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1 Introduction

These notes are based on the course of six lectures given by the first named author
at the well-run workshop organised at IIT-Delhi in the month of December, 2017.
The lectures were intended to be self-contained covering some basic facts in ergodic
theory including a discussion of the Birkhoff ergodic theorem which, in a sense,
heralded the beginning of ergodic theory. Since the audience mainly consisted of
graduate students with different mathematical backgrounds, the lectures began with
a quick recap of the construction of the Lebesgue measure in R and progressed
gradually to a discussion of more general measures. After setting up the groundwork
on measure preserving transformations and flows on measure spaces, the notion of
ergodicity was introduced.

Following a brief look at a couple of illustrative examples of dynamical systems,
the focus shifted to a discussion of one of the early interesting examples of an ergodic
system, namely the geodesic flow on closed surfaces of constant negative curvature.
This necessitated a working recapitulation of the geometry of the upper-half plane
with respect to the hyperbolicmetric, the lectures culminatedwith a sketch of a proof,
due to Eberhard Hopf, of the ergodicity of the geodesic flow in this setting.
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The notes, naturally, reflect the dynamics that the lectures carried and also include
some historical titbits in an attempt to capture the significance of the exciting devel-
opments, that have shaped this field of study.

The first named author would like to record his deep gratitude to the organisers of
this extremely well-run workshop, and to Nikita Agarwal who cheerfully conducted
the afternoon tutorials at the workshop with great energy and lot of prior planning.
Both the authors thank the efficient editors of this volume for their invitation to
script the sketchy lecture notes into a coherent narrative, and the anonymous referees
whose careful comments as well as suggestions to add a few explanatory lines at a
couple of places helped weed out the several inadvertent typos and in improving the
readability. The authors take full responsibility for any errors that may still remain
despite their sincere efforts to make these notes error free.

2 Measure Theoretic Preliminaries

This section seeks to develop some rudimentary aspects of measure, starting with the
illuminating case of the Lebesgue measure on the real line. Finding the measure of a
set means to get a certain estimation of its size. A finite set could be measured by its
cardinality, whereas what distinguishes an infinite set from a finite set is its intriguing
property of being in bijective correspondence with a proper subset of itself. This begs
the question as to how one would determine the size of an infinite subset of the real
line R?

For a subset which is an interval I = (a, b) ⊂ R, its length |I |, namely b − a
seems a natural and a reasonable estimation of its size. In fact, the seminal investiga-
tion that Henri Lebesgue undertook culminating with the description of the so called
Lebesgue measure, by exploiting the notion of length, appears in his fundamental
paper of 1904 [10].

The basic idea of the Lebesgue measure on R stems from an effort to adapt the
notion of length for an arbitrary subset of R. This turns out to be a very profitable
enterprise, as building on finer and subtle variants of this notion, allows one to
describe a whole family of s-dimensional Hausdorff measures for each s ∈ (0, 1];
in turn giving rise to the notion of Hausdorff dimension of a given subset. We shall
quickly uncover the main facets in this section, particularly mentioning the succinct
and elegant work of Caratheodory [4].

We begin by first recalling the notion of outer measure.

Definition 2.1 If A ⊆ R, the (Lebesgue) outer measure of A is

μ∗(A) = inf

{ ∞∑
k=1

|Ik | : A ⊆
∞⋃
k=1

Ik, where (Ik)
∞
k=1 is

a collection of open intervals

}
.
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The completeness property of the reals ensures that if at least one of the members of
the above set is finite, then μ∗ will be a finite non-negative real number. If no such
finite number exists, then the outer measure of A is said to be infinite.

Definition 2.2 If A ⊆ R and h ∈ R, the translate of A by h is

A + h = {x + h : x ∈ A}.

The outer measure onR exhibits the following properties which can easily be derived
from first principles.

Theorem 2.3 This theorem features the basic properties of outer measure on R.

1. (Non-negativity) 0 ≤ μ∗(A) ≤ +∞.
2. (Monotonicity) A ⊆ B =⇒ μ∗(A) ≤ μ∗(B).
3. (Countable subadditivity) A ⊆ ⋃∞

n=1 An =⇒ μ∗(A) ≤ ∑∞
n=1 μ∗(An).

4. (Translation invariance) μ∗(A + h) = μ∗(A).
5. μ∗(A) = |A|, the length of A, if A is an interval.

While the abovementioned properties inherently follow from the definition; one other
natural and desirable property is to expect that the outer measures of two disjoint sets
A and B add up to the outer measure of their disjoint union A ∪ B. This expectation
lies at the heart of our discussion and, in a sense, the real essence of the theory lies
in understanding this rather innocuous requirement.

A moment’s reflection on what the finite additivity property ensures, can be gath-
ered from the following. If {Ai }, i = 1, . . . ,∞ is a countable collection of pairwise
disjoint subsets of R, then

n∑
i=1

μ∗(Ai ) = μ∗
(

n⋃
i=1

Ai

)
≤ μ∗

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

μ∗(Ai ).

Taking limits as n → ∞ on both sides results in the countable additivity of the outer
measure.

But, the outer measureμ∗ defined above has a singular shortcoming in that it is not
finitely additive! One way to see this fact, a posteriori, is to glean from Vitali’s con-
struction in 1905 [12], of a non-measurable subset of R. Recall that Vitali exhibited
a proper non-empty subset C of R, taking rational translates of which, one obtains
a countable collection of pairwise disjoint subsets of R. It is on this collection, that
the outer measure μ∗ cannot be countably additive. In particular, there are disjoint
subsets A and B of R such that μ∗(A ∪ B) �= μ∗(A) + μ∗(B).

In other words, there are subsets X and O of R such that for the partition by O of
X , into disjoint subsets X ∩ O and X ∩ Oc, one has

μ∗(X) �= μ∗(X ∩ O) + μ∗(X ∩ Oc).
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To see this, consider disjoint sets A and B and take X = A ∪ B and O = A. There-
fore, μ∗(X) = μ∗(A ∪ B) �= μ∗(A) + μ∗(B) = μ∗(X ∩ O) + μ∗(X ∩ Oc).

Consequently, one looks at the collection, M, of all those sets E ⊆ R such that

μ∗(A) = μ∗(A ∩ E) + μ∗(A ∩ Ec), ∀A ⊆ R. (1)

On this collection, M, the outer measure μ∗ is countably additive. The collection
M, which includes open intervals, constitutes a σ -algebra, and the outer measure
restricted to M is called the Lebesgue measure on M. The expression (1) is termed
as the Caratheodory criterion and naturally leads to the definition of a (Lebesgue)
measurable set. The next two definitions make this observation precise.

Definition 2.4 A family of subsets, M of a set X is said to be a σ -algebra if the
following hold:

1. X ∈ M;
2. A ∈ M =⇒ Ac ∈ M;

3.
{
Ai

}∞
i=1 ∈ M =⇒

∞⋃
i=1

Ai ∈ M.

Definition 2.5 A set E ⊆ R is said to be Lebesgue measurable or measurable if the
Caratheodory criterion (1) holds with respect to E .

In light of the preceding definitions, the conclusions of the next proposition can
be deduced using properties of the outer measure given in Theorem2.3.

Proposition 2.6

1. If I is an interval, then I ∈ M and μ∗(I ) = |I |.
2. If A ∈ M, then Ac ∈ M.
3. If A, B ∈ M, then A ∪ B, A ∩ B ∈ M.
4. If pairwise disjoint sets A1, A2, . . . , AN ∈ M and E ⊆ R, then

μ∗
(
E ∩

(
N⋃

k=1

Ak

))
=

N∑
k=1

μ∗(E ∩ Ak).

5. (Countable additivity or σ -additivity) If {An}∞n=1 is any sequence of measurable

sets, then
∞⋂
n=1

An and
∞⋃
n=1

An are alsomeasurable. Further, if {An}∞n=1 is a sequence

of pairwise disjoint measurable sets, then
⋃∞

n=1 An ∈ M and

μ∗
( ∞⋃
n=1

An

)
=

∞∑
n=1

μ∗(An).

Definition 2.7 Suppose A ∈ M. Then its (Lebesgue) measure, μ(A) is defined to
be its outer measure: μ(A) = μ∗(A).
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Remark 2.8

• The reason for the need of two different concepts is that both have their disadvan-
tages.

• μ is an additive measure, but is not defined for all subsets of R.
• μ∗ is defined for all subsets of R, but is not additive, as demonstrated by Vitali’s
construction.

A more restricted class of Lebesgue measurable sets are the Borel measurable
sets.

Definition 2.9 If X is any topological space (in this case R), then the σ -algebra,B
generated by the class of open sets in X (resp. open intervals in R) are called the
Borel sets of X (resp. R).

Remark 2.10 It can be easily shown that the Borel σ -algebra for R includes the
half-open intervals such as [a, b) as well as closed intervals and further that every
Borel set is (Lebesgue) measurable.

The important properties of the outer measure μ∗ continue to hold on replacing
μ∗ by μ whenever A ∈ M.

Theorem 2.11 Here, we enlist some additional properties of measurable sets.

1. Continuity: Suppose A1 ⊇ A2 ⊇ A3 · · · and B1 ⊆ B2 ⊆ B3 · · · are sequences of
measurable sets, and μ(A1) < ∞. Then,

μ

( ∞⋂
n=1

An

)
= lim

n→∞ μ(An) and μ

( ∞⋃
n=1

Bn

)
= lim

n→∞ μ(Bn).

