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Preface

The vast applications of statistics through its various dimensions including data
science, data mining, stochastic and reliability modelling, sampling and estima-
tion techniques, decision-making, etc., have been developed in recent times. The
applications of statistics are increased as the newly methods are being adopted
by the researchers who involved in the multidisciplinary areas, viz. astronomy,
forensic studies, clinical trials, agriculture, forestry and environment, epidemiology
and finance, and even in the business administration in order to take correct deci-
sion about the policy and other interventions. In addition, statistics is emerged as a
powerful tool in the successful governmental development and industrial progress
through tackling difficult challenges. Applied statistics has become an indispensable
discipline.

This book is a collection of recent developments in several areas of statistics in the
form of chapters (18 in total) written by eminent statistician in their areas of exper-
tise.We tried our best to invite those authors who could capture new developments in
statisticalmethodology and their possible use in important diversifieddisciplines. The
real applications of a wide range of key topics, including small area estimation tech-
niques, Bayesian models for small areas, ranked set sampling, fuzzy supply chain,
probabilistic supply chainmodels, dynamicGaussian processmodels, grey relational
analysis, multi-item inventory models, etc., are well presented. The possible use of
the other models including generalized Lindley shared frailty models, Benktander
Gibrat risk model, decision-consistent randomization method for SMART designs
and different reliability models is also discussed. This book includes many detailed
practical and worked examples that illustrate the real-life applications of recently
developed statistical methods. The titles included in this volume are designed to
appeal to applied statisticians, students, research project leaders and practitioners
of various marginal disciplines and interdisciplinary research. The relative scarcity
of reference material covering statistical applications as compared with the readily
available books also enhances the utility of this book. We are sure that the book
will benefit researchers and students of different disciplines for improving research
through the methodological and practical knowledge of applied statistics.
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vi Preface

Chapter “Bayesian Order-Restricted Inference ofMultinomial Counts from Small
Areas” provides the use of Bayesian paradigm to adaptively pool the data on body
mass index cell probabilities over small areas. To estimate the finite population
proportion of healthy individuals in each household, a hierarchical Bayesian sub-area
beta-binomial models presented in Chapter “AHierarchical Bayesian Beta-Binomial
Model for Sub-areas”. Chapter “HierarchicalBayes Inference fromSurvey-Weighted
Small Domain Proportions” also focuses on the hierarchical Bayes approach of
small area estimation for survey-weighted proportions of district level employ-
ment. Chapter “Efficiency of Ranked Set Sampling Design in Goodness of Fit Tests
for Cauchy Distribution” discusses the use of ranked-set sampling in goodness of fit
tests by considering the particular Cauchy distribution. The fuzzy supply chain single
period (newsboy) inventory model has been used to obtain optimal order quantity,
retailers profit, manufacturers profit and total supply chain profit under decentralized
supply chain in Chapter “Fuzzy Supply Chain Newsboy Problem Under Lognormal
Distributed Demand for Bakery Products”. Chapter “Probabilistic Supply Chain
Modelswith Partial Backlogging forDeteriorating Items” dealswith the newly devel-
oped inventory models by assuming various probability distributions for demand and
deterioration rate under shortages of items. In Chapter “The Evolution of Dynamic
Gaussian ProcessModelwithApplications toMalariaVaccineCoverage Prediction”,
several popular test function-based computer simulators to illustrate the evolution
of dynamic Gaussian process models have been used along with its application to
predict the coverage of malaria vaccine worldwide.

Chapter “Grey Relational Analysis for the Selection of Potential Isolates
of Alternaria Alternata of Poplar” narrates the use of gray relational analysis
method for obtaining the best fungal isolates of Alternaria Alternata of poplar
(Populus deltoides) tree. Chapter “Decision Making for Multi-Items Inventory
Models” proposes the multi-item inventory models under declining demand with
the Weibull distributed deterioration rate for credit period and quantity discount.
The Bayesian estimation of generalized Lindley-shared frailty models based on
reversed hazard rate for Australian twin data is proposed in Chapter “Modeling
Australian Twin Data Using Generalized Lindley Shared Frailty Models”. Chapter
“Ultimate Ruin Probability for Benktander Gibrat Risk Model” obtains the ulti-
mate ruin probability for Benktander–Gibrat risk model using the Laplace trans-
form, generalized exponential integrals, Meijer G-function and Bromwich integral.
Chapter “Test of Homogeneity of Scale Parameters Based on Function of Sample
Quasi Ranges” presents a multi-sample test for homogeneity of scale parameters
against simple ordered alternative based on function of sample quasi-ranges given
censored data, as well as for data contaminated with outliers. To combine the
advantages of Q-learning-decision-consistent strategies and response-adaptive
designs while controlling for covariate balance, a Bayesian response-adaptive,
covariate-balanced and Q-learning-decision-consistent randomization method for
SMART designs is proposed in Chapter “A Bayesian Response-Adaptive,
Covariate-Balanced and Q-Learning-Decision-Consistent Randomization Method
for SMART Designs”. The Bayesian inference for finite population characteris-
tics is presented in Chapter “An Introduction to Bayesian Inference for Finite
Population Characteristics”. Important reliability applications through repairable



Preface vii

systems with arrival time of server and stress-strength reliability estimation for
multi-component system are given in Chapters “Reliability Measures of Repairable
Systems with Arrival Time of Server” and “Stress-strength Reliability Estimation
for Multi-component System Based on Upper Record Values Under New Weibul-
l-Pareto Distribution”. Chapter “Record Values and Associated Inference on Muth
Distribution” describes the record values and associated inference on Muth distribu-
tion. The book ends with the statistical linear calibration in data with measurement
errors and given in Chapter “Statistical Linear Calibration in Data withMeasurement
Errors”.

Pune, India
Pune, India
Dehradun, India

David D. Hanagal
Raosaheb V. Latpate

Girish Chandra



Acknowledgments

We extend our thanks and appreciations to the authors for their continuous support
during finalization of the book. We would like to express our sincere thanks to
Shamim Ahmad, Senior Editor, Mathematical Sciences, Springer Nature, for his
continuous support and cooperation from planning to the finalization of this volume.
We would like to thank the anonymous referees for their valuable comments and
suggestions for improvement of this book. The support received from late Dr. Hukum
Chandra till the acceptance of this book is incredible.

David D. Hanagal
Raosaheb V. Latpate

Girish Chandra

ix



Obituary

Dr. Hukum Chandra

(7 November 1972 to 26 April 2021)

Dr. HukumChandra passed away on 26April 2021 at the age of 48. He contributed
to this book as a resource person. He was an eminent scientist who pioneered the
inception and popularization of “Small Area Estimation” technique in the offi-
cial statistics system of India. He was working as National Fellow and Principal
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the University of Southampton, UK, and Postdoctoral Research from the Univer-
sity of Wollongong, Australia. He worked on diverse areas of methodological and
applied problems in statistics, including survey design and estimation methods;
small area estimation; bootstrap methods; disaggregate-level estimation and anal-
ysis of agricultural, socio-economic and health indicators; spatial models for survey
data; statistical methodology for improvement in agricultural and livestock statis-
tics; energy management in production agriculture; evaluation of agriculture census
and survey schemes. He has received number of awards and appreciations for his
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research contributions such as National Award in Statistics from the Ministry of
Statistics and Programme Implementation, Government of India; ICAR National
Fellow Award; Cochran-Hansen Award from International Association of Survey
Statisticians; Young Researcher/Student Award of the American Statistical Associa-
tion; Lal Bahadur Shastri Outstanding Young Scientist Award of ICAR; Recognition
Award of the National Academy of Agricultural Sciences; Prof. P. V. Sukhatme
Gold Medal Award; and Dr. D. N. Lal Memorial Award of Indian Society of Agri-
cultural Statistics. He was a recipient of the Commonwealth Scholarship offered by
the Commonwealth Scholarship Commission in the UK. He was Elected Member
of International Statistical Institute, The Netherlands; Fellow of National Academy
of Agricultural Sciences, India; and Fellow of Indian Society of Agricultural Statis-
tics. He has worked as Council Member of the International Association of Survey
Statisticians. As International Consultant of Food and Agricultural Organization of
the United Nations, he has worked in Sri Lanka, Ethiopia andMyanmar to strengthen
the Agricultural Statistics System. He has published more than 125 research papers
in reputed journals of high impact factor. He has published four books, several tech-
nical bulletins, project reports, chapters, working papers and training and teaching
reference manuals. He has delivered a number of invited talks in many national and
international platforms of repute worldwide. He has supervised four Ph.D. and four
M.Sc. students. Our heartfelt tribute to Dr. Hukum Chandra.
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Bayesian Order-Restricted Inference
of Multinomial Counts from Small Areas

Xinyu Chen and Balgobin Nandram

Abstract Body mass index (BMI) can be a useful indicator of health status, and
people can fall in different cells. Estimating BMI cell probabilities for small areas
can be difficult, due to a lack of available data from national surveys. We have data
from a number of counties in the USA, and it is sensible to assume that BMI may
be similar across the counties for each cell. Overall, the cell probabilities for each
county follow a unimodal order restriction, and so, it is sensible to assume the same
for the individual counties (small areas). Moreover, we assume that the counties are
similar with some variations. In this setting, it is convenient to use the Bayesian
paradigm to adaptively pool the data over areas. Therefore, we use a hierarchical
multinomial Dirichlet model with order restrictions, to model the cell counts and
the cell probabilities, thereby permitting a borrowing of strength across areas. We
provide efficient Gibbs samplers to make inference about the cell probabilities for
multinomial Dirichlet models with and without order restrictions (a model with the
same pooling structure). To make inference, we compute the posterior distributions
of the cell probabilities for both models. In general for most counties, as expected,
the posterior distributions of cell probabilities of the model with order restrictions
have significantly less variation, as measured by posterior standard deviations and
coefficients of variation, than those of the model without order restrictions.

Keywords Bayesian computation · Body mass index · Multinomial distribution ·
Monte Carlo methods · Unimodal order restrictions
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2 X. Chen and B. Nandram

1 Introduction

In many surveys, questionnaires have items that are categorized into several cells.
These items may be filled in by people from different areas or groups, which may be
small. Estimates of cell probabilities for individual areas may not be reliable, and a
statisticianmight need to pool data fromdifferent small areas (Rao andMolina, 2015).
Furthermore, there may be important information over the cells from each area and
this information can be incorporated into amodel to provide additional improvement.
So, our problem is to obtain a methodology to pool information across areas and to
incorporate information across the cells in each area. The Bayesian paradigm is
attractive for this problem, and we start with the hierarchical Bayesian multinomial
Dirichlet model; then, we incorporate the order restrictions over the cell probabilities
into this model. We have a specific application on body mass index (BMI), a lifestyle
variable in the USA, where BMI can be categorized into five cells, where the order
restriction might hold.

Body mass index (BMI) is a person’s weight in kilograms divided by the square
of height in meters. BMI provides a simple numeric measure of a person’s fatness.
A person with a higher BMI may have higher chance to get certain diseases (e.g.,
diabetes). BMI can be used to categorize people’s weight that may lead to health
problems, but it cannot provide medical diagnostics of the health of an individual.
Knowing BMI status well among different areas can help politicians to make better
health plans and improvemedical care.Weusedata from the thirdNationalHealth and
Nutrition Examination Health Survey (NHANES III) to provide improved inference
for each of 35 largest counties with a population of at least 500,000. But the sample
size of small areas such as counties may be too small to generate reliable and accurate
estimates. Borrowing strength across small areas to find more accurate estimates is
necessary and possible. The hierarchical Bayesian model is straightforward and easy
to understand, and Markov chain Monte Carlo method can overcome computational
difficulties. Here, it is natural to use the hierarchical Bayesian multinomial Dirichlet
model to understand the BMI data. It is important to note that when all counties are
combined into a large sample, the order restriction that we use in our model holds,
but because of the sparseness of the data within counties the order restrictions might
fail.

BMI data are usually categorized into different cells such as underweight (cell
1), normal (cell 2), overweight (cell 3), obese1 (cell 4) and obese2 (cell 5). We
assume that there are � areas and the cell counts are denoted by ni j , i = 1, . . . , I, j =
1, . . . , K , where K = 5 and I = 35 in our application on BMI. We assume that
(ni1, . . . , ni5) are multinomial counts with probabilities (θi1, . . . , θi5) and in a
Bayesian model (θi1, . . . , θi5) follow a Dirichlet distribution with common hyper-
parameters, which have noninformative priors. This is the hierarchical Bayesian
multinomial Dirichlet model; see Nandram (1998). Our new model puts the same
order restriction over the θi j for the i th area. So in the second stage, a Dirichlet dis-
tribution with parametersμ and τ will be an appropriate choice. It can be considered
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as a baseline, and parameters μ and τ increase the model flexibility. Without any
specification or prior knowledge, a vague and flat prior should be used for parameters
μ and τ .

Wu et al. (2016) combined domain estimation and the pooled adjacent violator
algorithm to construct new design-weighted constrained estimators of wage for U.S.
National Compensation Survey. They assumed constrained estimators satisfying the
monotonicity.Malinovsky andRinott (2010) presented predictorswith an appropriate
amount of shrinkage for the particular problem of ordered parameters in the context
of small area estimation. Their performance is close to that of the optimal predictors.
Heck and Davis-Stober (2019) provided a comprehensive discussion about linear
inequality constraints, such as the set of monotonic order constraints for binary
choice probabilities on the parameters of multinomial distributions for psychological
theories. They also described a general Gibbs sampler for drawing posterior samples.
A suitable order restriction assumption can increase model precision. Li (2008)
made a great overview about statistical inference under order restrictions. He also
considered the inference of ordered binomial probabilities in frequentist statistics.
FromWu, Meyer and Opsomer’s research about order restriction to Li’s review, they
proved that the order constraints should be considered in order to improve efficiency
and minimize bias, which can be done in different aspects.

Dunson and Neelon (2003) proposed a general and easy to implement approach
for order-restricted inferences on regression parameters in generalized linear models.
Their approach is interesting because instead of choosing a prior distribution with
the support on the constrained space, which is expected to result in major compu-
tational difficulties, they proposed to map draws from an unconstrained posterior
density using an isotonic regression transformation. In particular, Gelfand et al.
(1992) suggested first choosing a prior density without considering the constraint
and then discarding draws inconsistent with the constraint. However, they were not
working within the context of small area estimation and their problem is not about
order cell probabilities in several multinomial distributions. Therefore, our approach
of incorporating order restriction into the prior distributions is natural in our study
on BMI.

In the small area context, most of these papers cover order restriction across
areas (e.g., Wu et al., 2016). However, in this paper, we are not interested in order
restriction across areas, but rather we are interested in order restriction across the cell
probabilities within each area. Nandram (1997) provided a good discussion about a
hierarchical Bayesian approach for taste-testing experiment and appropriatemethods
for the model. To select the best population, he studied three criteria based on the
distribution of random variables representing values on a hedonic scale using the
simple tree order (see also Nandram, 1998).

Nandram, Sedransk and Smith (1997) improved estimation of the age composition
of a population of fish with the help of order restrictions. They proposed different
order restrictions for different fish length strata. With the help of the Gibbs sampler,
they showed that order restrictions provided large gains in precision for estimating
the proportion of fish in each age class. The research of Nandram, Sedransk and
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Smith (1997) was motivated by Gelfand et al. (1992) and earlier Sedransk et al.
(1985).

Since people have similarity that the majority in each county will be in the same
level of BMI, it is reasonable to assume that the cell probabilities share a common
effect and have the same order restrictions in each county. Actually, it seems that
most people will have a third-level BMI, which is overweight, among those counties.
So, it is reasonable to believe that the cell probabilities are unimodal in each county
and the third level is the mode. With this information, our estimates for each county
can be improved using a multinomial Dirichlet model with order restrictions such
as θi1 � θi2 � θi3 � θi4 � θi5 for the i th area. One feature of our approach is that
Dirichlet distribution with parameters μ and τ embodies the common effect and
the same order restriction. At the second stage of model, parameter μ has a similar
order restriction as cell probabilities θi . It has more flexibility without increasing
computation difficulty. The work in this paper is a large step forward from Chen
and Nandram (2019), which appeared the Proceedings of the American Statistical
Association.

The article is organized as follows. In Sect. 2, we present the hierarchical Bayesian
multinomial Dirichlet model with order restrictions. In Sect. 3, we present our algo-
rithms; specifically, we describe how to generate samples fromposterior distributions
and how to handle difficulties caused by order restrictions. In Sect. 4, we show how
to analyze the BMI data in our application. Specifically, we show how to run the
Gibbs sampler, assess the convergence of the Gibbs sampler and, more importantly,
demonstrate how much improvement there is under the order restrictions. In Sect. 5,
we also present a Bayesian diagnostic for the model with order restrictions and we
discuss difficulties associated with a standard Bayesian diagnostic measure that may
not be appropriate. Section6 has a summary of our work. Also, there is an appendix
with technical details and an important table, which shows the improvement that can
occur under the order restrictions.

2 Multinomial Dirichlet Models

In this section, we describe the Bayesian methodology for the cell counts over the
small areas. First, we give a reviewof the hierarchical BayesianmultinomialDirichlet
model without the order restriction. Then, we describe the hierarchical Bayesian
multinomial Dirichlet model with the order restriction.

It is convenient to give some standard notations here. Themultinomial distribution,
n ∼ Multinomial(n. ,θ), is a discrete distribution over K-dimensional nonnegative
integer vectors n, where

∑K
j=1 n j = n. and θ = (θ1, . . . , θK ). The probability mass

function is given as
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f (n|θ) = �(n. + 1)
∏K

j=1 �(n j + 1)

K∏

j=1

θ
n j

j ,

K∑

j=1

n j = n., ni � 0.

This is a generalization of the binomial distribution. The Dirichlet distribution, x ∼
Dirichlet(α), is parameterized by positive scalar α j > 0 for j = 1, 2, . . . , K , where
K � 2. The probability density of x is

f (X|α) = �(
∑K

j=1 α j )
∏K

j=1 �(α j )

K∏

j=1

x
α j−1
j ,

K∑

j=1

x j = 1, x j ≥ 0, j = 1, . . . , K .

The Dirichlet distribution is multivariate generalization of the univariate beta distri-
bution. It is convenient that the Dirichlet forms a conjugate prior for the multinomial
distribution, thereby leading to relatively simpler computations.

2.1 Model Without Order Restriction (M1)

Nandram et al. (2019) have a useful discussion of hierarchical Bayesian multinomial
Dirichlet model without order restriction and the methodology needed to fit it.

We provide the Bayesian hierarchical multinomial Dirichlet model. Letting
ni j be the cell counts, θi j the corresponding cell probabilities, i = 1, 2, . . . , I ,
j = 1, 2, . . . , K and ni. = ∑K

j=1 ni j .
The general hierarchical Bayesian model is

ni |θi
ind∼ Multinomial(ni . ,θi ),

ni j � 0, θi j � 0,
K∑

j=1

θi j = 1,

θi |μ, τ
ind∼ Dirichlet(μτ ),

π(μ, τ ) = (K − 1)!
(1 + τ )2

,

μ j � 0,
K∑

j=1

μ j = 1, τ > 0,

where, without any prior information, we take μ and τ to be independent. Also,
E(θi j ) = μ j ,

∑K
j=1 μ j = 1 and μ are cell means and τ is a prior sample size. Nan-

dram, Sedransk and Smith (1997) had a similarmodel for stratified random sampling,
not small areas, and they set the hyperparameters to be fixed. Therefore, our compu-
tations for order- restricted inference are much more difficult.
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2.2 Model with Order Restrictions (M2)

We incorporate the order restriction into the hierarchical Bayesian Dirichlet multi-
nomial model. We use a grid method in Gibbs sampler. This is more efficient than
the method by Nandram (1998). Letting ni j be the cell counts, θi j the corresponding
cell probabilities, i = 1, 2, . . . , I , j = 1, 2, . . . , K ,ni. = ∑K

j=1 ni j and we believe
the mode of θi s is θim, 1 � m � K .

Specifically, we take

ni |θi
ind∼ Multinomial(ni . ,θi ), θi ∈ C i = 1, . . . , I,

where C = {θi : θi1 � . . . � θim � . . . � θi K , i = 1, . . . , I }, and assume C is
known. As mentioned above, in our BMI study, C = {θi : θi1 � θi2 � θi3 � θi4 �
θi5, i = 1, 2, . . . , 35}.

At the second stage, we take

θi |μ, τ
ind∼ Dirichlet(μτ ), i = 1, . . . , I,

π(μ, τ ) = K (m − 1)!(K − m)!
(1 + τ )2

, μ j > 0,
K∑

j=1

μ j = 1, μ ∈ Cμ.

Since E(θi j ) = μ j , μ should have the same order restriction as θi , which is
μ ∈ Cμ,

Cμ = {μ : μ1 � . . . � μm � . . . � μK }.

Using Bayes’ theorem, the joint posterior distribution of all variables is

π(θ,μ, τ |n) ∝
I∏

i=1

{
K∏

j=1

θ
ni j
i j

∏K
j=1 θ

μ j τ−1
i j IC ICμ

D(μτ )C(μτ )
} 1

(1 + τ )2

∝
I∏

i=1

{
∏K

j=1 θ
ni j+μ j τ−1
i j IC ICμ

D(μτ )C(μτ )
} 1

(1 + τ )2
,

where IC and ICμ
are the indicator functions under those order restrictions,

and

C(μτ )
denote=

∫

θi∈C

�(
∑K

j=1 μ jτ )
∏K

j=1 �(μ jτ )

K∏

j=1

θ
μ j τ−1
i j dθi ,
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D(μτ ) =
∏K

j=1 �(μ jτ )

�[∑K
j=1 μ jτ ] .

A posteriori θi |μ, τ , ni
ind∼ Dirichlet(ni + μτ ), θi ∈ Ci , i = 1, . . . , I,

where

fθi |μ,τ ,n =
�[∑K

j=1(ni j+μ j τ )]
∏K

j=1 �(ni j+μ j τ )

∏K
j=1 θ

ni j+μ j τ−1
i j

∫
θi∈Ci

�[∑K
j=1(ni j + μ jτ )]

∏K
j=1 �(ni j + μ jτ )

K∏

j=1

θ
ni j+μ j τ−1
i j dθi

=
�[∑K

j=1(ni j+μ j τ )]
∏K

j=1 �(ni j+μ j τ )

∏K
j=1 θ

ni j+μ j τ−1
i j

C(ni + μτ )
.

3 Computations

It is straightforward to generate samples from M1; see Nandram (1998). In fact,
using the Griddy Gibbs sampler, it can be done easier than the method in Nandram
(1998). We present a new method for the order restrictions of μ and θ into two parts
for model M2.

3.1 Sampling θ in M2

In the first part of new method, the posterior of θ has a recognizable distribution,
which is the Dirichlet distribution with the order restriction. Sedransk et al. (1985)
provided an efficient algorithm to generate random vectors from the constrained
density. However, instead of drawing samples directly from the Dirichlet distribu-
tion with the order restriction, we present a direct sampling from truncated gamma
distributions as from truncated Dirichlet distribution. Nadarajah and Kotz (2006)
offered a method for truncated gamma distributions.

Method1 : To draw θ = (θ1, . . . , θK ) ∼ Dirichlet(α1, . . . , αK ), θ ∈ C,

denote β = (β1, . . . , βK ),

If 0 � θ1 � θ2 � . . . � θm � . . . � θK , the mode is θm ,

0 � β1 � β2 � . . . � βm � . . . � βK , the mode is βm ,

1. Draw βm ∼ Gamma(αm , 1), where 0 � βm < ∞,

2. Draw βm−1 ∼ Truncated Gamma(αm−1, 1), where 0 � βm−1 � βm ,

. . . β1 ∼ Truncated Gamma(α1, 1), where 0 � β1 � β2,
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3. Draw βm+1 ∼ Truncated Gamma(αm+1, 1), where 0 � βm+1 � βm ,

. . . βK ∼ Truncated Gamma(αK , 1), where 0 � βK � βK−1.

Then,

θ1 = β1
β1 + β2 + . . . + βK

, . . . , θK−1 = βK−1

β1 + β2 + . . . + βK
, θK = 1 −

K−1∑

i=1

θi .

3.2 Gibbs Sampling for μ and τ

In the second part of newmethod, we present Gibbs sampling, aMarkov chainMonte
Carlo (MCMC) algorithm, for μ with an order restriction. We present the modified
Gibbs sampler for μ ∈ Cμ and τ . The joint posterior density is

π(θ,μ, τ |n) ∝
I∏

i=1

{
∏K

j=1 θ
ni j+μ j τ−1
i j IC ICμ

D(μτ )C(μτ )
} 1

(1 + τ )2
,

where

C(μτ ) =
∫

θi∈C

�(
∑K

j=1 μ jτ )
∏K

j=1 �(μ jτ )

K∏

j=1

θ
μ j τ−1
i j dθi .

There is no recognizable conditional distribution of μ and τ to generate samples.
Weuse a griddyGibbs sampling (SeeNandram1998) to drawμ and τ fromπ(μ, τ |n)

after integrating with respect to θ, we get

π(μ, τ |n) ∝
I∏

i=1

{D(μτ + ni )C(μτ + ni )
D(μτ )C(μτ )

} ICμ

(1 + τ )2

∝
I∏

i=1

{
∫
θi∈C

∏K
j=1 θ

μ j τ+ni j−1
i j dθi

∫
θi∈C

∏K
j=1 θ

μ j τ−1
i j dθi

} ICμ

(1 + τ )2
.

Chen and Shao (1997) mentioned that the importance sampling could be used to

estimate the ratio,
∫
θi ∈C

∏K
j=1 θ

μ j τ+ni j−1

i j dθi

∫
θi ∈C

∏K
j=1 θ

μ j τ−1

i j dθi

. We consider Dirichlet (r n̄ j ), where r is an

adjustable ratio and n̄ j =
∑I

i=1 ni j
I . More details can be found in appendix.
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Method 2:
1. Draw τ from π(τ |μ, n).
2. For j from m-1 to 1, draw μ j from π(μ j |μ(− j), τ , n),

where 0 < μ j < min{μ j+1,
1−∑K

t=1,t �=m,t �= j μt

2 }.
3. For j from m+1 to K, draw μ j from π(μ j |μ(− j), τ , n),

where 0 < μ j < min{μ j−1,
1−∑K

t=1,t �=m,t �= j μt

2 }.
4. Get μm = 1 − ∑K

j=1, j �=m μ j ; repeat Step 1 to Step 4 to get converged MCMC
samples,

μ(− j) = (μ1, . . . ,μ j−1,μ j+1, . . . ,μK ).

4 Application to BMI

4.1 Body Mass Index

In our application, we use a selected subset of the female BMI data from NHANES
III, where we use only the female BMI data from the 35 largest counties with a
population at least 500,000. Our goal is to estimate the proportions of the BMI levels.
Table1 gives an illustration of the female BMI data of a few counties, where it can
be seen that the cell probability is largest for the normal range and other probabilities
roughly tail off on both sides to form the unimodal order restriction. Indeed, there
are violations in some counties in the earliest and latest cells.

For large population counties, we consider that people randomly fall into five BMI
categorical levels, which are underweight, normal, overweight, obese1 and obese2.
Thus, for each county, the BMI counts can be assumed to follow a multinomial
distribution because each individual person can be assumed to exist independently.
Figure1 shows a histogram of all BMI values for females aggregated into a single
large sample. It can be clearly seen that the unimodal order restriction holds. Because
the data in the individual counties are generally sparse, it is difficult to tell whether the
unimodal order restrictions holds, a way to improve posterior inference. However, it
is sensible to assume that the same unimodal restriction holds within all the counties.
Therefore, we can use multinomial distributions to model the female BMI counts.

4.2 MCMC Convergence

We run 20,000 MCMC iterations, take 10,000 as a ‘burn-in’ and use every 10th to
obtain 1,000 converged posterior samples. Table2 gives the effective sample size of
the parametersμ, τ for themodelwith the order restriction and the generalmodel. The
effective sample sizes are almost 1,000. Table3 gives the p-values of the Geweke
test for the parameters (Cowles and Carlin, 1996). The p-values are all large, so
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Table 1 US female BMI data

State ID County ID BMI_lvl1 BMI_lvl2 BMI_lvl3 BMI_lvl4 BMI_lvl5

4 13 3 40 37 13 4

6 1 1 36 38 15 1

6 19 3 20 49 13 5

6 37 2 145 174 77 14

6 59 1 29 31 16 3

… … … … … … …

Fig. 1 Total counts for 35 counties

Table 2 Effective sizes

Models μ1 μ2 μ3 μ4 μ5 τ

W. order 974 1000 1000 1000 1000 1000

W/O order 859 1000 1000 971 1000 1032

Table 3 Geweke diagnostics

Models μ1 μ2 μ3 μ4 μ5 τ

W. order 0.4275 0.3221 0.2376 0.0895 0.3784 0.1393

W/O order 0.8352 0.785 0.6931 0.4425 0.3692 0.8983

we cannot reject that null hypothesis that the MCMC is stationary. Then, posterior
samples can be used for the further inference (Table4).

In Fig. 2, posterior densities of μ show a nice pattern and μ3 is centered at the
largest value. It means that our samples from μ posterior densities have an order
restriction. It matches our model assumptions. But we notice that there is an overlap
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Table 4 log(CPOi) for each county by model

County Size M1 M2 County Size M1 M2

1 97 −10.33 −9.73 18 61 −7.88 −7.78

2 91 −8.71 −7.87 19 52 −7.72 −7.72

3 90 −12.50 −13.40 20 64 −8.21 −8.17

4 412 −14.38 −13.36 21 49 −11.64 −13.40

5 80 −9.13 −8.26 22 77 −8.83 −8.62

6 66 −9.32 −9.64 23 50 −7.04 −6.42

7 62 −7.87 −7.37 24 70 −8.41 −7.91

8 53 −7.70 −7.16 25 64 −8.90 −9.98

9 73 −8.37 −7.69 26 60 −8.65 −7.91

10 81 −8.35 −8.54 27 48 −9.75 −9.78

11 98 −10.94 −10.42 28 52 −7.59 −7.11

12 84 −8.87 −9.13 29 75 −7.72 −7.21

13 217 −12.35 −12.56 30 82 −9.51 −9.29

14 72 −8.93 −8.81 31 75 −9.02 −8.31

15 87 −10.22 −9.54 32 102 −9.98 −10.20

16 101 −9.03 −8.12 33 129 −10.02 −8.84

17 99 −10.79 −10.48 34 84 −8.79 −7.85

35 92 −9.31 −9.81
1Note Shaded Area: The model without order restrictions (M1)

Unshaded Area: The model with any order restrictions (M2)

Fig. 2 Posterior density of μ
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between μ2 and μ3. It is apparent that μ2 � μ3 may not be appropriate for BMI
counts. The order restriction assumption may be too strong in this case.

4.3 Model Comparison

We compute the estimated cell probabilities for each county and their variances,
which are the posterior sample means and posterior standard deviations of parameter
θ. In Table5 (appendix), we show their posterior means, standard deviations and
coefficients of variation. We notice that the posterior means from the model with
order restrictions (M2) have lower variances compared with the general model (M1).
Generally, we have higher accuracy for the estimation of the cell probabilities θ. But
for parameters θ1 and θ5 in some counties, such as the second county in Table4,
the model with order restriction does not gain precision on them. This is expected
because the extreme cells are generally sparse. In general, many of the coefficients
of variation are small enough to declare that the posterior means are reliable.

In Fig. 3, the top panel is the model with order restrictions and the bottom panel
is the model without any order restriction for the same county, county 1. It can be
seen from the plots of the posterior densities of the θ’s that θ in this county has an
order restriction. Our unimodal assumption for this county holds. However in the
first density (top panel) and the second density (bottom panel), there are overlaps
between θ2 and θ3. It means that the order restriction may not hold for this county.
The overlap between θ1 and θ5 is acceptable, since there is no direct comparison
between them. Specially in the bottom panel, the densities from the model without
order restriction show that θ2 is even larger than θ3. Our unimodal assumption may
not be proper in this county.

n Fig. 4, the top panel is the model with order restrictions and the bottom panel
is the model without any order restriction for another county, county 3. Plots of the
posterior densities of the θ’s without any order restriction show that θs in each county
may have an order restriction. It can be seen from the second density (bottom) that
θ3 is the mode for the cell probabilities even without order restriction assumption.
It means that our unimodal assumption in this county is valid. Like in Fig. 3, the
overlap between θ1 and θ5 is acceptable, since there is no direct comparison between
them.

In Fig. 5, we use posterior standard deviation (PSD) to generate regression lines.
Those regression lines show the overall PSD comparison between the model with
order restrictions (M2) and the model without order restriction (M1). If the slope of
regression line is larger than the black reference line whose slope is one, it means that
M2 has smaller PSDs than M1. For each cell probability θ shown in different colors,
the slope is larger than the reference lines. Therefore, we gain higher precision on
estimation of cell probabilities among 35 counties.



Bayesian Order-Restricted Inference of Multinomial Counts from Small Areas 13

Fig. 3 Posterior densities of
θ for county 1

5 Bayesian Diagnostics

In the Bayesian framework, the logarithm of the pseudo-marginal likelihood (LPML)
is a well-known Bayesian criterion for comparing models. A ratio of LPMLs is a
surrogate for the Bayes factor. The best model among competing models has the
largest LPML,

LPML =
I∑

i=1

log(CPOi ),
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Fig. 4 Posterior densities of
θ for county 3

where CPOi = P(ni | ni is deleted) for the i th county. Essentially, the i th county is
deleted and then its cell counts are predicted from the remaining counties.

Conditional predictive ordinate (CPO) can be estimated using the harmonic mean
of the likelihood of the vectors of the ni j (M is the number of converged posterior
samples from Gibbs sampling in Sect. 3).
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Fig. 5 Posterior standard
deviation comparisons of θs’

ˆCPOi =
[
1

M

M∑

h=1

1

f (ni |μ(h), τ (h))

]−1

=
⎡

⎣ 1

M

M∑

h=1

∏K
j=1 ni j !
ni.!

∫
θi∈C

∏K
j=1 θ

μ(h)
j τ (h)−1

i j dθi

∫
θi∈C

∏K
j=1 θ

μ(h)
j τ (h)+ni j−1

i j dθi

⎤

⎦

−1

.

As mentioned by Sedransk et al. (1985), a different importance sampling could
be used to estimate the ratio,

∫
θi∈C

∏K
j=1 θ

μ(h)
j τ (h)−1

i j dθi

∫
θi∈C

∏K
j=1 θ

μ(h)
j τ (h)+ni j−1

i j dθi

.

CPOi can be estimated as
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̂CPOi (M2) =
[

1

M

M∑

h=1

∏K
j=1 ni j !
ni.!

D(μ(h)τ (h))C(μ(h)τ (h))

D(ni + μ(h)τ (h))C(ni + μ(h)τ (h))

]−1

=
⎡

⎣ 1

M

M∑

h=1

∏K
j=1 ni j !
ni.!

∫
θi∈C

∏K
j=1 θ

μ(h)τ(h)−1
i j dθi

∫
θi∈C

∏K
j=1 θ

ni j+μ(h)τ(h)−1
i j dθi

⎤

⎦

−1

=
⎡

⎣ 1

M

M∑

h=1

∏K
j=1 ni j !
ni.!

∫

θi∈C

∏K
j=1 θ

μ(h)τ(h)−1
i j

∏K
j=1 θ

ni j+μ(h)τ(h)−1
i j

∏K
j=1 θ

ni j+μ(h)τ(h)−1
i j

∫
θi∈C

∏K
j=1 θ

ni j+μ(h)τ(h)−1
i j

dθi

⎤

⎦

−1

,

and LPML ≈ ∑I
i=1 log( ˆCPOi ).

In Table4, we present the log(CPO) for the individual counties. Most of the
log(CPO) are larger under Model M2 than Model M1. However, a few counties,
such as county 3, county 21 and county 32, show that the model without order
restriction should be preferred. We assume the mode of cell probabilities should be
at the third position, whichmay not hold for some counties. Perhaps, one can consider
other Bayesian diagnostics (e.g., deviance information criterion—DIC—and Bayes
factors). Mode uncertainty can be considered in future study to create a more flexible
model such as the one inspired by Nandram (1997).

The LPML of the model without any order restriction (M1) is −326.76, and
the LPML of the model with order restrictions (M2) is −319.11, which is larger
than the model without order restrictions. The LPML suggests the model with order
restrictions is the best model.

6 Conclusion

Hierarchical Bayesian multinomial Dirichlet models can be used to make inference
for small areas. We have proposed the model with order restrictions to increase the
accuracy of the estimation for the parameters. We have also shown how to generate
samples from posterior distributions with order restrictions. We have significantly
increased the precision of the estimation of cell probabilities for cells 2, 3 and 4
for the female BMI data. This is true for most of the counties. We have also shown
difficulties in assessing model fit using Bayesian diagnostic measures (log(CPO))
under order restriction; we believe that this is an open problem.

However, as shown in Fig. 3, the same unimodal assumption may be too strong.
Some counties have more people in BMI level 2 than level 3, for instance, county 1;
some counties have opposite situations. It seems that the mode of cell probabilities
in each county is not fixed. Nandram and Sedransk (1995) and Nandram, Sedransk
and Smith (1997) presented a good discussion about unimodal order restriction in
a stratified population. They made inference about the proportion of firms belong-
ing to each of several classes when there are unimodal order relations among the
proportions. In this paper, the hyperparameters are specified and they did not have a
small area estimation problem; our problem is much more difficult. They discussed
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an extension of their approach, which is the uncertain modal positions for their case.
So for our model, one possible solution is considering uncertainty of modal position
of the cell probabilities. Uncertain modal positions may be more robust for our BMI
data. But again this is a much more difficult problem.

In the future, we might want to make the correlation structure of the Dirichlet
distribution (all components are negatively correlated) more flexible. This can be
done by using multivariate logit models with similar unimodal order restrictions as
are studied in this paper. Also, we can use more flexible prior distributions such
as Dirichlet process on the cell probabilities; this is a difficult problem with the
unimodal order restrictions.

7 Appendix

7.1 Details of Gibbs Sampling for μ and τ

Since μ ∈ Cμ = {μ = (μ1, . . . ,μK ) : μ1 � . . . � μm � . . . � μK , 0 � μ j � 1},

for j from m − 1 to 1, we have
∑K

t=1 μt = 1,

μm = 1 −
K∑

t=1,t �=m

μt � μ j ,

1 − (

K∑

t=1,t �=m,t �= j

μt ) − μ j � μ j ,

μ j �
1 − ∑K

t=1,t �=m,t �= j μt

2
and 0 � μ j � μ j+1.

Therefore,

0 < μ j < min{μ j+1,
1 − ∑K

t=1,t �=m,t �= j μt

2
}.

Similarly, for j from m + 1 to K , 0 < μ j < min{μ j−1,
1−∑K

t=1,t �=m,t �= j μt

2 }.

Draw μ and τ from π(μ, τ |n),
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π(μ, τ |n) ∝
I∏

i=1

{D(μτ + ni )C(μτ + ni )
D(μτ )C(μτ )

} ICμ

(1 + τ )2

∝
I∏

i=1

{
∫
θi∈C

∏K
j=1 θ

μ j τ+ni j−1
i j dθi

∫
θi∈C

∏K
j=1 θ

μ j τ−1
i j dθi

} ICμ

(1 + τ )2

∝
I∏

i=1

{
∫
θi∈C

∏K
j=1 θ

μ j τ+r n̄ j−r n̄ j+ni j−1
i j dθi

∫
θi∈C

∏K
j=1 θ

μ j τ+r n̄ j−r n̄ j−1
i j dθi

} ICμ

(1 + τ )2

∝
I∏

i=1

{
∫
θi∈C

∏K
j=1 θ

μ j τ−r n̄ j+ni j
i j

∏K
j=1 θ

r n̄ j−1

i j

D(r n̄ j )C(r n̄ j )
dθi

∫
θi∈C

∏K
j=1 θ

μ j τ−r n̄ j

i j

∏K
j=1 θ

r ¯n j−1

i j

D(r n̄ j )C(r n̄ j )
dθi

} ICμ

(1 + τ )2
.

