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Preface

Various Advanced Training in Mathematics (ATM) schools, originally launched by
the National Board for Higher Mathematics (NBHM), are the most successful work-
shops which have helped students, teachers and researchers to enhance their schol-
arship and improve research. The efforts of the National Centre of Mathematics
(NCM) and its apex committee in continuing this yeoman service by conducting
several Annual Foundation Schools (AFS), Advanced Instructional Schools (AIS),
NCMWorkshops (NCMW), Instructional Schools for Teachers (IST) and Teachers’
Enrichment Workshops (TEW) throughout the year are praiseworthy. Organised by
theNCM,with support fromNBHM,Department of Atomic Energy (DAE), Govern-
ment of India, these workshops have attained a status of their own amidst the Math
community, within the country and globally.

These lecture notes grew out of a three-weekAIS on “Ergodic Theory andDynam-
ical Systems” (https://www.atmschools.org/2017/ais/etds) that was conducted at the
Indian Institute of TechnologyDelhi (IITD), during 4th–23rdDecember 2017, organ-
ised by NCM, with the support of NBHM, DAE, Government of India. The speakers
at this school were C. S. Aravinda, Siddhartha Bhattacharya, S. G. Dani, Anish
Ghosh, V. Kannan, Anima Nagar, C. R. E. Raja and Kaushal Verma. Their lectures
were aided by the huge support of the tutors of the programme, Nikita Agarwal, P.
Chiranjeevi, Manoj Choudhuri, Rajkumar Krishnan, Shrihari Sridharan and Puneet
Sharma. We are thankful to the contributions of all the lecturers and the tutors.

Dynamics is the study of the evolution of any given system with time, governed
by some physical law. Different laws imposed on the system could give rise to a
variety of dynamical systems. The laws may arise in a variety of ways; some with
respect to the structure of the underlying space where the system is manifested, some
with respect to nature of the action on the space, some with respect to our notion of
observation of the evolution etc. The topic of dynamical systems is thus very rich;
with different researchers focussing on different aspects.

These lecture notes are intended to help a new researcher understand various
aspects of dynamical systems. In keeping with the true spirits of the availability of
a variety of means to study dynamical systems, this book begins with chapters on
various kinds of dynamics; real dynamics, topological dynamics, ergodic theory,
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vi Preface

symbolic dynamics, complex dynamics. Further, as is natural for a topic that spans
a variety of interests across areas, the theory of dynamical systems has useful appli-
cations across a broad spectrum of areas in mathematics, such as topology, complex
analysis, number theory and representation theory. In this book, we later provide a
glimpse of such applications to number theory and game theory.

Every chapter of this book specialises in one aspect of dynamical systems; and
thus begins at an elementary level and goes on to cover fairly advanced materials.
Even though the lectures were delivered to a slightly mature audience comprising
of graduate students from across the country, the chapters have been written by
the respective authors so articulately that a beginner can read and understand the
materials covered, with a bit of an effort.

In the first chapter, we study dynamics of maps on the real line or on an interval
there. Most of the theorems proved in this chapter are special to the real line; their
analogues do not hold in general dynamical systems. Section one starts with the
definitions of such terms as fixed point, periodic point, eventually periodic point,
recurrent point and non-wandering point. Their inter-relations are observed. Next,
elementary examples of maps like contraction map, identity map, squaring map, tent
map, logistic map and shift map are introduced. In each of these examples, periodic
points, recurrent points, etc. are explicitly calculated.Which kinds of subsets can arise
as the set Fix( f )of all fixed points?This and four of its analogues are answered. Three
more notions, namely invariant sets, omega-limit sets and cycles are introduced.

In section two, notions of attracting and repelling cycles are studied. It starts with
the classical theorem of Banach known as the contraction mapping theorem. There
are various ways of understanding the attracting nature of a fixed point, from the view
points of calculus, topology,metric, etc.Wediscussmutual implications among them.
Several counter examples are provided to disprove some of the implications.

In section three, topological transitivity is studied through various equivalent
formulations. Five different proofs are included for the fact that the tent map is topo-
logically transitive. These proofs lead to five different general theorems that open up
five significant directions of study. Incidentally, some more concepts such as topo-
logical conjugacy, Markov maps and expanding maps are also introduced. In section
four, Devaney’s definition of chaos is introduced through three ingredient properties.
The independence of these three is established by a set of eight counter examples.
While doing so, about a dozen propositions involving transitivity, sensitivity and
dense periodicity are proved. In section five, it is seen that the independence results
obtained in the previous section are not valid when the underlying space is restricted.
For example,weprove that on the real line, every transitivemap is necessarily chaotic.

Section six ismainly devoted to a theorem of Sarkovskii on cycle lengths available
for real maps and the forcing relation among them. Here the proofs are merely
outlined. Next comes a short section in which Baire Category theorem and another
theorem (that have been used earlier) are proved. The chapter ends with a short
section consisting of notes and exercises.

In chapter two, we introduce G-systems and describe basic notions such as
recurrence, minimality and enveloping semigroups. We provide a proof of Van der
Waerden’s theorem.We also discuss proximal and distal notions and its relation with
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enveloping semigroup. Topological dynamics is inspired by the qualitative study
of differential equations, initiated by the approach of Henri Poincare, and followed
largely by the contribution of G. D. Birkhoff.

G-systems are jointly continuous actions of a topological group on a Hausdorff
space. This abstract approach was initiated by W. H. Gottschalk and G. A. Hedlund.
We adopt their approach to study the basic notions of recurrence in the first section.
The second section is devoted to minimal systems which is fundamental to many
recurrence theorems. Such phenomena have a wide range of applications and we
provide one such application in the field of number theory. We discuss the famous
proof of the celebrated Van der Waerden’s theorem given by H. Furstenberg and B.
Weiss in the third section. In the fourth section, we discuss the algebraic theory of
enveloping semigroups that form a fundamental tool to study topological dynamics.
The notions of proximal and distal systems are important aspects, which we discuss
in the fifth section. The sixth section is basically dedicated to the evergreen notion
of topological transitivity and its various forms.

Chapter three is a gently paced introduction to some of the key ideas in the
general topic of Ergodic theory, providing essential background to discuss some of
the cornerstone results in the field.

The first couple of decades of the twentieth century witnessed a definitive, neat
and clear understanding of the all important notions of measure in a general context.
Apart from serving as a warm up on the rudiments of measure, the second section
of this chapter intends to particularly highlight the work of C. Carathéodary in this
context, and point out the possible logic behind the introduction of the Carathéodory
criterion for a set to be measurable. The section ends with a quick description of
Hausdorff measures and Hausdorff dimension.

Recalling a motivation from certain questions in statistical mechanics, the main
aim of the third section is to give a proof of the celebrated Birkhoff ergodic theorem.
Also known as the pointwise ergodic theorem, first proved in 1931 byG. D. Birkhoff,
this lofty result brought in much clarity on the notion of ergodicity, and triggered
significant progress in the mathematical aspects of the theory.

Building further on the discussion in the previous sections, the fourth and final
section sketches the proof of ergodicity of one of the earliest interesting examples of
an ergodic dynamical system—the geodesic flow on the unit tangent bundle of closed
surface of constant negative curvature. First proven in the year 1934 by G. Hedlund,
the proof sketched here is the one due to E. Hopf which has inspired monumental
later work in hyperbolic dynamics. The first subsection to section four may also
serve as an introduction to hyperbolic geometry. Thus, the third chapter essentially
captures the spirit of the remarkable development heralding the beginnings of this
important area of research during the first four decades of the twentieth century.

Symbolic dynamics is the study of shift spaces, which consist of infinite or bi-
infinite sequences on a pre-determined alphabet set. These sequences almost capture
the essence of abstract systems and provide a simplifiedmodel of study. Codings give
mappings between two such shift spaces. Further, aided by the combinatorial, alge-
braic, topological and measure-theoretic invariants, codings give a subtle description
of many dynamical properties, as well.
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After introducing the setup of symbolic dynamics in the first section of chapter
four, we discuss some basic properties in the second section. The concept of entropy
is defined in the third section, and the fourth section deals with methods to compute
such entropy. In the fifth section, a class of symbolic dynamical systems related to
tiling spaces is defined and a profound result due to M. Szegedy is proved. The last
section is devoted to an algebraic dynamical system known as 3-dot system, which
is used to study symbolic systems that can exhibit strong rigidity property.

The purpose of chapter five is to present some basic ideas and tools in complex
dynamics. Starting with some elementary observations that motivate us to study this
topic in detail, wemake use of the various versions ofMontel’s theorem that describes
normality in a family of holomorphic functions defined on a domain in the Riemann
sphere, P1 = C∪{∞}. Dichotomising the Riemann sphere usingMontel’s normality
criterion on the family of iterates of a rational map, we obtain the Fatou and Julia
sets of the considered rational map. Various properties of these two sets are then
investigated; one important property being the non-vacuousness of the Julia set for
rational maps of degree at least 2. Answering our natural curiosity about a similar
property for the Fatou set of a rational map, we construct a family of rational maps
for which the Julia set is all of P1; which implies that the Fatou set is empty, in this
case. Lattès’ example is a simple case of this construction.

The authors then focus on some statements that characterise the Julia set of a
rational map, alternatively using various results from complex analysis. These state-
ments are more useful in determining the Julia sets computationally. Then, the focus
shifts to studying local normal forms near fixed points and the classification of Fatou
components for rational maps.

One important result in this field pertains to the relation between the dense set of
pre-images of any generic point in the Julia set and the equilibrium measure of any
compact subset of P1, using the energy integral, as encapsulated by a result due to
H. Brolin. The authors build their case for the Brolin’s theorem in P

1 and discuss
analogous results in higher dimensions.

Recent decades have seen dramatic progress in the study of ergodic aspects of
group actions on homogeneous spaces of Lie groups. Much of this progress, begin-
ning with Margulis’ famous proof of Oppenheim’s conjecture, has been closely
associated to Diophantine analysis. Another, more recent example is the important
work of Einsiedler, Katok and Lindenstrauss towards Littlewood’s conjecture. The
aim of chapter six is to present some topics at the interface of homogeneous dynamics
and number theory with the aim of giving the reader a glimpse of the rich connec-
tions between the two subjects. The goal is to whet the appetite of the reader. The
interested reader can then move on to a more systematic and detailed source like the
book by Einsiedler andWard. This is suitable for talented undergraduates with some
background in Lie groups, for graduate students, as well as for mathematicians who
wish to get acquainted with the area.

The aim of chapter seven is to give an introduction to a notion of “large subsets”
of Euclidean and other similar spaces, that has attracted much attention in the recent
decades, in the theory of Diophantine approximation, geometry, and dynamics of
flows on homogeneous spaces. The sets are defined in terms of existence of winning
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strategies for various two-player infinite games. Their origin goes back to a 1966
paper of W. M. Schmidt, which made interesting observations about the set of badly
approximable real numbers having certain unusual largeness properties, which has
now found generalisations in a variety of contexts.

As a specialist may have observed, the topics dealt with in each of these chapters
is an area of research in its own right, however that depends on the other areas also
described in the other chapters. One may religiously cover all materials in this book,
if one is interested to give a year-long course on various elements of dynamical
systems, as the title of the book suggests. However, within the book lies various
ideas for a one-semester course; each of the combination below describing one such.

• chapters 1–3 and 5;
• chapters 1, 2, 4 and 5;
• chapters 2–4 and 5;
• chapters 3, 6 and 7; etc.

We are grateful to the participants Mahboob Alam, G. K. Chaitanya, Haritha
Cheriyath, Pramod Das, Shreyasi Datta, Mukta Garg, Dileep Kumar, Dinesh Kumar,
Pabitra Narayan Mandal, Manoj B. Prajapati, Yogesh Prajapaty, Manish Rajput,
Manpreet Singh, Pradeep Singh, Sharvari Neetin Tikekar and Atma Ram Tiwari,
for their special efforts in taking notes which helped the authors in preparing their
lecture notes. It is a pleasure to thank the students for their contributions to these
lecture notes.

Lastly, we thank the Indian Institute of TechnologyDelhi (IITD) for their excellent
hospitality.

New Delhi, India
New Delhi, India
Thiruvananthapuram, India

Anima Nagar
Riddhi Shah

Shrihari Sridharan
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Real Dynamics

V. Kannan

1 Introduction and Preliminaries from Topological
Dynamics

1.1 Introduction

Real dynamics is the study of those discrete dynamical systems for which the under-
lying set (called the phase space) is the real line R or the unit interval I = [0, 1], or
occasionally some other subset of R. But the definitions will be given in a more gen-
eral setting. Most of the examples will be given from real dynamics. Other examples
are also provided to see the contrast with real dynamics.

1.2 Preliminaries

Let N denote the set of all positive integers and N0 = N ∪ {0}. Let Q denote the set
of all rational numbers.

A dynamical system is a pair (X, f )where X is a topological space and f is a contin-
uous map from X to X . The composition f ◦ f will be denoted by f 2. Recursively
f n denotes the n-fold composition of f , for every positive integer n. By convention,
f 0 is the identity map.

The sequence ( f n(x))∞n = 0 is called the f -trajectory of x in X . Its set

{
y ∈ X | y = f n(x) for some nonnegative integer n

}

V. Kannan (B)
SRM University, Amaravati, AP, India
e-mail: kannan.v@srmap.edu.in; vksm.uoh@nic.in
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2 V. Kannan

is called the orbit of x and it is denoted by O(x, f ). Dynamics is the study of eventual
behaviour of the trajectories in a dynamical system.

Here are some dynamical properties of points and these will be defined below.

• Fixed point
• Periodic point
• Eventually fixed point
• Eventually periodic point
• Recurrent point
• Non-wandering point

Definition 1.1 1. An element x ∈ X is said be a fixed point of (X, f ) if f (x) = x .
2. An element x ∈ X is said to be a periodic point of (X, f ) if f n(x) = x for some

positive integer n.
3. If x ∈ X is a periodic point of (X, f ), its period is the smallest positive integer n

such that f n(x) = x . (In particular, a fixed point is a periodic point of period 1.)
4. An element x ∈ X is said to be an eventually fixed point if ∃n ∈ N such that

f n(x) is a fixed point.
5. An element x ∈ X is said to be an eventually periodic point if f n(x) is a periodic

point for some n ∈ N.
6. An element x ∈ X is called a recurrent point of (X, f ) if for every neighbourhood

V of x, ∃n ∈ N such that f n(x) ∈ V .
7. An element x ∈ X is a non-wandering point of (X, f ) if for every neighbourhood

V of x, ∃y ∈ V and ∃n ∈ N such that f n(y) is also in V .

We use the following notations:

Fix( f ) = Set of all fixed points of f.

P( f ) = Set of all periodic points of f.

EP( f ) = Set of all eventually periodic points of f.

R( f ) = Set of all recurrent points of f.

�( f ) = Set of all non-wandering points of f.

Proposition 1.2 Fix( f ) ⊂ P( f ) ⊂ R( f ) ⊂ �( f ).

Proof 1. Fixed points are precisely the periodic points of period 1.
2. If p is a periodic point of period n, and if V is a neighbourhood of p, then

f n(p) = p ∈ V and thus p is a recurrent point.
3. Let p be a recurrent point and let V be a neighbourhood of p. Then ∃n ∈ N such

that f n(p) ∈ V . Now p and f n(p) in V are as required in the definition of a
non-wandering point. So p is non-wandering. �

Example 1.3 (Contraction map) Let f (x) = x

2
on I . Then it is clear that f n(x) =

x

2n
∀n ∈ N. Every trajectory is decreasing to 0 and 0 is the only fixed point.Moreover,

we have in this case that
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Fix( f ) = P( f ) = R( f ) = �( f ) = {0}.

Illustration: The equation
x

2
= x has only one solution, namely x = 0. Therefore

Fix( f ) = {0}. Letn ∈ N. The equation
x

2n
= x has only one solution, namely x = 0.

Therefore, P( f ) = {0}.

If x > 0, then the open interval

(
3x

4
,
3x

2

)
∩ I is a neighbourhood of x that

contains no other element of the orbit of x . Therefore x is not recurrent. If y is any

element in this open interval, then
y

2
is below and outside it, and we can prove that no

other element from the orbit of y belongs to this interval. So, R( f ) = {0} = �( f ).
�

Example 1.4 (Identity map) Let X be any topological space. Let f be the identity
map on X . Then

Fix( f ) = P( f ) = R( f ) = �( f ) = EP( f ) = X.

Example 1.5 (The squaring map on R) Let f (x) = x2 ∀x ∈ R.

Illustration: Fix( f ) = {0, 1} because the equation x2 = x has two solutions,
namely x = 0 and x = 1. All trajectories are eventually monotonic; some are strictly
increasing; some are strictly decreasing; some are constant. A closer look gives that
there are five kinds of trajectories namely:

1. Constant sequence like {1, 1, 1, . . .}.
2. Strictly increasing sequence like {2, 4, 16, . . . , } diverging to ∞.

3. Strictly decreasing sequence like

{
1

2
,
1

4
,
1

16
, . . .

}
converging to 0.

4. Eventually constant sequence like {−1, 1, 1, . . .} converging to 1.

5. Non-monotonic but eventually monotonic sequence like

{
−1

2
,
1

4
,
1

16
, . . .

}
con-

verging to 0.

From this we can prove that EP( f ) = {−1, 0, 1} and

P( f ) = Fix( f ) = R( f ) = �( f ). �

Example 1.6 (The Tent Map) Let f : I −→ I be defined by

f (x) =
{
2x if x ≤ 1

2

2 − 2x if x > 1
2 .

Illustration: This is called a tent map because its graph looks like a tent with the
point

(
1
2 , 1

)
in the roof and with the points (0, 0) and (1, 0) on the ground.
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Fix( f ) = {0, 2
3 } is obtained by solving 2x = x and 2 − 2x = x separately. One

can also verify that the trajectory of 2
5 is 2

5 ,
4
5 ,

2
5 ,

4
5 , . . .. Thus, both

2
5 and 4

5 are
periodic points of period 2.

By elementary but clever methods, the following have been proved and are avail-
able in some books (for example, in [8]).

P( f ) =
{

2m

2n + 1
∈ I | 0 ≤ m ≤ n ∈ N0

}
.

EP( f ) = {All rational numbers in I } .

R( f ) = An uncountable dense set with a dense complement.

�( f ) = The whole set I.

Thus in this example, these five sets are distinct. Some parts of these results will be
proved in a later section. �

Example 1.7 (The Logistic maps [10]) For each μ > 0, the map x �−→ μx(1 − x)
from R to R is called a logistic map. When μ = 4, it takes I onto I . For different
values of μ, these maps may have different dynamical properties. Its fixed points are
0 and 1 − 1

μ
.

Example 1.8 (The Shift map) Let �2 be the set of all (one-sided) sequences of 0’s
and1’s. For eachwordw over the alphabet set {0, 1}, letVw = {x ∈ �2 | w is a prefix
of x}.
Illustration: Note that w has finite length k, whereas x has infinitely many terms.
We say that w is a prefix of x if wi = xi holds for all i ≤ k = length of w. Here
wi denotes the i th symbol in the word w; similarly xi denotes the i th term in the
sequence x .

We now use these sets Vw to define a topology on the uncountable set �2. It is that
topology for which the family {Vw | w is a word over {0, 1}} is a base. Equivalently,
it is the same as the product topology, when �2 is regarded as the product {0, 1} ×
{0, 1} × · · · . It can also be described in terms of a metric on �2, but we now omit
this description.

Next, we define σ : �2 −→ �2 by the rule (σ(x))n = xn+1, ∀n ∈ N and ∀x ∈ �2.
This means that σ shifts the sequence x by one position to its left side. We can prove
that σ is a continuous map from �2 to itself.

Fix(σ) is a set that has two elements 0 and 1. Here 0 denotes the constant sequence
{0 0 0 · · · } and 1 has a similar meaning.

If w is any word over {0, 1}, then w denotes the sequence {w w w · · · } obtained by
concatenating infinite number of w’s. If k is the length of w, it is easy to see that
σk(w) = w. Thus w is a periodic point for the shift map. One can also prove that
there are no other periodic points. In this manner, there are exactly 2n periodic points
x satisfying σn(x) = x .
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P(σ) = {w | w ∈ {0, 1}}

is a countably infinite dense subset of�2. It is dense because, if Vw is any basic open
set, there is an element of P(σ) there, namelyw. If u and v are two words over {0, 1},
then uv (obtained by prefixing u to the sequence v) is an eventually periodic point.
EP(σ) consists precisely of such points, and is therefore another countable dense
set. R(σ) contains P(σ) strictly; in fact it is uncountable. �(σ) is the whole �2. �

Proposition 1.9 x ∈ EP( f ) if and only if the orbit of x is finite.

Proof Let x be eventually periodic. Then ∃k ∈ N such that y = f k(x) is periodic.
And ∃n ∈ N such that f n(y) = y. Now every f m(x) is of the form f i (x) for some
i < k + n. [In particular f k+n(x) = f k(x); f k+n+1(x) = f k+1(x) and so on]. It
follows that the orbit of x is finite.

Conversely, let x ∈ X be such that the orbit of x is finite. Then in the trajectory
x, f (x), f 2(x), . . ., there are only finitely many distinct terms. Let n be the least
non-negative integer such that f n(x) repeats here. Then f n(x) is a periodic point
and therefore x is an eventually periodic point. (And in fact periodic if n = 0). �

Theorem 1.10 In every dynamical system (X, f ) where X is a Hausdorff space,

1. Fi x( f ) is a closed set.
2. P( f ) is an Fσ-set (that is, a countable union of closed sets).
3. E P( f ) is an Fσ-set.
4. R( f ) is a Gδ-set (that is, a countable intersection of open sets) if X is a metric

space.
5. �( f ) is a closed set.

Proof 1. Fix( f ) is the set of all points where the continuous function f agrees
with the identity map; therefore it is a closed set.

2. For each n ∈ N, let Pn( f ) = {x ∈ X | f n(x) = x} = Fix( f n). Then by (1), each
Pn( f ) is a closed set. We easily see that P is the union of these Pn( f )’s.

3. Here, we prove that EP( f ) is a Fσ-set.

EP( f ) = P( f ) ∪ f −1(P( f )) ∪ f −2(P( f )) ∪ · · ·
= a countable union of Fσ-sets

= a Fσ-set.

4. Here, we prove that R( f ) is a Gδ-set.

R( f ) =
∞⋂

k=1

∞⋃

n=1

{
x ∈ X | d(x, f n(x)) <

1

k

}

= a countable intersection of unions of open sets

= a Gδ-set.
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5. Let x ∈ �( f ). We shall prove that x itself is non-wandering. For this, let V
be a neighbourhood of x . Then V meets �( f ). Take some y ∈ V that is non-
wandering. Because this V is a neighbourhood of that y, ∃z ∈ V and ∃n ∈ N

such that f n(z) ∈ V . Since this is true for every neighbourhood V of x , it is a
non-wandering point. �

Proposition 1.11 EP( f ) ∩ R( f ) = P( f ) holds in every dynamical system (X, f )
if every finite set is closed in X.

Proof We prove this when X is a metric space. We have already noted that every
periodic point is both eventually periodic and recurrent (see Proposition 1.2 and the
proof of statement (3) of Theorem 1.10). To prove the reverse inclusion, let x be both
eventually periodic and recurrent. Let k be such that f k(x) is periodic. If x is not
periodic, there is a positive distance δ from x to the finite orbit of f k(x). In the ball
B(x, δ), only finitely many f i (x) lie. We can find a smaller ball B(x, r) where no
other term of the trajectory of x lies. So x is not recurrent. Thus, we have proved: If
an eventually periodic point is not periodic, then it is not a recurrent point. �

Proposition 1.12 Any two periodic orbits are disjoint or identical.

Proof First we note that if x is a periodic point, then any two elements in its orbit,
have the same orbit. i.e., the orbit of f m(x) is the same as the orbit of f n(x), even
if m = n. Now if two periodic points x and y have a common point z in their orbits,
the orbit of x = orbit of z and orbit of y = orbit of z and therefore orbit of x = orbit
of y. �

Proposition 1.13 If a trajectory converges, then its limit is a fixedpoint (inHausdorff
spaces).

Proof Let f n(x) → l as n → ∞. Apply f . Because f is continuous, f ( f n(x)) →
f (l). But f ( f n(x)) is a subsequence of ( f n(x)). Therefore it should converge to the
same l. Thus f (l) = l. �

Here are some dynamical properties of subsets:

• Invariant set;
• Omega-limit set;
• Cycle.

Definition 1.14 Let (X, f ) be a dynamical system.

1. A subset A of X is said to be invariant if f (A) ⊂ A. In that case (A, f |A) becomes
a dynamical system It is called a subsystem of (X, f ).

2. For x ∈ X , the omega-limit set of x , denoted by ω( f, x) is the set of all limit
points of f -trajectory of x .

3. The orbit of a periodic point is called a cycle; the length of the cycle is the
cardinality of the orbit.
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Proposition 1.15 In any dynamical system (X, f ), the sets Fix( f ), P( f ), EP( f ),
R( f ) and �( f ) are invariant sets.

Proof 1. If x is a fixed point, then so is f (x), because f (x) is same as x .
2. If x is a periodic point, and if f n(x) = x , then f n( f (x)) = f ( f n(x)) = f (x).

So, f (x) is a periodic point of the same period.
3. If x is eventually periodic, ∃k ∈ N such that f k(x) = y is periodic. Then by

(2), f k( f (x)) = f ( f k(x)) = f (y) is also periodic. So f (x) is also eventually
periodic.

4. If x is a recurrent point, we prove that f (x) is also recurrent. For this, let V be a
neighbourhood of f (x). Then (because f is continuous), f −1(V ) is a neighbour-
hood of x . Because x is recurrent, ∃n ∈ N such that f n(x) ∈ f −1(V ). It implies
that f n+1(x) ∈ V . This is the same as f n( f (x)) ∈ V . Thus f (x) is also recurrent.

5. If x is a non-wandering point, we prove that f (x) is also a non-wandering point.
For this let V be a neighbourhood of f (x). Then, f −1(V ) is a neighbourhood of x .
Since x is non-wandering ∃y ∈ f −1(V ) and ∃n ∈ N such that f n(y) ∈ f −1(V ).
This implies that f (y) ∈ V and f n( f (y)) ∈ V . This proves that f (x) is non-
wandering. �

2 Attracting Fixed Point

In this section, there are three subsections. In the first, a classical theorem about glob-
ally attracting fixed points is presented. In the second, various ways of understanding
attracting fixed points are compared. In the third, several examples are provided that
throw more light on the results proved in the first two sections.

2.1 Banach’s Contraction Mapping Theorem

This is a theorem about globally attracting fixed point.

Definition 2.1 (Contraction) Let (X, d) be a metric space. Let f : X −→ X be a
self-map.We say that f is a contractionmap if∃0 < c < 1 such thatd( f (x), f (y)) ≤
c · d(x, y) holds for all x, y in X . (Thus f contracts the distance between points).

Examples and non-examples: The map f (x) = x2 is a contraction map on the
interval [− 1

4 ,
1
4 ] and the contraction constant c can be taken to be 1

2 . But it is not a
contraction map on [−1, 1] because |02 − 12| = 1 = |0 − 1|.
Proposition 2.2 All contraction maps are uniformly continuous. In fact ∀x, y ∈ R

and ∀ε > 0, d(x, y) < ε =⇒ d( f (x), f (y)) < ε.

Proposition 2.3 A contraction map cannot have two fixed points.
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Proof If x, y are fixed points of f , then d( f (x), f (y)) = d(x, y). So, the distance
is not strictly reduced. �
Theorem 2.4 (Banach’s Theorem) Let (X, d) be a complete metric space (i.e.,
a space where all the Cauchy sequences are convergent). Let f : X −→ X be a
contractionmap. Then f has a unique fixed point p.Moreover p is globally attracting
(in the sense that every trajectory converges to p).

Proof Let c be a contraction constant for f (i.e., let 0 < c < 1 and d( f (x), f (y)) ≤
c · d(x, y) holds for all points in X ). Let x ∈ X . We first prove that its trajectory
( f n(x)) is a Cauchy sequence. As a first step, we claim:

d( f n(x), f n+1(x)) ≤ cnd(x, f (x)) ∀n ∈ N.

This is proved by induction on n. When n = 1, this is from the definition of con-
traction map. If it is assumed for some n ∈ N, then we can prove it for n + 1 as
follows:

d( f n+1(x), f n+2(x)) = d( f (s), f (t)) where s = f n(x), t = f n+1(x),

≤ c · d(s, t) because c is contraction constant

= c · d( f n(x), f n+1(x)) by re-substitution

≤ c · cn · d(x, f (x)) by induction hypothesis

= cn+1 · d(x, f (x)).

Therefore, the principle of induction completes the proof of our claim. For us, this
is not the goal but is merely an intermediate step. Now let m < n. Then

d( f m(x), f n(x)) ≤ d( f m(x), f m+1(x)) + d( f m+1(x), f m+2(x)) + · · ·
+ · · · + d( f n−1(x), f n(x)) (by triangle inequality)

≤ cm · d(x, f (x)) + cm+1 · d(x, f (x)) + · · ·
+ · · · + cn−1 · d(x, f (x)) (by using our claim)

= d(x, f (x))(cm + cm+1 + · · · + cn−1).

We already know that the geometric series �∞
n=0c

n converges (here, we use the fact
that 0 < c < 1) and therefore by the Cauchy principle of convergence, for every
ε > 0 there is some n0 ∈ N such that for n > m ≥ n0 the finite sum cm + cm+1 +
· · · + cn−1 < ε. It follows that f m(x) is a Cauchy sequence because if m and n are
≥ n0, we have

d( f m(x), f n(x)) ≤ ε · d(x, f (x)),

and here d(x, f (x)) is a constant (not depending on m or n).

Next, because (X, d) is assumed to be complete, this Cauchy sequence should con-
verge to some point p in X . By Proposition 1.13, this p should be a fixed point. Thus,
we have proved that the unique fixed point p is globally attracting. �
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Remark 2.5 If (X, d) is any metric space (not necessarily complete) and if f is
a contraction map on it, having a fixed point p, we can prove that p is globally
attracting. This is because ∀x ∈ X and n ∈ N, we have

d(p, f n(x)) ≤ cn · d(p, f (x)),

as can be proved by induction. It follows that ( f n(x)) converges to p.

2.2 Various Versions of Attraction

Theorem 2.6 Let f : R −→ R be continuously differentiable and let f (p) = p.
Then each statement below implies the next:

1. | f ′(p)| < 1.
2. f is a local contraction at p.

3.
∞⋂

n=1

f n(V ) = {p} for some f -shrinking neighbourhood V of p (in the sense

f (V ) ⊂ V ).
4. {x ∈ R | f n(x) → p} has the point p in its interior.
5. | f ′(p)| ≤ 1.

Proof (1) =⇒ (2) : Take r such that | f ′(p)| < r < 1. Because f ′ is continuous,
there is δ > 0 such that | f ′(x)| < r holds for all x ∈ (p − δ, p + δ). We now prove
that J = [p − δ, p + δ] is f -invariant and that f |J is a contraction map.
If x ∈ J , then | f (x)− f (p)

x−p | = | f ′(c)| for some c between x and p (by the mean value
theorem) and is therefore< r . In particular, | f (x) − f (p)| < |x − p| and this proves
(because f (p) = p) that f (x) is nearer to p than x ; so that f (x) ∈ J . Also if
x = y ∈ J , then | f (x)− f (y)

x−y | = | f ′(c)| for some c between x and y, and is therefore
< r . This means that f is a contraction map on J with r as the contraction constant.

(2) =⇒ (3) : Here, we do not assume the differentiability of f . We prove more
generally that in any locally compact metric space X , (2) implies (3).

Let f be a local contraction at p = f (p) in the sense that there is a neighbourhood V
of p such that V is f -invariant and such that the restriction of f to V is a contraction
map. We first note that any ball B(p, r) that is ⊂ V will be f -invariant. (Because if
x ∈ B(p, r), then d( f (x), f (p)) ≤ c · d(x, p) where c is the contraction constant;
this gives that f (x) is nearer to p than x). Because X is locally compact, one such ball
B(p, r) has compact closure. Call it W . We note that W is f -shrinking in the sense
that f (W ) ⊂ W . In fact, if x ∈ W , then d( f (x), f (p) = p) ≤ c · d(x, p) < c · r
and so f (x) ∈ W .
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Next, we claim that
∞⋂

n=1

f n(W ) is {p}. In fact, f (W ) ⊂ B(p, cr) and repeated use

of the previous argument gives f n(W ) ⊂ B(p, cnr) for every positive integer n.

Therefore,
∞⋂

n=1

f n(W ) ⊂
∞⋂

n=1

B(p, cnr) = {p} (since cn → 0).

(3) =⇒ (4) : Here, we do not assume that the domain X is a metric space. It can be
any locally compact Hausdorff space.

Let V be any f -shrinking neighbourhood of p, as above. We claim that for every
x ∈ V , the trajectory ( f n(x)) converges to p. Consider the decreasing sequence of

compact subsets
{
f n(V )

}
(because f n+1(V ) ⊂ f n( f (V ))). We have

∞⋂

n=1

f n(V ) is

the same as
∞⋂

n=1

f n(V ) (because f n+1(V ) = f n( f (V )) ⊂ f n(V ) as V is f -shrinking

and f n(V ) ⊂ f n(V ) as V ⊂ V ) and that is given to be {p}. IfW is any neighborhood
of p, it will swallow f n(V ) for some n (because of compactness; otherwise ( f n(V ) −
W )will be a decreasing sequence of compact non-empty setswith empty intersection,
leading to a contradiction).

Now if x ∈ V , the sequence f n(x) has to be eventually in W . This is true for every
neighbourhood W of p. This means that f n(x) → p.

(4) =⇒ (5) : Here, of course we assume that f is continuously differentiable. Let if
possible | f ′(p)| > 1. Choose s such hat | f ′(p)| > s > 1 and choose a ball B(p, r)
such that | f ′(x)| > s for all x in that ball. If x ∈ B(p, r), then we have | f (x) −
f (p)| = | f ′(c)| · |x − p| for some c in that ball (by mean value theorem) and this
is > s · |x − p|.
If f (x) is also in the ball, then f ( f (x)) is further away from p than f (x). Since
sn → ∞, the sequence f n(x) leaves the ball at some time or other. Even if it enters
the ball at a later time, by the above argument, unless it hits p precisely it has to leave
the ball again. This can be used to contradict (4), (see Exercise (9)).

We have actually proved more. No element in the ball gets attracted to p. (We started
to prove theweaker statement that some element doesn’t get attracted to p, but proved
that p is repelling as per the Definition 2.11). �
Remark 2.7 Note that the difference between (1) and (5) is slight. But it is worth-
while to point out that (2) implies (1). In fact | f ′(p)| can not exceed the contraction
constant. Thus (1) and (2) provide the strong form of attraction.

2.3 Examples

Example 2.8 Consider f :
[
−1

2
, 1

]
−→ [0, 1] defined by
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f (x) =
{

−2x if x ≤ 0
x
2 if x ≥ 0.

Illustration: Then, f has a unique fixed point 0; it is globally attracting ; but f is
not a contraction map; f is not differentiable at 0. �

Example 2.9 Define f : [0, 1] −→ [0, 1] by specifying f ( 1n ) = 1
n+1 , ∀n ∈ N and

f is linear on each [ 1
n+1 ,

1
n ].

Illustration: Then, the range of f is [0, 1
2 ]. Still, f is not a contraction because; if

c were the contraction constant,

∣∣∣∣ f
(
1

n

)
− f (0)

∣∣∣∣ = 1

n + 1
− 0 ≤ c · 1

n
=⇒ c ≥ n

n + 1
, ∀n ∈ N.

Therefore, c ≥ 1, contrary to the definition. But, f has a unique fixed point (namely
0) and it is globally attracting as well. Every trajectory is converging to 0. This shows
that the converse of the contraction mapping theorem (i.e, Theorem 2.4) is not true.
(This also shows that in Theorem 2.6, (3) does not imply (2)). �

Example 2.10 Let f (x) = x − x3 on R.

Illustration: Then, the only fixed point of f is 0. This is because x − x3 = x has
only one solution. Even though f ′(0) = 1 (and therefore 0 is not attracting as per
the calculus definition), we shall now prove that its basin of attraction contains the
closed interval [−1, 1] (and it is seen to be a neighbourhood of 0).

If 0 < x < 1, then x3 < x and therefore 0 < x − x3 = f (x) < x < 1. Repeatedly
using this, we find that the trajectory ( f n(x)) is strictly decreasing and bounded. It
has to converge (and by proposition of the last section) its limit should be a fixed
point. It has to be 0 because there is no other fixed point. Similarly, if −1 < x < 0,
then the trajectory of x is strictly increasing and converges to 0. 0 is an attracting
fixed point in all other senses except (1) of Theorem 2.6. The points 1 and −1 even
map to the fixed point 0. �

Definition 2.11 1. Repelling Fixed Point: In a dynamical system (X, f ), a fixed
point x is said to be repelling if ∃ a neighbourhood V of x such that ∀y = x in
V, ∃n ∈ N such that f n(y) /∈ V .

2. Attracting Cycle: In a dynamical system (X, f ), a cycle of length n is said to
be attracting if every element in it, is an attracting fixed point of f n .

Example 2.12 Consider the map f (x) = x2 − 4x + 5.

Illustration: There are two fixed points
5 + √

5

2
and

5 − √
5

2
. Both are repelling.

Because | f ′| at these points is calculated as
√
5 + 1 and

√
5 − 1, and both these

are > 1.
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Next, we calculate that 1 and 2 are periodic points of period 2. Observe that

f (1) = 12 − 4 + 5 = 2 and f (2) = 22 − 8 + 5 = 1.

Now we shall prove that this 2-cycle {1, 2} is attracting.

|( f ◦ f )′(1)| = | f ′( f (1)) f ′(1)| = | f ′(1)|| f ′(2)| = |2 − 4||4 − 4| = 0.

To understand the nature of attraction without calculus, we take the point 3
2 . Using a

calculator, we find that its trajectory is

3

2
,
5

4
,
25

16
,
305

256
,
108385

65536
, . . .

and the same becomes in the decimal notation

1.5, 1.25, 1.5625, 1.191, 1.6538, 1.11984, 1.11984, 1.77468, 1.05077 · · · .

We notice the following in this sequence. If we take the even terms

1.25, 1.191, 1.11984, 1.05077, . . .

it is strictly decreasing and going nearer and nearer to the periodic point 1. If we take
the remaining terms

1.5, 1.5625, 1.6538, 1.77468, . . .

it is strictly increasing, going nearer and nearer to the other periodic point 2. We
guess that the same happens to all points in a neighbourhood of 1 and 2 (Prove it!).

�

Example 2.13 Let f (x) = x + sin x on [0, 4π].
Illustration: The fixed points of f are easily calculated as 0, π, 2π, 3π and 4π.
Which of them are attracting and which of them are repelling? To see this, we
calculate

f ′(x) = 1 + cos x; f ′(0) = 2; f ′(π) = 0; f ′(2π) = 2; f ′(3π) = 0; f ′(4π) = 2.

Weconclude thatπ and 3π are attracting points, whereas the other three are repelling.
�

Among the examples seen here, this is the only interval map with two attracting
fixed points. Its analogues can be easily constructed to show that ∀n ∈ N, there is an
interval map with n attracting fixed points.

This example serves another purpose also. This f is a homeomorphism from [0, 4π]
to itself. Its graph seems to be winding around the diagonal. If p is a fixed point, see
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whether in the neighbourhood of (p, p), the graph is above or below the diagonal
(until the adjacent fixed point). Then p is attracting if and only if the graph is above
the diagonal to the left of p, and below the diagonal to the right of p. This seems to
suggest the following statement.

Let f be an one-one interval map with a discrete set of fixed points. Then between
any two attracting fixed points, there has to be a repelling fixed point and vice-versa.
(see Exercise 8.13). �

Example 2.14 Let f (x) = 2x − 2x2 on I. This is one of the logisticmaps introduced
earlier.

Illustration: Here, f has two fixed points, namely the two roots of 2x − 2x2 = x .
These are 0 and 1

2 . We have f ′(x) = 2 − 4x, f ′(0) = 2 and f ′( 12 ) = 0. Therefore
0 is a repelling fixed point and 1

2 is an attracting fixed point.
We find the basin of attraction for 1

2 . If p is a fixed point, then its basin of attraction
is defined as the set of all points whose trajectories converge to p. First, from the
equation 2x − 2x2 = −2(x − 1

2 )
2 + 1

2 , we find that 1
2 is the maximum value. We

find that the graph is above the diagonal on
[
0, 1

2

)
and below the diagonal on

(
1
2 , 1

]
.

This makes us guess

x < 2x − 2x2 <
1

2
if 0 < x <

1

2
and

x > 2x − 2x2 if
1

2
< x < 1.

We in fact have 0 < x < 1
2 =⇒ 0 < 2x < 1 =⇒ 0 < 2x2 < x =⇒ x < 2x − 2x2.

And 1
2 < x < 1 =⇒ x > 2x − 2x2 because 1 > 2 − 2x .

For all 0 < x < 1
2 , the trajectory of x increases and remains in

(
0, 1

2

]
. So, it has to

converge to a fixed point. The only available fixed point is 1
2 . Points in

(
1
2 , 1

)
, at the

very next time fall in
(
0, 1

2

)
and afterwards go nearer and nearer to 1

2 . The basin of
attraction is (0, 1). �

3 Topological Transitivity

In this section, an important dynamical property known as topological transitivity, is
studied. In the first subsection, it is understood in five different (but equivalent) ways.
In the second, five different methods to prove topological transitivity are introduced.

Notation:Wewill use the term opene set as our abbreviation for an open nonempty
set.



14 V. Kannan

3.1 Five Views of Topological Transitivity

There are five ways in which topological transitivity may be understood. To put them
roughly:

1. It is possible to go from any sub-region to any other sub-region (as the name
‘transitive’ suggests) (High mobility).

2. Every sub-region is visited by plenty of points at some time or other (Abundance
of visitors).

3. Every invariant set is either too small or too big (Lack of invariant sets).
4. There is no nontrivial proper subsystem (Triviality of sub-system/

Indecomposability).
5. There is a dense orbit (Highly wandering points).

These five are precisely stated as follows: Let (X, f ) be a dynamical system.

1. If V and W are any two nonempty open subsets of X , there is n ∈ N such that
f n(V ) ∩ W is nonempty.

2. If V is a nonempty open set, then {x ∈ X | f n(x) ∈ V for some n ∈ N} is dense.
3. If A ⊂ X is such that f (A) ⊂ A, then either A is dense or A is nowhere dense.
4. (Y, f |Y ) is called a closed subsystem of (X, f ) if Y is a closed subset of X and

f (Y ) ⊂ Y so that f |Y is a self-map of Y . The present requirement is: if (Y, f |Y )

is a closed subsystem of (X, f ), then either Y = X or Y has empty interior.
5. ∃x ∈ X such that O(x, f ) = X .

Theorem 3.1 If X is a compact metric space without isolated points (like the unit
interval I , the circle S

1, the torus T, the space � of sequences, etc.), then the above
five are equivalent.

Proof (1) =⇒ (2) : If W is an opene set, then

{
x ∈ X | f n(x) ∈ W for some n ∈ N0

}

can be rewritten as
⋃

n∈N0

f −n(W ). Let us denote this set by W ∗. To prove that W ∗

is dense in X , take any opene set V in X . Then by (1), there is n ∈ N such that
f n(V ) ∩ W is nonempty. This implies that f −n(W ) ∩ V is nonempty and therefore
W ∗ ∩ V is nonempty. Since this is true for every opene set V , it follows that W ∗ is
dense.

(2) =⇒ (3) : Let A ⊂ X be an invariant set so that f (A) ⊂ A. Then its complement
has the property that no element of A visits it at any time. This means (Ac)∗ = Ac

in the notation of the previous paragraph. Now consider two cases.

1. If Ac has an interior point, then (2) implies that it is dense. In this case A has
empty interior.

2. In the other case Ac has empty interior.



Real Dynamics 15

So we have that either A or Ac has empty interior. Equivalently, either A or Ac is
dense. Now, A is also f -invariant (follows from the continuity of f ). Therefore, if
A is not dense, then A has no interior and is thus, nowhere dense.

(3) =⇒ (4) : Let (Y, f |Y ) be a closed subsystem of (X, f ). Then Y is f -invariant
subset of X . Therefore by (3), Y or Y c is dense. But Y is closed. Therefore either
Y = X or Y is nowhere dense.

(4) =⇒ (2) : Let W be a nonempty open set. Look at (W ∗)c. This is the set of

all points that never visit W . It can be written as

⎛

⎝
⋃

n∈N0

f −n(W )

⎞

⎠

c

. Because f is

continuous and W is open, the subset f −n(W ) is open for each n ∈ N. Therefore
W ∗ is open and (W ∗)c is closed. Also it is f -invariant. This is because if x never
visits W , so is the case with f (x), [for if f (x) visits W at time n, then x will visit
W at time n + 1]. Thus (W ∗)c gives rise to a sub-system of (X, f ). By (4), either
(W ∗)c = X or (W ∗)c has empty interior. The former case is not possible because W
is nonempty. In the latter case W ∗ is dense. This proves (2).

(2) =⇒ (5) : Here we use the Baire Category theorem. Because we have assumed
that X is a compact metric space, X admits a countable base say {B1, B2, B3, . . .}
of nonempty open sets. By (2), each B∗

n is dense and open. Therefore by the Baire

Category theorem,
⋂

n∈N
B∗
n is non empty. If x is a point in this intersection, then x

visits each Bn at some time or other. In other words, the orbit of x meets every basic
open set and is therefore dense.

(5) =⇒ (1) : Let the orbit of x be dense. Let V, W be two opene sets. First choose
n1 ∈ N such that f n1(x) ∈ V . Next take the set

W − {
x, f (x), . . . , f n1(x)

}
.

This is open (because every finite set is closed) and non-empty (becauseW is infinite,
because there are no isolated points). The orbit of x should meet this opene set also.
Therefore ∃n2 > n1 in N such that f n2(x) meets W . Thus f n2−n1( f n1(x)) ∈ W and
so f n2−n1(V ) meets W . �

3.2 Five Proofs of Topological Transitivity of the Tent Map

Recall that the tent map f : I −→ I is defined by the formula

f (x) =
{
2x if 0 ≤ x ≤ 1

2

2 − 2x if 1
2 ≤ x ≤ 1.
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Equivalently, this is given by the formula f (x) = 1 − |1 − 2x | for all x . It is the
piece-wise linear map specified by

f (0) = 0, f

(
1

2

)
= 1, f (1) = 0.

Theorem 3.2 The tent map is topologically transitive.

Proof The reason for providing five different proofs is that each proof leads to a
more general theorem; at the end we will have five theorems each giving a set of
assumptions that implies topological transitivity. �

First Proof: Call a map locally eventually onto (in short, l.e.o.) if for every opene
set V, ∃n ∈ N such that f n(V ) = I . We shall prove the following two assertions:

1. Every l.e.o. map is topologically transitive.
2. The tent map is l.e.o.

In the literature, l.e.o maps are sometimes known as strongly transitive maps and
also known as topologically exact maps.

Proof of (1): Let V and W be two opene sets. By assumption ∃n ∈ N such
that f n(V ) = I . Then obviously f n(V ) ∩ W is nonempty. This proves that f is
topologically transitive.

Proof of (2): This is divided into two parts:

(2a) Every opene set must contain a dyadic sub-interval.
(2b) Every dyadic sub-interval J admits n ∈ N such that f n(J ) = I .

Here, a dyadic sub-interval is a closed interval of the form Ik,m = [
k−1
2m , k

2m
]
where

1 ≤ k ≤ 2m, k and m are non-negative integers. It is easily noted that the length of
Ik,m is 1

2m . The union of Ik,m for a fixedm, as k varies, is I . There are 2m sub-intervals
of the form Ik,m (as k varies).

Ik1,m1 ⊂ Ik2,m2 =⇒ m1 ≥ m2.

Proof of (2a): Let V be an opene set. Then V contains a closed interval J of positive
length l. Choose a positive integer n large enough so that 1

2n < l
2 . Let k be the least

non-negative integer such that k
2n ∈ J . Then we are sure that k+1

2n also belongs to J .
This implies that the dyadic sub-interval Ik,n ⊂ J ⊂ V .

Proof of (2b): We prove by induction on m that f m(Ik,m) = I . When m = 1,
we have two such sub-intervals I0,1 and I1,1 of length 1

2 . We directly verify that
f (I0,1) = I and f (I1,1) = I . Suppose by induction hypothesis, we have proved that
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f m(Ik,m) = I for some m ∈ N and for all k, 0 ≤ k ≤ 2m . Then we prove a similar
result for m + 1. For this, we first note that f (Ik,m+1) = Ir,m for some r . Then using
induction hypothesis,

f m+1(Ik,m+1) = f m( f (Ik,m+1)) = f m(Ir,m) = I.

The principle of induction now completes the poof of (2b).

Second Proof :

Definition 3.3 An interval map is said to be length-expanding if there is δ > 0 such
that the following holds:
| f (J )| ≥ (1 + δ)|J | for all intervals J of positive length unless f (J ) = I .

Note that this implies f (J ) = I for all sub-intervals J of length> 1
1+δ

. In particular,
an interval map is length-doubling if | f (J )| ≥ 2|J | holds unless f (J ) = I .

We split this proof into three parts:

(A) Every length-expanding interval map is topologically transitive.
(B) If f is the tent map, f ◦ f is length-doubling (and therefore length-expanding).
(C) If f ◦ f is topologically transitive, so is f .

