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Abstract A supply chain (SC) is a network comprising suppliers, producers, man-
ufacturers, distributors and retailers. Generally, it is represented as single tier, two
tier and multi-tier according to its various independent nodes, i.e., entities in the
SC. For smooth flow of SC, an inventory is maintained and optimized. At supplier,
the raw material inventory is required to dispatch at various producers. The finished
product inventory with the help of raw material received from suppliers is pro-
duced at producer level. An assembled inventory from finished product is produced
at manufacturer level. Various distributors transport this assembled inventory using
various modes of transportation to retailers. At final node of SC, the customer will
purchase the product. Thus, inventory management is a crucial task in a SC. In prob-
abilistic inventory models, using suitable probability distribution for demand rate,
an inventory can be optimized. Here, we develop the inventory models by assuming
various probability distributions for demand and deterioration rate under shortages.
For modeling, we consider probabilistic demand per unit time as well as the prob-
abilistic deterioration rates. Under these assumptions, probabilistic economic order
quantity (EOQ) models are developed under partial backlogging. Classical methods
are unable to solve these situations by these assumptions. Therefore, the proposed
genetic algorithm is useful to solve the EOQ models. Numerical case study is pre-
sented and solved by using non-traditionalmethod, i.e., genetic algorithm. Sensitivity
analysis of various parameters is also presented.
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1 Introduction

Supply chain (SC) consists of several stakeholders like suppliers of raw materials,
producers of unique product, manufacturers for assembling the produced product,
warehouse for storage purpose, retailers for distribution purpose and transporters
for shipping the manufactured product from each node of SC to other node. Each
stakeholder in the SC has a role to optimize the SC. The major objective of SC is
to satisfy or to meet the customer demand in such a way that the profit or cost of
maintaining the SC would be maximum or minimum, respectively. All the above
stakeholders in the SC operate independently for generating their profits. The SC
connects each stakeholder to the end customer. It consists of suppliers, manufactur-
ers, transporters, warehouses and customers. Every entity in the SC has to satisfy
the customer demand and to generate profit for itself, whereas customers are the
integral part of it. The term SC conjures up supply of product moving from suppliers
to manufacturers, manufactures to distributors, distributors to retailers and retailers
to customers in a SC. The detailed working procedure of SC network as, produc-
ers receive raw materials from various outside suppliers which produces number of
units of the perishable product. After production of units of perishable item, it trans-
ports to the manufacturers site for packaging or assembling the final product, then
manufacturer transports the final product to several independent warehouses for stor-
age purpose. Lastly, produced perishable product transports to various independent
retailers for distributing to customers. Here, we have developed the new probabilistic
economic order quantity (EOQ) inventory models for multi-tier SC; see Fig. 1. In the
literature, several authors developed EOQ inventory models with stock-dependent,
replenishment-dependent, ramp-type function of demand, etc. Here, we assumed
that the market demand is uncertain and follow a certain probability distribution.
The answers of basic questions in inventory like how much to store and optimum
order quantity can be obtained from the developed models. Also, a new solution
methodology based on evolutionary algorithm is developed. This solution method-
ology can be applicable to all types of optimization problems involved in inventory
management.

Beamon (1998) highlighted the two basic random processes occurring in the SC:
(i) production planning and inventory process and (ii) distribution (i.e., transporta-
tion) and logistics process. The inventory process deals with the manufacturing and
storage problems in SC, whereas production planning deals with the cooperation
between each and every manufacturing process. The distribution process deals with
how products are transported from suppliers to producers, from producers to man-
ufacturers, from manufacturers to retailers. This process includes procurement of
inventory and transportation of raw material as well as finished product. Each stage
of SC is connected through the flow of products, information and funds. These flows
are in both ways. For effectively managing the SC, a manager has to decide the
location, capacity and type of plants, warehouses and retailers to establish the SCN.
The SCN problem covers wide range of formulations such as simple single product
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Fig. 1 Supply chain network (SCN)

type to complex multi-product one and from linear deterministic models to complex
nonlinear ones. SC connects each stakeholder to the end customer.