Draw samples θ(q) ∼ Dirichlet(r n̄ j ) for Monte Carlo integration,

π(μ, τ |n) ∝
I∏

i=1

{
∑M

q=1

∏K
j=1 θ

(q)

j

ni j−r n̄ j+μ j τ

∑M
q=1

∏K
j=1 θ

(q)

j

−r n̄ j+μ j τ
} ICμ

(1 + τ )2

∝
I∏

i=1

{
M∑

q=1

K∏

j=1

θ
(q)

j

ni j

∏K
j=1 θ

(q)

j

−r n̄ j+μ j τ

∑M
q=1

∏K
j=1 θ

(q)

j

−r n̄ j+μ j τ
} ICμ

(1 + τ )2

∝
I∏

i=1

{
M∑

q=1

wq

K∏

j=1

θ
(q)

j

ni j } ICμ

(1 + τ )2
,

where

wq =
∏K

j=1 θ
(q)

j

−r n̄ j+μ j τ

∑M
q=1

∏K
j=1 θ

(q)

j

−r n̄ j+μ j τ
.

Note that we only need to generate samples θ once from a Dirichlet distribution
with the order restriction, which does not depend on μ and τ . This is an efficient
method.

7.2 Model Comparison
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A Hierarchical Bayesian Beta-Binomial
Model for Sub-areas

Lu Chen and Balgobin Nandram

Abstract Many population-based surveys have binary responses from a large num-
ber of individuals in each household within small areas. An example is the second
Nepal LivingStandards Survey (NLSS II), inwhich binary data on health status (good
versus poor) for each individual respondent from sampled households (sub-areas)
are available in sampled wards (small areas). In order to estimate the finite popula-
tion proportion of healthy individuals in each household, we propose a hierarchical
Bayesian sub-area beta-binomial model.With many sub-areas andmany small areas,
as in our case, the exact method of Bayesian computation will be time-consuming.
Hence, improved performance is needed to reduce the additional computational bur-
den. Accordingly, two Bayesian computational methods, namely an exact method by
Metropolis–Hastings sampler and an approximation method with a random sampler,
are discussed and compared in the paper. The comparison illustrates that the approx-
imation method fits the model efficiently as well. We apply our model to NLSS II
data to show that the approximation method can provide reliable estimates just like
the exact method.

Keywords Hierarchical Bayesian model · Markov chain Monte Carlo method ·
Weakly identifiable parameters

1 Introduction

The secondNepal Living Standard Survey (NLSS) II is based on a two-stage stratified
sampling scheme.A random sample ofwards (areas)was selected from six strata, and
twelve households (sub-areas)were selected fromeach sampledward.All individuals
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in sampled household were interviewed. The object of interest is health status, a
binary variable. We want to estimate the finite population proportion of healthy
individuals in each household. To do so, we use the hierarchical Bayesian (HB)
model with sub-area or household-specific random effect model and obtain indirect
estimates for many sub-areas (i.e., small areas). Most of the sample surveys are
designed to provide reliable “direct" estimates of interests for large areas or domains
(e.g., state level and national level). However, direct estimates are not reliable for
areas or domains for which only small samples or no samples are available.

Due to the hierarchical structure of theNLSS II data, we are particularly interested
in small areamodels that can capture the property of a grouping structure of small sub-
areas within areas (households within wards). Although the one-fold basic models
are very popular and in common use in producing reliable estimates for small areas,
theymay not preserve the hierarchical structure of the data andmake it inconsistent to
estimate first (area) and second (sub-area) levels. In particular, the sampling designs
of many population-based survey are two-stage stratified sampling as NLSS II. But
if we use one-fold unit level model to fit the data, sub-area-level effects would be
ignored. Yan and Sedransk (2007) studied the case that the data follow a normal
model with a two-stage hierarchical structure while the fitted model has a one-stage
hierarchical structure byusingposterior predictive p-values.Yan andSedransk (2010)
discussed the ability to detect a three-stagemodel when a two-stagemodel is actually
fitted.

Two-fold models are an important extension of basic small area models. Many
authors have proposed such models. But most of them are for continuous data. Fuller
andGoyeneche (1998) proposed a sub-area-levelmodelwhich providesmodel-based
estimates that account for the hierarchical structure of the data. Two-fold sub-area-
level models were studied by Torabi and Rao (2014), Rao and Molina (2015), Chen
and Nandram (2018), Erciulescu et al. (2019). This is an area-level model which
extends the Fay and Herriot (1979) model to sub-area level. Two-fold nested error
regression models were considered by Stukel and Rao (1997,1999).

The beta-binomialmodel is a commonly usedmodel for the categorical data (Nan-
dram, 1998; Rao&Molina, 2015). In this paper, we apply the two-fold beta-binomial
sub-area model to estimate the finite population proportion of healthy individuals in
each household covered by the NLSS II. Nandram (1998) gave a full Bayesian anal-
ysis of the multinomial model. He and Sun (1998) applied one-fold beta-binomial
model on Turkey hunting problems in order to provide reliable estimates on hunter
success rates.NandramandSedransk (1993) described aHBmodel tomake inference
about the finite population proportion under two-stage clustering sampling. You and
Reiss (1999) extended the beta-binomial model to two-fold model and used Gibbs
sampling to obtain the posterior estimates. Nandram and Chen (2016) showed that it
is important to consider the sample design within each area and proposed a two-fold
small area model so that it can capture the intracluster correlation at the first stage
and the intercluster correlation at the second stage. It showed that the two-fold model
is preferable over the one-fold one if the data have hierarchical structure. Lee et al.
(2017) extended Nandram and Chen (2016) to accommodate heterogeneous correla-
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tions. They used a HB model to make posterior inference about the finite population
proportion of each area accounting for intracluster correlations.

On the other hand, two-fold models can capture the heterogeneity between sam-
ples not only within areas but also within sub-areas. Many model-based estimation
techniques for sampling variances have been considered in the literature, but most
of them are area-level models (Wang & Fuller, 2003; You & Chapman, 2006; Erci-
ulescu & Berg, 2014). Nandram and Chen (2016) studied a Bayesian model under
heterogeneous sampling variance, which is more preferable than a homogeneous
model.

Theother side of our application is that there are numerous small areas (households
and individuals) and MCMC methods cannot handle them efficiently which involve
complicated integrals. Our model is similar to the model in Nandram and Chen
(2016), but we apply the approximation method mentioned by Nandram (1998) and
blockGibbs sampler to obtain posterior estimates rather than the usual Gibbs sampler
since it is more efficient. We also provide a numerical example of NLSS II to show
the accuracy of the approximation method.

In Sect. 2, we give a full description of the one-fold and two-fold beta-binomial
models. We discuss and show that some parameters are weakly identified. Instead
of using the standard Gibbs sampler to fit the model, we use the blocked Gibbs
sampler. Then, we describe how to fit the model using approximation method with
blocked Gibbs sampler. In Sect. 3, we give a detailed exposition of the exact and
approximate computational schemes. In Sect. 4, we illustrate and compare the afore-
mentioned computational schemes using the NLSS II data. Finally, in Sect. 5, we
make concluding marks and provide pointers for future work.

2 Hierarchical Bayesian Small Area Models

In this section, we describe the one-fold and two-fold beta-binomial sub-area models
in Bayesian framework.

We have a finite population of L small areas (wards), and within the i th area, there
are Ni sub-areas (households). Within the j th sub-area, there are Mi j individuals. We
assume that �(< L) areas are included in the sample and a simple random sample of
ni (< Ni ) households are taken from the i th area (i.e., self-weighting). All individuals
in sampled households are sampled. Here, we assume the survey weights are the
samewithin all households in each area. Let yi jk , k = 1, . . . ,mi j , j = 1, . . . , ni , i =
1, .. . . . , � denote the binary responses, namely the health status corresponding to the
kth individual belonging to the j th household within the i th area. Let

˜
y = (yi jk, k =

1, . . . ,mi j , j = 1, . . . , ni , i = 1, .. . . . , �)′. Let yi j =∑mi j

k=1 yi jk be the total number
of healthy individuals sampled from the j th household in the i th area, and mi j is the
total number of people who responded from the j th household in the i th area.

The primary interests discussed in this paper are the finite population proportions
of healthy individuals within both sampled and non-sampled households among
sampled wards, which are
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Pi j = 1

Mi j

Mi j∑

k=1

yi jk, j = 1, . . . , Ni , i = 1, .. . . . , �

and the finite population proportions of sampled wards which are

Pi = 1

Ni

Ni∑

j=1

Mi j∑

k=1

yi jk, i = 1, .. . . . , �.

To make inference about the Pi and Pi j , we fit HB model to the data. The beta-
binomial model can capture the two-stage stratified design. In Sect. 2.1, we describe
the one-fold beta-binomial model in Bayesian paradigm. In Sect. 2.2, we give a full
description of the two-fold beta-binomial model.

2.1 A One-Fold Beta-Binomial Model

First, wewrite down a brief review of the small area one-fold Bayesian beta-binomial
model,

yi j |pi ind∼ Binomial(mi j , pi ) j = 1, ..., ni ,

pi |θ, φ
ind∼ Beta(θφ, (1 − θ)φ) i = 1, ..., �,

π(φ, θ) = 1

(1 + φ)2
,

where 0 < θ < 1 are the mean of the beta random variable and φ > 0 are the sum of
the parameters of the standard beta distribution. θ and φ are independent. Note that
there is no heterogeneity between households since the pi do not have subscript j .
Here, θ has a uniform prior and the prior of φ is proper. The joint posterior density of
this model is proper, and with certain improper prior of θ , the joint posterior density
is also proper (see appendix).

Applying Bayes’ theorem, the joint posterior density is

π(
˜
p, θ, φ|

˜
y) ∝

l∏

i=1

ni∏

j=1

{
p
yi j
i (1 − pi )

mi j−yi j
} l∏

i=1

{
pφθ−1
i (1 − pi )

(1−θ)φ−1

B(θφ, (1 − θ)φ)

}
1

(1 + φ)2
.

(1)

It is easy to see that the conditional posterior distribution of
˜
p is beta distribution,
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pi |θ, φ, yi j ∼ Beta(
ni∑

j=1

yi j + θφ,

ni∑

j=1

(
mi j − yi j

)+ (1 − θ)φ), j = 1, . . . , ni , i = 1, . . . , �.

After we integrate out pi , we can get the joint posterior distribution

π(θ, φ|
˜
y) ∝

l∏

i=1

{
B(
∑ni

j=1 yi j + θφ,
∑ni

j=1

(
mi j − yi j

)+ (1 − θ)φ)

B(θφ, (1 − θ)φ)

}
1

(1 + φ)2
.

(2)

The one-foldmodel can be fitted bymaking random draws from the joint posterior
distribution of θ and φ. Samples of pi can be obtained using the multiplication rule
once we get the samples of θ and φ.

2.2 A Two-Fold Beta-Binomial Model

The two-fold beta-binomial model is

yi j |pi j ind∼ Binomial(mi j , pi j ), j = 1, ..., ni ,

pi j |μi , τ
ind∼ Beta(μiτ, (1 − μi )τ ), i = 1, ..., �,

μi
i id∼ Beta(θφ, (1 − θ)φ),

π(τ, φ, θ) ∝ 1

(1 + τ)2

1

(1 + φ)2
,

where 0 < μi < 1, 0 < θ < 1, τ > 0, φ > 0, i = 1, .. . . . , �.
Applying Bayes’ theorem and letting

˜
p = (pi j , j = 1, . . . , ni , i = 1, .. . . . , �)′

and
˜
μ = (μi , i = 1, .. . . . , �)′, the joint posterior density is

π(
˜
p,

˜
μ, τ, θ, φ|

˜
y) ∝

l∏

i=1

ni∏

j=1

{
p
yi j
i j (1 − pi j )

mi j−yi j
}
{
pμi τ−1
i j (1 − pi j )(1−μi )τ−1

B(μiτ, (1 − μi )τ )

}

×
l∏

i=1

{
μ

φθ−1
i (1 − μi )

(1−θ)φ−1

B(θφ, (1 − θ)φ)

}
1

(1 + τ)2

1

(1 + φ)2
.

It is easy to see that the conditional posterior distribution of
˜
p is beta distribution,

pi j |μ, τ, yi j ∼ Beta(yi j + μi τ,mi j − yi j + (1 − μi )τ ), j = 1, . . . , ni , i = 1, . . . , �.
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Accordingly, once samples are obtained from the joint posterior density of
˜
μ, τ, θ, φ|

˜
y,

a sample of each pi j is obtained. Then after integrating out
˜
p, we obtain

π(
˜
μ, τ, θ, φ|

˜
y) ∝

l∏

i=1

ni∏

j=1

{
B(yi j + μiτ,mi j − yi j + (1 − μi )τ )

B(μiτ, (1 − μi )τ )

}

×
l∏

i=1

{
μ

φθ−1
i (1 − μi )

(1−θ)φ−1

B(θφ, (1 − θ)φ)

}
1

(1 + τ)2

1

(1 + φ)2
(3)

3 Computation

Notice that the posterior distribution of parameters of the two-fold beta-binomial
model does not exist in closed form in (3). Besides, if ni is very large, the exact
MCMCmethod would be very slow. Therefore, we apply the approximation method
proposed by Nandram (1998) in our model to get fast but reliable computations.

3.1 Approximation Method

In this section, we propose the approximation method for beta-binomial sub-area
model so that all parameters are easy to draw. Notice that the product of ratios of
beta functions in the joint density (3) makes the computation difficult. That is,

g(
˜
μ, τ |

˜
y) ∝

l∏

i=1

ni∏

j=1

{
B(yi j + μiτ,mi j − yi j + (1 − μi )τ )

B(μiτ, (1 − μi )τ )

}

We apply the approximation method in Nandram (1998) to get the conditional pos-
terior density of

μi |τ, ˜
y ∼ Beta(μ(a)

i τ (a), (1 − μ
(a)
i )τ (a)), i = 1, . . . , �,

where μ
(a)
i , τ (a) are functions of τ . See the details in Appendix A.

By applying Bayes’s theorem, we can get the approximate joint posterior density

πa( ˜
μ, τ, θ, φ|

˜
y) ∝ πa( ˜

μ|τ,
˜
y)πa(τ |

˜
y)π(

˜
μ|θ, φ)π(τ, θ, φ)

=
l∏

i=1

ni∏

j=1

{
B(yi j + α̂iτ,mi j − yi j + (1 − α̂i )τ )

B(α̂iτ, (1 − α̂i )τ )

}
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×
l∏

i=1

⎧
⎨

⎩

μ
μ

(a)
i τ (a)−1

i (1 − μi )
(1−μ

(a)
i )τ (a)−1

B(μ
(a)
i τ (a), (1 − μ

(a)
i )τ (a))

⎫
⎬

⎭

×
l∏

i=1

{
μ

φθ−1
i (1 − μi )

(1−θ)φ−1

B(θφ, (1 − θ)φ)

}
1

(1 + τ)2

1

(1 + φ)2
,

where α̂i =
∑ni

j=1 yi j+1
∑ni

j=1 mi j+2
.

It is easy to see that the approximate conditional posterior distribution of
μi |τ, θ, φ,

˜
y follows beta distribution, that is,

μi |τ, θ, φ,
˜
y ∼ Beta(μ(a)

i τ (a) + θφ, (1 − μ
(a)
i )τ (a) + (1 − θ)φ), j = 1, . . . , ni , i = 1, . . . , �.

Then, we can integrate out
˜
μ easily and the joint posterior density of τ, θ, φ|

˜
y is

π(τ, θ, φ|
˜
y) ∝

l∏

i=1

ni∏

j=1

{
B(yi j + α̂iτ,mi j − yi j + (1 − α̂i )τ )

B(α̂iτ, (1 − α̂i )τ )

}

×
l∏

i=1

{
B(μ

(a)
i τ (a) + θφ, (1 − μ

(a)
i )τ (a) + (1 − θ)φ)

B(θφ, (1 − θ)φ)

}
1

(1 + τ)2

1

(1 + φ)2
.

Now, we use Gibbs sampler to draw samples for τ, θ, φ from the joint posterior
density of τ, θ, φ|

˜
y. Notice that 0 < τ, φ < ∞, we make a transformation to η1 =

1
1+τ

and η2 = 1
1+φ

so that 0 < η1, η2 < 1. The posterior density, π(η1, θ, η2|˜
y), is

π(η1, θ, η2|˜
y) ∝

l∏

i=1

ni∏

j=1

{
B(yi j + α̂i τ,mi j − yi j + (1 − α̂i )τ )

B(α̂i τ, (1 − α̂i )τ )

}

×
l∏

i=1

{
B(μ

(a)
i τ (a) + θφ, (1 − μ

(a)
i )τ (a) + (1 − θ)φ)

B(θφ, (1 − θ)φ)

}

τ= 1−η1
η1

, φ= 1−η2
η2

.

Then, conditional on θ, η2 and data, the posterior density of η1 is

π(η1|θ, η2, ˜
y) ∝

l∏

i=1

ni∏

j=1

{
B(yi j + α̂i τ,mi j − yi j + (1 − α̂i )τ )

B(α̂i τ, (1 − α̂i )τ )

}

×
l∏

i=1

{
B(μ

(a)
i τ (a) + θφ, (1 − μ

(a)
i )τ (a) + (1 − θ)φ)

B(θφ, (1 − θ)φ)

}

τ= 1−η1
η1

, φ= 1−η2
η2

.

Using a univariate grid sampler, samples are drawn from the posterior density of η1.
Next, conditional on η1, η2 and data, the posterior density of θ is
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π(θ |η1, η2, ˜
y) ∝

l∏

i=1

{
B(μ

(a)
i τ (a) + θφ, (1 − μ

(a)
i )τ (a) + (1 − θ)φ)

B(θφ, (1 − θ)φ)

}

τ= 1−η1
η1

, φ= 1−η2
η2

.

Again using the univariate grids, samples of the posterior density of θ are obtained.
Next, conditional on η1, θ , the posterior density of η2 is

π(η2|η1, θ,
˜
y) ∝

l∏

i=1

{
B(μ

(a)
i τ (a) + θφ, (1 − μ

(a)
i )τ (a) + (1 − θ)φ)

B(θφ, (1 − θ)φ)

}

τ= 1−η1
η1

, φ= 1−η2
η2

.

Then, we use univariate grid sampler to draw samples for η2. Once we get all samples
for (η1, θ, η2), we transform η1, η2 back to τ, φ, respectively. We have always used
100 grids for η1, θ, η2.

Finally, conditional on (τ, θ, φ,
˜
y), the μi are independent and samples can be

simply obtained from πa(μi |τ, θ, φ,
˜
y), the beta distribution, which is very fast.

3.2 Exact Method

There are weakly identified parameters θ, φ in the model, which will cause poor
mixing in the Gibbs sampler. Therefore, an alternative method to fit the model is
desired. We use multiplication rule and Metropolis sampler to draw samples from
the posterior densityπ(

˜
μ, τ, θ, φ|

˜
y). Here, we use Riemannmidpoint rule to approx-

imate the integration of μi with high efficiency and accuracy, which is much more
close than the approximation we mentioned above.

First, we integrate out μi , i = 1, . . . , �, and the joint posterior density is

π(τ, θ, φ|
˜
y) ∝ 1

(1 + τ)2

1

(1 + φ)2

l∏

i=1

{∫ 1

0
gi (μi ) fi (μi )dμi

}

where gi (μi ) =∏ni
j=1

{
B(yi j+μi τ,ni j−yi j+(1−μi )τ )

B(μi τ,(1−μi )τ )

}
and fi (μi ) =

{
μ

φθ−1
i (1−μi )

(1−θ)φ−1

B(θφ,(1−θ)φ)

}
.

Notice that fi (μi ) is a density function of a beta random variable and gi (μi ) is
the ratio of two beta functions. We can integrate the μi one at a time since they are
independent. So, we only need to consider one

∫ 1
0 gi (μi ) fi (μi )dμi , and others are

in the same manner. Their product would be the complete integral.
Divide the interval (0,1) into R equal subintervals [a0, a1], . . . , [aR−1, aR] where

a0 = 0, ai = i
R and aR = 1. Let F(·) denote the cdf corresponding to f (·), the beta

density function. Then using Riemann midpoint sum and integration definition, it is
easy to show that
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lim
R→∞

R∑

r=1

gi (
ar−1 + ar

2
) {Fi (ar ) − Fi (ar−1)} =

∫ 1

0
gi (μi ) fi (μi )dμi , i = 1, . . . , �.

Therefore, with fairly large R,
∑R

r=1 gi (
ar−1+ar

2 ) {Fi (ar ) − Fi (ar−1)} ≈ ∫ 1
0 gi (μi )

fi (μi )dμi , i = 1, . . . , � with high accuracy.
We use Metropolis–Hastings algorithm to draw samples for τ, θ, φ simultane-

ously. We use a Metropolis step with πa(τ, θ, φ|
˜
y), obtained from the approximate

method. We fit a multivariate Student’s t distribution with ν degrees of freedom to
the iterates, (log(τ ), log( θ

1−θ
), log(φ)) from the approximate method explained later

as the proposal density in the Metropolis step. It is standard to tune the Metropolis
step by varying ν in order to increase the sampling efficiency of a Metropolis chain.
We can adjust ν to change the shape of the proposal Student’s t distribution so that
it can closely resemble the actual posterior distribution of the parameters.

Then, conditional on τ, θ, φ and data, we draw samples for μi from

π(μi |τ, θ, φ,
˜
y) ∝ 1

(1 + τ)2

1

(1 + φ)2
gi (μi ) fi (μi )

l∏

j �=i

{∫ 1

0
g j (μ j ) f j (μ j )dμ j

}

using the univariate grid sampler.

4 Numerical Example

In Sect. 4.1, we describe the NILL II and auxiliary data. In Sect. 4.2, we present
model-based estimation and prediction results. The comparisons between the approx-
imation methods and the exact method are discussed based on the NILL II example.

4.1 Nepal Living Standards Survey II

The performance of our method is studied using the second Nepal Living Standard
Survey (NLSS II), conducted in the years 2003–2004. Themain objective of NLSS II
is to track changes and progress about national living standards and social indicators
of the Nepalese population. It is an integrated survey which covers samples from the
whole country and runs throughout the year.

The NLSS II gathers information on a variety of aspects. It has collected data on
demographics, housing, education, health, fertility, employment, income, agricul-
tural activity, consumption and various other areas. The sampling design of NLSS II
is two-stage stratified sampling. Nepal is stratified into PSUs, and within each PSU, a
number of households (sub-area) are selected. All household members in the sample
were interviewed.



32 L. Chen and B. Nandram

Table 1 Nepal distribution of wards and households in the sample
Strata Mountains Kathmandu Urban hills Rural hills Urban Tarai Rural Tarai Total

PSU 32 34 28 96 34 102 326

Households 384 408 336 1,152 408 1,224 3,912

Individuals 1,949 1,954 1,467 5,755 2,104 7,034 20,263

In detail, NLSS II has records for 20,263 individuals from 3,912 households (sub-
areas) from 326 PSUs (areas) from a population of 60,262 households and about two
million Nepalese. A sample of PSUs was selected from strata using the probability
proportional to size (PPS) sampling, and 12 households were systematically selected
from each PSU. Therefore, the survey is self-weighed, but some adjustments were
made after conducting the survey for non-response or missing data. For simplicity, in
this paper, we assume all sampled individuals have the same weight. Table1 shows
the distribution of all sampled persons by stratum.

According to the 2001 census data, only about 0.091% of households and only
0.904%of PSUwere sampled. NLSS II was designed for providing reliable estimates
only at stratum level or even larger areas than stratum. It cannot give estimates in
small area (PSU or household level) since the sample sizes are too small. Therefore,
we need to use statistical models to fit the available data and find reliable estimates
in small areas. In our study, we choose the binary variable, health status, from the
health section of the questionnaire.

4.2 Numerical Comparison

We use data fromNLSS II to illustrate our two-fold beta-binomial model. We predict
the householdproportions ofmembers in goodhealth for 18,924households (sampled
andnon-sampled). This analysis is based on1,224 sample households from102wards
(PSUs) in strata 6. Our primary purposes are to show that our two-fold beta-binomial
model can provide good estimates and to compare the approximate method with the
exact method when there are random effects at the household level.

In Figs. 1, 2 and 3, we compare, respectively, the posterior means (PMs), posterior
standard deviations (PSDs) and posterior coefficient of variations (CVs) in the house-
hold level as our primary purpose. We can see that the PMs and PSDs are very close.
That is, all points lie close on the 45 degree line through the origin, respectively.
The CVs are a little bit spread out, but all points still lie on the line. Overall, these
approximations are quite acceptable still. In Figs. 4, 5 and 6, we compare, respec-
tively, the PMs, PSDs and posterior CVs in the ward level as our primary purpose.
Notice that all plots are thinner than those in the household level due to the smaller
size of wards. But the PSDs in wards are much smaller than those in household
level. This is reasonable since larger sample sizes to estimate the finite proportion
of members with good health in the wards. All plots are still very good. Notice that
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Fig. 1 Comparison of the posterior means (PMs) of the household proportions by the approximate
method and the exact method

Fig. 2 Comparison of the posterior standard deviations (PSDs) of the household proportions by
the approximate method and the exact method

other two plots of PSDs and CVs are more spread out. But again the approximate
method and the exact method are reasonably close.
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Fig. 3 Comparison of the posterior coefficient of variations (CVs) of the household proportions
by the approximate method and the exact method

Fig. 4 Comparison of the posterior means (PMs) of the ward proportions by the approximate
method and the exact method
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Fig. 5 Comparison of the posterior standard deviations (PSDs) of the ward proportions by the
approximate method and the exact method

Fig. 6 Comparison of the posterior coefficient of variations (CVs) of the ward proportions by the
approximate method and the exact method

5 Conclusion and Future Work

We developed the hierarchical Bayesian two-fold beta-binomial model to analyze
binary data based on a two-stratified sampling survey. However, a one-fold model
ignores the hierarchical structure of suchdata and assumed that they are homogeneous
among households. Therefore, we applied the two-fold model into the data and it
can capture the heterogeneous relationships among households. In order to fit the
two-foldmodel, we applied themethod proposed byNandram (1998) to approximate
the conditional posterior density of

˜
μ, which is easy to draw. In the meanwhile, we

discuss the exact method by using Metropolis sampler and numerical integration in
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detail as well. We perform a Bayesian predictive inference for the finite population
proportion of each household. An illustrative example of NLSS II is presented in
order to compare the approximation method and the exact method. It shows that
when there are a large number of areas and sub-areas, the approximation method can
be accurate and it can also provide reasonable estimates.

There are many future works on two-fold small area model. First, in this paper,
we assume equal survey weights. However, after data were collected, the selection
probabilities are usually adjusted for various characteristics or based on non-response
as well. Incorporating those survey weights into the model is also very important.
Generally, we need to consider these weights into the model. NLSS II is a national-
wide and population-based survey. We should rescale sample weights to sum to an
equivalent sample size. That is, we consider adjusted weight as

w∗
i jk = n̂

( wi jk

�∑

i=1

ni∑

j=1

mi j∑

k=1
wi jk

)
, n̂ =

(
�∑

i=1

ni∑

j=1

mi j∑

k=1
wi jk)

2

�∑

i=1

ni∑

j=1

mi j∑

k=1
w2

i jk

as an equivalent sample (Potthoff et al., 1992). Introducing the sampling weights, we
can obtain a updated normalized likelihood function. Based the updated likelihood
function and same prior in the two-fold model, we can have full Bayesian analysis
on the updated model and then project the finite population proportion of family
members with good health in each household.

Second, we can work with polychotomous data. Actually, there are 4 options in
the health status questionnaire in NLSS II. Third, the two-fold sub-area-level models
can also be extended to three-fold models if the data have additional hierarchical
structure; actually, the NLSS II has this structure (households within wards and
wards within districts). Fourth, there are health covariates in NLSS II, and these can
be incorporated using logistic regression models. Finally, introducing nonparametric
prior, Dirichlet process, instead of parametric prior we discussed in the paper, might
be able to make our method more robust to its specifications.

Appendix A Some Details about Approximation of π(μi |τ)

In the appendix A, the details of μ
(a)
i and τ (a) are discussed. See Nandram (1998)

as well. A beta approximation for the conditional posterior distribution of μi |τ, ˜
y is

utilized, that is,

μi |τ, ˜
y

ind∼ Beta(μ(a)
i τ (a), (1 − μ

(a)
i )τ (a)),

where μ
(a)
i and τ (a) are in the following forms.

First, μ(a) = μ̂i , where μ̂i = μ̃ik/(μ̃i1 + μ̃i2), k = 1, 2 and
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μ̃ik =
{ ˆ̂μik, 0 < ˆ̂μik < 1

α̂ik, ˆ̂μik ≤ 0 or ≥ 1
, k = 1, 2,

where ˆ̂μi1 = α̂i + B−1
i1 (Ai1 − Āi ), ˆ̂μi2 = 1 − α̂i + B−1

i2 (Ai2 − Āi ).
We have

Bi1 = τ

ni∑

j=1

{

α̂−1
i −

(
α̂−1
i + yi j

τ

)−1
}

,

Bi2 = τ

ni∑

j=1

{

(1 − α̂i )
−1 −

(

(1 − α̂i )
−1 + mi j − yi j

τ

)−1
}

and

Ai1 = τ

ni∑

j=1

ln

(

1 + yi j
τ α̂i

)

, Ai2 = τ

ni∑

j=1

ln

(

1 + mi j − yi j
τ(1 − α̂i )

)

, Āi = B−1
i1 Ai1 + B−1

i2 Ai2

B−1
i1 + B−1

i2

,

ˆ̂μi1 = α̂i + B−1
i1 (Ai1 − Āi ), ˆ̂μi2 = 1 − α̂i + B−1

i2 (Ai2 − Āi ).

Second, let

dikk ′ =
{

μ(a)2
ik(B

−1
ik − ν2

ik), k = k ′

μ
(a)
ik μ

(a)
ik ′ /νikνik ′ − 1, k �= k ′ ,

and

Iikk ′ =
{
1, dikk ′ > 0

0, dikk ′ ≤ 0
,

k = 1, 2, we take

τ (a) = 1

l

l∑

i=1

di11 Ii11 + di12 Ii12 + di21 Ii21 + di22 Ii22
Ii11 + Ii12 + Ii21 + Ii22

,

where νi1 = B−1
i1 /

√
B−1
i1 + B−1

i2 and νi2 = B−1
i2 /

√
B−1
i1 + B−1

i2 .

Appendix B Propriety of the One-Fold Model

In the proof of the propriety of (2.1), we incorporate a more general small area
one-fold Bayesian beta-binomial model,
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yi j |pi ind∼ Binomial(mi j , pi ) j = 1, ..., ni ,

pi |θ, φ
ind∼ Beta(θφ, (1 − θ)φ) i = 1, ..., �,

π(θ) ∝ 1

θ s(1 − θ)s
, , s ≥ 0,

π(φ) = 1

(1 + φ)2
,

where 0 < θ < 1 and τ > 0. Note that when s = 0, the prior of θ is uniform dis-
tribution, which is same with the model in our paper. When s ≥ 1, the prior of θ is
improper.

Similarly, we can get the joint posterior density,

π(
˜
p, θ, φ|

˜
y) ∝

l∏

i=1

ni∏

j=1

{
p
yi j
i (1 − pi )

mi j−yi j
} l∏

i=1

{
pφθ−1
i (1 − pi )(1−θ)φ−1

B(θφ, (1 − θ)φ)

}
1

θ s(1 − θ)s

1

(1 + φ)2
.

(4)

We show that under the condition that s < � + 1, the joint posterior (B.1) is proper.
It is easy to see that the conditional posterior distribution of

˜
p is beta distribution,

pi |θ, φ, yi j ∼ Beta(
ni∑

j=1

yi j + θφ,

ni∑

j=1

(
mi j − yi j

)+ (1 − θ)φ), j = 1, . . . , ni , i = 1, . . . , �.

After we integrate out pi , we can get the joint posterior distribution

π(θ, φ|
˜
y) ∝

l∏

i=1

{
B(
∑ni

j=1 yi j + θφ,
∑ni

j=1

(
mi j − yi j

)+ (1 − θ)φ)

B(θφ, (1 − θ)φ)

}
1

θ s(1 − θ)s

1

(1 + φ)2
.

(5)

Based on the relationship between beta function and gamma function and the
property of gamma function, we can obtain the joint posterior density (B.2) to

π(θ, φ|
˜
y) ∝

l∏

i=1

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎝


(
ni∑

j=1
yi j + θφ)


(θφ)

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝


(
ni∑

j=1

(
mi j − yi j

)+ (1 − θ)φ)


 ((1 − θ)φ)

⎞

⎟
⎟
⎟
⎟
⎠
/

⎛

⎜
⎜
⎜
⎜
⎝


(
ni∑

j=1
mi j + φ)


(φ)

⎞

⎟
⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

× 1

θ s (1 − θ)s
1

(1 + φ)2
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∝
l∏

i=1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ni∑

j=1
yi j−1

∏

t=0
(t + θφ)

ni∑

j=1
(mi j−yi j )−1

∏

t=0
(t + (1 − θ)φ)

ni∑

j=1
mi j−1

∏

t=0
(t + φ)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

1

θ s (1 − θ)s
1

(1 + φ)2
. (6)

Since 0 < θ < 1, we can bound (B.3) to obtain

π(θ, φ|
˜
y) ≤ Mθ�(1 − θ)� × 1

θ s(1 − θ)s

1

(1 + φ)2

= Mθ�−s(1 − θ)�−s 1

(1 + φ)2
.

So,

∫ 1

0

∫ ∞

0
π(θ, φ|

˜
y)dφdθ ≤ M

∫ 1

0
θ�−s(1 − θ)�−sdθ

∫ ∞

0

1

(1 + φ)2
dφ.

When s < � + 1, the beta function B(� − s + 1, � − s + 1) is finite, that is,

∫ 1

0

∫ ∞

0
π(θ, φ|

˜
y)dφdθ ≤ M

∫ 1

0
θ�−s(1 − θ)�−sdθ

∫ ∞

0

1

(1 + φ)2
dφ

≤ MB(� − s + 1, � − s + 1) < ∞.
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Hierarchical Bayes Inference
from Survey-Weighted Small Domain
Proportions

Priyanka Anjoy and Hukum Chandra

Abstract The demand for acceptable disaggregate-level statistics from sample
surveys has grown substantially over the past few decades due to their extensive
and varied use in public and private sectors. It is the main endeavour of ‘small area
estimation (SAE)’ approach to produce sound prediction of a target statistic for
small domains to answer the problem of small sample sizes. The traditional survey
estimation approaches are not suitable enough for generating disaggregate or small
domain-level estimates because of sample size problem; hence, SAE becomes the
suitable choice. This chapter describes a hierarchical Bayes (HB) approach of small
area estimation for survey-weighted proportions. The HB approach has advantage
over the frequentist framework due to its relative flexibility in handling complex
models as well as provides quick and easier mean squared error estimation. The
HB technique is applied for estimating the district-level employment proportions in
the state of Odisha using the 2011–12 employment and unemployment survey of
National Sample Survey Office of India and the 2011 Population Census.

Keywords Generalized mixed model · Hierarchical Bayes · Small area
estimation · Survey-weight

1 Introduction

Sample surveys are designed to provide reliable estimates for domain parameters
of interest based on only part of the population (i.e. sample). Direct estimators (i.e.
estimators that use only the sample data from the domain of interest) based on any
sampling design produce adequate estimates for parameters of interest for larger
domains. On many occasions, however, the interest is in estimating parameters for
domains that contain only a small number of sample observations or sometimes no
sample observations. Nationally designed large-scale sample surveys generally leave
certain domains with very few even zero sample observations. The term ‘small area’
or ‘small domain’ is used to describe such domains whose sample sizes are not large
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enough to allow sufficiently precise direct estimation. When direct estimation is not
possible, one has to search for an efficient alternative for producing small area esti-
mates. Model-assisted approaches are design-based while assisted by models that
result in more accurate design-unbiased estimates but still suffer from instability in
case of small sample sizes. Therefore, model-dependent or model-based approaches
are widely preferred and extensively used in producing acceptable small domain
statistics (Rao, 2003). Eventually, model-based estimators suffer from design bias
problem but their overall accuracy measures (mean squared errors) remain small.
Hence, model-based technique has received attention in constructing indirect esti-
mators for small domains. An indirect estimator for a domain ‘borrow strength’ from
related domains by using the values of study variable y from related domain and/or
time periods. This is the process by which ‘effective sample size’ of a particular
domain increases and thus reduces the standard error of indirect estimator. Generally,
estimator with less standard error or per cent ‘coefficient of variation’ (%CV) is more
reliable and useful than others. Hence, in the absence of sufficient domain-specific
sample sizes model-based indirect estimators are preferred over direct estimators.
Indirect estimation process brings the values of survey variable into estimation
process through either implicit or explicit linking models which link to related auxil-
iary variables drawn from administrative register or population census. Traditional
indirect estimators based on implicit linking models include synthetic, composite
and James–Stein estimators (Rao & Molina, 2015). Traditional indirect estimators
are generally design biased and inconsistent too. However, if the linking model is
approximately true, design bias will be smaller as well as will lead to smaller mean
squared error (MSE) as compared to a direct estimator. Indirect estimation method
based on explicit linking models is termed as ‘small area models’ which works under
mixed modelling framework incorporating area-specific random effect that accounts
for between area variations. The explicit linking models or ‘mixed effect’ models are
generally highlighted and utilized in most of the small area literatures and real-life
applications concerning small domain estimation problems. Such models are more
efficient than traditional indirect approach. Indirect estimation procedure is substi-
tute term for small area estimation (SAE) technique, whereas mixed effect models
or small area models are in the centre.

The demand for efficient and reliable small area statistics for various official
parameters and indicators has increased potentially since past few years frommodel-
based SAE techniques. Various government and international agencies are stressing
on the need and availability of representative small area statistics for policy-making
purposes. United Nations Sustainable Development Agenda committed with 17
global goals to ‘Leave no one behind’ has also marked the developmental strategy
through availing and utilizing disaggregate-level statistics in its several programmes
and plans aiming at inclusive development of all regions globally. Nationwide large-
scale surveys are designed to generate reliable estimates at higher geographical or
macro-level, and such estimates cannot reflect the variations which are available at
local or micro-levels. This restricts targeting of heterogeneity at disaggregated or
regional level and also limits the scope for monitoring and evaluation of parameters
locally within and across administrative units. In this context, model-based SAE
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techniques are attempted to meet the indispensable need of reliable disaggregate-
level official statistics from the existing survey datawithout incurring extra budgetary
expenditure. The industry standard for SAE is to use either unit- or area-level models
(Battese et al., 1988; Fay & Herriot, 1979). In the first case, these models are for
the individual survey observations and include area effects, while in the latter case
these models are used to smooth out the variability in the unstable area-level direct
estimates. Area-level modelling is usually employed when unit-level data is not
available, or, as is often the case, where model covariates (e.g. census variables) are
available only in aggregate form. Fay–Herriot (FH) model is the pioneering example
of area-level small area model in small area literatures. For continuous survey vari-
able, the FH model is the popular choice and widely used in practice, but when
survey data is binary or in counts and particularly the target of inference is small area
proportions rather than means or totals, then implementation of FH model which is
based on linear mixed modelling structure may often lead to unrealistic estimates
(Chandra et al., 2018). Hence, the potential alternative is generalized linear mixed
model (GLMM), basically logistic linear mixed model or logistic normal mixed
model is used for binary data, and log linear mixed model is used for count data.

