Two topological G-spaces (X, σ ) and (Y, ρ) are topologically conjugate if there
exists a G-equivariant homeomorphism from X to Y .

Let A = {1, . . . , k} be a finite set and let AZ be the set of all functions from Z to
A. The set Y = AZ can also be viewed as the collection of all bi-infinite sequences
taking values in A. For any a ∈ AZ, {ai }i∈Z will denote the corresponding bi-infinite
sequence. Let d denote the discrete metric on A, i.e., d(x, y) = 1 if x �= y and
d(x, y) = 0 if x = y. We define a metric dY on Y by

dY (a, b) =
∞∑

i=−∞

d(ai , bi )

2|i |+1
.

We note that dY (a, b) is small if and only if there exists a large N > 0 such that
ai = bi for all i ∈ [−N , N ]. Hence, dY induces the product topology on Y = AZ

with cylinder sets as basic open subsets (the choice of the metric is not relevant here
as long as it induces the product topology).
Let T : Y −→ Y be the shift map defined by T (a)i = ai+1. It is easy to see that
(Y, d) is a compact metric space and T : Y −→ Y is a self homeomorphism.

Definition 2.3 If X ⊂ AZ is a closed shift invariant subset and T is the restriction
of the shift map to X then (X, T ) is called a symbolic dynamical system.

Example 2.4 X = AZ and T is the shift map.

Example 2.5 Suppose we only have two symbols, i.e., A = {0, 1}. Let X ={
a ∈ AZ : there are no two consecutive 0’s

}
.

Example 2.6 We fix finite sets A and E ⊂ A × A. Let G denote the directed
graph with A as the set of vertices and E as the set of edges. We define XG ={
a ∈ AZ : (ai , ai+1) ∈ E ∀i}. The dynamical system (XG, T |XG ) is called the topo-
logical Markov chain corresponding to G. Note that Example 2.5 can be seen as a
special case where A = {0, 1} and E = {(1, 0), (1, 1), (0, 1)}.
Example 2.7 Suppose A = {0, 1} and X is the set of all bi-infinite sequences in
{0, 1} such that between any two consecutive 1’s there are even number of 0’s. Then
it is easy to verify that X is closed and shift-invariant.

Example 2.8 For any finite set A we define L(A) =
∞⋃
n=1

An . The set L(A) can be

viewed as the collection of all finite words with A as the alphabet set. For any
S ⊂ L(A), we define
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XS = {
a ∈ AZ : s does not occur in A ∀s ∈ S

}
.

Clearly, XS is a closed shift-invariant subset of AZ.

Definition 2.9 Suppose X ⊂ AZ is a closed shift-invariant subset and σ is the shift
action of Z on X . Then (X, σ ) is called a subshift of finite type if X = XS for some
finite set S ⊂ L(A).

Definition 2.10 Suppose Y ⊂ AZ is a closed shift-invariant subset such that the shift
action of Z on Y is a factor of a subshift of finite type X ⊂ AZ. Then the shift action
on Y is called a sofic shift.

Example 2.11 With three symbols, suppose A = {0, 1, 2} and E =
{(1, 1), (1, 0), (2, 1), (0, 2), (2, 0)}. Let X ⊂ AZ be the topological Markov chain
associated with (A, E). Let φ : A −→ {0, 1} denote the map defined by φ(1) = 1
and φ(0) = φ(2) = 0. Then, φ induces a continuous shift equivariant map from X
to AZ. It is easy to see that the image of φ is the system described in Example 2.7.
Hence the system described in Example 2.7 is a sofic shift.

Let A be a finite set. Fix k ≥ 1, and choose a map θ : A2k+1 −→ A. Such maps
are called block codes. Any block code θ induces a map θ : AZ −→ AZ defined by
θ(x)i = θ(xi−k, . . . , xi+k). The map θ is called the sliding block code corresponding
to θ .

Example 2.12 Let A = {0, 1} and q be the continuous shift-equivariant map from
AZ to AZ defined by q(x)i = xi−1 + xi + xi+1 (mod 2). Then q = θ , where θ :
A3 −→ A is the block code defined by θ(a, b, c)i = a + b + c (mod 2).

It is easy to see that for any block code θ, θ is a continuous shift-equivariant map
from AZ to AZ. The following result, known as the Curtis-Hedlund theorem, shows
that the converse is also true.

Theorem 2.13 Suppose A is a finite set and f : AZ −→ AZ is a continuous shift-
equivariant map. Then there exists k ≥ 1 and a block code θ : A2k+1 −→ A such
that f = θ .