Proof of (A): We shall prove that f is l.e.o. Let V be an opene set. Then V contains
a closed interval J of positive length. By our assumption, | f (J )| ≥ (1 + δ)|J | unless
f (J ) = I . This f (J ) is also an interval of positive length, and so | f 2(J )| ≥ (1 +
δ)2|J | unless f 2(J ) = I .

Repeating this argument, we obtain that for every n ∈ N,

| f n(J )| ≥ (1 + δ)n|J |,

unless f n(J ) = I . Because the sequence (1 + δ)n is growing exponentially, there is
n ∈ N such that (1 + δ)n|J | > |I |. For that n, we do have
f n(J ) = I . It follows that f n(V ) = I .

Proof of (B): The graph of f ◦ f (= g) is as sketched below. It is a piece-wise
linear map specified by

g(0) = 0, g

(
1

4

)
= 1, g

(
1

2

)
= 0, g

(
3

4

)
= 1, and g(1) = 0.
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1/40 11/2 3/4

On
[
0, 1

4

]
, this function is f ◦ f (x) = 4x . Therefore, if J is an interval and is a

subset of
[
0, 1

4

]
, then |g(J )| = 4|J |. Then, similar statement holds depending on

J ⊂ [
1
4 ,

1
2

]
, J ⊂ [

1
2 ,

3
4

]
or J ⊂ [

3
4 , 1

]
.

If J is not contained in any of these four, we argue as follows: Suppose J ⊂ [
0, 1

2

]
.

Then J = J1 ∪ J2 where J1 = J ∩ [
0, 1

4

]
and J2 = J ∩ [

1
4 ,

1
2

]
. By previous para-

graph
|g(J1)| = 4|J1| and |g(J2)| = 4|J2|.

Being aware that g(J1) and g(J2) may overlap, we deduce that

|g(J )| ≥ both 4|J1| and 4|J2|

and moreover, |g(J )| ≥ 2|J |. In the last step, we make use of the fact that |J1| or
|J2| should be at least 1

2 |J |. This proves that |g(J )| ≥ 2|J | for all sub-intervals J
that are subsets of

[
0, 1

2

]
.

Analogous statements hold for sub-intervals⊂ [
1
4 ,

3
4

]
, and for sub-intervals⊂ [

1
2 , 1

]
.

The only remaining case is when J is not contained in any of these three. Thenwe can
prove that J should contain one of the four sub-intervals

[
0, 1

4

]
,

[
1
4 ,

1
2

]
,

[
1
2 ,

3
4

]
,[

3
4 , 1

]
. Then f 2(J ) = I . We have thus completed the proof that f ◦ f is length-

doubling.

Remark 3.4 Observe that the tent map is not length expanding as

f

([
1

4
,
3

4

])
=

[
1

2
, 1

]
.
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Proof of (C): More generally, let (X, f ) be a dynamical system and let (X, f ◦ f )
be topologically transitive. To prove that f is also so, let V and W be two opene
sets. By assumption there is n ∈ N such that ( f ◦ f )n(V ) meets W . It follows that
f 2n(V ) meets W . This proves f is also topologically transitive.

Third proof: We directly exhibit a point in I whose orbit under the tent map f
is dense in I . Let s be a Morse sequence over {0, 1}, that is, an infinite sequence
of 0’s and 1’s such that every word w over {0, 1} occurs in that sequence. If s =
s1s2s3 · · · sn · · · then form the sets An = {x ∈ I | f n(x) ∈ Isn } for all n ∈ N, where
I0 = [

0, 1
2

]
and I1 = [

1
2 , 1

]
.

We note that
⋂

n∈N
An is nonempty, by Cantor-Intersection theorem. This is because

the finite intersections A1 ∩ A2 ∩ · · · ∩ An are nonempty and closed for each n ∈ N.
Actually, this is an interval of length 1

2n .

Let x be a point common to all these intervals. Then we now prove that the orbit of x
is dense. For this the following notation will be convenient. The dyadic sub-intervals
defined in the second proof are now provided with a different notation:

I0 =
[
0,

1

2

]
I1 =

[
1

2
, 1

]
;

I00 =
[
0,

1

4

]
I01 =

[
1

4
,
1

2

]
I10 =

[
3

4
, 1

]
I11 =

[
1

2
,
3

4

]
;

I000 =
[
0,

1

8

]
I001 =

[
1

8
,
1

4

]
and so on.

In general, if w is a word w1w2w3 · · ·wn over {0, 1}, then Iw0 is defined as Iw ∩
f −k(I0); Iw1 is defined as Iw ∩ f −k(I1), where k =| w |. Recursively, this defines
Iw for every word w. We see that these I ′

ws are same as the dyadic sub-intervals. In
particular every interval J of positive length must contain one of these Iw’s.

Now to prove that the orbit of x is dense in I , let J be an open sub-interval of positive
length. Then J contains Iw for some wordw. Thisw occurs in theMorse sequence s.
Therefore there is n ∈ N such that w = snsn+1 · · · sn+r .

Now the point f n(x) has the property that it belongs to Iw. (Because f n(x) ∈
Isn , f n+1(x) ∈ Isn+1 , etc). Here we use the fact that

Iw = Iw1w2···wn = {x ∈ I | x ∈ Iw1 , f (x) ∈ Iw2 , f 2(x) ∈ Iw3 , . . .}.

Thus f n(x) ∈ J for this n.

Fourth Proof: The tent map is an example of a Markov map. We consider more
generally, the interval maps f for which there is a finite set of points 0 = x0 < x1 <

· · · < xn = 1 such that if Ii = [
xi , xi+1

]
, then the following are satisfied:
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(i) | f ′(x)| > 1 for all x except those finitely many points where f may not be
differentiable.

(ii) For each i, f (Ii ) is the union of some I j ’s. (This means : If f (Ii ) meets some
I j , then it contains it).

(iii) f is monotonic on each Ii .

We shall call such maps EMImaps (Expanding Markov Interval map). The Markov
matrix associated with such a map f is a n × n matrix where the (i, j)- entry is 1 if
f (Ii ) ⊃ I j , and (i, j)- entry is 0 otherwise.

We say that a matrix of 0’s and 1’s is irreducible if for every (i, j), there is k in N

such that the (i, j)-entry of the kth power of that matrix is nonzero.Our fourth proof
of transitivity of the tent map is as usual divided into two parts, one giving a general
theorem and the other stating that the tent map satisfies its assumptions.

(A) Every EMI map whose matrix is irreducible, is topologically transitive.
(B) The tent map is an EMI map with irreducible matrix.

Proof of (A): For the proof, see Proposition (4.8) in [14].

Proof of (B): Take 0 = x0 < x1 = 1
2 < x2 = 1, I0 = [

0, 1
2

]
, I1 = [

1
2 , 1

]
. Then

f (I0) = I0 ∪ I1 = I ; f (I1) = I0 ∪ I1 = I and | f ′(x)| = 2 for all x other than xi ’s.
Thus we have easily verified that the tent map is an EMI map. Its Markov matrix is(
1 1
1 1

)
and is obviously irreducible.

Fifth Proof:

Definition 3.5 (Topological Conjugacy:) If (X, f ) and (Y, g) are two dynamical
systems, a homeomorphism φ : X −→ Y is called a topological conjugacy if the
following diagram commutes:

X X

Y Y

f

φ φ

g

�
Remark 3.6 All dynamical properties, seen so far, are preserved by topological
conjugacy.

Here the main idea is that the well known shift map (�2,σ) and this tent map (I, f )
(though they are not topologically conjugate themselves) admit dense subsystems
(D,σ) and (D2, f ) respectively, that are topologically conjugate to each other. We
shall then use the following lemma.

Lemma 3.7 Let (X, f ) be a dynamical system and Y be a dense subset of X such
that f (Y ) ⊂ Y . Then (X, f ) is topologically transitive if and only if (Y, f |Y ) is
topologically transitive.
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Proof Let (X, f ) be topologically transitive. To prove that (Y, f |Y ) is also topo-
logically transitive, let V and W be two opene sets in Y . Then there are open sets
Ṽ and W̃ in X such that V = Ṽ ∩ X and W = W̃ ∩ Y . Because f is topologically
transitive, ∃x ∈ Ṽ and n ∈ N such that f n(x) ∈ W̃ . But alas! this x may not be in Y .
By the continuity of f n , there is a neighborhood U of x ∈ X (we may assume that
U ⊂ Ṽ ) such that f n(U ) ⊂ W̃ . Now because Y is dense in X , thisU meets Y . Take
y in U ∩ Y . Then, f n(y) ∈ W̃ . Also, because Y is invariant, f n(y) ∈ Y also. Thus
f n(y) ∩ W is nonempty.

Conversely, let (Y, f |Y ) be topologically transitive. To prove that (X, f ) is topolog-
ically transitive let V and W be two opene sets in X . Then V ∩ Y and W ∩ Y are
opene sets in Y . (Here we use the fact that Y is dense in X ). Because f |Y is topo-
logically transitive, ∃n ∈ N such that f n(V ∩ Y ) ∩ (W ∩ Y ) is nonempty. It follows
that f n(V ) ∩ W is nonempty. �

Remark 3.8 It is interesting to note that the subsystem Y , although topologically
transitive need not contain a dense orbit. For example, for the tent map if Y = Q ∩ I ,
then all y ∈ Y are pre-periodic, hence no dense orbit, but here Y is countable and
not a Baire space. A Baire space is one in which countable intersection of open and
dense sets is again dense.

Now we proceed to apply this lemma in the present context. We take

D1 = {x ∈ I | f n(x) = 0 for all n ∈ N}
= complement of the backward obit of 0.

We can prove that f n(x) = 0 for some n ∈ N if and only if x is a dyadic rational
number. That is, D1 = complement in I of dyadic rational numbers (a rational number
whose denominator is a power of 2). Since the complement of a countable set is
always dense, it follows that D1 is a dense subset of I .

If x ∈ D1, then f (x) ∈ D1, because if f n( f (x)) = 0, then f n+1(x) = 0.Weconsider
the subsystem (D1, f |D1). On the other side, we start with the shift map (�2,σ). Let
D2 = {x ∈ �2 | x is not eventually0}. Then D2 is the complement of a countable set
and is therefore dense in �2 (because in �2 also, every opene set is uncountable).
Therefore by the above lemma, (D2,σ|D2) is topologically transitive.

We now construct a homeomorphism φ : D1 −→ D2 as follows: If x ∈ D1, then

(φ(x))n =
{
0 if f n(x) < 1

2 ;
1 if f n(x) > 1

2 .

(Note that f n(x) cannot be equal to 1
2 if x ∈ D1). Note that φ(x) ∈ D2.

Lemma 3.9 The following are equivalent for x and y in D1 and for n ∈ N.

(i) There is a word w of length n such that x and y belong to the same Iw.
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(ii) φ(x) and φ(y) agree in their first n terms.

Proof We observe that
φ(I0) = V0, φ(I1) = V1;

φ(I00) = V00, φ(I01) = V01, φ(I10) = V11, φ(I11) = V10.

For every word w there is a word w̃ of same length such that φ(Iw) ⊂ Vw̃ and
φ−1(Vw̃) = Iw ∩ D. Also w �−→ w̃ is a bijection from {0, 1}∗ to itself.
From this single observation, three consequences follow immediately:

(1) φ is continuous. This is because the pre-image of every basic open set Vw is open
in D.

(2) If φ(x) and φ(y) belong to Vw and if |w| = n, then x and y belong to the same
sub-interval Iu for some word u of length n and therefore |x − y| < 1

2n . The
converse is true as well. In other words the above lemma is proved.

(3) If φ(x) = φ(y), then |x − y| < 1
2n holds for all n, and so x = y.

This proves that φ is one-one. All these together prove that φ is a homeomorphism
from D1 to φ(D1) = D2.

We next verify that for all x ∈ D1,

(φ( f (x)))n = 0 ⇐⇒ f n( f (x)) <
1

2
⇐⇒ f n+1(x) <

1

2
⇐⇒ (φ(x))n+1 = 0 ⇐⇒ (σφ(x))n = 0.

This proves : φ ◦ f = σ ◦ φ. Thus φ is a topological conjugacy between the (tent
map)|D1 and the (shift map)|D2 . Because the latter is known to be topologically tran-
sitive, the former has to be. It then follows that the tent map on I itself is topologically
transitive. �

Comments on the various proofs: Each proof has its own merit. But they serve the
purpose of leading to very general theorems and concepts.

4 Three Ingredients of Chaos

According to a definition proposed by R. Devaney [7], there are three ingredients of
chaos:

(T) Topological transitivity (studied in the previous section);
(DP) Dense set of Periodic points;

(SDIC) Sensitive Dependence on Initial Conditions as defined below.



Real Dynamics 23

Definition 4.1 (SDIC)We say that a dynamical system (X, f ) where X is a metric
space, has SDIC if there is a positive δ > 0 (called the sensitivity constant) such that
∀x ∈ X and ∀r > 0, ∃y ∈ X, ∃n ∈ N such that

d(x, y) < r but d( f n(x), f n(y)) > δ.

This means: the orbit of x deviates from that of y by at least δ. Note that we want
the same δ at all the points and that the time n of deviation is required only once and
that n may vary with x .

In this section, we wish to assert that the three properties T, DP and SDIC are so
highly independent, in the sense that

(i) none of them implies any other; and in fact,
(ii) no two of them imply the third.

This means that there is no redundancy in the definition of Devaney’s chaos. For this
purpose, we actually construct eight examples, one for each row of the following
chart:

T DP SDIC
Example 1 � � �
Example 2 � � x
Example 3 � x �
Example 4 � x x
Example 5 x � �
Example 6 x � x
Example 7 x x �
Example 8 x x x

4.1 T, DP and SDIC

The tent map f (x) = 1 − |1 − 2x | studied in the previous section possesses all these
three properties. We in fact proved that for each dyadic sub-interval of length 1

2n , it
is true that f n maps that sub-interval onto the whole I . Hence f is topologically
transitive. For the same reason, it has SDIC. If x ∈ I and if r > 0 are given, choose a
dyadic sub-interval J containing x whose length 1

2n is< r . Then because f n(J ) = I ,
there are elements y, z ∈ J such that f n(y) = 1 and f n(z) = 0. It follows that the
orbit of x deviates from that of y or z by at least 1

2 at this time n. We use triangle
inequality here. It follows that any positive δ < 1

2 serves as the sensitivity constant.
Lastly, we have already seen that all dyadic rational numbers are f -periodic; we
know that they form a dense set. Thus the tent map possesses all the three properties
T, DP and SDIC.
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4.2 T, DP & NOT SDIC

Let n ∈ N. Let X be the finite set {1, 2, . . . , n} with discrete metric and discrete
topology. Let f be the map from X −→ X defined by f (x) = x + 1 (modn) for all
x ∈ X . This f is called an n-cycle. It has only one orbit. The orbit of 1 is {1, 2, . . . , n},
the whole set X . Therefore it is topologically transitive. (Highly so, because against
the requirement of a dense orbit, we have the whole set as an orbit). All its points are
periodic, because f n(x) = x for all x ∈ X . Therefore f has DP. (Highly so, because
against the requirement of a dense set of periodic points, we have the whole set of
periodic points). There is no SDIC in this example. It can be seen in two ways:

Proposition 4.2 At an isolated point, sensitive dependence cannot be there.

Proof This is because in the ball that is a singleton, we cannot find another point
whose orbit deviates from that of the centre ; we cannot find another point at all. �
Proposition 4.3 An isometry cannot have SDIC.

Proof An isometry is a map that preserves distances. If r is the radius of a
ball around x , then for every y in that ball d(x, y) < r and so for every n ∈
N, d( f n(x), f n(y)) < r (because f n also preserves distances). If this deviation
should be > δ, then that δ should be < r . This is true for every r > 0. Therefore
there is no sensitivity constant. �
Thus we have proved that the n-cycles possesses T and DP but not SDIC. Since
this is true for every positive integer n, we have actually infinitely many examples
that possess T and DP but not SDIC (but not in I , see Theorem 5.1). But in a later
subsection, we shall prove that we do not have an infinite example of this kind. (Note:
Infinite example is not same as infinitely many examples).

4.3 T, NOT DP & SDIC

Let f be the restriction of the tent map to the set Q
c of irrational numbers. Note that

Q
c is f -invariant (If 2x or 2 − 2x is rational, so should x be). Then f is topologically

transitive, by Lemma 3.7.

We next note that we have deliberately omitted all the periodic points of the tent
map from the domain of f , so that this example does not have any periodic point at
all. Far from DP. That this example does have SDIC follows from the more general
result, in the next proposition.

Remark 4.4 Thick subsets are those with non-empty interior.

Proposition 4.5 Let g : X −→ X be strongly transitive. (i.e., if V is any thick subset
of X, there is n ∈ N such that gn(V ) = X). Then the restriction of g to any dense
invariant subset of X has SDIC. (This means : Not only (X, g) but also every dense
subsystem of it has SDIC).
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Proof Any positive δ less than half the diameter of X serves as a sensitivity constant.
To prove this let p, q ∈ X be any two elements. Let Y be a dense subset of X such
that g(Y ) ⊂ Y . Let y ∈ Y and r > 0. Then the ball B = B(y, r) in X admits n ∈ N

such that gn(B) = X . It follows that gn(B ∩ Y ) is dense in Y (we use the fact that the
continuous map gn takes dense subsets of B to dense subsets of its image). Therefore
there are two elements y, z ∈ B ∩ Y such that gn(y) is near p and gn(z) is near q,
so that the distance between them is very near d(p, q) and hence arbitrarily near the
diameter of X . It follows from triangle inequality that the orbit of x deviates from
that of y or z by at least half of that d(p, q). �
Thus this example has T and SDIC but not DP.

4.4 T, NOT DP & NOT SDIC

Now we are in search of a transitive map that has neither DP nor SDIC. We cannot
find such an example among interval maps. (Later in this chapter we shall prove
that T =⇒ DP for interval maps). When we allow other domains, we can find better
examples. On the circle S

1, there are topologically transitive maps having neither DP
nor SDIC.

Indeed the irrational rotations satisfy our requirements. Let θ be an irrationalmultiple
of π. The rotation by an angle θ is same as the map f (z) = zeiθ (we use the usual
multiplication of complex numbers). That these maps are topologically transitive,
follows from a classical theorem of Jacobi (we do not include its proof here, because
we confine our interest to real dynamics; but for a proof see subsection (1.2) in [6]).

We can easily prove that there are no periodic points. Indeed, for every positive
integer n, f n(z) = zeinθ. If it were = z, then einθ = 1; this would imply that nθ is
an integral multiple of 2π; and therefore θ is a rational multiple of π; this is contrary
to our assumption.

Lastly, we prove that this does not have SDIC. We resort to Proposition 4.3 of this
section. We observe that these rotations are isometries. In fact, if z1 and z2 are in
S
1, |z1einθ − z1einθ| = |z1 − z2||einθ| = |z1 − z2|.

Thus this example provides infinitely many examples of systems that are topologi-
cally transitive, without DP and without SDIC.

4.5 NOT T, DP & SDIC

Let f be the piecewise linear map on I specified by

f (0) = 1

2
; f

(
1

4

)
= 0; f

(
3

4

)
= 1; f (1) = 1

2
.
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Its graph is as sketched here.

Its formula is

f (x) =

⎧
⎪⎨

⎪⎩

1
2 − 2x if 0 ≤ x ≤ 1

4 ;
2x − 1

2 if 1
4 < x ≤ 3

4 ;
5
2 − 2x if 3

4 < x ≤ 1.

This map is not topologically transitive because [0, 1
2 ] is f -invariant. We now claim

that every number in I that is of the form 2m+1
4n+2 (wherem, n ∈ N) is f -periodic. Note

that these are the numbers

1

2
,
1

6
,
5

6
,
1

10
,
3

10
,
7

10
,
9

10
,
1

14
, . . . .

In this sequence of numbers, we can verify that the first three are fixed points, the
next four are points of period 2, and so on.

But, for a rigorous proof, we have to argue more cleverly. For a fixed positive integer
n, let

An =
{
2m + 1

4n + 2
: 0 ≤ m ≤ 2n

}
.

This is a finite set having 2n + 1 elements. We easily see that this set is f -invariant,
because if x = 2m+1

4n+2 , then the numbers 1
2 − 2x, 2x − 1

2 and 5
2 − 2x are all of this

form (as can be verified by direct calculation). On the other hand every such number
(i.e., x = 2m+1

4n+2 ) is the image (under f ) of another such number namely

y = m − n

4n + 2
if m < 2n and if m and n are different parity;

or y =m + n + 1

4n + 2
if m and n are same parity;

or y =5n − m + 2

4n + 2
if m ≥ 2n and if m and n are different parity.

Thus f is a bijection on each An . We use now:

Proposition 4.6 Let (X, g) be a dynamical system. Let F ⊂ X be a finite subset
such that g(A) = A. Then every element of A is g-periodic.

Proof g|A becomes a permutation and hence has a cyclic decomposition. This
exhibits the cyclic orbits of all elements of A. �
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We now continue with our present example. Every element of An is f -periodic,
for every n ∈ N. Next we note that An is a 1

n -net in I (in the sense that every
element in I is at a distance < 1

n from some element in A). This is because in
An = {

1
4n+2 ,

3
4n+2 , . . . ,

4n+1
4n+2

}
any two adjacent elements are at a distance 1

2n+1 , and
they are equally spread.

Thus the set of f -periodic points is a countable union of finite sets that are 1
n -nets,

for each positive integer n. Therefore it follows immediately that this set is dense
in I .

Remark 4.7 1. There are other proofs for the same result. But this proof has an
advantage of being elementary and self-contained.

2. One can prove that there are no other f -periodic points in this example. But we
do not need this result here.

Lastly, we now prove that this has SDIC. For this, we take a different approach. We
look at the backward orbit of the three fixed points 1

2 ,
1
6 and

5
6 . Here, backward orbit

of p means the set of all points that contain p in the orbit. We claim:

(a) the backward orbit of 1
2 is dense in [0, 1].

(b) the backward orbit of 1
6 is dense in [0, 1

2 ].
(c) the backward orbit of 5

6 is dense in [ 12 , 1].

Proof of (a): We find that 0, 1 go to 1
2 at time 1; 1

4 and 3
4 go to 1

2 at time 2;
four more points 1

8 ,
3
8 ,

5
8 ,

7
8 go to 1

2 at time 3 and so on. In other words, the sets
f −1

(
1
2

)
, f −2

(
1
2

)
, f −3

(
1
2

)
etc. are all finite sets and their cardinality is increasing.

We next note that f −1
(
1
2

)
is a 1

4 -net; f −2
(
1
2

)
is a 1

8 -net and so on. So, their union
(which is the same as the backward orbit of 1

2 ) is an ε-net for all ε > 0. So, it is a
dense set.

Proof of (b): We find that

f −1

(
1

6

)
=

{
1

3
,
1

6

}
; f −2

(
1

6

)
⊃

{
1

12
,
5

12

}
;

f −3

(
1

6

)
⊃

{
1

24
,
5

24
,
7

24
,
11

24

}
; and so on.

Thus, the backward orbit of 1
6 includes all points of the form

2m+1
3·2n (after eliminating

common factors) that are < 1
2 (where m, n ∈ N0). As before, we can prove that this

is a dense subset of [0, 1
2 ].

Proof of (c): It is similar to that of (b) and hence omitted.

Now we complete the proof of SDIC as follows.
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Proposition 4.8 Let (X, f ) be a dynamical system where every thick set V has two
points whose orbits deviate by at least δ > 0. Then δ

2 serves as a sensitivity constant
for (X, f ).

Proof Let x ∈ X and r > 0. By assumption the ball B(x, r) has two points y, z
such that d( f n(y), f n(z)) > δ for some n ∈ N. Now by triangle inequality, either
d( f n(x), f n(y)) or d( f n(x), f n(z)) is bigger than δ

2 . Thus (X, f ) has SDIC with δ
2

as sensitivity constant. �

We now return to our example. If V is any thick subset of I, V should meet the
backward orbit of 1

2 (because of (a)); it should also meet the backward orbit of 1
6 or

that of 5
6 (because of (b) and (c)). Thus there are points x, y ∈ V and m, n ∈ N such

that

f m(x) = 1

2
and f n(y) ∈

{
1

6
,
5

6

}
.

Because 1
2 ,

1
6 and 5

6 are fixed points, if k > both m and n, then f k(x) = 1
2 and

f k(y) ∈ {
1
6 ,

5
6

}
. So the distance between them is

| f k(x) − f k(y)| =
(∣∣∣∣

1

2
− 1

6

∣∣∣∣ or

∣∣∣∣
1

2
− 5

6

∣∣∣∣

)
= 1

3
.

Thus, the orbits of x and y deviate by a distance of 1
3 . So by Proposition 4.8, (I, f )

has SDIC where any positive number < 1
6 works as a sensitivity constant. Thus we

have proved that this example has DP and SDIC but it is not transitive.

Remark 4.9 Another method to prove this is to prove a stronger result stated below.

Proposition 4.10 If f is as the example described above, then f |[0, 12 ] is topolog-
ically conjugate to the tent map, via the homeomorphism 1−x

2 ; similarly f |[ 12 ,1] is
topologically conjugate to the tent map via the homeomorphism 1+x

2 .

We omit the proof because this result is dispensable now.

4.6 NOT T, DP & NOT SDIC

The identity map on I has DP (because all points are fixed points) but is not topolog-
ically transitive (because every subset is invariant) and does not have SDIC (because
it is an isometry). The reflection map 1 − x has DP (because every point is a periodic
point) but is not topologically transitive (because

[
1
4 ,

3
4

]
is invariant) and does not

have SDIC (because it is an isometry).
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4.7 NOT T, NOT DP & SDIC

Consider the system of example described in subsection NOT T, DP & SDIC. We
need two results about it (for discussing this seventh example).

(i) Every periodic point for that f , is a rational number.
(ii) Both Q and Q

c are f -invariant.

For proving (i), we first observe that every compositional power f n is a piecewise
linear map, where in every piece, it has a formula of the form f n(x) = ax + bwhere
a and b are rational numbers and such that |a| = 2n . Therefore if x is a periodic point
of f , then x = f n(x) for some n ∈ N and therefore x = ax + b for some rational
a, b. This implies that x = b

1−a is itself a rational number.

To prove (ii), we observe two things :

(a) If x is rational, then the numbers 1
2 − 2x, 2x − 1

2 and 5
2 − 2x are rational.

(b) If 1
2 − 2x or 2x − 1

2 or 5
2 − 2x is rational, then x is rational.

Now we are ready to describe our desired example. It is nothing but the restriction
of f (in the example described in subsection NOT T, DP & SDIC) to the set of all
irrational numbers (whose invariance was noted just now); call it g. We have just
now proved in (i) that g has no periodic points at all. g is not topologically transitive
because the set [0, 1

2 ] ∩ Q
c is invariant. But, g has SDIC because of the next result.

Proposition 4.11 Let (X, f ) have SDIC and let Y be a dense f -invariant subset of
X. Then (Y, f |Y ) also has SDIC.

Proof Let δ > 0 be a sensitivity constant of (X, f ). Let y ∈ Y and r > 0. Then
∃z ∈ B(y, r) and n ∈ N such that d( f n(y), f n(z)) > δ. But this z may not be in Y
(and we are looking for one such element in Y ). Because f n is a continuous map,
the function z �−→ d( f n(y), f n(z)) is also continuous from X to R. Therefore there
is s > 0 such that for all w in B(z, s) the number d( f n(y), f n(w)) > δ. One such
w can be chosen in Y because the dense set Y should meet B(z, s). We have proved
that the same δ serves as a sensitivity constant for (Y, f ) also. �
Remark 4.12 The converse of the Proposition 4.11 is also true. (X, f ) has SDIC if
and only if (Y, f |Y ) has SDIC. The condition that Y is dense in X cannot be omitted.

Now we return to our example in this section. We have completed the proof of the
fact it has SDIC but is neither T nor DP for this example.

4.8 NOT T, NOT DP & NOT SDIC

Let f (x) = x2 on [0, 1]. Then f is not topologically transitive because [0, 1
2 ] is

f -invariant. Also f does not have DP because 0 and 1 are the only periodic points.
To prove this we use the following result:
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Proposition 4.13 For an increasing interval map, all periodic points are fixed
points.

Proof If p is not a fixed point, then p < f (p) or p > f (p). Without loss of gener-
ality assume p < f (p). Because f is increasing, this implies f (p) < f 2(p). Recur-
sively we have p < f (p) < f 2(p) < · · · . It is not possible to have p = f n(p) for
any n ∈ N. So, p is not a periodic point. �

We now return to our example. It does not have SDIC because of the next result.

Proposition 4.14 In a dynamical system (X, f ) where X is a metric space, we have

(a) SDIC is inherited by open invariant sets.
(b) No contraction map has SDIC.

Proof Proof of (a): Let (X, f ) haveSDIC and letY be an open f -invariant subset of
Y . To prove that (Y, f |Y ) is also having SDIC, let y ∈ Y and r > 0. We may assume
that the ball B = B(y, r) ⊂ Y . Because (X, f ) has SDIC, ∃z ∈ B and n ∈ N such
that d( f n(z), f n(y)) > δ, the sensitivity constant. This proves that (Y, f |Y ) also has
SDIC.

Proof of (b): Let (X, f ) be a contraction map. If x, y ∈ X , then d( f n(x), f n(y)) ≤
cnd(x, y) where c is the contraction constant. Now let δ > 0 be,if possible, a sen-
sitivity constant for (X, f ). First, no point can be isolated, because in its singleton-
neighborhood, sensitivity would fail. Take any element x ∈ X and any other element
y in B(x, δ). Then the trajectory of y can not deviate from that of x by more than δ
because it is a contraction. �

We again return to our example. We claim that it is a contraction map on the invariant
open set [0, 1

3 ). In fact if 0 ≤ x, y < 1
3 , then |x2 − y2| = |x − y||x + y| ≤ 2

3 |x − y|.
Thus 2

3 serves as a contraction constant. Since [0, 1
3 ) is open and invariant in [0, 1],

it follows that x2 on [0, 1] does not have SDIC. Thus, we have completed the proof
that x2 has none of the three properties T, DP and SDIC.

Summary of this section : We have seen eight interesting examples of dynamical
systems to understand in eight ways that the three properties T, DP and SDIC have
no implications among them. In the course of describing these examples and their
dynamical properties,we came across ten elementary propositions that are interesting
in their own right. But now a question comes up. Among these eight examples, only
four are interval maps.Why can’t we give all the examples as interval maps? The fact
is that the other four cannot be interval maps. In other words, among interval maps,
these three properties are not independent, because T implies the other two. (This we
shall prove soon). Whenever possible, we have provided interval maps as examples.
Had it not been so, there are easier examples in place of the example described in
subsection NOT T, DP & SDIC. For instance, the union of the two tent maps on two
disjoint intervals.
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5 Chaos For Interval Maps

5.1 For Interval Maps Transitivity Implies Chaos

Contrary to what we saw in the previous section, now we are going to prove that, in
some classes of dynamical systems, there are striking implications among the three
properties T, DP and SDIC.

Theorem 5.1 T =⇒ DP is true for all interval maps.

Theorem 5.2 ([4]) T ∧ DP =⇒ SDIC is true on all infinite metric spaces; in other
words every infinite metric space possessing T and DP should satisfy SDIC.

Before proving these, we prove some results on trajectory behaviour that are inter-
esting independently.

Theorem 5.3 Let m < n and let f be an interval map and let x be a point such that
x < f n(x) < f m(x). Then there is some f -periodic point between x and f m(x).

Proof Consider the f m-trajectory of f m(x). Ask whether their terms are < f m(x)
or not. If f 2m(x) < f m(x), then under f m, x has moved to the right side, and f m(x)
has moved to the left side, and so there should be a fixed point of f m between them;
this point is a f -periodic point.

In the other case f 2m(x) ≥ f m(x). Suppose

f km(x) < f m(x) (with f (k−1)m(x) ≥ f m(x)),

then under the map f (k−1)m, x moves to the right side and f m(x) moves to the left
side, and so, there should be a fixed point of f (k−1)m between them; this again gives
a f -periodic point.

Thus we are able to prove the result, except when the entire trajectory of f m(x) under
f m is on the right side of f m(x).

Similarly letting r = n − m, considering f m(x) as the initial point, and looking at
its trajectory under f r , we can prove that there is a f -periodic point between f n(x)
and f m(x) except when this entire trajectory lies on the left side of f n(x). Thus, the
only remaining case is when f km(x) ≥ f m(x) and f kr ( f m(x)) ≤ f n(x) for all k,
where r = n − m. But this case cannot arise because f m(r+1)(x) then would be both
≥ f m(x) and ≤ f n(x) which is not possible. �

The result in the above theorem seems deceptively simple, but it has far-reaching
consequences. We list four of them below.

Corollary 5.4 Let J be an open interval without any f -periodic point. Then for
elements x ∈ J , all orbit-portions in J are monotonic.
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Proof Admittedly, some terms of the orbit of x can go outside J ; admittedly, since
no assumption on f has been made outside J , the orbit-behaviour can be arbitrary
there; admittedly, at some future time it can come back to J . But whenever they
come back to J they have to follow a discipline as stated below. If n1 < n2 < · · · are
the time instants when x visits J , we have that the sequence x, f n1(x), f n2(x), . . .
should be monotone. There are two possibilities:

1. Either x < f n1(x) < f n2(x) < · · · ;
2. or x > f n1(x) > f n2(x) > · · · .
This portion of the orbit of x in J may be finite or infinite. �

If we examine the above proof carefully, we can even estimate the period of the
f -periodic point that is guaranteed in Theorem 5.3. Because the two arithmetic
progressionsm, 2m, 3m, . . . and n, 2n − m, 3n − 2m, . . . havem + lcm(m, n − m)

as a common term, we are sure that some f -periodic point between x and f m(x) has
f -period that divides m + lcm(m, n − m). Here are some particular instances.

Corollary 5.5 • If x < f 2(x) < f (x), then there is a fixed point between x and
f (x).

• If x < f 3(x) < f (x), then there is a point of period 1 or 2 between x and f (x).
• If x < f 3(x) < f 2(x), then there is a periodic point f 4(y) = y between x and

f 2(x).
• If x < f 4(x) < f 2(x), then there is a periodic point y = f 4(y) between x and

f 2(x).
• If x < f 4(x) < f 3(x), then there is a periodic point y = f 6(y) between x and

f 3(x).
• If x < f 5(x) < f 2(x), then there is a periodic point y = f 12(y) between x and

f 2(x).

Corollary 5.6 If an open interval J contains no f -periodic point, then J meets any
omega-limit set at at-most one point.

Proof Let x ∈ I be such that some y ∈ J ∩ ω( f ; x). Then infinetely many terms
of ( f n(x)) are in J . They form a monotone sequence and cannot converge to two
distinct elements. �

Corollary 5.7 If J is an open interval containing no f -periodic points, then J
contains no f -recurrent points.

Proof If x is f -recurrent, then the trajectory of x has a subsequence that converges
to x . But by Theorem 5.3, the trajectory of x has its portion in J monotonic, moving
farther and farther away from x . �

Corollary 5.8 P( f ) = R( f ) for every interval map. [Here P( f ) denotes the set of
all f -periodic points; R( f ) denote the set of all f -recurrent points].
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Proof Obviously P( f ) ⊂ R( f ). To prove the reverse inequality, it suffices to prove
that every open interval J disjoint from P( f ) is disjoint from R( f ) also. But this is
what is stated in Corollary 5.7. �

Corollary 5.9 T =⇒ DP for interval maps. (This is Theorem 5.1 of this section)

Proof If an intervalmap f is transitive, it has a dense orbit. All elements in this dense
orbit are recurrent. Therefore R( f ) = I . Therefore byCorollary 5.8, P( f ) = I . This
means f has DP. �

5.2 T & DP =⇒ SDIC

Theorem 5.10 ([4, 16]) Let X be an infinite metric space. Let f : X −→ X be a
topologically transitive map with a dense set of periodic points. Then f has SDIC.

Proof Let δ > 0 be the distance between two periodic f -orbits. (Because f has DP
and because X is infinite, there should be infinitely many periodic orbits; any two
distinct periodic orbits are disjoint; choose any two of them; there is positive distance
between their orbits, as it is so, for any two disjoint finite sets).

For every x in X , one of these two periodic orbits has to be at a distance > δ
2 from

x . (If both are at a distance < δ
2 from x , then the triangle inequality will make the

distance between these orbits as < δ). We shall prove that δ
8 serves as a sensitivity

constant for f .

Let r > 0. We may assume r < δ
8 . Choose a periodic point p in B(x, r) and the

cyclic orbit q, f (q), . . ., that is at a distance > δ
2 from x . Let k be the f -period of

p. Let

W =
{
y ∈ X | d( f i (y), f i (q)) <

δ

8
for 0 ≤ i ≤ k

}
.

Because each f i is continuous, W is an open neighborhood of q. Because f is
topologically transitive there is some z in B(x, r) and some n ∈ N such that f n(z) ∈
W . This implies f n+i (z) is at a distance < δ

8 from the f -orbit of q, for 0 ≤ i ≤ k.
One of these n + i’s has to be a multiple of k (as there are k consecutive terms). For
that i , we have f n+i (p) = p and f n+i (z) is at a distance < δ

8 from the orbit of q.
Therefore,

δ

2
< d(x, f n+i (q)) ≤ d(x, p) + d(p, f n+i (z)) + d( f n+i (z), f n+i (q))

<
δ

8
+ d(p, f n+i (z)) + δ

8
.

This gives d(p, f n+i (z)) > δ
4 . Thus the orbits of p and z deviate from each other

at least by δ
4 . It follows that the orbit of x should deviate from one of them (either
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orbit p or obit of z) by at least half of it, namely δ
8 . This proves that

δ
8 becomes the

sensitivity constant. �

6 Some Consequences of Intermediate Value Theorem
in Dynamics

We use the abbreviation IVT for Intermediate Value Theorem. This theorem states:

Theorem 6.1 If f : [a, b] −→ R is continuous, and if s is any number between
f (a) and f (b), then there is some c between a and b such that f (c) = s.

6.1 Immediate Applications

First we state the main results of this section, each of which can be proved by clever
(and sometimes repeated) applications of IVT. Proofs are left as exercises.

Theorem 6.2 If f : [a, b] −→ R is continuous, and if f moves some point p to its
left, and some point q to its right, then f has a fixed point between p and q.

Theorem 6.3 (Fixed Point Theorem) Every interval map has a fixed point.

Theorem 6.4 If f : [a, b] −→ [c, d] is continuous, surjective and if [a, b] ⊂ [c, d],
then f has a fixed point.

Theorem 6.5 If I and J are two closed intervals and f is a continuous real map
such that f (I ) ⊃ J , then there is a closed sub-interval K ⊂ I such that f (K ) = J .

Theorem 6.6 Let f : [a, b] −→ R be continuous. Let p, q, c, d ∈ R be such that
p < q are in the domain of f and let c < d. Then the following are equivalent.

(1) [p, q] is a minimal interval satisfying f ([p, q]) = [c, d].
(2) f −1({c, d}) ∩ [p, q] = {p, q}.

6.2 Sarkovskii’s Theorem: A Statement

Notation 6.7 Let m, n ∈ N. We write m � n if m precedes n in the following total
order:
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3 � 5 � 7 � · · ·
� 3 · 2 � 5 · 2 � 7 · 2 � · · ·
� 3 · 22 � 5 · 22 � 7 · 22 � · · ·
...

� · · · � 23 � 22 � 2 � 1.

This is called theSarkovskii’s ordering ofN.Weuse the same symbol for the reflexive,
transitive relation generated by it. (i.e., 3 � 3 and 3 � 7 etc. are true.)

Definition 6.8 Letm, n ∈ N. We say thatm forces n if every continuous f : R −→
R that admits a periodic point of periodm has to (necessarily) admit a periodic point
of period n.

Theorem 6.9 (Sarkovskii) Let m, n ∈ N. Then m forces n if and only if m � n.

Corollary 6.10 3 forces every other positive integer.

Theorem 6.11 Let A be a nonempty subset of N. Then A = per( f ) for some con-
tinuous f : R −→ R if and only if A satisfies:

m ∈ A and m � n =⇒ n ∈ A.

Here, per( f ) denotes the set of all periods of f -periodic points.

Example 6.12 • {1, 2, 22, . . .} = {powers of 2} is one such set.
• {1} ∪ {even positive itegers} is another such set.
• {odd integers} is not such a set.

Corollary 6.13 (1) If per( f ) is finite, then every element in it has to be a power
of 2.

(2) If per( f ) contains an odd integer, then its complement in N is finite.

Remark 6.14 Whenwe characterise the sets of periods for real maps (after knowing
the sets of periods of interval maps) the only difference is that the empty set can be
per( f ). In other words,

{per( f ) | f is a real map } = {∅} ∪ {per( f ) | f is an interval map } .

6.3 Digraphs of Cycles

Recall that we use the notation I
f−→ J to mean that I and J are closed intervals such

that f (I ) ⊃ J . Sometimes, when the function f is clear from the context we simply
write I −→ J .

A cycle in a graph G is a directed path whose starting point is same as the ending
point. For instance in the graph of Example 6.17,
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1. I3 −→ I3 is a cycle of length 1.
2. I2 −→ I3 −→ I2 is a cycle of length 2.
3. I1 −→ I2 −→ I3 −→ I1 is a cycle of length 3.
4. I1 −→ I2 −→ I3 −→ I3 −→ I1 is a cycle of length 4.
5. I1 −→ I2 −→ I3 −→ I2 −→ I3 −→ I1 is a cycle of length 5, and so on.

Aword of caution:We are using the same word ‘cycle’ in two different senses (one
in graph theory and other in dynamics); unfortunately, both these senses are coming
together in our present discussion; we have to carefully interpret them. For instance,
in Example 6.17, we started with an f -orbit that was a 4-cycle. To this 4-cycle, we
associated a digraph. In that digraph we saw examples of cycles of different lengths.
These are graph-cycles in a graph associated to a dynamical cycle.

Another word of caution: The arrow symbol is also used in two different senses.
When we write f : [a, b] −→ [c, d] we mean that f is a function whose domain
is [a, b] and whose codomain is [c, d]. Here, f ([a, b]) need not contain [c, d]. (On
the contrary, f ([a, b]) ⊂ [c, d]). But when we write [a, b] f−→ [c, d] (in this section,
while describing the edges of the graph) we mean that f ([a, b]) ⊃ [c, d].
We do not want to avoid this notational confusion, because these notations have
become standard and because they are convenient; a closer look will avoid the con-
fusion.

Let f be a continuous map from [a, b] to itself. We associate a digraph to every
f -cycle as follows.

Let x1 < x2 < · · · < xn be the elements in a cyclic orbit of f . We denote I j =
[x j , x j+1] for 1 ≤ j ≤ n − 1. Each of these intervals is taken as a vertex of a graph
G. Thus G has n − 1 vertices. We draw an edge from a vertex I j to a vertex Ik if
f (I j ) ⊃ Ik . In this manner, we obtain a directed graph.

Example 6.15 If f has a 3-cycle a = f 3(a) < f (a) < f 2(a), then the digraph
of this 3-cycle has 2 vertices namely I1 = [a, f (a)] and I2 = [ f (a), f 2(a)]. We
note that f (I1) ⊃ I2 (by IVT) and that f (I2) ⊃ I1 ∪ I2. Therefore in the associated
directed graph, we have three directed edges (I1, I2), (I2, I1) and (I2, I2).

Example 6.16 If f has a 4-cycle a < b < c < d such that f (a) = d, f (d) =
b, f (b) = c and f (c) = a, then its associated digraph has 3 vertices namely,
I1 = [a, b], I2 = [b, c] and I3 = [c, d] and there are 4 directed edges.
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Example 6.17 If f has a 4-cycle a < b < c < d such that f (a) = b; f (b) =
c; f (c) = d; f (d) = a, then the directed graph associated with this 4-cycle has
3 vertices and 5 directed edges as shown in this picture.

6.4 Use of digraphs in the proof of Sarkovskii’s theorem

Theorem 6.18 Let under an interval map f ,

I0 −→ I1 −→ I2 −→ I3 −→ · · · −→ In −→ I0

be a cycle (these intervals need not be distinct) of length n + 1. Then ∃x ∈ I0 such
that f k(x) ∈ Ik for all 1 ≤ k ≤ n and such that f n+1(x) = x.

Proof Choose a sub-interval Jn of In such that f (Jn) = I0. Proceeding backwards,
choose a sub-interval Jn−1 of In−1 such that f (Jn−1) = Jn . In choosing these, we are
using Theorem 6.5. At the end of this backward succession, choose a sub-interval J0
of I0 such that f (J0) = J1. Then we have

J0 −→ J1 −→ J2 −→ · · · −→ Jn −→ I0.

This gives J0
f n+1−−→ I0. Because J0 ⊂ I0, Theorem 6.4 applies; we have x ∈ J0 which

is a fixed point of f n+1. This x has the property f (x) ∈ J1. (This is because f (J0) =
J1); and so on. Since each Jk ⊂ Ik , we arrive at the stated conclusion. �

Remark 6.19 The above theorem can be stated as follows. For every cyclic path in
the graph, there is a periodic point whose orbit traces that same path.

This simple-looking result has some profound consequences. We can use it to prove
Sarkovskii’s theorem (Theorem 6.9). We will not include the full proof here, but all
the key ideas needed for the proof will be explained now.

Theorem 6.20 Let m, n ∈ N. Consider the digraphs associated with m-cycles of an
interval map. (Different m-cycles give rise to different digraphs.) Suppose each of
them contains simple n-cycle (in graph-theoretic sense, as stated below). Then m
forces n.



38 V. Kannan

Proof This follows from the previous Theorem.

In this context, a simple n-cycle is a graph-cycle of length n such that the whole cycle
is not the union of two or more sub-cycles of the same kind. For instance, I1 −→
I2 −→ I3 −→ I1 −→ I2 −→ I3 is not simple, whereas I1 −→ I2 −→ I3 −→
I2 −→ I3 −→ I1 is simple. Note that we are allowing repetitions of sub-cycles,
even within a simple cycle. What motivates this kind of definition of a simple cycle,
is the following: If a periodic point traverses the path of a simple cycle, then its period
equals to whole length of the cycle, and is not less. �

Remark 6.21 The power of the above theorem can be appreciated through the fol-
lowing two particular instances:

(1) 3 forces every positive integer.
(2) 4 forces 2 and 1 only.

Proof We prove both the statements in the remark now.

Proof of (1): To prove this, we first note that there are only two possible patterns
for a 3-cycle namely:

(i) a < f (a) < f 2(a) with f 3(a) = a;
(ii) a > f (a) > f 2(a) with f 3(a) = a.

If it is of the type f (a) < a < f 2(a) with f 3(a) = a, then taking b = f 2(a), we
bring it to the form b > f (b) > f 2(b)with f 3(b) = b. In this manner all the 3-cycle
patterns can be brought to one of the above two forms. We assume the pattern as
a < f (a) < f 2(a) with f 3(a) = a.

The other case can be dealt with similarly. Take I1 = [a, f (a)] and I2 =
[ f (a), f 2(a)]. The digraph has two vertices and three directed edges. Here

1. I2 −→ I2 is a cycle of length 1;
2. I1 −→ I2 −→ I1 is a cycle of length 2;

3. I1 −→ I2 −→ I2 −→ I1 is a cycle of length 3;
4. I1 −→ I2 −→ I2 −→ I2 −→ I1 is a cycle of length 4 and so on.

For n > 2, by repeating I2, (n − 1) times, we obtain a cycle of length n. The
previous theoremnowproves that (because in this graph simple n-cycles are available
for any n ∈ N) 3 forces n for all n ∈ N.

Proof of (2): Among the different patterns of 4-cycles, we have already listed two
of them as Examples 6.16 and 6.17; we can prove that every pattern of 4-cycle is
order-isomorphic to one of these three:

1. a < f 2(a) < f (a) < f 3(a) with f 4(a) = a;
2. a < f (a) < f 2(a) < f 3(a) with f 4(a) = a and
3. a < f 3(a) < f (a) < f 2(a) with f 4(a) = a.
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For example, if a < f 3(a) < f 2(a) < f (a), then by letting b = f (a), we find the
pattern of the orbit of b as exact dual of the third case above.

For the first of them, the digraph is as under:

Here,

1. I2 −→ I2 is a cycle of length 1;
2. I1 −→ I2 −→ I1 is a cycle of length 2.
3. We find no other simple cycle.

This proves that the number 4 forces no numbers other than 1 and 2.

For the third of them, the digraph is as under:

1. I3 −→ I3 is a cycle of length 1;
2. I2 −→ I3 −→ I2 is a cycle of length 2.
3. There are cycles of greater length as well.

For the fourth of them, the digraph is as under:

1. Here there are 3 cycles of length 1 and 2 cycles of length 2.
2. There are cycles of greater length as well.

Now we summarise our observations: For every 4-cycle, whatever its pattern be, its
digraph admits a cycle of length 1 and also a cycle of length 2. This proves that 4
forces both 2 and 1. �
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In someof these patterns,wefind that the digraph admits longer simple cycles (in fact,
of any length). But this yields no further information useful to the present problem.

6.5 Doubling periods

For an interval map f , let per( f ) denote the set of all periods of periodic points of
f . For example, if f (x) = x2, then per( f ) = {1}. If f (x) = 1 − x , then per( f ) =
{1, 2}. If f (x) = 1 − |1 − 2x |, then per( f ) = N. For each interval map f , we now
associate another interval map f̃ such that

per( f̃ ) = {1} ∪ {2n | n ∈ per( f )}.