EOQ inventory model was firstly introduced by Ghare and Schrader (1963) with
constant deterioration; i.e., it follows an exponential distribution g(t) = θ > 0where
g(t) is the rate of deterioration. Later, this model was extended by Covert and Philip
(1973), under which they assumed variable deterioration and it follows the Weibull
distribution g(t) = γβ tβ−1, 0 ≤ t ≤ T where T is the cycle time and α > 0 and
β > 0. Afterward, Philip (1974) formulated more general EOQ inventory model
with Weibull distributed deterioration. Padmanabhan and Vrat (1995) developed
three EOQ inventory models by assuming no, complete and partial backlogging.
Under continuous review policy, the inventory models were proposed in which
stock-dependent demand rate, i.e., D(t) = α + β I (t), α, β > 0 per unit time t , was
assumed.

Wee (1995) developed the replenishment strategy for a perishable product under
complete as well as partial backlogging with different backlog rates. Bose et al.
(1995) formulated an EOQ inventory model for deteriorating items with linear time-
dependent demand rate per unit time D(t) = a + b · t, a > 0, b > 0. Suchmodel can
be applicable to highly deteriorated products like fruits, milk products, etc. Bhunia
andMaiti (1997) formulated two deterministic EOQ inventorymodels under variable
production. Theymodeled the level of inventory at time t during the production period
at a finite replenishment rate, i.e., R(t) = α − β I (t) and R(t) = α + β D(t). In both
the models, demand rate was assumed to be a linearly increasing function of time t .
Later, Bhunia and Maiti (1998) extended earlier developed EOQ inventory models
under complete backlogging by considering finite rate of replenishment.

Wu (2001) developed an EOQ inventorymodel by considering ramp-type demand
and stochastic deterioration rate. Shortageswere allowed in the developedmodel, and
they were partially backlogged with backlogging rate 1/[1 + δ(T − t)] per unit time
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where δ > 0 is the backloggingparameter. Thenecessary and sufficient conditions for
the existence of unique optimal solution were provided. For representing ramp-type
behavior of demand rate, a well-known Heaviside’s function was used. Later, such
ramp-type function demand was used by Skouri et al. (2009) and they developed an
inventory model for general demand rate as any function of time up to stabilization.
They assumed shortages were completely backlogged during the waiting time of
further replenishments at a rate δ(t) ∈ (0, 1) which satisfies backlog rate = (δ(t) +
T δ

′
(t)) ≥ 0. Thus, a monotonically decreasing function δ

′
(t) ≤ 0 of waiting time

was used for shortages. A ramp-type function for representing demand rate was
considered, i.e., D(t) = f (t), t < μ and D(t) = f (μ), otherwise where f (t) is any
positive, continuous function of time andμ is the specific time during the scheduling
period.

Dye et al. (2005) developed an EOQ inventorymodel. Shortageswere allowed and
partially backlogged for perishable items in a SC. The time-dependent backlog rate
was assumed in the developed model, i.e., backlog rate = 1/(1 + δ[T − t]), δ > 0.
Later, Eroglu and Ozdemir (2007) presented a deterministic EOQ inventory model
for a manufacturer with few defective products in a lot. The proposed model can be
applicable to a SC consisting of only a manufacturer and a retailer under shortages.
Uniform defective rate of products was considered in the developed model, i.e.,
f (p) ∼ U (0, 0.1) where p is the proportion of defectives in the lot. Raosaheb and
Bajaj (2011) formulated transportation and inventory model with retailer storage
under uncertain environment. In the same year, Latpate and Bajaj (2011) developed
multi-objective production distribution SC model for manufacturer storage under
uncertain environment. Later, Kurade and Latpate (2021) proposed different EOQ
inventory models under no, complete and partial backlogging. The time-dependent
demand and deterioration rates were assumed in the developed model. In the same
year, Latpate and Bhosale (2020) proposed SC coordination model with stochastic
market demand. Bhosale and Latpate (2019) formulated a fuzzy SC model with
Weibull distributed demand for dairy product.

Remainder of the chapter is organized as follows: In Sect. 2, preliminary concepts
of demand and deterioration variation of the inventory model are stated. Also, this
section is dedicated to the formulation of probabilistic inventory model with assump-
tions. Subsequently, Sect. 3 develops binary coded genetic algorithm approach to
solve the formulated probabilistic inventory model under various demand distri-
butions. The developed probabilistic EOQ inventory model is illustrated with the
hypothetical data for various demand distributions in Sect. 4 with results discussed
in the same section. Finally, sensitivity analysis of various parameters is discussed in
Sect. 5. The managerial implications are added in Sect. 6. Concluding remarks with
future scope are given in Sect. 7. Last, an exhaustive list of references is provided.
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2 Mathematical Model

The main working behavior of the SC is displayed in Fig. 1. This figure shows the
general network of SC, in which product flows from suppliers to retailers through
various stages. Thus, from supplier, producer, manufacturer and warehouses the
finished product will reach to the customer. The customer is always an integral part of
a SC network. In supply chain network (SCN), generally information and funds flow
from customers to suppliers and units of product flow from suppliers to customers.
Multi-echelon SCN provides an unique optimal way for efficiently and effectively
managing SC. It manages product and information flows both in and between several
linked but independent stakeholders.