2. Approximation: If A ∈ M, and μ(A) < ∞, then for all ε > 0 there exists a
bounded closed set B and an open set C such that B ⊆ A ⊆ C, andμ(C∩Bc)<ε.

The previously sketched discussion of the construction of the Lebesgue measure
onR, starting from the notion of outer measure is, in a sense, a proto for the construc-
tion of measures more generally on complete metric spaces. In the setting of a metric
space X together with the distance function d, one starts with the notion of a ‘metric
outer measure’ which estimates the size of a subset A, by considering covers of A
by a countable number of open balls; then, using radii of open balls, one considers
an appropriate measure of their sizes to analogously replace lengths of intervals.

We shall elaborate more on this later when discussing Hausdorff measures, but
will now proceed to a discussion of measures in general.

Definition 2.12 A measure space is a triple (X,M, μ), where X is any set, M is a
σ -algebra of measurable sets and μ is a σ -additive measure.

A measurable space is just the pair (X,M) with no specification about the mea-
sure. The concept of σ -finiteness is another desirable property for a measure to
possess.
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Definition 2.13 Ameasure space (X,M, μ) is said to be σ -finite if X can be written

as a countable union of measurable sets of finite measure i.e., X =
∞⋃
n=1

An with

μ(An) < +∞, for all n. μ is then said to be a σ -finite measure.

Definition 2.14 Given a measure space (X,M, μ), a set A ⊂ X is said to be a
null set or a set of measure zero if there exists a set A1 ∈ M so that A ⊆ A1 and
μ(A1) = 0. Furthermore, two sets A1, A2 ⊂ X are said to be equivalent mod 0 if
their symmetric difference, A1�A2 i.e., (A1 \ A2) ∪ (A2 \ A1) hasmeasure zero and
this is denoted as A1 ≡ A2 (mod 0).

Remark 2.15

1. It should be noted in this context that not everymeasurable set is aBorel set. In fact,
it is possible to construct sets of measure zero which are Lebesgue measurable
but not Borel measurable. Thus, the Lebesgue measure serves as a completion of
the Borel measure.

2. Note that a more formal definition of a complete measure is as follows: Given a
measure space (X,M, μ), μ is complete if and only if for any N ∈ M where
μ(N ) = 0, E ⊆ N implies E ∈ M. The Lebesguemeasure is complete precisely
in the above sense.

Another example of a finite measure space is the probability space which is the space
of choice for ergodic theory. For a measure space (X,M, μ), if μ(X) = 1, then X
is a said to be probability space and μ a probability measure.

Measure zero sets are very useful in characterising properties in measure theory.

Definition 2.16 A property P of points of a set A ⊆ X is said to hold almost every-
where (a.e.) if the set of points of A which do not satisfy P form a set of measure
zero.

2.1 Measurable Functions and Transformations

We now move on to the notion of a measurable function which closely mirrors the
topological definition of a continuous function. The first definition is formulated in
the setting of general measure spaces.

Definition 2.17 (Measurable functions or transformations) If (X,M) and (Y,N)

are two measurable spaces, then a map f : X −→ Y is measurable if f −1(A) is
measurable i.e., f −1(A) ∈ M for every A ∈ N. Further, if X and Y are topological
spaces, then f : X −→ Y is said to be (Borel-) measurable if it is measurable with
respect to the Borel σ -algebras of X and Y .

Remark 2.18 The above definition implies that every continuous function is
(Borel-) measurable.
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In the sequel, we use the extended real line R̄ = R ∪ {−∞,∞} with the usual
conventions. To keep things simple, in the remaining part of this section, we restrict
ourselves to extended real-valued functions defined on R (equipped with the usual
Lebesgue measure), unless otherwise explicitly stated, although the statements hold
in the more general setting of complete measure spaces.

Remark 2.19 In particular, if f : (R,L) −→ (R̄,B), where L is the Lebesgue σ -
algebra, and f is measurable as in the Definition 2.17, then f is said to be Lebesgue
measurable.

For extended real-valued functions f, g, denote

( f ∧ g)(x) = min{ f (x), g(x)}, ( f ∨ g)(x) = max{ f (x), g(x)}.

Proposition 2.20 Measurable functions satisfy the following notable properties:

1. Suppose f, g are measurable functions and c ∈ R, then c f, f + g, f g, | f |, f ∧
g, f ∨ g are measurable.

2. Suppose { fn}∞n=1 is a sequence of measurable functions and limn→∞ fn(x) =
f (x), then f is measurable.

3. Suppose { fn}∞n=1 is a sequence of measurable functions. Let g(x) = inf{ fn(x)}
and h(x) = sup{ fn(x)}. Then g and h are measurable.

Definition 2.21 The indicator function of a set A ⊆ R is the function

χA(x) =
{
1 if x ∈ A,

0 if x /∈ A.

Definition 2.22 A simple function is a function of the form

f = a1χA1 + · · · + anχAn where ai ∈ R, Ai ∈ M and μ(Ai ) < ∞.

Definition 2.23 The integral of a simple function f = ∑n
i=1 aiχAi is

∫
f dμ =

∫
R
f dμ =

n∑
i=1

aiμ(Ai ).

Definition 2.24 (Integral of nonnegative measurable functions) If f : R −→ R is a
nonnegative measurable function, then its integral is

∫
f dμ = sup

{∫
g dμ : g is a simple function such that 0 ≤ g ≤ f

}
.

Proposition 2.25 If f, g are nonnegative measurable functions and a > 0, then
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∫
a f dμ = a

∫
f dμ,

∫
( f + g) dμ =

∫
f dμ +

∫
g dμ.

Moreover, if f ≤ g, then ∫
f dμ ≤

∫
g dμ.

This additivity property will allow us to extend the definition of integration to
functions that change sign.

Definition 2.26 For an extended real-valued function f , define functions

f +(x) =
{
f (x) if f (x) > 0,

0 if f (x) ≤ 0; f −(x) =
{

− f (x) if f (x) < 0,

0 if f (x) ≥ 0.

Note that f + and f − are nonnegative. They are measurable if f is, and f = f + −
f −, | f | = f + + f −.

Definition 2.27 A measurable function is integrable if
∫ | f | dμ < +∞.

Definition 2.28 If f is an integrable function, its integral is

∫
f dμ =

∫
f + dμ −

∫
f − dμ.

Definition 2.29 The limit supremum of a sequence is the least upper bound of the
set of all subsequential limits of the sequence. That is,

lim sup
n→∞

an := lim
n→∞ (sup{am : m ≥ n}) = inf

n≥0

(
sup
m≥n

am

)
.

Similarly, we define

lim inf
n→∞ an := lim

n→∞ (inf{am : m ≥ n}) .

Theorem 2.30 (Fundamental convergence theorems) Here, we record the funda-
mental convergence theorems in analysis, that we use in the sequel.

1. (Lebesgue’s dominated convergence theorem) Suppose ( fn)∞n=1 is a sequence of
measurable functions and lim

n→∞ fn(x) = f (x), for all x ∈ R, and | fn(x)| ≤ g(x)

for all n ∈ N, x ∈ R where g is an integrable function. Then,

lim
n→∞

∫
fn dμ =

∫
f dμ.

2. (MonotoneConvergenceTheorem)Suppose ( fn)∞n=1 is a non-decreasing sequence
of non-negative measurable functions 0≤ f1≤ f2 ≤ · · · . Let f (x)= lim

n→∞ fn(x).
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Then,

lim
n→∞

∫
fn dμ =

∫
f dμ.

3. (Fatou’s Lemma) If ( fn)∞n=1 is a sequence of nonnegative measurable functions,
then ∫

lim inf
n→∞ fn dμ ≤ lim inf

n→∞

∫
fn dμ.

Definition 2.31 Two functions f and g are said to be equal almost everywhere,
written f = g a.e., if {x : f (x) �= g(x)} is a set of measure zero.

Proposition 2.32 If f is a function on a Lebesgue measurable set E and g = f
a.e., then g is Lebesgue measurable if and only if f is Lebesgue measurable.

Definition 2.33 Consider the set of all integrable functions onR. The function space
L1 is the set of all equivalence classes of integrable functions on R, where we set
f � g if f = g a.e. The L1 norm is given by

‖ f ‖1 :=
∫

| f | dμ.

Theorem 2.34 L1 is complete, i.e., given a Cauchy sequence { fn}∞n=1 in L1, there
exists f ∈ L1 such that lim

n→∞ ‖ fn − f ‖1 = 0.

Generalising the L1 notion to functions on arbitrary complete measure spaces, we
have the following definition.

Definition 2.35 Let (X,M, μ) be a complete measure space and f : X −→ R̄ be a
measurable function, then for each integer p ≥ 1, we say that f ∈ L p(μ) if

∫
X

| f |p dμ < ∞.

For any such f ∈ L p(μ), we may define the L p-norm as

‖ f ‖p :=
⎛
⎝∫

X

| f |p dμ

⎞
⎠

1
p

.

Identifying the functions whose values agree a.e. allows for defining a metric on the
space L p(μ) by means of the L p-norm. We treat L p(μ) as the set of equivalence
classes of functions which coincide a.e.. Thus, L p(μ) becomes a Banach space for
1 ≤ p < ∞. In particular, L2(μ) is a Hilbert space with the inner product defined
by
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〈 f, g〉 :=
∫
X

f g dμ.

Definition 2.36 f : X −→ R is said to be compactly supported if the closure of the
set of points in X where the value of f is non-zero, is a compact subset of X .