Proof Since AZ is compact, f is uniformly continuous, we choose a positive δ such

that d( f (x), f (y)) <
1

2
whenever d(x, y) < δ. Since

d( f (x), f (y)) =
∑ d( f (x)i , f (y)i )

2i
,

it follows that f (x)0 = f (y)0 whenever d( f (x), f (y)) <
1

2
. We choose k such that

∑

|i |>k

1

2k
< δ. Then. f (x)0 = f (y)0 whenever xi = yi for all i with |i | ≤ k. This

shows that there is a block code θ : A2k+1 −→ A such that f (x)0 = θ(x−k, . . . , xk).
Since f is also shift-equivariant, we deduce that f = θ . �
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3 Entropy

Wewill now introduce a dynamical invariant called topological entropy for symbolic
dynamical systems. We will need the following elementary result about sequences
of real numbers.

Proposition 3.1 Let {ai } be a sequence of non-negative real numbers such that

am+n ≤ am + an for all m and n. Then lim
n→∞

an
n

exists.

Proof Set c = inf
n

an
n
. For any ε > 0, we choose n such that

∣∣∣
an
n

− c
∣∣∣ < ε.

Let D = max{a1, . . . , an}. Letm ≥ n be any positive integer. We writem = kn + j ,
where 0 ≤ j ≤ n − 1. Now,

am
m

≤ kan + a j

kn + j
≤ c + ε + D

m
.

This shows that
am
m

≤ c + 2ε as m → ∞. Since ε is arbitrary, we conclude that
am
m

→ c as m → ∞. �

Form ≤ n, let [m, n] denote the set {m, . . . , n}. For any closed shift invariant subset
X ⊂ AZ and a finite set S ⊂ Z, let πS denote the projection map from AZ to AS . For
k ≥ 1, let Bk denote the set π[0,k−1](X). The set Bk can also be described as the set
of all blocks of length k that occurs in elements of X . Since X is shift invariant it
follows that π[0, n−1](X) = π[m,m+n−1](X) for all m and n. Since there is a natural
injective map from π[0,m+n−1](X) to π[0,m−1](X) × π[m,m+n−1](X), we deduce that
|Bm+n| ≤ |Bm | × |Bn|. We define

h(X) = lim
k→∞

log(|Bk |)
k

.

The number h(X) is called the entropy of the shift action of Z on X . By the previous
proposition it is well defined.

Example 3.2 Suppose X = AZ. In this case Bn = An and |Bn| = |A|n . Hence, the
entropy of the corresponding shift action is log |A|.
Example 3.3 Suppose X = {a ∈ {0, 1}Z : there are no two consecutive 1’s}. Let
T denote the 2 × 2 adjacency matrix of the associated graph. Then, T11 = T12 =
T21 = 1 and T22 = 0. Hence T has two distinct eigenvalues

√
5 ± 1

2
. It is easy to see

that |Bn| is the sum of entries of T n−1. This implies that
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h(X) = lim
n→∞

log |Bn|
n

= log

(√
5 + 1

2

)
.

We now show that topological entropy is invariant under topological conjugacy.

Theorem 3.4 Let A be a finite set and for i = 1, 2, let Xi be a closed shift invariant
subset of AZ such the corresponding shift actions of Z are topologically conjugate.
Then h(X1) = h(X2).

Proof Let f be a topological conjugacybetween these two shift actions. FromCurtis-
Hedlund theorem, it follows that there exists k ≥ 1, and a map θ : A2k+1 −→ A
such that f is the sliding block code corresponding to θ . Hence for any i ≤ j ,
the elements f (x)i , . . . , f (x) j are determined by the elements xi−k, . . . , x j+k . In
particular, |Bn(X2)| ≤ |Bn+2k(X1)|. Taking logarithms, dividing by n, and letting
n → ∞, we see that h(X1) ≥ h(X2). Similarly, we can show that h(X2) ≥ h(X1).

�

Our next task is to define the notion of entropy for a more general class of dynamical
systems.

Definition 3.5 Let L be an abelian semigroup with the property that x + x = x for
all x ∈ L . A norm on L is a map ‖·‖ from L to R

+ satisfying

‖x‖ ≤ ‖x + y‖ ≤ ‖x‖ + ‖y‖ ∀x, y ∈ L .

A normed lattice is an abelian semigroup L together with a norm map ‖·‖ : L −→
R

+.

Example 3.6 Let S be a set and let L be the collection of all finite subsets of S. For
A, B ∈ L set A + B = A ∪ B, and ‖A‖ = |A|, the cardinality of A.

Example 3.7 Let V be a vector space and let L be the collection of all finite dimen-
sional subspaces of V . For X,Y ∈ L , define X + Y to be the smallest subspace
containing X and Y , and set ‖X‖ = dim(X).

Example 3.8 Let X be a compact topological space. An open coverC of X is called
saturated if for any two open subsetsU and V of X withU ∈ C and V ⊂ U,we have
V ∈ C . Let L be the collection of all saturated open covers of X . For C, C

′ ∈ L ,
we define C + C

′
to be the collection of all open subsets that belong to both C

and C
′
. It is easy to see that C + C

′
is an element of L . For any C ∈ L , we define

‖C‖ = log(nC), where nC is the smallest cardinality of a subcover of C .