Here, we consider a SCN in Fig. 1 in which the inventory is stored at different
independent nodes of SC. At supplier, the inventory of a raw material is stored for
the purpose of production of a finished product at several producers. The finished
product inventory is stored at producer level. The assembly of a finished product
is done at manufacturer level. Thus, the inventory of finished product is stored at
manufacturer level. At warehouses, the transported finished product is stored for the
purpose of distribution to several retailers. Thus, at each point of a SC different kinds
of inventory are stored. Formanaging this inventory,we have proposed a probabilistic
inventory model, in which the demand of a product from the market is assumed to
be probabilistic. The goal is to determine an EOQ of the product in the scheduling
period, t ∈ [0, T ].

2.1 Preliminaries

2.1.1 Demand Variation

EOQ inventorymodels are developed bymaximizing profit in which demand follows
a probability distribution per unit time with known parameters. Demand rate follows
an uniform and normal distribution.

Uniform Distribution

An uniform distribution with parameters a and b is denoted by U (a, b), and its
probability density function is

f (t) = 1

b − a
; a < t < b, a, b ∈ R. (1)

Normal Distribution

A normal distribution with mean μ and variance σ 2 is denoted by N (μ, σ 2), and its
probability density function is
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representation of inventory
system in partial backlogging
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2.1.2 Deterioration Variation

During the normal storage period, the deterioration may occur in several perishable
products. Deterioration includes vaporization, drying, decay, damage or spoilage
such that the product cannot be used for its intended application. For representing
the deterioration of perishable product, we use Weibull distribution.

Weibull Distribution: It includes all types of deterioration such as constant, increas-
ing and decreasing. It is defined as

g(t) = γβtβ−1; t > 0, γ > 0, β > 0. (3)

Note: If β > 1, it shows increasing deterioration; if β < 1, it shows decreasing
deterioration; and if β = 1, it shows constant deterioration.

During the period t ∈ [t1, T ] (see Fig. 2), it is generally assumed that customers
are impatient in nature and do not wish to wait for replenishment. Thus, only a
fraction of backlogged demand is considered and backlogging rate is taken to be
variable. Backlogging rate depends on the length of time, for the customer waits
before receiving the product. Here, backlogging rate is considered as a decreasing
exponential function of waiting time (Abad, 2001; Chang & Dye, Chang and Dye
(1999); Dye et al., 2007).

∴ Backlogging rate = 1

1 + δ(T − t)
; t1 ≤ t ≤ T .
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Here, we consider the expected demand per unit time of a product which is
obtained as:

Expected demand in (t, t + 	t) = D0 · P[demand of a product in interval (t, t + 	t)]
= D0 · lim

	t→0

[
F(t + 	t) − F(t)

	t

]

= D0 · f (t).

Assumptions: The assumptions considered in the problem are:

1. Replenishment rate is infinite with negligible lead time.
2. Time periods between two successive demands of an unique perishable product

are independent and identically distributed random variables.
3. Continuous review policy of inventory model for single perishable product is

considered.
4. The demand and deterioration rate are probabilistic in nature.
5. Storage facility is available at each node of SC.

Notations: These are listed below:

• I1(t) = positive inventory in a cycle of length T .
• I2(t) = negative inventory in a cycle of length T .
• D0 = total demand in the inventory cycle.
• D(t) = demand rate.
• Q = order quantity (per cycle).
• B = maximum inventory level (per cycle).
• g(t) = deterioration rate.
• γ and β = deterioration parameters.
• δ = backlogging parameter in the backlogging period.
• f (t) = probability density function.
• F(t) = cumulative distribution function.
• P(T, t1) = profit per unit time for partial backlogging model.

Costs:

The notations of various costs involved in the inventory model are listed below:

• C = the purchase cost (per unit).
• C2 = a finite shortage cost (per unit).
• S = the selling price (per unit), where S > C .
• A = the ordering cost (per order).
• R = the cost of lost sales (i.e., opportunity cost) (per unit).
• r = the inventory carrying cost as a fraction (per unit per unit time).
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Decision Variables:

The notations of various decision variables involved in the problem are listed below:

• t1 = length of the duration over which inventory level is positive in a cycle.
• T = length of the scheduling period.