Notation 2.37 We denote the set of all compactly supported (real-valued) continu-
ous functions on X as Cc(X).

Theorem 2.38 (Lusin’s Theorem) If X is a locally compact Hausdorff topological
space and if f : X −→ R̄ is a measurable function such that f (x) = 0, for all x /∈
A ⊂ X, where μ(A) < ∞, then given ε > 0, there exists a g ∈ Cc(X) so that

μ ({x : f (x) �= g(x)}) < ε.

Theorem 2.39 For 1 ≤ p < ∞, Cc(X) is dense in L p(μ).

Definition 2.40 Let (X,M) be ameasurable space andμ, ν : X −→ [0,∞) be two
measures on M. We say that μ is absolutely continuous with respect to ν if A ∈ M
and ν(A) = 0 implies μ(A) = 0. This is denoted as μ << ν.

Theorem 2.41 (Radon–Nikodym) If (X,M, ν) is a σ -finite measure space, then
μ << ν if and only if there exists a function f ∈ L1(ν) such that

μ(A) =
∫
A

f dν for every A ∈ M.

The function f is unique a.e. with respect to ν and is written as dμ

dν
, called the

Radon-Nikodym derivative of μ w.r.t ν.

2.2 Hausdorff Measures

In this subsection, we outline the notion of more general measures called Hausdorff
measures that subsume the Lebesgue measure. It is assumed that (X, d) is a non-
empty metric space. The notion of Hausdorff dimension of a subset A ⊂ X arises
from the construction of Hausdorff measures [6].

Definition 2.42 A function μ defined on P(X) is called a metric outer measure if
it satisfies the following:

1. μ∗(A) ≥ 0, for all A ∈ P(X);
2. μ∗(∅) = 0;
3. (Monotonicity) A1 ⊆ A2 =⇒ μ∗(A1) ≤ μ∗(A2);
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4. (Countable subadditivity) if {An}∞n=1 is a countable collection of members of

P(X), then μ∗
( ∞⋃
n=1

An

)
≤

∞∑
n=1

μ∗(An);

5. if A1, A2 ∈ P(X) with d(A1, A2) > 0, then μ∗(A1 ∪ A2) = μ∗(A1) + μ∗(A2).

A familiar example of such an outer measure is the Lebesgue outer measure
discussed in the earlier sections. Before defining the Hausdorff measure, we remark
that as in the case of R, a subset E of a space X is said to be measurable if

μ∗(A) = μ∗(A ∩ E) + μ∗(A ∩ Ec), ∀A ∈ P(X).

The class of measurable sets in X evidently form a σ -algebra P so that μ when
restricted to P, is countably additive and thus a measure in the usual sense. We
henceforth use the usual μ notation for the measure.

Definition 2.43 Given a metric space (X, d) and A ⊂ X , the diameter of A is given
as δ(A) := sup{d(x, y) : x, y ∈ A}.

Let (X, d) be a metric space and let α(> 0) ∈ R. Let A ⊂ X . Given ε > 0, con-
sider

H ε
α (A) = inf

{ ∞∑
k=1

δ(Ak)
α : A ⊆

∞⋃
k=1

Ak where δ(Ak) < ε ∀k
}

,

the infimum being taken over all countable covers of the set A whose members
have diameter less than ε. Note that if ε1 < ε, then H ε1

α (A) ≥ H ε
α (A). Therefore,

lim
ε→0

H ε
α (A) exists, though it may be infinite, and we write Hα(A) = lim

ε→0
H ε

α (A).

Theorem 2.44 For each α > 0, Hα is a metric outer measure on X called the
Hausdorff outer measure of dimension α and when restricted to the σ -algebra of
measurable sets, is called the Hausdorff measure of dimension α on X.

Note that if α = 0, then Hα is merely, the counting measure.

Theorem 2.45 (i) If Hα(A) < ∞, then Hβ(A) = 0 for β > α.
(ii) If Hα(A) > 0, then Hβ(A) = ∞ for β < α.

Proof It is easy to see that (i) and (ii) are equivalent. Therefore, we prove (i). Suppose

A =
∞⋃
k=1

Ak , with δ(Ak) < ε. If β > α, then

H ε
β (A) ≤

∞∑
k=1

δ(Ak)
β ≤ εβ−α

∞∑
k=1

δ(Ak)
α.

That is, H ε
β (A) ≤ εβ−αH ε

α (A). Letting ε → 0, we see that Hβ(A) = 0 if Hα(A) <

∞. �
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As a consequence of the above theorem, for A ⊂ X , there exists d ∈ R such that

{
Hm(A) = 0 if m > d,

Hm(A) = ∞ if m < d.

The d, obtained as above, is called the Hausdorff dimension of the set A, denoted by
Hdim(A).

Example 2.46

1. If A is any countable set then,Hdim(A) = 0.
2. If X = R and α = 1, then it is straightforward to check that H1 is the Lebesgue

measure.
3. The Cantor ternary set is an example of an uncountable set of zero Lebesgue

measure, as opposed to countable sets which are also of Lebesgue measure zero.

It can be shown that its Hausdorff dimension is
ln 2

ln 3
.

If X = Rn, n > 1, then Hn is not the same as the Lebesgue measure, but is compa-
rable to it, a fact elucidated in the next theorem.

Theorem 2.47 Let A ⊂ Rn.

1. Then, there exists positive constants C1 and C2 depending only on the dimension
n such that

C1Hn(A) ≤ λ(A) ≤ C2Hn(A),

for A ⊂ Rn, λ being the Lebesgue measure on Rn.
2. If α > n, then Hα(A) = 0, for every A ⊂ Rn.

3 Recurrence and Ergodic Theorems

Let (X,M, μ) be a measure space. A transformation T : X −→ X is said to be
a measurable transformation (with respect to μ) if the inverse image of every μ-
measurable set is μ-measurable. And a μ-measurable transformation T of X into
itself is said to bemeasure preserving ifμ(T−1(E)) = μ(E) for everyμ-measurable
subset E of X .

Example 3.1

1. Let X = [0, 1) andλ be the Lebesguemeasure on X . Let c ∈ X be any point. Then
the transformation T : X −→ X defined by T (x) = x + c (mod1) is measure
preserving.
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2. Let X = [0, 1) and λ be the Lebesgue measure on X . Define T : X −→ X as

T (x) =
{
2x for 0 ≤ x < 1

2

2x − 1 for 1
2 ≤ x < 1.

It can be easily verified that T as defined above is a measure preserving transfor-
mation.

3. Given a = (a1, a2, . . . , an) ∈ Rn where Rn is equipped with the usual Lebesgue
measure. The affine transformation T : Rn −→ Rn defined as T (x) = x + a is
invertible and measure preserving.

In the context of ergodic theory, a measurable space (X,M, μ) equipped with a
measure preserving transformation T constitutes a dynamical system denoted by
(X,M, μ, T ).

3.1 Recurrence

In the sequel, we assume that (X,M, μ) is a probability space i.e. μ(X) = 1. Given
a measure preserving transformation T on a measure space (X,M, μ), T is said to
be recurrent if for any given set of positive measure A ⊂ X , almost all points of A
return to A after at most finitely many iterations of T .

Theorem 3.2 (Poincare recurrence theorem) Let (X,M, μ) be a probability space
and T : X −→ X be a measure preserving transformation. Given A ∈ M, let A0 be
the set of points x ∈ A such that T n(x) ∈ A for infinitely many n ≥ 0. Then A0 ∈ M
and μ(A0) = μ(A).

Proof Let
Cn = {

x ∈ A : T k(x) /∈ A ∀k ≥ n
}
.

Therefore A0 = A \
∞⋃
n=1

Cn . In order to prove the theorem, it is enough to show that

1. Cn ∈ M and
2. μ(Cn) = 0 for every n ≥ 1.

1. Now, Cn = A \ ⋃
k≥n

T−k(A). Since T−k(A) ∈ M for every k ≥ 1, we see that

Cn ∈ M.
2. Also,

Cn ⊂
⋃
k≥0

T−k(A) \
⋃
k≥n

T−k(A)

=⇒ μ(Cn) ≤ μ

(⋃
k≥0

T−k(A)

)
− μ

(⋃
k≥n

T−k(A)

)
.
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Now, observe that
⋃
k≥n

T−k(A) = T−n

(⋃
k≥0

T−k(A)

)
. Since T is measure pre-

serving, this implies

μ

(⋃
k≥0

T−k(A)

)
= μ

(⋃
k≥n

T−k(A)

)
.

Therefore μ(Cn) = 0. �

3.2 Birkhoff Ergodic Theorem and the Notion of Ergodicity

Let (X,M, μ) be a probability space and T : X −→ X be a measure preserving
transformation. Let E ∈ M. Given x ∈ X , one would like to ask with what frequency
do the elements of the set {x, T x, T 2x, . . .} lie in the set E?

Clearly T i x ∈ E if and only if χE (T i x) = 1; therefore the number of ele-

ments of {x, T x, T 2x, . . . , T n−1x} in E is
n−1∑
k=0

χE (T kx) or the relative number of

{x, T x, . . . , T n−1x} in E is
1

n

n−1∑
k=0

χE (T kx).