Notation 3.9 For x, y ∈ L , we say x ≤ y if x + y = y.

It is easy to see that the above notation defines a partial order on L .

Definition 3.10 If T : L −→ L
′
is a map between normed lattices then T is called

an isometry if T (x + y) = T (x) + T (y) and ‖T (x)‖ = ‖x‖ for all x, y. Clearly, the
collection of all normed lattices form a category with isometries as morphisms.
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If T : L −→ L is an isometry, then we define

‖·‖T : L −→ R
+ by ‖x‖T = lim

n→∞
1

n
(x + T x + · · · + T n−1x).

Proposition 3.11 The map ‖·‖T is well defined and it is a norm on L. Furthermore,
it satisfies the following two properties:

1. ‖x‖T ≤ ‖x‖ for all x in L;
2. Both T and I + T are isometries with respect to ‖·‖T .
Proof Fix any x ∈ L and define a sequence {an} by

an = ∥∥x + T x + · · · + T n−1x
∥∥ .

Since T is an isometry, applying the sub-additivity of the norm, we see that am+n ≤
am + an for allm, n ≥ 1. From Proposition 3.1, we deduce that ‖·‖T is well defined.
It is easy to see that ‖·‖T is a norm and satisfies property 1. Since x + x = x in L ,
we obtain

n−1∑

i=0

T i (x + T x) =
n∑

i=0

T i (x),

which proves the second property. �

Definition 3.12 For any isometry T : L −→ L , we define the entropy of T by

h(T ) = sup {‖x‖T : x ∈ L} .

Definition 3.13 Let (X, μ) be a measure space with μ(X) = 1. A partition P =
{P1, . . . , Pm} of X is a finite collection of pairwise disjoint, non-empty, measurable
subsets of X such that

⋃
Pi = X .

Notation 3.14 Let LX be the set of all partitions of X . For P, Q ∈ LX , we define

P + Q = {
Pi ∩ Q j : Pi ∈ P, Q j ∈ Q and Pi ∩ Q j �= ∅

}
.

It is easy to see that LX becomes an abelian semigroup and P + P = P for all P .
For P = {P1, . . . , Pm} ∈ LX , we set

‖P‖ = −
m∑

i=1

μ(Pi ) log2(μ(Pi )).

Proposition 3.15 LX is a normed lattice with respect to the above norm.

Proof Choose P = {P1, . . . , Pm} and Q = {Q1, . . . , Qn} in L . Set pi = μ(Pi ),
q j = μ(Q j ) and ri j = μ(Pi ∩ Q j ). Now,
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‖P + Q‖ − ‖P‖ =
∑

pi log pi −
∑

ri j log ri j = −
∑

ri j
(
log ri j − log pi

)
.

Since log is an increasing function, this shows that ‖P + Q‖ ≥ ‖P‖.
Define φ : [0, 1] −→ R by φ(0) = 0 and φ(x) = −x log x if x > 0.

Sinceφ
′′
(x) = −1

x
< 0 in (0, 1), it follows thatφ is a concave function. Put ci j = ri j

pi
if pi > 0 and 0 otherwise. Observe that ‖P + Q‖ − ‖P‖ = ∑

piφ(ci j ). Since φ is
concave, we deduce that

‖P + Q‖ − ‖P‖ ≤
∑

j

φ

(
∑

i

pi ci j

)
=

∑

j

φ(q j ) = ‖Q‖ .

�

If T : (X, μ) −→ (Y, ν) is a measure preserving map then, we define a map T ∗ :
LY −→ LX by

T ∗(P) = {
T−1(P1), . . . , T

−1(Pn)
}
.

It is easy to see that T ∗ is an isometry. Moreover, the correspondence X �−→ LX and
T �−→ T ∗ gives us a contravariant functor from the category of probability spaces
to the category of normed lattices. If T is a measure preserving map from (X, μ)

to itself then we define h(T ) = h(T ∗), where T ∗ is the isometry of LX induced by
T . The number h(T ) is called the entropy of T . Clearly, entropy is a measurable
conjugacy invariant.
Suppose X is a compact topological space and T is a homeomorphism of X . As in
the Example 3.8, let L denote the collection of all saturated open covers of X . For any
C ∈ L , we define T ∗(C) = {

T−1(U ) : U ∈ C
}
. It is easy to see that T ∗(C) ∈ L

for allC ∈ L and T ∗ is an isometry of L . The number h(T ∗) is called the topological
entropy of T . It is a topological conjugacy invariant. In the special case when (X, T )

is a one-dimensional shift, this coincides with the more explicit definition presented
earlier.

4 Computations of Entropy

In this section, we compute the entropy of Bernoulli shifts and translations on tori. If
X is a set andA is a collection of subsets of X then by σ(A) we denote the smallest
σ -algebra on X that containsA. We begin with the following approximation lemma.