The inventory level decreases in satisfying the market demand as well as due to
the deterioration during the period [0, t1] (see Fig. 2). Thus, the differential equations
considering the partial backlogging during the cycle [0, T ] are given as:

d I1(t)

dt
+ g(t)I (t) = −D(t), 0 ≤ t ≤ t1. (4)

d I2(t)

dt
= −D(t)

[1 + δ(T − t)] , t1 ≤ t ≤ T . (5)

The solutions of Eqs. (4) and (5), for the boundary condition I (t1) = 0, are

I1(t) = D0e
− ∫

g(t)dt
∫ t1

t
f (x)e

∫
g(x)dxdx, 0 ≤ t ≤ t1. (6)

I2(t) = −D0

∫ t

t1

f (x)

[
1

[1 + δ(T − t)]
]
dx, t1 ≤ t ≤ T . (7)

∴ inventory level at the beginning of the cycle (maximum inventory level) is

B = D0

∫ t1

0
f (x)e

∫
g(x)dxdx . (8)

Thus,

Sales revenue = S

{∫ t1

0
D(x)dx − I2(t)

}

= S

{∫ t1

0
D0 f (x)dx +

∫ T

t1

D0 f (x)

[
1

[1 + δ(T − x)]
]
dx

}

= SD0

{
F(t1) +

∫ T

t1

f (x)

[
1

[1 + δ(T − x)]
]
dx

}
. (9)

Carrying cost = rC
∫ t1

0
I1(x)dx = rCD0

∫ t1

0
e− ∫

g(t)dt

{∫ t1

t
f (x)e

∫
g(x)dxdx

}
dt.

(10)
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Shortage cost = C2

{∫ T

t1

[−I2(x)]dx
}

= −C2

{∫ T

t1

[
−D0

∫ t

t1

f (x)

[
1

[1 + δ(T − x)]
]
dx

]
dt

}

= C2D0

{∫ T

t1

[∫ t

t1

f (x)

[
1

[1 + δ(T − x)]
]
dx

]
dt

}
. (11)

Material cost = C

{∫ t1

0
I1(x)dx −

∫ T

t1

I2(x)dx

}

=
{
CD0

∫ t1

0
f (x)e

∫
g(x)dxdx

}
+

{∫ T

t1

[
CD0 f (x)

[1 + δ(T − x)]
]
dx

}
.

(12)

Opportunity cost = R
∫ T

t1

D(x)

[
1 − 1

[1 + δ(T − x)]
]
dx

= R D0

∫ T

t1

f (x)

[
1 − 1

[1 + δ(T − x)]
]
dx

= R D0

∫ T

t1

f (x)

[
δ(T − x)

[1 + δ(T − x)]
]
dx . (13)

Therefore from above defined expressions, the profit per unit time is

Profit = 1

T
(Sales revenue − order cost − carrying cost − shortage cost

− material cost − opportunity cost)

∴ P(T, t1) = 1

T

(
SD0

{
F(t1) +

∫ T

t1

[
f (x)

[1 + δ(T − x)]
]
dx

}
− CD0

∫ t1

0
f (x)e

∫
g(x)dxdx

− rCD0

∫ t1

0
e− ∫

g(t)dt
{∫ t1

t
f (x)e

∫
g(x)dxdx

}
dt

− C2D0

{∫ T

t1

[∫ t

t1
f (x)

[
1

[1 + δ(T − x)]
]
dx

]
dt

}
− A

−
∫ T

t1

[
CD0 f (x)

[1 + δ(T − x)]
]
dx − R D0

∫ T

t1
f (x)

[
δ(T − x)

[1 + δ(T − x)]
]
dx

)
.

(14)

The optimum values of T and t1 can be obtained by solving the above nonlinear
expression using GA. From this, the optimum order quantity is
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Q = I1(0) − I2(T ) = D0

[∫ t1

0
f (x)e

∫
g(x)dxdx +

∫ T

t1
f (x)

[
1

[1 + δ(T − t)]
]
dx

]
.