Two basic approaches for drawing inferences about the small area parameters of
interest are known to be popular: the empirical best prediction method is based on
frequentist idea to estimate unknown model parameters, and the hierarchical Bayes
(HB) approach assumes particular prior distributions for the hyper-parameters to
obtain posterior quantities of the parameter of interest. The HB approach has the
flexibility to deal with complex SAEmodel as it overcomes the difficulties of analyt-
ical MSE estimation in frequentist set-up and provides quick and easier posterior
variance computation based on Markov chain Monte Carlo (MCMC) simulation.
See for example, Jiang and Lahiri (2001), You and Zhou (2011), Torabi (2012),
Liu et al. (2014), Rao and Molina (2015), Pratesi and Salvati (2016), Chandra et al.
(2017, 2019) for frequentist andBayesian related studies and various real life applica-
tions. Among the broad range of MCMC simulation methods, one algorithm, Gibbs
sampling, has been increasingly used in applied Bayesian analyses (You & Zhou,
2011). The appeal of Gibbs sampling is that it can be used to estimate posterior
distributions by drawing sample values randomly from the full conditional distri-
butions for each of the individual parameters (i.e. the conditional distribution of a
parameter given the other parameters and the observed data). On many occasions,
the full conditional distributions do not have closed form; in such cases, some rejec-
tion sampling algorithm, such as the Metropolis–Hastings (M–H) algorithm within
the Gibbs sampler, can be used. In addition to MCMC, HB estimation can also be
implemented using alternative approximatemethods includingLaplace’smethod and
Gauss–Hermite quadrature (see for details Rao & Molina, 2015).

Standard model-based approaches (in either frequentist or Bayesian framework)
to the analysis often ignore the sampling mechanism. The GLMM model implic-
itly considers equal probability sampling (SRSWR) within each small area and thus
ignores the survey weight (Chandra et al., 2019). But, this may result in poten-
tially large biases in the final estimates. In FH model, for estimation of small area
population mean, direct design-based estimators are modeled directly and the survey



44 P. Anjoy and H. Chandra

variance of the associated direct estimator is introduced into themodel via the design-
based errors. The Horvitz–Thompson estimator and weighted Hájek estimator are
the structures here to incorporate survey design information (Hidiroglou & You,
2016). However, this method for continuous data requires extension for binary or
count data for estimating more representative small area proportions. Consequently,
the strategic idea is to modelling survey-weighted proportions. For example, Liu
et al. (2014) have carried forward this idea in a HB framework; Chandra et al. (2019)
elaborated the idea of using survey weight under a spatial version of GLMM in a
frequentist framework. Certainly, the survey-weighted estimation has gained lot of
attention from survey practitioners due its capability and flexibility in incorporating
complex survey design information.

2 Hierarchical Bayesian Framework

Let us consider a finite population U of size N which is partitioned into D distinct
small areas or simply areas. The set of population units in area i is denoted asUi with
known size Ni, such that U = ∪D

i=1Ui and N = ∑D
i=1 Ni . A sample s of size n is

drawn from population U using a probabilistic mechanism. This resulted in sample
siin area i with size ni, so that s = ∪D

i=1si and n = ∑D
i=1 ni . Assume that yi j be

the value of target variable y for unit j (j = 1, …, ni) in small area i. The target
variable with values yi j has binary response, taking value either 1 or 0. Our aim is
to estimate the small domain proportions Pi = N−1

i

∑Ni
j=1 yi j . When the sample s

is drawn following a complex survey design, then with each unit yi j in small area
i certain design weight wi j is also attached, which is alternatively known as survey
weights or sampling weights.

The basic area-level FH model combines direct aggregate (e.g. district)-level
survey estimates with the available auxiliary variables obtained from various
secondary sources, e.g. census or administrative records. Thus, the model has two
components, sampling model for the direct survey estimates and linking model to
incorporate area-specific auxiliary variables through linear regression framework.
Consider pi be the direct survey estimator for the parameter of interest Pi . In FH
model, it is customary to assume that

pi = Pi + ei ; i = 1, . . . , D,

where ei ’s are independent sampling error associated with direct estimator pi .
Sampling error ei is assumed to have zeromean andknown sampling varianceσ 2

e . The
linking model of Pi attempts to relate area-specific auxiliary variables and random
effect component

Pi = x′
iβ + vi ; i = 1, . . . , D,
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where xi represent matrix of area-specific auxiliary variables, β is the regression
coefficient or fixed effect parameter vector and vi is the area-specific random effect,
independent and identically distributed as E(vi ) = 0 and var(vi ) = σ 2

v . Random
area-specific effects are included in the linking model to account for between areas
dissimilarities. A possible limitation of the FH model is that when the target of
inference is proportion, then assuming linear linking model with normal random
effects may lead to unreliable and unrealistic estimates. Since Pi takes value in the
range 0 to 1, to overcome the problem of unusual estimates (value <0 or >1), logistic
or logit link function is preferred. Thus, the resultant model is logistic linear mixed
model. Another class is log linear mixed models applicable for count data. Thus, the
expression of linking model for GLMM is

g(Pi ) = x′
iβ + vi ; i = 1, . . . , D,

where the linking function g(.) is logit for binary data and log for count data. Random
effect vi has the same assumptions as in FH model. Working under HB set-up,
for estimation of small area proportions certain prior distributions are assumed for
the hyper-parameters. For estimating small area proportions Pi , the sampling and
linking models of hierarchical Bayes Fay–Herriot (HB FH) and hierarchical Bayes
generalized linear mixed model (HB GLMM) are represented as

HB Fay–Herriot Model

pi | Pi ∼ N (Pi , σ 2
ei ), i = 1, . . . , D and

Pi | β, σ 2
v ∼ N (x′

iβ, σ 2
v ), i = 1, , D

HB Generalized Linear Mixed Model

pi | Pi ∼ N (Pi , σ 2
ei ), i = 1, . . . , D and

logit(Pi )| β, σ 2
v ∼ N (x′

iβ, σ 2
v ), i = 1, . . . , D

Following standard literature, prior choice for β is usually taken to be N (0, σ 2
0 )

and for σ 2
v prior choice is IG(a0, b0), (IG stands for inverse gamma) where σ 2

0 is set
to be very large (say, 106) and very small value for a0 and b0 (usually a0 = b0 →
0) to reflect lack of prior knowledge about variance parameters (Rao & Molina,
2015; You & Zhou, 2011; Anjoy et al., 2019). Then, inferences about the small
area parameter of interest are drawn from posterior distribution. Posterior mean is
taken as the point estimate of the parameter and posterior variance as a measure of
the uncertainty associated with the estimate. For HB FH model, the required full
conditional distributions for the Gibbs sampler are given as

Pi | β, σ 2
v , pi ∼ N

(
σ 2

v

σ 2
v + σ 2

ei

pi + σ 2
ei

σ 2
v + σ 2

ei

xTi β,
σ 2
eiσ

2
v

σ 2
v + σ 2

ei

)

,
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β | Pi , σ 2
v ∼ N

⎛

⎝

(
D∑

i=1

xix′
i

)−1( D∑

i=1

xi Pi

)

, σ 2
v

(
D∑

i=1

xix′
i

)−1
⎞

⎠ ,

σ 2
v | β, Pi , ∼ IG

(

a+D

2
, b+

∑D
i=1

(
Pi − x′

iβ
)2

2

)

.

For HB GLMM, the full conditional distributions for the Gibbs sampler are given
as

Pi | β, σ 2
v , pi ∝ 1

Pi (1 − Pi )
√

σ 2
eiσ

2
v

exp

(

− (pi − Pi )2

2σ 2
ei

−
(
logi t(Pi ) − x′

iβ
)2

2σ 2
v

)

,

β | Pi , σ 2
v ∼ N

⎛

⎝

(
D∑

i=1

xix′
i

)−1( D∑

i=1

xi logi t(Pi )

)

, σ 2
v

(
D∑

i=1

xix′
i

)−1
⎞

⎠ ,

σ 2
v | β, Pi ,∼ IG

(

a + D

2
, b +

∑D
i=1 logi t

(
(Pi ) − x′

iβ
)2

2

)

.

It is believed that survey-weighted direct estimates used forHBmodelling purpose
have the potentiality to reduce the bias or design error of the final estimates.
Consider sample s of size n is drawn from population U using a complex design
or at least unequal probability scheme. Let pi j be the selection probability attached
to jth sampling unit yi j in the area i. The basic design weight can be given by
wi j = (ni pi j )−1. These weights can be adjusted to account for non-response and/or
auxiliary information (Hidiroglou&You, 2016). Normalized surveyweights di j may

also be constructed, di j = wi j

(∑
j wi j

)−1
. Liu et al. (2014) and Anjoy et al. (2019)

have considered HB modelling of survey-weighted small area proportions, where
the expression of design effect (deff) was computed based on the ratio of underlying
sampling design used and assumption of simple random sampling design, such as deff
term devoid of population parameters easy to calculate based on sample data mainly,
design weight, sample sizes, sample size at particular stage in case of multi-stage
design, etc.

Let pi .uw be the direct survey unweighted estimator for small area proportion Pi ,

pi .uw= (ni )
−1

ni∑

j=1

yi j and the variance of pi.uw is given as σ 2
ei.uw = n−1

i Pi (1 − Pi ).
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The survey-weighted estimator denoted as pi .sw and its variance are expressed as

pi.sw =
⎛

⎝
ni∑

j=1

wi j

⎞

⎠

−1
ni∑

j=1

wi j yi j and the variance

σ 2
ei.sw =

⎛

⎝
Ni∑

j=1

wi j

⎞

⎠

−2⎧
⎨

⎩

Ni∑

j=1

wi j (wi j − 1)(yi j − Pi )
2

⎫
⎬

⎭
= σ 2

ei.uwde f fi .

Design effect is obtained as de f fi = ni
(∑Ni

j=1 wi j

)−2 ∑Ni
j=1 wi j (wi j − 1). HB

model for survey-weighted direct small area proportions is represented as follows

HB GLMM for Survey-weighted Proportions

pi.sw| Pi ∼ N (Pi , σ 2
ei.sw), i = 1, . . . , D and

logi t(Pi )| β, σ 2
v ∼ N (x′

iβ, σ 2
v ), i = 1, . . . , D

The assumption of unknown sampling variance in this HB structure has been
explored in Liu et al. (2014) and Anjoy et al. (2019). The smoothened sampling
variance is also often a choice. Additionally, these papers have reported the case of
assuming Beta (Beta-I) distribution for sampling model which may be quite logical
as for small samples normality assumption might be questionable. For the above
model, the required full conditional distributions for the Gibbs sampler are given as

Pi | β, σ2
v , pi .sw ∝ 1

Pi (1 − Pi )
√

σ2
ei .swσ2

v

exp

⎛

⎜
⎝−

(
pi .sw − Pi

)2

2σ2
ei .sw

−
(
logi t

(
Pi

) − x′
i β

)2

2σ2
v

⎞

⎟
⎠ ,

β | Pi , σ 2
v ∼ N

⎛

⎝

(
D∑

i=1

xix′
i

)−1( D∑

i=1

xi logi t(Pi )

)

, σ 2
v

(
D∑

i=1

xix′
i

)−1
⎞

⎠ ,

σ 2
v | β, Pi , ∼ IG

(

a+D

2
, b+

∑D
i=1

(
logi t(Pi )− x′

iβ
)2

2

)

.

In the next section, we show a motivating application of HB GLMM for survey-
weighted proportions to labour force indicator data in India.

3 Application

National Sample Survey Office (NSSO) under the Ministry of Statistics and
Programme Implementation, Government of India, conducts the employment and
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unemployment surveys at periodic intervals to obtain estimates of level parameters
for various labour force characteristics at the national as well as state level (employ-
ment and unemployment situation in India). These statistical indicators on labour
market are critical inputs to the government think tanks and other policy-makers for
framing development-oriented policies and decision-making at various levels, within
the government or outside. 68th round of NSSO survey on employment status was
conducted during July 2011 to June 2012. Based upon reference period and economic
activities, four different estimates of the labour force indicators have been obtained
in 68th round survey report of NSSO. These are termed as labour force indicators in
usual status (us)/principal status (ps) taking principal activity only in previous 1 year,
us/ps + subsidiary status (ss) taking principal and subsidiary activities together in
previous 1 year, current weekly status (one week reference period in persons) and
current daily status (each of the 7 days preceding the date of survey in person days).
Accordingly, status of a person in the labour forcewould be (i)working/employed, (ii)
not working but available for work/unemployed and (iii) neither working nor avail-
able/inactive. Labour force participation rate (LFPR) is obtained as (no. of employed
+ unemployed persons) * 100/total population. Worker population ratio (WPR) is
obtained as (no. of employed persons) * 100/total population. LFPR determines the
ratio of population engaged in economic activity or labour force, whether WPR is
the determinant of employment rate. WPR by age, sex in rural and urban areas gives
a picture of detailed employment portfolio across India and in various states.

The sampling design used in the 2011–12 employment and unemployment survey
(2011–12 EUS) of NSSO is stratified multi-stage random sampling with districts as
strata, the census villages in the rural sector as first stage units and households as
the ultimate stage units. This survey is designed and conducted to produce reliable
estimates at macro or higher geographical (e.g. nation and state) level. Due to small
sample sizes, this survey data cannot be used directly to generate reliable micro-level
or local (e.g. district or further disaggregation)-level estimates using traditional direct
survey estimation methods. The 2011–12 EUS data for rural areas of Odisha state
in India comprises 371 sample villages spread in total 30 districts covering 2965
sample households. Different districts of the state are considered as small areas.
Sample sizes in each small area were varying from a minimum of 220 to maximum
of 726 with an average of 434. Table 1 presents distribution of sample persons based

Table 1 Distribution of sample from the 2011–12 EUS data in Odisha

Sample
range

All age More than 15 years age

Total sample Employed Not
employed

Total sample Employed Not
employed

Minimum 220 80 98 153 80 28

Average 434 180 254 316 179 137

Maximum 726 322 462 510 318 277

Sum 13,031 5401 7630 9473 5376 4097
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on NSSO survey for usual status (ps + ss) in labour force indicator. Note that usual
status determines that the reference period of the survey is previous 1 year.

The SAE technique is employed to obtain sufficiently precise estimate of employ-
ment rate at district level which otherwise may not be representable for areas with
small sample sizes using direct estimation approach. Survey variable yi j is binary
whether a sample person (unit) is working/employed or not. The survey-weights
wi j associated with the variable of interest yi j were available from survey data. The
auxiliary variable used for HB SAE has been obtained from the 2011 Population
Census. After initial scrutiny of the pools of auxiliary variables in census data, four
auxiliary variables have been retained for final analysis based on stepwise regression
taking survey-weighted direct estimates of employment proportions as dependent
variable. These variables are proportion of Scheduled Caste (SC) population,
proportion of Scheduled Tribe (ST) population, worker population ratio and literacy
rate. The selected covariates can very well be connected with observed employment
ratio, as for example, SC and ST people are socially marginalized in many regions;
lower literacy rates reduce the chances of salaried, self or other type of employment.
For computing HB estimates for employment rate (Pi), we have considered prior for
σ 2

v as IG(0.01, 0.01) and distribution of β has been taken to be N(0, 106). Survey-
weighted direct estimates (pi.sw) and its variance (σ 2

ei.sw) are used as input for the
sampling model. Gibbs sampling method is implemented with three independent
chains each of length 10,000; the first 5000 iterations are deleted as ‘burn-in’ periods.
The results presenting the district-wise estimates of employment proportions and
percentage CV along with 95% confidence (credible) interval generated by HB
GLMM method for survey-weighted proportions are furnished in Table 2.

It is worth noting that choice of prior distributions plays a crucial role in
Bayesian analysis, because inferences drawn from posterior densities depend on
wide range of prior distributions. Improper prior densities such as usual choice of
σ 2

v ∼ IG (0.001, 0.001)may not necessarily lead to proper limiting posterior distri-
butions. As a result, posterior inferences are sensitive to setting a small value like
0.001, indicated from the studies of Gelman (2006). Various non-informative prior
distributions of σ 2

v have been suggested in Bayesian literature including a uniform
density on variance parameter; see, for example, Gelman (2006), Souza et al. (2009)
and references therein. Non-informative prior distributions are intended to allow
Bayesian inference for parameters about which not much is known beyond the data
included in the analysis at hand. Therefore, use of informative prior for the hyper-
parameters needs to be examined in detail. Choice of improper or non-informative
prior may also be problematic due to small amount of data under various parame-
terization processes, and therefore, selection of suitable distributions for the hyper-
parameterswith detailed check on posterior inferences can be a potential researchable
issue.

Small area estimates of employment proportions in Table 2 reveal that the average
employment proportions in rural Odisha is 0.43. Employment rate was varying from
minimum 30% to maximum 59%. For above 15 age, employment proportions were
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Table 2 District-wise estimates of employment proportions, percentage CV (%CV) along with
95% credible interval based on survey-weighted HB GLMM

Districts All age More than 15 years age

Estimates %CV Lower Upper Estimates %CV Lower Upper

Bargarh 0.50 5.67 0.45 0.56 0.65 5.26 0.58 0.71

Jharsuguda 0.52 6.81 0.45 0.59 0.74 4.89 0.67 0.81

Sambalpur 0.53 7.13 0.45 0.60 0.74 5.90 0.65 0.82

Debagarh 0.49 7.73 0.42 0.57 0.71 6.47 0.62 0.80

Sundargarh 0.48 6.38 0.42 0.54 0.71 4.95 0.64 0.78

Kendujhar 0.43 6.41 0.37 0.48 0.58 6.00 0.51 0.65

Mayurbhanj 0.52 5.11 0.47 0.57 0.73 3.97 0.68 0.79

Baleshwar 0.39 6.91 0.33 0.44 0.53 6.98 0.46 0.60

Bhadrak 0.30 7.32 0.25 0.34 0.41 7.35 0.35 0.47

Kendrapara 0.32 7.58 0.28 0.37 0.45 7.49 0.39 0.52

Jagatsinghapur 0.35 7.46 0.30 0.40 0.49 7.31 0.42 0.56

Cuttack 0.38 6.51 0.33 0.42 0.53 5.79 0.47 0.59

Jajapur 0.34 6.95 0.30 0.39 0.50 5.92 0.44 0.56

Dhenkanal 0.38 6.95 0.33 0.43 0.50 7.08 0.43 0.57

Anugul 0.42 6.38 0.37 0.47 0.56 6.20 0.49 0.63

Nayagarh 0.34 7.74 0.29 0.39 0.45 7.84 0.38 0.52

Khordha 0.30 8.12 0.25 0.35 0.40 8.35 0.33 0.46

Puri 0.34 7.49 0.29 0.39 0.44 7.69 0.38 0.51

Ganjam 0.42 5.76 0.37 0.47 0.62 4.99 0.56 0.68

Gajapati 0.52 6.25 0.46 0.58 0.79 3.82 0.73 0.84

Kandhamal 0.52 6.71 0.45 0.58 0.77 4.37 0.71 0.84

Baudh 0.59 5.80 0.52 0.65 0.83 3.15 0.78 0.89

Subarnapur 0.51 8.17 0.43 0.60 0.69 6.62 0.60 0.78

Balangir 0.46 7.24 0.40 0.53 0.67 5.62 0.60 0.74

Nuapada 0.43 8.34 0.36 0.50 0.61 7.81 0.52 0.71

Kalahandi 0.38 6.90 0.32 0.43 0.57 6.39 0.50 0.64

Rayagada 0.41 8.04 0.34 0.47 0.59 7.90 0.50 0.68

Nabarangapur 0.42 7.18 0.36 0.48 0.59 6.78 0.51 0.67

Koraput 0.44 7.59 0.38 0.51 0.69 5.84 0.61 0.77

Malkangiri 0.46 8.74 0.39 0.54 0.67 7.47 0.57 0.77

varying from 0.40 to 0.83, with an average of 0.61. Regional disparity pattern in
unemployment rate can be seen across the districts; specifically, there are 14 districts
having employment proportions below the state average. These aspirant districts need
special emphasis through state and central various developmental plans.
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4 Concluding Remarks

There are number of issues that warrant further investigation. In this paper, we
assume that district-specific random effects are independent. Spatial dependence
among neighbouring districts may also be taken into account within the same Bayes
modeling framework to improve themodel-based estimates. Concept of spatial corre-
lation and spatial nonstationarity under the HB paradigm needs further investigation
to improve the GLMM-based estimates. Baldermann et al. (2018) have recently
described spatial nonstationarity concept for explaining spatial variability between
areas, but their model is for unit-level data. Hence, scope remains to develop area-
level version of spatial nonstationary model under Bayesian approach. In frequen-
tist framework, Chandra et al. (2017) have devised the concept of spatial nonsta-
tionarity in area-level version of GLMM (NSGLMM) for small area estimation of
proportions. It needs to be looked upon using HB structure and requires investiga-
tion oriented towards choice of Gibbs sampling procedures and along with various
prior choices. Again, a few literatures are available on small area procedures consid-
ering informativeness and exploring its impact. Current approach of HB GLMM for
survey-weighted proportions may be extended for survey variable with three or more
categories yielding survey-weighted HB multinomial linear mixed model.

It is the first instance of using employment–unemployment survey data of NSSO
for producing adequate employment statistics at district level in Odisha state. Gener-
ated labour force indicators will aid the policy-makers to find the loophole in existing
policies as well as framing new strategies to uplift the socio-economic conditions
of people. However, more detailed analysis definitely will assist the government
organizations, particularly focusing aspirant districts. As soon the availability of
new data set on employment situation, it will be easy to compare the disaggregated
level figures and unemployment trend. Employment data may very well be coupled
with poverty, food insecurity proportion data at disaggregate level, to come up with
combined developmental plans. Generating gender-specific WPR and combining
them at district level is another good option to carry on, which may simultaneously
reveal the gender gap in employment–unemployment situation also.
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Efficiency of Ranked Set Sampling
Design in Goodness of Fit Tests for
Cauchy Distribution

Ehsan Zamanzade and M. Mahdizadeh

Abstract In thiswork,wedescribe somegoodness of fit tests forCauchydistribution
using ranked set sampling (RSS) design. The powers of the developed tests in RSS
are compared with their counterparts in simple random sampling (SRS) for both
perfect and imperfect ranking cases. It is found that the test based on Kullback–
Leibler distance is much more powerful than its competitors in most of the cases
considered. It also controls type I error well in the case of imperfect ranking.

Keywords Imperfect ranking · Power · Monte Carlo simulation · Ranked set
sampling

1 Introduction

Ranked set sampling (RSS), proposed by McIntyre (1952) in agricultural context, is
an efficient alternative to simple random sampling (SRS),which is applicable inmany
practical situations where obtaining exact measurements of the sample units is far
harder or expensive than ranking them in a set of small size. These situations typically
happen in forestry (Halls & Dell, 1966), environmental monitoring (Kwam, 2003),
clinical trials and genetic quantitative trait loci mappings (Chen, 2007), educational
studies (Wang et al., 2017), and medicine (Zamanzade & Wang, 2017; Mahdizadeh
& Zamanzade, 2019).

To draw a ranked set sample of size n, the researcher first determines set size k
and cycle size r such that n = k × r . He then draws a simple random sample of size
r × k2 from the population of interest and randomly divides them into r × k samples
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(sets) each of size k. Each set of size k is then ranked in an increasing magnitude. The
ranking process in this step is done without obtaining the exact values of the units
in different sets and using an inexpensive method such as eye inspection, personal
judgment, or a freely available covariate. Finally, the researcher selects r units with
rank 1 from first r sets and r units with rank 2 from the second r sets. The process
continues until r units with rank k . . . and measures all of them. The resulting ranked
set sample is given by

{
X [i] j : i = 1, . . . , k; j = 1, . . . , r

}
, where X [i] j is the actual

measurement of the unit with judgment rank i in a set of size k in the j th cycle.
Here, the term “judgment rank”is used to accentuate that the ranking process is done
without actualmeasurement of the units in the set, and therefore, it is likely to observe
errors in ranking. This situation is called imperfect ranking.

Because of importance and applicability of RSS in many practical situations,
several researchers have worked on this research field and virtually most standard
statistical problems have been addressed including but not limited to estimation of the
cumulative distribution function (CDF) (Stokes & Sager, 1988; Kvam& Samaniego,
1994; Duembgen & Zamanzade, 2020), estimation of the population proportion
(Zamanzade & Mahdizadeh, 2017, 2018), estimation of the population mean (Taka-
hasi &Wakimoto, 1968; Frey, 2011), estimation of the population variance (Stokes,
1980; MacEachern et al., 2002), odds ratio (Samawi & Al-Saleh, 2013), logistic
regression (Samawi et al., 2017, 2018, 2020), and statistical control quality charts
(Al-Omari & Haq, 2011; Haq & Al-Omari, 2014; Haq et al., 2014).

A random variable X follows Cauchy distribution with location parameter μ and
scale parameter σ if its probability density function is given by

f0 (x;μ, σ) = 1

σπ
(
1 + ( x−μ

σ

)2) , x ∈ R. (1)

The corresponding CDF is also given by

F0 (x;μ, σ) = 1

π
arctan

(
x − μ

σ

)
+ 1

2
, x ∈ R. (2)

Themean and variance of a random variable with Cauchy distribution do not exist.
Due to its fatter tails than standard normal distribution, Cauchy distribution is more
successful than normal distribution in modeling data with extreme values. In this
work, we describe several goodness of fit tests for Cauchy distribution in RSS and
compare their powers with their counterparts in SRS.We also discuss the problem of
type I error inflation in goodness of fit tests based on RSS in the presence of errors
in rankings.
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2 Goodness of Fit Test for Cauchy Distribution

In this section, we describe different goodness of fit tests for Cauchy distribution
based on SRS and RSS sampling designs. Suppose that one is interested in testing
the null hypothesis

H0 : F (x) = F0 (x;μ, σ) , x ∈ R,

for some μ ∈ R and σ ∈ R
+, against the alternative hypothesis

H1 : F (x) �= F0 (x;μ, σ) , x ∈ R,

for any μ ∈ R and σ ∈ R
+, where F0 (x;μ, σ) is given in Eq. (2).

Let X1, . . . , Xn be a simple random sample of size n from the population of
interest with CDF F and X(1), . . . , X(n) be the corresponding order statistics. Let
F̂srs (t) = ∑n

i=1 I (Xi � t) /n be the empirical distribution function (EDF) based
on a simple random sample. Mahdizadeh and Zamanzade (2017, 2020) utilized the
estimators

μ̂srs =
{

1
2

(
X(n/2) + X(n/2+1)

)
if n is even

X((n+1)/2) if n is odd
,

and

σ̂srs = 1

2

(
Q̂srs,0.75 − Q̂srs,0.25

)
,

for μ and σ in developing goodness of fit tests for Cauchy distribution, where Q̂srs,p

is the pth sample quantile based on a simple random sample.We use these estimators,
because it was shown in the literature that the resulting tests based on the estimators
have good powers. Below, we describe some well-known and powerful tests for
Cauchy distribution based on a simple random samples, one by one.

• Kolmogorov–Smirnov test statistic

K S = sup
t

∣∣∣F̂srs (t) − F0
(
t, μ̂srs, σ̂srs

)∣∣∣

= max
1≤i≤n

(
max

{
i

n
− F0

(
X(i), μ̂srs, σ̂srs

)
, F0

(
X(i), μ̂srs, σ̂srs

) − i − 1

n

})

• Anderson–Darling test statistic
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A2 =
∫ +∞

−∞

{
F̂srs (t) − F0

(
t, μ̂srs, σ̂srs

)}
F0

(
t, μ̂srs, σ̂srs

)−1

{
1 − F0

(
t, μ̂srs, σ̂srs

)}−1
dF0

(
t, μ̂srs, σ̂srs

)

= −2

n

n∑

i=1

[(
i − 1

2

)
log

{
F0

(
X(i), μ̂srs, σ̂srs

)}

+
(
n − i + 1

2

)
log

{
1 − F0

(
X(i), μ̂srs, σ̂srs

)}] − n.

• Cramer-von Mises test statistic

W 2 = n
∫ +∞

−∞

{
F̂srs (t) − F0

(
t, μ̂srs, σ̂srs

)}2
dF0

(
t, μ̂srs, σ̂srs

)

=
n∑

i=1

{

F0
(
X(i), μ̂srs, σ̂srs

) − i − 1
2

n

}2

+ 1

12n
,

• Zhang (2002)’s test statistics

Zk = max
1≤i≤n

((
i − 1

2

)
log

{
i − 1

2

nF0
(
X(i), μ̂srs, σ̂srs

)

}

+
(
n − i + 1

2

)
log

{
n − i + 1

2

n
{
1 − F0

(
X(i), μ̂srs, σ̂srs

)}

})

,

ZA = −
n∑

i=1

(
log

{
F0

(
X(i), μ̂srs, σ̂srs

)}

n − i + 1
2

+ log
{
1 − F0

(
X(i), μ̂srs, σ̂srs

)}

i − 1
2

)

,

ZC =
n∑

i=1

(

log

{
F0

(
X(i), μ̂srs, σ̂srs

)−1 − 1

(n − 1
2 )/(i − 3

4 ) − 1

})2

• Test statistic based on Kullback–Leibler (KL) distance

D = −Hn,m − 1

n

n∑

i=1

log
(
f0

(
X(i), μ̂srs, σ̂srs

))
,

where Hn,m is Vasicek’s entropy estimator which has the form Hn,m = 1
n

∑n
i=1

log
{

n
2m

(
X(i+m) − X(i−m)

)}
, X(i) = X(1) for i < 1, X(i) = X(n) for i > n and the

integer m ≤ n/2 is the window size.

Remark 1 It is important to note that each of the above goodness of fit tests rejects
the null hypothesis that the parent distribution follows a Cauchy distribution at the
significance level α, when the observed test statistic is larger than the corresponding
100(1 − α) percentile of the null distribution of the test statistic. It is worth men-
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tioning that the distributions of the above test statistics under assumption that the
parent distribution is Cauchy do not depend on the unknown parameters μ and σ ,
and hence, the true type I error rates of the above tests are exactly the same as their
nominal level α.

Let
{
X [i] j : i = 1, . . . , k; j = 1, . . . , r

}
be a ranked set sample of size n =

r × k with set size k from a population with CDF F . Let F̂rss (t) = ∑k
i=1

∑r
j=1 I(

X [i] j � t
)
/n be the EDF based on the ranked set sample, and let Z1, . . . , Zn be

an ordered ranked set sample which is obtained by putting RSS sample units in
ascending order. In order to develop goodness of fit tests for Cauchy distribution, we
propose to estimate the parameter μ and σ by

μ̂rss =
{

1
2

(
Zn/2 + Zn/2+1

)
if n is even

Z(n+1)/2 if n is odd
,

and

σ̂srs = 1

2

(
Q̂rss,0.75 − Q̂rss,0.25

)
,

where Q̂rss,p is the pth sample quantile based on the ordered ranked set sample.
Therefore, the RSS counterpart of each of the above goodness of fit tests can be

proposed as

• Kolmogorov–Smirnov test statistic

K S = sup
t

∣∣∣F̂rss (t) − F0
(
t, μ̂rss, σ̂rss

)∣∣∣

= max
1≤i≤n

(
max

{
i

n
− F0

(
Zi , μ̂rss, σ̂rss

)
, F0

(
Zi , μ̂rss, σ̂rss

) − i − 1

n

})

• Anderson–Darling test statistic

A2 =
∫ +∞

−∞

{
F̂rss (t) − F0

(
t, μ̂rss, σ̂rss

)}

F0
(
t, μ̂rss, σ̂rss

)−1 {
1 − F0

(
t, μ̂rss, σ̂rss

)}−1
dF0

(
t, μ̂rss, σ̂rss

)

= −2

n

n∑

i=1

[(
i − 1

2

)
log

{
F0

(
Zi , μ̂rss, σ̂rss

)}

+
(
n − i + 1

2

)
log

{
1 − F0

(
Zi , μ̂rss, σ̂rss

)}] − n.
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• Cramer-von Mises test statistic

W 2 = n
∫ +∞

−∞

{
F̂rss (t) − F0

(
t, μ̂rss, σ̂rss

)}2
dF0

(
t, μ̂rss, σ̂rss

)

=
n∑

i=1

{

F0
(
Zi , μ̂rss, σ̂rss

) − i − 1
2

n

}2

+ 1

12n
,

• Zhang (2002)s test statistics

Zk = max
1≤i≤n

((
i − 1

2

)
log

{
i − 1

2

nF0
(
Zi , μ̂rss, σ̂rss

)

}

+
(
n − i + 1

2

)
log

{
n − i + 1

2

n
{
1 − F0

(
Zi , μ̂rss, σ̂rss

)}

})

,

ZA = −
n∑

i=1

(
log

{
F0

(
Zi , μ̂rss, σ̂rss

)}

n − i + 1
2

+ log
{
1 − F0

(
Zi , μ̂rss, σ̂rss

)}

i − 1
2

)

,

ZC =
n∑

i=1

(

log

{
F0

(
Zi , μ̂rss, σ̂rss

)−1 − 1

(n − 1
2 )/(i − 3

4 ) − 1

})2

• Test statistic based on Kullback–Leibler (KL) distance

D = −Hn,m − 1

n

n∑

i=1

log
(
f0

(
Zi , μ̂rss, σ̂rss

))
,

where Hn,m is Vasicek’s entropy estimator which has the form Hn,m = 1
n

∑n
i=1

log
{

n
2m (Zi+m − Zi−m)

}
, Zi = Z1 for i < 1, Zi = Zn for i > n and the integer

m ≤ n/2 is the window size.

Note that large values of each of the test statistics described in above can be
regarded as an indication that the parent distribution does not follow a Cauchy dis-
tribution and therefore the null hypothesis is rejected at significance level α if its
observed value is larger than 100 (1 − α) percentile of the null distribution.

Remark 2 It is worth mentioning that the distribution of each of the goodness of fit
tests of Cauchy distribution in RSS does not depend on unknown parameters μ and
σ , but it still depends on both ranking quality and imperfect ranking model. As the
ranking quality and imperfect ranking model are not known in practice, 100 (1 − α)

percentile of the test statistics in RSS under the null hypothesis is obtained when
the perfect ranking is assumed. It is of course, in this case, the type I error will be
inflated if the ranking is not perfect.



Efficiency of Ranked Set Sampling Design in Goodness … 59

3 Power Comparison

In this section, we compare the power of different goodness of fit tests in SRS and
RSS for Cauchy distribution. To do so, we set n ∈ {10, 20, 30, 50}, k ∈ {2, 5}, and
for each configuration of (n, k), we have generated 10,000 random samples from
SRS and RSS designs. Therefore, we can assess performance of different goodness
of fit tests when k is increased and n is fixed and vice versa. To generate a ranked
set sample, we have used fraction of random ranking model proposed by Frey et al.
(2007). In this model, it is assumed that the sample unit with judgment rank i is
identified correctly with probability ρ, and it is identified randomly with probability
1 − ρ. Therefore, the CDF of the i th judgment order statistic is given by

F[i] (t) = ρF(i) (t) + (1 − ρ) F (t) ,

where F[i] (t) and F(i) (t) are CDFs of the i th judgment and i th true order statistics
and the parameter ρ controls quality of ranking. In this simulation, we select ρ

from the set ρ ∈ {1, 0.75, 0.5}. So, perfect ranking case (ρ = 1), good ranking case
(ρ = 0.75), and moderate ranking case (ρ = 0.5) are all included in our study.

The powers of the goodness of fit tests for Cauchy distribution in SRS and
RSS designs are reported against the 15 different alternative distributions. The
alternative distributions are as: Student’s t distribution with 3 and 5 degrees of
freedom (t3, t5), standard normal (N (0, 1)), standard logistic (Lo (0, 1)), standard
Laplace (La (0, 1)), standardGumbel (Gu (0, 1)), standard exponential (E (1)), stan-
dard uniform (U (0, 1)) distributions, beta distribution with parameters 0.5 and 0.5
(B (0.5, 0.5)), beta distribution with parameters 2 and 1 (B (2, 1)), gamma distribu-
tion with scale parameter 1 and shape parameter 0.5 (G (0.5)), gamma distribution
with scale parameter 1 and shape parameter 2 (G (2)),Weibull distribution with scale
parameter 1 and shape parameter 0.8 (W (0.8)), and Weibull distribution with scale
parameter 1 and shape parameter 1.4 (W (1.4)). We have also included standard
Cauchy distribution (C (0, 1)) in our comparison set. Thus, it is possible to observe
amount of inflation in type I error in RSS when the ranking is not perfect.

Remark 3 To calculate the test statistic based on KL distance (D), one has to
determine window size m subject to sample size n. In this simulation, we follow
Mahdizadeh and Zamanzade (2017)’s guideline, which suggests selecting the win-
dow size resulting in smallest critical value. Therefore, for sample sizes 10, 20, 30,
and 50, the window sizes producing minimum critical values are 2, 4, 8, and 20,
respectively.

Here, for brevity, we only present results in RSS for n = 10, k ∈ {2, 5}, and
ρ ∈ {0.75, 1} in Tables1 and 2 and in SRS for n ∈ {10, 20} in Table3. The complete
simulation results are available upon request from the first author.

Table1 presents simulation results for perfect ranking case (ρ = 1), n = 10, and
k ∈ {2, 5}. We observe from this table that the test based on KL distance is in the
most powerful test. It is also the only unbiased test in the sense that its power is
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always higher than its significance level α = 0.05. All tests control type I error well,
which is not surprising because of perfect ranking assumption. We also see from this
table that although the power of D, K S, A2, and W 2 increases with set size k while
the total sample size n is fixed, the other three tests have irregular patterns.

Comparing simulation results in Table1 with other results in the perfect ranking
case, we found that although the pattern of the performance of different tests remains
almost the samewhen the sample sizen increases from10 to 50, their powers increase.

Simulation results for imperfect ranking cases are presented inTable2.Weobserve
from this table that the test based on KL distance is the most powerful one in almost
all considered cases. It is also interesting to note that amount of inflation in type
I error in all considered cases is negligible, and therefore, one can use the critical
values of test statistics under perfect ranking assumption in the imperfect ranking
case with a high confidence.

Finally, it is evident from Tables3 that the best test in RSS is generally more
powerful than its counterpart in SRS.

4 Conclusion

In this chapter, we propose several goodness of fit tests for Cauchy distribution
in RSS. We then compared the powers of different tests using a comprehensive
simulation study for both perfect and imperfect ranking cases. It is found that while
the test based on KL distance controls type I error well, it is significantly more
powerful than its competitors in most considered cases.
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Fuzzy Supply Chain Newsboy Problem
Under Lognormal Distributed Demand
for Bakery Products

M. R. Bhosale, Raosaheb Latpate, and Santosh Gitte

Abstract The daily demand of perishable items in the market is very volatile. The
demand of perishable items is assumed lognormal distribution. The parameters of
lognormal distribution are uncertain. Hence, fuzzy triangular numbers are used to
overcome such problems. Single-period (newsboy) inventory model is used to obtain
optimal order quantity, retailer profit,manufacturer profit and total supply chain profit
under decentralized supply chain. At the end of the day, most of the remaining items
are rotted. The data is collected from Koregaon Park, Pune Market, India, to study
the methodology.