Lemma 4.1 Suppose (X,B, μ) is a probability space and suppose A ⊂ B is an
algebra such that σ(A) = B. Then for any P ∈ LX and ε > 0, there exist a partition
P1 ⊂ A and Q ∈ LX with ‖Q‖ < ε such that P ≤ P1 + Q.

Proof We first consider the case when P has only two elements, i.e., P = {B, Bc}
for somemeasurable set B. Note that x log x → 0 as x → 0 or x → 1. Hence, we can
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find δ > 0 such that μ(E) < δ implies ‖{E, Ec}‖ < ε. As σ(A) = B, we can find
A ∈ A such that μ(F) < δ, where F = (B \ A) ∪ (A \ B). Define P1 = {A, Ac}
and Q = {F, Fc}. It is easy to see that P1 and Q have the required properties.

Now suppose P = {B1, . . . , Bn}. For 1 ≤ i ≤ n, define Pi = {
Bi , Bc

i

}
. Find

Pi
1 , Qi as above with

∥∥Qi
∥∥ <

ε

n
and put P1 = ∑

Pi and Q = ∑
Qi . �

We note the following consequence of the previous lemma.

Proposition 4.2 Let (X,B, μ) be a probability space and let T : X −→ X be a
measure preservingmap. SupposeA is an algebra such thatσ(A) = B. Then h(T ) =
sup {‖P‖T : P ⊂ A}.
Proof Fix ε > 0 and choose P

′
such that h(T ) ≤ ∥∥P ′∥∥

T
+ ε. Applying the previous

lemma, find P1 and Q such that P
′ ≤ P1 + Q, P1 ⊂ A and ‖Q‖ < ε. Since ‖Q‖T ≤

‖Q‖, it follows that

h(T ) ≤ ‖P1‖T + ‖Q‖T + ε = ‖P1‖T + 2ε.

As ε is arbitrary, this proves the proposition. �

Definition 4.3 Let (X,B, μ) be a probability space and let T : X −→ X be an
invertible measure preserving map. A partition P is said to be a generator if B is the
smallest σ -algebra that is invariant under the Z-action generated by T and contains
{P1, . . . , Pn}.
Theorem 4.4 If P is a generator, then h(T ) = ‖P‖T .
Proof For any partition P , let A(P) denote the collection of all subsets which can
be expressed as unions of elements of P . It is easy to verify that A(P) is a finite
algebra and Q ≤ P if and only if Q ⊂ A(P). We define an algebra A∞ by

An = A

(
n∑

−n

T ∗i
)

, A∞ =
∞⋃

n=1

An.

Note that A∞ is the smallest T -invariant algebra containing P . Hence. σ (A∞) = B.
If a partition Q is contained in A∞ then Q ⊂ An for some n. Hence,

‖Q‖T ≤
∥∥∥∥∥

n∑

i=−n

T ∗i P

∥∥∥∥∥
T

=
∥∥∥
(
I + T ∗)2n+1

(P)

∥∥∥
T

= ‖P‖T .

From the previous lemma it then follows that h(T ) = ‖P‖T . �

Definition 4.5 Let (X, μ) be a probability space and let P, Q ∈ LX . Then P and Q
are said to be independent if μ(Pi ∩ Q j ) = μ(Pi )μ(Q j ) for all i and j .

It is easy to see that if P and Q are independent then ‖P + Q‖ = ‖P‖ + ‖Q‖.
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4.1 Entropy of Shifts

Let Y = {y1, . . . , yn} be a finite set and let ν be a probability measure on Y . Let
(X,B, μ) = (Y, ν)Z and let T : X −→ X be the shift map. We define a partition
P = {P1, . . . , Pn} of X by

Pi = {x ∈ X : x(0) = yi } .

Let A be the smallest T -invariant σ -algebra containing P . Since P ⊂ A, the co-
ordinate projection corresponding to 0th co-ordinate is a A-measurable map. Since
A is T -invariant, all co-ordinate projections are measurable. Hence A = B, i.e.,
P is a generator. We observe that for any k, the partitions P + · · · + T ∗k−1P and

T ∗k P are independent. Applying induction on k, we see that
∥∥∥
∑k−1

i=0 T
∗i P

∥∥∥ = k ‖P‖.
Hence, h(T ) = ‖P‖T = ‖P‖. In the special case, when ν is the uniform measure on
Y, h(T ) = log n.

Proposition 4.6 Let (X,B, μ) be a probability space and let T : X −→ X be a
measure preserving map.

1. h(T n) = nh(T ) for all n ≥ 1.
2. If T is invertible then h(T−1) = h(T ).

Proof We will prove the statements for any lattice isometry T : L −→ L .

1. Fix x ∈ L and put y = x + T x + · · · + T n−1x . Note that

k−1∑

i=0

T inx ≤
nk−1∑

i=0

T i x =
k−1∑

i=0

T ni y.

This shows that ‖x‖T n ≤ n ‖x‖T = ‖y‖T n . Since x is arbitrary, we conclude that
h(T n) = nh(T ).