(15)

Particular cases: Case 1: Demand rate follows an uniform distribution (Eq. 1)
and deterioration rate follows aWeibull distribution (Eq. 3), i.e., f (t) ∼ U (a, b) and
g(t) ∼ W (γ, β).
Thus Equation14 becomes,

P(T, t1) = 1

T

(
SD0

{
t1 − a

b − a
+

∫ T

t1

1

b − a

[
1

[1 + δ(T − x)]
]
dx

}

−CD0

∫ t1

0

eγ xβ

b − a
dx − rCD0

∫ t1

0
e−γ tβ

{∫ t1

t

eγ xβ

b − a
dx

}
dt

− C2D0

{∫ T

t1

[∫ t

t1

1

b − a

[
1

[1 + δ(T − x)]
]
dx

]
dt

}
− A

−
∫ T

t1

1

b − a

[
CD0

[1 + δ(T − x)]
]
dx − R D0

∫ T

t1

1

b − a

[
δ(T − x)

[1 + δ(T − x)]
]
dx

)
.

(16)

Case 2: Demand rate follows a normal distribution (Eq.2) and deterioration rate
follows a Weibull distribution (Eq.3), i.e., f (t) ∼ N (μ, σ 2) and g(t) ∼ W (γ, β).
Thus Equation14 becomes,

P(T, t1) = 1

T

⎛
⎜⎝SD0

⎧⎪⎨
⎪⎩

∫ t1

−∞
e
− (x−μ)2

2σ2

σ
√
2π

+
∫ T

t1

e
− (x−μ)2

2σ2

σ
√
2π

[
1

[1 + δ(T − x)]
]
dx

⎫⎪⎬
⎪⎭

− CD0

∫ t1

0

e
− (x−μ)2

2σ2

σ
√
2π

eγ x
β
dx − rCD0

∫ t1

0
e−γ tβ

⎧⎪⎨
⎪⎩

∫ t1

t

e
− (x−μ)2

2σ2

σ
√
2π

eγ x
β
dx

⎫⎪⎬
⎪⎭ dt

− C2D0

⎧⎪⎨
⎪⎩

∫ T

t1

⎡
⎢⎣

∫ t

t1

e
− (x−μ)2

2σ2

σ
√
2π

[
1

[1 + δ(T − x)]
]
dx

⎤
⎥⎦ dt

⎫⎪⎬
⎪⎭ − A

−
∫ T

t1

e
− (x−μ)2

2σ2

σ
√
2π

[
CD0

[1 + δ(T − x)]
]
dx − R D0

∫ T

t1

e
− (x−μ)2

2σ2

σ
√
2π

[
δ(T − x)

[1 + δ(T − x)]
]
dx

⎞
⎟⎠ .

(17)
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3 Genetic Algorithm

Genetic algorithm (GA) is an optimization technique, which achieves better opti-
mization of the problem through random search. It is a population-based random
search algorithm. Holland (1992) was the main founder of GA. Initially, he intro-
duced this for solving the problems of natural system. Later, it has been widely
applied by several researchers for solving their optimization problems. During those
days, his Schema theorem was gained much attention by several researchers.

At initial stage, the research work about GA was found in proceedings of interna-
tional conferences. It is a biologically inspired search and stochastic algorithmwhich
works using genetic operators Deb (2005), namely reproduction/selection, crossover
and mutation. Mainly, it is inspired by Darwin’s theory of evolution which is one
of the competitive intelligent algorithms used for optimization. Its advantage is that
researchers require minimum problem information about various parameters of GA.
Its main parameters are population size N , crossover probability PCross andmutation
probability PMut . According to the initialization of population, there are two types of
GA, binary coded (BCGA) and real coded (RCGA). If initial population is generated
using binary number, then the resultant GA is called as BCGA; otherwise, it is called
as RCGA.

It always deals with the coding of the problem, and it requires only information
about objective functions for computingfitness function. In single objective optimiza-
tion problem, fitness function is nothing but simply the value of objective function.
But in case of multi-objective optimization problems, it is a suitably well-defined
function by considering all objectives. The solutions obtained from GA are always
efficient and robust since it works with a set of feasible points instead of single point
in the search space. Generally, multi-objective optimization problems are handled
by two different techniques. One is to concatenate all the objectives to get the single
objective with feasible constraints. The second one is to determine the Pareto optimal
solution set. Pareto optimal solutions are the non-dominated solutions. Generally, if
solution of the problem is strictly better than at least in one objective function, then
it is considered as a non-dominated solution.