Around the turn of the century, the work of Boltzmann and Gibbs on statistical
mechanics raised a mathematical problem which can be stated as follows: Given
a measure preserving transformation T of a probability space and an integrable
function f : X −→ R, find conditions under which

lim
n→∞

f (x) + f (T x) + · · · + f (T n−1x)

n

exists and is constant almost everywhere.
In 1931 [3], Birkhoff proved that for any T and f , the above limit exists almost

everywhere. From this, he concluded that a necessary and sufficient condition for its
value to be constant almost everywhere, is that there exist no set A ∈ M such that
0 < μ(A) < 1 and T−1A = A. As we will see later, the fact that this limit is constant
easily implies that it is equal to the integral of f over X . Transformations T which
satisfy this condition are called ergodic and ergodic theory is essentially the study of
such transformations. The Birkhoff Ergodic theorem is the first fundamental result
that sets the tone for much of what follows.

Theorem 3.3 (Birkhoff Ergodic Theorem) Let (X,M, μ) be a probability space
and T : X −→ X be a measure preserving transformation. If f ∈ L1(μ) then the
limit

lim
n→∞

1

n

n−1∑
k=0

f (T k(x)) = f̃ (x),
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exists for almost every point x ∈ X, f̃ ∈ L1(μ) and f̃ ◦ T = f̃ almost everywhere.
Furthermore, ∫

X
f̃ dμ =

∫
X
f dμ.

If f is any measurable function, let g(x) = f (T x). Since T is measurable, the
function g ismeasurable so that,writing g(x) = U f (x), the transformationU assigns
to each measurable function f , a measurable function g. Clearly, U is linear and g
is non-negative if f is so. Moreover, we have:

Theorem 3.4 If 1 ≤ p ≤ ∞ and ‖ f ‖p denotes the L p-norm of f , then ‖g‖p =
‖ f ‖p for g = U f .

Proof Let E ∈ M and f = χE . Then g = U f = f (T x) = χT−1(E). Therefore,

‖g‖p
p = μ(T−1(E)) = μ(E) = ‖ f ‖p

p .

It follows that ‖g‖p = ‖ f ‖p for every non-negative simple function. If f is any
non-negative measurable function, there exists a sequence of simple, non-negative
measurable functions {sn}∞n=1 such that sn → f , as n → ∞, with s1 ≤ s2 ≤ · · · ≤ f .
Now, since tn = Usn is also an increasing sequence of simple functions, converging
to g, monotone convergence theorem implies that

‖g‖p = lim
n→∞ ‖tn‖p = lim

n→∞ ‖sn‖p = ‖ f ‖p .

The general case of f now follows by writing f = f + − f − and applying the above
conclusion to f + and f − separately. �

In particular, if f ∈ L2(μ) we have showed that g(x) = U f (x) = f (T x) is also
in L2(μ) and that ‖g‖2 = ‖ f ‖2. In other words,U is an isometric transformation of
the Hilbert space L2(μ) into itself.

If, in addition, T is invertible (i.e., there exists ameasure preserving transformation
S : X −→ X such that ST = T S = I dX ) and if V is the isometric transformation
in L2(μ) corresponding to its inverse, thenUV = VU is the identity transformation
in L2(μ). Therefore, the range of V is the whole of L2(μ); in other words, U is a
unitary transformation in L2(μ) and V is its inverse. Thus, an invertible measure
preserving transformation on a measure space (X, μ) induces an invertible unitary
transformation in the Hilbert space L2(μ).

Therefore, in so far as it concerns functions f ∈ L2(μ), the existence of the limit
of the averages is reduced to the problem of existence of the limit as n → ∞ of

1

n

n−1∑
k=0

Uk f (x), where U is an isometric transformation in the Hilbert space L2(μ).

Precisely, this convergence, known as the mean ergodic theorem, was proven by J.
von Neumann in 1932 [13].
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Theorem 3.5 (Mean ergodic theorem) If U is an isometric transformation in an
arbitrary Hilbert space H and if P is the orthogonal projection on the closed linear

subspace of all f ∈ H satisfying U f = f , then
1

n

n−1∑
k=0

Uk f converges in norm as

n → ∞ to P f for all f ∈ H.

We will skip a proof of this and prove the more general Birkhoff ergodic theorem
(BET, for short). We prove the first part of the BET and prove the more general L p

version of the second part as a corollary. The key step in the proof of BET is itself a
useful lemma known as the Maximal ergodic theorem.

Lemma 3.6 (Maximal ergodic theorem) Given f ∈ L1(μ), put

E( f ) =
{
x : max

n≥0

(
n−1∑
k=0

f (T kx)

)
> 0

}
.

Then
∫
E( f ) f dμ ≥ 0.

Proof Define

f0 := 0,

fn := f + f ◦ T + f ◦ T 2 + · · · + f ◦ T n−1

= f +U f +U 2 f + · · · +Un−1 f.

Let Fn = max
0≤k≤n

fk . Therefore

E( f ) =
∞⋃
n−1

{x : Fn(x) > 0} =
∞⋃
n−1

En.

Clearly, Fn ∈ L1(μ) and, for 0 ≤ k ≤ n, we have Fn ≥ fk . Therefore UFn ≥ U fk
becauseU : L1(μ) −→ L1(μ) is a positive linear operator (i.e., f ≥ 0 impliesU f ≥
0) and hence,

UFn + f ≥ U fk + f = fk+1.

In other words,

UFn + f ≥ max
1≤k≤n

fk(x) = max
0≤k≤n

fk(x) = Fn(x) when Fn(x) > 0.

That is, f ≥ Fn −UFn on {x : Fn(x) > 0} = En . Therefore,



Basic Ergodic Theory 89

∫
En

f dμ ≥
∫
En

Fn dμ −
∫
En

U Fn dμ

=
∫
X
Fn dμ −

∫
En

U Fn dμ

≥
∫
X
Fn dμ −

∫
X
U Fn dμ

= 0.

The second equality above holds because Fn = 0 on X \ En , the third inequality
holds because Fn ≥ 0 impliesUFn ≥ 0 and the last equality holds because ‖U‖ = 1.
Finally, since E1 ⊆ E2 ⊆ · · · , we have that En → E( f ) and we are done. �

Corollary 3.7 If A ⊂ E( f ), A ∈ M and T−1A = A, then,

∫
A
f dμ ≥ 0.

Proof Since T−1A = A, we see that E( f χA) = A. Therefore, the lemma above
implies 0 ≤ ∫

E( f χA)
f χA dμ = ∫

A f χA dμ = ∫
A f dμ. �

Theorem 3.8 Let (X,M, μ) be a probability space and T : X −→ X be a measure
preserving transformation. If f ∈ L1(μ), then the limit

lim
n→∞

1

n

n−1∑
k=0

f (T kx)

exists for almost every point x ∈ X.

Proof For each α, β ∈ R with α < β, let

Eα,β =
{
x ∈ X : lim inf

n→∞
1

n

n−1∑
k=0

f (T kx) < α < β < lim sup
n→∞

1

n

n−1∑
k=0

f (T kx)

}
.

Clearly, Eα,β ∈ M. We will show that μ(Eα,β) = 0 for each α, β. This would imply
that

⋃
Eα,β , where α, β ∈ R such that α < β, has measure zero and hence the limit

exists almost everywhere.

Put f ∗(x) = sup
n≥1

1

n

n−1∑
k=0

f (T kx) and f∗(x) = inf
n≥1

1

n

n−1∑
k=0

f (T kx). Therefore,

Eα,β ⊂ {
x : f ∗(x) > β

} = {
x : ( f ∗ − β)(x) > 0

} = E( f − β)
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and Eα,β ⊂ {x : f∗(x) < α}.
We first show that Eα,β is T -invariant. That is, we show that T−1(Eα,β) = Eα,β .

Let an(x) = 1

n

n−1∑
k=0

f (T kx). Then,
n + 1

n
an+1(x) − an(T x) = f (x)

n
. Therefore,

lim sup
n→∞

(an+1(x) + 1

n
an+1(x) − an(T x)) = lim sup

n→∞
f (x)

n
.

This implies that lim sup
n→∞

(an+1(x) − an(T x)) = 0. That is, lim sup
n→∞

(an+1(x)) =
lim sup
n→∞

(an(T x)). Similarly, lim inf
n→∞ (an+1(x)) = lim inf

n→∞ (an(T x)).

Therefore, T−1(Eα,β) = Eα,β .
By Corollary 3.7, we get

∫
Eα,β

( f − β) dμ ≥ 0 or
∫
Eα,β

f dμ ≥ βμ(Eα,β). Now
Eα,β ⊂ {x : f∗(x) < α} = {x : − f∗ > −α} = {x : (− f )∗ > −α}.

Therefore, by the maximal ergodic theorem 3.6,
∫
Eα,β

(− f ) dμ ≥ −αμ(Eα,β) or∫
Eα,β

f dμ ≤ αμ(Eα,β). Thus, βμ(Eα,β) ≤ ∫
Eα,β

f dμ ≤ αμ(Eα,β).
But α < β. Therefore, the above inequality holds only if μ(Eα,β) = 0. �

Corollary 3.9 (i) If f ∈ L p(μ), 1 ≤ p ≤ ∞, the function f̃ defined by,

f̃ (x) = lim
n→∞

1

n

n−1∑
k=0

f (T kx)

is in L p(μ) and satisfies

lim
n→∞

∥∥∥∥∥ f̃ − 1

n

n−1∑
k=0

f ◦ T k

∥∥∥∥∥
p

= 0.

(ii) f̃ (T x) = f̃ (x).
(iii) For f ∈ L p(μ),

∫
X f̃ dμ = ∫

X f dμ.