2. If T is invertible then for any x ∈ L ,

∥∥∥∥∥

k−1∑

i=0

T−i x

∥∥∥∥∥ =
∥∥∥∥∥T

1−k

(
k−1∑

i=0

T i x

)∥∥∥∥∥ =
∥∥∥∥∥

k−1∑

i=0

T i x

∥∥∥∥∥ .

Hence ‖x‖T = ‖x‖T−1 for all x and h(T ) = h(T−1).

�

For i = 1, 2, let (Xi ,Bi , μi ) be a probability space and let Ti : Xi −→ Xi

be a measure preserving map. We define T1 × T2 : X1 × X2 −→ X1 × X2 by
(T1 × T2) (x, y) = (T1x, T2y). It is easy to see that T1 × T2 preserves the measure
μ1 × μ2.

Proposition 4.7 h (T1 × T2) = h (T1) + h (T2).
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Proof For i = 1, 2, let π i denote the projection map from X1 × X2 to Xi . Since π i

is measure-preserving, π i∗ is an isometry from LXi to LX1×X2 . It is easy to see that
(T1 × T2)

k
∗ π i∗(P) = π i∗(T k

i∗P) for any P in LXi . We note that for any P ∈ LX1 and
Q ∈ LX2 , the partitions π1∗ (P) and π2∗ (Q) are independent. Hence, for arbitrary P
and Q, ∥∥π1

∗ (P) + π2
∗ (Q)

∥∥
T1×T2

= ‖P‖T1 + ‖Q‖T2 .

This implies that h (T1 × T2) ≥ h (T1) + h (T2).
Let A denote the algebra of all subsets of X1 × X2 that can be expressed as a finite
union of measurable rectangles. If R is a partition of X1 × X2 such that R ⊂ A, then
we can find P ∈ LX1 and Q ∈ LX2 such that R ≤ π1∗ (P) + π2∗ (Q). Since σ(A) is
the product σ -algebra on X1 × X2, applying Proposition 4.2 and the above equality,
we see that h (T1 × T2) ≤ h (T1) + h (T2). �

Lemma 4.8 Let P = {P1, . . . , Pn} be a partition of a probability space (X, μ). Then
‖P‖ ≤ log n.

Proof Put pi = μ(Pi ). Then ‖P‖ =
∑

pi log

(
1

pi

)
. As x �−→ log x is a concave

function, we see that ‖P‖ ≤ log

(∑
pi · 1

pi

)
= log n. �

4.2 Entropy of Translations

Let n ≥ 1 and let θ = (θ1, . . . , θn) be an element of the n-torus T
n . Let T :

T
n −→ T

n denote the map x �−→ θ · x . We claim that h(T ) = 0. Note that T =
T1 × · · · × Tn , where Ti : T −→ T is the translation by θi . By Proposition 4.7,
h(T ) = ∑

h(Ti ). Hence, without loss of generality, we may assume that n = 1.

Case 1. θ k = 1 for some k. Since P + P = P for all P , it follows that ‖P‖Id = 0 for
all P , i.e., h(Id) = 0. Since T k = Id, applying Proposition 4.6, we see that h(T ) = 0.

Case 2. θ is not a root of unity. We consider the partition P = {P1, P2} where

P1 = {z : 0 ≤ z < π} , P2 = {z : π ≤ z < 2π} .

Since {θn : n ∈ Z} is dense in T, it follows that P is a generator for T . Hence,
h(T ) = ‖P‖T . Note that for any k ≥ 1, the partition P + · · · + T k−1∗ P has 2k sets.

By the previous lemma, ‖P‖T ≤ lim
k→∞

log 2k

k
= 0, which proves the claim.
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5 Tilings

For any finite set A and d ≥ 1, the compact space AZ
d
admits a shift action of Z

d . If
d > 1, and X is a closed shift invariant subset of AZ

d
then the restriction of the shift

action to X is called a higher-dimensional shift. In this section, we consider a class
of such systems that arises from tilings of Z

d .

Notation 5.1 For d ≥ 1, let A, B andC be subsets ofZ
d . We will write A ⊕ B = C

if every element of C can be uniquely expressed as a + b, with a ∈ A and b ∈ B.

Definition 5.2 If F ⊂ Z
d is a finite set, then a tiling of Z

d by F is a subset C of Z
d

satisfying F ⊕ C = Z
d .

It is easy to see that F tiles Z
d if and only if Z

d can be written as a disjoint union of
translates of F .

Definition 5.3 A set E ⊂ Z
d is said to be periodic if there exists a finite index

subgroup 
 ⊂ Z
d such that E + 
 = E .

Let F = {g1, . . . , gn} be a finite subset of Z
d . We equip {0, 1}Zd

with the product
topology and define X (F) ⊂ {0, 1}Zd

by

X (F) = {
1C : F ⊕ C = Z

d
}
.