Define g : [0, 3] −→ [0, 3] by

g(x) =

⎧
⎪⎨

⎪⎩

f (x) + 2 if 0 ≤ x ≤ 1,

(2 − x)(2 + f (1)) if 1 < x < 2,

x − 2 if 2 ≤ x ≤ 3.

Then g is continuous, because the adjacent formula-pieces agree at the common
points. g is a linear polynomial on [1, 2] and also on [2, 3]. Moreover

g([0, 1]) ⊂ [2, 3] g([2, 3]) = [0, 1] and g([1, 2]) = [0, f (1) + 2].

Further, g(g(x)) = f (x) + 2 − 2 = f (x) if 0 ≤ x ≤ 1.

Shall we say that f is the square of g on [0, 1] and the set [0, 1] ∪ [2, 3] is g-invariant?
Because g([1, 2]) contains [1, 2], g has a fixed point in that middle interval.

The slope of g in [1, 2] lies between −2 and −3. We use this fact to prove the
following: If p is the unique fixed point of g in [1, 2] and if x is any other point there,
then |g(x) − p| ≥ 2|x − p|. Thus g(x) is at least twice farther away from p than x
is. If g(x) is also in [1, 2], then the same applies again to yield that g(g(x)) is much
farther from p. We conclude that the g-orbit of x must leave [1, 2] at some time or
other. i.e., ∃n ∈ N such that gn(x) /∈ [1, 2]. But because the complement of (1, 2) is
g-invariant, the g-orbit of x never enters [1, 2] again. This proves that no element of
[1, 2] is g-periodic.

The other points shuttle between the left sub-interval [0, 1] and the right sub-
interval [2, 3] alternately. Moreover, g ◦ g(x) = f (x) holds if x ∈ [0, 1]. It follows
that for 0 ≤ x ≤ 1, if f n(x) = x , then g2n(x) = x . This results in the inclusion
per(g) ⊃ 2per( f ). Since every g-periodic point y ∈ [2, 3] gives a periodic point
g(y) ∈ [1, 2] with the same g-period, there are no other g-periods. We summarize
these observations as follows.

(i) If 1 ≤ x ≤ 2, x is not g-periodic, unless x is a fixed point.
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(ii) If 2 ≤ x ≤ 3, x is periodic iff x − 2 is; they have same periods.
(iii) If 0 ≤ x ≤ 1, x is g-periodic iff it is f -periodic; the g-period of x is twice its

f -period.

Combining these three, we conclude that

per(g) = {1} ∪ {2n : n ∈ per( f )} .

Remark 6.22 If one insists that the domain of f̃ also should be [0, 1], (and not
[0, 3] as for g), then one can define

f̃ (x) = 1

3
g(3x) for 0 ≤ x ≤ 1.

Then, per( f̃ ) = per(g) because f̃ and g are topologically conjugate.

6.6 Use of doubling periods in the converse of Sarkovskii’s
Theorem

For the identity map, the set of periods is {1}. The main theorem of the previous
section implies that for the map

f1(x) =

⎧
⎪⎨

⎪⎩

x + 2
3 if 0 ≤ x ≤ 1

3 ;
2 − 3x if 1

3 ≤ x ≤ 2
3 ;

x − 2
3 if 2

3 ≤ x ≤ 1,

we have per( f1) = {1, 2}.

1/3 2/3 10

Again, applying the same procedure, the map

f2(x) =

⎧
⎪⎨

⎪⎩

f1(x) + 2
3 if 0 ≤ x ≤ 1

3 ;
10
3 − 5x if 1

3 ≤ x ≤ 2
3 ;

x − 2
3 if 2

3 ≤ x ≤ 1,



42 V. Kannan

is a piecewise linear map such that per( f2) = {1, 2, 4}.
Proceeding like this, for each positive integer n, we have a map fn whose set of
periods is {1, 2, . . . , 2n}. Similarly, if f is such that per( f ) is the segment generated
by m, then per( f̃ ) will be the smaller segment generated by 2m (when m is not a
power of 2).1

Corollary 6.23 If 2m forces 2n then m ≥ n.

7 Proofs of Some Theorems Used

Theorem 7.1 (Baire Category theorem) Let X be a complete metric space. Let
V1, V2, . . . be a sequence of dense open sets in X. Then ∩∞

n=1Vn is non-empty.

Proof First choose x1 ∈ V1 and 0 < r1 < 1 such that the ball B1 = B(x1, r1) has its
closure⊂ V1. This is possible because V1 is nonempty (because it is dense) and open.
And because if r < s, B(x, r) ⊂ B(x, s). Next choose x2 ∈ B1 ∩ V2 and 0 < r2 < 1

2
such that the ball B2 = B(x2, r2) has its closure ⊂ B1 ∩ V2. This is possible because
B1 ∩ V2 is nonempty (because V2 is dense) and open. Proceeding like this, we obtain
a sequence x1, x2, . . . in X and a sequence r1, r2, . . . of positive numbers with the
following properties:

1. xi ∈ Vi for all i .
2. 0 < ri < 1

i for all i .
3. d(xi , x j ) < 1

i for all i , if j ≥ i .

It follows that xi ∈ Bj whenever i ≥ j and that (xn) is a Cauchy sequence. By
completeness of X , there is some x0 ∈ X such that xn → x0. This x0 ∈ Bi for every
i . Therefore x0 ∈ Vi for all i . �

Theorem 7.2 (Theorem 6.5) If I and J are two closed intervals and f is a contin-
uous real map such that f (I ) ⊃ J , then there is a closed sub-interval K ⊂ I such
that f (K ) = J .

Proof We may assume w.l.o.g. that some element of A is less than some element of
B. First we will show that if A and B are two disjoint non-empty closed subsets of

1 The author thanks the referee for some suggestions and corrections. The author also thanks Mr.
Pabitra Narayan Mandal for some useful academic discussions while preparing these notes.
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I , then ∃a ∈ A and b ∈ B such that no element between a and b is in A ∪ B. Take
b = inf{x ∈ B | x > c} and a = sup{x ∈ A | x < b} for some c ∈ A and d ∈ B with
c < d. Now it is easy to see that no element in between a and b is in A ∪ B.

Now we use this to prove our desired result. If J = [a, b], then take A := f −1(a)

and B := f −1(b). Applying the previous statement we get two elements p ∈ A and
q ∈ B such that f ([p, q]) = [a, b]. Hence the result. �

Another Proof. The distance between the non-empty disjoint compact subsets must
be attained at some a ∈ A, b ∈ B. (Because distance is a continuous function.) We
claim that no element of A ∪ B lies between a and b. If some element p of A lies
between a and b, then p will be nearer to B than a. Similarly for B. �

8 Notes & Exercises

Notes under section 1: This relates to Example (1.2.2). Obviously there is only one
map satisfying Fix( f ) = R. But there are infinitely many maps satisfying P( f ) =
R. It can be proved that there are only two conjugacy classes satisfying this condition.
In other words, if P( f ) = R, then f ◦ f is identity; moreover, any two maps other
than the identity map, satisfying P( f ) = R, have to be conjugate to each other.

This relates to Example (1.2.5). As the parameter μ increases from 0 to 4, the dynam-
ics of the logistic map becomes more and more complicated. Here is a precise state-
ment: There is a strictly increasing sequence (an) in the interval [2, 4] such that the
following properties hold:

• If 0 < μ < a1, there is an attracting fixed point and no point of period 2 or more.
• When μ = a1, a 2-cycle is born.
• If a1 < μ < a2, there is an attracting 2-cycle, and no point of period 4 or more.
• When μ = a2, a 4-cycle is born.
• If a2 < μ < a3, there is an attracting 4-cycle, and no point of period 8 or more.
• When μ = a3 an 8-cycle is born, and so on.
• When μ > an, ∀n, all 2k-cycles are available. And none of them is attracting.
• When μ is still greater and near 4, n-cycles are available for all n.
• When μ is 4, the system is chaotic on [0, 1].
• When μ > 4, there is a chaotic subsystem topologically conjugate to the shift map.

Whatever μ be, the total number of attracting cycles is either 0 or 1.

Notesunder subsection2.2: It isworth noting that among the fourways of describing
an attracting fixed point, the first uses calculus, the second uses the metric, third uses
the topology and the fourth uses the dynamics. Of these, (1) and (2) are equivalent.
(3) and (4) are equivalent on the real line. (2) and (3) are not equivalent. Thus there
are essentially two notions of attraction.

Notes under section 3: Some other equivalent formulations of topological transitiv-
ity can be found in [13].
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Notes under section 4: In [18], three piece wise linear maps are given as examples
to prove a part of the main result of this section. In [2], some more examples are
given. Section 4 here can be viewed as a fuller treatment of the question on hand.

Notes under subsection 5.1: This proof is modelled after the proof given by [18].
There are other proofs available in some textbooks. Our next comment pertains to
Corollary 5.5. Here are a few more statements that are similar:

1. If f 3(x) < x < f (x), then there is a point of period 3 between f 3(x) and f (x).
2. If f 6(x) < f 5(x) < x < f (x), then there is point of any given period between

f 6(x) and f (x).

See [11] for more general results of this kind.

Notes under subsection 5.2: This redundancy in Devaney’s definition of chaos has
been proved independently by at least three groups of researchers [4, 9, 16]; these 3
papers, appeared almost at the same time (after 3 years of publication of Devaney’s
book). The proof provided by us here, is along the lines of that given in [4]. In
[16], only compact metric spaces are considered; and “ dense orbits imply SDIC” is
proved. In [9] there is a deeper study of SDIC that includes this theorem.

Notes under subsection 6.2: Here is another way to describe the Sarkovskii order
on N: There is a natural bijection (k, l) → 2l(2k + 1) from N × N0 to A := N −
{powers of 2}. Use this to transfer the lexicographic ordering on N × N0 to A. After
this, write the powers of 2 in the decreasing order.

Li and Yorke [12] proved that 3 forces every positive integer; that is, every interval
map admitting a 3-cycle admits an n-cycle for all n ∈ N. It was later observed that
this is a tiny part of Theorem 6.9 that was published earlier (in [17]). Still [12]
remains valuable for the notion of scrambled sets introduced therein. Many proofs
are available for Theorem 6.9. The most transparent one is the graph-theoretic proof
outlined in Sect. 6.

Rotation by 2π
3 is a map from the unit circle S

1 to itself, that admits a 3-cycle, but no
other cycle. This shows that an analogue of Sarkovskii’s theorem is not available on
the circle S

1.

Among the various generalizations of Sarkovskii’s theorem, the following four
deserve a mention here:

1. Which subsets of N arise as the set of all periods of continuous self maps of R?
A complete answer to this question is available as a corollary of Theorem 6.9.
These sets are ∅, {1}, {1, 2}, {1, 2, 4} etc. More precisely, a subset A of N arises
as the set of all periods of a real map if and only if it contains all later elements
of its members. (Here later means the numbers that come later in the Sarkovskii
order). This formulation of the theorem leads to a natural question: For space X
other than R or I , answer the same question: Which subsets of N arise as the
set of all periods of continuous self maps of the space X? Complete answers are
available for some spaces X . For example, when X is the unit circle, see [5] for
a full answer. See [15] for further study.
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2. For a real map, an n-cycle can have various order patterns. Sarkovskii’s theorem
is concerned with the lengths of the cycles and not with these patterns. It is natural
to ask which patterns of the cycle force which others? A complete answer to this
question is available in [3].

3. There are several other orbit patterns that are not cycles; they may be finite or
countably infinite; there are uncountably many of them. It is natural to ask which
of them forces which others. This forcing relation may not be a partial order.

4. A finite invariant set yields a finite subsystem, that is the union of finitely many
orbits. It is specified by its order pattern. To start with, we may assume that f is a
bijection on this subsystem. (Each cyclic pattern becomes a particular instance).
We can ask which finite patterns force which others? (This is a larger question
than the second question). Some preliminary investigation made in [1] indicates
that this study is both challenging and rewarding.

Exercise 8.1 Find the following sets for the standard tent map (for definition see
Example 1.6 or Sect. 3.2)

(i) set of all fixed points,
(ii) set of all periodic points,
(iii) set of all eventually periodic points,
(iv) set of non-wondering points.

Exercise 8.2 In any dynamical system (X, f ), prove that f m and f n have the same
set of periodic points for any m, n ∈ N.

Exercise 8.3 Let f : [0, 1] −→ [0, 1] be continuous map such that f × f is tran-
sitive. Prove that for every opene U ⊂ [0, 1], ∃x, y ∈ U and n ∈ N such that
| f n(x) − f n(y)| > 1

2 .

Exercise 8.4 Let X be a Hausdorff space. Suppose f is not transitive but there exists
a dense orbit. Then show that X has an isolated point.

Exercise 8.5 For all μ > 0, define qμ : R −→ R by qμ(x) := μx(1 − x).

(i) Find all values of μ such that qμ maps [0, 1] into [0, 1].
(ii) Prove that μ = 4 is the only value such that qμ : [0, 1] −→ [0, 1] is onto,
(iii) What happens when μ > 4?
(iv) Find all value s of μ such that qμ admits an attracting periodic point of period

2.

Exercise 8.6 Let X be a Hausdorff space containing infinitely many elements
and f : X −→ X be a continuous function. Define N f (U, V ) := {n ∈ N : f n(U ) ∩
V = ∅}. Show that

(i) for all opene sets U, V ⊂ X, N f (U, V ) = ∅ iff N f (U, V ) is infinite.
(ii) N f (U, V ) is syndetic for all opene sets U, V ⊂ X if and only if f is minimal.
(iii) N f ({x}, V ) − N f ({x},U ) ⊂ N f (U, V ) for all opene sets U, V ⊂ X .
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Definition 8.7 1. A dynamical system (X, f ) is called minimal if X does not con-
tain any non-empty, proper, closed f -invariant subset.

2. A syndetic set is a subset of the natural numbers, having the property of “bounded
gaps”, i.e., if we write the set in natural order as {nk | k ∈ N} then supk∈N(nk+1 −
nk) < ∞.]

Exercise 8.8 Let (X, f ) and (Y, g) be topologically conjugate to each other where
φ is a topological conjugacy between them. Then

(i) both have the same number of fixed points,
(ii) φ takes the f -trajectory of x to the g-trajectory of φ(x),
(iii) φ takes f -periodic points to g-periodic points,
(iv) if x is a periodic point of f -period n, then φ(x) is a periodic point of g-period

n,
(v) f is topologically transitive if and only if g is,
(vi) x is attracting fixed point for (X, f ) if and only if φ(x) is attracting fixed point

for (Y, g).

Exercise 8.9 Prove that the tentmap and the logisticmap are topologically conjugate
to each other.

Exercise 8.10 This concerns Theorem 2.6. For the implication (4) =⇒ (5) there,
the proof is completed as follows.

(a) If f is a continuously differentiable function and if p is a limit point of Fix( f ),
then prove that f ′(0) = 1. (Hint: Use mean value theorem).

(b) Let g = f ◦ f . Then g′(p) > 1 iff | f ′(p)| > 1.
(c) If there is no x other than p such that g(x) = p, then the argument in the proof

of Theorem 2.6 leads to the conclusion | f ′(p)| ≤ 1. In the other case (where
g(x) = p for some x = p, assume w.l.o.g., x > p), prove that there is a fixed
point strictly between p and x . Take the smallest of these fixed points and name
it as q. Consider two cases.

(i) If g([p, q]) = [p, q], then prove that for every y strictly between p and q,
the trajectory of y increases to q.

(ii) If g([p, q]) ⊃ [p, q], then prove that there is a sequence (an) such that
g(a1) = q and g(an+1) = an for all n. Prove that this sequence is strictly
decreasing and that its limit has to be a fixed point, and hence p. Use this to
arrive at a contradiction to (4).

Exercise 8.11 Let f : X −→ X where X is a locally compact metric space such

that f (p) = p. Prove that
∞⋂

n=1

f n(V ) = {p} for some f -shrinking neighbourhood V

of p if and only if f is a local contraction at p with respect to a finer metric with
same base at p. (Outline: Define

d(x, y) =
{
0 if x = y,

d(p, x) + d(p, y) if x = y;
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where

d(p, x) =

⎧
⎪⎨

⎪⎩

1
2n if x ∈ f n(V ) for largest such n

1 if x /∈ V

0 if x ∈ f n(V ) for all n.

Check that it is a metric and with respect to this metric f is a contraction. To prove
that d is finer on X , first observe that every singleton except {p} is open. Now take an
open set containing p with respect to old metric, say W. Since f n(V ) is f -shrinking
to a point p, then exists some n ∈ N such that f n(V ) ⊂ W ).

Exercise 8.12 Find the basin of attraction of the 2-cycle {1, 2} for the real map
f (x) = x2 − 4x + 5.

Exercise 8.13 Let f : R −→ R be strictly increasing with a discrete set of fixed
points. Let

Fa = {attracting fixed points of f } and Fr = {repelling fixed points of f }.

Then show that Fa and Fr are intertwined as follows: between any two points of Fa
there is a point of Fr ; and dually.

Exercise 8.14 Prove that even for a first countable space, R( f ) need not be a Gδ

set. (Hint: Take the space X = [1,ω1)where ω1 denotes the first uncountable ordinal
number. Now this space with respect to order topology is first countable. Define the
function

f (x) =
{
y if x = y + 1

x otherwise.

Observe that f is a continuous function and R( f ) is the set of all limit points in this
space. Every open set containing R( f ) has a finite complement (because the space
is sequentially compact). Hence R( f ) is not a Gδ set.)

Exercise 8.15 This is about the converse of Theorem 1.10.

(a) Show that every closed set can be realized as the set of all fixed points of a real
map. (Hint: Take f (x) = x + d(x, F) where F is the given closed set.)

(b) Is this true for interval map?
(c) Show that this is not true in a general metric space.
(d) Does every Fσ-set in R arise as the set of all periodic points of a real map? The

answer is no. The set R − {0} does not arise in this way, even though it is a
Fσ-set. This leads us to the question: Which Fσ-subsets of R arise as P( f ) for
some real map f ? This question remains open.
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Anima Nagar and C. R. E. Raja

Given a map f : X −→ X , we would like to know the asymptotic behaviour of

x, f (x), f 2(x), . . . , f n(x), . . .

where f n(x) is the position of x at time n. Such a sequence is called the trajectory of
x. This chapter comprises of the study of trajectories of all x ∈ X .

1 G-Spaces

One of the motivation for such a study is the following fine dining problem [16]:
Once upon a time lobsters were so abundant in NewEnglandwaters that theywere

poor man’s food. It even happened that prisoners in Maine rioted to demand to be
fed something other than lobsters for a change. Nowadays, the haul is less abundant
and lobsters have become associated with fine dining. One (optimistic?) model for
the declining yields stipulates that the catch in any given year should turn out to be
the average of the catches of the previous two years.

Using an for the number of lobsters caught in the year n, we can express this
model by a simple recursion relation:
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an+1 = an−1 + an
2

. (1)

As initial values, one can take the Maine harvests of 1996 and 1997 which were
16, 435 and 20, 871 (metric) tons, respectively. One can see from the recursion that
all future yields should be between the two initial data. Indeed, 1997 was a record

year. In fact, an = x + (1 − 1

2n
)y gives an explicit formula for future yields (see [16]

for further details and many more such examples).

Definition 1.1 Let G be a topological group and X be a (Hausdorff) topological
space. We say that G acts on X or X is a G-space if there is a continuous map
φ : G × X −→ X such that

1. φ(e, x) = x for all x ∈ X ;
2. φ(gh, x) = φ(g, φ(h, x)) for all g, h ∈ G and for all x ∈ X .

Here, (X ,G, φ) is called the transformation group, where X is the phase space, G
the acting group and the action φ gives the homeomorphism φg : X −→ X defined
as φg(x) = φ(g, x). The pair (X ,G) is called a dynamical system or a flow.

Notation 1.2 For brevity, φ(g, x) will be written as gx.

Notation 1.3 Given subsets A,B ⊂ G and E ⊂ X , we define

1. AB = {gh | g ∈ A, h ∈ B},
2. A−1 = {x−1 | x ∈ A},
3. AE = {gx | g ∈ A, x ∈ E}—in case E = {x}, we write Ax instead of A{x} and Ax

is called the orbit of x under A.
4. AE = {g ∈ G | gE = E}—in case E = {x}, we Ax instead of A{x} and Ax is called

the stabilizer of x in A.

Remark 1.4 It is easy to see that there is a one-one correspondence between the
orbit Gx and the coset space G/Gx but this need not be a homeomorphism.

Definition 1.5 For a subset T ⊂ G, a subset E ⊂ X is called T-invariant if TE ⊂ E.
A subset E of X is called invariant if E is G-invariant.

Definition 1.6 Let X and Y be G-spaces. A continuous map π : X −→ Y is called
a G-map if π(gx) = gπ(x) for all x ∈ X and g ∈ G. In addition if π is a homeomor-
phism, we say that X and Y are homeomorphic as G-spaces.

We now look at some examples.

Example 1.7 (Linear dynamics) Let X = V be a (finite-dimensional) vector space
over a local field such as R, the real field or Qp, the p-adic field. Let G ⊂ GL(V ) be
the group of linear transformations on V . Then for the natural action of G on V, V
is a G-space—this action of G on V is called the linear action and the corresponding
dynamics is known as linear dynamics.
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Example 1.8 (Projective dynamics) Let V be a (finite-dimensional) vector space
over a local field such as R, the real field or Qp. Let P(V ) be the set of all
one-dimensional subspaces of V . For a nonzero vector v ∈ V , let 〈v〉 be the one-
dimensional subspace spanned by v. Thus, there is a surjective map π : V \ {0} −→
P(V ) given by π(v) = 〈v〉. We equip P(V ) with the smallest topology for which π

is continuous. It can be seen that P(V ) is a compact metric space.
We now define an action of GL(V ) on P(V ): For α ∈ GL(V ) and 〈v〉 ∈ P(V ),

we define
α (〈v〉) = 〈α(v)〉.

It can be verified that this defines an action of GL(V ) on P(V ) and this dynamics
is known as projective dynamics. Projective dynamics has proved to be fruitful in
various branches of mathematics, varying from unitary representation to probability
even in modern studies.

In general, one could considerGrassmannianswhich is the set of all r-dimensional
subspaces.

Example 1.9 (Shift map) Let � be a finite set and define X = �Z. Equip X with
the product topology. Then X is a compact metric space. The following is a metric
on X :

d(u, v) = inf

{
1

k + 1
| u(n) = v(n) for |n| < k

}
.

Define S : X −→ X by S(w)(n) = w(n + 1). Then, S is a homeomorphism of X—
specifying a homeomorphism gives rise to a Z-action and specifying d -commuting
homeomorphisms give rise to Z

d -action.

Example 1.10 (Algebraic dynamics) Let X be a topological group andG be a group
of automorphisms of X . Then. the canonical action of G on X is defined by

φ(α, x) = α(x)

for all α ∈ G and x ∈ X .

An interesting example is the case when X = T
n is the n-dimensional torus

(realised as the quotient group R
n/Z

n or direct product of n-copies of the circle
T = {z ∈ C | |z| = 1}). In this case, the group of automorphisms is identified with
GLn(Z).

In the next set of remarks we assume that X is a G-space. The following can be
taken as exercises:

1. Let E ⊂ X . Then E is G-invariant, that is GE ⊂ E iff gE ⊂ E for all g ∈ G.
2. X and ∅ are G-invariant.
3. If E is G-invariant, then X \ E, E, Eo are also G-invariant.
4. If E and F are G-invariant, then E ∩ F is also G-invariant.
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5. An arbitrary union and arbitrary intersection of G-invariant sets are also G-
invariant.

6. Let T ⊂ G and E ⊂ X . Then E is T -invariant iff X \ E is T−1-invariant.
7. Gx is the smallest G-invariant set containing x.
8. y ∈ Gx if and only if Gy = Gx.
9. X = ∪Gx—disjoint union.
10. Gx is called the orbit closure of x under G and is the smallest closed G-invariant

set containing x.
11. y ∈ Gx implies Gy ⊂ Gx.

Definition 1.11 Let {(Xi,Gi, φi)} be a collection of dynamical systems. The prod-
uct dynamical system denoted by

∏
i(Gi,Xi, φi) is the dynamical system (G,X , φ)

where G = ∏
i Gi, X = ∏

i Xi and φ : G × X −→ X is defined by φ(g, x) =
(φi(gi, xi)) for any g = (gi) ∈ G and x = (xi) ∈ X .

Definition 1.12 Let Xi be a collection of G-spaces. Then the product of G-spaces
(G,X , φ), where X = ∏

i Xi with the G-action, is defined by gx = (gxi) for any
g ∈ G and x = (xi) ∈ X .

The most intensively studied case is when the acting group G = Z. In that case
φ1 = f gives a generating homeomorphism on X , i.e., f (x) = φ(1, x) giving itera-
tions f n(x) = φ(n, x) = nx. We call the system (X , f ) a cascade.

Many times, we are just interested in a semigroup S and we have a semigroup
action (S,X , ψ).We study the semi-cascade (N,X , ψ) or (X , f )where f : X −→ X
is a continuous mapping.

Here O(x) = {f n(x) : n ∈ N} is called the orbit of the point x.

Definition 1.13 For a cascade or semi-cascade (X , f ), x0 ∈ X is called a fixed point
if f (x0) = x0. And y0 ∈ X is called a periodic point if there exists n ∈ N such that
f n(y0) = y0. The smallest such n is called the period of y0.

Definition 1.14 The ω-limit set of a point x ∈ X under f , denoted as ω(x), is the set
of all limit points of {f n(x) : n ∈ Z(N)}, and is a non empty closed f -invariant set.

Definition 1.15 A point x ∈ X is said to be non-wandering if for every neighbour-
hoodU of x there is a n ∈ N such that f n(U ) ∩U 	= ∅. The set of all non-wandering
points of f is denoted as �(f ).

Definition 1.16 For a flow (X ,G), a point x ∈ X is called recurrent when x ∈ ω(x),
i.e., if the orbit of x returns to its neighbourhood infinitely often. Usually this
‘infinitely often’ is described in terms of some admissible set. These admissible
sets are either in the form of extensive sets as considered by Gottschalk and Hedlund
or more extensively in the form of (Furstenberg) Families—mimicking the aspects
of recurrence studied by Furstenberg.

For a cascade or semi-cascade (X , f ), a point x ∈ X is called recurrent when
x ∈ ω(x), i.e., for every open setU containing x there exist j ∈ N such that f j(x) ∈ U ,
i.e., there exists a sequence nk ↗ ∞ such that f nk (x) → x i.e., the set N (x,U ) =
{n ∈ N : f n(x) ∈ U }, of return times, is infinite for any neighbourhood U of x.

The set of all recurrent points in X is denoted as R(X ).



Topological Dynamics 53

2 Minimal Systems

Let (X ,G) be a flow, where X is compact. The simplest dynamics that one can
observe is when the system is ‘minimal’.

Definition 2.1 A set M ⊂ X is called a minimal set if M is closed, nonempty and
invariant andM has no proper subset with these properties, i.e., if N ⊆ M is closed
and invariant, then N ≡ M or N ≡ ∅.

Proposition 2.2 M is minimal if and only if it is the orbit closure of each of its
points, i.e., ∀x ∈ X , M = Gx.

Proof LetM be minimal and x ∈ M . Then Gx ⊆ M is nonempty, closed and invari-
ant. Hence, Gx = M .

Conversely, if Gx = M , ∀x ∈ M , butM is not minimal, then there exists N ⊂ M
which is closed and invariant and so for x ∈ N , we have Gx ⊆ N . ThusM = N and
soM is minimal. �

Definition 2.3 If X = Gx, ∀x ∈ X , then the flow (X ,G) is called a minimal flow.

Proposition 2.4 If M1 and M2 are minimal subsets of X for any flow (X ,G) then
either M1 = M2 or M1 ∩ M2 = ∅.

Proposition 2.5 Let (X ,G) be a flow. Then X contains a minimal set.

Proof Let M denote the set of all nonempty closed, invariant subsets of X . Then,
X ∈ M and soM 	= ∅. AlsoM is a partially ordered set. Consider a chain {Mα} in
M. ThenM ∗ = ∩Mα is nonempty and is also closed and invariant, and soM ∗ ∈ M.
Thus every chain in M is bounded below and so by Zorn’s lemma, M contains a
minimal element, which is the minimal subset of X . �

For cascades, fixed points and periodic points are trivial minimal subsets.

Definition 2.6 A ⊂ G is called syndetic if there is a compact K ⊂ G such that G =
KA = {ka : k ∈ K and a ∈ A}.

A ⊂ Z(N) is called syndetic if it is relatively dense i.e. does not contain arbitrarily
large gaps or has bounded gaps.

Definition 2.7 For a flow (X ,G), a point x ∈ X is called an almost periodic point
if for every neighbourhood U of x, there is a syndetic A ⊂ G such that Ax ⊂ U .

For a cascade (X , f ), x ∈ X is almost periodic if for any neighbourhood U � x,
the set N (x,U ) = {n ∈ N : f n(x) ∈ U } is syndetic.
Theorem 2.8 For a flow (X ,G), a point x ∈ X is an almost periodic point if and
only if Gx is minimal.



54 A. Nagar and C. R. E. Raja

Proof Let A = Gx be minimal and let U be a neighbourhood of x. We note that we
must have A ⊂ GU , else A \ GU becomes a closed, invariant subset of the minimal

A. Since A is compact, there are finitely many g1, . . . , gn ∈ G such that A =
n⋃

i=1
giU .

Now for any h ∈ G, there exists an i, 1 ≤ i ≤ n, such that hx ∈ giU and so g−1
i hx ∈

U . Let K = {g : gx ∈ U } then g−1
i h ∈ K , i.e., h ∈ giK ⊂ {g1, . . . , gn}K . Thus G =

{g1, . . . , gn}K and so K is syndetic implying that x is almost periodic.
Conversely, suppose x is almost periodic but Gx is not minimal. Then being

compact Gx contains a minimal setM . Clearly x /∈ M . LetU and V be disjoint open
sets with x ∈ U and M ⊂ V . Let H ⊂ G be compact. Let HW ⊂ V for some open
W ⊃ M .

Since M ⊂ Gx, there is a h ∈ G such that hx ∈ W . Then Hhx ⊂ HW ⊂ V . So
Hhx ∩U = ∅. So ifK = {g : gx ∈ U } thenG 	= HK .H being arbitrary, this implies
that K is not syndetic and so x is not almost periodic. This contradiction proves the
assertion. �

We look at some examples of minimal flows.

Example 2.9 Let T = {z : |z| = 1} be the unit circle in C. Let α = ei2πθ ∈ T with
θ irrational. Note that αn 	= 1 ∀n ∈ N.

Define τ : T → T as τ z = αz. We will show that O(1) = {αn : n ∈ N} is dense
in T. This proves that O(z) = {αnz : n ∈ N} is dense in T, proving the minimality
of (T, τ ).

Let β ∈ O(1) and let ε > 0. Then there exists n, k > 0 such that |αn − β| <
ε

2
and |αn+k − β| <

ε

2
. Thus |αn+k − αn| < ε. Since the map z → αkz is an isometry,

· · · |αn+3k − αn+2k | = |αn+2k − αn+k | = |αn+k − αn| < ε.

For some m ∈ N, the points αn, αn+k , . . . , αn+mk wind around the circle. ThusO(1)
is ε−dense in T, giving our requirement.

Example 2.10 We now recall the example (1.9), where � = {0, 1} and X = �Z.
We consider the shift map S : X −→ X .

To obtain a minimal subset of X , it is enough to construct an almost periodic
point p ∈ X since thenO(p) will be minimal. This can precisely be done by the rich
theory of Jewett-Krieger constructions developed independently by R. Jewett andW.
Krieger during 1969–1971.

Here we look into a classical construction due toMarstonMorse, originally devel-
oped by Axel Thue who used it in the study of combinatorics on words. This con-
struction is done using substitution: 0 → 01, 1 → 10. Hence,

0 → 01 → 0110 → 01101001 → 0110100110010110 → · · · .

This will finally converge to some x ∈ {0, 1}N. This construction indicates that every
finite word in x occurs syndetically often. Extend x to p ∈ X by defining
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p(n) =
{
x(n), n ≥ 1;
x(−n − 1), n < 0.

Every word in p occurs syndetically and p is symmetric at the mid point, and so p is
almost periodic. O(p) ⊂ X is a minimal subset of X .

Exercise 2.11 For G−spaces X and Y , let π : X −→ Y be a G−map:

1. If X0 ⊂ X is minimal, then π(X0) = Y0 ⊂ Y is minimal.
2. If X is minimal and both π andψ areG−maps that agree on a point, then π = ψ .
3. If X0 ⊂ X and Y0 ⊂ Y are minimal such that π(X0) ∩ Y0 	= ∅, then π(X0) = Y0.
4. If X is minimal then the only closed, invariant subsets of X are ∅ and X .

Recall the notion of recurrence inX .We see that almost periodicity is a very strong
form of recurrence. We recall a strong result guaranteeing recurrence for cascades.

Theorem 2.12 (Birkhoff Recurrence Theorem) For a cascade (X , f ), there exists
x ∈ X such that f ni x → x for some sequence {ni} in N, i.e.,R(X ) 	= ∅.

A simple proof for this is to first apply Zorn’s lemma to show that every cascade
admits a minimal subset and then use the existence of an almost periodic point for
this recurrent point.

3 Multiple Recurrence and Van Der Waerden’s Theorem

A good number of results in combinatorial number theory have the following general
form: For any finite partition of the natural numbers N into classes C1,C2, . . . ,Cr ,
at least one of the classes possesses property P. For example, if P is the property that
a subset contains arithmetic progressions of arbitrary finite length, then the afore-
mentioned becomes the well-known theorem of van der Waerden. We now discuss
the topological dynamics proof of van der Waerden’s Theorem due to Furstenberg
and Weiss, [13]—see [12, 13] for more related results. A useful tool is the following
multiple recurrence theorem.

Theorem 3.1 (Multiple recurrence)LetX bea compactmetric spaceandT1,T2, . . . ,
Tp be commuting homeomorphisms of X . Then there exists a point x ∈ X and a
sequence (kn) such that T kn

i (x) → x simultaneously for i = 1, 2, . . . , p.

Exercise 3.2 (Multiple recurrence)

1. Let T1,T2 : T
2 −→ T

2 be given by

T1(x, y) = (xy, y) and T2(x, y) = (x, xy).

Find the multiple recurrence points for T1 and T2.
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2. Consider the projective linear transformations Tα and Tβ on the projective line
defined by the linear maps

α =
(
1 1
0 1

)
and β =

(
1 0
1 1

)
.

Are there any multiple recurrent points for Tα and Tβ?

We first derive van der Waerden’s Theorem from Multiple recurrence.

Theorem 3.3 (van der Waerden) For any finite partition N = C1 ∪ C2 ∪ · · · ∪ Cp,
there is a Ci containing arithmetic progression of arbitrary finite length, that is,
for each n ≥ 1, there is a xn, yn ∈ Ci such that yn 	= 0 and xn + kyn ∈ Ci for all
1 ≤ k ≤ n.

Exercise 3.4 (Infinite multiple)

1. Give an example to show that Multiple recurrence theorem is not true for infinite
number of commuting transformations.

2. Give an example of a finite partition Z such that none of the sets contains an
infinite arithmetic progression.

Proof Let N = C1 ∪ C2 ∪ · · · ∪ Cp be a partition. Take A = {1, 2, . . . , p} and � =
AZ, the space of A-valued sequences. Define the shift S : � → � given by Sw(n) =
w(n + 1). We endow � with the metric

d(u, v) = inf

{
1

k + 1
| u(n) = v(n) for |n| < k

}
.

We have already seen that � is compact and S is a homeomorphism of �.
Define ψ ∈ � by ψ(k) = j if k ∈ Cj, otherwise ψ(k) = 1.
Let X be the set of limit points of the sequence (Snψ)n≥1. Then X is S-

invariant. Now take Ti = Si for i = 1, . . . , p. Applying multiple recurrence theorem
to (X ,T1, . . . ,Tp), we get η ∈ X and n ∈ N such that

d
(
T iη, η

)
<

1

2
∀i.

This implies by evaluating at k = 0, that η(0) = η(in) for all i = 1, . . . , p.

Choose m > 0 so that d(Sm(ψ), η) <
1

pn + 1
. We then have ψ(m) = ψ(m + in)

for all i = 1, . . . , p. This implies thatm + in ∈ Cψ(m), for all i = 1, . . . , p, thatCψ(m)

contains an arithmetic progression of length p + 1. �

We now prove multiple recurrence theorem in a series of lemmas.

Lemma 3.5 A dynamical system (X ,G) is minimal if and only if for any ε > 0
there exists a finite set of transformations S1, S2, . . . , Sk of G such that for any
x, y ∈ X , mini d(Six, y) < ε.
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Proof If V is any open subset of X , ∪S∈GS−1V is an open G-invariant set which by
minimality is all of X . Since X is compact, a finite subcovering covers X . Letting V
range over a finite cover of X by sets of diameter less than ε, we obtain the condition
of the lemma. The converse is clear. �

Lemma 3.6 Let (X ,T ) be a dynamical system with X being a compact metric space
and A, a closed subset of X such that

1. there is group G that acts on X commuting with T such that A is G-invariant and
minimal;

2. for each ε > 0 there exist x, y ∈ A and n ≥ 1 with d(Tnx, y) < ε.

Then for each ε > 0 there is a z ∈ A and n ≥ 1 such that d(Tnz, z) < ε.

Proof due to R. Bowen. Let ε > 0 be arbitrary. We now inductively construct
sequences (zk) in A, (nr) in N and εr < ε

2 such that d(Tnr zr, zr−1) < εr and
d(Tnr z, zr−1) < εr whenever d(z, zr) < εr+1.

Fix z0 ∈ A. Then by (3.5), there exists S1, . . . , SN in G be such that

min
i

d(Six, z0) <
ε

4
, for any x ∈ A. (2)

Let δ > 0 be such that d(x, y) < δ implies that d(Sjx, Sjy) <
ε

4
. Now choose x1, y1 in

A and n1 so that d(Tn1x1, y1) < δ—possible by assumption. Then,

d(SjT
n1x1, Sjy1) = d(Tn1Sjx1, Sjy1) <

ε

4
, and combining this with (2), we obtain

(Tn1Six1, z0) <
ε

2
for some i.

Take z1 = Six0. Then d(Tn1z1, z0) < ε1 for some ε1 <
ε

2
.

Proceeding inductively, we obtain the sequences (zk) in A, (nr) in N and εr <
ε

2
such that d(Tnr zr, zr−1) < εr and d(Tnr z, zr−1) < εr whenever d(z, zr) < εr+1—for
the second inequality use also the continuity of Tnr . Thus, we have

d(Tnj+nj−1+···+ni+1zj, zi) <
ε

2
for j > i. (3)

Since A is compact, there exists i < j such that d(zi, zj) <
ε

2
and hence, using (3),

we get that d(Tnzj, zj) < ε for n = nj + nj−1 + · · · + ni+1. �
Lemma 3.7 Let X ,T and A be as in (3.6). Then, there is a point z ∈ A which is
recurrent for T .

Proof Let F(x) = infn d(Tnx, x). Then F is upper semicontinuous, and contains a
point of continuity. Let x0 be a point of continuity. We claim that F(x0) = 0, that
would prove that x0 is recurrent for T .

If F(x0) > 0, then there is an open set V containing x0 such that F(x) > δ > 0 for
all x ∈ V . Then, there exists S1, . . . , SN in G such that A ⊂ ∪N

i=1S
−1
i V . Let η > 0 be
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such that d(Six, Siy) < δwhenever d(x, y) < η for all i. IfF(x) < η, then for some n,
we have d(Tnx, x) < η and hence, d(TnSix, Six) < δ. This implies that F(Six) < δ

and hence, Six /∈ V . Thus, F(x) ≥ η for all x ∈ A. This is a contradiction to (3.6).
�

Exercise 3.8 (Dense set of recurrent points)

1. In (3.7), prove that the set of points in A that are recurrent for T is dense in A.
2. In multiple recurrence theorem, ifX is minimal, then prove that the set of multiple

recurrent points is dense in X .
3. Prove by example that minimality is required to get dense set of recurrent points.

Proof of multiple recurrence theorem. Let G be the group generated by T1, . . . ,Tp.
By restricting to a minimal closed invariant set of X , we may assume that X is
minimal. For p = 1, the result follows from Birkhoff’s theorem but it also follows
from (3.7).

Let A denote the diagonal in X p and T = T1 × T2 × · · · × Tp on X p. Note that G
also acts X p as X p is a product of G-spaces. Then A is a G-invariant minimal closed
set as X is G-minimal.

We claim thatA satisfies the hypotheses of (3.6) with respect to T . LetRi = TiT−1
p

for i = 1, . . . , p − 1. Then, by induction assumption, there exists x ∈ X such that
Rkn
i x → x for all i = 1, . . . , p − 1.
For any ε > 0, there is a n such that

d(Tnz, y) =
∑
i<p

d(Rn
i x, x) < ε, for y = (x, x, . . . , x) and z = T−n

p (y) ∈ A.

Thus, the hypothesis of (3.6) is verified and hence, the result follows from (3.7). �

4 Enveloping Semigroups

The Enveloping Semigroup of a flow (X ,G) was introduced by Robert Ellis in [7],
though it was considered in his earlier work on distality. It can be viewed as a
compactification of the acting group G.

LetX be a compact, Hausdorff space. Then the set of all self maps (not necessarily
continuous) on X can be identified with X X endowed with the product topology,
which is basically the space of all functions on X with the point-open topology. X X

is compact by the Tychnoff’s theorem. X X also has a semigroup structure, given by
composition of functions, i.e., for α, β ∈ X X , αβ(x) = α(β(x)) at the xth coordinate
in X X .

For the flow (X ,G, φ), the evaluation map φ is defined as φ(g, x) = g(x). Let
G̃ = {φg : g ∈ G} where φg : X −→ X with φg(x) = gx. Then G̃ ⊂ X X . We can
identify G with G̃ and consider G ⊂ X X .
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Definition 4.1 The Enveloping Semigroup of the flow (X ,G) is defined as E =
E(X ) = E(X ,G) = G(= G̃) ⊂ X X .

We note that E(X ) is also compact and Hausdorff. Now G acts on X X via com-
position and we have h(φg) = φhg and so G ◦ G = G and hence E(X ) is invariant
under G. Thus (E(X ),G) is also a flow i.e., E(X ) is also a G−space.

Now since E(X ) = G, for every α ∈ E(X ), there is a net {gt} in G such that
gt → α, i.e., φgt → α pointwise. Hence for β ∈ E(X ), βgt → βα. Now since βgt ∈
E(X ) and E(X ) is closed, βα ∈ E(X ) giving E(X )2 = E(X ) ◦ E(X ) ⊂ E(X ). Thus
E = E(X ) is a subsemigroup of X X .

Remark 4.2 Though the elements ofG are homeomorphisms, the elements ofE(X )

need not even be continuous.

Proposition 4.3 Let E(X ) be the enveloping semigroup for the flow (X ,G). Then,
∀x ∈ X , Ex = Gx.

Proof Let y ∈ Gx. Then, there is a net {gt} in G such that gt(x) → y. For this net,
there is a subnet {gts} such that {gts} → α in E(X ). Hence {gts}(x) → α(x) i.e.,
{gt(x) → α(x)} and so y = α(x) ∈ Ex. Thus, Gx ⊂ Ex.

The converse follows by taking the reverse path in the above argument. �

Remark 4.4 For any y ∈ Gx, there exists p ∈ E(X ) such that y = p(x).

Definition 4.5 (X ,G) is called an equicontinuous flow if {φg : g ∈ G} is an equicon-
tinuous family on X .

If (X ,G) is an equicontinuous flow, then the topology on G considered as a
subset of X X is the topology of uniform convergence and so G = E is compact and
equicontinuous by Arzela-Ascoli’s theorem. Working along this line, we can prove:

Theorem 4.6 A flow is equicontinuous if and only if its enveloping semigroup is a
group of homeomorphisms.

Lemma 4.7 Let (X ,G) be a flow with G being an Abelian. Then,

1. for p ∈ E(X ) and g ∈ G, gp = pg.
2. if (X ,G) is equicontinuous, then E(X ) is Abelian.

Proof Let p ∈ E(X ). Take a net {gt} in G with gt → p. Then ggt → gp. But ggn =
gng → pg and so gp = pg.

Now when (X ,G) is equicontinuous, then all p ∈ E(X ) are continuous and so
pq = qp ∀p, q ∈ E(X ). �

Proposition 4.8 If (X ,G) is equicontinuous, then the flow (E(X ),G) is minimal.

Proof Let e be the identity in G, then O(e)={ge : g ∈ X }=E(X ). Also, (E(X ),G)

is equicontinuous and hence (E(X ),G) must be minimal. �
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Exercise 4.9 Let X and Y be G−spaces and π : X −→ Y be a G−map. Then,

1. there exists a unique G−map θ : E(X ) −→ E(Y ).
2. if π ′ : X −→ Y is another G−map, then both π and π ′ induce the same G−map

θ : E(X ) −→ E(Y ).

Definition 4.10 Let I be a non-vacuous subset of E = E(X ). Then I is said to be
a left ideal in E(X ) or simply an ideal if EI ⊂ I . I is said to be a minimal ideal if
whenever K is a non-vacuous subset of I such that EK ⊂ K , we have K = I .

Lemma 4.11 For a flow (X ,G), the following holds:

1. Let ∅ 	= I ⊂ E(X ). Then I is a minimal ideal if and only if the flow (I ,G) is
minimal.

2. Let I be a minimal ideal in E(X ). Then Ix is a minimal subset of X for all x ∈ X ,
where Ix = {px : p ∈ I}.
Since every compact system contains a minimal subset, E(X ) contains minimal

ideals. Minimal ideals have a rich algebraic structure. We look into the following
which was first proved by K. Numakura in [20].

Theorem 4.12 For a flow (X ,G), every minimal ideal I contains an idempotent.

Proof Let M be the collection of all closed subsets A of I such that A2 ⊂ A. Since
I ∈ M, M 	= ∅. By Zorn’s lemma M has a minimal element say S. If x ∈ S,
then (Sx)2 = (Sx)(Sx) ⊂ S(Sx) = S2x ⊂ Sx. Hence Sx ⊂ M. Also Sx ⊂ S2 = S and
hence by minimality Sx = S.

Let p ∈ S be such that px = x and let K = {α ∈ S : αx = x} ⊂ S. Then p ∈ K
and so K 	= ∅. If a, b ∈ K, then ab(x) = a(x) = x, and K2 ⊂ K. Thus K = S and
so x2 = x. This x ∈ I is an idempotent. �

Idempotents are important elements of enveloping semigroups.

Theorem 4.13 Let (X ,G) be a flow and I be a minimal ideal in E(X ). TFAE:

(a) x ∈ X is an almost periodic point.
(b) ux = x for some idempotent u ∈ I .

Exercise 4.14 Let I ⊂ E(X ) be a minimal ideal. Then

(i) Ip = I , for all p ∈ I .
(ii) up = p, for u, p ∈ I and u is an idempotent.
(iii) If u ∈ I is an idempotent and p ∈ I with up = u, then p is also an idempotent.
(iv) If u ∈ I is an idempotent then Iu is a group with identity u.
(v) If p ∈ I then there is a unique idempotent u ∈ I with up = p.
(vi) If u, v ∈ I are idempotents, with u 	= v, then Iu ∩ Iv = ∅.

Definition 4.15 Let x, y ∈ X . Then x and y are said to be proximal if there exists a
net {gt} in G with lim gt(x) = lim gt(y). The proximal relation P(X ) is defined to be
that subset of X × X consisting of all proximal pairs (x, y).
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The relation P(X ) is reflexive and symmetric, but in general not transitive. We
note the following result first proved in [7].

Theorem 4.16 The following statements are equivalent.

1. P(X ) is an equivalence relation on X .
2. E(X ) contains exactly one minimal ideal.

Enveloping semigroups are very useful in studying proximal pairs.

Theorem 4.17 Two points x, y ∈ X are proximal if and only if px = py for some
p ∈ E(X ).

Proof Let x, y be proximal. Then, there exists a net {gt} in G and z ∈ X such that
gtx → z and gty → z. If necessary, by passing to a subnet, we get a p ∈ E(X ) such
that gt → p. Then px = z = py.

Conversely, let p ∈ E(X ) be such that px = py = z. Then there exists a net {gt}
in G such that gt → p. Hence, gtx → px = z and gty → py = z implying that x, y
are proximal. �

Definition 4.18 A flow (X ,G) is called distal if it has no non-trivial proximal pairs.
That is, P(X ) = � = {(x, x) : x ∈ X } ⊂ X × X .

If (X , d) is a (compact) metric space, then (X ,G) is distal if and only if
inf
g∈G d(gx, gy) > 0, whenever x 	= y.

Remark 4.19 When G is a group, all equicontinuous flows will be distal, but distal
flows need not be equicontinuous.

Let D={(r, θ) : 0≤r≤1, 0 ≤ θ≤2π}, and f : D −→ D defined as f (r, θ) =
(r, θ + r(mod2π)). Then the cascade (D, f ) is distal but not equicontinuous.

Theorem 4.20 (Auslander-Ellis) For the flow (X ,G), every point is proximal to an
almost periodic point.

This gives that every point is almost periodic for a distal flow.

Theorem 4.21 (X ,G) is a distal flow if and only if E(X ) is a group.

Proof Let E(X ) be a group, and (x, y) ∈ P(X ). Then there exists a p ∈ E(X ) such
that px = py. But this gives that x = p−1px = p−1py = y, and so (X ,G) is distal.