Proof (i) Since X is a probability space,μ(X) = 1. Therefore, f ∈ L1(μ) and f̃ (x)

makes sense. Moreover, | f | ∈ L1(μ) and
∣∣ f̃ (x)∣∣ ≤ lim

n→∞
1

n

n−1∑
k=0

∣∣ f (T kx)
∣∣ for a.e. x

(this limit exists since | f | ∈ L1(μ)). That is,
∣∣ f̃ (x)∣∣p ≤ lim

n→∞

(
1

n

n−1∑
k=0

∣∣ f (T kx)
∣∣
)p

.

Since
∣∣ f̃ ∣∣p ≥ 0,
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∥∥ f̃
∥∥p

p =
∫
X

∣∣ f̃ ∣∣p dμ =
∫
X
lim
n→∞

(
1

n

n−1∑
k=0

∣∣ f (T kx)
∣∣
)p

dμ

=
∫
X
lim inf
n→∞

(
1

n

n−1∑
k=0

∣∣ f (T kx)
∣∣
)p

dμ

≤ lim inf
n→∞

∫
X

(
1

n

n−1∑
k=0

∣∣ f (T kx)
∣∣
)p

dμ. (Fatou’s Lemma)

Now

∫
X

(
1

n

n−1∑
k=0

∣∣ f (T kx)
∣∣
)p

dμ =
∥∥∥∥∥
1

n

n−1∑
k=0

∣∣ f (T kx)
∣∣
∥∥∥∥∥
p

p

≤
(
1

n

n−1∑
k=0

∥∥ f (T kx)
∥∥
p

)p

=
(
1

n

n−1∑
k=0

‖ f ‖p

)p

(T k is measure preserving)

= ‖ f ‖p
p .

Therefore

∥∥ f̃
∥∥p

p ≤ lim inf
n→∞

∫
X

(
1

n

n−1∑
k=0

∣∣ f (T kx)
∣∣
)p

dμ ≤ lim inf
n→∞ ‖ f ‖p

p = ‖ f ‖p
p < ∞,

since f ∈ L p(μ). Therefore f̃ ∈ L p(μ). �

Definition 3.10 (Convergence in the L p-norm) Consider the case f ∈ L∞(μ), i.e.,
sup
x∈X

| f (x)| < ∞ a.e. Clearly, f ∈ L1(μ) and the sequence of functions

∣∣∣∣∣ f̃ − 1

n

n−1∑
k=0

f (T kx)

∣∣∣∣∣
p

converges to 0 a.e. Moreover,

∣∣ f̃ (x)∣∣ ≤ lim
n→∞

1

n

n−1∑
k=0

∣∣ f (T kx)
∣∣ ≤ lim

n→∞
1

n

n−1∑
k=0

‖ f ‖∞ = ‖ f ‖∞ -a.e.

Therefore,
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∣∣∣∣∣∣ f̃ (x) − 1

n

n−1∑
k=0

f (T kx)

∣∣∣∣∣∣
p

≤
∣∣∣∣∣∣‖ f ‖∞ + 1

n

n−1∑
k=0

∥∥∥ f ◦ T k
∥∥∥∞

∣∣∣∣∣∣
p

≤ (
2 ‖ f ‖∞

)p = constant.

Hence by dominated Convergence theorem,

∫
X

∣∣∣∣∣ f̃ − 1

n

n−1∑
k=0

f (T kx)

∣∣∣∣∣
p

dμ → 0 -a.e.

That is, for f ∈ L p(μ), lim
n→∞

∥∥∥∥∥ f̃ − 1

n

n−1∑
k=0

f ◦ T k

∥∥∥∥∥
p

= 0. Now, let f ∈ L p(μ) and

let ε > 0. There is an f0 ∈ L∞(μ) such that ‖ f − f0‖p ≤ ε/3 and there exists an

N > 0 such that

∥∥∥∥∥ f̃0 − 1

n

n−1∑
k=0

f0 ◦ T k

∥∥∥∥∥
p

≤ ε/3 for n ≥ N .

Then,

∥∥∥∥∥ f̃ − 1

n

n−1∑
k=0

f (T kx)

∥∥∥∥∥
p

≤ ∥∥ f̃ − f̃0
∥∥
p +

∥∥∥∥∥ f̃0 − 1

n

n−1∑
k=0

f0(T
kx)

∥∥∥∥∥
p

+
∥∥∥∥∥
1

n

n−1∑
k=0

( f0 − f )(T kx)

∥∥∥∥∥
p

.

Now, f̃ − f̃0 = f̃ − f0 and hence,

∥∥ f̃ − f̃0
∥∥
p

=
∥∥∥ f̃ − f0

∥∥∥
p

≤ ‖ f − f0‖p ≤ ε

3
,

and
∥∥∥∥∥
1

n

n−1∑
k=0

( f0 − f )(T kx)

∥∥∥∥∥
p

≤ 1

n

n−1∑
k=0

‖ f0 − f ‖p = ‖ f0 − f ‖p ≤ ε

3
.

Therefore, for n ≥ N , ∥∥∥∥∥ f̃ − 1

n

n−1∑
k=0

f (T kx)

∥∥∥∥∥
p

< ε,

which implies that

lim
n→∞

∥∥∥∥∥ f̃ − 1

n

n−1∑
k=0

f (T kx)

∥∥∥∥∥
p

= 0.
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We now prove the remainder of the statements in Corollary 3.9.
(ii)

f̃ (T x) = lim
n→∞

1

n

n−1∑
k=0

f (T k(T x))

= lim
n→∞

(
1

n

n∑
k=0

f (T kx) − 1

n
f (x)

)

= lim
n→∞

n + 1

n

1

n + 1

n∑
k=0

f (T kx) − lim
n→∞

1

n
f (x)

= lim
n→∞

1

n + 1

n∑
k=0

f (T kx)

= f̃ (x).

(iii) If f ∈ L p(μ), note that by (ii), the sequence
1

n

n−1∑
k=0

f (T kx) converges to f̃ in

L1(μ). Hence,

∫
X
f̃ dμ = lim

n→∞
1

n

n−1∑
k=0

∫
X
f (T kx) dμ = lim

n→∞
1

n

n−1∑
k=0

∫
X
f dμ =

∫
X
f dμ.

�
In Birkhoff Ergodic Theorem, suppose the limit f̃ (x) = c, where c is a constant.
Then, ∫

X
f dμ =

∫
X
f̃ dμ = cμ(X).

That is,

c = f̃ (x) = 1

μ(X)

∫
X
f dμ.

In other words, we see that

lim
n→∞

1

n

n−1∑
k=0

f (T kx) = 1

μ(X)

∫
X
f dμ.

The left hand side is the time average of f and the right hand side is the space average
of f . This is what the physicists call the ergodic hypothesis, (the equality of the time
and space averages of f ).
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Proposition 3.11 Let T be an invertible measure preserving transformation of
X, f ∈ L1(μ) and let

f +
n (x) = 1

n

n−1∑
k=0

f (T kx) f −
n (x) = 1

n

n−1∑
k=0

f (T−k x).

Then, f̃ + = lim
n→∞ f +

n and f̃ − = lim
n→∞ f −

n exist and are equal almost everywhere, i.e.,

f̃ + = f̃ − -a.e.

Proof We first observe that

f +
N ◦ T−(N−1)(x) = 1

N

N−1∑
k=0

f (T k(T−(N−1)x)) = 1

N

N−1∑
k=0

f (T−k x) = f −
N (x).

Also, since f̃ +
N ◦ T = f̃ +

N and f̃ −
N ◦ T−1 = f̃ −

N , we get f̃ +
N ◦ T−1 = f̃ +

N and hence,
f̃ +
N ◦ T−k = f̃ +

N for all k ∈ N. Therefore,

f̃ +
N (x) = f̃ +

N ◦ T−(N−1)(x) = lim
n→∞

1

n

n−1∑
k=0

f +
N (T k(T−(N−1)x))

= lim
n→∞

1

n

n−1∑
k=0

f +
N ◦ T−(N−1)(T kx)

= lim
n→∞

1

n

n−1∑
k=0

f −
N (T kx)

= f̃ −
N (x).

Hence f̃ + = limn→∞ f̃ +
n = lim

n→∞ f̃ −
n = f̃ − (this holds because, fn → f implies

f̃n → f̃ ). �

Definition 3.12

1. Ameasurable flow in a measure space (X,M, μ) is a map τ : X × R −→ X that
satisfies the following two conditions:

(a) τ is measurable with respect to the product measure μ × λ on X × R and
the measure μ on X . Here, λ is the Lebesgue measure on R.

(b) For t ∈ R, the maps τt (x) := τ(x, t) form a one-parameter group of transfor-
mations of X to itself with τ0 = identity on X and τt+s = τt ◦ τs for t, s ∈ R.

2. A measurable flow τt is measure preserving or is μ-invariant if μ(τt A) = μ(A)

for every t ∈ R and every A ∈ M.

Remark 3.13 If τt is ameasure preserving flow on a finitemeasure space (X,M, μ)

and if f ∈ L1(μ), then the limits



Basic Ergodic Theory 95

f + = lim
T→∞

1

T

∫ T

0
f (τt x) dt and f − = lim

T→∞
1

T

∫ T

0
f (τ−t x) dt

exist and are equal for μ - a.e x .