Keywords Newsboy problem · Fuzzy random variable · Supply chain model ·
Bakery products · Single cycle

1 Introduction

A Supply Chain is a system in which, manufacturer sends finished items to the cus-
tomer. In this system, there are various components like manufacturer, distributor,
supplier, retailer, etc. The main objective is to satisfy the customer demand and to
generate profit itself. In practice, it is difficult to satisfy the customer demand. If the
number of orders is less than the customer demand, then retailer met with loss. If the
number of orders is greater than the customer demand, then retailer will meet with
surplus inventory and have to sell items at minimum rate. Now a days, most of the
manufacturers satisfied the customer demand with high level. In some system, all
the entities are working independently and trying to optimize the main objective of
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the supply chain. If all the entities are independent, then that system is nothing but
decentralized system. If all the entities are working properly but decision regarding
the system takes a authority person and all other remaining components follow the
decision taken by main authority, then that system is nothing but centralized system.
In reality, manufacturer receives material (raw material/semi-finished items) from
several suppliers and after processing supplies to several warehouses and retailers.
Therefore, supply chain is a real network. A supply chain is a network between a
company and its suppliers to produce and distribute a specific product or service. The
functions in a supply chain include product development, marketing, operations, dis-
tribution, finance and customer service. Many of the researchers studied the newsboy
problem under fuzzy environment. Petrovic and Petrovic (1999) developed a model
for the newsboy vendor problem under discrete fuzzy environment. Single inventory
problem is known as newsboy problem.

Every day early in the morning, newsboy purchases newspapers from the whole-
salers and he sells for whole day. If he purchasedmaximum number of papers and not
sold out and he carries some unsold newspapers at the end of day, then he will have
loss. And if he purchased less number of papers early in the morning and at the end
of day customer having the demand, then the newsboy also has loss and is not able
to satisfy the customer demand. Here, newsboy has loss on both ways. How much
newspaper should he purchase early in the morning such that he will optimize his
profit and also satisfy the customer demand. The demand of customer is uncertain. If
the demand is uncertain, so it is a very difficult task in front of researcher to predict
the demand, to obtain the statistical distribution of newly developed product and to
satisfy the customers’ wish. Here, the period of newspaper is only one day, and on the
next day that newspaper do not have any value. So, the lifetime of item is very short.
Therefore, to solve this type of problem, fuzzy theory has been developed (Zadeh,
1965). Fuzzy set theory is very useful in inventory to take the decision. This type
of model is also called as newsboy vendor model or single supply chain model or
one echelon supply chain model. Newsboy vendor model includes one retailer and
one customer. This type of model is useful to optimize optimal order quantity, opti-
mal inventory level, etc. Newsboy vendor model is a mathematical model which is
very useful in operation management and applied economics for optimizing optimal
inventory level, optimal order quantity, etc. This newsboy vendor model looks from
1888 which is used in central limit theorem to obtain the optimal cash reserves from
the depositors.

In newsboy problem, the following two situations may arise:
(i) Demand X is more than order size Q. Then, he makes a profit of Q(SP − CP),
assuming there is no penalty for lost sales.
(ii) Demand X is less than order size Q. Then, (X − Q) newspapers are left unsold at
the end of the day, and he will get the salvage value, SV for each of these newspapers.
The net profit is

X (SP) + (X − Q)SV − Q(CP)

If he buys Q newspapers at the beginning of the day, then the expected profit E(P)
(assuming SV=0) is:
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E(P) =
Q∑

X=0

(X ∗ SP − Q ∗ CP) f (X) +
∞∑

X=Q+1

Q(SP − CP) f (X)

E(P) = SP

[ Q∑

X=0

X. f (X) + Q.

∞∑

X=Q+1

f (X)

]
− Q.CP

where f (X)= probability density function (pdf) of demand, CP—purchase cost and
SP—selling price.

Zadeh (1965) introduced the concept of fuzzy set theory. Kwakernaak (1978)
defined fuzzy random variable, expectation and conditional expectation of fuzzy
random variable and properties of fuzzy random variable. He also introduced fuzzy
probability and fuzzy events. Puri and Ralescu (1986) explained the concept of
fuzzy random variable and expectation of fuzzy random variable. He also discussed
properties of integral set valued function. Feng (2001) developed the concept of
variance and covariance of fuzzy random variable and discussed the application of
variance and covariance. He also discussed the further applications in the correlation
function and the criteria of mean squares calculus for fuzzy stochastic process. He
extended results on fuzzy sets and systems and discussed independence of fuzzy
random variable by means of convergence criterion in uniform Hausdorff metric.
Latpate and Kurade (2020b) developed new optimization algorithm using fuzzy set
theory and evolutionary algorithm, viz., fuzzy NSGA II for crude oil supply chain of
India. Latpate and Kurade (2017) formulated new solution methodology, viz., fuzzy
MOGA for solving multiobjective supply chain models. The uncertainty in various
parameters was represented by triangular fuzzy number.

Hu et al. (2010) developed a model for two echelon supply chain systems with
one retailer and one supplier for perishable items for centralized and decentralized
system by using normal demand distribution. He also obtained optimal order quan-
tity, retailer profit, manufacturer profit and total supply chain profit and has shown
that optimal order quantity and total supply chain profit in centralized system are
greater than decentralized system. Kurade and Latpate (2020) developed new eco-
nomic order quantity probabilistic inventory models. Lognormal and generalized
exponential distributed demand was assumed in the formulated model. For solving,
they developed new solution methodology based on genetic algorithm. Zhang et al.
(2014) developed a model for two echelon supply chain systems: ith one retailer
and one supplier for perishable items for centralized and decentralized system by
using uniform demand distribution. He also obtained optimal order quantity, retailer
profit, manufacturer profit and total supply chain profit and has shown that optimal
order quantity and total supply chain profit in centralized system are greater than
decentralized system (Bhosale & Latpate, 2019; Latpate and Bajaj 2011a, b; Latpate
& Bhosale, 2020a). Dutta et al. (2005) proposed methods for construction of mem-
bership function without using alpha-cut. He discussed the arithmetic operations



68 M. R. Bhosale et al.

of fuzzy members using alpha-cut. They also made the comparison between fuzzy
arithmetic with and without using alpha-cut.

In the proposed model, we consider the demand of bakery products under decen-
tralized decision-making system, which follows lognormal distribution because the
support of lognormal distribution and demand should be same. Exact distribution
is unknown. Hence, we assume the fuzzy random variable. The rest of the chapter
includes preliminaries, and mathematical model is presented in Sect. 2. Numerical
case study is presented in Sect. 3. The result and discussion are incorporated in Sect. 4.
Section5 gives the concluding remarks.

2 Preliminary Definitions and Mathematical Model

The following preliminary definitions are used for the newsboy vendor supply chain
model.

Definition 1 (Fuzzy Random Variable) (Kwakernaak, 1978)
Let (�,μ,P) be the probability space and X be a random variable on (�,μ,P) with a
probability density function f (x). Fuzzy random variable X̃ is a mapping from R to
a family of fuzzy numbers, i.e., X̃ : x→ X̃(x) ∈ F , where F denotes fuzzy set. Fuzzy
random variables are the random variables that are valued as fuzzy numbers.

For given α ∈ (0, 1], suppose that the α-cut X̃(x)α of a number X̃(x) is X̃(x)α =[
X̃(x)−α , X̃(x)+α

]
. Let X̃(x)−α , X̃(x)+α denote the left end point and right end point of

the α-cut X̃(x)α of X̃(x), where X̃(x)−α , X̃(x)+α are real valued random variables.

Definition 2 (Fuzzy Expectation) (Kwakernaak, 1978)
The fuzzy expectation of the fuzzy random variable X̃ is defined as:

E(X̃) =
⋃

α∈[0,1]
α

[∫

R
X̃−

α dp,
∫

R
X̃+

α dp

]

By using the definition of alpha-cut, then definition of fuzzy expectation becomes:

[
E(X̃)

] =
⋃

α∈[0,1]
α

[
E(X̃)

] =
⋃

α∈[0,1]
α

[[
E(X̃)

]−
α
,
[
E(X̃)

]+
α

]

Because the X̃−
α and X̃+

α are real valued random variable, their respective expecta-
tions are:

E(X̃) =
⋃

α∈[0,1]
α

[[
E(X̃)

]−
α
,
[
E(X̃)

]+
α

]
(1)

Definition 3 (Signed Distance of Fuzzy Expectation) (Chang, 2004)
Let Ã be a fuzzy number with α-cut Ãα = [

Ã−
α , Ã

+
α

]
, then signed distance of fuzzy
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number Ã is d( Ã, 0)=1
2

∫ 1
0 ( Ã

−
α + Ã+

α )dα. Then, the signed distance of fuzzy expec-
tation E(X̃) is

d(Ẽ(X), 0) = 1

2

∫ 1

0

[
E(X̃−

α ) + E(X̃+
α )

]
dα (2)

2.1 Notations and Assumptions

The following notations and assumptions are used for model formulation.

Notations:

s—manufacturers’ wholesale price per unit.
p—manufacturers’ production cost per unit.
n—retailers’ holding cost per unit.
m—retailers’ shortage cost per unit.
q—retail price per unit.
r—defective rate.
f—retailers’ inspecting cost per unit.
e—reverse cost of defective products per unit which includes manufacturer price and
inspection cost.
Q—retailers’ order quantity.
Q∗—retailers’ optimal order quantity in the decentralized system.
X—random external demand with probability distribution f (x).
X̃—fuzzy random external demand corresponding to X and expressed as the trian-
gular fuzzy number.
X̃ = (X-δ1, X, X+δ2), where δ1 and δ2 are determined by managers depending on
their experiences and reflect a kind of fuzzy appreciation from their intrinsic under-
standing.

Assumptions:

1. Demand follows lognormal distribution.
2. Only one item is considered with decentralized decision-making system.
3. Lifetime of items is very short.

2.2 Mathematical Model

Supply chain is the movement or of transferring manufactured item to the customer.
In this process, several entities are included to shift products from manufacturer
to the customer. While shifting manufactured product to the retailer, the entities
are not cooperating to each other. When the entities are not cooperating to each
other, then that supply chain is called as decentralized supply chain. In decentralized
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system, manufacturer and retailers take their decision independently. Retailers place
the order to the manufacturer. Manufacturer fulfills the order (Q) of retailers and
tries to satisfy all the requirements of the retailer. The main objective of the supply
chain is to satisfy the customer demand and optimize the profit of the supply chain.
As soon as the retailer inspect all the items received from manufacturer and send
back the defective items to the manufacturer. The total r Qe cost of defective items
is debited to manufacturer.

Now, therewill be Q(1 − r)perfect items.Here, demand is fuzzy randomvariable.
The retailer has to bear entire loss due to unsold items. At the end of day, all unsold
items are rotted. Hence, the retailer fuzzy random profit becomes:

P̃1(Q) = q min(X̃ , Q(1 − r)) − (n + s)(Q(1 − r) − X̃)+

−m(X̃ − Q(1 − r))+ − sQ + r Qe − f Q

where
min{X̃ , Q(1 − r)} = X̃ − (X̃ − Q(1 − r))+,
(Q(1 − r) − X̃)+=Q(1 − r) − X̃ + (X̃ − Q(1 − r))+,
and
(X̃ − Q(1 − r))+ = Max

(
0, (X̃ − Q(1 − r))

)
.

By using above results, the retailer fuzzy random profit becomes

P̃1(Q) = (q + n + s)X̃ − (q + n + m + s)(X̃ − Q(1 − r))+ − (n + s)Q(1 − r) − sQ + r Qe − f Q

The fuzzy expectation of random profit can be obtained by using definition (2).

E(P̃1(Q) = (q + n + s)E(X̃) − (q + n + m + s)E(X̃ − Q(1 − r))+)

−(n + s)Q(1 − r) − sQ + r Qe − f Q

By using definition 3, the defuzzification of expectation is as follows:

d(E(P̃1(Q), 0)) = (q + n + s)d(E(X̃), 0) − (q + n + m + s)d(E(X̃ − Q(1 − r))+, 0))

−(n + s)Q(1 − r) − sQ + r Qe − f Q

where

d(E(X̃), 0) = 1

2

∫ 1

0

[
E(X̃−

α ) + E(X̃+
α )

]
dα

d(E(X̃), 0) = E(X) + δ2 − δ1

4
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d(E(X̃ − Q(1 − r))+, 0) = 1

2

∫ 1

0

[
E

[
((X̃ − Q(1 − r))+, 0)−α

]

+E
[
((X̃ − Q(1 − r))+, 0)+α

] ]
dα

Using these values in the above equation, we get:

d(E(P̃1(Q)), 0) = (q + n + s)

[
E(X) + δ2 − δ1

4

]

−q + n + m + s

2

∫ 1

0

[
E((X̃ − Q(1 − r))+)−α )

+[E((X − Q(1 − r))+)+α

]
dα − (n + s)Q(1 − r) − sQ + r Qe − f Q

Fuzzy random demand can be written as triangular fuzzy numbers.

(X̃ − δ1, X̃ , X̃ + δ2)

The shortage can also be expressed as triangular fuzzy numbers.

[
(X̃ − Q(1 − r))+ − δ1, (X̃ − Q(1 − r))+, (X̃ − Q(1 − r))+ + δ2

]
.

Using α-cuts, the triangular fuzzy number can be expressed as[
(X̃ − Q(1 − r))+ − δ1 + αδ1, (X̃ − Q(1 − r))+ + δ2 − αδ2

]
. The rangeof fuzzy

demand with shortages for left α-cut of the above interval is (Q(1 − r) + δ1 − αδ1)
to∞. The range of fuzzy demand with shortages for right α-cut of the above interval
is (Q(1 − r) − δ2 + αδ2) to ∞. The retailer profit becomes:

d(E(P̃1(Q), 0)) = (q + n + s)

[
E(X) + δ2 − δ1

4

]
− (n + s)Q(1 − r) − sQ + r Qe − f Q

−q + n + m + s

2

[ ∫ 1

0

∫ ∞
Q(1−r)+δ1−αδ1

(x − δ1 + αδ1 − Q(1 − r)) f (x)dxdα

+
∫ 1

0

∫ ∞
Q(1−r)−δ2+αδ2

(x + δ2 − αδ2 − Q(1 − r)) f (x)dxdα

]
(3)

Differentiate Equation (3) with respect to Q and equate to zero to evaluate the
optimal order quantity Q
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d[d(E(P̃1(Q)), 0)]
dQ

= −(n + s)(1 − r) − s + re − f + q + n + m + s

2
(1 − r)

[
2 −

∫ 1

0
F(Q(1 − r) + δ1 − αδ1) + F(Q(1 − r) − δ2 + αδ2)dα

]
= 0 (4)

1

2

∫ 1

0

[
F(Q∗(1 − r) − δ2 + αδ2) + F(Q∗(1 − r) + δ1 − αδ1)dα

]

= (q + m)(1 − r) − s + re − f

(q + n + m + s)(1 − r)
(5)

Again, differentiate Equation (4) with respect to Q

d2[d(E(P̃1(Q)), 0)]
dQ2

= − (q + n + m + s)(1 − r)2

2

∫ 1

0
[ f (Q(1 − r) − δ2 + αδ2)

+ f (Q(1 − r) + δ1 − αδ1)]dα

For given α ∈ [0, 1] d2[d(E(P̃1(Q),0)]
dQ2 < 0

Since, f (Q(1 − r) − δ2 + αδ2) ≥ 0 and f (Q(1 − r) + δ1 − αδ1) > 0
That is, the term d(E(P̃1(Q), 0) is strictly concave function with respect Q.
After simplifying Equation (3) and by using integration by parts rule (Rudin, 1976)
and Leibnitz theorem ( Murray, 1985),

d(E(P̃1(Q)), 0) = (q + n + s)

[
eμ+ σ2

2 + δ2 − δ1
4

]
− (n + s)Q(1 − r) − sQ + r Qe − f Q

−q + n + m + s

2

[
eμ+ σ2

2

∫ 1

0

( [
2 − φ

[
(ln(Q(1 − b) + δ1 − αδ1) − μ

σ
− σ

]]

−φ

[
ln(Q(1 − r)) − δ2 + αδ2) − μ

σ
− σ

])
dα

−
∫ 1

0

[
(Q(1 − r) − αδ1 + δ1)

[
1 − φ

[
ln(Q(1 − r) + δ1 − αδ1) − μ

σ

]]]
dα

+
∫ 1

0

[
(δ2 − αδ2 − Q(1 − r))

[
1 − φ

[
ln(Q(1 − r) − δ2 + αδ2) − μ

σ

]]]
dα

]

(6)
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The optimal order quantity Q∗ can be obtained by using Eq. (5) and integration by
parts (Rudin, [1976]).

2φ

[
ln(Q(1 − r) − μ

σ

]
+

[
σ

δ21
− σ

δ22

]
e2μ+2σ2

φ

[
−2σ + ln(Q(1 − r)) − μ

σ

]

+σe2μ+2σ2
[

1

δ22
φ

[
−2σ + ln(Q(1 − r) − δ2) − μ

σ

]
− 1

δ21
φ

[
−2σ + ln(Q(1 − r) + δ1) − μ

σ

]]

+σeμ+ σ2

2

[
Q(1 − r) − δ2

δ22
− Q(1 − r) + δ1

δ21

]
φ

[
−σ + ln(Q(1 − r)) − μ

σ

]

+σeμ+ σ2

2

[
Q(1 − r) + δ1

δ21
φ

[
−σ + ln(Q(1 − r) + δ1) − μ

σ

]]

−σeμ+ σ2

2

[
Q(1 − r) − δ2

δ22
φ

[
−σ + ln(Q(1 − r) − δ2) − μ

σ

]]

= 2 [(q + m)(1 − r) − s + re − f ]

(q + n + m + s)(1 − r)
(7)

where φ is the cumulative distribution function of the standard normal distribution. It
is already presented by Latpate and Bhosale (2020a). We can find the optimal order
quantity Q∗ in decentralized system by using Eq. (7) and Newton–Raphson method.
If Q∗ is the optimal order quantity, then profit for the manufacturer is:

M1(Q
∗) = (s − p)Q∗ − r Q∗e

In decentralized system, the whole supply chain profit is:

T1(Q
∗) = d(E(P̃1(Q), 0)) + M1(Q

∗) (8)

3 Numerical Case Study

The bakery product cake has short lifetime. It is produced from Millennium Bakery
Koregaon Park Pune, India. The data is collected from Koregaon Park area store
at Pune, India. The daily sales and demand are recorded for the whole year 2017.
The demand distribution is fitted. It follows lognormal distribution with parameter
μ=6.214 and σ = 0.09631. Manufacturer wholesale price is s = Rs.200 per kg. The
retail price per unit is q = Rs.300 per kg, retailer holding cost per unit is n = Rs.5,
and retailer shortage cost per unit ism = Rs.50. The value of defective products per
unit is e = Rs.175, the production cost is p = Rs.150, and inspection cost is f =
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Table 1 Sensitivity analysis of decentralized supply chain model

δ1 δ2 r Q∗ dE P1(Q) M1(Q∗) T1(Q∗)
160 40 0.02 458.6687 27960.87 21328.09 49288.96

160 40 0.04 468.1022 27680.67 20128.39 47809.06

160 40 0.06 477.9312 27388.72 18878.28 46267

160 40 0.08 488.1809 27084.25 17574.51 44658.76

120 80 0.02 472.6324 30836.98 21977.41 52814.39

120 80 0.04 482.2693 30552.02 20737.58 51289.6

120 80 0.06 492.3064 30255.13 19446.1 49701.23

120 80 0.08 502.7693 29945.55 18099.69 48045.24

80 120 0.02 502.7693 32369.71 23378.77 55748.48

80 120 0.04 502.7693 32830.57 21619.08 54449.65

80 120 0.06 502.7693 33020.44 19859.39 52879.83

80 120 0.08 502.7693 32943.93 18099.69 51043.62

40 160 0.02 502.7693 35663.83 23378.77 59042.6

40 160 0.04 502.7693 35685.62 21619.08 57304.7

40 160 0.06 502.7693 35418.83 19859.39 55278.22

40 160 0.08 502.7693 34875.57 18099.69 52975.26

Rs.5. The defective products are disposed, and its value is debited to manufacturer.
The defective rate changes from r = 0.02 to r = 0.08.

The fuzzy random demand is expressed as triangular numbers
[
X̃ − δ1, X̃ , X̃+

δ2]. The aspiration-level values are δ1 and δ2. In decentralized supply chain system,
the retailer has to bear the loss due to unsold items. Also, retailer has to bear loss due
to shortages. These two events are mutually exclusive. Using above parameters of
model, the optimal order quantity Q∗ is obtained by using Eq. (7). These results are
substituted in Eq. (6) to get the retailer profit. Also, manufacturer and total supply
chain profit is obtained by using Eq. (8) and results are presented in Table1.

4 Results and Discussion

The sensitivity analysis is carried out by changing the different parameters. As defec-
tive rate increased, the total supply chain profit decreased as shown in Fig. 1. Since
the defective items are large, it leads to loss of total inventory. As defective rate
increased, the manufacturer profit decreased which is shown in Table1 and Fig. 2,
because the manufacturer has to bear the whole loss incurred due to defective pro-
duction. Also, as defective rate increased, the optimal order quantity increased in the
supply chain system which is shown in Table1, whenever there is large number of
defective items in consignment. Retailer has no option to increase the order quantity
to meet the market demand. As the aspiration level δ1 increases, the manufacturing
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Fig. 1 Graph of defective
rate versus total supply chain
profit

Fig. 2 Graph of δ1 versus
manufacturer profit

profit decreases. As the aspiration level δ1 increases, the total optimal order quantity
and total supply chain profit decrease which is shown in Fig. 5 and Table1. As δ2
increases, the optimal order quantity and total supply chain profit increase as shown
in Figs. 3 and 6 and Table1. It is obvious that the impact of δ1 causes least optimal
order quantity. Hence, there will be manufacturer profit and total supply chain profit
decreases.
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Fig. 3 Graph of δ2 versus
manufacturer profit

Fig. 4 Graph of δ1 versus
total supply chain profit
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Fig. 5 Impact of δ1 on
optimal order quantity

Fig. 6 Impact of δ2 on
optimal order quantity
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5 Conclusions

In this chapter, we consider the perishable item with fluctuating demand. Here, we
consider the fuzzy lognormal demand distribution fitted for the bakery product with
decentralized decision system. Whenever the large numbers of defective items are
there, then retailers will increase the order quantity to meet the customer demand.
Also, sensitivity analysis of aspiration level of fuzzy parameters δ1 and δ2 is con-
ducted.

There is a lot of importance for further research in milk products. Majority of
products are utilized daily, for example, milk, fruits and vegetables. Also, this model
is useful for electrical supply chain. It has many applications in logistics and man-
agement science. This problem can be extended for multi-product and multistage
items with multivariate demand distribution.
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Probabilistic Supply Chain Models
with Partial Backlogging
for Deteriorating Items

Sandesh Kurade, Raosaheb Latpate, and David Hanagal

Abstract A supply chain (SC) is a network comprising suppliers, producers, man-
ufacturers, distributors and retailers. Generally, it is represented as single tier, two
tier and multi-tier according to its various independent nodes, i.e., entities in the
SC. For smooth flow of SC, an inventory is maintained and optimized. At supplier,
the raw material inventory is required to dispatch at various producers. The finished
product inventory with the help of raw material received from suppliers is pro-
duced at producer level. An assembled inventory from finished product is produced
at manufacturer level. Various distributors transport this assembled inventory using
various modes of transportation to retailers. At final node of SC, the customer will
purchase the product. Thus, inventory management is a crucial task in a SC. In prob-
abilistic inventory models, using suitable probability distribution for demand rate,
an inventory can be optimized. Here, we develop the inventory models by assuming
various probability distributions for demand and deterioration rate under shortages.
For modeling, we consider probabilistic demand per unit time as well as the prob-
abilistic deterioration rates. Under these assumptions, probabilistic economic order
quantity (EOQ) models are developed under partial backlogging. Classical methods
are unable to solve these situations by these assumptions. Therefore, the proposed
genetic algorithm is useful to solve the EOQ models. Numerical case study is pre-
sented and solved by using non-traditionalmethod, i.e., genetic algorithm. Sensitivity
analysis of various parameters is also presented.

Keywords Genetic algorithm · Partial backlogging · Probabilistic inventory
model · Multi-echelon supply chain · Variable deterioration
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1 Introduction

Supply chain (SC) consists of several stakeholders like suppliers of raw materials,
producers of unique product, manufacturers for assembling the produced product,
warehouse for storage purpose, retailers for distribution purpose and transporters
for shipping the manufactured product from each node of SC to other node. Each
stakeholder in the SC has a role to optimize the SC. The major objective of SC is
to satisfy or to meet the customer demand in such a way that the profit or cost of
maintaining the SC would be maximum or minimum, respectively. All the above
stakeholders in the SC operate independently for generating their profits. The SC
connects each stakeholder to the end customer. It consists of suppliers, manufactur-
ers, transporters, warehouses and customers. Every entity in the SC has to satisfy
the customer demand and to generate profit for itself, whereas customers are the
integral part of it. The term SC conjures up supply of product moving from suppliers
to manufacturers, manufactures to distributors, distributors to retailers and retailers
to customers in a SC. The detailed working procedure of SC network as, produc-
ers receive raw materials from various outside suppliers which produces number of
units of the perishable product. After production of units of perishable item, it trans-
ports to the manufacturers site for packaging or assembling the final product, then
manufacturer transports the final product to several independent warehouses for stor-
age purpose. Lastly, produced perishable product transports to various independent
retailers for distributing to customers. Here, we have developed the new probabilistic
economic order quantity (EOQ) inventory models for multi-tier SC; see Fig. 1. In the
literature, several authors developed EOQ inventory models with stock-dependent,
replenishment-dependent, ramp-type function of demand, etc. Here, we assumed
that the market demand is uncertain and follow a certain probability distribution.
The answers of basic questions in inventory like how much to store and optimum
order quantity can be obtained from the developed models. Also, a new solution
methodology based on evolutionary algorithm is developed. This solution method-
ology can be applicable to all types of optimization problems involved in inventory
management.

Beamon (1998) highlighted the two basic random processes occurring in the SC:
(i) production planning and inventory process and (ii) distribution (i.e., transporta-
tion) and logistics process. The inventory process deals with the manufacturing and
storage problems in SC, whereas production planning deals with the cooperation
between each and every manufacturing process. The distribution process deals with
how products are transported from suppliers to producers, from producers to man-
ufacturers, from manufacturers to retailers. This process includes procurement of
inventory and transportation of raw material as well as finished product. Each stage
of SC is connected through the flow of products, information and funds. These flows
are in both ways. For effectively managing the SC, a manager has to decide the
location, capacity and type of plants, warehouses and retailers to establish the SCN.
The SCN problem covers wide range of formulations such as simple single product
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type to complex multi-product one and from linear deterministic models to complex
nonlinear ones. SC connects each stakeholder to the end customer.

EOQ inventory model was firstly introduced by Ghare and Schrader (1963) with
constant deterioration; i.e., it follows an exponential distribution g(t) = θ > 0where
g(t) is the rate of deterioration. Later, this model was extended by Covert and Philip
(1973), under which they assumed variable deterioration and it follows the Weibull
distribution g(t) = γβ tβ−1, 0 ≤ t ≤ T where T is the cycle time and α > 0 and
β > 0. Afterward, Philip (1974) formulated more general EOQ inventory model
with Weibull distributed deterioration. Padmanabhan and Vrat (1995) developed
three EOQ inventory models by assuming no, complete and partial backlogging.
Under continuous review policy, the inventory models were proposed in which
stock-dependent demand rate, i.e., D(t) = α + β I (t), α, β > 0 per unit time t , was
assumed.

Wee (1995) developed the replenishment strategy for a perishable product under
complete as well as partial backlogging with different backlog rates. Bose et al.
(1995) formulated an EOQ inventory model for deteriorating items with linear time-
dependent demand rate per unit time D(t) = a + b · t, a > 0, b > 0. Suchmodel can
be applicable to highly deteriorated products like fruits, milk products, etc. Bhunia
andMaiti (1997) formulated two deterministic EOQ inventorymodels under variable
production. Theymodeled the level of inventory at time t during the production period
at a finite replenishment rate, i.e., R(t) = α − β I (t) and R(t) = α + β D(t). In both
the models, demand rate was assumed to be a linearly increasing function of time t .
Later, Bhunia and Maiti (1998) extended earlier developed EOQ inventory models
under complete backlogging by considering finite rate of replenishment.

Wu (2001) developed an EOQ inventorymodel by considering ramp-type demand
and stochastic deterioration rate. Shortageswere allowed in the developedmodel, and
they were partially backlogged with backlogging rate 1/[1 + δ(T − t)] per unit time
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where δ > 0 is the backloggingparameter. Thenecessary and sufficient conditions for
the existence of unique optimal solution were provided. For representing ramp-type
behavior of demand rate, a well-known Heaviside’s function was used. Later, such
ramp-type function demand was used by Skouri et al. (2009) and they developed an
inventory model for general demand rate as any function of time up to stabilization.
They assumed shortages were completely backlogged during the waiting time of
further replenishments at a rate δ(t) ∈ (0, 1) which satisfies backlog rate = (δ(t) +
T δ

′
(t)) ≥ 0. Thus, a monotonically decreasing function δ

′
(t) ≤ 0 of waiting time

was used for shortages. A ramp-type function for representing demand rate was
considered, i.e., D(t) = f (t), t < μ and D(t) = f (μ), otherwise where f (t) is any
positive, continuous function of time andμ is the specific time during the scheduling
period.

Dye et al. (2005) developed an EOQ inventorymodel. Shortageswere allowed and
partially backlogged for perishable items in a SC. The time-dependent backlog rate
was assumed in the developed model, i.e., backlog rate = 1/(1 + δ[T − t]), δ > 0.
Later, Eroglu and Ozdemir (2007) presented a deterministic EOQ inventory model
for a manufacturer with few defective products in a lot. The proposed model can be
applicable to a SC consisting of only a manufacturer and a retailer under shortages.
Uniform defective rate of products was considered in the developed model, i.e.,
f (p) ∼ U (0, 0.1) where p is the proportion of defectives in the lot. Raosaheb and
Bajaj (2011) formulated transportation and inventory model with retailer storage
under uncertain environment. In the same year, Latpate and Bajaj (2011) developed
multi-objective production distribution SC model for manufacturer storage under
uncertain environment. Later, Kurade and Latpate (2021) proposed different EOQ
inventory models under no, complete and partial backlogging. The time-dependent
demand and deterioration rates were assumed in the developed model. In the same
year, Latpate and Bhosale (2020) proposed SC coordination model with stochastic
market demand. Bhosale and Latpate (2019) formulated a fuzzy SC model with
Weibull distributed demand for dairy product.

Remainder of the chapter is organized as follows: In Sect. 2, preliminary concepts
of demand and deterioration variation of the inventory model are stated. Also, this
section is dedicated to the formulation of probabilistic inventory model with assump-
tions. Subsequently, Sect. 3 develops binary coded genetic algorithm approach to
solve the formulated probabilistic inventory model under various demand distri-
butions. The developed probabilistic EOQ inventory model is illustrated with the
hypothetical data for various demand distributions in Sect. 4 with results discussed
in the same section. Finally, sensitivity analysis of various parameters is discussed in
Sect. 5. The managerial implications are added in Sect. 6. Concluding remarks with
future scope are given in Sect. 7. Last, an exhaustive list of references is provided.
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2 Mathematical Model

The main working behavior of the SC is displayed in Fig. 1. This figure shows the
general network of SC, in which product flows from suppliers to retailers through
various stages. Thus, from supplier, producer, manufacturer and warehouses the
finished product will reach to the customer. The customer is always an integral part of
a SC network. In supply chain network (SCN), generally information and funds flow
from customers to suppliers and units of product flow from suppliers to customers.
Multi-echelon SCN provides an unique optimal way for efficiently and effectively
managing SC. It manages product and information flows both in and between several
linked but independent stakeholders.

Here, we consider a SCN in Fig. 1 in which the inventory is stored at different
independent nodes of SC. At supplier, the inventory of a raw material is stored for
the purpose of production of a finished product at several producers. The finished
product inventory is stored at producer level. The assembly of a finished product
is done at manufacturer level. Thus, the inventory of finished product is stored at
manufacturer level. At warehouses, the transported finished product is stored for the
purpose of distribution to several retailers. Thus, at each point of a SC different kinds
of inventory are stored. Formanaging this inventory,we have proposed a probabilistic
inventory model, in which the demand of a product from the market is assumed to
be probabilistic. The goal is to determine an EOQ of the product in the scheduling
period, t ∈ [0, T ].

2.1 Preliminaries

2.1.1 Demand Variation

EOQ inventorymodels are developed bymaximizing profit in which demand follows
a probability distribution per unit time with known parameters. Demand rate follows
an uniform and normal distribution.

Uniform Distribution

An uniform distribution with parameters a and b is denoted by U (a, b), and its
probability density function is

f (t) = 1

b − a
; a < t < b, a, b ∈ R. (1)

Normal Distribution

A normal distribution with mean μ and variance σ 2 is denoted by N (μ, σ 2), and its
probability density function is
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e−(t−μ)2/2σ 2; t ∈ R, σ > 0, μ ∈ R. (2)

2.1.2 Deterioration Variation

During the normal storage period, the deterioration may occur in several perishable
products. Deterioration includes vaporization, drying, decay, damage or spoilage
such that the product cannot be used for its intended application. For representing
the deterioration of perishable product, we use Weibull distribution.

Weibull Distribution: It includes all types of deterioration such as constant, increas-
ing and decreasing. It is defined as

g(t) = γβtβ−1; t > 0, γ > 0, β > 0. (3)

Note: If β > 1, it shows increasing deterioration; if β < 1, it shows decreasing
deterioration; and if β = 1, it shows constant deterioration.

During the period t ∈ [t1, T ] (see Fig. 2), it is generally assumed that customers
are impatient in nature and do not wish to wait for replenishment. Thus, only a
fraction of backlogged demand is considered and backlogging rate is taken to be
variable. Backlogging rate depends on the length of time, for the customer waits
before receiving the product. Here, backlogging rate is considered as a decreasing
exponential function of waiting time (Abad, 2001; Chang & Dye, Chang and Dye
(1999); Dye et al., 2007).

∴ Backlogging rate = 1

1 + δ(T − t)
; t1 ≤ t ≤ T .
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Here, we consider the expected demand per unit time of a product which is
obtained as:

Expected demand in (t, t + 	t) = D0 · P[demand of a product in interval (t, t + 	t)]
= D0 · lim

	t→0

[
F(t + 	t) − F(t)

	t

]

= D0 · f (t).

Assumptions: The assumptions considered in the problem are:

1. Replenishment rate is infinite with negligible lead time.
2. Time periods between two successive demands of an unique perishable product

are independent and identically distributed random variables.
3. Continuous review policy of inventory model for single perishable product is

considered.
4. The demand and deterioration rate are probabilistic in nature.
5. Storage facility is available at each node of SC.

Notations: These are listed below:

• I1(t) = positive inventory in a cycle of length T .
• I2(t) = negative inventory in a cycle of length T .
• D0 = total demand in the inventory cycle.
• D(t) = demand rate.
• Q = order quantity (per cycle).
• B = maximum inventory level (per cycle).
• g(t) = deterioration rate.
• γ and β = deterioration parameters.
• δ = backlogging parameter in the backlogging period.
• f (t) = probability density function.
• F(t) = cumulative distribution function.
• P(T, t1) = profit per unit time for partial backlogging model.

Costs:

The notations of various costs involved in the inventory model are listed below:

• C = the purchase cost (per unit).
• C2 = a finite shortage cost (per unit).
• S = the selling price (per unit), where S > C .
• A = the ordering cost (per order).
• R = the cost of lost sales (i.e., opportunity cost) (per unit).
• r = the inventory carrying cost as a fraction (per unit per unit time).
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Decision Variables:

The notations of various decision variables involved in the problem are listed below:

• t1 = length of the duration over which inventory level is positive in a cycle.
• T = length of the scheduling period.

The inventory level decreases in satisfying the market demand as well as due to
the deterioration during the period [0, t1] (see Fig. 2). Thus, the differential equations
considering the partial backlogging during the cycle [0, T ] are given as:

d I1(t)

dt
+ g(t)I (t) = −D(t), 0 ≤ t ≤ t1. (4)

d I2(t)

dt
= −D(t)

[1 + δ(T − t)] , t1 ≤ t ≤ T . (5)

The solutions of Eqs. (4) and (5), for the boundary condition I (t1) = 0, are

I1(t) = D0e
− ∫

g(t)dt
∫ t1

t
f (x)e

∫
g(x)dxdx, 0 ≤ t ≤ t1. (6)

I2(t) = −D0

∫ t

t1

f (x)

[
1

[1 + δ(T − t)]
]
dx, t1 ≤ t ≤ T . (7)

∴ inventory level at the beginning of the cycle (maximum inventory level) is

B = D0

∫ t1

0
f (x)e

∫
g(x)dxdx . (8)

Thus,

Sales revenue = S

{∫ t1

0
D(x)dx − I2(t)

}

= S

{∫ t1

0
D0 f (x)dx +

∫ T

t1

D0 f (x)

[
1

[1 + δ(T − x)]
]
dx

}

= SD0

{
F(t1) +

∫ T

t1

f (x)

[
1

[1 + δ(T − x)]
]
dx

}
. (9)

Carrying cost = rC
∫ t1

0
I1(x)dx = rCD0

∫ t1

0
e− ∫

g(t)dt

{∫ t1

t
f (x)e

∫
g(x)dxdx

}
dt.

(10)
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Shortage cost = C2

{∫ T

t1

[−I2(x)]dx
}

= −C2

{∫ T

t1

[
−D0

∫ t

t1

f (x)

[
1

[1 + δ(T − x)]
]
dx

]
dt

}

= C2D0

{∫ T

t1

[∫ t

t1

f (x)

[
1

[1 + δ(T − x)]
]
dx

]
dt

}
. (11)

Material cost = C

{∫ t1

0
I1(x)dx −

∫ T

t1

I2(x)dx

}

=
{
CD0

∫ t1

0
f (x)e

∫
g(x)dxdx

}
+

{∫ T

t1

[
CD0 f (x)

[1 + δ(T − x)]
]
dx

}
.

(12)

Opportunity cost = R
∫ T

t1

D(x)

[
1 − 1

[1 + δ(T − x)]
]
dx

= R D0

∫ T

t1

f (x)

[
1 − 1

[1 + δ(T − x)]
]
dx

= R D0

∫ T

t1

f (x)

[
δ(T − x)

[1 + δ(T − x)]
]
dx . (13)

Therefore from above defined expressions, the profit per unit time is

Profit = 1

T
(Sales revenue − order cost − carrying cost − shortage cost

− material cost − opportunity cost)

∴ P(T, t1) = 1

T

(
SD0

{
F(t1) +

∫ T

t1

[
f (x)

[1 + δ(T − x)]
]
dx

}
− CD0

∫ t1

0
f (x)e

∫
g(x)dxdx

− rCD0

∫ t1

0
e− ∫

g(t)dt
{∫ t1

t
f (x)e

∫
g(x)dxdx

}
dt

− C2D0

{∫ T

t1

[∫ t

t1
f (x)

[
1

[1 + δ(T − x)]
]
dx

]
dt

}
− A

−
∫ T

t1

[
CD0 f (x)

[1 + δ(T − x)]
]
dx − R D0

∫ T

t1
f (x)

[
δ(T − x)

[1 + δ(T − x)]
]
dx

)
.

(14)

The optimum values of T and t1 can be obtained by solving the above nonlinear
expression using GA. From this, the optimum order quantity is
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Q = I1(0) − I2(T ) = D0

[∫ t1

0
f (x)e

∫
g(x)dxdx +

∫ T

t1
f (x)

[
1

[1 + δ(T − t)]
]
dx

]
.