Several researchers contributed for the development of GAs like Latpate and
Kurade (2017) formulated a fuzzy multiple objective genetic algorithm (fuzzy–
MOGA). The performance of this algorithm was analyzed using hypothetical case
study for a SC network. In this network, a manufacturing company having multiple
plants in different geographical regions was assumed. It consists of five raw mate-
rial suppliers and four manufacturing plants which produce single type of product,
for distributing six warehouses and eight retailers. Pareto decision space for various
uncertainty levels in demand and cost parameters was provided. Later, Latpate and
Kurade (2020) developed new fuzzy non-dominated sortingGA (fuzzy–NSGA II) for
optimizing crude oil SC of India. The formulated transportation model was suitable
for deciding optimum routes and modes of shipping. The hybridization of ant colony
optimization (ACO) and GA was proposed by Maiti (2020). In this hybridization,
the initial population of candidate solutions was generated by ACO. Efficiency of
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the algorithm was tested for different test functions. Maity et al. (2017) used MOGA
for solving their proposed multi−item inventory model in which demand was stock
dependent. GA has a major drawback like it requires more computational complex-
ity and its convergence performance. For convergence, it requires more simulation
runs. To overcome this, a compound mutation strategy in intelligent bionic genetic
algorithm (IB−GA) and multi-stage composite genetic algorithm (MSC−GA) was
proposed by Li et al. (2011). The latter one has better convergence with high accu-
racy. UsingMarkov chain theory, they studied the global convergence under the elitist
preserving strategy.

Here, we have proposed binary coded GA (BCGA) for solving the formulated
probabilistic EOQ inventory models with roulette wheel selection, single-point
crossover and bitwise mutation for development of solution methodology; see Algo-
rithm 1.

Genetic Operators

(1) Roulette wheel selection: There are various types of selection techniques like
roulette wheel selection, tournament selection, crowded tournament selection,
etc. The roulette wheel selection obtains duplicate copies of best chromosomes
and eliminates worst from the population, keeping its size fixed. In the pro-
posed BCGA, initial population is randomly generated from a continuous uni-
form distribution. Each randomly generated individual chromosome in the initial
population is a candidate solution to the problem. In this selection mechanism,
chromosomes are assigned a probability of being selected, based on their fitness
values.

(2) Single-point crossover: It is used for exchanging information between randomly
selected parent chromosomes by recombining parts of their genetic materials.
This operation performed probabilistically combines parts of two parent chro-
mosomes to generate offspring. Its step-by-step procedure is explained below:

(a) It works using crossover probability say Pcross . Thus, only (M · Pcross) chro-
mosomes in the population go for crossover where M is the population size.

(b) Randomly select any twoparent chromosomes from the population ofmating
pool. It is generated, when a selection operator is applied on the population.
Mating pool has size M .
Let X1 = {X11, X12, · · · , X1(k−1), X1k, X1(k+1), · · · , X1N } and
X2 = {X21, X22, · · · , X2(k−1), X2k, X2(k+1), · · · , X2N } be the two parent
chromosomes selected for crossover operation.

(c) Draw a random number in continuous uniform distribution from 1 to N , i.e.,
U (1, N ). Let it be k ∈ [1, N ].

(d) Then, the resulting offspring becomes X1
′ = {X11, X12, · · · , X1(k−1), X2k,

X2(k+1), · · · , X2N } and X2
′ = {X21, X22, · · · , X2(k−1), X1k, X1(k+1), · · · ,

X1N }.
(3) Bitwise mutation: It is applied to forbid the premature convergence, and it has

the ability to explore the new solution space. Mutation is the process in which
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the genetic structure of a chromosome is randomly altered. It leads to genetic
diversity in a population. It is a step-by-step working procedure explained below.

(a) It works using mutation probability say Pmut . Thus, only (M · Pmut ) genes
in the population go for mutation.

(b) Draw a random number from continuous uniform distribution, i.e., j ∈
[1, M].

(c) Let a chromosome X j = {X j1, X j2, · · · , X j (k−1), X jk, X j (k+1), · · · , X jN }
of length N be randomly selected for mutation.

(d) Again draw two points from continuous uniform distribution, i.e., r1, r2 ∈
[1, N ].

(e) Let r1 = 1 and r2 = k. Then, 1st and kth genes are selected for the mutation,
i.e., X j1 and X jk .

(f) Let X j1 = 1 and X jk = 0, then the new chromosome becomes

X j
′ = {X j1

′, X j2, . . . , X j (k−1), X jk
′, X j (k+1), . . . , X jN } where X j1

′ = 0
and X jk

′ = 1.

Algorithm 1
1: Start with a random initial population P0 which consists of offspring whose values are 1 and 0.