Proof Let F(x) = ∫ 1
0 f (τt x) dt . Since f and τ are measurable, f ◦ τ(x, t) =

f (τt x) is measurable and by Fubini theorem F(x) = ∫ 1
0 f (τt x) dt is μ-measurable

and is in L1(μ) since f ∈ L1(μ).
Now

lim
n→∞

1

n

∫ n

0
f (τt x) dt = lim

n→∞
1

n

n−1∑
k=0

F(τ k
1 (x))

(where τ1(x) = τ(x, 1) : X × R → X ) exists for μ a.e. x by Birkhoff ergodic theo-
rem.

Let

f̃ (x) = lim
n→∞

1

n

n−1∑
k=0

F(τ k
1 (x)) = lim

n→∞
1

n

∫ n

0
f (τt x) dt.

If t ∈ R, t > 0 is such that n < t < n + 1 for n ∈ N ∪ {0}, then
∣∣∣∣
∫ t

0
f (τt x) dt −

∫ n

0
f (τt x) dt

∣∣∣∣ =
∣∣∣∣
∫ t

n
f (τt x) dt

∣∣∣∣
≤

∣∣∣∣
∫ n+1

n
f (τt x) dt

∣∣∣∣
≤

∫ n+1

n
| f (τt x)| dt

=
∫ 1

0

∣∣ f (τ n
1 ◦ τt (x))

∣∣ dt
=

∫ 1

0
| f (τt x)| dt,

where the last equality follows from Theorem 3.4.
Since

1

n

∫ 1

0
| f (τt x)| dt → 0 as n → ∞,

we have
1

t

∣∣∣∣
∫ t

n
f (τt x) dt

∣∣∣∣ ≤ 1

n

∣∣∣∣
∫ t

n
f (τt x) dt

∣∣∣∣ → 0 as n → ∞.

Since t → ∞ as n → ∞, we have

1

t

∫ t

n
f (τt x) dt → 0 as t → ∞,
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and hence
1

t

∫ t

0
f (τt x) dt → f̃ (x) as t → ∞.

Now the remark follows by virtue of the preceding Proposition 3.11. �

Definition 3.14

1. Let (X,M, μ) be a probability space. If A ∈ M and T is a measure preserving
transformation of X , then A is said to be T -invariant if μ(T−1A�A) = 0. A is
said to be strictly T -invariant if T−1A = A.

2. Ameasurable function f : X−→R is T -invariant ifμ ({x : f (T x) �= f (x)}) = 0.
f is strictly T -invariant if f (T x) = f (x) for all x .

The next two observations seek to bridge the divide between T -invariant and strictly
T -invariant sets (or functions).

Lemma 3.15

1. If A ∈ M is a T -invariant set, then there is a strictly T -invariant set A∞ such
that μ (A∞) = μ(A).

2. If f is a T -invariant function, then there is a strictly T -invariant function f̄ such
that f̄ (x) = f (x) -a.e.

Proof

1. Let

A∞ =
∞⋂
n=0

∞⋃
i=n

T−i A.

It is easy to check that A∞ ∈ M, T−1A∞ = A∞ and μ (A∞) = μ(A).
2. Let

A f = {
x : f (T kx) = f (x) for some k ∈ N

}
.

Clearly, A f has measure 1, since the set {x : f (T x) = f (x)} is contained in A f .
Let

f̄ (x) =
{
f (y) if y = T k(x) ∈ A f for some k ∈ N

0 otherwise.

It is easy to see that f̄ is well-defined, strictly T -invariant and f̄ = f -a.e. �

Let us find out the conditions under which the limit f̃ (x) in the ergodic theorem is
constant a.e. for every f ∈ L1(μ).

Suppose f̃ (x) =constant -a.e. for every f ∈ L1(μ). Let A ∈ M be a strictly T -
invariant set and let χA be the characteristic function of A.

The ergodic theorem for χA implies
∫
X χ̃A dμ = ∫

X χA dμ = μ(A). Now
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χ̃A(x) = lim
n→∞

1

n

n−1∑
k=0

χA(T
kx).

Since A = T−1A, T x ∈ A if and only if x ∈ T−1A = A or T kx ∈ A if and only if
x ∈ T−k A = A for k ∈ N. Therefore,

χ̃A(x) =
{
1 if x ∈ A

0 if x /∈ A.

By assumption, χ̃A(x) =constant -a.e. Therefore, χ̃A = 0 or 1 -a.e. This implies
μ(A) = 0 or 1. That is, every T -invariant set has measure either 0 or 1.

Now, suppose on the contrary that if A ∈ M is T -invariant then μ(A) = 0 or
1. Let f ∈ L1(μ) and let f̃ (x) be the limit as in the ergodic theorem. By ergodic
theorem, f̃ ◦ T = f̃ -a.e. on X .

Let

A(k, n) =
{
x : k

2n
≤ f̃ (x) <

k + 1

2n

}
for k ∈ Z, n ∈ N.

Now
T−1(A(k, n))�A(k, n) ⊂ {

x : f̃ ◦ T (x) �= f̃ (x)
}
.

Therefore,
μ(T−1(A(k, n))�A(k, n)) = 0

and hence, A(k, n) is a T -invariant set and therefore μ(A(k, n)) = 0 or 1.
Now, for a fixed n ∈ N,

⋃
k∈Z

A(k, n) = X is a disjoint union. Therefore, for each

n ∈ N, there exists a unique kn ∈ Z such that μ(A(kn, n)) = 1.

Let Y =
∞⋂
n=1

A(kn, n). Then μ(Y ) = 1 (because μ(Y c) = 0). Since f̃ is constant

on Y and μ(Y ) = 1, f̃ is constant a.e on X .

Definition 3.16 A measure preserving transformation T : X −→ X , where (X,

M, μ) is a probability measure space, is said to be ergodic if for every set A ∈ M
which is T -invariant, one has μ(A) = 0 or 1.

Indeed we have shown that a measure preserving transformation T is ergodic if
and only if every T -invariant function f is constant a.e. on X .

Proposition 3.17 Let (X,M, μ) be a second countable probability measure space
such that every non-empty open subset of X has positive measure. If T : X −→ X
is an ergodic transformation then

μ
({
x : {

T nx : n ≥ 0 is dense in X
}}) = 1.

That is, almost all points in X have dense orbits.
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Proof Let {Un}∞n=1 be a basis for X . Let

Y = {
x : {

T nx : n ≥ 0 is dense in X
}}

.

Clearly x /∈ Y if and only if there is a basic open set Uk such that x ∈
∞⋂
n=0

(X \
T−n(Uk)) = P , say. It is easy to see that P ⊂ T−1(P). Since T ismeasure preserving
and P ∈ M, μ(T−1P) = μ(P). Therefore, T−1P ≡ P (mod 0) and hence, P is
T -invariant. AlsoUn ∩ P = ∅ and sinceμ(Uk) > 0,wemust haveμ(P) = 0,which
implies μ(Pc) = 1. Ergo, Pc consists of points x whose T -orbits are dense in X . �

Example 3.18 Let X = [0, 1) be equipped with the Lebesgue measure. If c ∈ R,
the map Tc : X −→ X defined by

Tc(x) = x + c (mod 1) = {x + c} i.e., fractional part of x + c.

It is clear that Tc preserves the Lebesgue measure, and it is easy to see that if c ∈ Q,
then Tc is periodic and all orbits are finite having same cardinality. Therefore, Tc is
not ergodic when c is rational.

Example 3.19 If X is the circle S = {z∈C : |z| =1} with the normalised Lebesgue
measure, then T : S −→ S defined as T (z) = az is measure preserving, as can be
easily verified. Then T is ergodic iff a is not a root of unity. For, suppose a is a root
of unity, i.e., a p = 1 for some p �= 0. Then f (z) = z p. Clearly f ◦ T = f , but f is
not constant a.e. Therefore, T is not ergodic.

Conversely, suppose a is not a root of unity and let f (z) =
∞∑

n=−∞
bnzn be its

Fourier expansion. Now, f ◦ T = f implies
∞∑

n=−∞
bnanzn =

∞∑
n=−∞

bnzn . Hence,

bn(an − 1) = 0. As an �= 1, for any n �= 0, we must have bn = 0 for all n �= 0.
Consequently, it follows that f is constant a.e. and that T is ergodic. Alternatively,
if a = e2π icn , then T is ergodic whenever c is irrational.

4 Geodesic Flows on Closed Surfaces

Let M be a compact or, more generally, a complete, smooth manifold endowed with
a Riemannian metric g, and let SM denote the associated unit tangent bundle. That
is,

SM = {(x, v) : x ∈ M, v is a unit tangent vector to M at x} .

For each t ∈ R, consider the transformation φt : SM −→ SM defined as follows:
Given (x, v) ∈ SM , let γv be the unique geodesic in M passing through the point
x ∈ M and with v as its tangent vector at x . Since M is a manifold which is complete,
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γv is defined on all of R. Moreover, given any two points p, q ∈ M there exists a
geodesic joining p and q that realises the distance between them. Now set

φt (x, v) = (γv(t), γ
′
v(t)). (2)

It is easy to verify thatφt as defined above for all t ∈ R constitutes a 1-parameter group
of transformations, called the geodesic flow, and satisfies the following properties:

1. φt ◦ φs = φt+s = φs+t = φs ◦ φt and φ0 = Id|SM .
2. φt is measure preserving where the measure under consideration is the Liouville

measure given locally by the product of the Riemannian volume [form] on M,
(i.e.,

√
det(gi j ) dx1 ∧ · · · ∧ dxn) - also called the Riemannian measure and the

usual Lebesgue measure on the unit sphere.