(15)

Particular cases: Case 1: Demand rate follows an uniform distribution (Eq. 1)
and deterioration rate follows aWeibull distribution (Eq. 3), i.e., f (t) ∼ U (a, b) and
g(t) ∼ W (γ, β).
Thus Equation14 becomes,

P(T, t1) = 1

T

(
SD0

{
t1 − a

b − a
+

∫ T

t1

1

b − a

[
1

[1 + δ(T − x)]
]
dx

}

−CD0

∫ t1

0

eγ xβ

b − a
dx − rCD0

∫ t1

0
e−γ tβ

{∫ t1

t

eγ xβ

b − a
dx

}
dt

− C2D0

{∫ T

t1

[∫ t

t1

1

b − a

[
1

[1 + δ(T − x)]
]
dx

]
dt

}
− A

−
∫ T

t1

1

b − a

[
CD0

[1 + δ(T − x)]
]
dx − R D0

∫ T

t1

1

b − a

[
δ(T − x)

[1 + δ(T − x)]
]
dx

)
.

(16)

Case 2: Demand rate follows a normal distribution (Eq.2) and deterioration rate
follows a Weibull distribution (Eq.3), i.e., f (t) ∼ N (μ, σ 2) and g(t) ∼ W (γ, β).
Thus Equation14 becomes,

P(T, t1) = 1

T

⎛
⎜⎝SD0

⎧⎪⎨
⎪⎩

∫ t1

−∞
e
− (x−μ)2

2σ2

σ
√
2π

+
∫ T

t1

e
− (x−μ)2

2σ2

σ
√
2π

[
1

[1 + δ(T − x)]
]
dx

⎫⎪⎬
⎪⎭

− CD0

∫ t1

0

e
− (x−μ)2

2σ2

σ
√
2π

eγ x
β
dx − rCD0

∫ t1

0
e−γ tβ

⎧⎪⎨
⎪⎩

∫ t1

t

e
− (x−μ)2

2σ2

σ
√
2π

eγ x
β
dx

⎫⎪⎬
⎪⎭ dt

− C2D0

⎧⎪⎨
⎪⎩

∫ T

t1

⎡
⎢⎣

∫ t

t1

e
− (x−μ)2

2σ2

σ
√
2π

[
1

[1 + δ(T − x)]
]
dx

⎤
⎥⎦ dt

⎫⎪⎬
⎪⎭ − A

−
∫ T

t1

e
− (x−μ)2

2σ2

σ
√
2π

[
CD0

[1 + δ(T − x)]
]
dx − R D0

∫ T

t1

e
− (x−μ)2

2σ2

σ
√
2π

[
δ(T − x)

[1 + δ(T − x)]
]
dx

⎞
⎟⎠ .

(17)
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3 Genetic Algorithm

Genetic algorithm (GA) is an optimization technique, which achieves better opti-
mization of the problem through random search. It is a population-based random
search algorithm. Holland (1992) was the main founder of GA. Initially, he intro-
duced this for solving the problems of natural system. Later, it has been widely
applied by several researchers for solving their optimization problems. During those
days, his Schema theorem was gained much attention by several researchers.

At initial stage, the research work about GA was found in proceedings of interna-
tional conferences. It is a biologically inspired search and stochastic algorithmwhich
works using genetic operators Deb (2005), namely reproduction/selection, crossover
and mutation. Mainly, it is inspired by Darwin’s theory of evolution which is one
of the competitive intelligent algorithms used for optimization. Its advantage is that
researchers require minimum problem information about various parameters of GA.
Its main parameters are population size N , crossover probability PCross andmutation
probability PMut . According to the initialization of population, there are two types of
GA, binary coded (BCGA) and real coded (RCGA). If initial population is generated
using binary number, then the resultant GA is called as BCGA; otherwise, it is called
as RCGA.

It always deals with the coding of the problem, and it requires only information
about objective functions for computingfitness function. In single objective optimiza-
tion problem, fitness function is nothing but simply the value of objective function.
But in case of multi-objective optimization problems, it is a suitably well-defined
function by considering all objectives. The solutions obtained from GA are always
efficient and robust since it works with a set of feasible points instead of single point
in the search space. Generally, multi-objective optimization problems are handled
by two different techniques. One is to concatenate all the objectives to get the single
objective with feasible constraints. The second one is to determine the Pareto optimal
solution set. Pareto optimal solutions are the non-dominated solutions. Generally, if
solution of the problem is strictly better than at least in one objective function, then
it is considered as a non-dominated solution.

Several researchers contributed for the development of GAs like Latpate and
Kurade (2017) formulated a fuzzy multiple objective genetic algorithm (fuzzy–
MOGA). The performance of this algorithm was analyzed using hypothetical case
study for a SC network. In this network, a manufacturing company having multiple
plants in different geographical regions was assumed. It consists of five raw mate-
rial suppliers and four manufacturing plants which produce single type of product,
for distributing six warehouses and eight retailers. Pareto decision space for various
uncertainty levels in demand and cost parameters was provided. Later, Latpate and
Kurade (2020) developed new fuzzy non-dominated sortingGA (fuzzy–NSGA II) for
optimizing crude oil SC of India. The formulated transportation model was suitable
for deciding optimum routes and modes of shipping. The hybridization of ant colony
optimization (ACO) and GA was proposed by Maiti (2020). In this hybridization,
the initial population of candidate solutions was generated by ACO. Efficiency of
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the algorithm was tested for different test functions. Maity et al. (2017) used MOGA
for solving their proposed multi−item inventory model in which demand was stock
dependent. GA has a major drawback like it requires more computational complex-
ity and its convergence performance. For convergence, it requires more simulation
runs. To overcome this, a compound mutation strategy in intelligent bionic genetic
algorithm (IB−GA) and multi-stage composite genetic algorithm (MSC−GA) was
proposed by Li et al. (2011). The latter one has better convergence with high accu-
racy. UsingMarkov chain theory, they studied the global convergence under the elitist
preserving strategy.

Here, we have proposed binary coded GA (BCGA) for solving the formulated
probabilistic EOQ inventory models with roulette wheel selection, single-point
crossover and bitwise mutation for development of solution methodology; see Algo-
rithm 1.

Genetic Operators

(1) Roulette wheel selection: There are various types of selection techniques like
roulette wheel selection, tournament selection, crowded tournament selection,
etc. The roulette wheel selection obtains duplicate copies of best chromosomes
and eliminates worst from the population, keeping its size fixed. In the pro-
posed BCGA, initial population is randomly generated from a continuous uni-
form distribution. Each randomly generated individual chromosome in the initial
population is a candidate solution to the problem. In this selection mechanism,
chromosomes are assigned a probability of being selected, based on their fitness
values.

(2) Single-point crossover: It is used for exchanging information between randomly
selected parent chromosomes by recombining parts of their genetic materials.
This operation performed probabilistically combines parts of two parent chro-
mosomes to generate offspring. Its step-by-step procedure is explained below:

(a) It works using crossover probability say Pcross . Thus, only (M · Pcross) chro-
mosomes in the population go for crossover where M is the population size.

(b) Randomly select any twoparent chromosomes from the population ofmating
pool. It is generated, when a selection operator is applied on the population.
Mating pool has size M .
Let X1 = {X11, X12, · · · , X1(k−1), X1k, X1(k+1), · · · , X1N } and
X2 = {X21, X22, · · · , X2(k−1), X2k, X2(k+1), · · · , X2N } be the two parent
chromosomes selected for crossover operation.

(c) Draw a random number in continuous uniform distribution from 1 to N , i.e.,
U (1, N ). Let it be k ∈ [1, N ].

(d) Then, the resulting offspring becomes X1
′ = {X11, X12, · · · , X1(k−1), X2k,

X2(k+1), · · · , X2N } and X2
′ = {X21, X22, · · · , X2(k−1), X1k, X1(k+1), · · · ,

X1N }.
(3) Bitwise mutation: It is applied to forbid the premature convergence, and it has

the ability to explore the new solution space. Mutation is the process in which
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the genetic structure of a chromosome is randomly altered. It leads to genetic
diversity in a population. It is a step-by-step working procedure explained below.

(a) It works using mutation probability say Pmut . Thus, only (M · Pmut ) genes
in the population go for mutation.

(b) Draw a random number from continuous uniform distribution, i.e., j ∈
[1, M].

(c) Let a chromosome X j = {X j1, X j2, · · · , X j (k−1), X jk, X j (k+1), · · · , X jN }
of length N be randomly selected for mutation.

(d) Again draw two points from continuous uniform distribution, i.e., r1, r2 ∈
[1, N ].

(e) Let r1 = 1 and r2 = k. Then, 1st and kth genes are selected for the mutation,
i.e., X j1 and X jk .

(f) Let X j1 = 1 and X jk = 0, then the new chromosome becomes

X j
′ = {X j1

′, X j2, . . . , X j (k−1), X jk
′, X j (k+1), . . . , X jN } where X j1

′ = 0
and X jk

′ = 1.

Algorithm 1
1: Start with a random initial population P0 which consists of offspring whose values are 1 and 0.

Set gen = 0. Let M be initial population size.
2: Using following mapping function to compute the time point Ti for i th string,

Ti = Tmin
i + Tmax

i − Tmin
i

2li − 1
∗ DV (Si )

where Tmin
i is the possible minimum value of time, Tmax

i is the possible maximum value of
time, li is the string length and DV (Si ) is the decoded value of the i th string.

3: Using following defined mapping function, compute time point ti ∈ (0, Ti ] for i th string,

ti = tmin
i + tmax

i − tmin
i

2li − 1
∗ DV (Si )

where tmin
i is the possible minimum value of time and tmax

i = Ti .
4: Calculate fitness function using the objective function for the initial population.
5: Thereafter, the roulette wheel selection method is applied on the initial population to select

parents for the mating pool.
6: Then, single-point crossover and bitwise mutation operators are applied on the mating pool until

offspring population Qgen of size M is filled.
7: Set i ter = gen + 1, and P(i ter) = Qgen ; go to Step 2.

4 Numerical Example

The SCdescribed in earlier section is demonstrated using a hypothetical example. Let
demand per unit time follow uniform distribution, i.e., f (t) ∼ U (a = 0, b = 1), and
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Table 1 Optimum solutions for uniform distributed demand

γ Carrying charge r

0.12 0.13 0.15 0.17 0.20

0.05 Q 63.22 61.39 61.10 56.82 52.11

B 62.79 62.99 56.55 55.32 53.05

P 669.77 668.42 667.08 665.24 662.93

t 0.623 0.602 0.564 0.545 0.519

T 0.859 0.989 0.976 0.999 0.753

0.10 Q 57.54 57.99 53.88 51.04 49.07

B 54.98 54.98 52.88 50.39 47.22

P 666.94 665.65 664.54 662.85 660.71

t 0.546 0.557 0.514 0.513 0.472

T 0.878 0.990 0.830 0.752 0.921

0.20 Q 50.34 48.44 48.07 45.86 44.71

B 49.07 47.09 46.61 44.64 43.22

P 662.39 661.36 660.34 658.99 657.08

t 0.474 0.461 0.451 0.434 0.414

T 0.998 0.987 0.884 0.926 0.980

normal distribution, i.e., f (t) ∼ N (μ = 1, σ 2 = 0.04). Other parameter values for
the model are: D0 = 100, A = 10, r = 0.15,C = 3, S = 10, β = 1.5 and δ = 2.We
have usedGAwith roulettewheel selection, single-point crossover, bitwisemutation,
number of iterations 100, crossover probability 0.8, mutation probability 0.2, string
length 40 and population size 20. Our aim is to determine the values of t1 and T which
maximize P(T, t1). Using Algorithm 1, EOQ (Q) and profit (P) are evaluated by
using Eqs. 16 and 17. The effect of parameter γ with respect to carrying charge (r )
is shown in Tables1 and 2.

From Table1, we conclude that as r increases with fixed γ the optimum profit
and EOQ both decrease for uniform distributed demand. Similar results are seen for
normal distributed demand; see Table2. Also, as γ increases with fixed r , EOQ and
optimum profit both decrease. From Tables 1 and 2, we see that the profit in uniform
distribution is more than normal distribution. The codes are written by R software
and run on i3–3110M, CPU @ 2.40 GHz and 4 GB RAM.

5 Sensitivity Analysis

The effect of various parameters, viz., total order quantity D0, order cost A, per unit
purchase cost C and selling cost S on the optimality of solution, is studied through
the sensitivity analysis. For fixed γ = 0.2 and β = 1.5, the effect of 50% over- and
under-estimation of these parameters on EOQ (Q) and optimum profit (P) has been
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Table 2 Optimum solutions for normal distributed demand

γ Carrying charge r

0.12 0.13 0.15 0.17 0.20

0.05 Q 51.59 51.59 51.58 51.59 51.37

B 46.64 47.70 46.43 47.10 45.37

P 319.07 317.57 315.64 313.09 309.37

t 0.974 0.979 0.973 0.976 0.968

T 1.00 0.999 1.00 0.999 0.999

0.10 Q 53.34 53.45 53.11 52.95 53.24

B 48.45 49.60 46.65 46.65 47.79

P 312.91 311.40 309.35 306.31 303.33

t 0.975 0.979 0.966 0.966 0.972

T 0.999 0.999 0.999 0.999 0.999

0.20 Q 56.03 56.61 57.02 56.16 55.946

B 47.23 49.94 51.70 47.68 46.99

P 300.75 299.33 296.51 295.05 291.34

t 0.953 0.965 0.972 0.9552 0.952

T 0.999 0.999 0.999 0.999 0.999

examined. That means the sensitivity analysis is performed by changing each of the
parameters by −50%, −30%, +20% and +50% taking one parameter at a time and
keeping the remaining parameters unchanged. The obtained results for uniform and
normal distributed demand rate are shown in Table3.

On the basis of the results of Table3, the following observation can be made:

(1) All parameters except order cost effects equally on P .
(2) Total demand during the scheduling period, purchase cost and selling cost for

uniform distribution effects mostly on P .
(3) Order cost has low effect on P for uniform distributed demand rate.
(4) Effect of almost all parameters except order cost for normal distribution is much

high.
(5) The parameters except selling cost affects high on backlogging time for uniform

distribution.
(6) For normal distribution, all parameters have low effect on backlogging and cycle

time.

6 Managerial Implications

According to the demand of deteriorated item, the manager of a company finds the
suitable probability distribution for the deteriorated item. Also, by comparing vari-
ous probability distributions manager can decide the unique probability distribution
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Table 3 Effect of changes in the parameters of the probabilistic demand inventory model

Percentage of over- and under-estimation of parameter

%
change
in

Uniform distribution Normal distribution

−50% −30% +20% +50% −50% −30% +20% +50%

D0 Q −31.20 −17.24 11.51 26.66 −49.22 −30.01 20.22 51.08

P −51.42 −30.93 20.70 51.81 −51.75 −31.07 20.49 51.77

t 35.90 15.61 −7.06 −14.90 1.75 0.09 0.40 0.73

T −11.67 −16.05 4.04 1.27 −0.02 −0.03 −0.01 0.01

A Q −25.18 −10.08 11.38 22.96 −0.94 −2.76 −2.00 0.07

P 1.91 1.07 −0.65 −1.53 1.89 1.03 −0.49 −1.60

t −23.37 −15.55 8.16 19.20 −1.05 −2.86 −2.15 −0.02

T 8.07 3.22 8.98 0.35 0.01 −0.02 −0.00 0.03

C Q 35.74 15.09 −7.32 −15.87 0.12 0.60 −2.92 −4.66

P 24.25 14.48 −9.57 −23.84 32.11 19.06 −12.63 −30.56

t 34.88 14.37 −8.84 −17.38 0.17 0.84 −2.63 −4.84

T 9.55 −8.82 8.02 −7.32 −0.01 −0.04 −0.14 0.01

S Q 0.75 1.91 −3.12 −0.2 −1.78 −1.51 0.39 3.15

P −75.67 −45.41 30.28 75.7 −83.19 −50.08 33.36 83.21

t −1.05 −4.23 −1.81 −3.56 −1.86 −1.39 0.46 3.50

T 0.48 −2.72 −5.48 −2.74 0.02 −0.05 0.01 0.02

which maximizes the profit of a company. The proposed models help the manager to
understand the uncertainty in the market. Also, these models can assist the manager
in accurately determining the optimal order quantity and profit. Before applying the
model and proposed algorithm, manager has to collect necessary information about
SC of the company. Such types of probabilistic EOQ inventory models can be useful
in manufacturing and distributing industries. Moreover, these models can be used
in inventory control of certain deteriorating items such as food items, electronic
components, fashionable commodities and others.

7 Conclusions

In this study, EOQ inventory models under probabilistic market demand for a multi-
echelon SC have been proposed for items with Weibull distributed deterioration.
In the developed EOQ inventory models, shortages were allowed and they were
partial backlogged. The backlogging rate is a variable, and it depends on the length
of time for the customer waits before receiving the item. Thus, it is considered
as a decreasing exponential function of waiting time. In the literature, deterministic
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inventorymodelswere developed by several researchers by assumingmarket demand
of a deteriorating item depends on stock, on time, on replenishment, etc. But here,
we have developed probabilistic EOQ inventory models, which can be helpful where
demand of the deteriorating item is uncertain in nature. Also, we are providing a
novel solution methodology for solving proposed inventory models using binary
coded GA. This methodology can be helpful for solving deterministic as well as
probabilistic inventory models.

In a future study, it is hoped to further incorporate the proposed model into more
realistic assumptions, such as lead time as a decision variable and a finite rate of
replenishment. Also, formulated models can be solved by using particle swarm opti-
mization, ant colony optimization, etc.
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The Evolution of Dynamic Gaussian
Process Model with Applications to
Malaria Vaccine Coverage Prediction

Pritam Ranjan and M. Harshvardhan

Abstract Gaussian process (GP)-based statistical surrogates are popular, inexpen-
sive substitutes for emulating the outputs of expensive computer models that simu-
late real-world phenomena or complex systems. Here, we discuss the evolution of
dynamic GP model—a computationally efficient statistical surrogate for a computer
simulator with time-series outputs. The main idea is to use a convolution of standard
GP models, where the weights are guided by a singular value decomposition (SVD)
of the response matrix over the time component. The dynamic GP model also adopts
a localized modelling approach for building a statistical model for large datasets. In
this chapter, we use several popular test function-based computer simulators to illus-
trate the evolution of dynamic GP models. We also use this model for predicting the
coverage of Malaria vaccine worldwide. Malaria is still affecting more than eighty
countries concentrated in the tropical belt. In 2019 alone, it was the cause of more
than 435,000 deaths worldwide. The malice is easy to cure if diagnosed in time, but
the common symptoms make it difficult. We focus on a recently discovered reliable
vaccine called Mosquirix (RTS,S) which is currently going under human trials. With
the help of publicly available data on dosages, efficacy, disease incidence and com-
municability of other vaccines obtained from the World Health Organization, we
predict vaccine coverage for 78 Malaria-prone countries.

Keywords Gaussian process (GP) model · Big data · Dynamic GP · Time-series
valued process

1 Introduction

Computer simulators are widely used to understand complex physical systems in
many areas such as aerospace, renewable energy, climate modelling and manufac-
turing. For example, Greenberg (1979) developed a finite volume community ocean
model (FVCOM) for simulating the flow of water in the Bay of Fundy; Bower et al.
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(2006) discussed the formation of galaxies using a simulator called GALFORM;
Bayarri et al. (2009) used a simulator called TITAN2D for modelling the maximum
volcanic eruption flow height; Zhang et al. (2018) used a TDB simulator to model
the population growth of European red mites. Realistic computer simulators can also
be computationally expensive to run, and thus statistical surrogates used as an inex-
pensive substitute for a deeper understanding of the underlying phenomena. Sacks
et al. (1989) proposed using a realization of the Gaussian process (GP) model as a
surrogate for such simulator outputs.

The types of simulator output structures dealt with are as varied as the appli-
cations. One is faced with scalar, multivariate, functional, time-series and spatial–
temporal data, to name a few. In this chapter, we discuss the evolution of GP-based
surrogate models for computer simulators with time-series outputs, which we refer
to as dynamic computer simulators. Such simulators arise in various applications,
for example, rainfall–runoff model (Conti et al., 2009), vehicle suspension system
(Bayarri et al., 2007) and TDB model (Zhang et al., 2018).

The emulation of dynamic computer simulators has been considered by many
(Kennedy & O’Hagan, 2001; Stein, 2005; Bayarri et al., 2007; Higdon et al., 2008;
Conti et al., 2009; Liu & West, 2009; Farah et al., 2014; Hung et al., 2015). In this
chapter, we highlight the singular value decomposition (SVD)-based GP models,
which was originally introduced by Higdon et al. (2008) for computer model cali-
bration with high-dimensional outputs. However, Zhang et al. (2018) generalized it
further for time-series responses and developed the empirical Bayesian inference for
large-scale computer simulators.

Fitting GP models requires the inversion of N × N spatial correlation matrices,
which gets prohibitive if N (the sample size) becomes large. In otherwords, fittingGP
models over the entire training set can often be computationally infeasible for large-
scale dynamic computer experiments involving thousands of training points. A naive
popular approach is to build localized models for prediction in the big data context.
To search for the most relevant data for local neighbourhood in a more intelligent
way, Emery (2009) built a local neighbourhood by sequentially including data that
make the kriging variance decrease more. Gramacy and Apley (2015) improved
the prediction accuracy by using a sequential greedy algorithm and an optimality
criterion for finding a non-trivial local neighbourhood set, and Zhang et al. (2018)
further extended the idea for dynamic simulator outputs.

In this chapter, we illustrate the implementation of dynamic SVD-basedGPmodel
for several test function-based simulator outputs and a real-life modelling problem
where the objective is to predict the usage of a new Malaria vaccine. Malaria is
a mosquito-borne disease caused by a Plasmodium, a malarial parasite. Although
Malaria is not life-threatening by its nature, if left untreated, it can cause severe
illness and prove to be fatal. The diseasewas eliminated fromAmerican andEuropean
continents by first half of twentieth century but is still very common in South Asia
and Sub-Saharan Africa. In 2017 alone, there were more than 219 million cases of
Malaria which resulted in deaths of more than 435,000 people worldwide (World
Health Organization, 2019).
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In February 2019, a new Malaria vaccine RTS,S—known by the trade name
Mosquirix—was approved for human trials in three countries—Ghana, Malawi and
Kenya—coordinated byWHO. The study is expected to get over by December 2022.
However, in last few months, several pharmaceutical majors have begun showing
interest in the vaccine’s mass production, and the investors want to estimate the cov-
erage ratio—defined by the vaccine population count divided by the total population.

The chapter is outlined as follows. In Sect. 2, we start with the standard GP model
for scalar-valued response and present the dynamic SVD-based GP model. Further,
we discuss the localized dynamic GPmodel for handling big data. Section3 explains
how dynamic GP model is used for predicting vaccination coverage, with model
inputs and built-in R packages. They are illustrated with model outputs on a world
map. Finally, concluding remarks and recommendations are suggested in Sect. 4.

2 Evolution of Dynamic Gaussian Process Model

In this section, we present a sequence of statistical surrogate models starting from the
most basic GP model which emulates deterministic computer simulators returning
scalar outputs, to dynamic GP model that acts as a surrogate to time-series valued
simulators. The models are supported by a brief explanation of their theoretical
foundations, an associated example and R implementation.

2.1 Basic Gaussian Process Model

Gaussian process models are immensely popular in computer experiment literature
for emulating computer simulator outputs. In one of the pioneering researches, Sacks
et al. (1989) suggested using realizations of Gaussian stochastic process to model
deterministic scalar-valued simulator outputs. However, the notion of such statistical
models originates from the kriging literature in geostatistics.

Let the training data consist of d-dimensional input and 1-dimensional output of
the computer simulator, denoted by xi = (xi1, xi2, . . . , xid) and yi = y(xi ), respec-
tively. Then, the GP model is written as

yi = μ + z(xi ), i = 1, 2, . . . , n, (1)

where μ is the overall mean and {z(x), x ∈ [0, 1]d} ∼ GP(0,σ2
z R(, ))with E(z(x))

= 0, Var(z(x)) = σ2
z , and Cov(z(xi ), z(x j )) = σ2

z R(xi , x j ) where R(, ) is a posi-
tive definite correlation function. Then, any finite subset of variables {z(x1), z(x2),
. . . , z(xn)}, for n ≥ 1, will jointly follow multivariate normal distribution. That
is, Y = (y1, y2, . . . , yn)′ ∼ MV N (μ1n,σ2

z Rn), where 1n is an n × 1 vector of all
1’s and Rn is an n × n correlation matrix with (i, j)th element given by R(xi , x j )
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(see Sacks et al. (1989), Santner et al. (2003), Rasmussen and Williams (2006) for
more details).

The model described by (1) is typically fitted by either maximizing the likeli-
hood or via Bayesian algorithms like Markov chain Monte Carlo (MCMC). As a
result, the predicted response ŷ(x0) for an arbitrary input x0 can be obtained as a
conditional expectation from the following (n + 1)-dimensional multivariate normal
distribution:

(
y(x0)
Y

)
= N

((
μ

μ1n

)
,

(
σ2
z σ2

z r
′(x0)

σ2
z r(x0) σ2

z Rn

))
, (2)

where r(x0) = [corr(x1, x0), . . . , corr(xn, x0)]′. The predicted response ŷ(x0) is
the same as the conditional mean:

E(y(x0)|Y ) = μ + r(x0)
′R−1

n (Y − 1nμ), (3)

and the associate prediction uncertainty estimate (denoted by s2(x0)) can be quanti-
fied by the conditional variance:

Var(y(x0)|Y ) = σ2
z (1 − r ′(x0)R−1

n r(x0)). (4)

Themost crucial component of such aGPmodel is the spatial correlation structure,
R(, ), which dictates the ‘smoothness’ of the interpolator that passes through the
observations. By definition, any positive definite correlation structure would suffice,
but the most popular choice is the power exponential correlation family given by

R(xi , x j ) =
d∏

k=1

exp{−θk |xik − x jk |pk }, (5)

where θk and pk control the wobbliness of the surrogate in the kth coordinate. A
special casewith pk = 2 for all k = 1, 2, . . . , d, represents themost popularGaussian
correlation also known as radial basis kernel in machine learning literature. Figure1
demonstrates the significance of pk in the smoothness of the mean prediction.

Example 1 Suppose the simulator output is generated by a one-dimensional test
function f (x) = ln(x + 0.1) + sin(5πx), and X = {x1, . . . , x7} is a randomly gen-
erated training set as per the space-filling Latin hypercube design (McKay et al.,
1979). We use an R library called GPfit (MacDonald et al., 2015) for fitting the
model via maximum likelihood approach. Figure1 shows the fitted surrogate along
with the true simulator response curves.

Clearly, the choice of pk in (5) plays an important role in determining the smooth-
ness of the predictor. It can be noticed from Fig. 1 that pk = 2 versus pk = 1.95 does
not make visible difference in terms of smoothness. However, it turns out that by



The Evolution of Dynamic Gaussian Process Model … 103

0.0 0.2 0.4 0.6 0.8 1.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

x (Input Variable)

Pr
ed

ic
te

d 
R

es
po

ns
e

pk=2
pk=1.95
pk=1.5
pk=1.05

Fig. 1 Mean predictions obtained using GPfit, when the true simulator response is generated
using f (x) = ln(x + 0.1) + sin(5πx)

changing the power from pk = 2 to pk = 1.95, the numerical stability of the corre-
lation matrix inversion can be immensely increased.

Depending upon the parameter estimation approach used (i.e. maximum likeli-
hood method, empirical Bayesian or full Bayesian), the prediction uncertainty esti-
matemay vary. For instance, in empirical Bayesian approach, the parametersμ,σ and
θ in Rn are replaced by their maximum a posteriori (MAP) estimates. On the other
hand, the MLE-based approach starts by maximizing the likelihood with respect to
μ and σ2

z , giving closed form expressions as

μ̂ = (1′
n R

−1
n 1n)

−1(1′
n R

−1
n Y ), (6)

and

σ̂2
z = (Y − 1nμ)′R−1

n (Y − 1nμ)

n
, (7)

conditional on the value of θ in Rn . The hyper-parameter θ is further estimated
by maximizing the profile likelihood, which is typically an intensive optimization
problem. Sacks et al. (1989) report the prediction uncertainty estimate as

s2(x0) = σ2
z

(
1 − r ′(x0)R−1

n r(x0) + (1 − 1n ′R−1
n r(x0))2

1n ′R−1
n 1n ′

)
, (8)

which accounts for additional uncertainty due to the prediction of unknown constant
mean μ. Of course, the difference between (8) and (4) can be somewhat substantial.
See Example 2 for an illustration using a test function-based computer simulator.
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Fig. 2 The black solid dots are the training data points. Left panel: The blue dashed curve is the
mean prediction obtained using GPfit, the black solid curve is the true simulator response curve
f (x) = ln(x + 0.1) + sin(5πx), and the shaded area represents the uncertainty quantification via
ŷ(x) ± 2s(x). Right panel: The prediction uncertainty obtained via MLE as in (8)—the posterior
variance estimate as in (4)

Example 2 Considering the same set-up as in Example 1, Fig. 2 shows the fitted
surrogate along with the prediction uncertainty estimates obtained via GPfit and the
two formulations (4) and (8).

From the right panel of Fig. 2, it is clear that the third term in the prediction uncer-
tainty estimate (in (8)) is relatively large in the unexplored input regions. As a result,
it is recommended to account for uncertainty quantification due to the estimation of
unknown model parameters.

Several additional theoretical and numerical issues on GP models require more
careful understanding. See Santner et al. (2003), Rasmussen and Williams (2006)
and Harshvardhan and Ranjan (2019), for more details on optimization of likelihood,
near-singularity of correlationmatrices, choice of correlation kernel, parametrization
of hyper-parameters and the choice of mean function.

2.2 Dynamic Gaussian Process Model

Experimentation via dynamic computer simulators arises in various applications,
for example, rainfall–runoff model (Conti et al., 2009), vehicle suspension system
(Bayarri et al., 2007) and population growth model for European red mites (Zhang
et al., 2018). The real-life application presented in this chapter comes from the phar-
maceutical industry, where the investors want to predict the coverage of a particular
Malaria vaccine called RTS,S/AS01 (Mosquirix) around the globe over a 20-year
window.

The time-series dependence in the simulator response makes the statistical emula-
tion substantially more challenging as compared to the standard GPmodel presented
in the previous section. Recently, a few attempts have been made in this regard. For
example, Conti et al. (2009) constructed dynamic emulators by using a one-step
transition function of state vectors to emulate the computer model movement from
one time step to the next. Liu andWest (2009) proposed time varying autoregression
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(TVAR) models with GP residuals. Farah et al. (2014) extend the TVAR models
in Liu and West (2009) by including the input-dependent dynamic regression term.
Another clever approach is to represent the time-series outputs as linear combinations
of a fixed set of basis such as singular vectors (Higdon et al., 2008) or wavelet basis
(Bayarri et al., 2007) and impose GP models on the linear coefficients. Zhang et al.
(2018) further extended the singular value decomposition (SVD)-based approach
for large-scale data. Next, we discuss the basic version of SVD-based GP model
developed by Higdon et al. (2008).

Suppose the computer simulator outputs have been collected at N design points
and stored in the N × q design matrix X = [x1, . . . , xN ]T , and Y = [ y(x1), . . . ,
y(xN )] is the corresponding L × N matrix of time-series responses. Then, the SVD
on Y gives

Y = UDV T ,

where U = [u1, . . . , uk] is an L × k column-orthogonal matrix, D = diag(d1, . . . ,
dk) is a k × k diagonal matrix of singular values sorted in decreasing order, V is
an N × k column-orthogonal matrix of right singular vectors and k = min{N , L}.
Higdon et al. (2008) suggested modelling the simulator response as

y(x) =
p∑

i=1

ci (x)bi + ε, (9)

where x ∈ R
q and bi = diui ∈ R

L , for i = 1, . . . , p represent the orthogonal basis.
The coefficients ci ’s in (9) are assumed to be independent Gaussian processes, i.e.
ci ∼ GP(0,σ2

i Ki (·, ·;θi )) for i = 1, . . . , p, where Ki ’s are correlation functions.
We use the popular anisotropic Gaussian correlation, K (x1, x2;θi ) = exp{−∑q

j=1

θi j (x1 j − x2 j )2}. The residual term ε in (9) is assumed to be independentN (0,σ2 I L).
The number of significant singular values, p, in (9), is determined empirically by
the cumulative percentage criterion p = min{m : (∑m

i=1 di )/(
∑k

i=1 di ) > γ}, where
γ is a threshold of the explained variation.

In this chapter, we discuss the implementation of this so-called svdGP model
by Zhang et al. (2018). R library called DynamicGP (Zhang et al., 2020) provides
user-friendly functions for quick usage. The most important function is svdGP, and
its usage is illustrated as follows:

svdGP(design, resp, frac=0.95, nthread=1, clutype="PSOCK", ...)

where design is the input design matrix, resp is the output response matrix,
frac specifies γ = 95%, and nthread and clutype controls the parallelization
of the implementation. There are a few additional arguments of svdGP() that
accounts for other nuances of the model fitting process.

For all the model parameters in (9), Zhang et al. (2018, 2020) used the maximum
a posteriori (MAP) values as the plug-in estimates. To obtain the MAP estimates of
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process and noise variance parameters, σ2
i and σ2, inverse Gamma priors were used,

i.e.

[σ2
i ] ∼ IG

(
αi

2
,
βi

2

)
, i = 1, . . . , p, [σ2] ∼ IG

(
α

2
,
β

2

)
,

and Gamma prior was used for the hyper-parameter 1/θi j of the correlation function.
Zhang et al. (2018) show that the approximate predictive distribution for an arbi-

trary untried x0 ∈ R
q is obtained by

π( y(x0)|Y) ≈ π( y(x0)|V∗, �̂, σ̂2) ≈ N (
Bĉ(x0|V∗, �̂), B�(V∗, �̂)BT + σ̂2 I L

)
,

(10)

where B = [d1u1, . . . , dpup] = U∗D∗, with U∗ = [u1, . . . , up], D∗ = diag(d1,
. . . , dp) and V ∗ = [v1, . . . , v p]T , and �̂ = {θ̂1, . . . , θ̂ p} and σ̂2 are the MAP esti-
mates of the correlation parameters and noise variance σ2, respectively. As shown in
Zhang et al. (2018),

θ̂i = argmax
θi∈Rq

|K i |−1/2

(
βi + ψi

2

)−(αi+N )/2

π(θi ), and

σ̂2 = 1

NL + α + 2

(
rT r + β

)
,

(11)

where K i is the N × N correlation matrix on the design matrix X with the ( j, l)th
entry being K (x j , xl; θ̂i ) for i = 1, . . . , p and j, l = 1, . . . , N , ψi = vT

i K
−1
i vi ,

π(θi ) is the prior distribution ofθi and r = vec(Y) − (IN ⊗ B)vec(V ∗T )with vec(·)
and ⊗ being the vectorization operator and the Kronecker product for matrices,
respectively.

The vector of predictive mean of the coefficients at x0 is

ĉ(x0, |V ∗, �̂) = [ĉ1(x0|v1, θ̂1), . . . , ĉp(x0|v p, θ̂ p)]T (12)

= [kT1 (x0)K−1
1 v1, . . . , k

T
p (x0)K

−1
p v p]T ,

where ki (x0) = [K (x0, x1; θ̂i ), . . . , K (x0, xN ; θ̂i )]T . The predictive variance
�(V ∗, �̂) of the coefficients at x0 is a p × p diagonal matrix with the i th diag-
onal entry being

σ̂2
i (x0|vi , θ̂i ) = (βi + vT

i K
−1
i vi )

(
1 − kTi (x0)K

−1
i ki (x0)

)
αi + N

. (13)

Example 3 illustrates the implementation of svdGPmodel for a test function-based
computer simulator model via the R library DynamicGP (Zhang et al., 2020).
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Fig. 3 Model prediction for six randomly chosen inputs. Each panel shows the true simulator
response (black solid curve), the mean predicted svdGP fit (dashed red curve) and the uncertainty
bounds (blue dotted curves)

Example 3 Suppose the time-series valued response is generated using the follow-
ing test function (Forrester et al., 2008) which takes 3-dimensional inputs,

f (x, t) = (x1t − 2)2 sin(x2t − x3), (14)

where x = (x1, x2, x3)T ∈ [4, 10] × [4, 20] × [1, 7] and t ∈ [1, 2] is on a 200-point
equidistant time grid. We used svdGP() function in the R library DynamicGP
for easy implementation. Figure3 illustrates the implementation, by first fitting the
svdGP model to a training set of 20 input points randomly generated via maximin
Latin hypercube design in the three-dimensional hyper-rectangle [4, 10] × [4, 20] ×
[1, 7] and then predicting the time-series valued simulator output using svdGP()
function.

From Fig. 3, it is clear that the fitted surrogate model predictions are reasonable
approximations of the simulator outputs at the design points. We fitted svdGP model
using the default settings of DynamicGP package. Of course, one can play around
with other arguments to obtain better (more accurate) predictions.

Both, the basic GP models (in Sect. 2.1) which emulate scalar-valued simulator
outputs and the svdGP models (in Sect. 2.2) used for emulating time-series val-
ued dynamic simulator responses, require numerous inversions of n × n correlation
matrices—this is computationally intensive and prohibitive if N (the sample size)
is large. For instance, in our motivating application where the training data size
is N = 146 (see Sect. 3), model fitting via either likelihood method or a Bayesian
approach would be computationally burdensome unless the codes are parallelized
on heavy computing clusters. The next section briefly reviews GP-based models for
large data.
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2.3 Generalizations for Big Data

Thus far, several techniques have been proposed to account for the large size of the
data while building a GP-based surrogate; see Santner et al. (2003), Harshvardhan
and Ranjan (2019) for quick reference. A naive yet popular approach is to fit several
local inexpensive (somewhat less accurate) models instead of one big (supposedly
more precise) model. The method of searching for local neighbourhood can be as
simple as finding the k-nearest neighbour (k-NN) at the point of prediction. For
scalar-valued simulators, Emery (2009) built amore efficient local neighbourhood by
sequentially including data that make the kriging variance decrease more. Gramacy
and Apley (2015) improved the prediction accuracy by using a greedy algorithm and
an optimality criterion for finding a non-trivial local neighbourhood set. Zhang et al.
(2018) extended this approach further for the svdGP model.

Assume the total training data size is N , and we wish to predict the simulator
response at x0. Then, the main idea behind this greedy approach in Gramacy and
Apley (2015), Zhang et al. (2018) is to first use k-NN approach for finding n0 neigh-
bours from the training data and then sequentially obtain the remaining n − n0 points
by using an optimality criterion. This proposed greedy sequential method known as
lasvdGP (locally approximate svdGP) is computationally very efficient as compared
to the full scalar GP/svdGP and much more accurate than the naive k-NN-based
svdGP model (referred to as knnsvdGP).

The following functions in the R library DynamicGP can be used for easy imple-
mentation:

knnsvdGP(design,resp, nn=20, ..., nthread = 1, clutype="PSOCK")
lasvdGP(design, resp, n0=10, nn=20, ..., nthread = 1, clutype="PSOCK")

where design, resp, nthread and clutype are the same as in
svdGP(), and the important additional parameters are nn—the size of the local
neighbourhood set (on which the local GP models have to be built), and n0—size
of the local neighbourhood set to be found via k-nearest neighbours which will
serve as the starting point of the greedy sequential approach for building the local
neighbourhood set.

Example 4 Suppose the simulator response is generated using the same test function
as in Example 3, but the training data are obtained on a N = 500-point random Latin
hypercube design in the input space: [4, 10] × [4, 20] × [1, 7]. In such a case, fitting
a full svdGP is certainly infeasible on a regular laptop or desktop. Thus, we rely on
fitting the localized surrogatemodels like knnsvdGP and lasvdGP. Figure4 shows the
surrogate fits with n0 = 20 and nn = 30 local neighbourhood point sets for lasvdGP
model.