To prove the converse, we recall some facts:

1. For a collection of flows (Xα,G), E(
∏
α

Xα,G) = �∏
α

E(Xα,G).

2. For a collection of flows (Xα,G), (
∏
α

Xα,G) is distal if and only if each (Xα,G)

is distal.
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Since (X ,G) is distal, the product flow (X X ,G) is also distal, so by theorem
(4.20) every φ ∈ X X is almost periodic. So every p ∈ E(X ) is also almost periodic.

For p ∈ E(X ), p ∈ Ee = Ge, and since Ge is minimal, e ∈ Ep = Gp i.e., there
exists q ∈ E(X ) such that e = qp. So every p ∈ E(X ) has a left inverse. It is a simple
to see that q will also be a right inverse of p and so E(X ) is a group. �

Proximal and distal flows are important class of G-spaces. We study more details
about them in the next section.

We consider an alternate definition of the enveloping semigroup. For a topological
group G, the Stone-Čech compactification βG of G is determined upto homeomor-
phism as:

(a) G ⊂ βG, with βG compact, Hausdorff;
(b) G = βG;
(c) if Z is a compact Hausdorff space then, any function f : G −→ Z has a unique

continuous extension f̂ : βG −→ Z .

Let G have the identity element e. G is provided with an associative binary
operation: (g, h) �−→ gh, then the left multiplication h �−→ gh is continuous for all
g ∈ G and the right multiplication q �−→ qp is also continuous for all p ∈ βG. Thus,
the group structure of G can be extended to the semigroup structure of βG with left
and right multiplication continuous. Again, G acts on βG and so (βG,G) is a flow.

Lemma 4.22 Let (X ,G) have a dense orbit, i.e., X = Gx for some x ∈ X . Then
there exists a G-map f : βG −→ X .

Proof Since X = Gx, the map f : G −→ X defined as g �−→ gx has a unique con-
tinuous extension f̂ : βG −→ X given by p �−→ px. Now g(px) = gp(x) and so f̂

is a G-map, and X = Gx ⊂ f̂ (G) ⊂ f̂ (G) = f̂ (βG). �

Let (X ,G) be a flow. Then the identification ψ : G −→ X X has a continuous
extension � : βG −→ X X ,

�(βG) = �(G) = {φg : g ∈ G} = E(X ).

E(βG) ∼= βG. In fact, the largest possibility for any E(X ,G) is βG.

5 Proximal and Distal

We assume that X is a metrizable G-space with metric d . Recall the following:

1. A pair of points x, y ∈ X is proximal if

inf
g∈G d(gx, gy) = 0
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and if every pair in X is proximal, we say that the action of G on X is proximal
or G is proximal on X .

2. A point in x ∈ X is called distal if any pair (x, y) with y 	= x is not proximal. If
all points are distal, we say that the action of G on X is distal or G is distal on X .

Remark 5.1 Our definition of distal as well proximal is suitable for action on com-
pact spaces and algebraic actions. A more suitable definition would be using unifor-
mity, [15].

Example 5.2 For � = {1, 2, . . . , p}Z and S is the shift map Sw(n) = w(n + 1),
we have for a w ∈ �, any w′ ∈ � for which w′ = w for arbitrarily large intervals
is proximal. Thus, for w ∈ �, there is a dense set of points that are proximal but
certainly not all points.

Example 5.3 x �−→ x + 1 defines a proximal action of Z on R ∪ {∞} which is also
the projective line.

Example 5.4 The SL2(R)-action on the projective line is proximal and minimal.

Example 5.5 Isometries and equicontinuous actions are distal.

Example 5.6 Unipotent linear maps, orthogonal linear maps act distally.

Example 5.7 A =
(
1 1
0 1

)
is distal on T

2.

Exercise 5.8 (Basic Properties)

1. Let Xi be Gi spaces. Suppose the action of Gi on Xi are distal. Prove that the
action of

∏
Gi on

∏
Xi is distal. Is the result true for proximal actions?

2. Let X and Y beG-spaces and φ : X −→ Y be a continuous surjectiveG-map—Y
is known as factor of X . SupposeG is proximal on X . Prove thatG is proximal on
Y . Is the result true for distal actions?—here X and Y are general metric spaces.

3. Let X be a G-space and H be a subgroup of G. If G is distal on X , then H is
distal on X . The converse is true, provided G/H is compact.

4. Let X be a G-space and H be a subgroup of G. Suppose G is proximal on X and
G/H is compact. Then H is proximal on X .

Proposition 5.9 A minimal subset for a proximal homeomorphism of a compact
topological space is a fixed point.

Proof Let f : X −→ X be a homeomorphism of a compact space X . Suppose (X , f )
is minimal and proximal. Let x ∈ X . Then, d(f kn(x), f kn+1(x)) → 0 and f kn(x) → a.
This implies that f (a) = a. Since X is minimal x = {a}. �

Exercise 5.10 (Proximality)

1. Show that any proximal homeomorphism of a compact topological space has
unique minimal set.
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2. Determine all projective linear maps on the projective line that are proximal.

We now recall enveloping semigroup. Consider X X , the space of all maps from
X to X with product topology. If X is compact, then X X is compact. If G acts on
X , then G embeds inside X X and the closure of G in X X is called the enveloping
semigroup, denoted by E(X ).

Theorem 5.11 (Ellis) [6] The following are equivalent:

1. G is distal on X .
2. E(X ) is a group.
3. For every x ∈ X , the orbit closure Gx is a closed G-invariant minimal set.

In this situation, X = ∪Ei, each Ei is a G-invariant minimal set and Ei’s are
disjoint.

We now consider the case where G acts on a group X by automorphisms. In this
case,G is distal on X if and only if e /∈ Gx for any x 	= e ∈ X . We have the following
characterisations for linear actions.

Proposition 5.12 Let G ⊂ GL(V ).

1. α ∈ G is distal on V if and only if the eigenvalues of α are of absolute value
one—due to Moore [17].

2. G is distal on V iff each α ∈ G is distal on V . In this situation, G is contained in
a compact extension of an unipotent group—due to Conze and Guivarch [5].

The structure theorem for minimal distal actions shows that these action are built-
up fromone point space by isometric extensions of the following type: due to Fursten-
berg [11] with metrizability assumption which was later removed by Ellis [9].

Let (X ,T ) and (Y ,T ) be dynamical systems on compact spacesX and Y . Suppose
φ : X −→ Y is a surjective map such that

1. φ(tx) = tφ(x);
2. there is a continuous real valued function ρ defined on Xφ = {(x1, x2) ∈ X × X |

φ(x1) = φ(x2)} that is T -invariant;
3. ρ defines a metric on Xy = {x | φ(x) = y};
4. (Xy, ρy) are compact and are isometric.

In this case, we say that X is an isometric extension of Y .

Proposition 5.13 The isometric extension of a distal (flow) system is distal.

Proof Let x1, x2 ∈ X such that closure of {(tx1, tx2) | t ∈ T } meets the diagonal.
Then the same is true under φ. Since T is distal on Y , x1, x2 ∈ Xy for some y ∈ Y .
Also, (tx1, tx2) ∈ Xφ for all t ∈ T . Since Xφ is closed, the closure of {(tx1, tx2) | t ∈
T } is also in Xφ . Since the closure of {(tx1, tx2) | t ∈ T } meets the diagonal, 0 is
a limit point of ρ(tx1, tx2) as ρ is continuous on Xφ . But since ρ is T -invariant,
ρ(x1, x2) = ρ(tx1, tx2), ρ(x1, x2) = 0. Thus, x1 = x2. �
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Minimal distal actions are considered as the topological version of ergodic actions
which is measure theoretic. However, when one considers without minimality par-
ticularly in the algebraic situation, they are hereditarily anti-thetic [21] (see [4] also
for Seethoff’s results in this direction). See [22] for recent developments in distal
algebraic actions on locally compact groups and the references cited therein.

Exercise 5.14 (Algebraic actions)

1. Can one have proximal action by an automorphism on a compact group?
2. A topological group is called distal if G action on itself by conjugation is distal.

Prove that compact extension of distal groups are distal.

6 Topological Transitivity and Mixing

We look into properties that are quite divergent from distality. We consider the prop-
erties of topological transitivity and mixing. The concept of topological transitivity
was first defined by G.D. Birkhoff in 1920. This property is one of the oldest and
foremost studied dynamical property. In this section, we will only consider cascades
or semi-cascades (X , f )where (X , d) is a perfect, compact metric space.We identify
a singleton with the point it contains.

Definition 6.1 For any two nonempty, openU, V ⊂ X and x ∈ X , define the return
times:

N (x, V ) = {n ∈ N : f n(x) ∈ U } = {n ∈ N : x ∈ f −n(U )};
N (U, V ) = {n ∈ N : f n(U ) ∩ V 	= ∅} = {n ∈ N : U ∩ f −n(V ) 	= ∅};
N (U, x) = {n ∈ N : x ∈ f n(U )} = {n ∈ N : f −n(x) ∩U 	= ∅}.

Definition 6.2 Acascadeor semi-cascade (X , f ) is said to be topologically transitive
if for every pair of nonempty open setsU, V in X , there is a n ∈ N such that f n(U ) ∩
V 	= ∅. Equivalently, U ∩ f −n(V ) 	= ∅.

Roughly, topological transitivity can be described as the eventuality of the neigh-
bourhood of every point to visit every region of the phase space at some time.

Definition 6.3 The cascade or semi-cascade (X , f ) is said to be point transitive if
there is an x0 ∈ X such that O(x0) = X , i.e., X has a dense orbit.

All such pointswith dense orbits are called transitive points and the set of transitive
points inX is denoted asTrans(f ). Both these definitions of transitivity are equivalent,
in a wide class of spaces, including all perfect, compact metric spaces.

Theorem 6.4 If X has no isolatedpoint, thenpoint transitivity implies the transitivity
of (X , f ). The converse holds if X is separable and of second category.
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The following equivalent conditions for transitivity of (X , f ) can be taken as an
exercise.

Exercise 6.5 1. f is topologically transitive.
2. for every pair of nonempty open sets U and V in X , there is a positive integer n

such that f −n(U ) ∩ V 	= ∅.
3. for every pair of nonempty open sets U and V in X , N (U, V ) 	= ∅.
4. for every nonempty open set U ⊂ X , ∪∞

n=1f
n(U ) is dense in X .

5. for every nonempty open set U ⊂ X , ∪∞
n=1f

−n(U ) is dense in X .
6. if E ⊂ X is closed and f (E) ⊂ E, then E = X or E is nowhere dense in X .
7. if U ⊂ X is open and f −1(U ) ⊂ U , then U = ∅ or U is dense in X .
8. There exists x ∈ X such that the orbitO(x) is dense in X , i.e., the set Trans(f ) of

transitive points is nonempty.
9. The set Trans(f ) of transitive points equals {x : ω(x) = X } and it is a dense Gδ

subset of X .

Remark 6.6 All transitive equicontinuous cascades on compact metric spaces are
minimal.

Example 6.7 Let T
1 be the unit circle and g : T

1 −→ T
1 be the irrational rotation,

defined by g(θ) = θ + α, where α is a fixed irrational multiple of 2π . Then (T1, g)
is transitive.

We note that this cascade is minimal. In fact, every minimal cascade is transitive.

Example 6.8 Let f : [0, 1] −→ [0, 1] be defined as f (x) = 1 − |2x − 1|. Then
([0, 1], f ) is transitive. This f is called the tent-map. Here, for any nonempty open
J in [0, 1], there exists n ∈ N such that f n(J ) = [0, 1].
Exercise 6.9 Prove that for the tent map on [0, 1]:
(a) an element x has finite orbit if and only if x is a rational number in [0, 1].
(b) Trans(f ) equals the set of all irrational numbers in [0, 1].
Definition 6.10 For the cascade or semi-cascade (X , f ), the backwardorbit of x ∈ X
is denoted as O−(x) and defined as,

O−(x) = {y ∈ X : f n(y) = x for some n ∈ N}.

The concept of transitivity deals with denseness of some forward orbit, while the
concept of minimality implies that every orbit is dense.What would result if we want
every backward orbit to be dense? We discuss a few basics on this and recommend
our readers to refer to [2, 18] for details on this.

Definition 6.11 A cascade or semi-cascade (X , f ) is called strongly transitive if
O−(x) is dense for every x ∈ X .
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Remark 6.12 If (X , f ) is strongly transitive, then (X , f ) is topologically transitive.
And if (X , f ) is minimal then (X , f ) is strongly transitive. It is not difficult to see
that for cascades (X , f ), strongly transitive is equivalent to minimal. And hence this
property becomes distinct when we are considering semi-cascades.

Exercise 6.13 For a semi-cascade (X , f ) the following are equivalent:

1. The system is strongly transitive.
2. For every nonempty, open set U ⊂ X and every point x ∈ X , there exists n ∈ N

such that x ∈ f n(U ).
3. For every nonempty, open set U ⊂ X and every point x ∈ X , the set N (U, x) is

nonempty.
4. For every nonempty, open set U ⊂ X and every point x ∈ X , the set N (U, x) is

infinite.

Definition 6.14 A cascade or semi-cascade (X , f ) is locally eventually onto if and
only if for any nonempty, open U ⊂ X there exists N ∈ N such that f N (U ) = X .

Recall the example (6.8) of the tent-map. This is an example of a locally eventually
onto semi-cascade.

Exercise 6.15 For (X , f ) the following are equivalent.

1. (X , f ) is locally eventually onto.
2. For all ε > 0, there exists N ∈ N such that f −N (x) = {y ∈ X : f N (y) = x} is ε-

dense in X for every x ∈ X .
3. For all ε > 0, there exists N ∈ N such that f −n(x) is ε-dense in X for every x ∈ X

and every n ≥ N .

Remark 6.16 Note that any finite product of locally eventually onto systems will
be locally eventually onto.

But, an analogous statement of the above remark cannot be said about strongly
transitive or transitive systems. One can just consider the irrational rotation on T

1 as
an example. So it becomes a natural question as to when can transitivity be preserved
under products. This leads to the concept of mixing in topological dynamics, though
this concept has been inspired by the same named property from another aspect of
dynamics—Ergodic theory. We consider this aspect in another chapter.

Definition 6.17 A cascade or semi-cascade (X , f ) is said to be mixing if for every
pair V,W of nonempty open sets in X , there is a N > 0 such that f n(V ) ∩ W is
nonempty for all n ≥ N . (X , f ) is called weakly mixing if the product system (X ×
X , f × f ) is transitive.

Remark 6.18 All locally eventually onto systems are mixing, all mixing systems
are weakly mixing, and all weakly mixing systems are transitive.

Exercise 6.19 For (X , f ), the following are equivalent.
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1. (X , f ) is weak mixing.
2. For nonempty, open sets U, V,W in X , there exists N ∈ N such that

f −N (U ) ∩ V 	= ∅ and f −N (U ) ∩ W 	= ∅.
3. For nonempty, open sets U, V,W in X , there exists N ∈ N such that

f N (U ) ∩ V 	= ∅ and f N (U ) ∩ W 	= ∅.
4. For every N ∈ N the product system (XN , f (N )) is topologically transitive.

Note that the statement in (4) above is a well-known consequence of the Fursten-
berg Intersection Lemma.

Lemma 6.20 (Furstenberg Intersection Lemma, [12]) For a cascade or semi-
cascade (X , f ), assume that N (U, V ) ∩ N (U,U ) 	= ∅ for every pair of nonempty,
open U, V ⊂ X . Then for all nonempty, open U1, V1,U2, V2 ⊂ X , there exist
nonempty, open U3, V3 ⊂ X such that

N (U3, V3) ⊂ N (U1, V1) ∩ N (U2, V2).

Proof N (U1, V1) 	= ∅ implies there exists n1 ∈ N such that U0 = U1 ∩ f −n1(V1)

is nonempty and open. N (U0,U2) 	= ∅ implies there exists n2 ∈ N such that U =
U1 ∩ f −n1(V1) ∩ f −n2(U2) is nonempty and open. Since f is transitive, f −n1−n2(V2)

is nonempty and open.

N (U,U ) ∩ N (U, f −n1−n2(V2))

⊂ N (U1, f
−n2(U2)) ∩ N (f −n1(V1), f

−n1(f −n2(V2)))

= N (U1, f
−n2(U2)) ∩ N (f n1(f −n1(V1)), f

−n2(V2))

⊂ N (U1, f
−n2(U2)) ∩ N (V1, f

−n2(V2)).

Fix n0 ∈ N (U1, f −n2(U2)) ∩ N (V1, f −n2(V2)). With n = n0 + n2, the sets U3 =
U1 ∩ f −n(U2), V3 = V1 ∩ f −n(V2) are nonempty and open.

Let k ∈ N (U3, V3). Then f −k(V3) ∩U3 	= ∅. That is f −k(V1) ∩ f −n−k(V2) ∩
U1 ∩ f −n(U2) 	= ∅. Hence k ∈ N (U1, V1) ∩ N (f −n(U2), f −n(V2)) = N (U1, V1) ∩
N (U2, V2).

As before, N (f −n(U2), f −n(V2)) ⊂ N (U2, V2) and so our assertion follows. �

Exercise 6.21 For (X , f ), the following are equivalent.

1. (X , f ) is mixing.
2. For every nonempty, open set U ⊂ X , and ε > 0, there exists N ∈ N such that

f −n(U ) is ε-dense in X for all n ≥ N .
3. For every nonempty, open set U ⊂ X , and ε > 0, there exists N ∈ N such that

f n(U ) is ε-dense in X for all n ≥ N .

Definition 6.22 (X , f ) is called strongly product transitive if for every positive
integer k, the product system (X k , f (k)) is strongly transitive.

Exercise 6.23 For (X , f ), the following are equivalent.
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1. (X , f ) is strongly product transitive.
2. For ε > 0 and every finite subset F ⊂ X , there exists N ∈ N such that f −N (x) is

ε-dense in X for all x ∈ F .
3. For ε > 0 and every finite subset F ⊂ X , there exist infinitely many N ∈ N such

that f −N (x) is ε-dense in X for all x ∈ F .
4. The collection of subsets

{N (U, x) : x ∈ X and U is nonempty, open in X }

of N, generates a filter of subsets of N.

All these properties defined above are related.

Locally Eventually Onto
=⇒ Mixing
=⇒ Strongly Product Transitive =⇒ Weak Mixing =⇒ Transitive

Transitive ⇐= Strongly Transitive
⇐= Minimal
⇐= Locally Eventually Onto

The reverse implications do not hold here.
One of the features of transitivity is recurrence.

Proposition 6.24 Let I be an interval in R. Then, every transitive map on I has a
dense set of periodic points.

Remark 6.25 Wenote that in general even for a locally eventually onto system there
need not be any periodic point. This is illustrated in a beautiful example due to Elon
Lindenstrauss, described in [2].

Though we can still have some form of recurrence for transitive systems.

Proposition 6.26 For a transitive (X , f ), �(f ) = X . The converse is not true in
general.

There are examples of cascades such that every element is non-wandering, but no
subsystem, except the trivial, is transitive; for example, the reflection map 1 − x on
[0, 1].
Proposition 6.27 If (X , f ) is strongly transitive but not minimal, then the set of
non-recurrent points is dense in X .

Recall that a set S ⊂ N is syndetic if there is a constant L > 0 such that for every
n ∈ N we have [n, n + L] ∩ S 	= ∅. S ∈ N is called thick, if for every n ∈ N, there
exists an ∈ S such that {an, an + 1, . . . , an + n} ∈ S. And S ∈ N is called cofinite, if
there exists N ∈ N, such that {N ,N + 1,N + 2, . . . } ⊂ S.

Recurrence is usually given in terms of the return times. We describe the type of
return time sets given by these various properties of transitivity and mixing for any
two nonempty, open U, V ⊂ X bringing out the distinction in these properties.
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N (U, V ) N (x, V ) N (U, x)

transitive infinite infinite for dense set can be empty
of x ∈ X for some x ∈ X

strongly transitive infinite infinite for dense set infinite for all
of x ∈ X x ∈ X

weakly mixing thick thick for dense set can be empty
of x ∈ X for some x ∈ X

mixing cofinite thick for dense set can be empty
of x ∈ X for some x ∈ X

strongly thick thick for all thick for all
product x ∈ X x ∈ X
transitive

minimal syndetic syndetic for all syndetic for all
x ∈ X x ∈ X

locally cofinite thick for all cofonite for all
eventually x ∈ X x ∈ X

onto

Mixing also has a strong inter-relation with proximality. We define the below
property for a general flow, and mention an equivalent condition for weakly mixing
cascades.

Definition 6.28 Let (X ,G) be a flow. The regionally proximal relation Q(X ) ⊂
X × X is defined as

Q(X ) =
{
(x, y) : there exist xi → x, yi → y, and gi ∈ G

such that lim gixi = lim giyi

}
.

The relationQ(X ) turns out to be closed, invariant, and reflexive, but not necessarily
transitive.

Remark 6.29 The flow (X ,G) is equicontinuous if and only if Q(X ) = �. In fact,
when Q(X ) is an equivalence relation then the flow (X /Q(X ),G) is an equicontin-
uous flow.

Theorem 6.30 Let (X , f ) be minimal. Then (X , f ) is weakly mixing if and only if
the regional proximal relation Q(X ) = X × X .
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7 Summary

We have just presented some basic concepts in Topological Dynamics here. For more
details, we encourage the enthusiastic reader to refer to [1, 3, 12, 14–16, 23–25].

The sister branches of measurable dynamics (ergodic theory) and topological
dynamics have their origin in Classical Mechanics, where we have a smooth trans-
formation of a manifold, which also preserves a measure on this manifold. Both
these theories have a parallel and inter-dependent growth, and both also have strong
analogies in various aspects of recurrence observed. It is important to study both
these concepts individually as one often influences the other.

The topological concept of transitivity is closely related to themeasurable concept
of ergodicity. Though it is difficult to say which definition influenced the other. The
concepts of mixing and weak mixing had their origins first in the measurable sense
and were borrowed for displaying a similar recurrence in the topological sense. The
topological concept ofminimality has no analogous property in themeasurable sense.
In the case of distality, the topological version came first and the theory ofmeasurable
distality was strongly influenced by the topological results. The measurable concept
of uniquely ergodic has no counterpart in topological case. The topological concepts
of strongly transitive and strongly product transitive are relatively new, and it would
be a good research to determine their analogies in the measurable domain.

There are some systems for which topological and ergodic properties are related
much closer. A classical example is the geodesic flowon surfaces of constant negative
curvature.

We note that the best reference for the study of minimal systems is [3]. Much of
the theory of enveloping semigroups was single-handedly developed by Ellis in [8].
We have just noted the basics here. We encourage our readers to refer to [3, 8, 10]
for details. A more recent presentation can be seen in [19].

In his seminal paper on disjointness in topological dynamics in 1967, Furstenberg
[12] started a systematic study of transitive dynamical systems. This laid a foundation
for the classification of dynamical systems by their recurrent properties, which has
been very useful in proving many combinatorial problems. We have described one
such application in the proof of van der Waerden’s theorem. But these recurrent
properties also have applications in many Ramsey type results. The Auslander-Ellis
Theorem and Furstenberg intersection lemma especially have been elementary tools
in many problems concerning diophantine approximations. Readers can refer to [12]
for some introductory details.
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C. S. Aravinda and Vishesh S. Bhat

1 Introduction

These notes are based on the course of six lectures given by the first named author
at the well-run workshop organised at IIT-Delhi in the month of December, 2017.
The lectures were intended to be self-contained covering some basic facts in ergodic
theory including a discussion of the Birkhoff ergodic theorem which, in a sense,
heralded the beginning of ergodic theory. Since the audience mainly consisted of
graduate students with different mathematical backgrounds, the lectures began with
a quick recap of the construction of the Lebesgue measure in R and progressed
gradually to a discussion of more general measures. After setting up the groundwork
on measure preserving transformations and flows on measure spaces, the notion of
ergodicity was introduced.

Following a brief look at a couple of illustrative examples of dynamical systems,
the focus shifted to a discussion of one of the early interesting examples of an ergodic
system, namely the geodesic flow on closed surfaces of constant negative curvature.
This necessitated a working recapitulation of the geometry of the upper-half plane
with respect to the hyperbolicmetric, the lectures culminatedwith a sketch of a proof,
due to Eberhard Hopf, of the ergodicity of the geodesic flow in this setting.
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The notes, naturally, reflect the dynamics that the lectures carried and also include
some historical titbits in an attempt to capture the significance of the exciting devel-
opments, that have shaped this field of study.

The first named author would like to record his deep gratitude to the organisers of
this extremely well-run workshop, and to Nikita Agarwal who cheerfully conducted
the afternoon tutorials at the workshop with great energy and lot of prior planning.
Both the authors thank the efficient editors of this volume for their invitation to
script the sketchy lecture notes into a coherent narrative, and the anonymous referees
whose careful comments as well as suggestions to add a few explanatory lines at a
couple of places helped weed out the several inadvertent typos and in improving the
readability. The authors take full responsibility for any errors that may still remain
despite their sincere efforts to make these notes error free.

2 Measure Theoretic Preliminaries

This section seeks to develop some rudimentary aspects of measure, starting with the
illuminating case of the Lebesgue measure on the real line. Finding the measure of a
set means to get a certain estimation of its size. A finite set could be measured by its
cardinality, whereas what distinguishes an infinite set from a finite set is its intriguing
property of being in bijective correspondence with a proper subset of itself. This begs
the question as to how one would determine the size of an infinite subset of the real
line R?

For a subset which is an interval I = (a, b) ⊂ R, its length |I |, namely b − a
seems a natural and a reasonable estimation of its size. In fact, the seminal investiga-
tion that Henri Lebesgue undertook culminating with the description of the so called
Lebesgue measure, by exploiting the notion of length, appears in his fundamental
paper of 1904 [10].

The basic idea of the Lebesgue measure on R stems from an effort to adapt the
notion of length for an arbitrary subset of R. This turns out to be a very profitable
enterprise, as building on finer and subtle variants of this notion, allows one to
describe a whole family of s-dimensional Hausdorff measures for each s ∈ (0, 1];
in turn giving rise to the notion of Hausdorff dimension of a given subset. We shall
quickly uncover the main facets in this section, particularly mentioning the succinct
and elegant work of Caratheodory [4].

We begin by first recalling the notion of outer measure.

Definition 2.1 If A ⊆ R, the (Lebesgue) outer measure of A is

μ∗(A) = inf

{ ∞∑
k=1

|Ik | : A ⊆
∞⋃
k=1

Ik, where (Ik)
∞
k=1 is

a collection of open intervals

}
.
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The completeness property of the reals ensures that if at least one of the members of
the above set is finite, then μ∗ will be a finite non-negative real number. If no such
finite number exists, then the outer measure of A is said to be infinite.

Definition 2.2 If A ⊆ R and h ∈ R, the translate of A by h is

A + h = {x + h : x ∈ A}.

The outer measure onR exhibits the following properties which can easily be derived
from first principles.

Theorem 2.3 This theorem features the basic properties of outer measure on R.

1. (Non-negativity) 0 ≤ μ∗(A) ≤ +∞.
2. (Monotonicity) A ⊆ B =⇒ μ∗(A) ≤ μ∗(B).
3. (Countable subadditivity) A ⊆ ⋃∞

n=1 An =⇒ μ∗(A) ≤ ∑∞
n=1 μ∗(An).

4. (Translation invariance) μ∗(A + h) = μ∗(A).
5. μ∗(A) = |A|, the length of A, if A is an interval.

While the abovementioned properties inherently follow from the definition; one other
natural and desirable property is to expect that the outer measures of two disjoint sets
A and B add up to the outer measure of their disjoint union A ∪ B. This expectation
lies at the heart of our discussion and, in a sense, the real essence of the theory lies
in understanding this rather innocuous requirement.

A moment’s reflection on what the finite additivity property ensures, can be gath-
ered from the following. If {Ai }, i = 1, . . . ,∞ is a countable collection of pairwise
disjoint subsets of R, then

n∑
i=1

μ∗(Ai ) = μ∗
(

n⋃
i=1

Ai

)
≤ μ∗

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

μ∗(Ai ).

Taking limits as n → ∞ on both sides results in the countable additivity of the outer
measure.

But, the outer measureμ∗ defined above has a singular shortcoming in that it is not
finitely additive! One way to see this fact, a posteriori, is to glean from Vitali’s con-
struction in 1905 [12], of a non-measurable subset of R. Recall that Vitali exhibited
a proper non-empty subset C of R, taking rational translates of which, one obtains
a countable collection of pairwise disjoint subsets of R. It is on this collection, that
the outer measure μ∗ cannot be countably additive. In particular, there are disjoint
subsets A and B of R such that μ∗(A ∪ B) �= μ∗(A) + μ∗(B).

In other words, there are subsets X and O of R such that for the partition by O of
X , into disjoint subsets X ∩ O and X ∩ Oc, one has

μ∗(X) �= μ∗(X ∩ O) + μ∗(X ∩ Oc).
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To see this, consider disjoint sets A and B and take X = A ∪ B and O = A. There-
fore, μ∗(X) = μ∗(A ∪ B) �= μ∗(A) + μ∗(B) = μ∗(X ∩ O) + μ∗(X ∩ Oc).

Consequently, one looks at the collection, M, of all those sets E ⊆ R such that

μ∗(A) = μ∗(A ∩ E) + μ∗(A ∩ Ec), ∀A ⊆ R. (1)

On this collection, M, the outer measure μ∗ is countably additive. The collection
M, which includes open intervals, constitutes a σ -algebra, and the outer measure
restricted to M is called the Lebesgue measure on M. The expression (1) is termed
as the Caratheodory criterion and naturally leads to the definition of a (Lebesgue)
measurable set. The next two definitions make this observation precise.

Definition 2.4 A family of subsets, M of a set X is said to be a σ -algebra if the
following hold:

1. X ∈ M;
2. A ∈ M =⇒ Ac ∈ M;

3.
{
Ai

}∞
i=1 ∈ M =⇒

∞⋃
i=1

Ai ∈ M.

Definition 2.5 A set E ⊆ R is said to be Lebesgue measurable or measurable if the
Caratheodory criterion (1) holds with respect to E .

In light of the preceding definitions, the conclusions of the next proposition can
be deduced using properties of the outer measure given in Theorem2.3.

Proposition 2.6

1. If I is an interval, then I ∈ M and μ∗(I ) = |I |.
2. If A ∈ M, then Ac ∈ M.
3. If A, B ∈ M, then A ∪ B, A ∩ B ∈ M.
4. If pairwise disjoint sets A1, A2, . . . , AN ∈ M and E ⊆ R, then

μ∗
(
E ∩

(
N⋃

k=1

Ak

))
=

N∑
k=1

μ∗(E ∩ Ak).

5. (Countable additivity or σ -additivity) If {An}∞n=1 is any sequence of measurable

sets, then
∞⋂
n=1

An and
∞⋃
n=1

An are alsomeasurable. Further, if {An}∞n=1 is a sequence

of pairwise disjoint measurable sets, then
⋃∞

n=1 An ∈ M and

μ∗
( ∞⋃
n=1

An

)
=

∞∑
n=1

μ∗(An).

Definition 2.7 Suppose A ∈ M. Then its (Lebesgue) measure, μ(A) is defined to
be its outer measure: μ(A) = μ∗(A).



Basic Ergodic Theory 77

Remark 2.8

• The reason for the need of two different concepts is that both have their disadvan-
tages.

• μ is an additive measure, but is not defined for all subsets of R.
• μ∗ is defined for all subsets of R, but is not additive, as demonstrated by Vitali’s
construction.

A more restricted class of Lebesgue measurable sets are the Borel measurable
sets.

Definition 2.9 If X is any topological space (in this case R), then the σ -algebra,B
generated by the class of open sets in X (resp. open intervals in R) are called the
Borel sets of X (resp. R).

Remark 2.10 It can be easily shown that the Borel σ -algebra for R includes the
half-open intervals such as [a, b) as well as closed intervals and further that every
Borel set is (Lebesgue) measurable.

The important properties of the outer measure μ∗ continue to hold on replacing
μ∗ by μ whenever A ∈ M.

Theorem 2.11 Here, we enlist some additional properties of measurable sets.

1. Continuity: Suppose A1 ⊇ A2 ⊇ A3 · · · and B1 ⊆ B2 ⊆ B3 · · · are sequences of
measurable sets, and μ(A1) < ∞. Then,

μ

( ∞⋂
n=1

An

)
= lim

n→∞ μ(An) and μ

( ∞⋃
n=1

Bn

)
= lim

n→∞ μ(Bn).

2. Approximation: If A ∈ M, and μ(A) < ∞, then for all ε > 0 there exists a
bounded closed set B and an open set C such that B ⊆ A ⊆ C, andμ(C∩Bc)<ε.

The previously sketched discussion of the construction of the Lebesgue measure
onR, starting from the notion of outer measure is, in a sense, a proto for the construc-
tion of measures more generally on complete metric spaces. In the setting of a metric
space X together with the distance function d, one starts with the notion of a ‘metric
outer measure’ which estimates the size of a subset A, by considering covers of A
by a countable number of open balls; then, using radii of open balls, one considers
an appropriate measure of their sizes to analogously replace lengths of intervals.

We shall elaborate more on this later when discussing Hausdorff measures, but
will now proceed to a discussion of measures in general.

Definition 2.12 A measure space is a triple (X,M, μ), where X is any set, M is a
σ -algebra of measurable sets and μ is a σ -additive measure.

A measurable space is just the pair (X,M) with no specification about the mea-
sure. The concept of σ -finiteness is another desirable property for a measure to
possess.
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Definition 2.13 Ameasure space (X,M, μ) is said to be σ -finite if X can be written

as a countable union of measurable sets of finite measure i.e., X =
∞⋃
n=1

An with

μ(An) < +∞, for all n. μ is then said to be a σ -finite measure.

Definition 2.14 Given a measure space (X,M, μ), a set A ⊂ X is said to be a
null set or a set of measure zero if there exists a set A1 ∈ M so that A ⊆ A1 and
μ(A1) = 0. Furthermore, two sets A1, A2 ⊂ X are said to be equivalent mod 0 if
their symmetric difference, A1�A2 i.e., (A1 \ A2) ∪ (A2 \ A1) hasmeasure zero and
this is denoted as A1 ≡ A2 (mod 0).

Remark 2.15

1. It should be noted in this context that not everymeasurable set is aBorel set. In fact,
it is possible to construct sets of measure zero which are Lebesgue measurable
but not Borel measurable. Thus, the Lebesgue measure serves as a completion of
the Borel measure.

2. Note that a more formal definition of a complete measure is as follows: Given a
measure space (X,M, μ), μ is complete if and only if for any N ∈ M where
μ(N ) = 0, E ⊆ N implies E ∈ M. The Lebesguemeasure is complete precisely
in the above sense.

Another example of a finite measure space is the probability space which is the space
of choice for ergodic theory. For a measure space (X,M, μ), if μ(X) = 1, then X
is a said to be probability space and μ a probability measure.

Measure zero sets are very useful in characterising properties in measure theory.

Definition 2.16 A property P of points of a set A ⊆ X is said to hold almost every-
where (a.e.) if the set of points of A which do not satisfy P form a set of measure
zero.

2.1 Measurable Functions and Transformations

We now move on to the notion of a measurable function which closely mirrors the
topological definition of a continuous function. The first definition is formulated in
the setting of general measure spaces.

Definition 2.17 (Measurable functions or transformations) If (X,M) and (Y,N)

are two measurable spaces, then a map f : X −→ Y is measurable if f −1(A) is
measurable i.e., f −1(A) ∈ M for every A ∈ N. Further, if X and Y are topological
spaces, then f : X −→ Y is said to be (Borel-) measurable if it is measurable with
respect to the Borel σ -algebras of X and Y .

Remark 2.18 The above definition implies that every continuous function is
(Borel-) measurable.
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In the sequel, we use the extended real line R̄ = R ∪ {−∞,∞} with the usual
conventions. To keep things simple, in the remaining part of this section, we restrict
ourselves to extended real-valued functions defined on R (equipped with the usual
Lebesgue measure), unless otherwise explicitly stated, although the statements hold
in the more general setting of complete measure spaces.

Remark 2.19 In particular, if f : (R,L) −→ (R̄,B), where L is the Lebesgue σ -
algebra, and f is measurable as in the Definition 2.17, then f is said to be Lebesgue
measurable.

For extended real-valued functions f, g, denote

( f ∧ g)(x) = min{ f (x), g(x)}, ( f ∨ g)(x) = max{ f (x), g(x)}.

Proposition 2.20 Measurable functions satisfy the following notable properties:

1. Suppose f, g are measurable functions and c ∈ R, then c f, f + g, f g, | f |, f ∧
g, f ∨ g are measurable.

2. Suppose { fn}∞n=1 is a sequence of measurable functions and limn→∞ fn(x) =
f (x), then f is measurable.

3. Suppose { fn}∞n=1 is a sequence of measurable functions. Let g(x) = inf{ fn(x)}
and h(x) = sup{ fn(x)}. Then g and h are measurable.

Definition 2.21 The indicator function of a set A ⊆ R is the function

χA(x) =
{
1 if x ∈ A,

0 if x /∈ A.

Definition 2.22 A simple function is a function of the form

f = a1χA1 + · · · + anχAn where ai ∈ R, Ai ∈ M and μ(Ai ) < ∞.

Definition 2.23 The integral of a simple function f = ∑n
i=1 aiχAi is

∫
f dμ =

∫
R
f dμ =

n∑
i=1

aiμ(Ai ).

Definition 2.24 (Integral of nonnegative measurable functions) If f : R −→ R is a
nonnegative measurable function, then its integral is

∫
f dμ = sup

{∫
g dμ : g is a simple function such that 0 ≤ g ≤ f

}
.

Proposition 2.25 If f, g are nonnegative measurable functions and a > 0, then
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∫
a f dμ = a

∫
f dμ,

∫
( f + g) dμ =

∫
f dμ +

∫
g dμ.

Moreover, if f ≤ g, then ∫
f dμ ≤

∫
g dμ.

This additivity property will allow us to extend the definition of integration to
functions that change sign.

Definition 2.26 For an extended real-valued function f , define functions

f +(x) =
{
f (x) if f (x) > 0,

0 if f (x) ≤ 0; f −(x) =
{

− f (x) if f (x) < 0,

0 if f (x) ≥ 0.

Note that f + and f − are nonnegative. They are measurable if f is, and f = f + −
f −, | f | = f + + f −.

Definition 2.27 A measurable function is integrable if
∫ | f | dμ < +∞.

Definition 2.28 If f is an integrable function, its integral is

∫
f dμ =

∫
f + dμ −

∫
f − dμ.

Definition 2.29 The limit supremum of a sequence is the least upper bound of the
set of all subsequential limits of the sequence. That is,

lim sup
n→∞

an := lim
n→∞ (sup{am : m ≥ n}) = inf

n≥0

(
sup
m≥n

am

)
.

Similarly, we define

lim inf
n→∞ an := lim

n→∞ (inf{am : m ≥ n}) .

Theorem 2.30 (Fundamental convergence theorems) Here, we record the funda-
mental convergence theorems in analysis, that we use in the sequel.

1. (Lebesgue’s dominated convergence theorem) Suppose ( fn)∞n=1 is a sequence of
measurable functions and lim

n→∞ fn(x) = f (x), for all x ∈ R, and | fn(x)| ≤ g(x)

for all n ∈ N, x ∈ R where g is an integrable function. Then,

lim
n→∞

∫
fn dμ =

∫
f dμ.

2. (MonotoneConvergenceTheorem)Suppose ( fn)∞n=1 is a non-decreasing sequence
of non-negative measurable functions 0≤ f1≤ f2 ≤ · · · . Let f (x)= lim

n→∞ fn(x).
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Then,

lim
n→∞

∫
fn dμ =

∫
f dμ.

3. (Fatou’s Lemma) If ( fn)∞n=1 is a sequence of nonnegative measurable functions,
then ∫

lim inf
n→∞ fn dμ ≤ lim inf

n→∞

∫
fn dμ.

Definition 2.31 Two functions f and g are said to be equal almost everywhere,
written f = g a.e., if {x : f (x) �= g(x)} is a set of measure zero.

Proposition 2.32 If f is a function on a Lebesgue measurable set E and g = f
a.e., then g is Lebesgue measurable if and only if f is Lebesgue measurable.

Definition 2.33 Consider the set of all integrable functions onR. The function space
L1 is the set of all equivalence classes of integrable functions on R, where we set
f � g if f = g a.e. The L1 norm is given by

‖ f ‖1 :=
∫

| f | dμ.

Theorem 2.34 L1 is complete, i.e., given a Cauchy sequence { fn}∞n=1 in L1, there
exists f ∈ L1 such that lim

n→∞ ‖ fn − f ‖1 = 0.

Generalising the L1 notion to functions on arbitrary complete measure spaces, we
have the following definition.

Definition 2.35 Let (X,M, μ) be a complete measure space and f : X −→ R̄ be a
measurable function, then for each integer p ≥ 1, we say that f ∈ L p(μ) if

∫
X

| f |p dμ < ∞.

For any such f ∈ L p(μ), we may define the L p-norm as

‖ f ‖p :=
⎛
⎝∫

X

| f |p dμ

⎞
⎠

1
p

.

Identifying the functions whose values agree a.e. allows for defining a metric on the
space L p(μ) by means of the L p-norm. We treat L p(μ) as the set of equivalence
classes of functions which coincide a.e.. Thus, L p(μ) becomes a Banach space for
1 ≤ p < ∞. In particular, L2(μ) is a Hilbert space with the inner product defined
by
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〈 f, g〉 :=
∫
X

f g dμ.

Definition 2.36 f : X −→ R is said to be compactly supported if the closure of the
set of points in X where the value of f is non-zero, is a compact subset of X .

Notation 2.37 We denote the set of all compactly supported (real-valued) continu-
ous functions on X as Cc(X).

Theorem 2.38 (Lusin’s Theorem) If X is a locally compact Hausdorff topological
space and if f : X −→ R̄ is a measurable function such that f (x) = 0, for all x /∈
A ⊂ X, where μ(A) < ∞, then given ε > 0, there exists a g ∈ Cc(X) so that

μ ({x : f (x) �= g(x)}) < ε.

Theorem 2.39 For 1 ≤ p < ∞, Cc(X) is dense in L p(μ).

Definition 2.40 Let (X,M) be ameasurable space andμ, ν : X −→ [0,∞) be two
measures on M. We say that μ is absolutely continuous with respect to ν if A ∈ M
and ν(A) = 0 implies μ(A) = 0. This is denoted as μ << ν.

Theorem 2.41 (Radon–Nikodym) If (X,M, ν) is a σ -finite measure space, then
μ << ν if and only if there exists a function f ∈ L1(ν) such that

μ(A) =
∫
A

f dν for every A ∈ M.

The function f is unique a.e. with respect to ν and is written as dμ

dν
, called the

Radon-Nikodym derivative of μ w.r.t ν.

2.2 Hausdorff Measures

In this subsection, we outline the notion of more general measures called Hausdorff
measures that subsume the Lebesgue measure. It is assumed that (X, d) is a non-
empty metric space. The notion of Hausdorff dimension of a subset A ⊂ X arises
from the construction of Hausdorff measures [6].

Definition 2.42 A function μ defined on P(X) is called a metric outer measure if
it satisfies the following:

1. μ∗(A) ≥ 0, for all A ∈ P(X);
2. μ∗(∅) = 0;
3. (Monotonicity) A1 ⊆ A2 =⇒ μ∗(A1) ≤ μ∗(A2);
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4. (Countable subadditivity) if {An}∞n=1 is a countable collection of members of

P(X), then μ∗
( ∞⋃
n=1

An

)
≤

∞∑
n=1

μ∗(An);

5. if A1, A2 ∈ P(X) with d(A1, A2) > 0, then μ∗(A1 ∪ A2) = μ∗(A1) + μ∗(A2).

A familiar example of such an outer measure is the Lebesgue outer measure
discussed in the earlier sections. Before defining the Hausdorff measure, we remark
that as in the case of R, a subset E of a space X is said to be measurable if

μ∗(A) = μ∗(A ∩ E) + μ∗(A ∩ Ec), ∀A ∈ P(X).

The class of measurable sets in X evidently form a σ -algebra P so that μ when
restricted to P, is countably additive and thus a measure in the usual sense. We
henceforth use the usual μ notation for the measure.

Definition 2.43 Given a metric space (X, d) and A ⊂ X , the diameter of A is given
as δ(A) := sup{d(x, y) : x, y ∈ A}.

Let (X, d) be a metric space and let α(> 0) ∈ R. Let A ⊂ X . Given ε > 0, con-
sider

H ε
α (A) = inf

{ ∞∑
k=1

δ(Ak)
α : A ⊆

∞⋃
k=1

Ak where δ(Ak) < ε ∀k
}

,

the infimum being taken over all countable covers of the set A whose members
have diameter less than ε. Note that if ε1 < ε, then H ε1

α (A) ≥ H ε
α (A). Therefore,

lim
ε→0

H ε
α (A) exists, though it may be infinite, and we write Hα(A) = lim

ε→0
H ε

α (A).

Theorem 2.44 For each α > 0, Hα is a metric outer measure on X called the
Hausdorff outer measure of dimension α and when restricted to the σ -algebra of
measurable sets, is called the Hausdorff measure of dimension α on X.

Note that if α = 0, then Hα is merely, the counting measure.

Theorem 2.45 (i) If Hα(A) < ∞, then Hβ(A) = 0 for β > α.
(ii) If Hα(A) > 0, then Hβ(A) = ∞ for β < α.

Proof It is easy to see that (i) and (ii) are equivalent. Therefore, we prove (i). Suppose

A =
∞⋃
k=1

Ak , with δ(Ak) < ε. If β > α, then

H ε
β (A) ≤

∞∑
k=1

δ(Ak)
β ≤ εβ−α

∞∑
k=1

δ(Ak)
α.

That is, H ε
β (A) ≤ εβ−αH ε

α (A). Letting ε → 0, we see that Hβ(A) = 0 if Hα(A) <

∞. �
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As a consequence of the above theorem, for A ⊂ X , there exists d ∈ R such that

{
Hm(A) = 0 if m > d,

Hm(A) = ∞ if m < d.

The d, obtained as above, is called the Hausdorff dimension of the set A, denoted by
Hdim(A).

Example 2.46

1. If A is any countable set then,Hdim(A) = 0.
2. If X = R and α = 1, then it is straightforward to check that H1 is the Lebesgue

measure.
3. The Cantor ternary set is an example of an uncountable set of zero Lebesgue

measure, as opposed to countable sets which are also of Lebesgue measure zero.

It can be shown that its Hausdorff dimension is
ln 2

ln 3
.

If X = Rn, n > 1, then Hn is not the same as the Lebesgue measure, but is compa-
rable to it, a fact elucidated in the next theorem.

Theorem 2.47 Let A ⊂ Rn.

1. Then, there exists positive constants C1 and C2 depending only on the dimension
n such that

C1Hn(A) ≤ λ(A) ≤ C2Hn(A),

for A ⊂ Rn, λ being the Lebesgue measure on Rn.
2. If α > n, then Hα(A) = 0, for every A ⊂ Rn.

3 Recurrence and Ergodic Theorems

Let (X,M, μ) be a measure space. A transformation T : X −→ X is said to be
a measurable transformation (with respect to μ) if the inverse image of every μ-
measurable set is μ-measurable. And a μ-measurable transformation T of X into
itself is said to bemeasure preserving ifμ(T−1(E)) = μ(E) for everyμ-measurable
subset E of X .

Example 3.1

1. Let X = [0, 1) andλ be the Lebesguemeasure on X . Let c ∈ X be any point. Then
the transformation T : X −→ X defined by T (x) = x + c (mod1) is measure
preserving.
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2. Let X = [0, 1) and λ be the Lebesgue measure on X . Define T : X −→ X as

T (x) =
{
2x for 0 ≤ x < 1

2

2x − 1 for 1
2 ≤ x < 1.

It can be easily verified that T as defined above is a measure preserving transfor-
mation.

3. Given a = (a1, a2, . . . , an) ∈ Rn where Rn is equipped with the usual Lebesgue
measure. The affine transformation T : Rn −→ Rn defined as T (x) = x + a is
invertible and measure preserving.

In the context of ergodic theory, a measurable space (X,M, μ) equipped with a
measure preserving transformation T constitutes a dynamical system denoted by
(X,M, μ, T ).

3.1 Recurrence

In the sequel, we assume that (X,M, μ) is a probability space i.e. μ(X) = 1. Given
a measure preserving transformation T on a measure space (X,M, μ), T is said to
be recurrent if for any given set of positive measure A ⊂ X , almost all points of A
return to A after at most finitely many iterations of T .

Theorem 3.2 (Poincare recurrence theorem) Let (X,M, μ) be a probability space
and T : X −→ X be a measure preserving transformation. Given A ∈ M, let A0 be
the set of points x ∈ A such that T n(x) ∈ A for infinitely many n ≥ 0. Then A0 ∈ M
and μ(A0) = μ(A).

Proof Let
Cn = {

x ∈ A : T k(x) /∈ A ∀k ≥ n
}
.

Therefore A0 = A \
∞⋃
n=1

Cn . In order to prove the theorem, it is enough to show that

1. Cn ∈ M and
2. μ(Cn) = 0 for every n ≥ 1.

1. Now, Cn = A \ ⋃
k≥n

T−k(A). Since T−k(A) ∈ M for every k ≥ 1, we see that

Cn ∈ M.
2. Also,

Cn ⊂
⋃
k≥0

T−k(A) \
⋃
k≥n

T−k(A)

=⇒ μ(Cn) ≤ μ

(⋃
k≥0

T−k(A)

)
− μ

(⋃
k≥n

T−k(A)

)
.
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Now, observe that
⋃
k≥n

T−k(A) = T−n

(⋃
k≥0

T−k(A)

)
. Since T is measure pre-

serving, this implies

μ

(⋃
k≥0

T−k(A)

)
= μ

(⋃
k≥n

T−k(A)

)
.