It would be illuminating to look at a simple example of the geodesic flow.

Example 4.1 Suppose M = S2, the unit 2-sphere, then M admits a metric of con-
stant positive curvature. Since all of its geodesics are great circles, it means that every
orbit of the geodesic flow is periodic, and is therefore not ergodic.

Following up on the previous example, the question of ergodicity of the geodesic
flow on closed surfaces of constant negative curvature is treated in the sequel.

The Gauss-Bonnet theorem suggests that a compact Riemann surface with genus
≥ 2 admits a Riemannian metric of constant negative curvature.

We shall initially see how to define such a metric on these surfaces. The uni-
versal cover of the surface is, in fact, the upper half plane H2, where H2 =
{z ∈ C : Im(z) > 0}, equipped with the metric ds =

√
dx2 + dy2

y
, which is a met-

ric of constant negative curvature, called the hyperbolic metric. Therefore, we first
discuss the geometry of the upper half plane.

4.1 Isometries and Geodesics of H2

Let γ : I −→ H2 be a piecewise differentiable path parametrised as

γ (t) = {
z(t) = x(t) + iy(t) ∈ H2 : t ∈ I

}
, where I = [0, 1].

Then, the hyperbolic length l(γ ) of the path is given by

l(γ ) =
1∫

0

√
( dxdt )

2 + (
dy
dt )

2

y(t)
dt =

1∫
0

∣∣ dz
dt

∣∣
y(t)

dt. (3)
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The hyperbolic distance ρh(z, w) between any two points z, w ∈ H2 is given as
ρh(z, w) = inf l(γ ), where the infimum is taken over all piecewise differentiable
paths γ joining z and w in H2.

A natural question is to look at the isometries of H2; i.e., transformations on H2

preserving the hyperbolic distance ρh defined above. This leads us to a particular
group of matrices denoted as PSL(2,R).

In order to place the elements in PSL(2,R), we first look at the group of matrices
SL(2,R) consisting of all 2 × 2 real matrices of the form

g =
(
a b
c d

)
where det(g) = 1. (4)

Quite clearly, the above group of matrices assumes a correspondence with the group
of all fractional linear transformations of C onto itself of the form

{
z �−→ az + b

cz + d
: ad − bc = 1; a, b, c, d ∈ R

}

with the product of two such transformations being equivalent to the product of
two corresponding matrices in SL(2,R) and the inverse of a given transformation
corresponding to the inverse matrix.

However the correspondence is not 1-1, rather any such fractional linear trans-
formation is represented by a pair of matrices ±g. Ergo, the group of all frac-
tional linear transformations, henceforth identified with PSL(2,R), is isomorphic
to SL(2,R)/ ± I , where I is the 2 × 2 identity matrix. The corresponding identity
transformation in PSL(2,R) will be denoted by I d.

Remark 4.2 Note that PSL(2,R) contains all fractional linear transformations of the
form z �−→ az+b

cz+d , where ad − bc = � > 0, as dividing the numerator and denom-

inator by
√

� gives a new matrix of determinant 1, but resulting in the same trans-
formation on H2. In particular, PSL(2,R) contains transformations of the form

z �−→ az + b, a, b ∈ R, a > 0 and those of the form z �−→ −1

z
.

Remark 4.3 PSL(2,R) acts on H2 by homeomorphisms. In fact, PSL(2,R) ⊂
Isom(H2), the group of all isometries of H2 (i.e., transformations of H2 onto itself
preserving the hyperbolic distance on H2).

Proof Firstly, any transformation of the form z �−→ az + b

cz + d
on C maps H2 onto

itself. Given any T ∈ PSL(2,R), let w = T (z) = az + b

cz + d
. Then,

w = (az + b)(cz + d)

|cz + d|2 = ac |z|2 + adz + bcz + bd

|cz + d|2 .

Hence, the imaginary part Im(w) of w is,
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Im(w) = w − w

2i
= z − z

2i |cz + d|2 = Im(z)

|cz + d|2 .

Therefore, Im(z) > 0 ⇐⇒ Im(w) > 0. As T is continuous and its inverse exists,
we conclude that T is a homeomorphism of H2 onto itself.

To show that T ∈ PSL(2,R) is an isometry of H2 onto itself, we show that if γ :
I −→ H2 is a piecewise differentiable path in H2, then l (T (γ )) = l(γ ). Therefore,
suppose γ := z(t) = x(t) + iy(t), and T (γ ) is given by w(t) = T (z(t)) = u(t) +
iv(t). Now

dw

dz
= a(cz + d) − c(az + b)

(cz + d)2
= 1

(cz + d)2
.

Since v = y

|cz + d|2 , we have
∣∣∣∣dw

dz

∣∣∣∣ = v

y
. Therefore,

l(T (γ )) =
1∫

0

∣∣ dw
dt

∣∣
v(t)

dt =
1∫

0

∣∣ dw
dz

dz
dt

∣∣
v(t)

dt

=
1∫

0

∣∣ dw
dz

∣∣ ∣∣ dz
dt

∣∣
v(t)

dt =
1∫

0

∣∣ dz
dt

∣∣
y(t)

dt = l(γ ).

�

It is a fact that isometries take geodesics to geodesics and hence any transformation
in PSL(2,R) maps geodesics to geodesics. We now determine the geodesics on the
hyperbolic plane.

Theorem 4.4 The geodesics in H2 are semicircles and straight lines orthogonal to
the real axis.

Proof Let z1, z2 ∈ H2. First suppose z1 = ia and z2 = ib with b > a which are two
points on the imaginary axis. If γ : [0, 1] −→ H2 is any path joining ia to ib, with
γ (t) = x(t) + iy(t), then

l(γ ) =
1∫

0

√
( dxdt )

2 + (
dy
dt )

2

y(t)
dt ≥

1∫
0

∣∣∣ dydt
∣∣∣

y(t)
dt ≥

b∫
a

dy

y
≥ ln

b

a
.

It is easy to verify that the equality in the above expression is realisedby thehyperbolic

length of the segment of the y-axis joining ia to ib which is of length ln
b

a
and hence

the geodesic joining the points ia and ib is the segment of the imaginary axis between
them.

If z1, z2 ∈ H2 are arbitrary, let L be the unique Euclidean semi-circle or straight
line orthogonal to the real axis passing through z1 and z2, then there exists
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a transformation in PSL(2,R) which maps L into the imaginary axis. The trans-

formation T (z) = −1

z − a
takes a to ∞ and b to

1

b − a
(> 0), and the transformation

S(z) = z − 1

b − a
= z − c takes ∞ to ∞ and c to 0. Thus,

S ◦ T =
(
1 −c
0 1

) (
0 −1
1 −a

)
=

(−c −1 − ac
1 −a

)

is the transformation in PSL(2,R) that takes (a, b) to (∞, 0). Since each element of
PSL(2,R) is an isometry of H2 and segments of the imaginary axis are geodesics,
we conclude that the geodesic joining z1 and z2 is the segment of L joining them. �

Since PSL(2,R) acts by isometries on H2, it acts on the unit tangent bundle SH2

as

g(z, ζ ) = (g(z), Dzg(ζ )) =
(
g(z),

1

(cz + d)2

)
,

where z ∈ H2, ζ ∈ TzH2 such that ‖ζ‖ = 1 and g =
(
a b
c d

)
∈ PSL(2,R).

Lemma 4.5 The action of PSL(2,R) on SH2 is transitive and free, i.e., all isotropy
groups are trivial.

Proof Let z0 = i and ζ0 be the unit tangent vector at z0 pointing in the positive
direction of the imaginary axis. Let (z, ζ ) ∈ SH2 and σ be the positive imaginary
half axis starting from z0. Let L be the unique geodesic determined by (z, ζ ). Let g ∈
PSL(2,R) be the transformation taking σ to L , i.e., g(σ ) = L , with g(z0) = z. Since
transformations of PSL(2,R) have positive determinant, they preserve orientation
and hence the condition that Dz0g(ζ0) = ζ forces g to be unique; we will, therefore,
denote it by gzζ . �
Remark 4.6 In the above lemma, taking (z, ζ ) ∈ SH2 to gzζ ∈ PSL(2,R), sets up a
bijection F between SH2 and PSL(2,R), and is easily seen to be a diffeomorphism.

Let z0 = i and ζ0 be as in the proof of Lemma4.5.Given an arbitrary (z, ζ ) ∈ SH2,
let gzζ be the unique element of PSL(2,R) (which exists by virtue of the lemma)
that takes (z0, ζ0) to (z, ζ ) in SH2. The uniqueness of the element gzζ shows that
the diffeomorphism F intertwines the action of PSL(2,R) on SH2 with the left
multiplication in the group. That is,

g((z, ζ )) = g · gzζ ∀g ∈ PSL(2,R).

Proposition 4.7 The geodesic flow on SH2 corresponds to the flow on the group
PSL(2,R) given by the right translation

g �−→ g · gt , where gt =
(
e

t
2 0
0 e

−t
2 ,

)
∀t ∈ R.
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Proof It is clear thatφt (z0, ζ0) = gt(z0, ζ0), whereφt is the geodesic flow.Therefore,
for (z, ζ ) ∈ SH2,

φt (z, ζ ) = φt
(
gzζ (z0, ζ0)

) = gzζ
(
φt (z0, ζ0)

) = gzζ (gt(z0, ζ0)) = gzζ gt .