From Fig. 4, it is clear that the surrogate fits are much better approximations of
the underlying truth (as compared to the illustration in Example 3), which is however
expected as the training size is 500 (much bigger than 20-point design in Example 3).
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Fig. 4 Model prediction for six randomly chosen inputs. Each panel shows the true simulator
response (black solid curve), the mean predicted lasvdGP fit (dashed red curve) and the uncertainty
bounds (blue dotted curves)

Interestingly, the error bounds around the predicted mean response are too narrow
and sometimes do not cover the true simulator output. It can perhaps be attributed to
the fact that the R libraryDynamicGP usesMAP estimators and not the full Bayesian
approach. It is often believed that the latter approach accounts for more uncertainty
in the model fitting process.

3 Application: Malaria Vaccination Coverage

In this section, we use the historical data on worldwide vaccination coverage for
several diseases to predict the coverage ratio of a newMalaria vaccine. The diseased
typically experience fevers, chills and flu like illnesses (Centers for Disease Control,
2019) with the symptoms varying in their severity on a case-by-case basis. This can
be lethal if not treated properly, and a 2002 study by Greenwood and Mutabingwa
(2002) tells us the serious state ofMalaria in theworld (seeWorldHealthOrganisation
(2019) for latest detailed report).

Recently, a new Malaria vaccine RTS,S (also known as Mosquirix) has been
showing promising results for human trials in Ghana, Malawi and Kenya. Malaria
Vaccine Implementation Programme (MVIP), coordinated byWHO, is being funded
by a global fund comprising (1) Gavi—The Vaccine Alliance, (2) UNITAID and (3)
PATH. As of now, no results have been made public, and the study is expected to
get over by December 2022. However, in last few months, several pharmaceutical
majors have begun showing interest in the vaccine’s mass production.

Major limitations in the success of a Malaria vaccine are technical and economic
feasibility (Moorthy et al., 2004).With the current human trials underway, the former
is largely solved; however, the latter remains. A study on predicting coverage ratios
would immensely benefit to attract global monies—by corporates and philanthropist
funds—to the cause. Recall that the coverage ratio is defined by the vaccine pop-
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Fig. 5 Human development index (HDI) value for different countries considered in this study
around the globe

ulation count divided by the total population. Thus, our objective is to predict the
coverage ratio for this Malaria vaccine, using the available data on the coverage ratio
of other vaccines. Based on earlier studies on vaccines, the following variables have
been identified as predictors:

• Dosage number (X1): The value is k, if k doses of the vaccine have already been
given. Luman et al. (2005) suggested higher the number of dosages, lower the
chance of completing the entire treatment.

• Dosage time (X2): Number of months after birth when the first dosage is taken; 0
represents ‘at birth’. Luman et al. (2005) found vaccines which were given at birth
had higher coverage as there is no extra effort needed to come to health centre.

• Efficacy (X3): Recorded in percentage—ability of the vaccine to actually pre-
vent the disease (see McLean, 1995). Vaccination does not guarantee prevention,
assuming if chances of prevention are better, more people will be vaccinated.

• Incidence per lac (X4): It is more likely that the parents will give the vaccine to
their children if the occurrence of the disease is high. When incidences are high,
the population is more careful about prevention.

• Communicable (X5): Binary (0: non-communicable, 1: communicable)—
assuming that the fear of contagion may drive the vaccination.

• Years active (X6): How long has the vaccine been around for public use (in years).

We used data for several vaccines (e.g. tuberculosis, diphtheria, hepatitis B, polio,
Japanese encephalitis, measles, NTetanus, rubella and yellow fever) collected on
aforementioned variables from 78 countries. We pooled the countries using human
development index (HDI) values into 8 groups of size 8 and 2 groups of size 7 each.
Figure5 depicts the HDI value of different countries. In total, the data consist of
146 observations—the coverage ratio of different vaccines for 10 country groups
observed over 38year period (from 1980 to 2017), i.e. yt (xi ), for t = 1, . . . , 38 and
the corresponding input xi = (xi1, xi2, . . . , xi7), where i = 1, 2, . . . , 146 represent
the observation number, X1, . . . , X6 are predictor variables described above and the
seventh input (X7) is the average HDI value of the country group.
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Fig. 6 Prediction of coverage ratio for Mosquirix at t = 0 for different country groups using
lasvdGP model with nn = 50 and n0 = 30 points

Fig. 7 Prediction of coverage ratio for Mosquirix at t = 38 for different country groups using
lasvdGP model with nn = 50 and n0 = 30 points

Since the training data size is too big to fit a full svdGP model on a standard
laptop, we implement the localized model (i.e. lasvdGP model) developed by Zhang
et al. (2018) for the model fitting. For a quick illustration, we predict the coverage
ratio of the proposed Malaria vaccineMosquirix for the first dose (X1 = 0) given to
a 6-month-old child (X2 = 6), assuming the disease is not communicable (X5 = 0)
and the vaccine has been around since 1980 (the study period).We run themodel with
the average observed value of the incidence (X4 = 60) and a conservative efficacy
(X3 = 70) as compared to other vaccines. We vary the value of X7 for predicting the
coverage ratio of Mosquirix at t = 0 and t = 38 for different country groups; see
Figs. 6 and 7, respectively.

Note that the development of an accurate model for predicting the coverage ratio
is beyond the scope of this chapter. Our main objective is to illustrate the usage
of lasvdGP model in a complex real-life statistical problem. Although the overall
pattern between Figs. 5, 6 and 7 shows positive association among HDI value and
coverage ratio, more conclusive remarks require extensive modelling and analysis.
One should also look at the dependence with respect to other predictor variables.
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Fig. 8 Mean predictions of the Mosquirix coverage ratio over time for different country groups
classified based on HDI values

Figure8 shows the predicted coverage ratio over time—the direct output of
lasvdGP model for different country groups.

Clearly, the coverage ratio increases to 100%. This is expected from this model,
but an in-depth analysis is required for more meaningful inference.

4 Concluding Remarks

In this chapter, we talked about the popular Gaussian process models and its impor-
tance in computer-aided experiments for emulating real-world phenomena. We dis-
cussed various fundamental concepts that drive Gaussian process models, and the
statistical interpretations and usages. These models, however, suffer from computa-
tional instability due to a variety of reasons, major ones being related to the near-
singularity and the cost of inverting correlation matrices. Due to the computational
overload, the process is expensive for numerous evaluations, which are needed for
parameter estimation. Under the umbrella of big data, we present efficient localized
GP models for emulating dynamic (time-series valued) computer simulators.

The concepts and R implementations are illustrated via several test functions.
Finally, we presented an elaborate case study of how a newMalaria vaccine coverage
can be predicted using the dynamic SVD-based GP model. Of course, this is just an
illustration and not an attempt to accurately solve the case study. An elaborated
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second-level modelling and analysis is required to understand how and why the
coverage ratios of Mosquirix would vary for different countries.

One could consider alternative approaches in predicting the coverage ratios, for
example, clustering techniques to distribute the countries through their holistic char-
acteristics instead of artificially binning into groups using HDI. One could also sim-
ply use a time-series modelling through AR, MA, ARIMA, etc., to predict coverage
ratios.
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Appendix: R Codes

The following R code generates the prediction curves in Fig. 1 of Example 1. One can
change the ‘power’ argument in GP_fit and ‘predict’ to fit GP model with different
power exponential correlation structures.

#-------------------------------------------
n = 7; d = 1;
computer_simulator <- function(x) {

y <- log(x+0.1)+sin(5*pi*x)
return(y)

}

set.seed(1)
library(lhs)
library(GPfit)

x = maximinLHS(n,d)
y = computer_simulator(x)

xpred = seq(0,1,length=100)
ytrue = computer_simulator(xpred)

GPmodel = GP_fit(x,y, corr = list(type="exponential", power=1.95))
pred=predict(GPmodel,xnew=xpred, corr = list(type="exponential", power=1.95))
yhat = pred$Y_hat
#-------------------------------------------

The following R code generates the prediction curves in Fig. 3 of Example 3.
ret$pmean[,i] contains the predictedmean response for the i th input, and ret$ps2[,i]

contains the corresponding mean square error estimates.

#-------------------------------------------
set.seed(1234568)

http://aspectratio.in
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library("lhs")
library(DynamicGP)

forretal <- function(x,t,shift=1)
{

par1 <- x[1]*6+4
par2 <- x[2]*16+4
par3 <- x[3]*6+1
t <- t+shift
y <- (par1*t-2)ˆ2*sin(par2*t-par3)

}
timepoints <- seq(0,1,len=200)

train <- maximinLHS(20,3)
resp <- apply(train,1,forretal,timepoints)
test <- randomLHS(50,3)

ret <- svdGP(train,resp,test,nstarts=5)
#-------------------------------------------

For generating the predictions in Fig. 4 of Example 4, we only need to replace the
last line of the previous code (‘ret <- svdGP(...)’) with the following code.

#-------------------------------------------
retl <- lasvdGP(atrain,resp,atrain,nn=30,n0=20,nstarts=5)
#-------------------------------------------
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Grey Relational Analysis
for the Selection of Potential Isolates
of Alternaria Alternata of Poplar

Kartik Uniyal, Girish Chandra, R. U. Khan, and Y. P. Singh

Abstract Mapping the variability of the pathogenic population and selection of
potential pathogenic isolates remains a challenge. The chapter deals with the grey
relational analysis (GRA), a method for multiple attribute decision-making situa-
tions, to select the potent isolates of Alternaria alternata causing leaf spot on poplar.
Earlier, three methods, viz. rough gauging, equal class interval and unequal class
interval, were attempted. Poplar is an important tree in the agri-silvicultural system.
The year-round availability of the poplar in field encourages the survival and persis-
tence of the pathogen with high parasitic fitness. A survey was conducted in poplar
fields at different geographical locations. Altogether, 72 isolates of A. alternatawere
collected from four commercial poplar clones. Fifteen A. alternata isolates were
selected based on growth rate, sporulation and spore size (maximum length and
breadth). All the-larger-the-better attributes were the choice for isolate selection in
GRA. For choosing top fifteen isolates, equal and variable weights to all the four
attributeswere used. Distinguishing coefficients of 0.1–0.9with step-up size 0.2were
taken for the analysis. GRA normalizes the measured values of all attributes making
the isolates comparable. Moreover, the output of isolates was not much influenced
by the variation in distinguishing coefficient. It was observed that changing weights
influenced the selection of isolates substantially and growth played a significant role
in selection of the isolates followed by the sporulation.
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1 Introduction

The idea of grey relational theory was initially proposed by Deng (1982) with the
aim to cope with the uncertainty of a system (so-called grey system). The grey
system provides multidisciplinary approaches for analysis and abstract modelling
of systems for which the information is limited, incomplete and characterized by
random uncertainty (Sifen & Forrest, 2007). GRA, a part of grey theory, is one of the
methods solving the problems on complicated interrelationships between multiple
alternatives and attributes. GRA solves multi-attribute decision-making problems
by combining the entire range of performance attribute values being considered for
every alternative into one single value. This reduces the original problem to a single-
objective decision-making problem. It uses information from the grey system to
dynamically compare each factor quantitatively, based on the level of similarity and
variability among factors to establish their relation.

GRA has been successfully applied on cluster and prediction analysis, robot path
planning, project selection, performance and factor effect evaluation and multiple
criteria decision (Chang & Yeh, 2005; Lu & Yeh, 2002; Yeh & Lu, 2000). GRA
has been used in various fields, for example, the restoration planning for power
distribution systems (Chen, 2005), the detection of silicon wafer slicing defects
(Lin et al., 2006), financial performance of venture capital (Kung & Wen, 2007),
in agriculture (Xie et al., 2009), determining the optimum process parameters for
open-end spinning yarn (Hasani et al., 2012), etc.

In forestry research, the use of GRA in assessing and optimizing small biomass
boilers has been attemptedbyMorán et al. (2006).Optimizationof drillingparameters
for medium-density fibreboard (MDF) panel with multiple performance character-
istics using GRA was carried out by Prakash et al. (2015). The best possible combi-
nation of various parameters of self-healing glass fibre reinforced plastic to optimize
the mechanical properties was obtained by Mercy et al. (2017). GRA method was
used to individually study grey correlations among six factors (rainfall duration and
intensity, antecedent soil moisture, vegetation cover and type, and slope gradient)
and soil cumulative infiltration by Juan et al. (2013). The relational degree between
Yanbian’s forestry industry and three forestry industries was systematically anal-
ysed by Xinning and Yufen (2017). Recently, Bisht et al. (2020) performed GRA
for prioritization of the essential oil samples of Santalum album L. using the two
important attributes α- and β-santalols. Saha et al. (2020, 2021) have successfully
used GRA in creating a comparability sequence to obtain the rank of the various
root quality parameters of eucalyptus clones at Forest Research Institute, Dehradun.
Other possible areas of GRA in forestry and environmental science may be chosen
from Chandra et al. (2020).

Poplar occupies a unique and important position in rural economy of India. There
are 35 species of poplar currently recognized in the world. Populus deltoides is the
most popular exotic species in India. Poplar suffers from several diseases as they are
being raised as single clone monocultures and are, thus, prone to disease outbreaks
(Singh et al., 2012). While the potential for rapid growth exists, poplar productivity
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is frequently reduced by diseases (Broderick et al., 2010; Widin & Schipper, 1981).
Diseases from nursery to plantations have been reported and studied extensively
by various workers (Singh et al., 2012). For development of an effective breeding
programme for disease resistance, a comprehensive understanding about morpho-
logical, physiological and pathogenic variations of causal organism is essential. In
this background, the variation in the population of a potent pathogen of poplar A.
alternata was assessed.

Seventy-two isolates of the pathogenwere collected from four commercial clones,
viz. G48, Udai, WSL22 and WSL39, from three distinct geographical locations of
poplar culture. Four attributes, i.e. growth rate, sporulation and spore size (length
maximum (LM) and breadth maximum (BM)), of the isolates were studied. In forest
pathology, one confronts for the selection of potent isolates from the collected popu-
lation as performance of each isolate depends upon multiple attributes. Therefore,
mapping the variability of the pathogenic population and selection of potential isolate
remains a challenge. It was attempted and resolved through a variety of statistical
methods (Uniyal et al., 2018). Further, in this chapter, GRA was used for the same
purpose.

2 Material and Methods

2.1 Survey and Collection of Alternaria Isolates

The surveys for collection of fungal isolates were conducted at three nurseries of
Wimco Seedlings Private Limited, India, during the period 2007 to 2011 as detailed
in Table 1. Leaves infected with A. alternata like symptoms were collected from
each clone. In all, 72 isolates were obtained, and their morphological attributes were
studied.

Table 1 Details of sampled nurseries and P. deltoides clones

S. no Name of the nursery Geographical location Clone of P. deltoides

1 Bagwala, Udham Singh
Nagar, Uttarakhand

29° 30′ N and 79° 28′ E G48, Udai, WSL22 and
WSL39

2 Maheshwari and Paniyala,
Roorkee, Uttarakhand

29° 52′ N and 77° 53′ E G48, Udai, WSL22 and
WSL39

3 Thana Chappar, Yamuna
Nagar, Haryana

30° 7′ N and 77° 18′ E G48, WSL22 and WSL39
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2.2 GRA for Selection of Potent Isolates

Suppose N number (72 in the present case) of isolates of A. alternata were collected
during the survey from the study area. These isolates depend on p growth attributes
(four, viz. growth rate, sporulation, LM and BM which were measured on the ratio
scale). Based on isolate attributes, the value of p recorded varied and random. The
objective of the study was to select n number of isolates (15) out of the population
having higher combine values of the attributes. The flow diagram of GRA procedure
is presented in Fig. 1.

The essential four steps in obtaining top n isolates through GRA method are
explained as under:

Step 1. Grey Relational Generating: This step, also called the data processing
to supplement information, is aimed to process complicate and tedious attributes at
one place for a bird’s eye view. When the units in which performance is measured
are different for different attributes, for example, growth in cm and spore size in
micrometre (μm), the influence of some attributes may be underestimated. It may

Fig. 1 Flow diagram showing the steps of GRA
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further happen if performance of some attributes has a very large range, for example,
sporulation in the present case (133.33–1,181.67), it may neglect the influence of
those attributes. Also, in the sequence, if the attributes’ goals and directions are
different, the other relational analysis might also produce incorrect results. There-
fore, preprocessing of the data is necessary. It could be done by transformation
of all performance values for each isolate into a comparability sequence, a process
analogous to normalization. This process is called grey relational generating in GRA.

From the calculation point of view, ith isolate, i = 1, 2, . . . , 72 may be denoted
as

Yi = (yi1, yi2, yi3, yi4), where yi j is the performance value of jth attribute of
ith isolate. Now, Yi can be transformed into the comparability sequence, Xi =
(xi1, xi2, xi3, xi4) using Eq. (2.1).

xi j = yi j − Min
{
yi j , i = 1, 2, . . . , 72

}

Max
{
yi j , i = 1, 2, . . . , 72

} − Min
{
yi j , i = 1, 2, . . . , 72,

}

i = 1, 2, . . . , 72; j = 1, 2, 3, 4 (2.1)

It should be noted that the above equation is used when the-larger-the-better
attributes are the choice for selection. The present case pertains to this category.

Step 2. Defining Reference Sequence (Ideal Target Sequence): In this step, the
values of xi j ’s are scaled in [0, 1]. The scaled value of a particular attribute which is
closer to 1 shall be the better one for that attribute. Therefore, an isolate will be the
best choice if all its performance values are closest to or equal to 1. However, this kind
of isolates, generally, does not exist in nature. In such situation, a reference sequence
may be defined for the best isolate as X0 = {x01, x02, x03, x04} = {1, 1, 1, 1}. The
aim shall be to find the isolates whose comparability sequence is the closest to the
reference sequence.

Step 3. Determination of Grey Relational Coefficient: Determination of the
grey relational coefficient between all comparability sequences and the reference
sequence is needed to see the closeness of xi j with x0 j , j = 1, 2, 3, 4. The larger
the grey relational coefficient means there is more closeness of xi j with x0 j . The grey
relational coefficient, δ

(
xi j , x0 j

)
can be determined as:

δ
(
xi j , x0 j

) = �min + d�min

�i j + d�max
, i = 1, 2, . . . , 72; j = 1, 2, 3, 4 (2.2)

where �i j = |xi j − x0 j |, �min = Min(�i j ), �max = Max(�i j ) and d is a
distinguishing coefficient with d ∈ [0, 1].

The purpose of the distinguishing coefficient is to expand or compress the range
of the grey relational coefficient. When the values of xi j ’s are very small, the value
of distinguish coefficient may be adjusted nearer to 1 or vice versa. The different
distinguishing coefficients shall produce different values of grey relational grades
(in Step 4) with change in the difference of values between the graded but usually
the output, i.e. the rank of isolates shall remain same. In this article, the results are
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based upon the distinguishing coefficient d = 0.5, while other values of d were also
tested to see the effect on the grey relational grades.

Step 4. Calculation of Grey Relational Grades: Finally, based on the grey
relational coefficients, the grey relational grade, �(X0, Xi ), between the reference
sequence (X0) and every comparability sequence (Xi , i = 1, 2, . . . , 72)was calcu-
lated. If a comparability sequence translated from an isolate has the highest grey
relational grade between the reference sequence and itself, that isolate will be the
best choice. The grey relational grade also indicates the degree of similarity between
the comparability and the reference sequence (Fung, 2003). It is calculated as:

�(X0, Xi ) =
4∑

j=1

w jδ
(
xi j , x0 j

)
, i = 1, 2, . . . , 72 (2.3)

where w j denotes the weight assigned to the jth attribute by the decision maker with∑4
j=1 w j = 1. The weights are totally depending on researcher’s perception about

the importance of the attribute.

3 Results

3.1 Growth Attributes of A. Alternata

The fungal attribute values of A. alternata are given in Table 2 which has been used
for the computation of grey relational generating.

3.2 Grey Relational Generating, Coefficients and Grades

The calculated values of grey relational generating were obtained by Eq. (2.1). For
example, in case of growth attribute, the maximum and minimum values were 7.00
and 3.82 cm, respectively. The transformed value using Eq. (2.1) for isolate A1 is
x11 = 5.92−3.82

7.00−3.82 = 0.66 and so on.
The grey relational coefficients δ

(
xi j , x0 j

)
with d = 0.5 were calculated using

Eq. (2.2) and given in Table 3.
The values of grey relational grades, �(X0, Xi ), i = 1, 2, . . . , 72 for equal

(0.25) and unequal values of w j , j = 1, 2, 3, 4, with d = 0.5 are shown in Table
4. In unequal case, based upon personal preference, weight of 0.5 was assigned to
growth, 0.3 to sporulation and equal weight of 0.1 to both LM and BM .

It was observed that barring four isolates, viz. isolates A19, A45, A63 and A67,
all the isolates were common in both the situations. In comparison, the isolates A63
and A67 were not found in the unequal case, while A19 and A45 were absent in
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Table 3 Grey relational coefficients for growth attributes of A. alternata isolates (d = 0.5)

Isolate no Growth Sporulation LM BM Isolate no Growth Sporulation LM BM

A1 0.60 0.49 0.43 0.52 A37 0.62 0.47 0.36 0.33

A2 0.58 0.44 0.48 0.47 A38 0.46 0.63 0.39 0.39

A3 0.61 0.52 0.42 0.54 A39 0.38 0.87 0.37 0.40

A4 0.62 0.56 0.45 0.37 A40 1.00 0.72 0.38 0.43

A5 0.61 0.76 0.38 0.42 A41 1.00 0.58 0.38 0.45

A6 0.51 0.54 0.41 0.51 A42 0.54 0.43 0.43 1.00

A7 0.77 0.80 0.46 0.50 A43 0.76 0.49 0.37 0.43

A8 0.43 0.55 0.42 0.51 A44 0.39 0.56 0.39 0.42

A9 0.58 0.83 0.36 0.41 A45 0.98 0.50 0.39 0.38

A10 0.56 0.78 0.41 0.64 A46 0.51 0.44 0.44 0.37

A11 0.45 1.00 0.40 0.48 A47 1.00 0.73 0.48 0.59

A12 0.86 1.00 0.47 0.46 A48 0.63 0.38 0.40 0.42

A13 0.86 0.98 0.42 0.49 A49 0.65 0.43 0.44 0.45

A14 0.54 0.63 0.49 0.44 A50 0.61 0.45 0.41 0.41

A15 0.79 0.77 0.54 0.53 A51 0.74 0.49 0.46 0.40

A16 0.80 0.96 0.38 0.49 A52 0.82 0.50 0.50 0.38

A17 0.63 0.56 0.33 0.43 A53 0.35 0.35 0.63 0.54

A18 0.64 0.52 0.44 0.41 A54 0.45 0.34 0.48 0.62

A19 0.87 0.69 0.40 0.38 A55 0.78 0.41 0.37 0.43

A20 0.74 0.54 0.33 0.36 A56 0.39 0.33 0.56 0.74

A21 0.74 0.49 0.42 0.65 A57 0.39 0.34 0.47 0.66

A22 0.60 0.45 0.42 0.35 A58 0.33 0.46 0.38 0.45

A23 0.59 0.49 0.41 0.47 A59 0.45 0.52 0.48 0.40

A24 0.83 0.66 0.44 0.37 A60 0.52 0.40 0.45 0.37

A25 1.00 0.70 0.40 0.41 A61 0.45 0.68 0.39 0.39

A26 0.81 0.56 0.48 0.47 A62 0.45 0.63 0.46 0.44

A27 0.51 0.47 0.39 0.40 A63 0.53 0.65 0.76 0.46

A28 0.70 0.43 0.41 0.37 A64 0.99 0.79 0.47 0.61

A29 0.79 0.46 0.41 0.37 A65 1.00 0.88 0.51 0.42

A30 0.63 0.41 0.35 0.38 A66 0.42 0.48 0.57 0.55

A31 0.36 0.43 0.55 0.44 A67 0.45 0.63 1.00 0.49

A32 1.00 0.65 0.42 0.41 A68 0.45 0.62 0.48 0.41

A33 0.39 0.47 0.43 0.46 A69 0.41 0.51 0.51 0.44

A34 0.69 0.39 0.42 0.46 A70 0.74 0.72 0.36 0.38

A35 0.71 0.48 0.47 0.38 A71 0.75 0.67 0.66 0.48

A36 0.72 0.45 0.40 0.50 A72 0.79 0.59 0.38 0.42
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Table 4 Grey relational grades and ranking of selected A. alternata isolates at d = 0.5 for equal
and unequal weights

Rank w1 = w2 = w3 = w4 = 0.25 w1 = 0.5, w2 = 0.3, w3 = w4 = 0.1

Isolate no GRG Isolate no GRG

1 A64 0.7031 A65 0.8562

2 A65 0.7019 A64 0.8397

3 A47 0.6986 A47 0.8245

4 A12 0.6983 A12 0.8219

5 A13 0.6900 A13 0.8186

6 A16 0.6588 A40 0.7983

7 A15 0.6567 A25 0.7912

8 A71 0.6416 A32 0.7774

9 A67 0.6412 A16 0.7758

10 A40 0.6337 A41 0.7557

11 A7 0.6310 A15 0.7315

12 A25 0.6281 A7 0.7195

13 A32 0.6203 A19 0.7193

14 A41 0.6010 A45 0.7154

15 A63 0.6007 A71 0.6932

equal weight situation. Subjectivity of the weight selection of the attributes by the
individual may change the ranking of the individual isolate. For example, A64 and
A65 had highest ranking of 1 and 2 that mutually changed depending upon theweight
selection.

The relation between distinguishing coefficient and grey relational coefficient
for first three isolates is given in Fig. 2. It showed that as distinguishing coefficient

Fig. 2 Relationship between distinguishing coefficient and grey relational coefficient
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increased, the value of grey relational coefficients also increased for all three isolates,
therefore, to the final grey relational grades were not much affected.

To understand the effect of distinguish coefficient (d) and different weight assign-
ments, five different values of d = 0.1 to 0.9 with step-up size 0.2 were taken for
comparison. Table 5 gives the effect for the case of both equal and unequal weight
selections. For the case of equal weight, with reference to d = 0.5, the selection of
isolates was not influenced by the variation in d in top five isolates. In selecting total
top 15 isolates, 11 isolates were in common for each values of d. With reference to d
= 0.5, top 3 isolates did not lose their positionwith changing the value of d at unequal
weights. Thereafter, d (particularly small d) influences the ranking of the selected
isolates. For the value of d ≥ 0.5, all the 15 selected isolates were common. With
decreasing the value of d = 0.5, number of common rank isolates slightly decreased.
In all, 11 isolates were found common.

Now, the critical contributing attribute with respect to the allocation of weight
was worked out.

3.3 Performance Evaluation of Selected Isolates

The performance of highest rank isolate, i.e. A64 for d = 0.5 at equal weight, was
initially checked. Therewas a total of 4C2 = 6 pair combinations of the four attributes
(Table 6). With each pair, the weight of first attributed was changed either with
increasing or decreasing value; subsequently, the weight of other attribute automat-
ically adjusted with the rule that the sum of weights of all four attributes remained
one. It is to be noted that the weight of other two attributes which were not the part of
the pair was fixed with the weights 0.25. Performance in terms of ranks was checked
for two decimal places of weights. For example, the first pair G × S of Table 6, the
weights of two attributes LM and BM were fixed at 0.25 for both the case of increasing
and decreasing weights of G. In the case of increasing weights of G, there was no
change in the performance of the isolate. While in the case of decreasing weights of
G, the performance was decreasing. In all the combinations, where eitherG or S was
first partner, if the weight gets increased of the first partner, no change was registered
in rank of the isolate. However, the performance gets decreased when the weight of
first partner decreased. In the pair of LM × BM , the trend remained opposite. When
the weight of LM increased, the performance was decreased; however, no changes
in the performance when the weight of LM decreased.

To understand the contribution of a combination of attributes in the perfor-
mance/ranking of an isolate in a population, the values of sum of squares of the
residuals (SSR) for each pair of attributes were calculated using the formula.

SSR = ∑
c (Rc − R)2, where Rc and R denotes the values of changed rank and

the original rank (in our case R = 1).
In the present case, the combination G × LM had the highest SSR among all six

possible combinations reflecting the importance of G and LM in the performance of
an isolate or its ranking (Table 7).
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Table 6 Effect of weight on ranks of the A. alternata isolate A64 with all attribute combinations

Combination of
attributes

Type Weight Rank

Growth (G) Sporulation (S) LM BM

G × S Increasing G No change

Decreasing G 0.18 0.32 0.25 0.25 2

0.17 0.33 0.25 0.25 4

0.12 0.38 0.25 0.25 5

G × LM Increasing G No change

Decreasing G 0.22 0.25 0.28 0.25 3

0.21 0.25 0.29 0.25 4

0.2 0.25 0.3 0.25 5

0.14 0.25 0.36 0.25 6

0.13 0.25 0.37 0.25 7

0.11 0.25 0.39 0.25 8

0.1 0.25 0.4 0.25 9

0.09 0.25 0.41 0.25 11

0.08 0.25 0.42 0.25 12

0.06 0.25 0.44 0.25 13

0.03 0.25 0.47 0.25 16

0.02 0.25 0.48 0.25 17

G × BM Increasing G No change

Decreasing G 0.21 0.25 0.25 0.29 2

0.2 0.25 0.25 0.3 4

0.18 0.25 0.25 0.32 5

0.1 0.25 0.25 0.4 7

0.06 0.25 0.25 0.44 9

0.04 0.25 0.25 0.46 10

0.03 0.25 0.25 0.47 11

0.02 0.25 0.25 0.48 12

S × LM Increasing S No change

Decreasing S 0.25 0.21 0.29 0.25 2

0.25 0.2 0.3 0.25 4

0.25 0.17 0.33 0.25 5

0.25 0.07 0.43 0.25 7

0.25 0.02 0.48 0.25 9

S × BM Increasing S No change

Decreasing S 0.25 0.18 0.25 0.32 2

0.25 0.16 0.25 0.34 4

(continued)
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Table 6 (continued)

Combination of
attributes

Type Weight Rank

Growth (G) Sporulation (S) LM BM

0.25 0.12 0.25 0.38 5

LM × BM Increasing LM 0.25 0.25 0.34 0.16 2

0.25 0.25 0.37 0.13 4

0.25 0.25 0.43 0.07 5

Decreasing LM No change

Table 7 Values of SSR for each pair of attributes under study

Type G × S G × LM G × BM S × LM S × BM LM × BM

SSR 26 1,049 428 126 26 26

Table 8 Marginal SSR value of all four attributes

Attribute G S LM BM

SSR 1,503 178 1,201 480

Further, the performance or ranking was resolved at individual attribute level.
Table 8 gives the marginal values of SSR for each attribute in a pair. The marginal
SSR of an attribute was obtained by summing all SSRs in which that particular
attribute was present. For example, the marginal SSR ofGwas obtained by summing
the SSR values from all those pair where G was a partner in Table 7. From Table 8,
it is observed that the G (growth) had the maximum effect on the weight followed
by S, LM and BM .

4 Discussion and Conclusion

An attempt has been made to select the most potent isolate from a diverse population
of A. alternata with the help of grey relational analysis. The characteristics of GRA
method lie in making two incomparable attributes (e.g. growth in measurable unit
and sporulation in absolute number) comparable and normalizing hugely different
values of an attribute. To understand this process, the normal curves of both values,
original and transformed (grey relational generating), were drawn and with the help
of Kolmogorov statistic, and their p-values were calculated for comparison. It was
interesting to note that no change was observed in the shape of the normal curve and
p-values. Moreover, for each growth attribute, grey relational generating had same
order as that of its original values. Though in all attributes the generating had values
between 0 and 1, that range did not provide any basis for the comparison among
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attributes due to their different unit of measurements and inherent variation within
attribute. The basic purpose of the normalization step seems to be (i) transform the
original values of the attributes in the range 0 to 1 with 1 as the reference value for
the case of larger-the-better and (ii) make the attributes independent from their unit
of measurements by converting them into a range from 0 to 1.

The distance between reference and normalized value is not just the absolute
difference between them. This distance is obtained through grey relational coefficient
comprising of distinguishing coefficient, the absolute difference and its minimum
and maximum values. The grey relational coefficient is more precise distance as it
includes the variations within normalized values and, therefore, a two-step normal-
ization process. It was also observed that the absolute difference and grey relational
coefficients are not always found in the same order, in turn affecting grey relational
grades.

GRA makes a multiple attribute problem into a single-attribute decision-making
solution as evidentwith the conclusion that growth out of four attributes, in the present
case, influences the choice of an isolate most. It was achieved by calculating sum
of squares of residuals which enabled to pinpoint the contribution of an attribute.
Besides, sporulation or the number of spores played a role, second to growth, in
isolate selection. If one observes the infection process of a fungal pathogen, these
two biological attributes, that is, growth and sporulation, represent the crucial input
in terms of pathogen proliferation and spread. This linking of biological fact with
the mathematical interpretation gives a real meaning to the selection of a potent
isolate. Thus, the presentmethod paves theway not only to understand the population
structure but also tomark themost important attribute for selection. Thismethodmay
be adopted for further investigations in forestry pertaining to population studies.
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Decision Making for Multi-Items
Inventory Models

Nidhi D. Raykundaliya and Dharmesh P. Raykundaliya

Abstract Decisionmaking plays a vital role in any field of science, commerce, engi-
neering, arts and even in our day-to-day life. The main concern of decision making
here is to optimize pricing and ordering strategies for the inventory system. Most
of the decisions are subject to various constraints, and these constraints emphasize
different pricing and ordering policy. In this chapter, we develop multi-items inven-
tory models under declining demand with the Weibull distributed deterioration rate
for two different scenarios, namely credit period and quantity discount, to settle the
account due against purchases and suggest suitable inventory model, which maxi-
mize total profit. For validity of the model and decision making, numerical example
and comparison study are also carried out.

Keywords Credit policy · Declining demand · Quantity discount · Weibull
deterioration

1 Introduction

The economic order quantity (EOQ) models introduced by Wilson (1934) become
foundation for the development of more advanced and complex inventory models.
In any system, uncontrolled inventory creates various complex problems; as a result,
one cannot survive in competitive environment. In literature, several authors have
discussed inventory models to solve the problem of uncontrolled inventory by incor-
porating various scenarios such as deterioration rate, credit policy and quantity
discount for both single and multi-items. Further, most of the inventory models are
developed under the assumption that demand is either constant or changes uniformly
over time.
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Deterioration of goods may be in the form of damage or decay with time, and this
factor affects behavior of the demand in inventory analysis. Due to deterioration, it
loses its marginal value and decreases usefulness from the original one. Medicines,
chemicals, food stuff, fashion goods, vegetables and fruits are examples of deteri-
orating goods. The deterioration rate of goods is either constant, or it will increase
with respect to time. Dave and Patel (1981), Hollier andMak (1983), Sachan (1984),
Raafat (1991), Shah and Shah (2000), Goyal and Giri (2001), Chang et al. (2006)
Shah and Raykundaliya (2014), Khanna et al. (2016a) and Raykundaliya (2017)
derive inventory model for deteriorating items.

In the competitive environment, supplier trade credit is one of the important
promotional tools for many enterprises, and due to this, it has impact on finance
and accounting of enterprise. It also helps retailer to keep revenue with an interest-
bearing account and earn some interest during credit period. On the contrary, retailer
does not require to pay any interest to supplier during permissible period while
settling account as per mutual contract, but if payment is not made in specified
time period as per contract, then after permissible period interest will be charged to
retailer. Bringham (1995) defines “net 30” which means a supplier allows 30-days
credit period to settle total amount owed to him. In the same line, Jaggi and Aggarwal
(1995), Sarker et al. (2000), Chung and Huang (2003), Ouyang et al. (2006, 2009),
Shah and Raykundaliya (2009a, b, 2014), Khanna et al. (2016b, 2017) and Jaggi
et al. (2018) discuss credit policy scenario for single item. Jiangtao et al. (2014)
and Leopoldo et al. (2015) develop model using two-level trade credit policies for
multi-items.

In the era of globalization, to survive in competitive environment, only credits
policy of the company does not help to attract buyers but quantity discount pricing
policy of the company is also another important promotional tool to attract buyers.
Wee and Junas (1997) develop lot-for-lot discount pricing policywhen units in inven-
tory are subject to deterioration with constant rate. Using the principal of mutual
benefit, Chakravarty and Martin (1988), Papachristos and Skouri (2003), Shah and
Raykundaliya (2009a, b), Lin and Chia (2011) and Pandey and Vaish (2017) derive
inventory models by considering discount on selling price to attract buyers and
motivate them for bulk purchasing.

In this chapter, we develop multi-items inventory models for deteriorating items
when deterioration rate follows the two parameters Weibull distribution with two
scenarios: credit policy and quantity discount under decline demand market. In
Sect. 2, necessary notations and assumptions for inventory model are given. Math-
ematical models are derived for credit policy, and quantity discount is given in
Sect. 3. Section 4 discusses numerical example and comparison study for bothmodels
developed in the Sect. 3. Concluding remark is given in the Sect. 5.
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2 Notations and Assumptions

2.1 Assumptions

1. The inventory system under consideration deals with the multi-items.
2. The planning horizon is infinite.
3. The demand of the product is declining function of time.
4. Shortages are not allowed, and lead time is zero.
5. The units in inventory subject to deteriorate with time follow the two parameters

Weibull distribution. The deteriorated units can neither be repaired nor replaced
during the cycle time.

6. The retailer can deposit generated sales revenue in an interest-bearing account
during permissible credit period. At the end of this period, the retailer settles
account for all units sold keeping the difference for day-to-day expenditure and
paying the interest charges on the unsold items of stock.

2.2 Notations

R(t) : (= a(1 − bt)) The annual demand, decreasing function of time,
where a > 0 is constant demand and b denotes the rate of the
demand

C : Purchase cost per unit of an item

P : The unit selling price with (P > C)

h : The inventory holding cost per unit per year

A : Ordering cost per order

M : The permissible credit period offered by the supplier to the retailer
for settling an account

I c : The interest charged per monetary unit in stock per annum by the
supplier

I e : The interest earned per monetary unit per year. I c > I e

d1 : Percentage discount offered before deterioration per unit

d2 : Percentage discount offered after deterioration per unit

f1 :
(= (1 − d1)−n1 , n1εR

)
is effect of pre-deterioration discount on

selling price

f2. :
(= (1 − d2)−n2 , n2εR

)
is effect of post-deterioration discount on

selling price

γ : The time after which deterioration starts

Q : The order quantity

I (t) : The inventory level at any instant of time t, 0 ≤ t ≤ T

T : The replenishment cycle time (a decision variable)

(continued)
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(continued)
(= αβtβ−1

)
, deterioration units in inventory system follows the two

parameters Weibull distribution, where α(0 ≤ α < 1) denotes scale
parameter and β(> 1) denotes shape parameter

T Pi : The total profit per time unit where i = 1, 2

3 Mathematical Model

In this section, we develop two different types of deteriorating inventory models with
declining demand for multi-items by considering promotional tools credit period
(Model 1) and quantity discount (Model 2), respectively, to attract the buyers.