Therefore μ(Cn) = 0. �

3.2 Birkhoff Ergodic Theorem and the Notion of Ergodicity

Let (X,M, μ) be a probability space and T : X −→ X be a measure preserving
transformation. Let E ∈ M. Given x ∈ X , one would like to ask with what frequency
do the elements of the set {x, T x, T 2x, . . .} lie in the set E?

Clearly T i x ∈ E if and only if χE (T i x) = 1; therefore the number of ele-

ments of {x, T x, T 2x, . . . , T n−1x} in E is
n−1∑
k=0

χE (T kx) or the relative number of

{x, T x, . . . , T n−1x} in E is
1

n

n−1∑
k=0

χE (T kx).

Around the turn of the century, the work of Boltzmann and Gibbs on statistical
mechanics raised a mathematical problem which can be stated as follows: Given
a measure preserving transformation T of a probability space and an integrable
function f : X −→ R, find conditions under which

lim
n→∞

f (x) + f (T x) + · · · + f (T n−1x)

n

exists and is constant almost everywhere.
In 1931 [3], Birkhoff proved that for any T and f , the above limit exists almost

everywhere. From this, he concluded that a necessary and sufficient condition for its
value to be constant almost everywhere, is that there exist no set A ∈ M such that
0 < μ(A) < 1 and T−1A = A. As we will see later, the fact that this limit is constant
easily implies that it is equal to the integral of f over X . Transformations T which
satisfy this condition are called ergodic and ergodic theory is essentially the study of
such transformations. The Birkhoff Ergodic theorem is the first fundamental result
that sets the tone for much of what follows.

Theorem 3.3 (Birkhoff Ergodic Theorem) Let (X,M, μ) be a probability space
and T : X −→ X be a measure preserving transformation. If f ∈ L1(μ) then the
limit

lim
n→∞

1

n

n−1∑
k=0

f (T k(x)) = f̃ (x),
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exists for almost every point x ∈ X, f̃ ∈ L1(μ) and f̃ ◦ T = f̃ almost everywhere.
Furthermore, ∫

X
f̃ dμ =

∫
X
f dμ.

If f is any measurable function, let g(x) = f (T x). Since T is measurable, the
function g ismeasurable so that,writing g(x) = U f (x), the transformationU assigns
to each measurable function f , a measurable function g. Clearly, U is linear and g
is non-negative if f is so. Moreover, we have:

Theorem 3.4 If 1 ≤ p ≤ ∞ and ‖ f ‖p denotes the L p-norm of f , then ‖g‖p =
‖ f ‖p for g = U f .

Proof Let E ∈ M and f = χE . Then g = U f = f (T x) = χT−1(E). Therefore,

‖g‖p
p = μ(T−1(E)) = μ(E) = ‖ f ‖p

p .

It follows that ‖g‖p = ‖ f ‖p for every non-negative simple function. If f is any
non-negative measurable function, there exists a sequence of simple, non-negative
measurable functions {sn}∞n=1 such that sn → f , as n → ∞, with s1 ≤ s2 ≤ · · · ≤ f .
Now, since tn = Usn is also an increasing sequence of simple functions, converging
to g, monotone convergence theorem implies that

‖g‖p = lim
n→∞ ‖tn‖p = lim

n→∞ ‖sn‖p = ‖ f ‖p .

The general case of f now follows by writing f = f + − f − and applying the above
conclusion to f + and f − separately. �

In particular, if f ∈ L2(μ) we have showed that g(x) = U f (x) = f (T x) is also
in L2(μ) and that ‖g‖2 = ‖ f ‖2. In other words,U is an isometric transformation of
the Hilbert space L2(μ) into itself.

If, in addition, T is invertible (i.e., there exists ameasure preserving transformation
S : X −→ X such that ST = T S = I dX ) and if V is the isometric transformation
in L2(μ) corresponding to its inverse, thenUV = VU is the identity transformation
in L2(μ). Therefore, the range of V is the whole of L2(μ); in other words, U is a
unitary transformation in L2(μ) and V is its inverse. Thus, an invertible measure
preserving transformation on a measure space (X, μ) induces an invertible unitary
transformation in the Hilbert space L2(μ).

Therefore, in so far as it concerns functions f ∈ L2(μ), the existence of the limit
of the averages is reduced to the problem of existence of the limit as n → ∞ of

1

n

n−1∑
k=0

Uk f (x), where U is an isometric transformation in the Hilbert space L2(μ).

Precisely, this convergence, known as the mean ergodic theorem, was proven by J.
von Neumann in 1932 [13].
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Theorem 3.5 (Mean ergodic theorem) If U is an isometric transformation in an
arbitrary Hilbert space H and if P is the orthogonal projection on the closed linear

subspace of all f ∈ H satisfying U f = f , then
1

n

n−1∑
k=0

Uk f converges in norm as

n → ∞ to P f for all f ∈ H.

We will skip a proof of this and prove the more general Birkhoff ergodic theorem
(BET, for short). We prove the first part of the BET and prove the more general L p

version of the second part as a corollary. The key step in the proof of BET is itself a
useful lemma known as the Maximal ergodic theorem.

Lemma 3.6 (Maximal ergodic theorem) Given f ∈ L1(μ), put

E( f ) =
{
x : max

n≥0

(
n−1∑
k=0

f (T kx)

)
> 0

}
.

Then
∫
E( f ) f dμ ≥ 0.

Proof Define

f0 := 0,

fn := f + f ◦ T + f ◦ T 2 + · · · + f ◦ T n−1

= f +U f +U 2 f + · · · +Un−1 f.

Let Fn = max
0≤k≤n

fk . Therefore

E( f ) =
∞⋃
n−1

{x : Fn(x) > 0} =
∞⋃
n−1

En.

Clearly, Fn ∈ L1(μ) and, for 0 ≤ k ≤ n, we have Fn ≥ fk . Therefore UFn ≥ U fk
becauseU : L1(μ) −→ L1(μ) is a positive linear operator (i.e., f ≥ 0 impliesU f ≥
0) and hence,

UFn + f ≥ U fk + f = fk+1.

In other words,

UFn + f ≥ max
1≤k≤n

fk(x) = max
0≤k≤n

fk(x) = Fn(x) when Fn(x) > 0.

That is, f ≥ Fn −UFn on {x : Fn(x) > 0} = En . Therefore,
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∫
En

f dμ ≥
∫
En

Fn dμ −
∫
En

U Fn dμ

=
∫
X
Fn dμ −

∫
En

U Fn dμ

≥
∫
X
Fn dμ −

∫
X
U Fn dμ

= 0.

The second equality above holds because Fn = 0 on X \ En , the third inequality
holds because Fn ≥ 0 impliesUFn ≥ 0 and the last equality holds because ‖U‖ = 1.
Finally, since E1 ⊆ E2 ⊆ · · · , we have that En → E( f ) and we are done. �

Corollary 3.7 If A ⊂ E( f ), A ∈ M and T−1A = A, then,

∫
A
f dμ ≥ 0.

Proof Since T−1A = A, we see that E( f χA) = A. Therefore, the lemma above
implies 0 ≤ ∫

E( f χA)
f χA dμ = ∫

A f χA dμ = ∫
A f dμ. �

Theorem 3.8 Let (X,M, μ) be a probability space and T : X −→ X be a measure
preserving transformation. If f ∈ L1(μ), then the limit

lim
n→∞

1

n

n−1∑
k=0

f (T kx)

exists for almost every point x ∈ X.

Proof For each α, β ∈ R with α < β, let

Eα,β =
{
x ∈ X : lim inf

n→∞
1

n

n−1∑
k=0

f (T kx) < α < β < lim sup
n→∞

1

n

n−1∑
k=0

f (T kx)

}
.

Clearly, Eα,β ∈ M. We will show that μ(Eα,β) = 0 for each α, β. This would imply
that

⋃
Eα,β , where α, β ∈ R such that α < β, has measure zero and hence the limit

exists almost everywhere.

Put f ∗(x) = sup
n≥1

1

n

n−1∑
k=0

f (T kx) and f∗(x) = inf
n≥1

1

n

n−1∑
k=0

f (T kx). Therefore,

Eα,β ⊂ {
x : f ∗(x) > β

} = {
x : ( f ∗ − β)(x) > 0

} = E( f − β)
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and Eα,β ⊂ {x : f∗(x) < α}.
We first show that Eα,β is T -invariant. That is, we show that T−1(Eα,β) = Eα,β .

Let an(x) = 1

n

n−1∑
k=0

f (T kx). Then,
n + 1

n
an+1(x) − an(T x) = f (x)

n
. Therefore,

lim sup
n→∞

(an+1(x) + 1

n
an+1(x) − an(T x)) = lim sup

n→∞
f (x)

n
.

This implies that lim sup
n→∞

(an+1(x) − an(T x)) = 0. That is, lim sup
n→∞

(an+1(x)) =
lim sup
n→∞

(an(T x)). Similarly, lim inf
n→∞ (an+1(x)) = lim inf

n→∞ (an(T x)).

Therefore, T−1(Eα,β) = Eα,β .
By Corollary 3.7, we get

∫
Eα,β

( f − β) dμ ≥ 0 or
∫
Eα,β

f dμ ≥ βμ(Eα,β). Now
Eα,β ⊂ {x : f∗(x) < α} = {x : − f∗ > −α} = {x : (− f )∗ > −α}.

Therefore, by the maximal ergodic theorem 3.6,
∫
Eα,β

(− f ) dμ ≥ −αμ(Eα,β) or∫
Eα,β

f dμ ≤ αμ(Eα,β). Thus, βμ(Eα,β) ≤ ∫
Eα,β

f dμ ≤ αμ(Eα,β).
But α < β. Therefore, the above inequality holds only if μ(Eα,β) = 0. �

Corollary 3.9 (i) If f ∈ L p(μ), 1 ≤ p ≤ ∞, the function f̃ defined by,

f̃ (x) = lim
n→∞

1

n

n−1∑
k=0

f (T kx)

is in L p(μ) and satisfies

lim
n→∞

∥∥∥∥∥ f̃ − 1

n

n−1∑
k=0

f ◦ T k

∥∥∥∥∥
p

= 0.

(ii) f̃ (T x) = f̃ (x).
(iii) For f ∈ L p(μ),

∫
X f̃ dμ = ∫

X f dμ.

Proof (i) Since X is a probability space,μ(X) = 1. Therefore, f ∈ L1(μ) and f̃ (x)

makes sense. Moreover, | f | ∈ L1(μ) and
∣∣ f̃ (x)∣∣ ≤ lim

n→∞
1

n

n−1∑
k=0

∣∣ f (T kx)
∣∣ for a.e. x

(this limit exists since | f | ∈ L1(μ)). That is,
∣∣ f̃ (x)∣∣p ≤ lim

n→∞

(
1

n

n−1∑
k=0

∣∣ f (T kx)
∣∣
)p

.

Since
∣∣ f̃ ∣∣p ≥ 0,
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∥∥ f̃
∥∥p

p =
∫
X

∣∣ f̃ ∣∣p dμ =
∫
X
lim
n→∞

(
1

n

n−1∑
k=0

∣∣ f (T kx)
∣∣
)p

dμ

=
∫
X
lim inf
n→∞

(
1

n

n−1∑
k=0

∣∣ f (T kx)
∣∣
)p

dμ

≤ lim inf
n→∞

∫
X

(
1

n

n−1∑
k=0

∣∣ f (T kx)
∣∣
)p

dμ. (Fatou’s Lemma)

Now

∫
X

(
1

n

n−1∑
k=0

∣∣ f (T kx)
∣∣
)p

dμ =
∥∥∥∥∥
1

n

n−1∑
k=0

∣∣ f (T kx)
∣∣
∥∥∥∥∥
p

p

≤
(
1

n

n−1∑
k=0

∥∥ f (T kx)
∥∥
p

)p

=
(
1

n

n−1∑
k=0

‖ f ‖p

)p

(T k is measure preserving)

= ‖ f ‖p
p .

Therefore

∥∥ f̃
∥∥p

p ≤ lim inf
n→∞

∫
X

(
1

n

n−1∑
k=0

∣∣ f (T kx)
∣∣
)p

dμ ≤ lim inf
n→∞ ‖ f ‖p

p = ‖ f ‖p
p < ∞,

since f ∈ L p(μ). Therefore f̃ ∈ L p(μ). �

Definition 3.10 (Convergence in the L p-norm) Consider the case f ∈ L∞(μ), i.e.,
sup
x∈X

| f (x)| < ∞ a.e. Clearly, f ∈ L1(μ) and the sequence of functions

∣∣∣∣∣ f̃ − 1

n

n−1∑
k=0

f (T kx)

∣∣∣∣∣
p

converges to 0 a.e. Moreover,

∣∣ f̃ (x)∣∣ ≤ lim
n→∞

1

n

n−1∑
k=0

∣∣ f (T kx)
∣∣ ≤ lim

n→∞
1

n

n−1∑
k=0

‖ f ‖∞ = ‖ f ‖∞ -a.e.

Therefore,
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∣∣∣∣∣∣ f̃ (x) − 1

n

n−1∑
k=0

f (T kx)

∣∣∣∣∣∣
p

≤
∣∣∣∣∣∣‖ f ‖∞ + 1

n

n−1∑
k=0

∥∥∥ f ◦ T k
∥∥∥∞

∣∣∣∣∣∣
p

≤ (
2 ‖ f ‖∞

)p = constant.

Hence by dominated Convergence theorem,

∫
X

∣∣∣∣∣ f̃ − 1

n

n−1∑
k=0

f (T kx)

∣∣∣∣∣
p

dμ → 0 -a.e.

That is, for f ∈ L p(μ), lim
n→∞

∥∥∥∥∥ f̃ − 1

n

n−1∑
k=0

f ◦ T k

∥∥∥∥∥
p

= 0. Now, let f ∈ L p(μ) and

let ε > 0. There is an f0 ∈ L∞(μ) such that ‖ f − f0‖p ≤ ε/3 and there exists an

N > 0 such that

∥∥∥∥∥ f̃0 − 1

n

n−1∑
k=0

f0 ◦ T k

∥∥∥∥∥
p

≤ ε/3 for n ≥ N .

Then,

∥∥∥∥∥ f̃ − 1

n

n−1∑
k=0

f (T kx)

∥∥∥∥∥
p

≤ ∥∥ f̃ − f̃0
∥∥
p +

∥∥∥∥∥ f̃0 − 1

n

n−1∑
k=0

f0(T
kx)

∥∥∥∥∥
p

+
∥∥∥∥∥
1

n

n−1∑
k=0

( f0 − f )(T kx)

∥∥∥∥∥
p

.

Now, f̃ − f̃0 = f̃ − f0 and hence,

∥∥ f̃ − f̃0
∥∥
p

=
∥∥∥ f̃ − f0

∥∥∥
p

≤ ‖ f − f0‖p ≤ ε

3
,

and
∥∥∥∥∥
1

n

n−1∑
k=0

( f0 − f )(T kx)

∥∥∥∥∥
p

≤ 1

n

n−1∑
k=0

‖ f0 − f ‖p = ‖ f0 − f ‖p ≤ ε

3
.

Therefore, for n ≥ N , ∥∥∥∥∥ f̃ − 1

n

n−1∑
k=0

f (T kx)

∥∥∥∥∥
p

< ε,

which implies that

lim
n→∞

∥∥∥∥∥ f̃ − 1

n

n−1∑
k=0

f (T kx)

∥∥∥∥∥
p

= 0.
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We now prove the remainder of the statements in Corollary 3.9.
(ii)

f̃ (T x) = lim
n→∞

1

n

n−1∑
k=0

f (T k(T x))

= lim
n→∞

(
1

n

n∑
k=0

f (T kx) − 1

n
f (x)

)

= lim
n→∞

n + 1

n

1

n + 1

n∑
k=0

f (T kx) − lim
n→∞

1

n
f (x)

= lim
n→∞

1

n + 1

n∑
k=0

f (T kx)

= f̃ (x).

(iii) If f ∈ L p(μ), note that by (ii), the sequence
1

n

n−1∑
k=0

f (T kx) converges to f̃ in

L1(μ). Hence,

∫
X
f̃ dμ = lim

n→∞
1

n

n−1∑
k=0

∫
X
f (T kx) dμ = lim

n→∞
1

n

n−1∑
k=0

∫
X
f dμ =

∫
X
f dμ.

�
In Birkhoff Ergodic Theorem, suppose the limit f̃ (x) = c, where c is a constant.
Then, ∫

X
f dμ =

∫
X
f̃ dμ = cμ(X).

That is,

c = f̃ (x) = 1

μ(X)

∫
X
f dμ.

In other words, we see that

lim
n→∞

1

n

n−1∑
k=0

f (T kx) = 1

μ(X)

∫
X
f dμ.

The left hand side is the time average of f and the right hand side is the space average
of f . This is what the physicists call the ergodic hypothesis, (the equality of the time
and space averages of f ).
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Proposition 3.11 Let T be an invertible measure preserving transformation of
X, f ∈ L1(μ) and let

f +
n (x) = 1

n

n−1∑
k=0

f (T kx) f −
n (x) = 1

n

n−1∑
k=0

f (T−k x).

Then, f̃ + = lim
n→∞ f +

n and f̃ − = lim
n→∞ f −

n exist and are equal almost everywhere, i.e.,

f̃ + = f̃ − -a.e.

Proof We first observe that

f +
N ◦ T−(N−1)(x) = 1

N

N−1∑
k=0

f (T k(T−(N−1)x)) = 1

N

N−1∑
k=0

f (T−k x) = f −
N (x).

Also, since f̃ +
N ◦ T = f̃ +

N and f̃ −
N ◦ T−1 = f̃ −

N , we get f̃ +
N ◦ T−1 = f̃ +

N and hence,
f̃ +
N ◦ T−k = f̃ +

N for all k ∈ N. Therefore,

f̃ +
N (x) = f̃ +

N ◦ T−(N−1)(x) = lim
n→∞

1

n

n−1∑
k=0

f +
N (T k(T−(N−1)x))

= lim
n→∞

1

n

n−1∑
k=0

f +
N ◦ T−(N−1)(T kx)

= lim
n→∞

1

n

n−1∑
k=0

f −
N (T kx)

= f̃ −
N (x).

Hence f̃ + = limn→∞ f̃ +
n = lim

n→∞ f̃ −
n = f̃ − (this holds because, fn → f implies

f̃n → f̃ ). �

Definition 3.12

1. Ameasurable flow in a measure space (X,M, μ) is a map τ : X × R −→ X that
satisfies the following two conditions:

(a) τ is measurable with respect to the product measure μ × λ on X × R and
the measure μ on X . Here, λ is the Lebesgue measure on R.

(b) For t ∈ R, the maps τt (x) := τ(x, t) form a one-parameter group of transfor-
mations of X to itself with τ0 = identity on X and τt+s = τt ◦ τs for t, s ∈ R.

2. A measurable flow τt is measure preserving or is μ-invariant if μ(τt A) = μ(A)

for every t ∈ R and every A ∈ M.

Remark 3.13 If τt is ameasure preserving flow on a finitemeasure space (X,M, μ)

and if f ∈ L1(μ), then the limits



Basic Ergodic Theory 95

f + = lim
T→∞

1

T

∫ T

0
f (τt x) dt and f − = lim

T→∞
1

T

∫ T

0
f (τ−t x) dt

exist and are equal for μ - a.e x .

Proof Let F(x) = ∫ 1
0 f (τt x) dt . Since f and τ are measurable, f ◦ τ(x, t) =

f (τt x) is measurable and by Fubini theorem F(x) = ∫ 1
0 f (τt x) dt is μ-measurable

and is in L1(μ) since f ∈ L1(μ).
Now

lim
n→∞

1

n

∫ n

0
f (τt x) dt = lim

n→∞
1

n

n−1∑
k=0

F(τ k
1 (x))

(where τ1(x) = τ(x, 1) : X × R → X ) exists for μ a.e. x by Birkhoff ergodic theo-
rem.

Let

f̃ (x) = lim
n→∞

1

n

n−1∑
k=0

F(τ k
1 (x)) = lim

n→∞
1

n

∫ n

0
f (τt x) dt.

If t ∈ R, t > 0 is such that n < t < n + 1 for n ∈ N ∪ {0}, then
∣∣∣∣
∫ t

0
f (τt x) dt −

∫ n

0
f (τt x) dt

∣∣∣∣ =
∣∣∣∣
∫ t

n
f (τt x) dt

∣∣∣∣
≤

∣∣∣∣
∫ n+1

n
f (τt x) dt

∣∣∣∣
≤

∫ n+1

n
| f (τt x)| dt

=
∫ 1

0

∣∣ f (τ n
1 ◦ τt (x))

∣∣ dt
=

∫ 1

0
| f (τt x)| dt,

where the last equality follows from Theorem 3.4.
Since

1

n

∫ 1

0
| f (τt x)| dt → 0 as n → ∞,

we have
1

t

∣∣∣∣
∫ t

n
f (τt x) dt

∣∣∣∣ ≤ 1

n

∣∣∣∣
∫ t

n
f (τt x) dt

∣∣∣∣ → 0 as n → ∞.

Since t → ∞ as n → ∞, we have

1

t

∫ t

n
f (τt x) dt → 0 as t → ∞,
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and hence
1

t

∫ t

0
f (τt x) dt → f̃ (x) as t → ∞.

Now the remark follows by virtue of the preceding Proposition 3.11. �

Definition 3.14

1. Let (X,M, μ) be a probability space. If A ∈ M and T is a measure preserving
transformation of X , then A is said to be T -invariant if μ(T−1A�A) = 0. A is
said to be strictly T -invariant if T−1A = A.

2. Ameasurable function f : X−→R is T -invariant ifμ ({x : f (T x) �= f (x)}) = 0.
f is strictly T -invariant if f (T x) = f (x) for all x .

The next two observations seek to bridge the divide between T -invariant and strictly
T -invariant sets (or functions).

Lemma 3.15

1. If A ∈ M is a T -invariant set, then there is a strictly T -invariant set A∞ such
that μ (A∞) = μ(A).

2. If f is a T -invariant function, then there is a strictly T -invariant function f̄ such
that f̄ (x) = f (x) -a.e.

Proof

1. Let

A∞ =
∞⋂
n=0

∞⋃
i=n

T−i A.

It is easy to check that A∞ ∈ M, T−1A∞ = A∞ and μ (A∞) = μ(A).
2. Let

A f = {
x : f (T kx) = f (x) for some k ∈ N

}
.

Clearly, A f has measure 1, since the set {x : f (T x) = f (x)} is contained in A f .
Let

f̄ (x) =
{
f (y) if y = T k(x) ∈ A f for some k ∈ N

0 otherwise.

It is easy to see that f̄ is well-defined, strictly T -invariant and f̄ = f -a.e. �

Let us find out the conditions under which the limit f̃ (x) in the ergodic theorem is
constant a.e. for every f ∈ L1(μ).

Suppose f̃ (x) =constant -a.e. for every f ∈ L1(μ). Let A ∈ M be a strictly T -
invariant set and let χA be the characteristic function of A.

The ergodic theorem for χA implies
∫
X χ̃A dμ = ∫

X χA dμ = μ(A). Now
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χ̃A(x) = lim
n→∞

1

n

n−1∑
k=0

χA(T
kx).

Since A = T−1A, T x ∈ A if and only if x ∈ T−1A = A or T kx ∈ A if and only if
x ∈ T−k A = A for k ∈ N. Therefore,

χ̃A(x) =
{
1 if x ∈ A

0 if x /∈ A.

By assumption, χ̃A(x) =constant -a.e. Therefore, χ̃A = 0 or 1 -a.e. This implies
μ(A) = 0 or 1. That is, every T -invariant set has measure either 0 or 1.

Now, suppose on the contrary that if A ∈ M is T -invariant then μ(A) = 0 or
1. Let f ∈ L1(μ) and let f̃ (x) be the limit as in the ergodic theorem. By ergodic
theorem, f̃ ◦ T = f̃ -a.e. on X .

Let

A(k, n) =
{
x : k

2n
≤ f̃ (x) <

k + 1

2n

}
for k ∈ Z, n ∈ N.

Now
T−1(A(k, n))�A(k, n) ⊂ {

x : f̃ ◦ T (x) �= f̃ (x)
}
.

Therefore,
μ(T−1(A(k, n))�A(k, n)) = 0

and hence, A(k, n) is a T -invariant set and therefore μ(A(k, n)) = 0 or 1.
Now, for a fixed n ∈ N,

⋃
k∈Z

A(k, n) = X is a disjoint union. Therefore, for each

n ∈ N, there exists a unique kn ∈ Z such that μ(A(kn, n)) = 1.

Let Y =
∞⋂
n=1

A(kn, n). Then μ(Y ) = 1 (because μ(Y c) = 0). Since f̃ is constant

on Y and μ(Y ) = 1, f̃ is constant a.e on X .

Definition 3.16 A measure preserving transformation T : X −→ X , where (X,

M, μ) is a probability measure space, is said to be ergodic if for every set A ∈ M
which is T -invariant, one has μ(A) = 0 or 1.

Indeed we have shown that a measure preserving transformation T is ergodic if
and only if every T -invariant function f is constant a.e. on X .

Proposition 3.17 Let (X,M, μ) be a second countable probability measure space
such that every non-empty open subset of X has positive measure. If T : X −→ X
is an ergodic transformation then

μ
({
x : {

T nx : n ≥ 0 is dense in X
}}) = 1.

That is, almost all points in X have dense orbits.
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Proof Let {Un}∞n=1 be a basis for X . Let

Y = {
x : {

T nx : n ≥ 0 is dense in X
}}

.

Clearly x /∈ Y if and only if there is a basic open set Uk such that x ∈
∞⋂
n=0

(X \
T−n(Uk)) = P , say. It is easy to see that P ⊂ T−1(P). Since T ismeasure preserving
and P ∈ M, μ(T−1P) = μ(P). Therefore, T−1P ≡ P (mod 0) and hence, P is
T -invariant. AlsoUn ∩ P = ∅ and sinceμ(Uk) > 0,wemust haveμ(P) = 0,which
implies μ(Pc) = 1. Ergo, Pc consists of points x whose T -orbits are dense in X . �

Example 3.18 Let X = [0, 1) be equipped with the Lebesgue measure. If c ∈ R,
the map Tc : X −→ X defined by

Tc(x) = x + c (mod 1) = {x + c} i.e., fractional part of x + c.

It is clear that Tc preserves the Lebesgue measure, and it is easy to see that if c ∈ Q,
then Tc is periodic and all orbits are finite having same cardinality. Therefore, Tc is
not ergodic when c is rational.

Example 3.19 If X is the circle S = {z∈C : |z| =1} with the normalised Lebesgue
measure, then T : S −→ S defined as T (z) = az is measure preserving, as can be
easily verified. Then T is ergodic iff a is not a root of unity. For, suppose a is a root
of unity, i.e., a p = 1 for some p �= 0. Then f (z) = z p. Clearly f ◦ T = f , but f is
not constant a.e. Therefore, T is not ergodic.

Conversely, suppose a is not a root of unity and let f (z) =
∞∑

n=−∞
bnzn be its

Fourier expansion. Now, f ◦ T = f implies
∞∑

n=−∞
bnanzn =

∞∑
n=−∞

bnzn . Hence,

bn(an − 1) = 0. As an �= 1, for any n �= 0, we must have bn = 0 for all n �= 0.
Consequently, it follows that f is constant a.e. and that T is ergodic. Alternatively,
if a = e2π icn , then T is ergodic whenever c is irrational.

4 Geodesic Flows on Closed Surfaces

Let M be a compact or, more generally, a complete, smooth manifold endowed with
a Riemannian metric g, and let SM denote the associated unit tangent bundle. That
is,

SM = {(x, v) : x ∈ M, v is a unit tangent vector to M at x} .

For each t ∈ R, consider the transformation φt : SM −→ SM defined as follows:
Given (x, v) ∈ SM , let γv be the unique geodesic in M passing through the point
x ∈ M and with v as its tangent vector at x . Since M is a manifold which is complete,
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γv is defined on all of R. Moreover, given any two points p, q ∈ M there exists a
geodesic joining p and q that realises the distance between them. Now set

φt (x, v) = (γv(t), γ
′
v(t)). (2)

It is easy to verify thatφt as defined above for all t ∈ R constitutes a 1-parameter group
of transformations, called the geodesic flow, and satisfies the following properties:

1. φt ◦ φs = φt+s = φs+t = φs ◦ φt and φ0 = Id|SM .
2. φt is measure preserving where the measure under consideration is the Liouville

measure given locally by the product of the Riemannian volume [form] on M,
(i.e.,

√
det(gi j ) dx1 ∧ · · · ∧ dxn) - also called the Riemannian measure and the

usual Lebesgue measure on the unit sphere.

It would be illuminating to look at a simple example of the geodesic flow.

Example 4.1 Suppose M = S2, the unit 2-sphere, then M admits a metric of con-
stant positive curvature. Since all of its geodesics are great circles, it means that every
orbit of the geodesic flow is periodic, and is therefore not ergodic.

Following up on the previous example, the question of ergodicity of the geodesic
flow on closed surfaces of constant negative curvature is treated in the sequel.

The Gauss-Bonnet theorem suggests that a compact Riemann surface with genus
≥ 2 admits a Riemannian metric of constant negative curvature.

We shall initially see how to define such a metric on these surfaces. The uni-
versal cover of the surface is, in fact, the upper half plane H2, where H2 =
{z ∈ C : Im(z) > 0}, equipped with the metric ds =

√
dx2 + dy2

y
, which is a met-

ric of constant negative curvature, called the hyperbolic metric. Therefore, we first
discuss the geometry of the upper half plane.

4.1 Isometries and Geodesics of H2

Let γ : I −→ H2 be a piecewise differentiable path parametrised as

γ (t) = {
z(t) = x(t) + iy(t) ∈ H2 : t ∈ I

}
, where I = [0, 1].

Then, the hyperbolic length l(γ ) of the path is given by

l(γ ) =
1∫

0

√
( dxdt )

2 + (
dy
dt )

2

y(t)
dt =

1∫
0

∣∣ dz
dt

∣∣
y(t)

dt. (3)
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The hyperbolic distance ρh(z, w) between any two points z, w ∈ H2 is given as
ρh(z, w) = inf l(γ ), where the infimum is taken over all piecewise differentiable
paths γ joining z and w in H2.

A natural question is to look at the isometries of H2; i.e., transformations on H2

preserving the hyperbolic distance ρh defined above. This leads us to a particular
group of matrices denoted as PSL(2,R).

In order to place the elements in PSL(2,R), we first look at the group of matrices
SL(2,R) consisting of all 2 × 2 real matrices of the form

g =
(
a b
c d

)
where det(g) = 1. (4)

Quite clearly, the above group of matrices assumes a correspondence with the group
of all fractional linear transformations of C onto itself of the form

{
z �−→ az + b

cz + d
: ad − bc = 1; a, b, c, d ∈ R

}

with the product of two such transformations being equivalent to the product of
two corresponding matrices in SL(2,R) and the inverse of a given transformation
corresponding to the inverse matrix.

However the correspondence is not 1-1, rather any such fractional linear trans-
formation is represented by a pair of matrices ±g. Ergo, the group of all frac-
tional linear transformations, henceforth identified with PSL(2,R), is isomorphic
to SL(2,R)/ ± I , where I is the 2 × 2 identity matrix. The corresponding identity
transformation in PSL(2,R) will be denoted by I d.

Remark 4.2 Note that PSL(2,R) contains all fractional linear transformations of the
form z �−→ az+b

cz+d , where ad − bc = � > 0, as dividing the numerator and denom-

inator by
√

� gives a new matrix of determinant 1, but resulting in the same trans-
formation on H2. In particular, PSL(2,R) contains transformations of the form

z �−→ az + b, a, b ∈ R, a > 0 and those of the form z �−→ −1

z
.

Remark 4.3 PSL(2,R) acts on H2 by homeomorphisms. In fact, PSL(2,R) ⊂
Isom(H2), the group of all isometries of H2 (i.e., transformations of H2 onto itself
preserving the hyperbolic distance on H2).

Proof Firstly, any transformation of the form z �−→ az + b

cz + d
on C maps H2 onto

itself. Given any T ∈ PSL(2,R), let w = T (z) = az + b

cz + d
. Then,

w = (az + b)(cz + d)

|cz + d|2 = ac |z|2 + adz + bcz + bd

|cz + d|2 .

Hence, the imaginary part Im(w) of w is,
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Im(w) = w − w

2i
= z − z

2i |cz + d|2 = Im(z)

|cz + d|2 .

Therefore, Im(z) > 0 ⇐⇒ Im(w) > 0. As T is continuous and its inverse exists,
we conclude that T is a homeomorphism of H2 onto itself.

To show that T ∈ PSL(2,R) is an isometry of H2 onto itself, we show that if γ :
I −→ H2 is a piecewise differentiable path in H2, then l (T (γ )) = l(γ ). Therefore,
suppose γ := z(t) = x(t) + iy(t), and T (γ ) is given by w(t) = T (z(t)) = u(t) +
iv(t). Now

dw

dz
= a(cz + d) − c(az + b)

(cz + d)2
= 1

(cz + d)2
.

Since v = y

|cz + d|2 , we have
∣∣∣∣dw

dz

∣∣∣∣ = v

y
. Therefore,

l(T (γ )) =
1∫

0

∣∣ dw
dt

∣∣
v(t)

dt =
1∫

0

∣∣ dw
dz

dz
dt

∣∣
v(t)

dt

=
1∫

0

∣∣ dw
dz

∣∣ ∣∣ dz
dt

∣∣
v(t)

dt =
1∫

0

∣∣ dz
dt

∣∣
y(t)

dt = l(γ ).

�

It is a fact that isometries take geodesics to geodesics and hence any transformation
in PSL(2,R) maps geodesics to geodesics. We now determine the geodesics on the
hyperbolic plane.

Theorem 4.4 The geodesics in H2 are semicircles and straight lines orthogonal to
the real axis.

Proof Let z1, z2 ∈ H2. First suppose z1 = ia and z2 = ib with b > a which are two
points on the imaginary axis. If γ : [0, 1] −→ H2 is any path joining ia to ib, with
γ (t) = x(t) + iy(t), then

l(γ ) =
1∫

0

√
( dxdt )

2 + (
dy
dt )

2

y(t)
dt ≥

1∫
0

∣∣∣ dydt
∣∣∣

y(t)
dt ≥

b∫
a

dy

y
≥ ln

b

a
.

It is easy to verify that the equality in the above expression is realisedby thehyperbolic

length of the segment of the y-axis joining ia to ib which is of length ln
b

a
and hence

the geodesic joining the points ia and ib is the segment of the imaginary axis between
them.

If z1, z2 ∈ H2 are arbitrary, let L be the unique Euclidean semi-circle or straight
line orthogonal to the real axis passing through z1 and z2, then there exists
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a transformation in PSL(2,R) which maps L into the imaginary axis. The trans-

formation T (z) = −1

z − a
takes a to ∞ and b to

1

b − a
(> 0), and the transformation

S(z) = z − 1

b − a
= z − c takes ∞ to ∞ and c to 0. Thus,

S ◦ T =
(
1 −c
0 1

) (
0 −1
1 −a

)
=

(−c −1 − ac
1 −a

)

is the transformation in PSL(2,R) that takes (a, b) to (∞, 0). Since each element of
PSL(2,R) is an isometry of H2 and segments of the imaginary axis are geodesics,
we conclude that the geodesic joining z1 and z2 is the segment of L joining them. �

Since PSL(2,R) acts by isometries on H2, it acts on the unit tangent bundle SH2

as

g(z, ζ ) = (g(z), Dzg(ζ )) =
(
g(z),

1

(cz + d)2

)
,

where z ∈ H2, ζ ∈ TzH2 such that ‖ζ‖ = 1 and g =
(
a b
c d

)
∈ PSL(2,R).

Lemma 4.5 The action of PSL(2,R) on SH2 is transitive and free, i.e., all isotropy
groups are trivial.

Proof Let z0 = i and ζ0 be the unit tangent vector at z0 pointing in the positive
direction of the imaginary axis. Let (z, ζ ) ∈ SH2 and σ be the positive imaginary
half axis starting from z0. Let L be the unique geodesic determined by (z, ζ ). Let g ∈
PSL(2,R) be the transformation taking σ to L , i.e., g(σ ) = L , with g(z0) = z. Since
transformations of PSL(2,R) have positive determinant, they preserve orientation
and hence the condition that Dz0g(ζ0) = ζ forces g to be unique; we will, therefore,
denote it by gzζ . �
Remark 4.6 In the above lemma, taking (z, ζ ) ∈ SH2 to gzζ ∈ PSL(2,R), sets up a
bijection F between SH2 and PSL(2,R), and is easily seen to be a diffeomorphism.

Let z0 = i and ζ0 be as in the proof of Lemma4.5.Given an arbitrary (z, ζ ) ∈ SH2,
let gzζ be the unique element of PSL(2,R) (which exists by virtue of the lemma)
that takes (z0, ζ0) to (z, ζ ) in SH2. The uniqueness of the element gzζ shows that
the diffeomorphism F intertwines the action of PSL(2,R) on SH2 with the left
multiplication in the group. That is,

g((z, ζ )) = g · gzζ ∀g ∈ PSL(2,R).

Proposition 4.7 The geodesic flow on SH2 corresponds to the flow on the group
PSL(2,R) given by the right translation

g �−→ g · gt , where gt =
(
e

t
2 0
0 e

−t
2 ,

)
∀t ∈ R.
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Proof It is clear thatφt (z0, ζ0) = gt(z0, ζ0), whereφt is the geodesic flow.Therefore,
for (z, ζ ) ∈ SH2,

φt (z, ζ ) = φt
(
gzζ (z0, ζ0)

) = gzζ
(
φt (z0, ζ0)

) = gzζ (gt(z0, ζ0)) = gzζ gt .

The second equality is a result of the fact that the action of PSL(2,R) on H2 is
by isometries, and hence takes geodesics to geodesics as described in the proof of
Lemma 4.5. �

Let � be a compact Riemann surface of genus g ≥ 2. Then � has H2 as its
universal cover, i.e., if� = π1(�), the fundamental group of�, then� acts freely and
discontinuously on H2 by deck transformations. Consequently, � can be identified
with a discrete subgroup of PSL(2,R) such that the quotient space � = H2/� is
compact. Further � is a Riemannian manifold with constant negative curvature −1
with respect to the metric induced from H2 via the quotient map. The pictures in this
page roughly serve to illustrate this procedure.

Proposition 4.8 The identification of SH2 with PSL(2,R) induces an identification
S

(
H2/�

) ∼= �\PSL(2,R). The geodesic flow on S� corresponds to the flow

� \ PSL(2,R) −→ �\PSL(2,R), �g �−→ �ggt ,

where gt =
(
e

t
2 0
0 e

−t
2

)
.

Proof Since (z, ζ ) �−→ gzζ intertwines the action of PSL(2,R), the proof follows
from the previous proposition and is left as an exercise to the reader. �

4.2 Hopf’s Proof of Ergodicity

In this section, we sketch a proof of the ergodicity of the geodesic flow gt on �\
PSL(2,R) that was originally presented by E. Hopf [9]. In this context, we introduce
the notion of horocycles, some of whose illustrative examples are the lines parallel
to the x-axis in H2. As we shall soon discover, horocycles have a very special role
in the study of the dynamics of the geodesic flow.

Lines parallel to the x-axis can also be viewed as orbits of points in H2 under the
action of the 1-parameter subgroup of PSL(2,R) consisting of matrices of the form
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Fig. 1 Geodesic and horocycle flows

H+
s =

(
1 s
0 1

)
; that is, transformations of the form z �−→ z + s. Being orthogonal to

the lines parallel to the y-axis in H2, it turns out that their images, under a typical
element of PSL(2,R) taking ∞ to a point x0 on the x-axis, are the Euclidean circles
in H2 tangent to the x-axis at the point x0.

Moving a step further, and using the identification of PSL(2,R)with SH2, we see
that the 1-parameter subgroup H+

s , of PSL(2,R), defines a measure preserving flow

on SH2. In a similar fashion, we observe that the 1-parameter subgroup H−
r =

(
1 0
r 1

)

of PSL(2,R) also defines a measure preserving flow on SH2. The flow H+
s is termed

the stable horocycle flow while H−
r is termed the unstable horocycle flow.

The next figure serves to illustrate the orbits of a vector v ∈ SH2 under the dynam-
ics of the two horocycle flows, in relation to the geodesic flow.

The two horocycle flows determine vector fields on SH2 which are linearly inde-
pendent, i.e., at any given point of SH2, the tangent vectors of the corresponding
vector fields are linearly independent and hence, together with the tangent vector
given by geodesic flow vector field, span the tangent space to SH2 at that point.

4.2.1 A Historical Interlude

Eberhard Hopf exploited the interrelation between the stable and unstable horocycle
flows and the geodesic flow in his proof. Historically it was G.A. Hedlund [7] who,
in 1934, first proved that the geodesic flow on closed surfaces of constant negative
curvature is ergodic (which was called metric transitivity at that time). In 1936, E.
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Hopf gave another proof of ergodicity in the case considered by Hedlund. Hedlund
was also the first to recognize the importance of the close relationship between horo-
cycle and geodesic flows. Later, in 1939, Hedlund proved [8] stronger properties (like
mixing) for geodesic flow on surfaces of finite area and constant negative curvature.
Erogdicity was extended to arbitrary dimensions for manifolds of constant negative
curvature by Hopf in 1939. In the same paper [9], Hopf also proved that the geodesic
flow is ergodic for a surface of finite area and of variable negative curvature under the
restriction that the curvature and its first derivatives are bounded in absolute value
(Fig. 1).

Gelfand and Fomin, in 1952 [5], provided the next impetus by proving the stronger
property of mixing for the case of manifolds of higher dimension and constant nega-
tive curvature. Their approach and method was generalised by Mautner in 1957 [11]
to prove ergodicity of the geodesic flow on locally symmetric spaces of negative
curvature and arbitrary dimensions.

However the question remained open in the case of variable curvature in arbitrary
dimension until 1960s when the work of Anosov and Sinai [2] led Anosov to prove
ergodicity for closed manifolds of negative curvature and arbitrary dimension [1].
The approach adopted in the work of Anosov and Sinai enabled Anosov to overcome
the difficulty faced by Hopf, and Anosov proved ergodicity for manifolds of finite
volume and variable negative curvature under exactly the same hypothesis considered
by Hopf in 1939 [9], namely when the covariant derivative of the curvature tensor is
bounded in absolute value.

Remark 4.9 For manifolds of finite volume and variable negative curvature without
the boundedness assumption on the first derivatives of curvature, to the best of our
knowledge, the question of ergodicity is still an outstanding open problem (even for
surfaces!).

Resuming the sketch of Hopf’s proof, let f : S� −→ R be a continuous function
with compact support where� is a surface of genus g ≥ 2with the hyperbolicmetric.
Note that as a consequence of Theorem 2.39, it suffices to consider continuous
functions with compact support. We will show that f is constant a.e. when f is
gt -invariant.

For the three smooth flows gt , H+
s and H−

r on PSL(2,R), a routine computation
shows that

H+
s gt = gt H

+
e−t s and H−

r gt = gt H
−
e−t r .

From this, it follows that

f (xH+
s gt) = f (xgt H

+
e−t s) and f (xH−

r gt) = f (xgt H
−
e−t r ).

Uniform continuity of f then implies that

lim
t→∞

(
f (xH+

s gt) − f (xgt )
) = lim

t→∞
(
f (xgt H

+
e−t s) − f (xgt)

) = 0

and
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lim
t→∞

(
f (xH−

r gt) − f (xgt)
) = lim

t→∞
(
f (xgt H

−
e−t r ) − f (xgt )

) = 0.

Therefore,

lim
τ→∞

1

τ

τ∫
0

(
f (xgt ) − f (xH+

s gt)
)
dt = 0.

Similarly,

lim
τ→∞

1

τ

τ∫
0

(
f (xg−t ) − f (xH−

r g−t)
)
dt = 0.

With the notation introduced in an earlier remark in this chapter, we note that
f̃ +(xH+

s ) and f̃ −(xH−
r ) exist whenever f̃ +(x) and f̃ −(x) exist. Further, we con-

clude from the above that f̃ +(x) = f̃ +(xH+
s ) and f̃ −(x) = f̃ −(xH−

r ), and are equal
a.e.

Let x0 ∈ S�. We will construct an open neighbourhood of x0 as follows. Let
δ1, δ2, δ3 > 0 be sufficiently small. Construct a smooth curve γδ1(x0) through x0 by
defining

γδ1(x0) = {
x0H

−
r : |r | < δ1

}

and then construct an open smooth surface σδ1,δ2(x0) by defining

σδ1,δ2(x0) = {
x0H

−
r gt : |r | < δ1, |t | < δ2

}
=

⋃
|t |<δ2

(
γδ1(x0)

)
gt .

Finally, construct an open neighbourhood Uδ1,δ2,δ3(x0) by

Uδ1,δ2,δ3(x0) =
⋃

|s|<δ3

(
σδ1,δ2(x0)

)
H+

s .

It follows from the smoothness of the corresponding vector fields that for sufficiently
small δ1, δ2, δ3, the surfaces

(
σδ1,δ2(x0)

)
H+

s are disjoint for distinct s with |s| < δ3
and for the point

x = x0H
−
r gt H

+
s ∈ Uδ1,δ2,δ3(x0),

the numbers r, t, s are smooth coordinates in Uδ1,δ2,δ3(x0). In fact, as x0 varies over
a compact set on S�, all of δ1, δ2, δ3 can be chosen to be independent of x0. Now,
the Liouville measure on S� induces conditional measures on each of the surfaces(
σδ1,δ2(x0)

)
H+

s , for all s and invoking Fubini’s theorem shows that for a.e. y ∈
σδ1,δ2(x0) (with respect to the induced conditionalmeasure), one has f̃ +(y) = f̃ −(y);
and this holds for x0 a.e. in S�(with respect to μ).
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We will now show that f̃ (x) is constant for x(= x0H−
r gt H+

s ) a.e. inUδ1,δ2,δ3(x0).
To this end, let

Ũ =
{
x ∈ Uδ1,δ2,δ3(x0) : f̃ +(x) exists and

for y = x0H
−
r gt ∈ σδ1,δ2(x0), f̃ +(y) = f̃ −(y)

}
.

Since the vector fields are smooth, it follows from Fubini’s theorem that Ũ has
full measure in Uδ1,δ2,δ3(x0). Further, if x1, x2 ∈ Ũ , with x1 = x0N−

r1 gt1N
+
s1 and

x2 = x0N−
r2 gt2N

+
s2 , and if y1, y2, z1, z2 denote x0N

−
r1 gt1, x0N−

r2 gt2 , x0N−
r1 and x0N−

r2
respectively, then we have,

f̃ +(x1) = f̃ +(y1) = f̃ −(y1) = f̃ −(z1)

= f̃ −(z2) = f̃ −(y2) = f̃ +(y2) = f̃ +(x2).

Thus f̃ + is constant in Ũ , i.e., f̃ + is constant a.e. in Uδ1,δ2,δ3(x0), which proves the
ergodicity of gt .
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Symbolic Dynamics

Siddhartha Bhattacharya

1 Introduction

In this chapter, we will study a class of topological dynamical systems known as
symbolic dynamical systems. These systems play an important role in coding theory,
combinatorial dynamics and theory of cellular automata. In Sect. 2, we introduce the
basic concepts associated with such systems. In Sect. 3, we introduce the notion of
entropy. In Sect. 4, we compute the measure theoretic entropy of Bernoulli shifts. In
Sect. 5, we consider a class of symbolic dynamical systems related to tiling spaces,
and prove a result due to M. Szegedy that asserts that any translational tiling of Z

d

by a finite set F is periodic when |F | is prime. The last section is devoted to an
algebraic dynamical system known as 3-dot system. Using the concept of directional
homoclinic groups we show that Z

2-actions on symbolic spaces can exhibit strong
rigidity property.

2 Basic Concepts

In this section, we review some basic concepts of symbolic dynamics (see [5] for a
comprehensive introduction).

Definition 2.1 Let G be a discrete group.

1. A topological G-space is a compact topological space X together with a contin-
uous action σ of G on X . In other words, σ is a continuous map from G × X to
X that satisfies the properties of a group action.
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Notation 2.2 For any g ∈ G, the map x �−→ g · x = σ(g, x) will be denoted by
σ(g).

2. If (X, σ ) and (Y, ρ) are topological G-spaces, a map f : X −→ Y is said to be
G-equivariant if f ◦ σ(g) = ρ(g) ◦ f for all g ∈ G.

3. A topological G-space (Y, ρ) is said to be a factor of a topological G-space
(X, σ ) if there exists a surjective G-equivariant map from X to Y .

4. Two topological G-spaces (X, σ ) and (Y, ρ) are topologically conjugate if there
exists a G-equivariant homeomorphism from X to Y .

Let A = {1, . . . , k} be a finite set and let AZ be the set of all functions from Z to
A. The set Y = AZ can also be viewed as the collection of all bi-infinite sequences
taking values in A. For any a ∈ AZ, {ai }i∈Z will denote the corresponding bi-infinite
sequence. Let d denote the discrete metric on A, i.e., d(x, y) = 1 if x �= y and
d(x, y) = 0 if x = y. We define a metric dY on Y by

dY (a, b) =
∞∑

i=−∞

d(ai , bi )

2|i |+1
.