The second equality is a result of the fact that the action of PSL(2,R) on H2 is
by isometries, and hence takes geodesics to geodesics as described in the proof of
Lemma 4.5. �

Let � be a compact Riemann surface of genus g ≥ 2. Then � has H2 as its
universal cover, i.e., if� = π1(�), the fundamental group of�, then� acts freely and
discontinuously on H2 by deck transformations. Consequently, � can be identified
with a discrete subgroup of PSL(2,R) such that the quotient space � = H2/� is
compact. Further � is a Riemannian manifold with constant negative curvature −1
with respect to the metric induced from H2 via the quotient map. The pictures in this
page roughly serve to illustrate this procedure.

Proposition 4.8 The identification of SH2 with PSL(2,R) induces an identification
S

(
H2/�

) ∼= �\PSL(2,R). The geodesic flow on S� corresponds to the flow

� \ PSL(2,R) −→ �\PSL(2,R), �g �−→ �ggt ,

where gt =
(
e

t
2 0
0 e

−t
2

)
.

Proof Since (z, ζ ) �−→ gzζ intertwines the action of PSL(2,R), the proof follows
from the previous proposition and is left as an exercise to the reader. �

4.2 Hopf’s Proof of Ergodicity

In this section, we sketch a proof of the ergodicity of the geodesic flow gt on �\
PSL(2,R) that was originally presented by E. Hopf [9]. In this context, we introduce
the notion of horocycles, some of whose illustrative examples are the lines parallel
to the x-axis in H2. As we shall soon discover, horocycles have a very special role
in the study of the dynamics of the geodesic flow.

Lines parallel to the x-axis can also be viewed as orbits of points in H2 under the
action of the 1-parameter subgroup of PSL(2,R) consisting of matrices of the form
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Fig. 1 Geodesic and horocycle flows

H+
s =

(
1 s
0 1

)
; that is, transformations of the form z �−→ z + s. Being orthogonal to

the lines parallel to the y-axis in H2, it turns out that their images, under a typical
element of PSL(2,R) taking ∞ to a point x0 on the x-axis, are the Euclidean circles
in H2 tangent to the x-axis at the point x0.

Moving a step further, and using the identification of PSL(2,R)with SH2, we see
that the 1-parameter subgroup H+

s , of PSL(2,R), defines a measure preserving flow

on SH2. In a similar fashion, we observe that the 1-parameter subgroup H−
r =

(
1 0
r 1

)

of PSL(2,R) also defines a measure preserving flow on SH2. The flow H+
s is termed

the stable horocycle flow while H−
r is termed the unstable horocycle flow.

The next figure serves to illustrate the orbits of a vector v ∈ SH2 under the dynam-
ics of the two horocycle flows, in relation to the geodesic flow.

The two horocycle flows determine vector fields on SH2 which are linearly inde-
pendent, i.e., at any given point of SH2, the tangent vectors of the corresponding
vector fields are linearly independent and hence, together with the tangent vector
given by geodesic flow vector field, span the tangent space to SH2 at that point.

4.2.1 A Historical Interlude

Eberhard Hopf exploited the interrelation between the stable and unstable horocycle
flows and the geodesic flow in his proof. Historically it was G.A. Hedlund [7] who,
in 1934, first proved that the geodesic flow on closed surfaces of constant negative
curvature is ergodic (which was called metric transitivity at that time). In 1936, E.
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Hopf gave another proof of ergodicity in the case considered by Hedlund. Hedlund
was also the first to recognize the importance of the close relationship between horo-
cycle and geodesic flows. Later, in 1939, Hedlund proved [8] stronger properties (like
mixing) for geodesic flow on surfaces of finite area and constant negative curvature.
Erogdicity was extended to arbitrary dimensions for manifolds of constant negative
curvature by Hopf in 1939. In the same paper [9], Hopf also proved that the geodesic
flow is ergodic for a surface of finite area and of variable negative curvature under the
restriction that the curvature and its first derivatives are bounded in absolute value
(Fig. 1).

Gelfand and Fomin, in 1952 [5], provided the next impetus by proving the stronger
property of mixing for the case of manifolds of higher dimension and constant nega-
tive curvature. Their approach and method was generalised by Mautner in 1957 [11]
to prove ergodicity of the geodesic flow on locally symmetric spaces of negative
curvature and arbitrary dimensions.

However the question remained open in the case of variable curvature in arbitrary
dimension until 1960s when the work of Anosov and Sinai [2] led Anosov to prove
ergodicity for closed manifolds of negative curvature and arbitrary dimension [1].
The approach adopted in the work of Anosov and Sinai enabled Anosov to overcome
the difficulty faced by Hopf, and Anosov proved ergodicity for manifolds of finite
volume and variable negative curvature under exactly the same hypothesis considered
by Hopf in 1939 [9], namely when the covariant derivative of the curvature tensor is
bounded in absolute value.

Remark 4.9 For manifolds of finite volume and variable negative curvature without
the boundedness assumption on the first derivatives of curvature, to the best of our
knowledge, the question of ergodicity is still an outstanding open problem (even for
surfaces!).

Resuming the sketch of Hopf’s proof, let f : S� −→ R be a continuous function
with compact support where� is a surface of genus g ≥ 2with the hyperbolicmetric.
Note that as a consequence of Theorem 2.39, it suffices to consider continuous
functions with compact support. We will show that f is constant a.e. when f is
gt -invariant.

For the three smooth flows gt , H+
s and H−

r on PSL(2,R), a routine computation
shows that

H+
s gt = gt H

+
e−t s and H−

r gt = gt H
−
e−t r .

From this, it follows that

f (xH+
s gt) = f (xgt H

+
e−t s) and f (xH−

r gt) = f (xgt H
−
e−t r ).

Uniform continuity of f then implies that

lim
t→∞

(
f (xH+

s gt) − f (xgt )
) = lim

t→∞
(
f (xgt H

+
e−t s) − f (xgt)

) = 0

and
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lim
t→∞

(
f (xH−

r gt) − f (xgt)
) = lim

t→∞
(
f (xgt H

−
e−t r ) − f (xgt )

) = 0.

Therefore,

lim
τ→∞

1

τ

τ∫
0

(
f (xgt ) − f (xH+

s gt)
)
dt = 0.

Similarly,

lim
τ→∞

1

τ

τ∫
0

(
f (xg−t ) − f (xH−

r g−t)
)
dt = 0.

With the notation introduced in an earlier remark in this chapter, we note that
f̃ +(xH+

s ) and f̃ −(xH−
r ) exist whenever f̃ +(x) and f̃ −(x) exist. Further, we con-

clude from the above that f̃ +(x) = f̃ +(xH+
s ) and f̃ −(x) = f̃ −(xH−

r ), and are equal
a.e.

Let x0 ∈ S�. We will construct an open neighbourhood of x0 as follows. Let
δ1, δ2, δ3 > 0 be sufficiently small. Construct a smooth curve γδ1(x0) through x0 by
defining

γδ1(x0) = {
x0H

−
r : |r | < δ1

}

and then construct an open smooth surface σδ1,δ2(x0) by defining

σδ1,δ2(x0) = {
x0H

−
r gt : |r | < δ1, |t | < δ2

}
=

⋃
|t |<δ2

(
γδ1(x0)

)
gt .

Finally, construct an open neighbourhood Uδ1,δ2,δ3(x0) by

Uδ1,δ2,δ3(x0) =
⋃

|s|<δ3

(
σδ1,δ2(x0)

)
H+

s .

It follows from the smoothness of the corresponding vector fields that for sufficiently
small δ1, δ2, δ3, the surfaces

(
σδ1,δ2(x0)

)
H+

s are disjoint for distinct s with |s| < δ3
and for the point

x = x0H
−
r gt H

+
s ∈ Uδ1,δ2,δ3(x0),

the numbers r, t, s are smooth coordinates in Uδ1,δ2,δ3(x0). In fact, as x0 varies over
a compact set on S�, all of δ1, δ2, δ3 can be chosen to be independent of x0. Now,
the Liouville measure on S� induces conditional measures on each of the surfaces(
σδ1,δ2(x0)

)
H+

s , for all s and invoking Fubini’s theorem shows that for a.e. y ∈
σδ1,δ2(x0) (with respect to the induced conditionalmeasure), one has f̃ +(y) = f̃ −(y);
and this holds for x0 a.e. in S�(with respect to μ).
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We will now show that f̃ (x) is constant for x(= x0H−
r gt H+

s ) a.e. inUδ1,δ2,δ3(x0).
To this end, let

Ũ =
{
x ∈ Uδ1,δ2,δ3(x0) : f̃ +(x) exists and

for y = x0H
−
r gt ∈ σδ1,δ2(x0), f̃ +(y) = f̃ −(y)

}
.

Since the vector fields are smooth, it follows from Fubini’s theorem that Ũ has
full measure in Uδ1,δ2,δ3(x0). Further, if x1, x2 ∈ Ũ , with x1 = x0N−

r1 gt1N
+
s1 and

x2 = x0N−
r2 gt2N

+
s2 , and if y1, y2, z1, z2 denote x0N

−
r1 gt1, x0N−

r2 gt2 , x0N−
r1 and x0N−

r2
respectively, then we have,

f̃ +(x1) = f̃ +(y1) = f̃ −(y1) = f̃ −(z1)

= f̃ −(z2) = f̃ −(y2) = f̃ +(y2) = f̃ +(x2).

Thus f̃ + is constant in Ũ , i.e., f̃ + is constant a.e. in Uδ1,δ2,δ3(x0), which proves the
ergodicity of gt .
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