Model 1: When Credit Period is Offered

The inventory level I(t) depletes tomeet demand and deterioration. The rate of change
of an inventory level is governed by following differential equation:

d I (t)

dt
+ θ(t)I (t) = −R(t), 0 ≤ t ≤ T, (1)

with the initial condition I (0) = Q and the boundary condition I (T ) = 0.
Using series expansion of exponential series and under the assumption that 0 ≤

α < 1 (neglecting α2 and its higher-order term), the solution of differential Eq. (1)
is

I (t) = a(T − t) − ab
(
T 2 − t2

)

2
+ aα

(
T β+1 − tβ+1

)

β + 1
− abα

(
T β+2 − tβ+2

)

β + 2

−aα
(
T tβ − tβ+1) + abα

(
T 2tβ − tβ+2

)

2
0 ≤ t ≤ T

(2)

and the order quantity

Q = aT − abT 2

2
+ aαT β+1

β + 1
− abαT β+2

β + 2
(3)

The total profits of the inventory system per unit time consist of followings:
Sales revenue per unit time

SR = PQ

T
(4)
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Purchase cost per unit time

PC = CQ

T
(5)

Ordering cost

OC = A

T
(6)

Deterioration cost per unit time

DC = C

T

(
Q − T∫

0
R(t)dt

)
. (7)

Inventory holding cost per unit time

I HC = h

T

T∫
0
I (t)dt. (8)

Regarding interest earned and interest charged two cases arises on the bases of
length of T andM but asmarket scenario suggesting that the case regarding (T ≤ M)

is not favorable so here we develop model regarding the case when M ≤ T .
On unsold item, supplier charges an interest rate and hence interest charged per

unit time

IC = C IC
T

T∫
M
I (t)dt (9)

During credit period, retailer sells product and earned interest, and hence, interest
earned per unit time

I E = C Ie
T

M∫
0
R(t)tdt (10)

Hence, total profit per unit time is

T P(T ) = SR − PC − DC − I HC − OC − IC + I E (11)

The optimal value of T can be obtained by solving ∂T P(T )

∂T = 0 and obtained T

guarantees maximize profit if ∂2T P(T )

∂T 2 < 0 hold.

Model 2: When Quantity Discount is Offered

The system starts with Q units, and this Q units deplete due to only demand up to
time γ . After time γ , deterioration starts and inventory level changes due to demand
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and deterioration units. It is assumed that pre-deterioration discount d1%(up to time
(γ − t1)) on unit selling price on fresh item to enhance the demand and then d2%
on unit selling price is given for the deteriorated items. The inventory level at any
instant of time is governed by the following differential equation:

d I (t)

dt
=

⎧
⎪⎨

⎪⎩

−a(1 − bt), 0 ≤ t ≤ t1,

−a f1(1 − bt), t1 ≤ t ≤ γ,

−a f2(1 − bt) − θ(t)I (t)γ ≤ t ≤ T .

(12)

with the initial condition I (0) = Q and the boundary condition I (T ) = 0.
Using continuity and the series expansion of exponential series and under the

assumption that, 0 ≤ α < 1 (neglecting α2 and its higher power), the solution of
differential Eq. (12) is

I (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q − at + abt2
2 ; 0 ≤ t ≤ t

a f1(γ − t) − ab f1
2

(
γ 2 − t2

)
+ a f2(T − γ ) − ab f2

2

(
T 2 − γ 2

)
+ aα f2

β+1

(
T β+1 − γ β+1

)
t1 ≤ t ≤ γ

− abα f2
β+2

(
T β+2 − γ β+2

)
− aα f2

(
T γ β − γ β+1

)
+ abα f2

2

(
T 2γ β − γ β+2

)
;

a f2(T − t) − ab f2
2

(
T 2 − t2

)
+ aα f2

β+1

(
T β+1 − tβ+1

)
− abα f2

β+2

(
T β+2 − γ β+2

)
γ ≤ t ≤ T

− aα f2
(
T tβ − tβ+1

)
+ abα f2

2

(
T 2γ β − γ β+2

)
;

(13)

Where

Q = at1 − abt21
2

+ a f1(γ − t1) − ab f1
2

(
γ 2 − t21

) + a f2(T − γ ) − ab f2
2

(
T 2 − γ 2

)

− abα f2
β + 2

(
T β+2 − γ β+2

) − aα f2
(
T γ β − γ β+1

) + abα f2
2

T 2γ β − γ β+2

(14)

The total profit of inventory system per unit time consists of the following:
Sales revenue per unit time

SR = P

T

(
t1∫
0
R(t)dt +

γ

∫
t1
f1(1 − d1)R(t)dt + T∫

γ
f2(1 − d2)R(t)dt

)
(15)

Purchase cost per unit time

PC = CQ

T
(16)

Ordering cost

OC = A

T
(17)

Inventory holding cost
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I HC = h

T

(
t1∫
0
I (t)tdt +

γ

∫
t1
I (t)(t − t1)dt + T∫

γ
I (t)(t − γ )dt

)
(18)

Hence, total profit per unit time is

T P(t1, T ) = SR − PC − I HC − OC (19)

The optimal value of t1 and T can be obtained by solving ∂T P(t1,T )

∂t1
=

0; ∂T P(t1,T )

∂T = 0 and obtained solution guarantees maximize profit if ∂2T P(t1,T )

∂T 2 < 0

and
(

∂2T P(t1,T )

∂T 2
∂2T P(t1,T )

∂t21
− ∂2T P(t1,T )

∂T ∂t1

)
> 0 hold.

4 Numerical Example and Comparison Study

In this section, we consider one to one correspondence between retailer and supplier,
where supplier sells three different products to the retailer. Different parametric
values common to both models are given in Table 1. Data required for credit policy
and discounting policy are mentioned in Tables 2 and 3, respectively, and results
obtained for both policies and their comparison are given in Table 4.

Convexity of Fig. 1 of all examples proved that resulting parameter guarantees
maximum profit for both the Model 1 and the Model 2. Further, from Table 4, we
can observe that in the cycle time, quantity demanded is less but profit is more in the
Model 1 compared to somewhat large quantity with larger cycle time but less profit

Table 1 Common
Parametric Values of Model 1
and Model 2

Parameter Product 1 Product 2 Product 3

a 600 1000 800

b 0.1 0.15 0.12

C 15 20 18

P 40 45 40

A 50 60 45

h 1 1.2 1.1

α 0.1 0.15 0.15

β 1.1 1.2 1.1

Table 2 Specific Parametric Values For Model 1

Parameter Product 1 Product 2 Product 3

M 60/365 30/365 50/365

Ic 0.15 0.15 0.18

Ie 0.09 0.09 0.05
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Table 3 Specific Parametric Values For Model 2

Parameter Product 1 Product 2 Product 3

γ 3.5 3 3.2

n1 2 2 2

n1 5 5 5

d1 0.15 0.15 0.05

d2 0.30 0.30 0.2

Table 4 Comparative Study For Model1 and Model 2

Credit policy Discounted policy

Parameter Product 1 Product 2 Product 3 Parameter Product 1 Product 2 Product 3

T 0.18 0.11 0.14 T 4.216 3.40 3.51

Q 109 111 116 Q 3797 3517 2665

T P 14,778 24,410 17,201 T P 13,003 19,143 13,735

(a) (b) (c)

(d) (e) (f)

Fig. 1 Total profit (a–c for example 1–3) for model 1 and (d–f for example 1–3) for model 2
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in the Model 2 for all three examples. Hence, overall the Model 1 is more preferable
over the Model 2 even though quantity discount is more appealing promotional tool.

5 Conclusion

In this chapter, we compared two different deteriorating inventorymodels by offering
either credit policy or quantity discount, in declining demand market. We conclude
that though both policies are very promising in nature, one should earn more profit in
minimum time period by offering credit period policy. In future, one can also extend
the research by combining both policies or by allowing shortages for more relevant
result.
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Modeling Australian Twin Data Using
Generalized Lindley Shared Frailty
Models

Arvind Pandey, David D. Hanagal, Shikhar Tyagi, and Pragya Gupta

Abstract A new class of shared frailty models based on generalized Lindley distri-
bution is established.We propose shared frailtymodels based on reversed hazard rate.
We estimate the parameters in these frailty models and use the Bayesian paradigm
of the Markov chain Monte Carlo technique. Model selection criteria have been per-
formed for the comparison of models. We analyze Australian twin data and suggest
a better model.

Keywords Bayesian estimation · Generalized Rayleigh distribution · Left
censoring · MCMC · Modified inverse Weibull distribution · Generalized Lindley
frailty · Reversed hazard rate

1 Introduction

Vaupel et al. (1979) introduced a random impact which is unobservable risk shared
by the subject characterized as frailty. To handle such kind of problems, manymodels
have been derived in survival analysis. Since the establishment of the proportional
hazard model given by Cox (1972), survival function has been dominated by haz-
ard rate models. The reason behind the popularity of this model is the significance
of known covariates can be tested, and also a relationship between lifetimes and
covariates can be incorporated. Augmentation of Cox’s proportional hazard model
provided away to introduce the unknown covariates,

φ(t |K ) = φ0(t)e
K

′
β0+V

′
β1

= wφ0(t)e
K

′
β0
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where φ(t |K ) stands for conditional hazard rate and φ0(t) stands for baseline hazard
rate. K

′ = (K1 j , K2 j , ..., Kmj ) and V
′ = (V1 j , V2 j , ..., Vmj ) are considered as the

vector of known and unknown covariates, respectively; β0 and β1 are indicated as

the vector of corresponding regression coefficients of order m. w = eV
′
β1 is called

as frailty effect.
In the last decade, frailty regression models in mixture distribution have been

discussed by Hanagal (2008). Hougaard (2000) had discussed the different aspects
of frailty on a broad scale. Hanagal and Dabade (2013, 2015) proposed modeling
of the inverse Gaussian frailty model and comparison of different frailty models for
analyzing kidney infection data.Modeling kidney infection data for inverse Gaussian
shared frailty was done by Hanagal and Pandey (2014a). Gamma frailty models for
bivariate survival data were given by Hanagal and Pandey (2015a). Hanagal and
Pandey (2017a) used the shared inverse Gaussian frailty models based on additive
hazard. For reversed hazard rate setup, Hanagal and Pandey (2014b, 2015b, 2016a, b,
2017b) have contemplated gamma and inverse Gaussian shared frailty models with
different baseline distribution functions. Hanagal and Sharma (2013, 2015a, b, c)
analyzed acute leukemia data, kidney infection data and diabetic retinopathy data
using shared gammaand inverseGaussian frailtymodels for themultiplicativemodel.
Compound Poisson frailty was used by Hanagal and Kamble (2015) for Bayesian
estimation. Analysis of kidney infection data and Australian twin data was done
by Hanagal and Bhambure (2014, 2015, 2016) with different frailty distributions.
Hanagal (2011, 2017, 2019) and Wienke (2011) gave extensive literature review on
different shared frailty models.

The main aim of this article has three objectives. First, generalized Lindley (GL)
shared frailty models for reversed hazard rate withmodified inverseWeibull and gen-
eralized Rayleigh as baseline distributions have been introduced. Second, Bayesian
approach of estimation has been employed to estimate the unknown parameters under
random censoring. Third, simulation study and data analysis have been done for the
Australian twin data set.

2 Reversed Hazard Rate

There aremany situations, when it is more realistic to use reversed hazard rate instead
of hazard rate. It is more relevant to analyze the left censored and right truncated
survival data. The reversed hazard rate can be given as

ψ(t) = f (t)

F(t)
(2.1)

where F(t) is distribution function and f (t) is probability density function at time t .
For the further details in reversed hazard rate, you can see Shaked and Shantikumar
(1994) and Block et al. (1998). The reversed hazard rate gives more appropriate
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result when the failure is quantity of interest in predicting the actual time of failure.
In the left censored and right truncated data, the reversed hazard rate (RHR) gives
more proper reliability functions. Sankaran and Gleeja (2011) introduced frailty as
a common random effect that acts multiplicatively on RHR, which is useful for the
analysis of left censored data. Gamma shared frailty model based on reversed hazard
rate for bivariate survival data was discussed by the Hanagal and Pandey (2014b).
Shared frailty models based on reversed hazard rate for modeling Australian twin
data were studied by the Hanagal and Pandey (2015b). Hanagal and Pandey (2016a)
proposed the gamma shared frailty models based on reversed hazard rate (RHR).
Hanagal and Pandey (2016b) discussed the inverse Gaussian shared frailty model
based on the RHR.

3 General Shared Frailty Model

Let the lifetime of an individual be defined as T. For a given frailty Wj=w j , the
conditional reversed hazard rate is

ψ(t j |w j ) = w jψ0(t j )e
K

′
β
0 (3.1)

where ψ0(t j ) gives the baseline reversed hazard rate at time t j . For the given frailty
Wj=w j , the conditional distribution function of T is given as

F(t j |w j ) = e
− ∫∞

t j
ψ(t j |w j )dt

= e−w j�0(t j )e
K

′
j β0

(3.2)

where�0(t j ) is the cumulative baseline reversed hazard at time t j . Now, we integrate
fW (w j ) over the range of frailty variable Wj and we find the marginal distribution
as follows

F(t j ) =
∫ ∞

0
F(t j |w j ) fWj (w j )dw j

=
∫ ∞

0
e−w j�0(t j )ρ j fW j (w j )dw j

= LWj (�0(t j )ρ j ), (3.3)

where LWj (.) is a Laplace transformation of distribution of Wj and ρ j = eK
′
jβ0 .

The shared frailty model is relevant to event time of related individuals, similar
organs and repeated measurements. For example, the failure time of paired organs
like lungs, ears, eyes and kidney is the example of bivariate survival data. In this
model, common covariates are shared by individuals from a group. The survival
times are conditionally independent in the shared frailty models. The survival times
are connected through some unobservable covariates or frailty.
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Here, for the study we observed n individuals. Let first and second life times of
j th individual be represented by bivariate random vector (T1 j , T2 j ). Let observed
covariates be denoted by K0, K1 and K2, where K0 is vector of common covariates
for both survival times T1 j and T2 j and the K1 and K2 are the vector of covariates
corresponding to survival times T1 j and T2 j . Let a vector Klj = (K1l j , . . . , Kkll j ),
(l = 0, 1, 2) for j th individual where Kal j (a = 1, 2, 3, . . . , kl ) represents the value
of ath observed covariate for j th individual. Let Wj be the shared frailty for the j th

individuals. Multiplicative effect can be seen in baseline reversed hazard of frailty.
For given frailty, the survival times of individuals are conditionally independent. For
given frailty Wj=w j , the conditional reversed hazard rate for j th individuals at i th

survival time ti j > 0 is given as

ψ(ti j | w j , K j ) = w jψ0(ti j )e
K 0 jβ0+K i jβi ; i = 1, 2. (3.4)

where ψ0(ti j ) is baseline reversed hazard at time ti j > 0 and β is a vector of order
k, of regression coefficients. The conditional cumulative reversed hazard rate for j th

individual at i th lifetime ti j > 0 for a given frailty Wj = w j is

�(ti j | w j , K j ) = w j�0(ti j )ρ0 jρi j (3.5)

where ρ0 j = eK0 jβ0 , ρi j = eKi jβi , i= 1,2 and �0(ti j ) is cumulative baseline reversed
hazard rate at time ti j > 0. For given frailty Wj=w j , the conditional distribution
function for j th individuals at i th survival time ti j > 0 is given as

F(ti j | w j , K j ) = e−�(ti j |w j ,K j )

= e−w j�0(ti j )ρ0 jρi j (3.6)

Under the assumption of independence, bivariate conditional distribution function at
time t1 j > 0 and t2 j > 0 for given frailty Wj=w j is

F(t1 j , t2 j | w j , K j ) = F(t1 j | w j , K j )F(t2 j | w j , K j )

= e−w j (�01(t1 j )ρ1 j+�02(t2 j )ρ2 j )ρ0 j (3.7)

By integrating probability function fW (w j ) over frailty variable Wj , we obtain
the unconditional bivariate distribution function as follows

F(t1 j , t2 j | K j ) =
∫

Wj

F(t1 j , t2 j | w j ) f (w j )dw j

=
∫

Wj

e−w j (�01(t1 j )ρ1 j+�02(t2 j )ρ2 j )ρ0 j f (w j )dw j

= LWj [(�01(t1 j )ρ1 j + �02(t2 j )ρ2 j )ρ0 j ] (3.8)

where LWj (.) is Laplace transform of frailty variable of Wj for j th individual.
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4 Generalized Lindley Frailty Model

Lindley (1958) proposed a distribution with one parameter. Because of having only
one parameter, the Lindley distribution does not provide enough flexibility for mod-
eling purposes. It will be useful to consider further alternatives of this distribution.
Elbatal et al. (2013) proposed generalized Lindley distribution which generalizes
Lindley distribution and includes exponential and gamma distributions as special
cases. For a frailty distribution, generalized Lindley distribution has been considered
in this chapter. This distribution is themixture of two gamma distributionsG(θ,μ) and
G(θ,η) withmixing coefficient θ/(θ + 1). Because of themixture of two gamma den-
sities, quite bit of suppleness can be seen during analysis of time to event data. That is
the reasonwhyGL frailtymodel is more adaptable in comparison with gamma frailty
model. Probability density function of GL distribution has been specified below:

fW (w) =
{

1
(1+θ)

[
θμ+1wμ−1

�μ
+ θηwη−1

�η

]
e−θw ;w ∈ IR+,μ, η, θ ∈ IR+

0 ; otherwise

with mean E[W ] = 1
1+θ

[
μ + η

θ

]
. And corresponding variance is

V (W ) = 1

(1 + θ)

[(

μ2 + η2

θ

)(
1

θ(1 + θ)

)

+
(

μ + η

θ

)

−
(

2μη

θ(1 + θ)

)]

After applying identifiability property, i.e., E[W ] = 1, we get a relation between
parameters η = θ (1 + θ − μ). Consequently, the density function, Laplace trans-
formation and variance for GL reduced to

fW (w) =
{

1
(1+θ)

[
θμ+1wμ−1

�μ
+ θθ(1+θ−μ)wθ(1+θ−μ)−1

�θ(1+θ−μ)

]
e−θw ; w, θ ∈ IR+,μ ∈ (0, 1 + θ)

0 ; otherwise.

LW (s) = 1

(1 + θ)

[
θμ+1

(s + θ)μ
+ θθ(1+θ−μ)

(s + θ)θ(1+θ−μ)

]

(4.1)

V (W ) = θ4 − θ3μ + 3θ2(1 + θ) − 4θ2μ + 3θμ(μ − 1) + μ2

θ(1 + θ)2
(4.2)

Let n be the number of observations under study. Let (T1 j , T2 j ) be the first and
second survival times of pairs of components of j th (1, 2, ..., n) objects. The uncondi-
tional bivariate distribution function at time t1 j ∈ IR+ and t2 j ∈ IR+ using Equations
(3.8) and (4.1) can be written as
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F(t1 j , t2 j ) = LWj [(�01(t1 j )ρ1 j + �02(t2 j )ρ2 j )ρ0 j ]
= 1

(1 + θ)

[
θμ+1

([(�01(t1 j )ρ1 j + �02(t2 j )ρ2 j )ρ0 j ] + θ)μ
+

θθ(θ+1−μ)

([(�01(t1 j )ρ1 j + �02(t2 j )ρ2 j )ρ0 j ] + θ)θ(θ+1−μ)

]

(4.3)

where �01(t1 j ) and �02(t2 j ) are the cumulative baseline reversed hazard rate func-
tions of the lifetime T1 j and T2 j , respectively. In the absence of frailty effect, models
will be

F(t1 j , t2 j ) = e−(ρ0 j (�01(t1 j )ρ1 j+�02(t2 j )ρ2 j )) (4.4)

One can have different baseline distributions for T1 and T2. After substituting
different cumulative hazard functions in (4.3), we get different generalized Lindley
frailty distributions.

5 Dependence Measure

Sometimes due to complex form of frailtymodels, it is difficult to compare the degree
of dependence between different frailty models. Kendall’s τ can be used to quantify
dependence because it is independent of transformations on the timescale and the
frailty model used. It is a rank-based dependence measure.

τ =
∫

s∈IR+
4sL"

W (s)LW (s)ds − 1 (5.1)

After using Equations (4.2) and (5.1), we get

τ =
∫

s∈IR+
R(s | θ,μ)ds − 1 (5.2)

where R(s | θ,μ) = 4θs(θμ+1A−μ+θθB Aθ(μ−θ−1))(μ(μ+1)θμA−μ+θθB B(−μθ+θ2+θ+1)Aθ(μ−θ−1))
(θ+1)2A2 .

A = (θ + s), B = (1 + θ − μ).
Kendall’s τ cannot be found in closed form forGL frailty. Somenumerical approaches
can be utilized to obtain Kendall’s τ dependence measure.



Modeling Australian Twin Data Using Generalized Lindley … 149

6 Baseline Distributions

6.1 Modified Inverse Weibull Distribution

Modified inverse Weibull distribution has been chosen as baseline distribution due
to more utilitarian for computational point of view for left censored data (Kumar and
Singh (2011)). A continuous random variable T follows modified inverse Weibull
distributionwith correspondingdistribution function, reversed hazard and cumulative
reversed hazard functions given below

F(t) =
{
e−ζt−δe−ξt ; t ∈ IR+, δ, ζ, ξ ∈ IR+
0 ; otherwise (6.1)

ψ0(t) =
{

ζe−ξt t−1−δ (δ + ξt) ; t ∈ IR+, δ, ζ, ξ ∈ IR+
0 ; otherwise (6.2)

�0(t) =
{

ζt−δe−ξt ; t ∈ IR+, δ, ζ, ξ ∈ IR+
0 ; otherwise (6.3)

6.2 Generalized Rayleigh Distribution

Generalized Rayleigh distribution has been chosen as second baseline distribution.
If shape parameter is less than 0.5, PDF of generalized Rayleigh distribution is a
decreasing function, and if shape parameter is greater than 0.5, it is a right-skewed
unimodal function (see Raqab & Kundu, 2006). In modeling strength data as well
as general lifetime data, it can be utterly dominant (Surles and Padgett (2001)). A
continuous random variable T follows generalized Rayleigh distribution with cor-
responding distribution function, reversed hazard and cumulative reversed hazard
functions given below

F(t) =
{(

1 − e−(δt)2
)ζ ; t ∈ IR+, δ, ζ,∈ IR+

0 ; otherwise
(6.4)

ψ0(t) =
⎧
⎨

⎩

2ζδ2te−(δt)2

(
1−e−(δt)2

) ; t ∈ IR+, δ, ζ,∈ IR+

0 ; otherwise
(6.5)
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�0(t) =
{

− log
(
1 − e−(δt)2

)ζ ; t ∈ IR+, δ, ζ,∈ IR+

0 ; otherwise
(6.6)

7 Proposed Models

After substituting cumulative reversed hazard function for modified inverse Weibull
and generalized Rayleigh baseline distributions in Equations (4.3) and (4.4), we get

F(t1 j , t2 j ) = 1

(1 + θ)

[
θμ+1

([(ζ1t−δ1
1 j e−ξ1t1 j ρ1 j + ζ2t

−δ2
2 j e−ξ2t2 j ρ2 j )ρ0 j ] + θ)μ

+

θθ(θ+1−μ)

([(ζ1t−δ1
1 j e−ξ1t1 j ρ1 j + ζ2t

−δ2
2 j e−ξ2t2 j ρ2 j )ρ0 j ] + θ)θ(θ+1−μ)

]

(7.1)

F(t1 j , t2 j ) = e−(ρ0 j (ζ1t
−δ1
1 j e−ξ1 t1 j ρ1 j+ζ2t

−δ2
2 j e−ξ2 t2 j ρ2 j )) (7.2)

F(t1 j , t2 j ) = 1

(1 + θ)

⎡

⎢
⎣

θμ+1

([(− log
(
1 − e−(δ1 t1 j )2

)ζ1
ρ1 j + − log

(
1 − e−(δ2 t2 j )2

)ζ2
ρ2 j )ρ0 j ] + θ)μ

+

θθ(θ+1−μ)

([(− log
(
1 − e−(δ1 t1 j )2

)ζ1
ρ1 j + − log

(
1 − e−(δ2 t2 j )2

)ζ2
ρ2 j )ρ0 j ] + θ)θ(θ+1−μ)

⎤

⎥
⎦

(7.3)

F(t1 j , t2 j ) = e
−(ρ0 j (− log

(
1−e−(δ1 t1 j )

2)ζ1
ρ1 j+− log

(
1−e−(δ2 t2 j )

2)ζ2
ρ2 j )) (7.4)

Here, Equations (7.1) and (7.2) can be called as Model-I and Model-III, respec-
tively, which are modified inverse Weibull baseline distribution with and without
frailty and Equations (7.3) and (7.4) can be called asModel-II andModel-IV, respec-
tively, which are generalized Rayleigh baseline distribution with and without frailty.
Figures1 and 2 show the probability density functions of Model-I and Model-II,
respectively, for three different sets of the values of the parameters.
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Fig. 1 PDF Model-I

Fig. 2 PDF for Model-II
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8 Statistical Properties

Statistical properties play a crucial role to define the applicability of any model on
any kind of data. Some statistical properties of Model-I and Model-II have been
discussed in the next subsections.

8.1 Bivariate Density Function

Probability density function for bivariate models can be obtained by using the fol-
lowing mechanism

f (t1 j , t2 j ) = ∂2F(t1 j , t2 j )

∂t1 j∂t2 j

where F(t1 j , t2 j ) stands for the bivariate cumulative distribution function of (t1 j , t2 j ),
respectively. Consequently, hazard gradient function for Model-I and Model-II will
be

f1(t1 j , t2 j ) = 1

(θ + 1)

[
ζ1ζ2ρ

2
0 jρ1 jρ2 j θt

−δ1 j−1
1 j t

−δ2 j−1
2 j (ξ1t1 j + δ1 j )(ξ2t2 j + δ2 j )P

−μ−Bθ−2
11 ω1e

−ξ1 t1 j−ξ2 t2 j
]

(8.1)

where P11 = ρ0 j

(
ζ1ρ1 j e−ξ1t1 j t−δ1

1 j + ζ2ρ2 j e−ξ2t2 j t−δ2
2 j

)

ω1 = (μ2θμPBθ
11 + μθμPBθ

11 + BPμ
11θ

Bθ(Bθ + 1)
)

f2(t1 j , t2 j ) = 4ζ1ζ2δ21δ
2
2ρ

2
0 jρ1 jρ2 j θt1 j t2 j P

−μ−Bθ−2
21

(
μ2θμPBθ

21 + μθμPBθ
21 + BPμ

21θ
Bθ(Bθ + 1)

)

(θ + 1)
(
eδ21 t

2
1 j − 1
) (

eδ22 t
2
2 j − 1
)

(8.2)

where P21 = ρ0 j

(
−ζ1ρ1 j log

(
1 − e−δ21 t

2
1 j

)
− ζ2ρ2 j log

(
1 − e−δ22 t

2
2 j

))
+ θ.

Figures1 and 2 show the shape of pdf of Model-I and Model-II, respectively, for the
different values of parameters.

8.2 Bivariate Survival Function

Survival function for bivariate models can be obtained by using the following mech-
anism

S(t1 j , t2 j ) = 1 − F(t1 j ) − F(t2 j ) + F(t1 j , t2 j )
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where F(t1 j ) and F(t1 j ) stand for the marginal cumulative distribution function of
t1 j and t2 j , respectively. Consequently, bivariate survival function for Model-I and
Model-II will be

S1(t1 j , t2 j ) = θμ+1
(
P−μ
11 − P−μ

12 − P−μ
13

)+ θBθ
(
P−Bθ
11 − P−Bθ

12 − P−Bθ
13

)+ θ + 1

θ + 1
(8.3)

where P12 = ζ1ρ0 jρ1 j e−ξ1t1 j t−δ1
1 j + θ; P13 = ζ2ρ0 jρ2 j e−ξ2t2 j t−δ2

2 j + θ

S2(t1 j , t2 j ) = θμ+1
(
P−μ
21 − P−μ

22 − P−μ
23

)+ θBθ
(
P−Bθ
21 − P−Bθ

22 − P−Bθ
23

)+ θ + 1

θ + 1
(8.4)

where P22 = θ − ζ1ρ0 jρ1 j log
(
1 − e−δ21 t

2
1 j

)
; P23 = θ − ζ2ρ0 jρ2 j log

(
1 − e−δ22 t

2
2 j

)

8.3 Hazard Gradient Function

Hazard gradient function for bivariate models can be obtained by using the following
mechanism

η(t1, t2) = −∂ log S(t1, t2)

∂t2

where S(t1, t2) stands for the bivariate survival function. Consequently, hazard gra-
dient function for Model-I and Model-II will be

η1(t1, t2) = ζ2P14ρ0 jρ2 j θe−ξ2 t2 j t−δ2−1
2 j (ξ2t2 j + δ2)P

μ+Bθ
12

P13(P11 + θ)
(
−θμ+1PBθ

12 (P11 + θ)μ+BθPμ+Bθ
13 + Pμ

12θ
Bθ(P11 + θ)μ+Bθ

(
−Pμ+Bθ

13

)
+ P15P

μ+Bθ
12

)

(8.5)

where

P14 = −μθμ(P11 + θ)Bθ PBθ
13

(
Pμ+1
13 − (P11 + θ)μ+1

)
− BPμ

13θ
Bθ(P11 + θ)μ

(
PBθ+1
13 − (P11 + θ)Bθ+1

)

P15 =
(
θBθ(P11 + θ)μ + θμ+1(P11 + θ)Bθ + θ(P11 + θ)μ+Bθ + (P11 + θ)μ+Bθ

)
Pμ+Bθ
13

− θμ+1PBθ
13 (P11 + θ)μ+Bθ + Pμ

13

(
−θBθ
)

(P11 + θ)μ+Bθ

η2(t1, t2) = 2ζ2δ
2
2 P24ρ0 j ρ2 j θt2 j P

μ+Bθ
22

P21P23

(

e
δ22 t

2
2 j − 1

)
(
θμ+1PBθ

21 Pμ+Bθ
22 Pμ+Bθ

23 + P25P
μ+Bθ
21 + Pμ

21θ
Bθ Pμ+Bθ

22 Pμ+Bθ
23

)

(8.6)
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where
P24 = μθμ

(
Pμ+1
21 − Pμ+1

23

)
PBθ
21 PBθ

23 + BPμ
21P

μ
23θ

Bθ
(
PBθ+1
21 − PBθ+1

23

)

P25 = −θμ+1PBθ
22 Pμ+Bθ

23 + Pμ+Bθ
22

(
−θμ+1PBθ

23 + (θ + 1)Pμ+Bθ
23 + Pμ

23

(−θBθ
))

+ Pμ
22θ

Bθ
(
−Pμ+Bθ

23

)

8.4 Conditional Probability Measure

Conditional probability measure for bivariate models can be obtained by using the
following mechanism

χ(t1, t2) = P (T1 > t1 | T2 > t2)

P(T1 > t1)

= S(t1, t2)

S(t1)S(t2)

where S(t1), S(t2) stands for the marginal survival functions of T1 and T2, respec-
tively. Consequently, conditional probability measure for Model-I and Model-II will
be

χ1(t1, t2) =
(θ + 1)

(
θμ+1
(
(P11 + θ)−μ − P−μ

12 − P−μ
13

)
+ θBθ

(
(P11 + θ)−Bθ − P−Bθ

12 − P−Bθ
13

)
+ θ + 1

)

(
P−μ
12
(−θμ+1

)− θBθ P−Bθ
12 + θ + 1

) (
P−μ
13
(−θμ+1

)− θBθ P−Bθ
13 + θ + 1

)

(8.7)

χ2(t1, t2) =
(θ + 1)

(
θμ+1
(
P−μ
21 − P−μ

22 − P−μ
23

)
+ θBθ

(
P−Bθ
21 − P−Bθ

22 − P−Bθ
23

)
+ θ + 1

)

(
P−μ
22
(−θμ+1

)− θBθP−Bθ
22 + θ + 1

) (
P−μ
23
(−θμ+1

)− θBθP−Bθ
23 + θ + 1

)

(8.8)

8.5 Cross-ratio Function

Cross-ratio function [see Clayton 1978 and Oakes 1989] can be interpreted as the
relative risk for an individual if the other one has experienced the event rather than
being event free at a given time
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κ(t1, t2) =
∂2S(t1,t2)

∂t1∂t2
S(t1, t2)

∂S(t1,t2)
∂t1

∂S(t1,t2)
∂t2

(8.9)

Consequently, cross-ratio function for Model-I and Model-II will be

κ1(t1, t2) = P12P13Z12
(
B2θBθ+1(P11 + θ)μ + BθBθ(P11 + θ)μ + μ(μ + 1)θμ(P11 + θ)Bθ

)

θZ13

(
μθμ(P11 + θ)Bθ PBθ

12

(
Pμ+1
12 − (P11 + θ)μ+1

)
+ BPμ

12θ
Bθ(P11 + θ)μ

(
PBθ+1
12 − (P11 + θ)Bθ+1

))

(8.10)

where
Z11 = (θBθ(P11 + θ)μ + θμ+1(P11 + θ)Bθ + θ(P11 + θ)μ+Bθ + (P11 + θ)μ+Bθ

)

Pμ+Bθ
13 − θμ+1PBθ

13 (P11 + θ)μ+Bθ + Pμ
13

(−θBθ
)
(P11 + θ)μ+Bθ

Z12 = −θμ+1PBθ
12 (P11 + θ)μ+BθPμ+Bθ

13 + Pμ
12θ

Bθ(P11 + θ)μ+Bθ
(
−Pμ+Bθ

13

)
+

Z11P
μ+Bθ
12

Z13 = μθμ(P11 + θ)Bθ PBθ
13

(
Pμ+1
13 − (P11 + θ)μ+1

)
+ BPμ

13θ
Bθ(P11 + θ)μ

(
PBθ+1
13 − (P11 + θ)Bθ+1

)

κ2(t1, t2) =
P22P23Z22

(
μ2θμPBθ

21 + μθμPBθ
21 + BPμ

21θ
Bθ(Bθ + 1)

)

θZ23
(
μθμ
(
Pμ+1
21 − Pμ+1

22

)
PBθ
21 PBθ

22 + BPμ
21P

μ
22θ

Bθ
(
PBθ+1
21 − PBθ+1

22

))

(8.11)

where
Z21 = −θμ+1PBθ

22 Pμ+Bθ
23 + Pμ+Bθ

22

(
−θμ+1PBθ

23 + (θ + 1)Pμ+Bθ
23 + Pμ

23

(−θBθ
))

+ Pμ
22θ

Bθ
(
−Pμ+Bθ

23

)

Z22 = θμ+1PBθ
21 Pμ+Bθ

22 Pμ+Bθ
23 + Z21P

μ+Bθ
21 + Pμ

21θ
BθPμ+Bθ

22 Pμ+Bθ
23

Z23 = μθμ
(
Pμ+1
21 − Pμ+1

23

)
PBθ
21 PBθ

23 + BPμ
21P

μ
23θ

Bθ
(
PBθ+1
21 − PBθ+1

23

)
.

Figures3 and 4 show the graph of cross-ratio function which show that there is
positive association between time T1 j and T2 j for both Model-I and Model-II with
three different sets of the values of parameters.

9 Likelihood Design and Bayesian Paradigm

For the study, n individuals have been considered. Observed failure times have been
indicated by (t1 j , t2 j ). We are using the left censoring scheme. Censoring time sup-
posed to be indicated by c1 j and c2 j for j th individual ( j = 1, 2, 3, ..., n). Indepen-
dence between censoring schemes and lifetimes of individuals has been presumed.
Likelihood function can be described for bivariate lifetime random variable of the
j th individual as
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Fig. 3 Cross-ratio function
for Model-I

L j (t1 j , t2 j ) =

⎧
⎪⎪⎨

⎪⎪⎩

f1(t1 j , t2 j ), t1 j > c1 j , t2 j > c2 j
f2(t1 j , c2 j ), t1 j > c1 j , t2 j < c2 j
f3(c1 j , t2 j ), t1 j < c1 j , t2 j > c2 j
f4(c1 j , c2 j ), t1 j < c1 j , t2 j < c2 j

(9.1)

and the likelihood function is given by

L(�,β, θ,μ) =
n1∏

j=1

f1(t1 j , t2 j )
n2∏

j=1

f2(t1 j , c2 j )
n3∏

j=1

f3(c1 j , t2 j )
n4∏

j=1

f4(c1 j , c2 j )

(9.2)

where �, β, θ and μ are vector of baseline parameters and the vector of regression
coefficients and frailty parameters, respectively. Likelihood function for without
frailty model is

L(�,β) =
n1∏

j=1

f1(t1 j , t2 j )
n2∏

j=1

f2(t1 j , c2 j )
n3∏

j=1

f3(c1 j , t2 j )
n4∏

j=1

f4(c1 j , c2 j ) (9.3)

Let n1, n2, n3 and n4 be the number of pairs for which first and second failure times
(t1 j , t2 j ) lie in the ranges t1 j > c1 j , t2 j > c2 j ; t1 j > c1 j ,t2 j < c2 j ; t1 j < c1 j ,t2 j >

c2 j ; and t1 j < c1 j ,t2 j < c2 j , respectively, and let
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Fig. 4 Cross-ratio function
for Model-II

f1(t1 j , t2 j ) = ∂2F(t1 j , t2 j )

∂t1 j∂t2 j

f2(t1 j , c2 j ) = ∂F(t1 j , c2 j )

∂t1 j

f3(c1 j , t2 j ) = ∂F(c1 j , t2 j )

∂t2 j
f4(c1 j , c2 j ) = F(c1 j , c2 j ) (9.4)

Substituting cumulative reversed hazard rates �01(t1 j ) and �02(t2 j ) and distribution
function F(t1 j , t2 j ) in Equation (9.4) for Model-I and Model-II and by differentiat-
ing, we get the likelihood function. The maximum likelihood method has a crucial
importance in computing efficient estimators. Inappropriately, due to a convergence
problem, maximum likelihood failed to estimate the parameters, because Model-
I and Model-II have nine-dimensional and Model-III and Model-IV have seven-



158 A. Pandey et al.

dimensional optimization problem. The Bayesian scenario has been discussed by
several researchers for estimating parameters of the frailty models. For gamma and
log-normal frailty models, the Bayesian paradigm has been contemplated by Santos
and Achcar (2010). Weibull and piecewise exponential model have been discussed
by Ibrahim et al. (2001) with gamma frailty. The joint posterior density function of
parameters for given failure times is obtained as

π(�, θ,μ,β0) ∝ L(�, θ,μ,β
0
)g1(ζ)g2(δ)g3(θ)g4(μ)

3∏

i=1

pi (β0i×1)

where gi (.) indicates the prior density function with known hyperparameters of
corresponding argument for baseline parameters and frailty variance; pi (.) is prior
density function for regression coefficient β0i , and likelihood function is L(.). An
important assumption here is all the prior densities are independently distributed.
The prior densities for gi (.) are taken as gamma or uniform distribution, and the
prior density for pi (.) is taken as normal distribution. In a similar way, joint posterior
density function can bewritten for without frailty models. To estimate the parameters
of the models, hyper-Metropolis–Hastings algorithms have been used. Geweke test
and Gelman–Rubin statistics have been used tomonitor the convergence of aMarkov
chain to a stationary distribution.

Due to the high dimensions of conditional distributions, it is not unproblematic
to integrate out. Thus, it has been considered that full conditional distributions can
be obtained as they are proportional to the joint distribution of the parameter of the
model. The conditional distribution for single parameter δ with frailty is

ϕ1(δ | ζ, θ,μ,β0) ∝ L(δ, ζ, θ,μ,β0) · g1(δ)

and the conditional distribution for single parameter δ without frailty is

ϕ1(δ | ζ,β0) ∝ L(δ, ζ,β0) · g1(δ)

Similarly, full conditional distributions for all the parameters can be obtained.