We note that dY (a, b) is small if and only if there exists a large N > 0 such that
ai = bi for all i ∈ [−N , N ]. Hence, dY induces the product topology on Y = AZ

with cylinder sets as basic open subsets (the choice of the metric is not relevant here
as long as it induces the product topology).
Let T : Y −→ Y be the shift map defined by T (a)i = ai+1. It is easy to see that
(Y, d) is a compact metric space and T : Y −→ Y is a self homeomorphism.

Definition 2.3 If X ⊂ AZ is a closed shift invariant subset and T is the restriction
of the shift map to X then (X, T ) is called a symbolic dynamical system.

Example 2.4 X = AZ and T is the shift map.

Example 2.5 Suppose we only have two symbols, i.e., A = {0, 1}. Let X ={
a ∈ AZ : there are no two consecutive 0’s

}
.

Example 2.6 We fix finite sets A and E ⊂ A × A. Let G denote the directed
graph with A as the set of vertices and E as the set of edges. We define XG ={
a ∈ AZ : (ai , ai+1) ∈ E ∀i}. The dynamical system (XG, T |XG ) is called the topo-
logical Markov chain corresponding to G. Note that Example 2.5 can be seen as a
special case where A = {0, 1} and E = {(1, 0), (1, 1), (0, 1)}.
Example 2.7 Suppose A = {0, 1} and X is the set of all bi-infinite sequences in
{0, 1} such that between any two consecutive 1’s there are even number of 0’s. Then
it is easy to verify that X is closed and shift-invariant.

Example 2.8 For any finite set A we define L(A) =
∞⋃
n=1

An . The set L(A) can be

viewed as the collection of all finite words with A as the alphabet set. For any
S ⊂ L(A), we define



Symbolic Dynamics 111

XS = {
a ∈ AZ : s does not occur in A ∀s ∈ S

}
.

Clearly, XS is a closed shift-invariant subset of AZ.

Definition 2.9 Suppose X ⊂ AZ is a closed shift-invariant subset and σ is the shift
action of Z on X . Then (X, σ ) is called a subshift of finite type if X = XS for some
finite set S ⊂ L(A).

Definition 2.10 Suppose Y ⊂ AZ is a closed shift-invariant subset such that the shift
action of Z on Y is a factor of a subshift of finite type X ⊂ AZ. Then the shift action
on Y is called a sofic shift.

Example 2.11 With three symbols, suppose A = {0, 1, 2} and E =
{(1, 1), (1, 0), (2, 1), (0, 2), (2, 0)}. Let X ⊂ AZ be the topological Markov chain
associated with (A, E). Let φ : A −→ {0, 1} denote the map defined by φ(1) = 1
and φ(0) = φ(2) = 0. Then, φ induces a continuous shift equivariant map from X
to AZ. It is easy to see that the image of φ is the system described in Example 2.7.
Hence the system described in Example 2.7 is a sofic shift.

Let A be a finite set. Fix k ≥ 1, and choose a map θ : A2k+1 −→ A. Such maps
are called block codes. Any block code θ induces a map θ : AZ −→ AZ defined by
θ(x)i = θ(xi−k, . . . , xi+k). The map θ is called the sliding block code corresponding
to θ .

Example 2.12 Let A = {0, 1} and q be the continuous shift-equivariant map from
AZ to AZ defined by q(x)i = xi−1 + xi + xi+1 (mod 2). Then q = θ , where θ :
A3 −→ A is the block code defined by θ(a, b, c)i = a + b + c (mod 2).

It is easy to see that for any block code θ, θ is a continuous shift-equivariant map
from AZ to AZ. The following result, known as the Curtis-Hedlund theorem, shows
that the converse is also true.

Theorem 2.13 Suppose A is a finite set and f : AZ −→ AZ is a continuous shift-
equivariant map. Then there exists k ≥ 1 and a block code θ : A2k+1 −→ A such
that f = θ .

Proof Since AZ is compact, f is uniformly continuous, we choose a positive δ such

that d( f (x), f (y)) <
1

2
whenever d(x, y) < δ. Since

d( f (x), f (y)) =
∑ d( f (x)i , f (y)i )

2i
,

it follows that f (x)0 = f (y)0 whenever d( f (x), f (y)) <
1

2
. We choose k such that

∑

|i |>k

1

2k
< δ. Then. f (x)0 = f (y)0 whenever xi = yi for all i with |i | ≤ k. This

shows that there is a block code θ : A2k+1 −→ A such that f (x)0 = θ(x−k, . . . , xk).
Since f is also shift-equivariant, we deduce that f = θ . �
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3 Entropy

Wewill now introduce a dynamical invariant called topological entropy for symbolic
dynamical systems. We will need the following elementary result about sequences
of real numbers.

Proposition 3.1 Let {ai } be a sequence of non-negative real numbers such that

am+n ≤ am + an for all m and n. Then lim
n→∞

an
n

exists.

Proof Set c = inf
n

an
n
. For any ε > 0, we choose n such that

∣∣∣
an
n

− c
∣∣∣ < ε.

Let D = max{a1, . . . , an}. Letm ≥ n be any positive integer. We writem = kn + j ,
where 0 ≤ j ≤ n − 1. Now,

am
m

≤ kan + a j

kn + j
≤ c + ε + D

m
.

This shows that
am
m

≤ c + 2ε as m → ∞. Since ε is arbitrary, we conclude that
am
m

→ c as m → ∞. �

Form ≤ n, let [m, n] denote the set {m, . . . , n}. For any closed shift invariant subset
X ⊂ AZ and a finite set S ⊂ Z, let πS denote the projection map from AZ to AS . For
k ≥ 1, let Bk denote the set π[0,k−1](X). The set Bk can also be described as the set
of all blocks of length k that occurs in elements of X . Since X is shift invariant it
follows that π[0, n−1](X) = π[m,m+n−1](X) for all m and n. Since there is a natural
injective map from π[0,m+n−1](X) to π[0,m−1](X) × π[m,m+n−1](X), we deduce that
|Bm+n| ≤ |Bm | × |Bn|. We define

h(X) = lim
k→∞

log(|Bk |)
k

.

The number h(X) is called the entropy of the shift action of Z on X . By the previous
proposition it is well defined.

Example 3.2 Suppose X = AZ. In this case Bn = An and |Bn| = |A|n . Hence, the
entropy of the corresponding shift action is log |A|.
Example 3.3 Suppose X = {a ∈ {0, 1}Z : there are no two consecutive 1’s}. Let
T denote the 2 × 2 adjacency matrix of the associated graph. Then, T11 = T12 =
T21 = 1 and T22 = 0. Hence T has two distinct eigenvalues

√
5 ± 1

2
. It is easy to see

that |Bn| is the sum of entries of T n−1. This implies that
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h(X) = lim
n→∞

log |Bn|
n

= log

(√
5 + 1

2

)
.

We now show that topological entropy is invariant under topological conjugacy.

Theorem 3.4 Let A be a finite set and for i = 1, 2, let Xi be a closed shift invariant
subset of AZ such the corresponding shift actions of Z are topologically conjugate.
Then h(X1) = h(X2).

Proof Let f be a topological conjugacybetween these two shift actions. FromCurtis-
Hedlund theorem, it follows that there exists k ≥ 1, and a map θ : A2k+1 −→ A
such that f is the sliding block code corresponding to θ . Hence for any i ≤ j ,
the elements f (x)i , . . . , f (x) j are determined by the elements xi−k, . . . , x j+k . In
particular, |Bn(X2)| ≤ |Bn+2k(X1)|. Taking logarithms, dividing by n, and letting
n → ∞, we see that h(X1) ≥ h(X2). Similarly, we can show that h(X2) ≥ h(X1).

�

Our next task is to define the notion of entropy for a more general class of dynamical
systems.

Definition 3.5 Let L be an abelian semigroup with the property that x + x = x for
all x ∈ L . A norm on L is a map ‖·‖ from L to R

+ satisfying

‖x‖ ≤ ‖x + y‖ ≤ ‖x‖ + ‖y‖ ∀x, y ∈ L .

A normed lattice is an abelian semigroup L together with a norm map ‖·‖ : L −→
R

+.

Example 3.6 Let S be a set and let L be the collection of all finite subsets of S. For
A, B ∈ L set A + B = A ∪ B, and ‖A‖ = |A|, the cardinality of A.

Example 3.7 Let V be a vector space and let L be the collection of all finite dimen-
sional subspaces of V . For X,Y ∈ L , define X + Y to be the smallest subspace
containing X and Y , and set ‖X‖ = dim(X).

Example 3.8 Let X be a compact topological space. An open coverC of X is called
saturated if for any two open subsetsU and V of X withU ∈ C and V ⊂ U,we have
V ∈ C . Let L be the collection of all saturated open covers of X . For C, C

′ ∈ L ,
we define C + C

′
to be the collection of all open subsets that belong to both C

and C
′
. It is easy to see that C + C

′
is an element of L . For any C ∈ L , we define

‖C‖ = log(nC), where nC is the smallest cardinality of a subcover of C .

Notation 3.9 For x, y ∈ L , we say x ≤ y if x + y = y.

It is easy to see that the above notation defines a partial order on L .

Definition 3.10 If T : L −→ L
′
is a map between normed lattices then T is called

an isometry if T (x + y) = T (x) + T (y) and ‖T (x)‖ = ‖x‖ for all x, y. Clearly, the
collection of all normed lattices form a category with isometries as morphisms.
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If T : L −→ L is an isometry, then we define

‖·‖T : L −→ R
+ by ‖x‖T = lim

n→∞
1

n
(x + T x + · · · + T n−1x).

Proposition 3.11 The map ‖·‖T is well defined and it is a norm on L. Furthermore,
it satisfies the following two properties:

1. ‖x‖T ≤ ‖x‖ for all x in L;
2. Both T and I + T are isometries with respect to ‖·‖T .
Proof Fix any x ∈ L and define a sequence {an} by

an = ∥∥x + T x + · · · + T n−1x
∥∥ .

Since T is an isometry, applying the sub-additivity of the norm, we see that am+n ≤
am + an for allm, n ≥ 1. From Proposition 3.1, we deduce that ‖·‖T is well defined.
It is easy to see that ‖·‖T is a norm and satisfies property 1. Since x + x = x in L ,
we obtain

n−1∑

i=0

T i (x + T x) =
n∑

i=0

T i (x),

which proves the second property. �

Definition 3.12 For any isometry T : L −→ L , we define the entropy of T by

h(T ) = sup {‖x‖T : x ∈ L} .

Definition 3.13 Let (X, μ) be a measure space with μ(X) = 1. A partition P =
{P1, . . . , Pm} of X is a finite collection of pairwise disjoint, non-empty, measurable
subsets of X such that

⋃
Pi = X .

Notation 3.14 Let LX be the set of all partitions of X . For P, Q ∈ LX , we define

P + Q = {
Pi ∩ Q j : Pi ∈ P, Q j ∈ Q and Pi ∩ Q j �= ∅

}
.

It is easy to see that LX becomes an abelian semigroup and P + P = P for all P .
For P = {P1, . . . , Pm} ∈ LX , we set

‖P‖ = −
m∑

i=1

μ(Pi ) log2(μ(Pi )).

Proposition 3.15 LX is a normed lattice with respect to the above norm.

Proof Choose P = {P1, . . . , Pm} and Q = {Q1, . . . , Qn} in L . Set pi = μ(Pi ),
q j = μ(Q j ) and ri j = μ(Pi ∩ Q j ). Now,
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‖P + Q‖ − ‖P‖ =
∑

pi log pi −
∑

ri j log ri j = −
∑

ri j
(
log ri j − log pi

)
.

Since log is an increasing function, this shows that ‖P + Q‖ ≥ ‖P‖.
Define φ : [0, 1] −→ R by φ(0) = 0 and φ(x) = −x log x if x > 0.

Sinceφ
′′
(x) = −1

x
< 0 in (0, 1), it follows thatφ is a concave function. Put ci j = ri j

pi
if pi > 0 and 0 otherwise. Observe that ‖P + Q‖ − ‖P‖ = ∑

piφ(ci j ). Since φ is
concave, we deduce that

‖P + Q‖ − ‖P‖ ≤
∑

j

φ

(
∑

i

pi ci j

)
=

∑

j

φ(q j ) = ‖Q‖ .

�

If T : (X, μ) −→ (Y, ν) is a measure preserving map then, we define a map T ∗ :
LY −→ LX by

T ∗(P) = {
T−1(P1), . . . , T

−1(Pn)
}
.

It is easy to see that T ∗ is an isometry. Moreover, the correspondence X �−→ LX and
T �−→ T ∗ gives us a contravariant functor from the category of probability spaces
to the category of normed lattices. If T is a measure preserving map from (X, μ)

to itself then we define h(T ) = h(T ∗), where T ∗ is the isometry of LX induced by
T . The number h(T ) is called the entropy of T . Clearly, entropy is a measurable
conjugacy invariant.
Suppose X is a compact topological space and T is a homeomorphism of X . As in
the Example 3.8, let L denote the collection of all saturated open covers of X . For any
C ∈ L , we define T ∗(C) = {

T−1(U ) : U ∈ C
}
. It is easy to see that T ∗(C) ∈ L

for allC ∈ L and T ∗ is an isometry of L . The number h(T ∗) is called the topological
entropy of T . It is a topological conjugacy invariant. In the special case when (X, T )

is a one-dimensional shift, this coincides with the more explicit definition presented
earlier.

4 Computations of Entropy

In this section, we compute the entropy of Bernoulli shifts and translations on tori. If
X is a set andA is a collection of subsets of X then by σ(A) we denote the smallest
σ -algebra on X that containsA. We begin with the following approximation lemma.

Lemma 4.1 Suppose (X,B, μ) is a probability space and suppose A ⊂ B is an
algebra such that σ(A) = B. Then for any P ∈ LX and ε > 0, there exist a partition
P1 ⊂ A and Q ∈ LX with ‖Q‖ < ε such that P ≤ P1 + Q.

Proof We first consider the case when P has only two elements, i.e., P = {B, Bc}
for somemeasurable set B. Note that x log x → 0 as x → 0 or x → 1. Hence, we can
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find δ > 0 such that μ(E) < δ implies ‖{E, Ec}‖ < ε. As σ(A) = B, we can find
A ∈ A such that μ(F) < δ, where F = (B \ A) ∪ (A \ B). Define P1 = {A, Ac}
and Q = {F, Fc}. It is easy to see that P1 and Q have the required properties.

Now suppose P = {B1, . . . , Bn}. For 1 ≤ i ≤ n, define Pi = {
Bi , Bc

i

}
. Find

Pi
1 , Qi as above with

∥∥Qi
∥∥ <

ε

n
and put P1 = ∑

Pi and Q = ∑
Qi . �

We note the following consequence of the previous lemma.

Proposition 4.2 Let (X,B, μ) be a probability space and let T : X −→ X be a
measure preservingmap. SupposeA is an algebra such thatσ(A) = B. Then h(T ) =
sup {‖P‖T : P ⊂ A}.
Proof Fix ε > 0 and choose P

′
such that h(T ) ≤ ∥∥P ′∥∥

T
+ ε. Applying the previous

lemma, find P1 and Q such that P
′ ≤ P1 + Q, P1 ⊂ A and ‖Q‖ < ε. Since ‖Q‖T ≤

‖Q‖, it follows that

h(T ) ≤ ‖P1‖T + ‖Q‖T + ε = ‖P1‖T + 2ε.

As ε is arbitrary, this proves the proposition. �

Definition 4.3 Let (X,B, μ) be a probability space and let T : X −→ X be an
invertible measure preserving map. A partition P is said to be a generator if B is the
smallest σ -algebra that is invariant under the Z-action generated by T and contains
{P1, . . . , Pn}.
Theorem 4.4 If P is a generator, then h(T ) = ‖P‖T .
Proof For any partition P , let A(P) denote the collection of all subsets which can
be expressed as unions of elements of P . It is easy to verify that A(P) is a finite
algebra and Q ≤ P if and only if Q ⊂ A(P). We define an algebra A∞ by

An = A

(
n∑

−n

T ∗i
)

, A∞ =
∞⋃

n=1

An.

Note that A∞ is the smallest T -invariant algebra containing P . Hence. σ (A∞) = B.
If a partition Q is contained in A∞ then Q ⊂ An for some n. Hence,

‖Q‖T ≤
∥∥∥∥∥

n∑

i=−n

T ∗i P

∥∥∥∥∥
T

=
∥∥∥
(
I + T ∗)2n+1

(P)

∥∥∥
T

= ‖P‖T .

From the previous lemma it then follows that h(T ) = ‖P‖T . �

Definition 4.5 Let (X, μ) be a probability space and let P, Q ∈ LX . Then P and Q
are said to be independent if μ(Pi ∩ Q j ) = μ(Pi )μ(Q j ) for all i and j .

It is easy to see that if P and Q are independent then ‖P + Q‖ = ‖P‖ + ‖Q‖.
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4.1 Entropy of Shifts

Let Y = {y1, . . . , yn} be a finite set and let ν be a probability measure on Y . Let
(X,B, μ) = (Y, ν)Z and let T : X −→ X be the shift map. We define a partition
P = {P1, . . . , Pn} of X by

Pi = {x ∈ X : x(0) = yi } .

Let A be the smallest T -invariant σ -algebra containing P . Since P ⊂ A, the co-
ordinate projection corresponding to 0th co-ordinate is a A-measurable map. Since
A is T -invariant, all co-ordinate projections are measurable. Hence A = B, i.e.,
P is a generator. We observe that for any k, the partitions P + · · · + T ∗k−1P and

T ∗k P are independent. Applying induction on k, we see that
∥∥∥
∑k−1

i=0 T
∗i P

∥∥∥ = k ‖P‖.
Hence, h(T ) = ‖P‖T = ‖P‖. In the special case, when ν is the uniform measure on
Y, h(T ) = log n.

Proposition 4.6 Let (X,B, μ) be a probability space and let T : X −→ X be a
measure preserving map.

1. h(T n) = nh(T ) for all n ≥ 1.
2. If T is invertible then h(T−1) = h(T ).

Proof We will prove the statements for any lattice isometry T : L −→ L .

1. Fix x ∈ L and put y = x + T x + · · · + T n−1x . Note that

k−1∑

i=0

T inx ≤
nk−1∑

i=0

T i x =
k−1∑

i=0

T ni y.

This shows that ‖x‖T n ≤ n ‖x‖T = ‖y‖T n . Since x is arbitrary, we conclude that
h(T n) = nh(T ).

2. If T is invertible then for any x ∈ L ,

∥∥∥∥∥

k−1∑

i=0

T−i x

∥∥∥∥∥ =
∥∥∥∥∥T

1−k

(
k−1∑

i=0

T i x

)∥∥∥∥∥ =
∥∥∥∥∥

k−1∑

i=0

T i x

∥∥∥∥∥ .

Hence ‖x‖T = ‖x‖T−1 for all x and h(T ) = h(T−1).

�

For i = 1, 2, let (Xi ,Bi , μi ) be a probability space and let Ti : Xi −→ Xi

be a measure preserving map. We define T1 × T2 : X1 × X2 −→ X1 × X2 by
(T1 × T2) (x, y) = (T1x, T2y). It is easy to see that T1 × T2 preserves the measure
μ1 × μ2.

Proposition 4.7 h (T1 × T2) = h (T1) + h (T2).



118 S. Bhattacharya

Proof For i = 1, 2, let π i denote the projection map from X1 × X2 to Xi . Since π i

is measure-preserving, π i∗ is an isometry from LXi to LX1×X2 . It is easy to see that
(T1 × T2)

k
∗ π i∗(P) = π i∗(T k

i∗P) for any P in LXi . We note that for any P ∈ LX1 and
Q ∈ LX2 , the partitions π1∗ (P) and π2∗ (Q) are independent. Hence, for arbitrary P
and Q, ∥∥π1

∗ (P) + π2
∗ (Q)

∥∥
T1×T2

= ‖P‖T1 + ‖Q‖T2 .

This implies that h (T1 × T2) ≥ h (T1) + h (T2).
Let A denote the algebra of all subsets of X1 × X2 that can be expressed as a finite
union of measurable rectangles. If R is a partition of X1 × X2 such that R ⊂ A, then
we can find P ∈ LX1 and Q ∈ LX2 such that R ≤ π1∗ (P) + π2∗ (Q). Since σ(A) is
the product σ -algebra on X1 × X2, applying Proposition 4.2 and the above equality,
we see that h (T1 × T2) ≤ h (T1) + h (T2). �

Lemma 4.8 Let P = {P1, . . . , Pn} be a partition of a probability space (X, μ). Then
‖P‖ ≤ log n.

Proof Put pi = μ(Pi ). Then ‖P‖ =
∑

pi log

(
1

pi

)
. As x �−→ log x is a concave

function, we see that ‖P‖ ≤ log

(∑
pi · 1

pi

)
= log n. �

4.2 Entropy of Translations

Let n ≥ 1 and let θ = (θ1, . . . , θn) be an element of the n-torus T
n . Let T :

T
n −→ T

n denote the map x �−→ θ · x . We claim that h(T ) = 0. Note that T =
T1 × · · · × Tn , where Ti : T −→ T is the translation by θi . By Proposition 4.7,
h(T ) = ∑

h(Ti ). Hence, without loss of generality, we may assume that n = 1.

Case 1. θ k = 1 for some k. Since P + P = P for all P , it follows that ‖P‖Id = 0 for
all P , i.e., h(Id) = 0. Since T k = Id, applying Proposition 4.6, we see that h(T ) = 0.

Case 2. θ is not a root of unity. We consider the partition P = {P1, P2} where

P1 = {z : 0 ≤ z < π} , P2 = {z : π ≤ z < 2π} .

Since {θn : n ∈ Z} is dense in T, it follows that P is a generator for T . Hence,
h(T ) = ‖P‖T . Note that for any k ≥ 1, the partition P + · · · + T k−1∗ P has 2k sets.

By the previous lemma, ‖P‖T ≤ lim
k→∞

log 2k

k
= 0, which proves the claim.
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5 Tilings

For any finite set A and d ≥ 1, the compact space AZ
d
admits a shift action of Z

d . If
d > 1, and X is a closed shift invariant subset of AZ

d
then the restriction of the shift

action to X is called a higher-dimensional shift. In this section, we consider a class
of such systems that arises from tilings of Z

d .

Notation 5.1 For d ≥ 1, let A, B andC be subsets ofZ
d . We will write A ⊕ B = C

if every element of C can be uniquely expressed as a + b, with a ∈ A and b ∈ B.

Definition 5.2 If F ⊂ Z
d is a finite set, then a tiling of Z

d by F is a subset C of Z
d

satisfying F ⊕ C = Z
d .

It is easy to see that F tiles Z
d if and only if Z

d can be written as a disjoint union of
translates of F .

Definition 5.3 A set E ⊂ Z
d is said to be periodic if there exists a finite index

subgroup 
 ⊂ Z
d such that E + 
 = E .

Let F = {g1, . . . , gn} be a finite subset of Z
d . We equip {0, 1}Zd

with the product
topology and define X (F) ⊂ {0, 1}Zd

by

X (F) = {
1C : F ⊕ C = Z

d
}
.

It is easy to see that x ∈ X (F) if and only if for each g ∈ Z
d there exists exactly

one g
′ ∈ g − F such that x(g

′
) = 1. This shows that X (F) is a closed subset of the

compact space {0, 1}Zd
. Moreover, X (F) is invariant under the shift action of Z

d .
The space X (F) can be viewed as the space of all tilings of F . It is non-empty if and
only if Z

d can be tiled by F .

Example 5.4 Suppose d = 2, and F = {(0, 0), (1, 0), (−1, 0), (0,−1)}. If an ele-
ment (m, n) ∈ Z

2 corresponds to the square (m, m + 1] × (n, n + 1] ∈ R
2, then the

set F corresponds to a T -shaped set in R
2. It is easy to verify that there is a unique

C ∈ Z
2 such that (0, 0) ∈ C and F ⊕ C = Z

2. This implies that any tiling of F is a
translate of C by an element of −F . In particular, F admits exactly 4 tilings, and all
tilings of F are periodic.

Example 5.5 Suppose d = 2, and F = {(0, 0), (1, 0)}. Then the tilings of Z
2 by F

are in bijective correspondencewith the tilings of the plane by 2 × 1 rectangle.We fix
an element 1C of X (F) and define a map hC : Z −→ {0, 1} by hC(i) = 1C((0, i)).
It is easy to see that the C �−→ hC is a bijective correspondence between X (F) and
the set of all maps from Z to {0, 1}. Hence X (F) can be identified with the compact
space {0, 1}Z. The shift action of Z

2 on X (F) = {0, 1}Z can be explicitly described.
The element (0, 1) acts by the shift map on {0, 1}Z, and the element (1, 0) acts by
flipping the symbols.
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We note that in the previous example the space X (F) is infinite but every element
of X (F) is periodic in the direction of (1, 0). The following example shows that this
need not be true in general.

Example 5.6 Suppose d = 2, and F = {(0, 0), (2, 0), (0, 2), (2, 2)}. We define
E1 = {(m, n) : m is even } and E2 = {(m, n) : m is odd }.We note that the tilings of
E1 by F are in bijection with the tilings of Z

2 by F
′ = {(0, 0), (1, 0), (0, 2), (1, 2)}.

Hence as in the previous example, we can find C1 ⊂ Z
2 such that C1 ⊕ F = E1 and

C1 is periodic in the direction of (1, 0) but not in the direction of (0, 1). Similarly
we can find C2 such that C2 ⊕ F = E2 and C2 is periodic in the direction of (0, 1)
but not in the direction of (1, 0). If we define C to be the disjoint union of C1 and C2

then C ∈ X (F) and it is not periodic in any direction.

The following conjecture is due to Lagarias and Wang [6]:

Conjecture 5.7 (Periodic tiling conjecture) Suppose d ≥ 1 and F ⊂ Z
d is a finite

set such that F ⊕ C = Z
d for some C ∈ Z

d . Then there exists a periodic set E ⊂ Z
d

such that F ⊕ E = Z
d .

The following proposition shows that a stronger version is true in the 1-dimensional
case.

Proposition 5.8 Let F and C be subsets of Z such that F is finite and F ⊕ C = Z.
Then C is periodic.

Proof Without loss of generality we may assume that 0 ∈ F . Let k denote the
diameter of F . From the condition F ⊕ C = Z, we deduce that for any i ∈ Z,∑

j∈F
1C(i + j) = 1. Let B denote the block (0, . . . , k − 1). Suppose C and C

′
are

two tilings of Z by F such that the restrictions of 1C and 1C ′ to B are equal. Then the
above condition implies that 1C(k) = 1C ′ (k). By taking i = 1, 2, . . . and applying
this argument repeatedly we see that 1C( j) = 1C ′ ( j) for all j ≥ 0. A similar argu-
ment shows that 1C( j) = 1C ′ ( j) for all j ≤ 0. Combining these two observations,
we deduce that C = C

′
. Since B is a block of length k, this implies that there are

only finitely many C ⊂ Z such that F ⊕ C = Z. As any translate of a tiling is again
a tiling, we conclude that every tiling of Z by F is periodic. �

Definition 5.9 A subset F ⊂ Z
d is sdid to be non-degenerate if 0 ∈ F and the

elements of F generate a finite index subgroup of Z
d .

The following theorem due to M. Szegedy (see [8]) describes the tilings of a non-
degenerate set F when the number of elements of F is prime.

Theorem 5.10 Let F,C be subsets of Z
d such that F is finite and F ⊕ C = Z

d . If
F is non-degenerate and |F | is a prime number then, C is periodic.
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Proof Let Md denote the set of all functions from Z
d to R. There is a natural action

θ of Z
d on Md defined by

θ(g)( f )(x) = f (x − g) ∀x, g ∈ Z
d .

It is easy to see that F ⊕ C = Z
d if and only if

∑

g∈F
θ(g)(1C) = 1Zd . If F =

{g1, . . . , gp}, where p is a prime number, then this shows that

⎛

⎝
∑

g∈F
θ(g)

⎞

⎠
p

(1C) =
⎛

⎝
∑

g∈F
θ(g)

⎞

⎠
p−1

(1Zd ) = pp−11Zd .

On the other hand,

⎛

⎝
∑

g∈F
θ(g)

⎞

⎠
p

(1C) = (
θ(g1)

p + · · · + θ(gp)
p
)
(1C)

= (
θ(pg1) + · · · + θ(pgp)

)
(1C) (mod p).

Hence C satisfies the equation

∑

g∈F
θ(pg) (1C) = 0 (mod p).

Now letw be an arbitrary element ofZ
d . Then θ(pg) (1C) (w) ∈ {0, 1} for all g ∈ F .

Since their sum is divisible by p, we conclude that either θ(pg) (1C) (w) = 1 for
all g ∈ F or θ(pg) (1C) (w) = 0 for all g ∈ F . In particular, θ(pg) (1C) = 1C for
all g ∈ F . Hence 1C is invariant under the translations by elements of the subgroup
generated by

{
pgi − pg j : gi , g j ∈ F

}
. Since F is non-degenerate, it follows that

this subgroup has finite index. This implies that C is periodic. �
Let F be a finite non-degenerate subset of Z

d such that |F | is a prime number and
let H denote the subgroup generated by F . We pick a finite set E ⊂ Z

d such that E
contains exactly one element from each coset of H . It is easy to see that subsets of
E are in bijective correspondence with the H -invariant subsets of Z

d . The proof of
the previous theorem shows that X (F) is finite and has at most 2|Zd/H | elements.

6 3-Dot Shifts

Let Z2 denote the group Z/2Z and let Y denote the set Z
Z
2

2 . It is easy to see that
Y is a compact abelian group with respect to pointwise addition and the product
topology. We define the shift action σ of Z

2 on Y by (σ (n)(x)) (m) = x(m + n) for
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all m, n ∈ Z
2. It is easy to see that σ(n) is an automorphism of Y for all n ∈ Z

2.
Let Rd = Z2[Zd ] denote the group-ring of Z

d with coefficients in Z2. Alternatively,
one can identify Rd with Z2[U±

1 , . . . ,U±
d ], the ring of Laurent polynomials in d

commuting variables with coefficients in Z2. For any f =
∑

n∈Zd

cnu
n and y ∈ Y , we

define f · y ∈ Y by
f · y =

∑

n∈Zd

cnσ(n)(x).

It is easy to see that Y becomes a module with respect to this operation. For
any ideal I ⊂ Rd , let Y (I ) ⊂ Y denote the closed subgroup defined by Y (I ) =
{y ∈ Y : f · y = 0 ∀ f ∈ I }. It is easy to see that Y (I ) is a σ -invariant subgroup
for any I . Using Pontryagin duality, one can show that this correspondence between
closed shift invariant subgroups of Y and ideals of Rd is bijective.
In this section, we will look at a specific higher dimensional shift that arises this
way. Let d = 2, f = 1 +U1 +U2 and I ⊂ R2 be the principal ideal generated
by f , i.e., I = f R2. Then X = Y (I ) is called the 3-dot system. We note that if τ

denotes the automorphism of Y defined by τ = σ(1, 0) + σ(0, 1) + I , then X =
{x ∈ Y : τ(x) = 0}. This system was first introduced by F. Ledrappier in order to
study mixing properties of algebraic dynamical systems (see [4, 7] for more details).
Using Pontryagin duality theory, one can show that (X, σ ) is irreducible in the sense
that every proper closed shift invariant subgroup of X is finite.

Definition 6.1 Suppose G and H are abelian topological groups. A continuous map
φ : G −→ H is called affine if there exists a continuous homomorphism θ : G −→
H and b ∈ H such that φ(g) = θ(g) + b for all g ∈ G.

For any f : G −→ H , we define f̂ : G × G −→ H by f̂ (x, y) = f (x + y) −
f (x) − f (y) + f (0).

Lemma 6.2 A continuous map f is affine if and only if f̂ = 0.

Proof It is easy to see that if f is affine then f̂ vanishes. Conversely suppose f̂
is identically zero. Set b = f (0) and define θ : G −→ H by θ(x) = f (x) − f (0).
Clearly f (x) = θ(x) + b for all x ∈ G. Moreover, for any x, y ∈ G, θ(x + y) −
θ(x) − θ(y) = f̂ (x, y) = 0. This proves the given assertion. �

Definition 6.3 Suppose d ≥ 1 and σ is a continuous action of Z
d on a compact

metric space X . For x, y ∈ X , the pair (x, y) is called homoclinic if d(σ (m)(x),
σ (m)(y)) −→ 0 as ‖m‖ → ∞.

Example 6.4 Suppose d = 1, X = T and σ is given by a rotation. Since every
rotation is an isometry, (x, y) is a homoclinic pair if and only if x = y.

Example 6.5 Suppose d = 1 and σ is the shift action on {0, 1}Z. Then (x, y) is a
homoclinic pair if and only if xi = yi for all but finitely many i’s.
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If X is a compact abelian group then (x, y) is a homoclinic pair if and only if
(x − y, 0) is a homoclinic pair. If σ is a continuous action of Z

d on a compact
abelian group X by automorphisms of X , then we define

�σ(X) = {x ∈ X : σ(n)(x) → 0 as ‖n‖ → ∞} .

It is easy to see that �σ(X) is a subgroup of X . It is called the homoclinic group of
the action σ .

Lemma 6.6 Let (X, σ ) denote the 3-dot system. Then, �σ(X) = {0}.
Proof As [σ(1, 0) + σ(0, 1) + σ(0, 0)] (x) = 0 for all x ∈ X and every element of
X has order 2, it follows that for all k ≥ 1,

[σ(1, 0) + σ(0, 1) + σ(0, 0)]2
k = σ(2k, 0) + σ(0, 2k) + σ(0, 0) = 0.

This implies that for any x ∈ X and (m, n) ∈ Z
2, x(m + 2k, n) + x(m, n + 2k) +

x(m, n) = 0. If x is homoclinic to 0 then the first two terms vanish for large k, and
hence x = 0. �

Definition 6.7 Let X be a compact abelian group and σ , an action of Z
d on X by

continuous automorphisms. Suppose v is an element of the unit sphere Sd−1 ⊂ R
d .

An element x ∈ X is called v-homoclinic if σ(g)(x) → 0 as 〈v, g〉 → ∞.

For any v ∈ Sd−1, the collection of all v-homoclinic points are denoted by �v(σ).
It is easy to see that �v(σ) is a subgroup of X . As we will see shortly, these groups
can be non-trivial, even when the homoclinic group of the action σ is trivial.
Suppose σ is the shift action of Z

2 on Y = Z
Z
2

2 and v = (1, 0). Then, �v(σ) is
the collection of all points x for which there exists a k ∈ Z with the property that
x(m, n) = 0 whenever m ≥ k. For explicit examples in a more general setting, see
[2].

Proposition 6.8 Let (X, σ ) denote the 3-dot system. Then both �(−1, 0)(σ ) and
�(0,−1)(σ ) are infinite but �(−1, 0)(σ ) ∩ �(0, −1)(σ ) = {0}.
Proof Let {ai } be an arbitrary sequence taking values in {0, 1}. From the defining
property of the 3-dot system, it is easy to see that there exists a unique x ∈ X such
that x(m, n) = 0 whenever m ≥ 0 and x(−m, 0) = am for m > 0. Clearly any such
x lies in �(−1, 0)(σ ). Hence �(−1, 0)(σ ) is infinite.

Similarly, there exists a unique x ∈ X such that x(m, n) = 0 whenever n ≥ 0 and
x(0,−n) = an for n > 0. This shows that �(0,−1)(σ ) is also infinite.

Nowsuppose x is an element of�(−1, 0)(σ ) ∩ �(0, −1)(σ ). Since x ∈ X , we deduce
that for allm, n and k, x(m + 2k, n) + x(m, n + 2k) + x(m, n) = 0. As the first two
terms vanish for large values of k, we conclude that x = 0. �

Wenow show that the topological centraliser of the 3-dot system consists of algebraic
maps. This is a form of topological rigidity. Similar rigidity properties holds even in
the measure theoretic setting for a large class of actions of discrete groups [1, 3].
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Theorem 6.9 Let (X, σ ) denote the 3-dot system and let f : X −→ X be a contin-
uous Z

2-equivariant map. Then f is a continuous homomorphism.

Proof We define f̂ : X×X−→X by f̂ (x, y)= f (x + y) − f (x) − f (y) + f (0). It
is easy to see that f̂ is aZ

2-equivariant map from X × X to X . Since f̂ is continuous
and X × X is compact, it is also uniformly continuous.

It is easy to see that f̂ (x, y) = 0 whenever x = 0 or y = 0. From uniform con-
tinuity of f̂ , it follows that if x ∈ �(−1, 0)(σ ) and y ∈ �(0, −1)(σ ) then f̂ (x, y) lies
in �(−1, 0)(σ ) ∩ �(0, −1)(σ ). As every infinite shift-invariant subgroup of X is dense,
from the previous proposition, we deduce that �(−1, 0)(σ ) × �(0, −1)(σ ) is a dense
subgroup of X × X , and f̂ maps it to {0}. Hence f̂ is identically zero.

This implies that f is affine, i.e., there exists a continuous homomorphism
θ : X −→ X and b ∈ X such that f (x) = θ(x) + b. As b = f (0) and f is shift
equivariant, it follows that b is invariant under the shift action. Hence b = 0 and f
is a continuous homomorphism. �
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Complex Dynamics

S. Sridharan and K. Verma

1 Introduction

These notes are based on a set of lectures given by the second author at the Advanced
Instructional School on Ergodic Theory and Dynamical Systems held at IIT Delhi
in December 2017. The goal of these lectures was to introduce the audience, that
comprised mainly of PhD students, to some basic ideas in complex dynamics in
one and several variables. No prior knowledge in dynamics was assumed, nor any
originality in the presentation was claimed. The same applies to what follows. In fact,
a good fraction of the course was based on the material in Beardon [2] and Steinmetz
[9]. The last part on the dynamics of Hénon maps is a summary of some of the work
begun in Bedford-Smillie [3]. Other aspects of the dynamics of this class of maps
can be found in Fornaess-Sibony [4–6].

2 Some Preliminaries from Complex Analysis and
Motivation

Let P
1 := C ∪ {∞} denote the Riemann sphere that is defined as the complex plane

alongwith the point at infinity. This is possible through the one point compactification
of the stereographically projected plane onto the unit sphere S

2 in R
3. We denote the

spherical metric on P
1 as
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σ(z, w) := 2
|z − w|

√
1 + |z|2√1 + |w|2 , for z �= ∞ and w �= ∞.

Suppose one of the points, say z = ∞, one may consider the limit in the above
definition, i.e., lim

z→∞ σ(z, w). In these notes, we shall consider P
1 to be our phase

space, where we define functions, observe and understand the long term behaviour
of its family of iterates.

By a rational map, we mean the map can be expressed as a quotient of two

relatively prime polynomials, R(z) := P(z)

Q(z)
. We define the degree of the rational

map R, denoted as deg(R), to be themaximum among the degrees of the polynomials
that yield the rational map; deg(R) := max{deg(P), deg(Q)}.

We briefly explain the root-finding algorithm for a real-valued polynomial, due
to Isaac Newton and Joseph Raphson, known as the Newton-Raphson method in
Numerical analysis. This provides the motivation for looking at the iterates of com-
plex rational functions.

Let P be a real polynomial. Suppose, we start with x = x0 as the initial guess
for the solution of the equation P(x) = 0. Then, with appropriate conditions, the
sequence {xn}n≥1 defined by

xn := xn−1 − P(xn−1)

P ′(xn−1)
,

converges to a solution of P(x) = 0. Observe that defining

f (x) := x − P(x)

P ′(x)
,

we have, in the Newton-Raphson method,

xn = f n(x0), where f n := f ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

n times

.

Thus, obtaining a root of the polynomial P with x0 being the initial guess is equivalent
to studying the long-term behaviour of the orbit of the point x0 under the iterates of
the function f , i.e., { f n(x0) : n ≥ 0}. Further, finding a root of the polynomial P is
equivalent to finding a fixed point for the function f .

Cayleyproposed to apply thismethod to a complexpolynomial P(z). For example,
consider P(z) = z2 − 1. Then,

f (z) = z − z2 − 1

2z
= z2 + 1

2z
.

The fixed points of f are the solutions of the equation f (z) = z; in this case z = ±1.
We will now investigate the behaviour of the function f locally near z = 1, one of
its fixed points and globally.
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Consider the Taylor series of f about z = 1 given by

f (z) � f (1) + f ′(1)(z − 1)

1! + f ′′(1)(z − 1)2

2! + · · · .

Letϕ(z) = z + 1 and f̃ = ϕ−1 ◦ f ◦ ϕ. Then, f̃ has a fixed point at z = 0 satisfying
f̃ ′(0) = 0. Hence, the Taylor series of f̃ about z = 0 is given by

f̃ (z) = a2z
2 + a3z

3 + · · · .

Further, making a change of variables by defining ψ(z) := βz, where β �= 0 and
putting g(z) := ψ−1 ◦ f̃ ◦ ψ(z), we have

g(z) = a2βz
2 + · · · .

Making an appropriate choice for β �= 0, we ensure that |g(z)| < |z|2 in a sufficiently
small neighbourhood around z = 0, in order that we obtain, by induction, that

∣∣gn(z)
∣∣ < |z|2n for n ≥ 0.

It is then quite clear that for r < 1, the iterates of any point in the disc D(0, r) uni-
formly converges to 0. Tracing back the change of variables, we see that the sequence,
{ f n(z)} → 1 uniformly. An analogous analysis is also true if one investigates the
behaviour of points near the other fixed point −1. The behaviour of the iterates of f
seem to be stable locally near the fixed points of the function.

We will now study the behaviour of f , globally. We write

f (z) = z2 + 1

2z
= 1

2

(
z + 1

z

)
.

Consider the Möbius transformation φ(z) := z − 1

z + 1
. Then φ conjugates f to the the

map z 	−→ z2 in the sense that,

φ−1 ◦ f ◦ φ(z) = z2.
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It follows that
φ−1 ◦ f n ◦ φ(z) = z2

n
.

Thus, in order to study the iterates of f , we consider the iterates of the map h(z) =
z2, i.e., {hn(z)}n≥0. Observe that {hn(z) = z2

n } uniformly converges to the constant
function 0 in the spherical metric, on the open unit disc |z| < 1 and to the constant
map ∞ in the same metric, on the exterior of the closed unit disc |z| > 1. Moreover,
it is easily verifiable that φ maps the unit circle in C onto the imaginary axis, the
open unit disc onto the left half-plane and the exterior of the closed unit disc onto
the right half-plane.

Since 0, ∞ are the fixed points of the map h, it follows that φ(0) = −1 and
φ(∞) = 1. Hence, we have

f n(z) = φ−1 ◦ hn ◦ φ(z) −→ −1, if Re(z) < 1;
f n(z) = φ−1 ◦ hn ◦ φ(z) −→ 1, if Re(z) > 1.

Question: What happens to the iterates of f (z) on the imaginary axis or equivalently
what happens to the iterates of h(z) on the unit circle?

For any point z = eiθ ∈ S
1 = {z ∈ C : |z| = 1} , h(z) = e2iθ and so hn(z) =

e2
n iθ. Suppose θ = 2π p/2m for some p,m ∈ Z+, then hm(z) = 1. Since 1 is a fixed

point of h, we also have hm+k(z) = 1 for every k ≥ 0. These points are the 2m th roots
of unity in the complex plane. Note that the set

{
z ∈ S

1 : z is a 2m th root of unity ,
m ≥ 1} forms a dense subset of unit circle S

1. However, if θ is an irrational multiple
of 2π, then the set {hn(z) : n ≥ 1} is dense in S

1. It is clear that the behaviour of the
iterates of h(z) = z2 on the unit circle S

1 seems to be quite complicated.

3 Normal Families and Dichotomy of P
1

We begin this section with the definition of normal families.

Definition 3.1 Let � ⊆ P
1 be a domain and F , a family of continuous functions

defined on �. We say that F is a normal family if every infinite sequence in F has a
subsequence that converges uniformly on all compact subsets of �.

Theorem 3.2 (Arzela-Ascoli Theorem) A family F of continuous functions defined
on a region � ⊂ P

1 that take values in P
1 is normal iffF is equicontinuous on every

compact subset K ⊂ �.

Thus, in this case, equicontinuity and normality are equivalent conditions—see
[2]. The point to be understood is that normality is an analogue of compactness.
We have the following theorems, due to Montel, who initiated the study of normal
families.
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Theorem 3.3 (Montel’s Theorem I) A family F of holomorphic functions defined
on a domain� ⊆ P

1 is normal if every f ∈ F is uniformly bounded, i.e., there exists
M > 0 such that | f (z)| ≤ M for all z ∈ � and f ∈ F .

Proof This is a consequence of the Cauchy Integral Formula. Let z0, w0 be suffi-
ciently close to each other. Let D be some open disc such that D ⊂ �, containing
the points z0, w0. Then,

f (z0) = 1

2πi

∫

∂D

f (z)

z − z0
dz, f (w0) = 1

2πi

∫

∂D

f (z)

z − w0
dz.

So,

| f (z0) − f (w0)| ≤ 1

2π

∫

∂D

| f (z)||z0 − w0|
|(z − w0)(z − z0)| |dz|

≤ M

2π

∫

∂D

|z0 − w0|
|(z − w0)(z − z0)| |dz|.

Hence, for any ε > 0, we can choose δ > 0 such that | f (z0) − f (w0)| ≤ ε, whenever
|z0 − w0| < δ for all f ∈ F , proving F is equicontinuous and thereby, normal. �

We now define the term covering space of a topological space, that we will use in
the proof of the next version of Montel’s theorem.

Definition 3.4 A covering space of a topological space X is a topological space Y
together with a continuous surjective map π : Y −→ X such that for every x ∈ X
there exists an open neighbourhood U of x satisfying the condition that π−1(U )

can be expressed as a union of disjoint open sets in Y , each of which is mapped
homeomorphically onto U by π.

Here are two very useful versions ofMontel’s theorem formeromorphic functions.
Proofs and further variants can be found in [2].

Theorem 3.5 (Montel’s Theorem II) Let F be a family of meromorphic functions
defined on a domain � that omits 0, 1 and ∞. Then F is normal.

Proof Instead of dealing with f : � −→ P
1\{0, 1,∞}, we study f : � −→

C\{0, 1}. The covering space of C\{0, 1} is the unit disc D. Every f ∈ F admits a
lift locally, say on a disc in � and if f̃ is this lift, then the family of lifts forms a
normal family since they take values in D. Since π ◦ f̃ = f , it follows that F is a
normal family. �

Theorem 3.6 (Montel’s theorem III)LetF bea family of holomorphic functions ona
domain� ⊂ P

1 such that every f ∈ F omits a set of three distinct points {a f , b f , c f }.
If the spherical distances between the pairs (a f , b f ), (b f , c f ) and (c f , a f ), as f
varies in F , are uniformly bounded below by a positive constant, then F is normal
on �.
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Definition 3.7 A point z0 ∈ P
1 is a branch point of a rational map R if for every

neighbourhood around z0, R is not a homeomorphism restricted to the neighbour-
hood.

Let R be a rational map with degree d. Then the number of branch points of R,
counting multiplicity is equal to 2(d − 1). A rational map R : P

1 −→ P
1 defines a

d : 1 branched covering. In what follows, we use the notation R(k) and Rn to denote
the kth differential and the nth iterate of the rational map R respectively.

Assume without loss of generality that z0 = 0 is a branch point of R that satisfies
R(0) = 0. Since the branch points are also the critical points of R, we have R(0) =
0, R′(0) = 0, . . . , R(k−1)(0) = 0 whereas R(k)(0) �= 0, for some k ≥ 2. Thus, in a
neighbourhood around the point z = 0, we have

R(z) = akz
k + · · · = zkh(z),

where h(z) is holomorphic at z = 0 and h′(0) �= 0. Thus, h(z) = (g(z))k , for some
holomorphic function g(z). Hence, in the considered neighbourhood around z = 0,
we have R(z) = (zg(z))k . In the new coordinate system w = zg(z), this equation
becomes R(w) = wk . Thus R is of degree k, locally near its branch points.

We shall henceforth focus on the global behaviour of the rational map R on P
1.

We start with the definition of the Fatou and the Julia set that dichotomises P
1 based

on the equicontinuity of the family of iterates of the considered rational map R.

Definition 3.8 Let R : P
1 −→ P

1 be a rational map. Then the largest open set of P
1,

where the family of iterates of R, namely {Rn : n ≥ 1} is equicontinuous is called
the Fatou set of R and is denoted by FR . Its complement P

1 \ FR is called the Julia
set and is denoted by JR .

Observe that, by definition, JR is a closed subset of the compact set P
1 and

hence, compact while FR is an open set. We urge the reader to observe that we can
alternately define the Fatou and the Julia set in amore convenient way, by the concept
of normality instead of equicontinuity using the Arzela-Ascoli theorem.

We now enlist a few basic properties of the Fatou set and the Julia set.

Theorem 3.9 Let R be a rational map with deg(R) ≥ 2. Then JR �= ∅.

Proof We prove this by contradiction. Suppose JR = ∅, then FR = P
1. This implies

that the family {Rn : n ≥ 1} is normal on the entire Riemann sphere, P
1. Then the

family should converge to a meromorphic limit function, say S, at least for some
subsequence {Rnk : k ≥ 1} of {Rn : n ≥ 1}. The function S, being meromorphic in
P
1, is nothing but a rational map and therefore must be of some finite degree, say

d ′. However, deg(Rnk ) � deg(S). In fact, deg(Rnk ) grows exponentially as k → ∞,
since deg(R) ≥ 2. This contradiction proves that the Julia set can not be empty;
JR �= ∅. �

Upon proving that the Julia set is never empty for a rational map R of degree ≥ 2,
one natural question that arises is whether there exists rational maps with an empty
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Fatou set. The answer to this question is in the affirmative. An example of such a
map was constructed by a French mathematician, Samuel Lattès in 1918, namely

R(z) := (z2 + 1)2

4z(z2 − 1)
.