Set gen = 0. Let M be initial population size.
2: Using following mapping function to compute the time point Ti for i th string,

Ti = Tmin
i + Tmax

i − Tmin
i

2li − 1
∗ DV (Si )

where Tmin
i is the possible minimum value of time, Tmax

i is the possible maximum value of
time, li is the string length and DV (Si ) is the decoded value of the i th string.

3: Using following defined mapping function, compute time point ti ∈ (0, Ti ] for i th string,

ti = tmin
i + tmax

i − tmin
i

2li − 1
∗ DV (Si )

where tmin
i is the possible minimum value of time and tmax

i = Ti .
4: Calculate fitness function using the objective function for the initial population.
5: Thereafter, the roulette wheel selection method is applied on the initial population to select

parents for the mating pool.
6: Then, single-point crossover and bitwise mutation operators are applied on the mating pool until

offspring population Qgen of size M is filled.
7: Set i ter = gen + 1, and P(i ter) = Qgen ; go to Step 2.

4 Numerical Example

The SCdescribed in earlier section is demonstrated using a hypothetical example. Let
demand per unit time follow uniform distribution, i.e., f (t) ∼ U (a = 0, b = 1), and
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Table 1 Optimum solutions for uniform distributed demand

γ Carrying charge r

0.12 0.13 0.15 0.17 0.20

0.05 Q 63.22 61.39 61.10 56.82 52.11

B 62.79 62.99 56.55 55.32 53.05

P 669.77 668.42 667.08 665.24 662.93

t 0.623 0.602 0.564 0.545 0.519

T 0.859 0.989 0.976 0.999 0.753

0.10 Q 57.54 57.99 53.88 51.04 49.07

B 54.98 54.98 52.88 50.39 47.22

P 666.94 665.65 664.54 662.85 660.71

t 0.546 0.557 0.514 0.513 0.472

T 0.878 0.990 0.830 0.752 0.921

0.20 Q 50.34 48.44 48.07 45.86 44.71

B 49.07 47.09 46.61 44.64 43.22

P 662.39 661.36 660.34 658.99 657.08

t 0.474 0.461 0.451 0.434 0.414

T 0.998 0.987 0.884 0.926 0.980

normal distribution, i.e., f (t) ∼ N (μ = 1, σ 2 = 0.04). Other parameter values for
the model are: D0 = 100, A = 10, r = 0.15,C = 3, S = 10, β = 1.5 and δ = 2.We
have usedGAwith roulettewheel selection, single-point crossover, bitwisemutation,
number of iterations 100, crossover probability 0.8, mutation probability 0.2, string
length 40 and population size 20. Our aim is to determine the values of t1 and T which
maximize P(T, t1). Using Algorithm 1, EOQ (Q) and profit (P) are evaluated by
using Eqs. 16 and 17. The effect of parameter γ with respect to carrying charge (r )
is shown in Tables1 and 2.

From Table1, we conclude that as r increases with fixed γ the optimum profit
and EOQ both decrease for uniform distributed demand. Similar results are seen for
normal distributed demand; see Table2. Also, as γ increases with fixed r , EOQ and
optimum profit both decrease. From Tables 1 and 2, we see that the profit in uniform
distribution is more than normal distribution. The codes are written by R software
and run on i3–3110M, CPU @ 2.40 GHz and 4 GB RAM.

5 Sensitivity Analysis

The effect of various parameters, viz., total order quantity D0, order cost A, per unit
purchase cost C and selling cost S on the optimality of solution, is studied through
the sensitivity analysis. For fixed γ = 0.2 and β = 1.5, the effect of 50% over- and
under-estimation of these parameters on EOQ (Q) and optimum profit (P) has been
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Table 2 Optimum solutions for normal distributed demand

γ Carrying charge r

0.12 0.13 0.15 0.17 0.20

0.05 Q 51.59 51.59 51.58 51.59 51.37

B 46.64 47.70 46.43 47.10 45.37

P 319.07 317.57 315.64 313.09 309.37

t 0.974 0.979 0.973 0.976 0.968

T 1.00 0.999 1.00 0.999 0.999

0.10 Q 53.34 53.45 53.11 52.95 53.24

B 48.45 49.60 46.65 46.65 47.79

P 312.91 311.40 309.35 306.31 303.33

t 0.975 0.979 0.966 0.966 0.972

T 0.999 0.999 0.999 0.999 0.999

0.20 Q 56.03 56.61 57.02 56.16 55.946

B 47.23 49.94 51.70 47.68 46.99

P 300.75 299.33 296.51 295.05 291.34

t 0.953 0.965 0.972 0.9552 0.952

T 0.999 0.999 0.999 0.999 0.999

examined. That means the sensitivity analysis is performed by changing each of the
parameters by −50%, −30%, +20% and +50% taking one parameter at a time and
keeping the remaining parameters unchanged. The obtained results for uniform and
normal distributed demand rate are shown in Table3.