It is easy to see that x ∈ X (F) if and only if for each g ∈ Z
d there exists exactly

one g
′ ∈ g − F such that x(g

′
) = 1. This shows that X (F) is a closed subset of the

compact space {0, 1}Zd
. Moreover, X (F) is invariant under the shift action of Z

d .
The space X (F) can be viewed as the space of all tilings of F . It is non-empty if and
only if Z

d can be tiled by F .

Example 5.4 Suppose d = 2, and F = {(0, 0), (1, 0), (−1, 0), (0,−1)}. If an ele-
ment (m, n) ∈ Z

2 corresponds to the square (m, m + 1] × (n, n + 1] ∈ R
2, then the

set F corresponds to a T -shaped set in R
2. It is easy to verify that there is a unique

C ∈ Z
2 such that (0, 0) ∈ C and F ⊕ C = Z

2. This implies that any tiling of F is a
translate of C by an element of −F . In particular, F admits exactly 4 tilings, and all
tilings of F are periodic.

Example 5.5 Suppose d = 2, and F = {(0, 0), (1, 0)}. Then the tilings of Z
2 by F

are in bijective correspondencewith the tilings of the plane by 2 × 1 rectangle.We fix
an element 1C of X (F) and define a map hC : Z −→ {0, 1} by hC(i) = 1C((0, i)).
It is easy to see that the C �−→ hC is a bijective correspondence between X (F) and
the set of all maps from Z to {0, 1}. Hence X (F) can be identified with the compact
space {0, 1}Z. The shift action of Z

2 on X (F) = {0, 1}Z can be explicitly described.
The element (0, 1) acts by the shift map on {0, 1}Z, and the element (1, 0) acts by
flipping the symbols.



120 S. Bhattacharya

We note that in the previous example the space X (F) is infinite but every element
of X (F) is periodic in the direction of (1, 0). The following example shows that this
need not be true in general.

Example 5.6 Suppose d = 2, and F = {(0, 0), (2, 0), (0, 2), (2, 2)}. We define
E1 = {(m, n) : m is even } and E2 = {(m, n) : m is odd }.We note that the tilings of
E1 by F are in bijection with the tilings of Z

2 by F
′ = {(0, 0), (1, 0), (0, 2), (1, 2)}.

Hence as in the previous example, we can find C1 ⊂ Z
2 such that C1 ⊕ F = E1 and

C1 is periodic in the direction of (1, 0) but not in the direction of (0, 1). Similarly
we can find C2 such that C2 ⊕ F = E2 and C2 is periodic in the direction of (0, 1)
but not in the direction of (1, 0). If we define C to be the disjoint union of C1 and C2

then C ∈ X (F) and it is not periodic in any direction.

The following conjecture is due to Lagarias and Wang [6]:

Conjecture 5.7 (Periodic tiling conjecture) Suppose d ≥ 1 and F ⊂ Z
d is a finite

set such that F ⊕ C = Z
d for some C ∈ Z

d . Then there exists a periodic set E ⊂ Z
d

such that F ⊕ E = Z
d .

The following proposition shows that a stronger version is true in the 1-dimensional
case.

Proposition 5.8 Let F and C be subsets of Z such that F is finite and F ⊕ C = Z.
Then C is periodic.

Proof Without loss of generality we may assume that 0 ∈ F . Let k denote the
diameter of F . From the condition F ⊕ C = Z, we deduce that for any i ∈ Z,∑

j∈F
1C(i + j) = 1. Let B denote the block (0, . . . , k − 1). Suppose C and C

′
are

two tilings of Z by F such that the restrictions of 1C and 1C ′ to B are equal. Then the
above condition implies that 1C(k) = 1C ′ (k). By taking i = 1, 2, . . . and applying
this argument repeatedly we see that 1C( j) = 1C ′ ( j) for all j ≥ 0. A similar argu-
ment shows that 1C( j) = 1C ′ ( j) for all j ≤ 0. Combining these two observations,
we deduce that C = C

′
. Since B is a block of length k, this implies that there are

only finitely many C ⊂ Z such that F ⊕ C = Z. As any translate of a tiling is again
a tiling, we conclude that every tiling of Z by F is periodic. �

Definition 5.9 A subset F ⊂ Z
d is sdid to be non-degenerate if 0 ∈ F and the

elements of F generate a finite index subgroup of Z
d .

The following theorem due to M. Szegedy (see [8]) describes the tilings of a non-
degenerate set F when the number of elements of F is prime.

Theorem 5.10 Let F,C be subsets of Z
d such that F is finite and F ⊕ C = Z

d . If
F is non-degenerate and |F | is a prime number then, C is periodic.
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Proof Let Md denote the set of all functions from Z
d to R. There is a natural action

θ of Z
d on Md defined by

θ(g)( f )(x) = f (x − g) ∀x, g ∈ Z
d .