We will study further about this example, in a later section.

Definition 3.10 Let R be a rational map. A domain � is said to be

• forward invariant under the map R, if R(�) ⊂ �;
• backward invariant under the map R, if R−1(�) ⊂ �; and
• completely invariant under the map R if it is both forward and backward invariant
under the map R.

Note that � is completely invariant under R if and only if �c is completely
invariant under R.

Theorem 3.11 Let R be a rational map of degree at least 2. Then the Fatou set FR

and the Julia set JR are completely invariant under R.

Proof Here, we will only prove that FR is forward invariant. The proof of backward
invariance of FR is analogous. Further owing to the remark before the start of this
theorem, we then know that JR is completely invariant too.

Let p ∈ FR . Then, there exists a neighbourhood D(p, r) ⊂ FR , where the family
{Rn : n ≥ 1} is normal. Since R is an open map, R(D(p, r)) is an open neighbour-
hood of R(p). Further, the family {Rn : n ≥ 1} is normal in a neighbourhood of p
and hence, the family {Rn−1 : n ≥ 1} is normal in a neighbourhood of R(p). Thus,
R(p) ∈ FR . �

Theorem 3.12 Fix k > 0. Then FRk = FR and JRk = JR.

Proof Observe that the family of iterates of Rk , i.e., {Rkn : n ≥ 1} is a subfamily of
the family of iterates of R, i.e., F = {Rn : n ≥ 1}. Hence FR ⊆ FRk .

To obtain the otherway inclusion,wefirst observe that Rm is uniformly continuous
for every m, in the spherical metric. Thus, for every ε > 0 there exists a δ > 0 such
that

σ(Rm(x), Rm(y)) < ε whenever σ(x, y) < δ. (1)

The family {Rkn : n ≥ 1} is equicontinuous on FRk . This implies that for every δ > 0
there exists a δ1 > 0 such that

σ(Rnk(x), Rnk(y)) < δ whenever σ(x, y) < δ1 ∀ n ≥ 1. (2)

By equation (1), we have that

σ(Rm ◦ Rnk(x), Rm ◦ Rnk(y)) < ε whenever σ(Rnk(x), Rnk(y)) < δ.



132 S. Sridharan and K. Verma

By equation (2), the family Fm = {RmRn : n ≥ 0} is equicontinuous on the Fatou
set FRk for every integerm ≥ 0. Hence the finite unionF0 ∪ F1 ∪ · · · ∪ Fk−1 is also
equicontinuous on the Fatou set FRk . However, F = F0 ∪ F1 ∪ · · · ∪ Fk−1. �

4 Rational Maps with Empty Fatou Set

We begin this section with the definition of a complex period for a meromorphic
function.

Definition 4.1 Let f be a meromorphic function on the entire plane. A non-zero
complex number w is said to be a period for f if f (z + w) = f (z) for every z ∈ C.

Note that ifw is a period, then so are its multiples nwwhere n is an integer. The set
� of all the periods of a given f then clearly forms amodule over the integers.� ⊂ C

is also discrete as otherwise the identity theorem and the fact that f (w) = f (0) for
all w ∈ � will imply that f is constant.

It is possible to describe the structure of �. Indeed, Theorem (1) of Chap. 7 in
Ahlfors [1] shows that if � contains a non-zero element, then every element in it
can be written as nw, where w �= 0 and n is an integer or as n1w1 + n2w2, where
w1, w2 are a pair of non-zero complex numbers with w2/w1 non-real and n1, n2 are
integers. In the latter case,

F = {sw1 + tw2 : 0 ≤ s, t < 1}

is called the period (or fundamental) parallelogram and � will be referred to as a
lattice.

For example, the bounded region in the picture below corresponds to a fundamen-
tal parallelogram for an appropriately defined � (Fig. 1).

It should be noted that the set of periods� corresponding to an entire function can
never admit a fundamental parallelogram. If it does, it necessarily has to be a constant.

Fig. 1 Fundamental mesh
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To see this, suppose f is an entire function with a fundamental parallelogram F. By
definition, it follows that f (C) = f (F) and since the latter is bounded, Liouville’s
theorem shows that f is necessarily constant. However, every element in the set of
periods � for f (z) = sin z for example is an integral multiple of 2π.

Since this argument clears the non-existence of a non-constant entire functionwith
two fundamental periods, the next natural question is to investigate the existence of
a meromorphic function with two fundamental periods. Weierstrass constructed a
doubly periodic meromorphic function on C. Let us recall a basic construction. For
example, see Ahlfors [1] for details.

Lemma 4.2 Let � ⊂ C be a lattice. The series

∑

λ∈�\{0}
|λ|−3

converges.

This implies that

Theorem 4.3 The series

℘(z) := 1

z2
+

∑

λ∈�\{0}

1

(z − λ)2
− 1

λ2

converges locally uniformly absolutely inC\�. It defines ameromorphic�-periodic
function, called the Weierstrass’ ℘-function.

Use the above lemma to obtain ℘ as a meromorphic function on C. Then, the
poles of ℘ are precisely at the lattice points.

Definition 4.4 A function f is said to be an elliptic function if it satisfies the fol-
lowing conditions:

1. f is doubly periodic with respect to some lattice �;
2. f is meromorphic on C.

Let 〈w1, w2〉Z = � denote the group generated by {w1, w2} over Z. Identify the
opposite sides of the fundamental mesh of � to obtain a torus T, which is a compact
Riemann surface, i.e., C/〈w1, w2〉Z � T. Thus ℘ is a mapping from T to P

1. As T is
compact, ℘(T) is closed. Also ℘(T) is open (by the Open Mapping Theorem). As
P
1 is connected, ℘(T) = P

1 is surjective (Fig. 2).

Theorem 4.5 There exists a rational map R : P
1 −→ P

1 such that

℘(2z) = R ◦ ℘(z); (3)

R(z) =
z4 + g2

(
z2

2

)
+ 2g3z + ( g2

4

)2

4z3 − g2z − g3
, (4)

where g2, g3 are constant terms depending on the lattice.
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Fig. 2 Torus

We sketch some of the details concerning the function ℘ and justify the formula
in (3). Appealing to lemma (4.2), one can see that the function ℘ is meromorphic
on C. As T and P

1 are compact Riemann surfaces, ℘ acts as a branched covering
map. By considering the poles of ℘, we see that ℘ is a 2-sheet covering i.e., for each
w ∈ P

1, there are exactly two solutions (modulo the lattice �) of ℘(z) = w in C.
Given any w ∈ P

1, there are only two solutions z1, z2 of the equation ℘(z) = w.
These can be taken to be, say, u and w1 + w2 − u. Then,

℘(2[(w1 + w2) − u]) = ℘(2u). (5)

It is then clear that ℘ is an even function, that is ℘(z) = ℘(−z). Further, owing to
(5), one might expect a formula of the type ℘(2z) = R(℘ (z)) to hold. Referring to
(5), we can define the mapw 	−→ ℘(2u) of P

1 onto itself, independent of the choice
of u. It is then easy to see that this map is meromorphic, thus must be a rational map,
say R. This gives us a motivation to expect a formula, R(℘ (z)) = ℘(2z).

Proof We will now sketch the details of the proof of the formula in (4). It is very
clear that the derivative of ℘, namely ℘ ′ has triple poles only at the lattice points in
�. Because of this, it is not hard to see that one can construct a cubic polynomial P
such that the elliptic function ℘ ′(z)2 − P(℘ (z)) has no poles at the origin. Hence,
there exists no poles for ℘ ′(z)2 − P(℘ (z)) in C, making it bounded. A computation
of P then leads to the relation

℘ ′(z)2 = 4℘(z)3 − g2℘(z) − g3, (6)

where g2, g3 are constants depending on the lattice � and are given by
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g2 = 60
∑

λ∈�\{0}

1

(λ)4
and g3 = 140

∑

λ∈�\{0}

1

(λ)6
.

Now, select distinct points u and v inCwhere℘ takes different values.We determine
the values of A and B satisfying

℘ ′(u) = A℘(u) + B, and ℘ ′(v) = A℘(v) + B,

to be

A = ℘ ′(u) − ℘ ′(v)

℘ (u) − ℘(v)
and B = ℘(v)℘ ′(u) − ℘(u)℘ ′(v)

℘ (v) − ℘(u)
.

It is then clear that f (z) = ℘ ′(z) − A℘(z) − B has three poles in �. And conse-
quently, f must have three zeroes (by the argument principle). By construction, two
of these zeroes occur at u and v. A consequence of the argument principle states that∑

pi differs from
∑

zi by an element of �, where pi ’s are the poles of f and zi ’s
are the zeroes of f . In our case, all the poles of f occur at the origin. This implies
u, v and −(u + v) are the zeroes of f . However, since

[ f (z) + A℘(z) + B]2 = ℘ ′(z)2 = 4℘(z)3 − g2℘(z) − g3,

we find that ℘(u), ℘ (v) and ℘(−(u + v)) are the solutions of the equation

[Az + B]2 = 4z3 − g2z − g3.

Hence,

℘(u) + ℘(v) + ℘(−(u + v)) = A2

4
= 1

4

(
℘ ′(u) − ℘ ′(v)

℘ (u) − ℘(v)

)2

.

Now, letting u → v and using the fact that the function ℘ is even, we obtain

2℘(v) + ℘(2v) = A2

4
= 1

4

(
℘ ′′(v)

℘ ′(v)

)2

. (7)

Finally, differentiating both sides of (6) gives an expression for ℘ ′′(z). Using this
expression together with (6) and (7), we obtain the addition formula given by (3) and
(4). �

We wish to include a different argument sketched by the referee that shows the
existence of such a rational function. It does not quite give a formula for it but it is of
independent interest since it is based on a pole-counting argument that is ubiquitous
in the study of such functions.

The function ℘(2z) is an even elliptic function with respect to the lattice � and
has double poles at the points of (1/2)�. Let� be generated byw1, w2 and consider
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g(z) = (℘ (z) − ℘(w1/2))
2 · (℘ (z) − ℘(w2/2))

2 · (℘ (z) − ℘((w1 + w2)/2))
2 · ℘(2z).

This is an even elliptic function and since the poles of ℘(2z) are cancelled by the
zeros of the other three factors, the only pole in the fundamental parallelogram is at
the origin and it is of order 14 (each factor contributes an order of 4). Thus, near the
origin, the singular part of g looks like

a7
z14

+ a6
z12

+ · · · + a0.

Each of these can be cancelled out recursively as follows. The function g1 = g −
a7(℘)7 has a pole of order 12 at the origin and hence its singular part looks like

b6
z12

+ · · · + b0.

Repeating this process by subtracting powers of ℘(z) leads to an elliptic function
that has no poles at the origin and hence it must constant. This shows that there is a
polynomial P such that

g = P(℘) + C

for some constant C and this when rearranged shows that ℘(2z) can be expressed
as a rational function of ℘(z).

Thus, the theorem asserts the existence of a holomorphicmap R : P
1 −→ P

1 such
that the following diagram commutes.

Samuel Lattés proved, in 1918, that the Fatou set of the above map R is an empty
set. We will show that the family {Rn}n≥1 is not normal in any neighbourhood of any
point in P

1.
Consider an open set D in P

1. Then, U = ℘−1(D) is an open set. Applying the
doubling map z 	−→ 2z, n times on U , we note that it gets expanded by a factor of
2n . Thus, for sufficiently large n, the image of U under the doubling map contains
the fundamental mesh, i.e.,

Rn(D) = Rn(℘ (U )) = ℘(2nU ) = P
1.

This implies that Rn expands any small open set D ontoP
1.Hence, the family {Rn}n≥1

cannot be normal in any open set of P
1 implying JR = P

1. Indeed, Rn(D) = P
1

implies that Rn(D) must intersect the Julia set JR . The backward invariance of JR
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shows that D must also intersect it (the Julia set) and since it is closed and D is
arbitrary, it must be the case that JR = P

1.
Note that for a suitable choice of the lattice �, we obtain g2 = 4 and g3 = 0.

Then, the Lattès map is given by

R(z) = (z2 + 1)2

4z(z2 − 1)
.

5 Some Properties of the Julia Set

In this section, we shall investigate some elementary properties of the Julia set of a
rational map, R.

Definition 5.1 For z0 ∈ P
1, consider the Taylor series of R about z0, i.e.,

R(z) = R(z0) +
∑

j ≥ 1

a j (z − z0)
j .

Then the branching order (or valency) of R at z0 is the minimum j for which a j �= 0,
denoted by ν(z0).

For most points in P
1, we have ν(z) = 1. This is not true only for finitely many

points in P
1. Here is a result that captures this idea.

Theorem 5.2 (Riemann-Hurwitz Formula) [9] Let R be a rational map with
deg(R) = d. Then ∑

z ∈P1

(ν(z) − 1) = 2d − 2.

Let R : P
1 −→ P

1 be a rational map, as earlier of degree d ≥ 2. Define a relation
∼ on P

1 as follows: For x, y ∈ P
1 we define x ∼ y ⇐⇒ Rn(x) = Rm(y), for some

positive integers m and n. It is a simple exercise to note that ∼ is an equivalence
relation on P

1.
Let [x] denote the equivalence class of x ∈ P

1. Since Rn(x) = Rm(y) →
Rn+1(x) = Rm+1(y) and R is surjective, we see that [x] is completely invariant.

Proposition 5.3 If V is a finite, completely invariant set under a rational map R,
then V contains at most two points.

Proof Let V be a finite, completely invariant set under the rational map R with
cardinality k. Our aim here is to prove that k ≤ 2. Since V is completely invariant
under the action of the rational map R, we have R(V ) = V = R−1(V ). Then R acts
as permutation on V and therefore, for some m ≥ 1, we have Rm : V −→ V to be
identically equal to the identity permutation, i.e., Rm fixes each point of V . We know
by the Riemann-Hurwitz Formula,
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∑

z ∈ V

(ν(z) − 1) ≤
∑

z ∈P1

(ν(z) − 1) = 2dm − 2,

where d is the degree of R(z). Since, for each z ∈ V , Rm(z) = z, (Rm)−1(z) = {z}
and the degree of Rm is equal to dm , we have ν(z) = dm . This implies

k(dm − 1) ≤ 2(dm − 1) → k ≤ 2.

�

Definition 5.4 We say that x0 ∈ P
1 is an exceptional point of R, if [x0] is finite. Let

E := {x : x is an exceptional point}. Then, E is said to be an exceptional set of R.

An immediate observation from proposition (5.3) implies that the cardinality of
[x] i.e., #([x]) ≤ 2, whenever x is an exceptional point.

Theorem 5.5 A rational map R of degree at least 2 has atmost 2 exceptional points.
If E is a singleton, then R is conjugate (via a Möbius map) to a polynomial. If E
contains two elements, then R is conjugate (via aMöbius map) to the map z 	−→ azd

where a ∈ C. Furthermore, the exceptional set E of the rational map R is contained
in its Fatou set FR.

Proof Since the exceptional set is completely invariant by definition, it is clear that E
can contain at most two points, by proposition (5.3). Thus, there are four possibilities
for E , namely:

1. E = ∅;
2. E = {ζ0} = [ζ0];
3. E = {ζ1, ζ2}, [ζ1] = {ζ1}, [ζ2] = {ζ2};
4. E = {ζ1, ζ2}, [ζ1] = [ζ2].
1. This is a trivial case, about which we do not say anything.
2. Thismeans R−1(ζ0) = {ζ0}. However,we know that the property P−1(∞) = {∞}

characterises the polynomials among rational functions, since then P has exactly
one pole at ∞ and no poles in the finite complex plane. Hence, R is conjugate to
some polynomial P (via a Möbius map).

3. This means R−1(ζ1) = {ζ1} and R−1(ζ2) = {ζ2}. We note again that for polyno-
mials P of the from azd , we have that P−1(0) = {0} and P−1(∞) = {∞}. Hence,
R is again conjugate (via a Möbius map) to some polynomial z 	−→ azd , where
a ∈ C and d is some positive integer.

4. Here, we have R(ζ1) = ζ2 and R(ζ2) = ζ1. Consider the rational map z 	−→ azd ,
where a ∈ C and d is a negative integer, that interchanges the points at 0 and
∞. Hence, R is then conjugate (via a Möbius map) to the map z 	−→ azd , where
a ∈ C and d is some negative integer.

However, from all the above cases, it is clear that E ⊂ FR . �

Theorem 5.6 For a rational map R of degree at least 2, JR is infinite.
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Proof Theorem (3.9) shows that JR �= ∅. Suppose ξ ∈ JR . If JR were finite, then ξ
must be an exceptional point, since JR is completely invariant. However, this is not
possible because the exceptional set lies inside the Fatou set, which is the complex
complement of JR . Thus JR should be infinite. �

Theorem 5.7 Let R be a rational map of degree at least 2 andU be an open set such
that U ∩ JR is non-empty. Then there exists some N > 0 such that RN (U ) ⊇ JR.

Proof LetU1, U2 andU3 be disjoint open sets inP
1 that has a non-empty intersection

with JR .

Claim: For each i ∈ {1, 2, 3}, there exists some N = N (i) ∈ Z+ and j = j (i) ∈
{1, 2, 3} such that RN (Ui ) ⊃ Uj .

We prove this claim by the method of contradiction. Suppose, this is not true, then
the family of sets obtained by the action of the iterates of R onUi , i.e., Rn(Ui ), do not
cover either of theUj ’s i �= j with i, j ∈ {1, 2, 3}. Without loss of generality, we can
takeU1 to satisfy this condition. Then, the family {Rn|U1 : n ≥ 1} leaves sufficiently
more than three distinct points from its image set. Hence, by Montel’s theorem II,
this family is normal on U1. This is a contradiction, since U1 ∩ JR �= ∅.

Since the claim is true, we can now choose N that satisfies U1 ⊂ RN (U1) ⊂
R2N (U1) ⊂ · · · . This is an increasing sequence of sets that acts as an open cover
of JR . Since {RN , R2N , . . . } is not normal in the whole of U1, we expect it to leave
atmost two points only (Montel’s theorem II). However, JR is compact, and hence,
JR ⊂ Rm(U1) for some m ≥ 1. �

Theorem 5.8 JR ⊂ {All periodic points of R} for a rational map R of degree at
least 2.

Proof Choosew0 ∈ JR such thatw0 is not a critical point of R2. Then there exists at
least three distinct pre-images of w0 under R2, say w1, w2 and w3. Choose mutually
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disjoint neighbourhoodsU0, U1, U2 andU3 ofw0, w1, w2 andw3 respectively, such
that R2

∣∣
Uj

−→ U0 is a homeomorphism. Let

Sj (z) :=
(
R2

∣∣
Uj

)−1
(z).

To complete the proof of the theorem, we now show that for some z0 ∈ U0, there
exists an m ≥ 1 such that Rm(z0) = Sj (z0) for all j ∈ {1, 2, 3}. Suppose not, then
Rn|U0

would be normal by Montel’s theorem, which is not true. Hence,

Rm(z0) = Sj (z0) =⇒ Rm+2(z0) = z0.

Thus, z0 is a periodic point of R. Hence, every open neighbourhood U0 that has a
non-empty intersection with JR contains a periodic point of R. �

6 Local Analysis Near a Fixed Point

Consider � ⊂ P
1 and f : � −→ � be a holomorphic map. Suppose z0 ∈ � is a

fixed point of f . In this section, we investigate the local behaviour of f near its fixed
point z0.

Recall that the Taylor series expansion of f about the fixed point z0 is given by,

f (z) = f (z0) + (z − z0) f
′(z0) + · · · .

We concentrate on the number f ′(z0). This is called themultiplier of f at z0, denoted
by λ f (z0). Multipliers are used to classify the fixed points into following categories:

1. z0 is called an attracting fixed point if 0 < |λ f (z0)| < 1;
2. z0 is called a repelling fixed point if |λ f (z0)| > 1;
3. z0 is called an indifferent fixed point or neutral fixed point if |λ f (z0)| = 1.

Further, a neutral fixed point z0 is classified as

• a rational neutral fixed point if λn = 1 for some positive integer n and
• an irrational neutral fixed point if λn �= 1 for any choice of positive integer n.

We now define the basin of attraction for a fixed point, say z0.

Definition 6.1 The basin of attraction of a fixed point z0 for a rational map R is
defined to be the set of all points z such that Rn(z) → z0, as n → ∞.

By virtue of the definition, it is clear that for any arbitrarily small ε > 0, the basin
of attraction of z0 coincides with the union of the backward iterates R−n(D(z0, ε)),
where D(z0, ε) is an ε-neighbourhood around the point z0. Since the analysis is
local, we consider the restriction f = R : D(0, ε) −→ C such that f (0) = 0. Now,
the Taylor series of R in a neighbourhood of 0 will be of the form

R(z) = R(0) + zR′(0) + · · · = zR′(0) + · · · (8)
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Case 1: Suppose 0 is an Attracting Fixed Point

Theorem 6.2 There exists a unique injective holomorphic map

φ : D(0, ε) −→ D(0, ε)

such that the following diagram commutes:

i.e., φ−1 ◦ R ◦ φ(z) = λz for λ = R′(0).

First proof. Consider the following diagram

Define

φ(z) := lim
n→∞

Rn(z)

λn
= lim

n→∞ φn(z), where φn(z) := Rn(z)

λn
.

Then,

φn+1(z) = 1

λn+1
Rn ◦ R(z) = 1

λ
φn ◦ R(z).

As n → ∞, we have

φ(z) = 1

λ
φ(R(z)), =⇒ φ ◦ R ◦ φ−1(z) = λ(z),

meaning φ is a conjugation.
Note that for some small δ > 0, we have |R(z) − λz| ≤ c|z|2 whenever |z| < δ.

Thus, |R(z)| ≤ |λ||z| + c|z|2 ≤ (|λ| + cδ)|z|. Further, by induction, we also have
that

|Rn(z) ≤ (|λ| + cδ)n|z|, whenever we choose δ > 0

to satisfy |λ| + cδ < 1 and |z| < δ.

Consider
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|φn+1(z) − φn(z)| =
∣∣∣∣
R ◦ Rn(z) − λRn(z)

λn+1

∣∣∣∣ ≤ c|Rn(z)|2
λn+1

≤ (|λ| + cδ)n|z|
|λ| ,

for |z| < δ. Hence for sufficiently small δ, φn converges uniformly for all |z| < δ,
and the conjugation exists.

What now remains is to check the uniqueness of φ. Since φn(z) = 1
λn Rn(z) and

φ(0) = 0,∀n ∈ Z+, we make use of chain rule to find that φ′(0) = 1. Thus φ is a
local conformal map that is injective near 0. For some r > 0 that determines this
neighbourhood, consider the following commutative diagram,

Suppose ψ : D(0, r) −→ D(0, r) is another injective holomorphic map such that
the following diagram commutes.

Then λG(z) = G(λz), where G = ψ ◦ φ−1. This implies

λ(c1z + c2z
2 + · · · ) = c1(λz) + c2(λz)

2 + · · · (since G(0) = c0 = 0).

Then, by comparing the coefficients, we get,

c2λ = c2λ
2; · · · cnλ = cnλ

n; · · · .

However, since 0 < |λ| < 1,we get c2 = c3 = · · · = 0.AlsoG ′(0) = 1 implies c1 =
1. Hence, ψ ◦ φ−1(z) = G(z) = z, thereby making φ to be unique. �

Second proof. Here,we only prove the formal existence of a power series.We appeal
to the first proof for the convergence of the power series.

We need to justify the equation φ−1 ◦ R ◦ φ(z)=λz where λ=R′(0), 0<|λ| < 1.
This is equivalent to studying the functional equation R ◦ φ(z)=φ(λz) for some φ.
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We assume that φ has a formal power series expansion, φ(z) =
∞∑

j=0
c j z j , where

φ(0) = 0 i.e., c0 = 0. Also we have R(z) = λz + O(z2). So,

R(φ(z)) = λφ(z) + O(φ(z)2) = φ(λz) =
∞∑

j=0

c j (λz)
j .

In other words,

λ(c1z + c2z
2 + · · · ) +

∞∑

j=2

α j (φ(z)) j = λz + λ2c2z
2 + · · · .

Substituting for φ(z) and by comparing the coefficients, we obtain,

λc1 = λc1;
λc2 + α2c

2
1 = λ2c2;

λc3 + α2(c1z + c2z
2 + · · · )2α2(c1z + · · · )3 = λ3c3;

· · ·

that implies

c2 = α2c12

λ2 − λ
;

c3 = 2α2c1c2 + α3c31
λ3 − λ

;
· · · .

Since |λ| < 1, all the coefficients are well defined. Thus, given c1, we can inductively
evaluate and find the coefficients. Hence, the functional equation R ◦ φ(z) = φ(λz)
has a well defined solution. �

Case 2: Suppose 0 is a repelling fixed point. As in Case 1, a similar local analysis
holds viz. there exists a unique injective holomorphic map φ : D(0, r) −→ D(0, r)
which makes the following diagram commutative,

i.e.,φ−1 ◦ R ◦ φ(z) = λz =⇒ φ−1 ◦ Rn ◦ φ(z) = λnz as |λ| > 1.Hence, |λ|n → ∞
as n → ∞. Thus, {Rn : n ≥ 1} does not form an equicontinuous family and so the
repelling fixed points are in JR whereas the attracting fixed points are in FR .
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Case 3: Suppose 0 is an indifferent fixed point. Here, we have two sub-cases
depending on whether 0 is a rationally indifferent fixed point i.e, whether λ is a root
of unity or if 0 is an irrationally indifferent fixed point i.e, if λ = e2πiθ, where θ is an
irrational no.

Case 3a: Suppose 0 is a rationally indifferent fixed point. In this case, write

R(z) = az + bzr + · · ·

near z = 0, where am = 1 for some positive integer m and b �= 0. Then

Rm(z) = z + czr + · · ·

near the origin and c �= 0 (as otherwise all the higher order derivatives of R at the
origin will vanish forcing Rm to be the identity which is not possible as its degree is
at least 2). The iterates of Rm will all be of the form

Rmn(z) = z + nczr + · · ·

and this means that the r th derivative of Rmn at the origin diverge to infinity and this
forces 0 ∈ JR . A complete local analysis of the iterates of R near the origin requires
many steps and upshot of it all is that R is not locally conjugate to its derivative at
the origin near it. To provide a flavour of what is involved, let us look at

P(z) = z − z2

that has a rationally indifferent fixed point at the origin. If z approaches the origin
along the x-axis, then 0 < P(x) < x for x ∈ (0, 1) andhence Pn(x) → 0 asn → ∞.
In fact, the convergence to the origin holds on each small disc centered at r ∈ (0, 1)
of radius r . The union of these discs is a bulb (or a petal) containing a segment on
the positive x-axis and the origin on its boundary. In general, if

R(z) = z + az p+1 + · · ·

near the origin, there exist p distinct petals each containing the origin on its boundary
such that the iterates of R on each petal converge to the fixed point (i.e., the origin)
in such a way that the argument of Rn approaches a fixed multiple of 2π/p. The
details of the proof can be found in [2, 7] for example.

Case 3b: Suppose 0 is an irrationally indifferent fixed point. Suppose λ = e2πiθ,
where θ is an irrational number.

Definition 6.3 A real number θ isDiophantine if it is badly approximable by rational
numbers, i.e., there exists a c > 0 so that

∣∣∣∣θ − p

q

∣∣∣∣ ≥ c

qk
∀p, q ∈ Q and ∀k ≥ 2.
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Siegel proved that if λ = e2πiα, where α is a Diophantine number, then, there
exists a conjugacy φ such that φ−1 ◦ R ◦ φ(z) = λz i.e., R is an irrational rotation of
unit disc D. The Fatou component containing the irrationally indifferent fixed point
is called a Siegel disc.

7 Brolin’s Theorem

It can shown that (see Theorem (4.2.7) in [2] for example) that if P is a polynomial
with degree at least 2 and z ∈ JP is an arbitrary point, then the backward orbit

O−(z) = {w : there exists n ≥ 0 such that Pn(w) = z}

is dense in JP . Brolin’s theorem quantifies this statement in a rather precise way
using the notion of an equilibrium measure of a compact set. To briefly describe
what this is, we start with the definition of a subharmonic function.

Definition 7.1 A function u on a domain � ⊂ C taking values in [−∞,∞) is said
to be subharmonic if

(i) u is upper semi-continuous on �, i.e., lim supz→p u(z) ≤ u(p) for all p ∈ �,
and

(ii) for each p ∈ �, there exists r0 > 0 such that

u(p) ≤ 1

2π

∫ 2π

0
u(p + reiθ) dθ

for all r ≤ r0.

Harmonic functions provide smooth examples of subharmonic functions, but more
illustrative examples are provided by looking at u(z) = log | f (z)| for a holomorphic
function f on �. It can be shown that a C2-smooth function u is subharmonic if and
only if �u ≥ 0 on �.

Definition 7.2 A set E is said to be polar set if there is a subharmonic function u
such that E ⊂ {u = −∞}.

For example, the zero set of a holomorphic function f (z) is a polar set. Since, then
log(| f (z)|) is subharmonic and f (z) = 0 precisely when log | f (z)| = −∞. Next,
we define potential and energy.

Definition 7.3 Letμbe afiniteBorelmeasure onC such that support ofμ is compact.
Then the potential pμ : C −→ [−∞, ∞] is defined as

pμ(z) =
∫

C

log |z − w| dμ(w).
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It can be shown that pμ is subharmonic onC and harmonic away from the support
of μ.

Definition 7.4 The energy associated to the potential pμ is defined as

Iμ =
∫

C

pμ(z) dμ(z).

To define the equilibrium measure of a compact set K ⊂ C, let P(K ) be the
collection of all Borel probability measures on K that are supported on K . If there
exists ν ∈ P(K ), such that

sup
μ∈P(K )

Iμ = Iν,

then ν is called the equilibrium measure for K . Note that ν always exists because
every sequence in P(K ) admits a weakly convergent subsequence. Furthermore, ν
is unique, if K is non-polar. A theorem of Frostman shows that

pν(z) ≤ Iν,

everywhere on C and that equality holds on K\E where E is a Fσ polar subset of
the boundary ∂K .

Theorem 7.5 (Brolin’s theorem) Let P(z) be polynomial of degree d and JP be
its Julia set. Start with any w ∈ JP . Then Pn(z) = w has dn roots with counting
multiplicity. Define,

μn = 1

dn

∑

pn(ξ)=w

δξ, where δξ(E) =
{
1 if ξ ∈ E

0 otherwise.

Then μn ∈ P(JP) and μn converges weakly to ν. In fact, ν is the equilibriummeasure
of JP .

A proof can be found in [8]. The measure ν also has the following property:

Theorem 7.6 Let P(z) be as above. Then entropy of the polynomial P with respect
to the measure ν is log d. ν is unique measure of maximal entropy.

8 What Happens in Higher Dimensions?

Moving from the plane to C
2, a natural class of mappings to focus on are polynomial

automorphisms, i.e., P = (P1, P2) : C
2 −→ C

2 such that each component is a poly-
nomial. It is a theorem that if such an P is both injective and surjective, then its inverse
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is also a polynomial. As on the plane, the goal is to understand the behaviour of the
iterates of P . A theorem of Milnor-Friedland lists all possible conjugacy classes in
the group of polynomial automorphisms of C

2 and identifies the class of generalized
Hénon mappings as one which is dynamically interesting. A generalized Hénon map
is defined as

H(x, y) = (y, P(y) − δx)

where P is monic polynomial in y of degree d ≥ 2 and δ �= 0.Wemay consider finite
compositions of suchmaps and understand their iterates. As a first step, the dynamics
of H can be understood by observing that the degree of the second component of the
iterates of H is always larger than the first. It follows that there is a filtration of C

2

in each component of which the iterates of H have a well defined behaviour.
Thus, define K± to be the set with bounded forward/backward orbits, K = K+ ∩

K−, J± = ∂K±, J = J+ ∩ J− andU+ = C
2 \ K+. It can be shown that the family

of iterates Hn is normal on the interior of K+ (if it is non-empty) and that in no
neighbourhood of any point in J+ is this true. Furthermore, the Fatou set of H is
exactlyC

2 \ J+. The absence of a useful analog ofMontel’s theorem forces different
tools to be brought into the picture at this stage and it turns out that methods from
pluripotential theory have been very useful. The Green’s function

G(x, y) = lim
n→∞ d−n log+ |Hn(x, y)|

exists as a non-negative plurisubharmonic function on C
2 that vanishes precisely

on K+ and which is pluriharmonic away from it. The definition also implies that
G+ ◦ H = dG+ everywhere. Similarly, we can define G− by considering H−1 and
its iterates. Since both G± are plurisubharmonic,

μ± = 1

2π
ddcG±

are well defined positive closed currents whose supports are precisely J±. These
currents have a laminar structure in the measure theoretic sense and many of their
properties hinge upon this fact. There is a version of Brolin’s theorem as well in
which points are replaced by the pullbacks of a small disc. Convergence to a positive
multiple of μ+ is then the conclusion. The measure μ = μ+ ∧ μ− is well defined and
invariant under H . It is a theorem that μ is mixing and hence ergodic. Furthermore,
the entropy of H is log d.

These ideas have been developed for holomorphic endomorphisms ofPn aswell—
see [4] for a comprehensive survey.
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Topics in Homogeneous Dynamics and
Number Theory

Anish Ghosh

1 Introduction

This is a survey of some topics at the interface of dynamical systems and number
theory, based on lectures delivered at CIRM Luminy, the University of Houston, and
IITDelhi. Specifically, we will be interested in the ergodic theory of group actions on
homogeneous spaces and its connections to metric Diophantine approximation. The
topics covered in the lectures included the study of the Diophantine approximation
of linear forms using dynamics, the study of quadratic forms in particular the famous
Oppenheim’s conjecture and its variations, as well as lattice point counting using
dynamics. At IIT, non-divergence estimates for unipotent flows and Margulis’ proof
of the Borel Harish-Chandra theorem using the non-divergence estimates were also
covered. There are many recent and excellent surveys covering all this material,
including but not restricted to [9, 24, 27, 49, 50, 60] and the books [23, 59]. Rather
than reinvent the wheel, I have chosen to present some other recent topics at the
interface of Diophantine approximation and homogeneous dynamics in this article.
The topics chosen are representative of the lectures but reflect my interests and
problems that I have been recently involved with. While some of the lectures were
at a more basic level, this article serves as an introduction to more advanced and
more recent material. In particular, this is not meant to be a comprehensive survey
of this very active and rapidly expanding subject, a shortcoming redressed by the
many aforementioned surveys. The hope is that this article will serve as a guide for
students with some preparation, e.g. the ones who attended the lectures and point
them to further reading and interesting research avenues. Two sections of this article
are devoted to results using methods from classical number theory, an indispensable
part of the toolbox of anyone interested in Diophantine analysis.
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1.1 Homogeneous Dynamics

Let G be a unimodular, locally compact, second countable topological group and �

be a lattice in G. The homogeneous space G/� is equipped with a finite measure
which descends from the Haar measure on G and which can therefore be normalised
to make G/� a probability space. A subgroup H of G acts on the probability space
G/� by translations. The ergodic theory of this action has been extensively studied in
recent decades, and is referred to as homogeneous dynamics. For particular choices
of G, H and �, the spaces G/� and H\G parametrise objects of number theoretic
interest in many cases and the ergodic theory of the H action on G/� (resp. the �

action on H\G) gives valuable Diophantine information about these objects. Here
are some examples:

Example 1.1 G = SLn(R) and � = SLn(Z). Then G/� can be identified with the
space of unimodular lattices inR

n . The dynamics of diagonal flows onG/� plays an
important role inDiophantine approximationof vectors and linear forms, as explained
in the next section.

Example 1.2 Let n = p + q and set H = SO(p, q). Then the H action on SLn(R)/

SLn(Z) plays an important role in the study of quadratic forms. This is also touched
upon in the next section.

Example 1.3 G = SLn(R) × SLn(Qp) and � = SLn(Z[1/p]). Once again, � is a
non-cocompact lattice in G and similar to the example above, one can identify G/�

can be identified with the space of discrete Z[1/p]-modules in R
n × Q

n
p. Dynamics

on this and related spaces plays an important role in p-adic Diophantine approxima-
tion.

Example 1.4 Let k be a degree d number field, S be the set of Archimedean places
and Ok be it’s ring of integers. Then Ok is a lattice in kS := R × · · · × R × C × · · · ×
C via the Galois embedding. By the Borel Harish-Chandra theorem, � = SL2(Ok)

is a lattice in SLn(kS) := ∏
s∈S SLn(ks) where ks denotes the completion of k at the

place s ∈ S. In Sect. 3, we will consider flows on the space G/� and connections to
Diophantine approximation in number fields. Such dynamics is intimately connected
to geodesic flows on the associated arithmetic orbifold.

1.2 Diophantine Approximation

Diophantine approximation begins with a theorem due to Dirichlet [16] which states
that

Theorem 1.5 For any x ∈ R and any Q > 0, there exist p ∈ Z and q ∈ N such that

|qx − p| <
1

Q
and q ≤ Q.
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As a corollary, it follows that for every x ∈ R, there exist infinitely many q ∈ N such
that

|qx − p| <
1

q
,

for some p ∈ Z. One can also consider Diophantine approximation in higher dimen-
sion. Indeed, the role of homogeneous dynamics is brought into sharper focus in
higher dimensions as it serves as a replacement for continued fractions, an effi-
cient theory of which is only available in dimension 1. For instance, the corollary to
Dirichlet’s theorem in arbitrary dimension reads as follows:

Theorem 1.6 For every x ∈ R
d , there exist infinitely many q ∈ Z such that

‖qx − p‖ < |q|−1/d , (1)

for some p ∈ Z
d .

Here, ‖ · ‖ is the supremumnorm. In dimension d > 1, there are two possible settings
for Diophantine approximation. The above is called the simultaneous setting, one
could also consider the dual setting where one considers small values of the linear
form

|q · x + p|

for q ∈ Z
d and p ∈ Z. The simultaneous and dual settings are related by transference

principles. We refer the reader to [16] for Khintchine’s classical transference princi-
ples and [19] for some recent developments involving transference inequalities in the
weighted and inhomogeneous settings. Dirichlet’s theorem can be proved using the
pigeonhole principle (as proved originally by Dirichlet) and also using Minkowski’s
theorem in the geometry of numbers.

The next major theorem in metric Diophantine approximation seeks to expand the
class of approximating functions. Let ψ be a non-increasing function from R −→
R+ ∪ {0} be given and letWd(ψ, R) be the subset of real numbers x for which there
exist infinitely many q ∈ Z

d such that

|q · x + p| < ψ(‖q‖d) (2)

for some p ∈ Z. Khintchine’s theorem (in dual form) characterizes the size of
Wd(ψ, R) in terms of Lebesgue measure.

Theorem 1.7 (Khintchine’s theorem) Wd(ψ, R) has zero or fullmeasure according
as ∞∑

x=1

ψ(x) (3)

converges or diverges.
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There exist numbers (and vectors) for which (1) cannot be improved; these are called
badly approximable. We now define the same.

Definition 1.8 A vector x ∈ R
d is called badly approximable if there exists c :=

c(x) > 0 such that

‖qx − p‖ ≥ c

|q|1/d . (4)

It is well known that badly approximable vectors have zero Lebesgue measure and
full Hausdorff dimension (Jarnik [45] for n = 1 and Schmidt [65, 66] for arbitrary
n). In fact, Schmidt showed that they are winning for a certain game, a stronger and
more versatile property than having full Hausdorff dimension. We refer the reader
to Dani’s article [21] in this volume for an introduction to Schmidt’s game.

On the opposite end of the spectrum to badly approximable vectors, are singular
vectors.

Definition 1.9 A vector x ∈ R
d is said to be singular if for every ε > 0 there exists

N0 with the following property: for each N ≥ N0, there exist p ∈ Z
d , q ∈ N so that

‖qx − p‖ <
ε

N
1
d

and q < N . (5)

In other words, x is singular if Dirichlet’s Theorem can be improved by an arbitrarily
small constant factor ε > 0. In the case d = 1, Khintchine [48] showed that a real
number is singular if and only if it is rational. Moreover, it was shown by Davenport
& Schmidt [22] that the set of singular vectors has zero Lebesgue measure.

We now move from linear forms to quadratic forms and briefly discuss Oppen-
heim’s conjecture. Let n ≥ 3 and let Q be a non degenerate indefinite quadratic
form in n variables and assume that Q is not proportional to a form with rational
coefficients. It was a conjecture of Oppenheim from the 1920s and a celebrated
theorem of Margulis [56] that under these conditions Q(Zn) is dense in R. Oppen-
heim’s conjecture is false for binary quadratic forms, a counterexample can be con-
structed using badly approximable numbers. More precisely, the quadratic form
Q(x, y) = y2 − θ2x2 where θ is a quadratic irrational with θ2 irrational provides
a counterexample. For this and more, we refer the reader to Borel’s survey [12].

How does the Diophantine approximation of vectors and linear and quadratic
forms relate to dynamics of subgroup actions on G/� or lattice actions on H\G?
Let G = SLn+1(R) and � = SLn+1(Z), then G/� and can be naturally identified
with the space �n+1 of unimodular, i.e., covolume 1 lattices in R

n+1. Namely, G
acts transitively on �n+1 by multiplication and the stabilizer of the lattice Z

n+1

is SLn+1(Z). The space G/� is a non-compact, finite volume space and Mahler’s
compactness criterion describes the compact subsets of G/�. Diophantine approx-
imation of vectors in R

n can be modelled using dynamics of subgroup actions on
�n+1. Given a vector x ∈ R

n , we consider the unimodular lattice
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�x :=
(
1 x
0 Id

)

Z
n+1 ∈ �n+1.

Further, let

gt :=
(
et 0
0 e−t

)

∈ G.

Then we have the following two propositions connecting Diophantine properties of
x with the dynamics of the gt action on G/� due to Dani [20]. The first concerns
badly approximable vectors.

Proposition 1.10 A vector x∈R
n is badly approximable if and only if {gt�x : t>0}

is bounded in G/�.

And the second concerns singular vectors.

Proposition 1.11 A vector x ∈ R
n is singular if and only if {gt�x : t > 0} is

divergent in G/�.

Kleinbock and Margulis [52] have proved a more general version of the “Dani cor-
respondence” and have provided a dynamical proof of Khintchine’s theorem using
exponential mixing of the gt action on G/�. This is closely related to the shrinking
target problem for group actions on homogeneous spaces. In [68], Sullivan estab-
lished the following folklore theorem. Let V = H

d+1/� be a hyperbolic manifold
where � is a discrete subgroup of hyperbolic isometries which is not co-compact,
and let dist v(t) denote the distance from a fixed point in V of the point achieved
after traveling a time t along the geodesic with initial direction v.

Theorem 1.12 ([68]) For all x ∈ V , and almost every v ∈ TxV ,

lim sup
t→∞

dist v(t)

log t
= 1

d
.

Kleinbock and Margulis generalized Sullivan’s logarithm law to locally symmetric
spaces. In fact, both the logarithm law and Khintchine’s theorem are manifestations
of a 0–1 Borel–Cantelli type law for diagonal flows on homogeneous spaces. This
scheme was subsequently carried out in the positive characteristic setting in [4]
(see also [34]), and in the setting of geodesic orbits on the frame bundle of finite
volume non-compact hyperbolic manifolds in [7]. We refer the reader to [33] for an
introduction to the shrinking target problem, including a more general formulation
of the logarithm law for (not necessarily one-parameter”) subgroups, as well as a list
of references.

How does Oppenheim’s conjecture relate to dynamics? Let G = SLn(R), H =
SO(p, q) and � = SLn(Z). The space H\G can be identified with the space of
quadratic forms of signature (p, q) in n = p + q variables. The relevant dynamics
here is that of the� action on H\G (or, dually, the H action onG/�).More precisely,
the following proposition implies Oppenheim’s conjecture.
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Proposition 1.13 Any H orbit on G/� is either closed and carries an H ◦ invariant
measure or is dense.

The above result was proved by G. Margulis [56] for ternary quadratic forms, thus
settling Oppenheim’s conjecture. The main point is that, under the conditions above,
SO(p, q) is generated by unipotent one-parameter subgroups. The proposition above
is an instance of the conjectures ofRaghunathan andDani on orbit closures and invari-
ant measures for actions of such groups on homogeneous spaces. These conjectures
were settled by M. Ratner. We refer the reader to [59] for details on this beautiful
subject. Recently, the � action on H\G has been used to study effective versions on
Oppenheim’s conjecture. We will not elaborate on this theme in this survey, refer-
ring the reader instead to [39] for details and to [37, 38] for the more general study
of effective density of lattice orbits on homogeneous varieties and [35, 36] for the
related problem of intrinsic Diophantine approximation on varieties. See also [32]
for a related question on quadratic forms studied originally by Bourgain [13].

Structure. The rest of the article is divided into three sections. The next section
focuses onDirichlet’s theoremand considers twodifferent aspects—probabilistic and
geometric, of the problem of distribution of approximates. The tools in this section
involve equidistribution of flows and limiting distributions for flows on the space of
lattices. Section3 considers Diophantine approximation in number fields. The classi-
cal theorems like Dirichlet’s theorem andKhintchine’s theorem can be generalised to
number fields. We pay particular attention to vectors which are badly approximable
by rationals from a number field and the associated dynamics of diagonal flows on
arithmetic orbifolds. The last two sections discuss Diophantine approximation in two
diverse settings: that of projective space and hyperbolic space. In Sect. 4, we present
a projective version of Khintchine’s theorem and the more general Duffin–Schaeffer
conjecture and in Sect. 5, we discuss Diophantine approximation by orbits of Fuch-
sian and Kleinian groups on the boundary of hyperbolic space. The techniques used
in the last two sections are classical in nature.

2 On the Distribution of Approximates

In this section, we describe some recent results on the distribution of approximates in
Dirichlet’s theorem. First, we describe a probabilistic distribution problem, originally
due to Erdős, Szüsz and Turán and developed in a homogeneous context, in [3]. In
the next subsection, we consider the geometry of the approximates and describe a
spiraling equidistribution of approximates proved in [6].
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2.1 The EST Distribution

In 1958, Erdős, Szüsz and Turán [26] introduced a problem in probabilistic Dio-
phantine approximation: what is the probability f (N , A, c) that a point α chosen
from the uniform distribution on [0, 1] has a solution p

q ∈ Q to the inequality

∣
∣
∣
∣α − p

q

∣
∣
∣
∣ ≤ A

q2
(6)

with the constraint that the denominator q lies in [N , cN ]? Here A > 0, c > 1
are fixed positive parameters, and N is a parameter which goes to infinity. The
above inequality is of course a close variant of the inequality in Dirichlet’s theorem.
In particular, we know that A = 1 admits infinitely many solutions and that (by
Hurwitz’s theorem), A = 1√

5
is the best allowable constant which admits infinitely

many solutions for all α. Given A, c, N , let EST(A, c, N )(α) be the number of
solutions p/q ∈ Qwith gcd(p, q) = 1 to (6). Lettingα ∈ [0, 1] be a uniform random
variable yields an integer-valued random variable EST(A, c, N ), with

P (EST(A, c, N ) = k) = m (α ∈ [0, 1] : there are exactly k solutions to (6)) ,

where m is Lebesgue measure on [0, 1]. Then, the EST question is the existence of
the limit

lim
N→∞ P (EST(A, c, N ) > 0) .

Kesten [46] considered a modified version of this problem, he defined the sequence
of random variables K (A, N ) as the number of solutions to

|αq − p| ≤ A

N
, 1 ≤ q ≤ N , (7)

where α is a uniform [0, 1] random variable. That is,

P(K (A, N ) = k) = m (α ∈ [0, 1] : there are exactly k solutions to (7)) .

The Kesten distribution was studied by Marklof [Theorem 4.4 in [57]], thought
at the time he was not aware of Kesten’s question. In [3], it was shown that the
limiting distributions of the random variables EST(A, c, N ) and K (A, N ) exist as
N → ∞. In fact, they can be viewed as the probability of a random unimodular
lattice intersecting a certain fixed region. Let μ2 denote the Haar probability measure
on �2, the space of unimodular lattices in R

2. Given � ∈ X2, � = gZ
2, let �prim

be the set of primitive vectors in �. It should be emphasized that we were unaware
of Marklof’s work, and the Kesten part of the theorem below merely reproves a part
of Marklof’s theorem referred to above.
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Theorem 2.1 ([3] Theorem (1.1)) The limiting distribution of the random variables
EST(A, c, N ) and K (A, N ) exist and denoting the random variables with these
limiting distributions as EST(A, c) and K (A), we have

P(EST(A, c) = k) = μ2(� ∈ X2 : #(�prim ∩ HA,c) = k), (8)

and
P(K (A) = k) = μ2(� ∈ X2 : #(�prim ∩ RA) = k) (9)

where
HA,c = {(x, y) ∈ R

2 : xy ≤ A, 1 ≤ y ≤ c}, (10)

and
RA = {(x, y) ∈ R

2 : |x | ≤ A, 0 ≤ y ≤ 1}. (11)

In fact, the setting in [3] is abstract and axiomatic, allowing for a great deal of
flexibility. The philosophy of equivariant point processes, introduced in this context
in [3], allows us to obtain the existence of these limiting distributions in higher
dimensions, for linear forms, for points on smooth curves as well as in the setting of
the set of holonomy vectors of saddle connections on translation surfaces. For details
as well as a more detailed history of the problem, the reader is referred to [3]. Further
applications of equivariant point processes are explored in a forthcomingmonograph
of Athreya and Ghosh.