On the basis of the results of Table3, the following observation can be made:

(1) All parameters except order cost effects equally on P .
(2) Total demand during the scheduling period, purchase cost and selling cost for

uniform distribution effects mostly on P .
(3) Order cost has low effect on P for uniform distributed demand rate.
(4) Effect of almost all parameters except order cost for normal distribution is much

high.
(5) The parameters except selling cost affects high on backlogging time for uniform

distribution.
(6) For normal distribution, all parameters have low effect on backlogging and cycle

time.

6 Managerial Implications

According to the demand of deteriorated item, the manager of a company finds the
suitable probability distribution for the deteriorated item. Also, by comparing vari-
ous probability distributions manager can decide the unique probability distribution
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Table 3 Effect of changes in the parameters of the probabilistic demand inventory model

Percentage of over- and under-estimation of parameter

%
change
in

Uniform distribution Normal distribution

−50% −30% +20% +50% −50% −30% +20% +50%

D0 Q −31.20 −17.24 11.51 26.66 −49.22 −30.01 20.22 51.08

P −51.42 −30.93 20.70 51.81 −51.75 −31.07 20.49 51.77

t 35.90 15.61 −7.06 −14.90 1.75 0.09 0.40 0.73

T −11.67 −16.05 4.04 1.27 −0.02 −0.03 −0.01 0.01

A Q −25.18 −10.08 11.38 22.96 −0.94 −2.76 −2.00 0.07

P 1.91 1.07 −0.65 −1.53 1.89 1.03 −0.49 −1.60

t −23.37 −15.55 8.16 19.20 −1.05 −2.86 −2.15 −0.02

T 8.07 3.22 8.98 0.35 0.01 −0.02 −0.00 0.03

C Q 35.74 15.09 −7.32 −15.87 0.12 0.60 −2.92 −4.66

P 24.25 14.48 −9.57 −23.84 32.11 19.06 −12.63 −30.56

t 34.88 14.37 −8.84 −17.38 0.17 0.84 −2.63 −4.84

T 9.55 −8.82 8.02 −7.32 −0.01 −0.04 −0.14 0.01

S Q 0.75 1.91 −3.12 −0.2 −1.78 −1.51 0.39 3.15

P −75.67 −45.41 30.28 75.7 −83.19 −50.08 33.36 83.21

t −1.05 −4.23 −1.81 −3.56 −1.86 −1.39 0.46 3.50

T 0.48 −2.72 −5.48 −2.74 0.02 −0.05 0.01 0.02

which maximizes the profit of a company. The proposed models help the manager to
understand the uncertainty in the market. Also, these models can assist the manager
in accurately determining the optimal order quantity and profit. Before applying the
model and proposed algorithm, manager has to collect necessary information about
SC of the company. Such types of probabilistic EOQ inventory models can be useful
in manufacturing and distributing industries. Moreover, these models can be used
in inventory control of certain deteriorating items such as food items, electronic
components, fashionable commodities and others.

7 Conclusions

In this study, EOQ inventory models under probabilistic market demand for a multi-
echelon SC have been proposed for items with Weibull distributed deterioration.
In the developed EOQ inventory models, shortages were allowed and they were
partial backlogged. The backlogging rate is a variable, and it depends on the length
of time for the customer waits before receiving the item. Thus, it is considered
as a decreasing exponential function of waiting time. In the literature, deterministic
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inventorymodelswere developed by several researchers by assumingmarket demand
of a deteriorating item depends on stock, on time, on replenishment, etc. But here,
we have developed probabilistic EOQ inventory models, which can be helpful where
demand of the deteriorating item is uncertain in nature. Also, we are providing a
novel solution methodology for solving proposed inventory models using binary
coded GA. This methodology can be helpful for solving deterministic as well as
probabilistic inventory models.

In a future study, it is hoped to further incorporate the proposed model into more
realistic assumptions, such as lead time as a decision variable and a finite rate of
replenishment. Also, formulated models can be solved by using particle swarm opti-
mization, ant colony optimization, etc.
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