It is easy to see that F ⊕ C = Z
d if and only if

∑

g∈F
θ(g)(1C) = 1Zd . If F =

{g1, . . . , gp}, where p is a prime number, then this shows that

⎛

⎝
∑

g∈F
θ(g)

⎞

⎠
p

(1C) =
⎛

⎝
∑

g∈F
θ(g)

⎞

⎠
p−1

(1Zd ) = pp−11Zd .

On the other hand,

⎛

⎝
∑

g∈F
θ(g)

⎞

⎠
p

(1C) = (
θ(g1)

p + · · · + θ(gp)
p
)
(1C)

= (
θ(pg1) + · · · + θ(pgp)

)
(1C) (mod p).

Hence C satisfies the equation

∑

g∈F
θ(pg) (1C) = 0 (mod p).

Now letw be an arbitrary element ofZ
d . Then θ(pg) (1C) (w) ∈ {0, 1} for all g ∈ F .

Since their sum is divisible by p, we conclude that either θ(pg) (1C) (w) = 1 for
all g ∈ F or θ(pg) (1C) (w) = 0 for all g ∈ F . In particular, θ(pg) (1C) = 1C for
all g ∈ F . Hence 1C is invariant under the translations by elements of the subgroup
generated by

{
pgi − pg j : gi , g j ∈ F

}
. Since F is non-degenerate, it follows that

this subgroup has finite index. This implies that C is periodic. �
Let F be a finite non-degenerate subset of Z

d such that |F | is a prime number and
let H denote the subgroup generated by F . We pick a finite set E ⊂ Z

d such that E
contains exactly one element from each coset of H . It is easy to see that subsets of
E are in bijective correspondence with the H -invariant subsets of Z

d . The proof of
the previous theorem shows that X (F) is finite and has at most 2|Zd/H | elements.

6 3-Dot Shifts

Let Z2 denote the group Z/2Z and let Y denote the set Z
Z
2

2 . It is easy to see that
Y is a compact abelian group with respect to pointwise addition and the product
topology. We define the shift action σ of Z

2 on Y by (σ (n)(x)) (m) = x(m + n) for
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all m, n ∈ Z
2. It is easy to see that σ(n) is an automorphism of Y for all n ∈ Z

2.
Let Rd = Z2[Zd ] denote the group-ring of Z

d with coefficients in Z2. Alternatively,
one can identify Rd with Z2[U±

1 , . . . ,U±
d ], the ring of Laurent polynomials in d

commuting variables with coefficients in Z2. For any f =
∑

n∈Zd

cnu
n and y ∈ Y , we

define f · y ∈ Y by
f · y =

∑

n∈Zd

cnσ(n)(x).

It is easy to see that Y becomes a module with respect to this operation. For
any ideal I ⊂ Rd , let Y (I ) ⊂ Y denote the closed subgroup defined by Y (I ) =
{y ∈ Y : f · y = 0 ∀ f ∈ I }. It is easy to see that Y (I ) is a σ -invariant subgroup
for any I . Using Pontryagin duality, one can show that this correspondence between
closed shift invariant subgroups of Y and ideals of Rd is bijective.
In this section, we will look at a specific higher dimensional shift that arises this
way. Let d = 2, f = 1 +U1 +U2 and I ⊂ R2 be the principal ideal generated
by f , i.e., I = f R2. Then X = Y (I ) is called the 3-dot system. We note that if τ

denotes the automorphism of Y defined by τ = σ(1, 0) + σ(0, 1) + I , then X =
{x ∈ Y : τ(x) = 0}. This system was first introduced by F. Ledrappier in order to
study mixing properties of algebraic dynamical systems (see [4, 7] for more details).
Using Pontryagin duality theory, one can show that (X, σ ) is irreducible in the sense
that every proper closed shift invariant subgroup of X is finite.

Definition 6.1 Suppose G and H are abelian topological groups. A continuous map
φ : G −→ H is called affine if there exists a continuous homomorphism θ : G −→
H and b ∈ H such that φ(g) = θ(g) + b for all g ∈ G.

For any f : G −→ H , we define f̂ : G × G −→ H by f̂ (x, y) = f (x + y) −
f (x) − f (y) + f (0).

Lemma 6.2 A continuous map f is affine if and only if f̂ = 0.

Proof It is easy to see that if f is affine then f̂ vanishes. Conversely suppose f̂
is identically zero. Set b = f (0) and define θ : G −→ H by θ(x) = f (x) − f (0).
Clearly f (x) = θ(x) + b for all x ∈ G. Moreover, for any x, y ∈ G, θ(x + y) −
θ(x) − θ(y) = f̂ (x, y) = 0. This proves the given assertion. �

Definition 6.3 Suppose d ≥ 1 and σ is a continuous action of Z
d on a compact

metric space X . For x, y ∈ X , the pair (x, y) is called homoclinic if d(σ (m)(x),
σ (m)(y)) −→ 0 as ‖m‖ → ∞.

Example 6.4 Suppose d = 1, X = T and σ is given by a rotation. Since every
rotation is an isometry, (x, y) is a homoclinic pair if and only if x = y.