2.2 Spiraling of Approximates

In this section, we describe some results from [6] (see also [5]) where the geometric
study of the distribution of approximates in Dirichlet’s theorem was initiated. We
consider a vector x ∈ R

d and form, as before, form the associated unimodular lattice
in R

d+1.

�x :=
(
Idd x
0 1

)

Z
d+1 =

{(
qx − p

q

)

: p ∈ Z
d , q ∈ Z

}

.

Then we can view the approximates (p, q) of x appearing in (1) as points of the
lattice �x in the region

R :=
{

v =
(
v1
v2

)

∈ R
d × R : ‖v1‖|v2|1/d ≤ 1

}

. (12)

The goal is to understand the geometry of the set of approximates �x ∩ R. To do so,
consider the following sets:

Rε,T := {v ∈ R : εT ≤ v2 ≤ T } (13)



Topics in Homogeneous Dynamics and Number Theory 157

and, for a measurable subset A of S
d−1 with zero measure boundary,

RA,ε,T :=
{

v ∈ Rε,T : v1
‖v1‖ ∈ A

}

. (14)

For a unimodular lattice �, define

N (�, ε, T ) = #{� ∩ Rε,T }

and
N (�, A, ε, T ) = #{� ∩ RA,ε,T }.

Letdk denoteHaarmeasure on K = SOd+1(R), and let Xd+1 = SLd+1(R)/SLd+1(Z)

denote the space of unimodular lattices in R
d+1. The following equidistribution

theorem is proved in [6].

Theorem 2.2 For every � ∈ Xd+1, A ⊂ S
d−1 as above, and for every ε > 0,

lim
T→∞

∫
K N (k−1�, A, ε, T ) dk
∫
K N (k−1�, ε, T ) dk

= vol(A). (15)

In other words, for any lattice �, on average over the set of directions v, the set of
approximates satisfying Dirichlet’s theorem in the direction v equidistributes in the
set of directions S

d−1 in the orthogonal complement to v. The proof of the Theorem
2.2 depends on an equidistribution result for Siegel transforms which is likely to
have other applications.

One can also fix the vertical, and instead average the counting functions over a
range of heights, T , to obtain a result for almost every lattice �, with respect to the
probability measure μ on Xd+1 induced by Haar measure on SLd+1(R).

Theorem 2.3 Fix A ⊂ S
d−1 as above. For μ-almost every � ∈ Xd+1 and for every

ε > 0,

lim
S→∞

∫ S
0 N (�, A, ε, et ) dt
∫ S
0 N (�, ε, et ) dt

= vol(A). (16)

That is, if we average the number of approximates in the region A over a range of
heights and similarly average the total number of approximates, we have an almost
everywhere equidistribution.

On the other hand, there are examples of lattices � and directions v for which
(non-averaged) equidistribution does not hold. The following is proved in [6].

Theorem 2.4 Let d ≥ 1. There exists a lattice� ∈ SLd+1(R)/SLd+1(Z), a set A ⊂
S
d−1 with zero measure boundary, and a sequence {Tn} for which



158 A. Ghosh

lim
n→∞

N (�, A, ε, Tn)

N (�, ε, Tn)
= vol(A) (17)

for every 1 > ε ≥ 0.

For d = 1, note that S
0:={−1, 1} and we define vol({−1}) = vol({1}) = 1/2.

In [54], the study of weighted spiraling was taken up and several interesting
spiraling and equidistribution results were obtained. Subsequently, in [1], a study of
spiraling and equidistribution in number fields was undertaken. Finally, we note that
the paper [11] has interesting results on the distribution of approximates for badly
approximable numbers.

3 Diophantine Approximation in Number Fields

In this section, we describe some recent advances in Diophantine approximation in
number fields. Let k be a number field of degree d over Q, Ok its ring of integers,
and S be the set of field embeddings σ : k ↪→ R. Then we have |S| = d. We will be
interested in Diophantine approximation by rationals from a fixed number field.

Analogues of Dirichlet’s theorem in this setting have been established by several
authors (cf. [15, 63, 66]) using appropriate adaptations of the geometry of numbers.
Here is Proposition 2.1 from [51], proved using a result from [15], here we are
approximating x ∈ R

d by rationals in k.

Proposition 3.1 There exists a constant and for every Q > 0, there exists p ∈
Ok, q ∈ Ok\{0} with

‖σ(q) · x + σ(p)‖ ≤ CQ−1 and ‖σ(q)‖ ≤ Q.

The corollary of Dirichlet’s theorem also holds for number fields. Here is Theorem
2.3 in [51].

Theorem 3.2 There is a constant C = Ck > 0 depending only on k, such that for
every x ∈ kS, there are infinitely many p, q ∈ Ok with q = 0 satisfying:

‖σ(q) · x + σ(p)‖ ≤ C‖σ(q)‖−1.

We nowwant to define and discuss the properties of badly approximable vectors. We
define the more general weighted badly approximable vectors and describe results
in [2], we therefore follow the notation from that paper.

Notation 3.3 Let r ∈ R
d be a real vector with rσ ≥ 0 for σ ∈ S and

∑
σ∈S rσ = 1.

Set
S1 = {σ ∈ S : rσ > 0} , and S2 = S \ S1.
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Assume |S1| = d1, |S2| = d2. Choose and fix ω ∈ S with rω = r , where

r = max
σ∈S rσ.

Definition 3.4 Define a weighted norm, called the r-norm, on
∏

σ∈S R by

‖x‖r = max
σ∈S1

|xσ| 1
rσ .

Definition 3.5 Say a vector x = (xσ)σ∈S ∈ ∏
σ∈S R is (k, r)-badly approximable if

inf
q∈Ok\{0} P∈Ok

max

{

max
σ∈S1

‖q‖rσr |σ(q)xσ + σ(p)|,

max
σ∈S2

max{|σ(q)xσ + σ(p)|, |σ(q)|}
}

> 0.

The set of (k, r)-badly approximable vectors is denoted as Bad(k, r).

The definition of (k, r)-badly approximable vector is the weighted case of k-badly
approximable vector introduced in [25]. Weighted badly approximable (by rational)
vectors in R

n are the subject of Schmidt’s conjecture, now a theorem of Badziahin,
Pollington and Velani [8]. In [2], a number field analogue of Schmidt’s conjecture
is proved, this was previously known in some special cases [25]. The existence of
k-badly approximable vectors was established in [13, 41].

We note in passing that a real number is badly approximable if and only if its
partial fraction coefficients are bounded. In [44], this characterization is established
for complex numbers and in [43], examples of badly approximable vectors in the
number field setting have been constructed.

A variant of Schmidt’s game, called the hyperplane potential gamewas introduced
in [28] and defines a class of subsets ofRd called hyperplane potential winning (HPW
for short) sets.

The hyperplane potential game involves two parameters β ∈ (0, 1) and γ > 0.
Bob starts the game by choosing a closed ball B0 ⊂ R

d of radius ρ0. In the i th turn,
Bob chooses a closed ball Bi of radius ρi , and then Alice chooses a countable family
of hyperplane neighborhoods

{
L(δi,k )
i,k : k ∈ N

}
such that

∞∑

k=1

δ
γ
i,k ≤ (βρi )

γ .

Then in the (i + 1)th turn, Bob chooses a closed ball Bi+1 ⊂ Bi of radius ρi+1 ≥ βρi .
By this process, there is a nested sequence of closed balls

B0 ⊇ B1 ⊇ B2 ⊇ · · · .
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We say a subset S ⊂ R
d is (β, γ)-hyperplane potential winning ((β, γ)-HPW for

short) if no matter how Bob plays, Alice can ensure that

∞⋂

i=0

Bi ∩
(
S ∪

∞⋃

i=0

∞⋃

k=1

L(δi,k )
i,k

)
= ∅.

We say S is hyperplane potential winning (HPW) if it is (β, γ)-HPW for any β ∈
(0, 1) and γ > 0.

Set
θ : k −→

∏

σ∈S
R, θ(p) = (σ(p))σ∈S.

Let Resk/Q denote Weil’s restriction of scalar’s functor. It is well known that the
group Resk/Q SL2(Z) is a lattice in Resk/Q SL2(R). The latter coincides with the
product of d copies of SL2(R). We set

G = Resk/Q SL2(R) =
∏

σ∈S
SL2(R), � = Resk/Q SL2(Z).

It follows from the definition that the subgroup Resk/Q SL2(Z) coincides with the
subgroup θ(SL2(Ok)), where θ is the map defined by θ(g) = (σ(g))σ∈S . The follow-
ing is a special case of the main theorem in [2].

Proposition 3.6 Let r ∈ R
d be a real vector with rσ ≥ 0 for σ∈S and

∑
σ∈S rσ=1,

set
gr(t) :=

((
erσ t 0
0 e−rσ t

))

σ∈S
(18)

and F+
r = {gr(t) : t ≥ 0}, then the set

E(F+
r ) := {x ∈ G/� : F+

r x is bounded }

is HPW.

As before, Bad(k, r) corresponds to bounded orbits for certain flows on homoge-
neous spaces. Namely, we have the following correspondence (Proposition 3.4 in
[2]) between (k, r)-badly approximable vector and bounded F+

r trajectories, i.e. a
number field version of Dani’s correspondence. The proof is more involved than the
Q case.

Proposition 3.7 A vector x = (xσ)σ∈S is (k, r)-badly approximable if and only if
the trajectory F+

r u(x)� is bounded in G/�. In other words,

Bad(K , r) = u−1
(
π−1(E(F+

r )) ∩ H
)
, (19)

where π denotes the projection G −→ G/�.
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In view of the number field Dani correspondence above, this implies a number field
version of Schmidt’s conjecture, in other words.

Theorem 3.8 Bad(k, r) is HPW.

In fact, the sets above are winning for the hyperplane absolute game introduced in
[14]. This is because it is proved in [28, Theorem C.8] that A subset S of R

d is HPW
if and only if it is HAW.

4 A Projective Duffin Schaeffer Theorem

In this section, we describe a recent projective variation of metric Diophantine
approximation originally studied by Choi and Vaaler [18] and developed further
by the author and Haynes [31]. Projective metric Diophantine approximation aims
to quantify the density of P

n−1(k) in P
n−1(kv) where k is a number field and kv is a

completion of k.

Notation 4.1 For non-zero vectors x, y ∈ knv , we define following [18]

δv(x, y) := |x ∧ y|v
|x|v|y|v . (20)

Then δv defines a metric on P
n−1(kv)which induces the usual quotient topology [64].

Notation 4.2 We define the height of a point x ∈ P
n−1(k) by

H(x): =
∏

v

|x|v. (21)

We note that this is well defined over projective space because of the product formula.
The following is a projective version of Dirichlet’s theorem due to Choi and Vaaler
[18].

Theorem 4.3 Let x ∈ P
n−1(kv), let τ ∈ kv with |τ |v ≥ 1. Then there exists y ∈

P
n−1(k) such that

1. H(y) ≤ ck(n)|τ |n−1
v , and

2. δv(x, y) ≤ ck(n)(|τ |vH(y))−1.

Here
ck(n) = 2|�k |1/2d

∏

v|∞
rv(n)dv/d ,

�k is the discriminant of k, and
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rv(n) =
{

π− 1
2 �( n2 + 1)

1
n if v is real,

(2π)− 1
2 �(n + 1)

1
2n if v is complex.

In [31], a projective analogue of Khintchine’s theorem andmore generally, the Duffin
Schaeffer conjecture, were proved. In order to state the results in loc. cit. we first
briefly recall some probability measures on P

n−1(kv), originally defined and studied
by Choi [17]. If v is an infinite place then βn

v is the usual n-fold Lebesgue measure
on R

n or 2n times Lebesgue measure on C
n , while if v is a finite place then βn

v is the
n-fold Haar measure normalized so that

βv(Ov) = ‖Dv‖dv/2
v ,

where Ov is the ring of integers of kv and Dv is the local different of k at v. Let φ :
knv \ {0} −→ P

n−1(kv)be the quotientmap anddefine theσ-algebraMofmeasurable
sets in P

n−1(kv) to be the collection of sets M ⊆ P
n−1(kv) such that φ−1(M) lies in

theσ-algebra ofBorel sets in knv . This is in fact theσ-algebra ofBorel sets inP
n−1(kv).

One then defines measures μv on (Pn−1(kv),M) by

μv(M) = βn
v

(
φ−1(M) ∩ B(0, 1)

)

βn
v (B(0, 1))

. (22)

Givenψ : R+ ∪ {0} −→ R+ ∪ {0}, letW be the set of x ∈ P
n−1(Qv) for which there

exist infinitely many y ∈ P
n−1(Q) such that

δv(x, y) ≤ ψ(H(y)).

Then it is a straightforward consequence of the Borel–Cantelli lemma that
μp(W) = 0 whenever

∞∑

q=1

qn−1ψ(q)(n−1) (23)

converges. In [31], the projective p-adic version of the Duffin–Schaeffer conjecture
is established in all dimensions greater than 1.

Theorem 4.4 Assume that p is a finite place, that n > 2, and that ψ(q) = 0 when-
ever p|q. Then μp(Wp(ψ, Q, n)) = 1 whenever (23) diverges.

In fact, more can be proved if monotonicity is assumed. The second result in [31] is
the complete (i.e., allowing arbitrary primes and dimensions) projective version of
Khintchine’s theorem.

Theorem 4.5 Assume that ψ is decreasing and let p be a (finite or infinite) place of
Q. Then μp(Wp(ψ, Q, n)) = 1 whenever (23) diverges.



Topics in Homogeneous Dynamics and Number Theory 163

Recently, in [40], the authors have studied badly approximable vectors in the pro-
jective setting. In particular, they showed that badly approximable vectors have full
Hausdorff dimension.

5 The Hyperbolic Picture

Consider the action of SL2(R) on the hyperbolic upper half plane H
2 by Möbius

transformations. This action extends to the boundary and there are close connections
between Diophantine approximation and the study of dense orbits of discrete sub-
groups of SL2(R) on the boundary. For example, the orbit of ∞ under the action
of SL2(Z) is precisely the set of rational numbers; one might therefore seek a more
general quantitative theory of the approximation of limit points of a fixed Kleinian
group by points in the orbit (under the group) of a distinguished limit point y. In this
section, we briefly review important work by Patterson [62] and then discuss some
recent work in this direction carried out in [10].

Let G denote1 a nonelementary, geometrically finite Kleinian group acting on the
unit ball model (Bd+1, ρ) of (d + 1)-dimensional hyperbolic space with metric ρ
derived from the differential dρ = 2|dx|/(1 − |x|2). Thus, G is a discrete subgroup
of Möb(Bd+1), the group of orientation-preserving Möbius transformations of the
unit ball Bd+1. Since G is nonelementary, the limit set � of G is uncountable. The
group G is said to be of the first kind (such a group is a lattice) if � = Sd and of
the second kind otherwise. Let δ denote the Hausdorff dimension of �. It is well
known that δ is equal to the exponent of convergence of the group. For g ∈ G set
Lg := |g′(0)|−1, where |g′(0)| = 1 − |g(0)|2 is the (Euclidean) conformal dilation
of g at the origin. It can be checked that Lg ≤ eρ(0,g(0)) ≤ 4Lg . The following two
Dirichlet-type theorems were first established by Patterson [62, Sect. 7: Theorems
1 and 2] for finitely generated Fuchsian groups, but can be generalized to higher
dimensions.

Theorem 5.1 Let G be a nonelementary, geometrically finite Kleinian group con-
taining parabolic elements and let P be a complete set of inequivalent parabolic
fixed points of G. Then there is a constant c > 0 with the following property: for
each ξ ∈ �, N > 1, there exist p ∈ P, g ∈ G so that

|ξ − g(p)| ≤ c
√
LgN

and Lg ≤ N .

Theorem 5.2 Let G be a nonelementary, geometrically finiteKleinian groupwithout
parabolic elements and let {η, η′} be the pair of fixed points of a hyperbolic element
of G. Then there is a constant c > 0 with the following property: for all ξ ∈ �,

1 This notation, mainstream in the Kleinian groups literature, is at odds with the notation in previous
sections where G was the ambient Lie group and � a lattice in G.
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N > 1, there exist y ∈ {η, η′}, g ∈ G so that

|ξ − g(y)| ≤ c

N
and Lg ≤ N .

As mentioned earlier, in the context of SL2(Z) and H
2, Theorem 5.1 reduces to

Dirichlet’s Theorem.

In [10], the notion of singular limit points within the hyperbolic space setup was
introduced. Let G be a Kleinian group and let Y be a complete set P of inequivalent
parabolic fixed points of G if the group has parabolic elements; otherwise let Y be
the pair {η, η′} of fixed points of a hyperbolic element of G.

Definition 5.3 A point ξ ∈ � is said to be singular if for every ε > 0 there exists
N0 with the following property: for each N ≥ N0, there exist y ∈ Y , g ∈ G so that

|ξ − g(y)| <

{
ε√
LgN

if Y = P

ε
N if Y = {η, η′}

and Lg < N . (24)

In [10], it was shown that the hyperbolic singular theory is, irrespective of the dimen-
sion of the hyperbolic space, similar to the one-dimensional classical theory.

Theorem 5.4 Let G be a nonelementary, geometrically finite Kleinian group, and
let Y be as above. Then a point ξ ∈ � is singular if and only if ξ ∈ G(Y ) := {g(y) :
g ∈ G, y ∈ Y }.
In [62], convergence and divergence Khintchine type theorems were proved. In [10],
versions ofKhintchine’s theorem for proper subsets of the limit set were investigated.
Let K be a subset of the limit set � which supports a nonatomic probability measure
μ. Given α > 0, the measure μ supported on K is said to be weakly absolutely α-
decaying if there exist strictly positive constants C, r0 such that for all ε > 0 we
have

μ (B(x, εr)) ≤ C εα μ (B(x, r)) ∀x ∈ K ∀r < r0.

For sets supporting such measures, the following result was proved in [10].

Theorem 5.5 Let G be a nonelementary, geometrically finite Kleinian group and
let y be a parabolic fixed point of G, if there are any, and a hyperbolic fixed point
otherwise. Fix α > 0, and let K be a compact subset of � equipped with a weakly
absolutely α-decaying measure μ. Then

μ
(
K ∩ Wy(ψ)

) = 0 if
∞∑

r=1

rα−1ψ(r)α < ∞. (25)

We now discuss the analogue of badly approximable vectors. The set



Topics in Homogeneous Dynamics and Number Theory 165

Bady := {
ξ ∈ � : ∃c(ξ) > 0 such that |ξ − g(y)| > c(ξ)/Lg ∀g ∈ G

}
,

can be considered to be the hyperbolic analogue of badly approximable numbers and
is of measure zero. Nevertheless, it is a large set.

The following theoremwas first established by Patterson [62, Sect. 10] for finitely
generated Fuchsian groups of the first kind. As before, y is taken to be a parabolic
fixed point of G if the group has parabolic elements and a hyperbolic fixed point of
G otherwise.

Theorem 5.6 Let G be a nonelementary, geometrically finite Kleinian group and
let y be a parabolic fixed point of G, if there are any, and a hyperbolic fixed point
otherwise. Then

dimBady = dim�.

Let K be a subset of the limit set � which supports a nonatomic probability measure
μ as before. We assume that the measure μ supported on K is Ahlfors δ-regular for
some δ > 0; that is, that there exist constants C > 0 and r0 such that

C−1 r δ ≤ μ (B(x, r)) ≤ C r δ ∀x ∈ K ∀r < r0.

Sets supporting such measures are referred to as Ahlfors δ-regular and it is a well
known fact that

dim K = δ.

For Ahlfors δ-regular subsets of the limit set the following result was proved in [10].

Theorem 5.7 Let G be a nonelementary, geometrically finite Kleinian group and
let y be a parabolic fixed point of G, if there are any, and a hyperbolic fixed point
otherwise. Let K be a compact, Ahlfors δ-regular subset of �. Then

dim
(
K ∩ Bady

) = dim K . (26)

These results weremotivated by results onDiophantine approximation onmanifolds,
and indeed, constitute an hyperbolic analogue of the theory. We refer to [10] for
details.
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On Certain Unusual Large Subsets
Arising as Winning Sets of Some Games

S. G. Dani

1 Introduction

Consider the space R of real numbers. When would we call a subset X of R a large
set? Of course, the whole of R itself or a subset missing only finitely many points
would readily qualify to be large. With some understanding of cardinals, we may
add to this list the class of subsets whose complements are countable. This includes
for instance the sets of all irrational numbers, the set of all transcendental numbers
etc. and we recognize these as large sets.

In topology, we encounter also another kind of sets which are considered large,
viz., intersections of countably many open dense sets or, equivalently, sets whose
complement is a countable union of closed sets with no interior point (nowhere dense
closed sets). In a general topological space, this condition would not be adequate to
ensure largeness; for instance, in the space of rational numbers every subset, including
the empty subset meets the condition. However, the Baire category theorem tells
us that for many “natural” topological spaces that are of interest to analysts, and
dynamicists, viz., when the space is either a complete metric space or a locally
compact Hausdorff space, it gives a nice criterion to distinguish a class of subsets
as large; in this case the class is precisely the class of of all dense Gδ subsets; recall
that a subset X of a topological space is said to be Gδ if it can be expressed as the
intersection of a countable family of dense open subsets of the space. In particular,
in the case of R we have the class of Gδ subsets as a collection of large sets.

Measure theory provides yet another class of large subsets of R, and more gen-
erally of spaces equipped with a measure, including R

n for all n ≥ 1. On R, we
consider the Lebesgue measure, and in many contexts a set of measure 0 qualifies
to be treated as “negligible” and hence sets may considered large if they are of full
measure, namely with the complement having measure 0.
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Thus, in classical mathematics, there are a variety of subsets that serve as classes
of “large” subsets. We note that largeness in the sense of being a Gδ is distinct from
being large in the measure-theoretic sense as above. There exist Gδ sets of measure
0 while on the other hand there are sets whose complement has zero measure, that
are not Gδ . Thus, each of the collections can be thought of as a collection of sets that
are large in their own way, in their own context.

It would seem hard to think up of other classes of sets, independently, that ought to
be considered large, in some heuristically valid sense. However yet another class of
large sets has turned up and is involved any many studies in recent times, in number
theory and dynamics. These are classes of sets that are “winning sets” for certain
games. It is the aim of this talk to introduce these and the various contexts in which
they appear, and some recent results about them.

All games considered will be two player games, with infinitely many turns each.
We shall call the players Alice and Bob. Before going over to some of the main
games of interest in the overall context, we shall discuss a toy version. I shall call it
the number building game.

Consider a number written in the decimal representation in the form

α = 0 . a1 b1 a2 b2 . . . ,

wherea1, a2, . . . andb1, b2, . . . are digits from {0, 1, . . . , 9}; the digitsa1, a2, . . .

are picked by Alice and b1, b2, . . . are picked by Bob taking turns, adding one digit
at a time alternately, starting with a1, then b1, etc. The (infinite) process of their
picking the digits alternately produces a number α ∈ [0, 1]. Now, the objective of
the game is as follows.

Let S be a given subset of [0, 1]. Alice would be the winner if α belongs to S
and Bob would be the winner if α does not belong to S. Can Alice make the choices
of a1, a2, . . . during her turns, in such a way that irrespective of what choices Bob
makes for b1, b2, . . . , adversarially, during his turns, so as to ensure the resulting
number α to be in S? This would, of course depend on the set S, and if answer is in
the affirmative we say that S is a winning set (we are being partial to Alice here in
terms of the terminology, by abbreviating “winning set for Alice” as simply “winning
set”; we will be indulging in such a partiality in the sequel as well). It is not difficult
to see that if S is a set whose complement in [0, 1] is finite, or countable, then S
is a winning set, and that winning sets have to be uncountable, while on the other
hand the complement of a set of zero measure (necessarily uncountable and large
in measure theoretic sense) need not always be a winning set; the set of numbers
in which a particular digit, say 5, occurs in the decimal expansion with asymptotic
frequency 1

10 has Lebesgue measure 1 (this is implied by the ergodic theorem, or the
strong law of large numbers, but can also be verified by direct computation), but it is
not a winning set, since Bob can choose 5 at all turns, in which case the asymptotic
frequency, if it exists, would be at least 1

2 .
The game as above can evidently also be considered with respect to any base in

place of 10. Also, in place of ai and bi being digits we can have them to be blocks
of digits. Analogous assertions to the above hold in these cases as well.
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Beforemoving ahead, the reader is alerted that the games considered in the follow-
ing sections differ from the one above in one respect. While here at each successive
stage only finitely many options were involved, in general there will be a continuous
family of options possible, for both the players.

2 Schmidt’s (α, β)-Game

We next introduce a game which was ushered in by W. M. Schmidt. It has been a
prototype for various games studied in literature subsequently and applied in various
contexts, involving an idea of large sets; some of these will be discussed in the sequel.
Though we shall largely be concerned with situations where the underlying space is
the euclidean space Rn or the torus Tn , for some n ≥ 1, it would be convenient to
introduce the game in the generality of metric spaces.

Let X be a locally complete metric space, viz., every point in X has a neighbour-
hood which is complete as a metric space.1 By a ball in X we shall always mean ball
of positive radius, and for a ball B the radius will be denoted by r(B). We shall have
the players Alice and Bob play a game with closed balls in X as follows. We shall
assign numbers α, β ∈ (0, 1) to Alice and Bob respectively. The game shall begin
by Bob choosing a complete ball in X (viz., complete as a metric space with the
induced metric); we denote the ball by B0; remember we view Bob as the controller
of the setting, and Alice as a challenger, one to whose winning our anxieties are
linked, so it is proper that Bob gets to make the opening choice; as we shall see, this
way of organizing also brings some neatness to the results for us.

The sample play shall continue as follows:
Alice chooses a closed ball of A1 ⊂ B0, with r(A1) = αr(B0);
Bob chooses a closed ball of B1 ⊂ A1, with r(B1) = βr(A1) = α β r(B0);
Alice chooses a closed ball of A2 ⊂ B1, with r(A2) = αr(B1) = α2 β r(B0);

Bob chooses a closed ball of B2 ⊂ A2, with r(B2) = βr(A2) = α2 β2 r(B0);

. . ..

Proceeding in this way, we get sequences of closed balls {Ai } and {Bi } such that
Ai ⊂ Bi−1 and Bi ⊂ Ai , r(Ai ) = αr(Bi−1) and r(Bi ) = βr(Ai ) for all i ≥ 1. Then
{Ai } and {Bi } are decreasing sequences of closed balls with diameters tending to 0

and since B0 is complete it follows that the intersections
∞⋂

i=1
Ai and

⋂∞
i=1 Bi consist of

single points, whichmoreover has to be the same point. Thus,
⋂

i Ai = ⋂
i Bi = {p},

for some p ∈ X .

1 It has been customary to assume X itself to be complete. However, it would be convenient to have
this broader setting, so that the discussion applies also when X is an open subset of a Euclidean
space.
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Definition 2.1 We say that a subset S of X is (α, β)-winning if Alice can ensure,
through her choices of Ai , the point of intersection p to be in S. We shall further say
that S is α-winning if it is (α, β)-winning for all β ∈ (0, 1).

While the whole space is obviously an (α, β)-winning set for any α, β ∈ (0, 1),
interestingly, some further conditions need to be met by the pair (α, β) for there to
exist proper subsets which are (α, β)-winning; it was noted by Schmidt [9] that for
this we need that 1 − 2α + αβ > 0. We shall give here a simple proof of this in the
case when X is an open subset of Rn, n ≥ 1; (see [9] for a more general technical
version); the metric involved is meant to be the usual one, but the proof works
also for various other metrics and, more generally, on Banach spaces, manifolds
etc. The crucial property of the metric that is used in the proof is that given two
closed balls B(a, r) and B(b, s) the latter is contained in the former if and only if
‖b − a‖ ≤ r − s.

Lemma 2.2 Let X beanopen subset of Rn, n ≥ 1, and suppose that1 − 2α + αβ ≤
0. Then, no proper subset is an (α, β)-winning set in X.

Proof It suffices to show that for any p ∈ X, X\{p} is not an (α, β)-winning set.
Let p ∈ X be given. We shall show that when the condition in the hypothesis holds,
there is a strategy by which Bob can ensure that p is contained in Bi for all i ≥ 0.
He will start with B0 to be a closed ball B(p, r), for some r > 0, with centre at p. If
a is the centre of the closed ball A1 picked by Alice, then A1 = B(a, αr), and since
it is contained in B(p, r), by the observation above we have ‖a − p‖ ≤ (1 − α)r ≤
(α − αβ)r , by the condition in the hypothesis.

Thus, ‖p − a‖ ≤ (α − αβ)r = (1 − β)αr . In turn, the above observation now
implies that B(p, αβr) is contained in B(a, αr). Thus, Bob can choose B1 to be
B(p, αβr). In the same way, for all i he will be able to choose Bi to have its centre

at p. Thus
∞⋂

i=1
Bi = {p}, so X\{p} is not an (α, β)-winning set in X . �

The lemma, in particular, shows that a proper subset of Rn can be α-wining only
for α ≤ 1

2 .

Remark 2.3 Let α, β ∈ (0, 1) be such that 1 − 2α + αβ > 0. A perusal of the proof
of Lemma 2.2 shows that, conversely, given any p, Bob can be prevented from
choosing Bi to be centered at p, and it could further be ensured at p /∈ Bi for some
i . This means that in this case for any α, β ∈ (0, 1), R

n\{a} is an (α, β)-winning
set. Moreover, given a sequence {a j } it can ensured, sequentially, that each {a j } is
outside Bi j for some i j , and therefore Rn\{a j } is an (α, β)-winning set for α, β as
above. Thus complements of countable subsets are α-winning for all α ∈ (0, 1

2 ].
Remark 2.4 It is clear that for a set S to be (α, β)-winning it has to be dense in the
metric space, since otherwise Bob can choose B0 itself to be contained outside S.
Using the idea as in the proof of Lemma 2.2, it can be seen that if 1 − 2β + αβ ≤ 0,
namely if 2β ≥ 1 + αβ, then every dense subset is (α, β)-winning. This makes the
case when 2β ≥ 1 + αβ uninteresting from the point of view of large set theory.
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3 Largeness of Winning Sets

Schmidt [9] also proved a host of interesting properties of winning sets, which duly
qualify them to be viewed as large sets. Firstly, here is a result about their Hausdorff
dimension (see section chapter [4], Sect. (3.2.2), for a precise definition).

Theorem 3.1 ([9], Sect. 11, Corollary 2) Let α ∈ (0, 1) and S be an α-winning set
in Rn, n ≥ 1. Then S has Hausdorff dimension n.

Moreover, it can be seen from the proof that for S as in Theorem 3.1, for any
nonempty open subset�, the Hausdorff dimension of S ∩ � is n; in particular, S ∩ �

is uncountable. The proof also shows that the conclusion holds for the winning sets
in open subsets of Rn in place of Rn itself.

It may be noted here that for any (α, β)-winning set the corollary from [9] cited
above provides a lower estimate for the Hausdorff dimension of S as a function of α

and β, which converges to n as β → 0, leading to Theorem 3.1 as above.
Another largeness feature of α-winning sets is that intersection of any two of

them, and even countably infinitely many of them, is also α-winning; that is, we
have:

Theorem 3.2 ([9], Sect. 6, Theorem 2) Let α ∈ (0, 1) and {Sj } be a sequence of

α-winning sets. Then
∞⋂

j=1
Sj is an α-winning set.

Proof Let S = ⋂∞
j=1 Sj and consider the (α, β) game for a given β ∈ (0, 1). For

j ≥ 1, let β j = β(αβ)2
j−1. A strategy for Alice to ensure the point of intersection to

be in S, under the (α, β) game, can then be produced as a combination of winning
strategies for Sj to be (α, β j )-winning, that Alice may fix for each j = 1, 2, . . . .
For this, we note that for any j ∈ N, the sequences of closed balls {B2i }∞i=1 and
{A2i+1}∞i=0 correspond in a natural way to sample sequences in a (α, β1)-game, with
the initial choice of Bob being B0. More generally, for each j = 1, 2, . . . , the closed
ball A2 j−1(2i−1) corresponds to the choice at the i th turn in the (α, β j )-game, with
the initial choice of Bob given by B2 j−1−1. Every natural number k can be realised
uniquely as 2 j−1(2i + 1), with i, j ∈ N uniquely defined, and for this k, Alice can
choose Ak to be the ball that she would choose at the i th turn according to the strategy
selected for Sj to be (α, β j )-winning. The point of intersection is then assured to
be in

⋂
Sj = S, as desired. As this holds for all β ∈ (0, 1) this shows that S is an

α-winning set. �

We next state a variation of a result of [9], noted earlier in [4] (proposition (5.3),
for complete metric spaces); Schmidt considered a class of maps that he called “local
isometries” in place of the bi-Lipschitz condition in the statement below. The proof
of the assertion is straightforward and will be omitted.

Theorem 3.3 Let X and Y be complete metric spaces and f : X −→ Y be a map
such that the restriction of f to any bounded subset of X is a bi-Lipschitz map. Let
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S be an α-winning set in Y , where α ∈ (0, 1). Then f −1(S) is an α-winning subset
of X.

In particular, it can be deduced from this that if S is an α-winning set for some
α ∈ (0, 1) and f is a local diffeomorphismofRd , then f −1(S) isα-winning. Together
the theorems imply that if S is an α-winning set in R

d and f j is a sequence of local
diffeomorphisms of Rd , then

⋂∞
j=1 f j (S) is an α-winning set, and in particular its

intersection with any open subset is of Hausdorff dimension d; we note that d is the
maximum possible Hausdorff dimension for a subset of Rd .

4 Large Sets Involved in Diophantine Approximation

In [9], Schmidt established the (α, β)-winning property for all α, β ∈ (0, 1) with
1 − 2α + αβ > 0, for the set of what are called badly approximable numbers. We
recall that α ∈ R is said to be badly approximable if there exists a δ > 0 such that

∣
∣
∣
∣α − p

q

∣
∣
∣
∣ >

δ

q2
∀p, q ∈ N, q �= 0.

It may also be recalled that a number is badly approximable if and only if the partial
quotients in its continued fraction expansion are bounded.

Theorem 4.1 ([9], Sect. 7, Theorem 3) The set of badly approximable numbers is
(α, β)-winning for all α, β ∈ (0, 1) such that 1 − 2α + αβ > 0; in particular it is
α-winning for all α ∈ (0, 1

2 ].
Proof Let γ = 1 − 2α + αβ > 0 and let k ∈ N be such that (αβ)k < γ . Let M =
(αβ)−k/2. Let B0 be the initial closed ball, a closed interval in this instance, say
of length 2r0; without loss of generality we may assume r0 to be less than 1

2γ (as
Alice can wait to apply the strategy until the radius of the ball chosen by Bob is small
enough). Let δ = r0(γ − (αβ)k).We shall show that Alice can play in such away that
if {Bi } is the sequence of closed balls chosen by Bob, then for any x ∈ Bkn, n ≥ 0,
we have |x − p

q | ≥ δ
q2 for all p, q ∈ Z, with 0 < q < Mn . Thus, centred at each

rational point p/q, there is an interval of length 2δ/q2 that Alice has to get out of,
and for 0 < q < Mn this will be achieved at the knth turn. This then readily implies
that the point of intersection is a badly approximable number.

The desired statement holds trivially for n = 0 (as there is no q satisfying the
condition) so it suffices to assume that it holds for 0, . . . , n − 1, n ≥ 1, and uphold
it for n. Consider the set, say E , of rationals p

q such that Mn−1 ≤ q < Mn; we note

that if p
q and p′

q ′ are distinct elements of E then we have

∣
∣
∣
∣
p

q
− p′

q ′

∣
∣
∣
∣ ≥ 1

qq ′ > M−2n.



On Certain Unusual Large Subsets Arising as Winning Sets of Some Games 175

On the other hand, when p
q ∈ E we have

δ

q2
≤ δM−2(n−1) <

1

4
M−2n,

by the condition on δ. Thus any two intervals corresponding the elements from E
are separated by a distance at least 1

2M
−2n .

The length of the interval Bk(n−1) is 2r0(αβ)k(n−1),which is less than 1
2M

−2n , by the
choice ofM . Hence Bk(n−1) intersects at most one of the intervals corresponding to an
element from E . If there is no such interval thenwe are through, since Bkn is contained
in Bk(n−1). Now suppose there exists an element say p

q of E intersecting Bk(n−1).
Let Bk(n−1) = [a − r, a + r ], where a ∈ R, r > 0, and suppose for definiteness that
p
q ≤ a; the other case follows in a similarway, symmetrically. Let Ak(n−1)+1 be chosen
to be the interval [a + (1 − 2α)r, a + r ], which indeed has the desired radius. The
next interval Bk(n−1)+1 chosen by Bob has the form [b − αβr, b + αβr ], with b −
αβr ≥ a + (1 − 2α)r ; and hence b ≥ a + γ r . Following the strategy of choosing
the rightmost interval of requisite length for the successive k − 1 turns, Alice can also
ensure that if c is the center of Bkn then c > a + γ r . Now Bkn = [c − (αβ)kr, c +
(αβ)kr ], so for all x ∈ Bkn , we have x > a, and hence

∣
∣
∣
∣x − p

q

∣
∣
∣
∣ ≥ (x − a) ≥ c − (αβ)kr − a ≥ (γ − (αβ)k)r = δ

r

r0
.

On the other hand,

r = (αβ)k(n−1)r0 = M−2(n−1)r0 ≥ r0
q2

,

which shows that ∣
∣
∣
∣x − p

q

∣
∣
∣
∣ ≥ δ

q2
.

This completes the inductive step, and hence the proof of the proposition. �

It would be an interesting exercise for the reader to show, along the lines of the
above proof, that the set of badly approximable numbers is also a winning set for the
number building game described in (Sect. 1).

Corollary 4.2 Given a sequence of differentiable functions { f j } onRwhose deriva-
tives are nowhere-vanishing, the set

{
t ∈ R | f j (t) is badly approximable for all j

}

is of Hausdorff dimension 1 (in particular, it is an uncountable set).

Analogously to numbers, there are also notions of badly approximable vectors in
Euclidean spaces, and badly approximable systems of linear forms, meant to capture
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the sense of howwell they can be approximated by rational systems of the same kind.
Analogous results have been obtained in these cases concerning α-winning nature
of the systems that are badly approximable in the respective framework; it must be
mentioned that higher dimensional situations involve some additional intricacies.
The reader is referred to [5, 9, 10] and other references there for further details.

5 Large Sets in Geometry and Dynamics

We shall now discuss the notion of winning sets in general geometric and dynamical
contexts.

5.1 Winning Sets in R
d

The following generalization of Theorem4.1was proved in [2], through an analogous
proof; apart from extending to higher dimensions the class of sets involved is also
more general, even in dimension 1. The generalized versionwas applied to discuss the
class of bounded geodesics onmanifolds, andmore generally ‘orbifolds’, of constant
negative curvature, which are noncompact but have finite volume; see (Sect. 7.5.3).

Theorem 5.1 Let {vi } be a sequence of vectors inRd and {ri }, a sequence of positive
numbers. Suppose that there exists a c > 0 such that for all i, j we have ‖vi − v j‖ ≥
c
√
rir j . Then the set

{
v ∈ R

d | ∃δ > 0 such that ‖v − vi‖ > δri ∀i}

is an (α, β)-winning set in Rd for all α, β ∈ (0, 1) such that 1 − 2α + αβ > 0.

The case of badly approximable numbers in R falls out as a special case if we
choose {xi } to be an enumeration of the rationals, and for xi = p

q , where p and q are

coprime integers and q �= 0 (q = 1 if p = 0), choose ri = 1
q2 .

In place of the countable system of shrinking balls, whose complement is the set
tested in the theorem for α-winning, analogous construction can be considered with
countable systems of shrinking families of sets, including for example strips along
affine subspaces of Rd . An analogue of the theorem has been proved in this setting
in [2]; in the general case the role of the radius, or rather diameter, is played by the
thickness of the strip, or the set in general (for the latter “thickness” is defined by
taking infimum over thicknesses of hyperplane strips containing the set). We shall
not go into further details of the generalities here.
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5.2 Toral Automorphisms

Let
T
d = {

(z1, . . . , zd) | z j ∈ C, |z j | = 1 ∀ j = 1, . . . , d
}

be the d-dimensional torus. Any integral matrix A = (mi j ) with det A = ±1 defines
a continuous group automorphism TA of Td , by

(z1, . . . , zd) �−→ (
zm11
1 zm12

2 . . . zm1d
d , . . . , zmd1

1 zmd2
2 . . . zmdd

d

)

for all (z1, . . . , zd) ∈ T
d . Starting with any z ∈ T

d and applying an automorphism
TA repeatedly,we get the A-orbitOA(z) of z, namely {z, TAz, T 2

Az, . . . , T k
Az, . . . }.

It is known that when no (complex) eigenvalue of A is a root of unity then the action
of TA as above is ergodic (see [11], for instance), and in particular it follows that for
almost all z ∈ T

d , OA(z) is dense inTd . There are of course points, such as those for
which each coordinate is a root of unity, whose orbits are finite (and in particular not
dense). However, the collection of all points with orbits that are not dense, which is
a set of measure 0 for A satisfying the condition as above, defies simple description.
The following may be noted in this context.

For any d × d matrix A, let E(TA) be the set of all v = (v1, . . . , vd) ∈ R
d such

that for z = (
e2π iv1 , . . . , e2π ivd

)
, OA(z) does not contain any element of finite order;

in particular OA(z) is not dense in such a case.

Theorem 5.2 For every A as above, E(TA) is an (α, β)-winning set for all α, β ∈
(0, 1) such that 1 − 2α + αβ > 0; thus it is α-winning for all α ∈ (0, 1

2 ]. Conse-
quently, there exist uncountably many z ∈ T

d such that OA(x) does not contain any
element of finite order for any automorphism TA of Td .

The first part of the theoremwas proved in [3] under an additional assumption that
A is a semisimple matrix (viz., diagonalizable over the field of complex numbers);
however the assumption turns out to be unnecessary for the proof, as has been clarified
in [5]. As there are only countably many automorphisms TA, the second part follows
from the first, together with Theorem 3.2, and the fact that all α-winning subsets of
R

d are uncountable.

5.3 Hyperbolic Geometry

Let M be a Riemannian manifold of dimension d + 1 with constant negative cur-
vature and finite Riemannian volume. Then M can be realized canonically as the
quotient Hd+1/�, where

H
d+1 = {

(x1, . . . , xd+1) | x j ∈ R ∀ j = 1, . . . , d + 1, and xd+1 > 0
}
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is the hyperbolic space equipped with the Riemannian metric (dx21 + · · · + dx2d+1)/

x2d+1, and � is a group of isometries of Hd+1.
We view R

d , consisting of the subspace {x1, . . . , xd , 0) | x1, . . . , xd ∈ R} as the
boundary of Hd+1 in a natural way, when the latter is viewed as a subset of Rd+1.
The geodesics in H

d+1 are semicircles with endpoints in R
d , in the usual geometry

of Hd+1 as a subset of Rd+1. In particular, every (positive time) geodesic trajectory
{γ (t)}t≥0 in Hd+1 has a unique endpoint in Rd . We note also that two such geodesic
trajectories are asymptotic to each other if and only if the endpoints in R

d are the
same.

The geodesic trajectories inM = H
d+1/� as above are just the images of geodesic

trajectories inHd+1. A question of interest is to understand, when M is noncompact
but has finite Riemannian volume, the class of geodesic trajectories in M which are
bounded (viz. have compact closure in M). In this respect the following was deduced
in [2] from theorem (5.1).When d = 1 and� = SL(2,Z), it corresponds to the result
for badly approximable numbers, (Theorem 4.1).

Corollary 5.3 Let M be a Riemannian manifold of dimension d + 1 with constant
negative curvature and finite Riemannian volume. Let E be the set of v ∈ R

d such
that v is an endpoint of a geodesic {γ (t)}t≥0 inHd+1 whose image in M has compact
closure in M. Then E is an α-winning set for α ∈ (0, 1

2 ].

6 Further Generalisations and Applications

The theory emerging from the developments described above has witnessed many
generalizations and applications and it is beyond the scope of this article to discuss
them in any detail. We shall content ourselves with some brief comments on the
directions it has taken. Numerous authors have been involved in further generalizing
the ideas indicated below, but we shall not go into all citations. The interested reader
will be able to reach to the works through citations to some of the papers noted here.

6.1 Strong and Absolute Winning Sets

In [8], C.T.McMullen introduced two variations of the Schmidt game, onRd , d ≥ 1,
and the corresponding winning sets are known as strong winning sets and absolute
winning sets. The former involves, like the Schmidt game two numbers α, β ∈ (0, 1)
and the procedure for the game is analogous to the former, except that the conditions
on the radii of {Ai } and {Bi } are now changed to r(Ai+1) ≥ αr(Bi ) and r(Bi ) ≥
βr(Ai ) for all i ≥ 0. A winning set of the game is called (α, β)-strong winning set
and a set which is (α, β)-strong winning for all β ∈ (0, 1) is called α-strong winning.

In the other variation the players choose closed balls {Ai } and {Bi } such that
for all i ≥ 0, Bi+1 ⊂ Bi\Ai+1 and, for a fixed β ∈ (0, 1

3 ), r(Bi+1) ≥ βr(Bi ) and



On Certain Unusual Large Subsets Arising as Winning Sets of Some Games 179

r(Ai+1) ≤ βr(Bi ). The game is called the absolute game and the winning sets are
called absolute winning sets.

The strong winning sets and absolute winning sets share the properties of α-
winning sets that we discussed in earlier sections, and moreover have the property
that they are invariant under quasisymmetric homeomorphisms of Rd , which is not
true for general α-winning sets; a homeomorphism ϕ is said to be k-quasisymmetric,
where k is a real number ≥ 1, if for any ball B(x, r) in R

d there exists s > 0 such
that B(ϕ(x), s) ⊂ ϕ(B(x, r)) ⊂ B(ϕ(x), ks), and it is said to be quasisymmetric if
it is k-quasisymmetric for some k ≥ 1; it is known that when d ≥ 2 the notions of
quasisymmetric maps coincides with quasiconformal maps. Interesting applications
of these ideas in hyperbolic geometry are found in [8].

6.2 Winning Sets on Lie Groups

D. Kleinbock and B. Weiss introduced a variation of the Schmidt games, on Lie
groups; these do not involve a metric, as in the case of Schmidt games, but rather rely
data arising group theoretically. It may be noted that in the case of Rd the collection
of closed balls can be obtained by starting with a fixed ball B and applying to it
all affine automorphisms of the form v �−→ e−tv + w for all v ∈ R

d , where t ∈ R

andw ∈ R
d are the parameters defining the affine automorphism; moreover, all balls

smaller than B involve taking only positive t . Motivated by this, given a Lie group
G the authors start with a fixed compact subset C of G with nonempty interior and
consider the collection of all compact sets arising by affine automorphisms ofG of the
form g �−→ 
t (g)h for all g ∈ G, where {
t }t∈R is a fixed one-parameter group of
automorphisms ofG which is contracting for positive t (viz.,
t (g) → e, the identity
element, as t → ∞), and t ∈ R and h ∈ G define the family of transformations.

The role of the balls is now played by images of the set C under application of
these affine automorphisms, with positive t . The procedure is then analogous, but
involves some intricacies that we shall not go into. The details may be found in [7]
(and the earlier papers of the authors cited there). Using the modified version of the
game the authors proved in [7] a conjecture of G.A. Margulis on the abundance of
certain kind of exceptional orbits of hyperbolic flows on homogeneous spaces.

6.3 Badly Approximable Numbers in Closed Subsets

Given that badly approximable numbers (and vectors inRd , d ≥ 2) are abundant, in
the light of the results on their winning nature for various games, one may wonder
if we would be able to find them in say any perfect compact (or closed) subsets of
R. One immediate answer should be in the negative, since the complement of the
set of badly approximable numbers is a set of positive Lebesgue measure and hence



180 S. G. Dani

contains perfect compact subsets, in fact of positive measure. It turns out however
that under certain further conditions on the compact set such a conclusion is possible.

L. Fishman, D. Kleinbock and B. Weiss studied Schmidt games on fractals (see
[6] and the references there), and it was shown that for supports of a class of mea-
sures, called “absolutely friendly measures” the intersection with the set of badly
approximable numbers (respectively vectors in R

d ) is nonempty, and in fact has
Hausdorff dimension equal to that of the support. An analogue of this for the case of
automorphisms of tori discussed in (Sect. 7.5.2) was also proved in [1].

In [5] a variation of the Schmidt game was introduced on compact subsets of Rd

satisfying certain regularity conditions; we shall not go into the technical details of
the conditions involved, but mention only that totally disconnected subsets satisfying
the conditions can be constructed, in abundance, emulating the construction of the
classical Cantor set; as with the construction of the Cantor set, open intervals are
removed from the pieces obtained at each stage, with controls on their sizes; in par-
ticular the conditions hold for all translates of the classical Cantor set in R; similarly
various sets satisfying the conditions can be explicitly constructed in higher dimen-
sions. It was proved in particular that for compact subsets satisfying the conditions
the intersection with the set of badly approximable vectors is uncountable. Analo-
gous result is also proved in [5] for intersections of compact totally disconnected sets
with sets of exceptional orbits of toral automorphisms discussed in (Sect. 7.5.2).
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