Example 6.5 Suppose d = 1 and σ is the shift action on {0, 1}Z. Then (x, y) is a
homoclinic pair if and only if xi = yi for all but finitely many i’s.
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If X is a compact abelian group then (x, y) is a homoclinic pair if and only if
(x − y, 0) is a homoclinic pair. If σ is a continuous action of Z

d on a compact
abelian group X by automorphisms of X , then we define

�σ(X) = {x ∈ X : σ(n)(x) → 0 as ‖n‖ → ∞} .

It is easy to see that �σ(X) is a subgroup of X . It is called the homoclinic group of
the action σ .

Lemma 6.6 Let (X, σ ) denote the 3-dot system. Then, �σ(X) = {0}.
Proof As [σ(1, 0) + σ(0, 1) + σ(0, 0)] (x) = 0 for all x ∈ X and every element of
X has order 2, it follows that for all k ≥ 1,

[σ(1, 0) + σ(0, 1) + σ(0, 0)]2
k = σ(2k, 0) + σ(0, 2k) + σ(0, 0) = 0.

This implies that for any x ∈ X and (m, n) ∈ Z
2, x(m + 2k, n) + x(m, n + 2k) +

x(m, n) = 0. If x is homoclinic to 0 then the first two terms vanish for large k, and
hence x = 0. �

Definition 6.7 Let X be a compact abelian group and σ , an action of Z
d on X by

continuous automorphisms. Suppose v is an element of the unit sphere Sd−1 ⊂ R
d .

An element x ∈ X is called v-homoclinic if σ(g)(x) → 0 as 〈v, g〉 → ∞.

For any v ∈ Sd−1, the collection of all v-homoclinic points are denoted by �v(σ).
It is easy to see that �v(σ) is a subgroup of X . As we will see shortly, these groups
can be non-trivial, even when the homoclinic group of the action σ is trivial.
Suppose σ is the shift action of Z

2 on Y = Z
Z
2

2 and v = (1, 0). Then, �v(σ) is
the collection of all points x for which there exists a k ∈ Z with the property that
x(m, n) = 0 whenever m ≥ k. For explicit examples in a more general setting, see
[2].

Proposition 6.8 Let (X, σ ) denote the 3-dot system. Then both �(−1, 0)(σ ) and
�(0,−1)(σ ) are infinite but �(−1, 0)(σ ) ∩ �(0, −1)(σ ) = {0}.
Proof Let {ai } be an arbitrary sequence taking values in {0, 1}. From the defining
property of the 3-dot system, it is easy to see that there exists a unique x ∈ X such
that x(m, n) = 0 whenever m ≥ 0 and x(−m, 0) = am for m > 0. Clearly any such
x lies in �(−1, 0)(σ ). Hence �(−1, 0)(σ ) is infinite.

Similarly, there exists a unique x ∈ X such that x(m, n) = 0 whenever n ≥ 0 and
x(0,−n) = an for n > 0. This shows that �(0,−1)(σ ) is also infinite.

Nowsuppose x is an element of�(−1, 0)(σ ) ∩ �(0, −1)(σ ). Since x ∈ X , we deduce
that for allm, n and k, x(m + 2k, n) + x(m, n + 2k) + x(m, n) = 0. As the first two
terms vanish for large values of k, we conclude that x = 0. �

Wenow show that the topological centraliser of the 3-dot system consists of algebraic
maps. This is a form of topological rigidity. Similar rigidity properties holds even in
the measure theoretic setting for a large class of actions of discrete groups [1, 3].
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Theorem 6.9 Let (X, σ ) denote the 3-dot system and let f : X −→ X be a contin-
uous Z

2-equivariant map. Then f is a continuous homomorphism.

Proof We define f̂ : X×X−→X by f̂ (x, y)= f (x + y) − f (x) − f (y) + f (0). It
is easy to see that f̂ is aZ

2-equivariant map from X × X to X . Since f̂ is continuous
and X × X is compact, it is also uniformly continuous.

It is easy to see that f̂ (x, y) = 0 whenever x = 0 or y = 0. From uniform con-
tinuity of f̂ , it follows that if x ∈ �(−1, 0)(σ ) and y ∈ �(0, −1)(σ ) then f̂ (x, y) lies
in �(−1, 0)(σ ) ∩ �(0, −1)(σ ). As every infinite shift-invariant subgroup of X is dense,
from the previous proposition, we deduce that �(−1, 0)(σ ) × �(0, −1)(σ ) is a dense
subgroup of X × X , and f̂ maps it to {0}. Hence f̂ is identically zero.

This implies that f is affine, i.e., there exists a continuous homomorphism
θ : X −→ X and b ∈ X such that f (x) = θ(x) + b. As b = f (0) and f is shift
equivariant, it follows that b is invariant under the shift action. Hence b = 0 and f
is a continuous homomorphism. �
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