10 Simulation Study

A simulation study has been executed to appraise the Bayesian estimation paradigm
for Model-I and Model-II. Single covariate K1 has been considered as follows: nor-
mal distribution. The frailty variable W is assumed to follow generalized Lindley
distribution. Independence between lifetimes of individuals has been considered.
Samples are generated using the subsequent mechanism

1. From the binomial distribution with probability 0.6, 25 values for K1 have been
generated.
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2. For known covariate, compute ρ = eK0β0 .
3. Lifetimes reckoned to follow modified inverse Weibull and generalized Rayleigh

baseline distributions for given frailty Wj . Twenty-five values of lifetimes have
been generated.
Conditional distribution function for lifetime t j ( j = 1, 2, ..., n) for given frailty
Wj = w j and covariate K1 is

F(t j |w, K0) = e−w�0(t j )ρ

Equating F(t j |w, K0) to random number, say v j (0 < v j < 1) spawned from
U (0, 1) over t j > 0 we get
for Model-I,

t j = −1

δ
log
(
1 − v

1
wζρ

)
(10.1)

for Model-II,

t j =

⎡

⎢
⎢
⎣

−δ

log

(

1 −
(
1 − v

1
wρ

) 1
ζ

)

⎤

⎥
⎥
⎦

1
2

(10.2)

4. Censoring time c j has been generated from G(0.9, 0.01) for Model-I.
5. Observe the j th survival time t∗j = min(t j , c j ) and the censoring indicatorϒ j for

the j th individual ( j = 1, 2, ..., 25) where

ϒ j =
{
1, ; t j < c j
0, ; t j > c j

Thus, we have data consisting of 25 pairs of survival times t∗j and the censoring
indicator ϒ j .

We consider gamma (0.0001,0.0001) or uniform (0,100) prior for the distribution
of the unknown parameters of all the frailty distribution. We also consider normal
(0,1000) prior for the distribution of the unknown regression parameters. Concur-
rently, with different priors and starting points, two chains based on two priors (one
is based on gamma prior, and another is based on uniform prior) have been operated.
Both chains recapitulated 100,000 times. Gelman–Rubin test (Gelman and Rubin
1992) values are very close to one. Due to small values of Geweke test statistic (see
Geweke 1992) and corresponding p-values, the chains reach stationary distribution
for both prior sets. In view, estimates of parameters were about the same, and no
impact of prior distributions has been found on posterior summaries. Here, the anal-
ysis for one chain has been exhibited because both the chains have shown similar
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Table 1 Posterior summary of generalized Lindley frailty with baseline modified inverse Weibull
(simulation study: Model-I)

Parameter Estimate s.e. L.C.L. U.C.L. Geweke
test

p-value Gelman–
Rubin
test

ζ1(70) 69.29948 5.85707 60.41352 79.00819 −0.01475 0.49412 1.00176

δ1(0.024) 0.02381 0.00297 0.01929 0.02878 −0.00190 0.49924 1.00274

ξ1(0.15) 0.12442 0.01001 0.10801 0.14573 −0.00745 0.49703 1.00151

ζ2(70) 67.62318 4.93882 60.33410 77.83040 −0.00431 0.49828 1.00020

δ2(0.024) 0.02390 0.00269 0.01924 0.02866 0.01723 0.50687 1.00019

ξ2(0.15) 0.12794 0.00985 0.10800 0.14772 −0.00440 0.49824 1.00052

θ(11) 11.33853 1.52686 8.41236 13.86792 −0.00117 0.49953 1.00138

μ(2) 2.09611 0.15760 1.83462 2.42991 0.00944 0.50377 1.00009

β1(−0.02) −0.04951 0.10860 −0.19131 0.21751 0.00613 0.50245 1.00090

Table 2 Posterior summary of generalized Lindley frailty with baseline generalized Rayleigh
(simulation study: Model-II)

Parameter Estimate s.e. L.C.L. U.C.L. Geweke
test

p-value Gelman–
Rubin
test

ζ1(350) 354.26160 28.60295 301.38660 398.17020 0.01640 0.50654 1.00245

δ1(0.14) 0.13671 0.00343 0.13061 0.14378 0.00390 0.50156 1.00325

ζ2(350) 354.11490 27.04054 306.67280 398.12180 0.02299 0.50917 1.00010

δ2(0.14) 0.13992 0.00379 0.13259 0.14672 0.00684 0.50273 1.00107

θ(10.2) 9.60497 1.32983 7.44799 12.59520 −0.00515 0.49794 1.00054

μ(2.8) 2.98979 0.42008 2.20360 3.73705 −0.01113 0.49556 1.00006

β1(0.02) 0.03066 0.05487 −0.06309 0.12161 −0.00981 0.49609 1.00051

results. Tables1 and 2 present the estimates and the credible intervals of the parame-
ters for the Model-I andModel-II based on the simulation study. The Gelman–Rubin
convergence statistic values are nearly equal to one; also, the Geweke test values are
quite small and the corresponding p-values are large enough to say that the chain
attains stationary distribution.

11 Analysis of Australian Twin Data

We run test for this model to Australian twin data/appendectomy patient data (Duffy
et al. (1990)). The zygote category 4 has been considered out of six zygote categories.
9 and 11 observations have been censored, respectively, in twins 1 and 2 out of 350
pairs of twins. Left censored observations are considered to those individuals who are
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Fig. 5 K-S plot for Model-I

Table 3 p-value of K-S statistics for goodness of fit test for Australian twin data set

Model T1 p-value T2 p-value

Model-I 0.27600 0.19670

Model-II 0.38790 0.28490

having age at onset less than 11. Information on the age at onset of the appendectomy
of twins is given in the data which are lifetimes of twins (T1 and T2). In the risk of
appendectomy, we take hereditary and environmental factors as the frailty variable.
Here, there is a common covariate age for both T1 and T2 and one covariate each for
T1 and T2, i.e., presence or absence of appendectomy.

TheAustralian twin data is left censored data which is suitable to analyze bivariate
survival data with reversed hazard rate. The use of the reversed hazard rate is more
relevant in the left censored data. To check goodness of fit of Australian twin data
set, we consider Kolmogorov–Smirnov (K-S) test for two baseline distributions.
Table3 gives the p-values of goodness of fit test for Model-I and Model-II. Thus
from p-values of K-S test, we can say that there is no statistical evidence to reject
the hypothesis that data are from the Model-I and Model-II in the marginal case and
we assume that they also fit for bivariate case. Figures5 and 6 show the parametric
plot with semi-parametric plot for Model-I and Model-II taken separately for T1 and
T2, and both lines are close to each other.

For frailty parameters, gamma distributionwith very small shape and scale param-
eters (say, 0.0001) has been used. Additionally, it can be considered regression coef-
ficients are normally distributed with mean zero and high variance (say 1000). A
similar type of prior was used in Ibrahim et al. (2001) and Santos and Achcar (2010).
That is why for frailty parameters θ,μ and regression coefficients β0i , i = 1, 2, 3,
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Fig. 6 K-S plot for Model-II

Table 4 Posterior summary of generalized Lindley frailty with baseline modified inverse Weibull
for Australian twin data (Model-I)

Parameter Estimate s.e. L.C.L. U.C.L. Geweke
test

p-value Gelman–
Rubin
test

ζ1 212.04090 20.25532 160.35860 239.22250 −0.00004 0.49998 1.00192

δ1 0.02497 0.00530 0.01571 0.03400 0.00365 0.50146 1.00273

ξ1 0.15884 0.00432 0.14970 0.16756 −0.00305 0.49879 1.00305

ζ2 200.15810 23.62432 152.47470 237.29860 0.00221 0.50088 1.00504

δ2 0.02520 0.00532 0.01570 0.03432 −0.00143 0.49943 1.00049

ξ2 0.15666 0.00479 0.14705 0.16598 −0.00282 0.49887 1.00014

θ 14.41710 1.03652 12.27471 16.17366 −0.00060 0.49976 1.00342

μ 1.85515 0.19233 1.50561 2.26569 −0.00461 0.49816 1.00112

β1 0.02003 0.00366 0.01243 0.02660 −0.00088 0.49965 1.00740

β2 −0.04577 0.04730 −0.13603 0.03760 0.00704 0.49965 1.00081

β3 0.01171 0.04752 −0.07242 0.10314 −0.00188 0.49925 0.99996

vague priors have been used.We consider the prior distribution of the baseline param-
eters as flat becausewe do not have any information on these baseline parameters.We
considered two different vague prior distributions for the distribution of parameters
of all frailty models; one is gamma distribution with shape and scale hyperparame-
ters as (0.0001,0.0001), and another is uniform distribution with interval (0,100). We
consider normal (0,1000) prior for the distribution of regression coefficients. Under
the Bayesian paradigm, for both models, two parallel chains have been run. Also,
two sets of prior distributions have been used with different starting points using the
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Fig. 7 Trace plots for Model-I

hyper-Metropolis–Hastings algorithm based on normal transition kernels. It can be
said that estimates are independent of the different prior distributions because, for
both sets of priors, estimates of parameters are approximately similar. We got almost
similar convergence rate of Gibbs sampler for both sets of priors. Here, the analysis
for one chain has been exhibited because both the chains have shown similar results.

Markov chain has attained the stationary state because the zigzag pattern of the
trace plots for all the parameters indicates that the parameters move and mix more
freely (see Fig. 7). Coupling from the past plot has been applied to fix up the burn-in
period ( see Fig. 8). A sequence of draws may have serial correlation after the burn-in
period.Randomnessmaynot be shown in successive draws.But almost independence
can be seen in values at the extensive split (see Fig. 9). After using the values from the
single run of the Markov chain, a vague sample can be obtained from the posterior
distribution. Because of the burn-in period, it has been found at extensive spaced
time points. After a certain lag, the serial correlation of the parameters turns out
to almost negligible for all the parameters. Observations are shown independently
after thinning the serial correlation function plot. Autocorrelation function (ACF)
plots can be utilized to examine the appropriate blend of our chains. ACF plot for
each parameter is converging to the posterior mean of the parameter and, thus, repre-
sents a good mixing of the chain. Thus, our diagnostic plots suggest that the MCMC
chains are mixing very well. Posterior density plots are drawn for the estimates of
the parameters in the Model-I to visualize (see Fig. 10). From Fig. 10, it is observed
that some of posterior densities of the parameters have unimodal and bimodal shapes
which are quite possible in the mixture models. Figure11 shows conditional predic-
tive ordinate (CPO) plot for Model-I against Model-III, and Fig. 12 shows CPO plot
for Model-II against Model-IV. From Figs. 11 and 12, we can observe that more than
50% of the points fall on the positive side (upper side) of the plot which supports
Model-I and Model-II against Model-III and Model-IV, respectively.



164 A. Pandey et al.

Fig. 8 Coupling from the past plots for Model-I

The Gelman–Rubin convergence statistic values are closely equal to one. The
Geweke test statistic values are somewhat small, and the corresponding p-values
are large enough to say that the chains reach stationary distribution. Tables4 and 5
give the values of posterior mean and the standard error with 95% credible intervals,
the Gelman–Rubin statistics values and the Geweke test with p-values for Model-I,
Model-II, Model-III and Model-IV. Table6 shows Kendall’s τ values for Model-I
and Model-II which show that there is a dependence between T1 and T2. Table7
presents the values of AIC, BIC and DIC for both models.

Values of AIC, BIC, and DIC, given in Table7, have been used for the comparison
of all models. Model-I holds the lowest possible values of AIC, BIC and DIC. For
all models, regression coefficients contained different values. For all the models,
the credible intervals of β1 (age of twins) do not contain zero. It indicates that the
covariate age of twins has significant effect on the lifetimes (age at onset).
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Fig. 9 ACF plots for Model-I

Fig. 10 Posterior density plots for Model-I
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Fig. 11 CPO plot for
Model-I against Model-III

Fig. 12 CPO plot for
Model-II against Model-IV
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Table 5 Posterior summary of generalized Lindley frailty with baseline generalized Rayleigh for
Australian twin data (Model-II)

Parameter Estimate s.e. L.C.L. U.C.L. Geweke p-value
test

Gelman
Rubin test

ζ1 14.15306 1.08294 12.21941 15.94604 −0.00579 0.49769 1.04435

δ1 0.04428 0.00082 0.04260 0.04618 −0.00236 0.49906 1.00108

ζ2 13.66598 1.05881 12.08083 15.74751 −0.00028 0.49989 1.02802

δ2 0.04397 0.00091 0.04220 0.04588 0.00394 0.50157 1.00051

θ 15.97924 0.47291 14.75272 16.55289 0.00311 0.50124 1.00133

μ 2.43047 0.20181 2.04625 2.81012 0.00286 0.50114 1.01476

β1 0.01029 0.00335 0.00367 0.01659 0.00355 0.50142 1.00021

β2 −0.07414 0.13910 −0.36440 0.16239 0.01134 0.50142 1.00135

β3 0.04978 0.05017 −0.03710 0.14436 0.00560 0.50223 1.00362

Table 6 Kendall’s τ measure
of dependence

Model Kendall’s τ value

Model-I 0.30248

Model-II 0.25746

Table 7 AIC, BIC and DIC comparison for all four models

Model AIC BIC DIC

Model-I 5125.697 5176.856 5070.713

Model-II 5282.064 5322.080 5274.653

Model-III 5385.744 5425.27 5377.353

Model-IV 5476.058 5507.883 5471.697

12 Conclusions

To authenticate the influence of frailty, generalized Lindley frailty model under
modified inverse Weibull and generalized Rayleigh baseline distributions have been
proposed. To fit the proposed models, M-H algorithm has been applied. Analy-
sis has been done in R statistical software with self-written programs. The value
of both frailty parameters for Model-I (θ = 14.41710,μ = 1.85515) and Model-
II (θ = 15.97924,μ = 2.43047) is very high, and corresponding variances are
13.36152 and 14.32177 by using Equation (2.2). In Table6, we calculate Kendall’s
τ measure of dependence by using Equation (5.2). This exhibits that there is a strong
indication of heterogeneity among the patient in the population for the data set.
For appendectomy patient data, age of twins has been found statistically significant
factor for Model-I, Model-II and Model-III. To take the decision about all models,
different tools have been utilized. With the lowest value of AIC, BIC and DIC, car-
ried by Table6 and CPO plots (see Figs. 11 and 12), it can be said that Model-I and
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Model-II are more beneficial to use in comparison with Mode-III and Model-IV for
appendectomy patient data. The generalized Lindley frailty models with modified
inverse Weibull and generalized Rayleigh baseline distributions perform better than
two models discussed by Hanagal and Pandey (2017b) and Hanagal and Bhambure
(2017) when we compare the model selection criteria (AIC, BIC and DIC values).
Between the Model-I and Model-II, Model-I (generalized inverse Weibull baseline
with generalized Lindley frailty) is better as compared to Model-II (generalized
Rayleigh baseline with generalized Lindley frailty).
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Ultimate Ruin Probability for
Benktander Gibrat Risk Model

Kanchan Jain and Harmanpreet Singh Kapoor

Abstract In actuarial science and finance, the derivation of ultimate ruin probability
for various loss distributions is of key interest. There are many methods available
in literature for evaluating ultimate ruin probability for different distributions. Prob-
ability of ultimate ruin is derived for a risk model under Benktander Gibrat (BG)
distribution, also known as Benktander Type I distribution. Laplace transform, gen-
eralized exponential integrals, MeijerG function and Bromwich Integral are used to
find ultimate ruin probability.

Keywords Risk model · Ruin theory · Laplace transform · Exponential integral ·
Bromwich integral · MeijerG function

1 Introduction

In insurance sector, an insured has to pay premium to the insurer for taking out an
insurance policy for providing security to the insured as well as the insurer against
future risks. The insurer has to protect herself/himself against the liabilities that can
arise at anytime. Hence, it is important for the insurance company to have sufficient
funds to avoid a situation of insolvency. The study of probability of ultimate ruin has
great significance for suggesting ways of protection to the insurer against insolvency.
Lot of research has been carried out for finding the probability of ultimate ruin
when the loss random variables are modeled using different Statistical distributions
(Asmussen & Albrecher, 2010).

In economics and actuarial science, the positively skewed or heavy tailed distri-
butions are used to model income or claim amount. There are many examples of
such distributions in Lambert (1993), Johnson et al. (1995) and Arnold (2015). Most
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commonly used distribution to model catastrophic losses in an insurance portfolio is
Pareto distribution (Hogg & Klugman, 1984 and Daykin et al., 1994).
Bohman (1971) discussed the problem of ultimate ruin probabilities. This has been
further studied for Gamma distribution by Grandell and Segerdahl (1971) and Will-
mot (1988), Lognormal distribution by Thorin and Wikstad (1977) and Ramsay and
Usábel (1997) and Generalized Gamma distribution by Usábel (2001). For expo-
nential and mixture of two exponential distributions, ultimate ruin probability was
derived by Dufresne and Gerber (1988). Ramsay and Usábel (1997) and Ramsay
(2003) provided methodology for evaluating the ultimate ruin probability for Pareto
distribution. Wei and Hai-liang (2004) gave explicit expressions for the ultimate ruin
probabilities of Erlang risk processes with Pareto individual claim distributions. For
work related to distribution of sum of Pareto random variables, one can refer to
Ramsay (2009). Adekambi and Essiomle (2020) studied ultimate ruin probability by
assuming a phase-type distribution for the time of default of payment in banks and
provided the Cramer Lundberg type bounds.

In many situations, heavy-tailed distributions provide an appropriate fit to actual
claim data. Due to difficulty in the evaluation of exact expressions of ultimate ruin
probability, asymptotic properties of ultimate ruin probability for various distribu-
tions have been studied extensively in the literature (Embrechets and Veraverbeke
(1982), Grübel (1987), Baltrünas (1999) and Barbe and McCormick (2009)).

In literature, there are two commonly used approaches for evaluation of ultimate
ruin probability.

• The first approach uses Laplace Transformation and has been discussed in Sect. 3.
One can also refer to Seal (1969), Bohman (1975), Thorin and Wikstad (1977),
Usábel (1999, 2001) and references therein for more information.

• Goovaerts and De Vijylder (1984), Panjer (1986), Dickson (1989), Dickson and
Waters (1991), Panjer and Wang (1993), Dickson et al. (1995) and Ramsay and
Usábel (1997) have used the second approach wherein limits of integration are
discretized and recursive procedure applied to get desired values of ultimate ruin
probability.

In this chapter, the ultimate ruin probability is evaluated by implementing the Laplace
Transformation method, for Benktander Gibrat (BG) distribution which represents
a Benktander distribution of type I with parameters a and b. This is one of two dis-
tributions introduced by Benktander (1970) to model heavy-tailed losses commonly
found in non-life/casualty actuarial science, using various forms of mean excess
functions (Benktander & Segerdahl, 1960). The distribution of first type is “close”
to the log-normal distribution (Klieber & Kotz, 2003). Benktander Type I and Type
II distributions were further studied by Beirlant et al. (1996) and Embrechts et al.
(1997). Benktander Type II distribution is also known as Benktander Weibull (BW)
distribution. BG and BW Distributions are considered to be intermediate between
Pareto and Exponential Distributions.

For a random variable X , following Benktander Gibrat (BG) distribution with
parameters a, b > 0 , the probability density function (pdf), cumulative distribution
function (cdf) and expectation are given as
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Fig. 1 PDF of Benktander Gibrat Distribution

f (x) = e−blog(x)2x−2−a
(

− 2b

a
+ (1 + a + 2blog(x))(1 + 2blog(x)

a
)
)
, x ≥ 1

(1.1)

F(x) = 1 − e−blog(x)2x−1−a
(
1 + 2blog(x)

a

)
, (1.2)

E(X) = p1 = 1 + 1

a
. (1.3)

The plots of the probability distribution function of BG distribution for different
combinations of parameters a and b are shown in Fig. 1.

In Fig. 1, it can be seen that BG distribution has heavy tail, and hence is useful
for modelling the insurance data. So ultimate ruin probability has been obtained
assuming that claims follow the BG distribution.

Pareto Distribution (Arnold, 2015) is a limiting case of Benktander Gibrat (BG)
Distribution, in the sense that probability density function (pdf) of Benktander Gibrat
Distribution [a,b] tends to that of Pareto Distribution [1, a+1] when b approaches 0.
This fact implies that pdfs of both Benktander Gibrat Distribution [a,b] and Benk-
tander Weibull Distribution [a,b] tend to the same limiting function as b tends to 0.
Furthermore, the stationary renewal distribution associated with a Benktander Gibrat
distribution is same on its domain as the pdf of Benini Distribution [a,b,1] (Kleiber
&Kotz, 2003). The asymptotic behaviour of BG distribution lies between light tailed
exponential distribution and heavy tailed Pareto distribution. Claim amounts of vehi-
cles under general insurance in urban areas follow BG distribution. Hence, it is of
practical importance to study the probability of ultimate ruin when claim distribution
is BG.
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The chapter is organized as follows. In Sect. 2, the risk model is introduced and
used notations explained. In Sect. 3, the Laplace transforms are obtained for deriving
results for finding ultimate ruin probability. The main results are provided in Sect. 4
for evaluating the ultimate ruin probability and Sect. 5 consists of numerical eval-
uation of ultimate ruin probability for BG distribution using numerical integration
methods for different parametric combinations. Conclusions are placed in Sect. 6.

2 Risk Model

It is assumed that the claim sizes X ′
i s are non-negative, independent and identically

distributed (i.i.d) random variables with cdf F(x) and first order moment as p1 =
E[Xi ]. In the actuarial risk theory, the risk surplus process denoted by U(t) under
classical risk model is defined as

U (t) = u + ct −
N (t)∑
i=1

Xi

where u ≥ 0 is the initial reserve (risk surplus) at t = 0;

N (t), representing claims frequency in [0, t), is a time homogeneous Poisson process
with intensity λ;
c = λ(1 + θ)p1 denotes premium rate with safety loading factor θ > 0 which is
percentage of expected loss that helps the insurer to cover administrative expenses.
θ can be positive, negative or zero but in this study, it is assumed to be positive.

The surplus process of an insurance portfolio is inflow from the premiumpayments
minus the outflow in form of claims and other administrative expenses. If this process
becomes negative, it is said that ruin has occurred. For an initial reserve (surplus) of
u ≥ 0, the probability of ultimate ruin is written as

ψ(u) = Pr [U (t) < 0 for some t > 0 | U (0) = u]. (Asmussen and Albrecher, 2010)

The probability of ultimate ruin is the probability that the reserve ever drops below
zero whereas the probability of ruin is the probability that reserve becomes negative
in a finite period of time.

It is known from Seal (1969), Gerber (1979), Bowers et al. (1997), Hazewinkel
(2001) that ψ(u) satisfies the Volterra integral equation written as

ψ(u) = 1

(1 + θ)p1

(∫ u

0
(1 − F(x))ψ(u − x) dx +

∫ ∞

u
(1 − F(x)) dx

)

= 1

(1 + θ)

(∫ u

0
H(x)ψ(u − x) dx + K (u)

)
. (2.1)
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where

H(x) = 1 − F(x)

p1
(2.2)

and
K (u) =

∫ ∞

u
H(x) dx (2.3)

Explicit expressions for ultimate ruin probability have been derived for limited num-
ber of claim size distributions such as exponential and mixed exponential (Klugman
et al., 1998). Asymptotic results are available for Pareto and Lognormal distributions
(Von Bahr, 1975, Embrechets & Veraverbeke, 1982 and Embrechets et al., 1997). In
the next section, the expressions for Laplace transforms of H(x), K (x) and ψ(u)

have been derived.

3 Laplace Transformation

Let C represent the finite complex plane and z ∈ C . For Re(z) > 0, Laplace trans-
form of H(u) is given by

H∗(z) =
∫ ∞

0
e−zu H(u) du

= 1

p1

∫ ∞

0
e−zu(1 − F(u)) du, using (2.2). (3.1)

Laplace transform of K (u) is written as

K ∗(z) =
∫ ∞

0
e−zu K (u) du =

∫ ∞

0
e−zu

∫ ∞

u
H(v) dv du =

∫ ∞

0
H(v)

(∫ v

0
e−zu du

)
dv

= 1

z

∫ ∞

0
H(v)(1 − e−zv) dv = 1

z

(∫ ∞

0
H(v) dv −

∫ ∞

0
e−zvH(v) dv

)

= 1

z
[1 − H∗(z)], since

∫ ∞

0
H(v) dv =

∫ ∞

0

1 − F(v)

p1
dv = 1.

Hence using (2.1), Laplace transform of ψ(u) is given by

ψ∗(z) =
∫ ∞

0
e−zuψ(u) du

= 1

(1 + θ)

[∫ ∞

0
e−zu K (u) du +

∫ ∞

0
e−zu

(∫ u

0
ψ(u − x)H(x) dx

)
du

]
.

Interchanging the order of integration, we have x < u < ∞ and 0 < x < ∞ and
hence
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ψ∗(z) = 1

(1 + θ)

[
K ∗(z) +

∫ ∞

0

(∫ ∞

x
e−zuψ(u − x) du

)
H(x) dx

]

= 1

(1 + θ)

[
K ∗(z) +

∫ ∞

0

(∫ ∞

x
e−z(u−x)ψ(u − x) du

)
e−zx H(x) dx

]

= 1

(1 + θ)

[
K ∗(z) +

∫ ∞

0

(∫ ∞

0
e−zyψ(y) dy

)
e−zx H(x) dx

]
, obtained by substituting u − x = y

= 1

(1 + θ)

(
K ∗(z) +

∫ ∞

0
ψ∗(z)e−zx H(x) dx

)

= 1

(1 + θ)

[
K ∗(z) + ψ∗(z)H∗(z)

]
.

This gives K ∗(z) = [(1 + θ) − H∗(z)]ψ∗(z) which implies that

ψ∗(z) = K ∗(z)
(1 + θ − H∗(z))

. (3.2)

4 Ultimate Ruin Probability for BG Distribution

It is assumed that each Xi , the i th claim size, follows Benktander Gibrat (BG) dis-
tribution with parameters a and b.

Using (1.2), (1.3) and (3.1), Laplace transform of H(u) can be written as

H∗(z) = a

a + 1

∫ ∞

1
e−zx−blog(x)2x−1−a(1 + 2blog(x)

a
) dx .

Using Mathematica Software, we get

H∗(z) = a

a + 1
{E1+a+2b(z)

+ 2b

a
MeijerG[{1 + a + 2b, 1 + a + 2b}, {0, a + 2b, a + 2b}, z]

where for Re(z) > 0,

En(z) =
∫ ∞

1

e−zt

tn
dt, n = 1, 2, . . . (4.1)

is Generalized exponential Integral (Abramowitz & Stegun, 1964). MeijerG function
(Bateman & Erdély, 1953) is defined as

MeijerG[{{a1, . . . , an}, {an+1, . . . , ap}}, {{b1, . . . , bm}, {bm+1, . . . , bq}}, z]

= Gm n
p q (z | a1,...,ap

b1,...,bq
) = 1

2π i

∫

L

∏m
j=1 �(b j − s)

∏n
k=1 �(1 − ak + s)∏q

j=m+1 �(1 − b j + s)
∏p

k=n+1 �(ak − s)
zs ds

(4.2)
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where L is a loop (as defined in the following expression) beginning and ending at
+∞, encircling all poles of �(b j − s), j = 1, 2, . . . ,m exactly once in the negative
direction but not encircling any pole of �(1 − ak + s), k = 1, 2, . . . , n; 0 ≤ m ≤ q
; 0 ≤ n ≤ p ; m, n, p and q are integers, z �= 0 and � denotes the gamma function.
The integral converges for all z if q > p ≥ 0.
Using (4.1) and (4.2), we get

H∗(z) = a

a + 1

[∫ ∞

1

e−zt

t (1+a+2b)
dt + 2b

a

1

2π i

∫

L

∏m
j=1 �(s + b j )∏p

j=n+1 �(s + a j )
zs ds

]
.

This gives

K ∗(z) = 1 − H∗(z)
z

= a + 1 − aE1+a+2b(z) − 2bG3 0
2 3(z | 1+a+2b,1+a+2b

0, a+2b, a+2b )

z(a + 1)
. (4.3)

Using (3.2) and (4.3), we get

ψ∗(z) = a + 1 − aE1+a+2b(z) − 2bG3 0
2 3(z | 1+a+2b,1+a+2b

0, a+2b, a+2b )

z
(
(1 + θ)(a + 1) − aE1+a+2b(z) − 2bG3 0

2 3(z | 1+a+2b,1+a+2b
0, a+2b, a+2b )

)

= 1

z
− (a + 1)θ

z
(
(1 + θ)(a + 1) − aE1+a+2b(z) − 2bG3 0

2 3(z | 1+a+2b,1+a+2b
0, a+2b, a+2b )

)

= 1

z
− A∗(z) (4.4)

where

A∗(z) = (a + 1)θ

z
(
(1 + θ)(a + 1) − aE1+a+2b(z) − 2bG3 0

2 3(z | 1+a+2b,1+a+2b
0, a+2b, a+2b )

) .

Two possibilities are considered

(i) θ = 0
(ii) θ > 0.

For θ = 0,ψ∗(z) = 1

z
which implies thatψ(u) = 1. For second possibility, we prove

the following Lemma.

Lemma 1 Let D denote the finite complex plane, with zero and negative real axis
removed, that is, D = C/(−∞, 0]. Then for (1 + θ)(a + 1) > 0, the equation
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(1 + θ)(a + 1) − aE1+a+2b(z) − 2bG3 0
2 3(z | 1+a+2b,1+a+2b

0, a+2b, a+2b ) = 0, a + 2b = 3, 4, . . . .

(4.5)

has no solution in D.

Proof Let z = x + iy ∈ D where x and y are real numbers.
E1+a+2b(z) is analytic in D and is symmetric for z ∈ D (Abramowitz & Stegun,
1964, Chap.5) which gives that E1+a+2b(z̄) = Ē1+a+2b(z), where (z̄) represents the
complex conjugate of z.
Taking complex conjugate on both sides of (4.5), we get

(1 + θ)(a + 1) − aĒ1+a+2b(z) − 2bḠ3 0
2 3(z | 1+a+2b,1+a+2b

0, a+2b, a+2b ) = 0.

Since Ē1+a+2b(z) = E1+a+2b(z̄) and Ḡ3 0
2 3(z | 1+a+2b,1+a+2b

0, a+2b, a+2b ) = −G3 0
2 3(z̄ | 1+a+2b,1+a+2b

0, a+2b, a+2b ),
hence

(1 + θ)(a + 1) − aE1+a+2b(z̄) + 2bG3 0
2 3(z̄ | 1+a+2b,1+a+2b

0, a+2b, a+2b ) = 0. (4.6)

Subtracting (4.6) from (4.5) , we get

aE1+a+2b(z̄) − 2bG3 0
2 3(z̄ | 1+a+2b,1+a+2b

0, a+2b, a+2b ) − aE1+a+2b(z) − 2bG3 0
2 3(z | 1+a+2b,1+a+2b

0, a+2b, a+2b ) = 0.

This gives

a[E1+a+2b(z̄) − E1+a+2b(z)] − 2b[G3 0
2 3(z̄ | 1+a+2b,1+a+2b

0, a+2b, a+2b ) + G3 0
2 3(z | 1+a+2b,1+a+2b

0, a+2b, a+2b )] = 0.

(4.7)

For y = 0, the L.H.S of (4.7) will be

a[E1+a+2b(x) − E1+a+2b(x)] − 2b[G3 0
2 3(x | 1+a+2b,1+a+2b

0, a+2b, a+2b ) + G3 0
2 3(x | 1+a+2b,1+a+2b

0, a+2b, a+2b )]
= −4bG3 0

2 3(x | 1+a+2b,1+a+2b
0, a+2b, a+2b ) < 0.

So, no solution is possible for y = 0.

Now for y > 0,

a[E1+a+2b(z̄) − E1+a+2b(z)] − 2b[G3 0
2 3(z̄ | 1+a+2b,1+a+2b

0, a+2b, a+2b ) + G3 0
2 3(z | 1+a+2b,1+a+2b

0, a+2b, a+2b )] �= 0

because E1+a+2b(z̄) �= E1+a+2b(z) and

G3 0
2 3(z̄ | 1+a+2b,1+a+2b

0, a+2b, a+2b ) �= −G3 0
2 3(z | 1+a+2b,1+a+2b

0, a+2b, a+2b ).

Hence for y > 0, L.H.S of (4.7) is not equal to zero and no solution is possible.

ψ(u) can be obtained usingBromwich complex integral (Inverse Laplace Transform)
as
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Fig. 2 Closed contour �

ψ(u) = 1

2π i

∫ s+i∞

s−i∞
euzψ∗(z) dz = 1 − 1

2π i

∫ s+i∞

s−i∞
euz A∗(z) dz (4.8)

and s > 0 is an arbitrary large constant value such that all singularities of ψ∗(z)
lie to the left of vertical line Re(z) = s (Davies, 2002). Along the negative real
axis, E1+a+2b(z) has a logarithmic branch cut and branch point at z = 0. Hence the
Bromwich integral can be evaluated in the counter-clockwise direction around the
deformed closed contour � as shown in Fig. 2.

The integral around � can be represented as

1

2π i

∫

�

euz A∗(z) dz = 1

2π i

[∫ s+iy

s−iy
+

∫

CR

+
∫ −R

−r
+

∫

Cr

+
∫ −r

−R

]
euz A∗(z) dz.

(4.9)

Using Lemma 1, (1 + θ)(a + 1) − aE1+a+2b(z) − 2bG3 0
2 3(z | 1+a+2b,1+a+2b

0, a+2b, a+2b )=0

has no root in �. Hence Cauchy’s residue theorem of complex analysis (Brown &
Churchill, 2013) gives that

1

2π i

∫

�

euz A∗(z) dz = 0. (4.10)

Using (4.9) and (4.10), we get
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1

2π i

∫ s+i∞

s−i∞
euz A∗(z) dz = − 1

2π i
lim
R→∞
r→0

[∫

CR

+
∫ −r

−R
+

∫

Cr

+
∫ −R

−r

]
euz A∗(z) dz.

(4.11)

Using Lemma 4.1 of Chap.4 in Schiff (1999) and writing F(u) = A∗(z), we have

A∗(z) ≤ 1

z p
, where p > 0.

Hence

lim
R→∞

∫

CR

euz A∗(z) dz = 0. (4.12)

The contribution from the circle (Cr ) around the origin is non-zero (Schiff, 1999).

lim
r→0

∫

Cr

euz A∗(z) dz

= lim
r→0

∫

Cr

(a + 1)θeuz

z((1 + θ)(a + 1) − aE1+a+2b(z) − 2bG3 0
2 3(z | 1+a+2b,1+a+2b

0, a+2b, a+2b ))
dz

= lim
r→0

∫ −π

π

(a + 1)θ ireiweure
iw

reiw((1 + θ)(a + 1) − aE1+a+2b(reiw) − 2bG3 0
2 3(re

iw | 1+a+2b,1+a+2b
0, a+2b, a+2b ))

dw

=
∫ −π

π

θ i(a + 1)(a + 2b)

(1 + θ)(a + 1)(a + 2b) − a
dw

= − 2π iθ(a + 1)(a + 2b)

(1 + θ)(a + 1)(a + 2b) − a
. (4.13)

Now z = xeiπ = −x along the contour above the negative real axis. As z
approaches −R to −r , x approaches R to r and dz = −dx . Hence for R → ∞
and r → 0, we have

∫ 0

−∞
euz A∗(z) dz =

∫ ∞

0
e−ux A∗(xeiπ ) dx . (4.14)

Similarly, z = xe−iπ = −x along the contour just below the negative real axis,
and as z approaches −R from −r , x approaches R from r and dz = −dx . So as
R → ∞ and r → 0, we get
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∫ −∞

0
euz A∗(z) dz = −

∫ ∞

0
e−ux A∗(xe−iπ ) dx . (4.15)

Using (4.12)–(4.15), we get

1

2π i

∫ s+i∞

s−i∞
euz A∗(z) dz

= − 1

2π i

∫

CR

(a + 1)θeuz

z
(
(1 + θ)(a + 1) − aE1+a+2b(z) − 2bG3 0

2 3(z | 1+a+2b,1+a+2b
0, a+2b, a+2b )

) dz

− 1

2π i

(∫ ∞

0
e−ux A∗(xeiπ ) dx −

∫ ∞

0
e−ux A∗(xe−iπ ) dx

)

− 1

2π i

⎛
⎝

∫

Cr

(a + 1)θeuz

z
(
(1 + θ)(a + 1) − aE1+a+2b(z) − 2bG3 0

2 3(z | 1+a+2b,1+a+2b
0, a+2b, a+2b )

) dz

⎞
⎠

= − 1

2π i

(∫ ∞

0
e−ux A∗(xeiπ ) dx −

∫ ∞

0
e−ux A∗(xe−iπ ) dx

)

+ θ(a + 1)(a + 2b)

(1 + θ)(a + 1)(a + 2b) − a

= θ(a + 1)(a + 2b)

(1 + θ)(a + 1)(a + 2b) − a
− 1

2π i

∫ ∞

0
e−ux

[
A∗(xeiπ ) − A∗(xe−π i )

]
dx .

(4.16)

Using (4.16) in (4.8), we have

ψ(u) = 1 − θ(a + 1)(a + 2b)

(1 + θ)(a + 1)(a + 2b) − a

+ 1

2π i

∫ ∞

0
e−ux

[
A∗(xeiπ ) − A∗(xe−iπ )

]
dx

= 1 − θ(a + 1)(a + 2b)

(1 + θ)(a + 1)(a + 2b) − a

+ 1

2π i

∫ ∞

0

(a + 1)e−uxθ

xeiπ
(
(θ + 1)(a + 1) − aE1+a+2b(xeiπ ) − 2bG3 0

2 3(xe
iπ | 1+a+2b,1+a+2b

0, a+2b, a+2b )
)

− (a + 1)e−uxθ

xe−iπ
(
(θ + 1)(a + 1) − aE1+a+2b(xe−iπ ) − 2bG3 0

2 3(xe
−iπ | 1+a+2b,1+a+2b

0, a+2b, a+2b )
) dx .

(4.17)

Exponential Integral is not analytic along the negative real axis.
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For x > 0, E1+a+2b(−x) takes on different values along the negative real axis
depending on whether (−x) lies above the branch cut or below the cut.
Using series expansion of Exponential Integral (Abramowitz & Stegun, (1964,
Chap.5)), we get

E1+a+2b(z) = za+2b

(a + 2b)! [log(z) + γ −
a+2b∑
r=1

1

r
] +

∞∑
l=0

l �=a+2b

zl

(l − a − 2b)l! .

Putting z = xe±iπ and solving, we get
E1+a+2b(xe

±iπ ) = −Ei1+a+2b(x) ∓ iπ
xa+2b

(a + 2b)!

where Ei1+a+2b(x) = xa+2b

(a + 2b)! [log(x) + γ − ∑a+2b
r=1

1

r
] + ∑∞

l=0
l �=a+2b

xl

(l − a − 2b)l!

for a + 2b = 3, 4, . . . , is

(1 + a + 2b)th order generalization of the exponential integral Ei(x).
Thus, from (4.17), we have

ψ(u) = (a + 1)(a + 2b) − a

(1 + θ)(a + 1)(a + 2b) − a
+ θ(a + 1)

2π i
∫ ∞

0
e−ux [−x((θ + 1)(a + 1) + aEi1+a+2b(x) − iaπ

xa+2b

(a + 2b)! − 2bG3 0
2 3(xe

iπ | 1+a+2b,1+a+2b
0, a+2b, a+2b ))

+x((θ + 1)(a + 1) + aEi1+a+2b(x) + iaπ
xa+2b

(a + 2b)! − 2bG3 0
2 3(xe

−iπ | 1+a+2b,1+a+2b
0, a+2b, a+2b ))]

x2

[(
(θ + 1)(a + 1) + aEi1+a+2b(x) − 2bG3 0

2 3(−x | 1+a+2b,1+a+2b
0, a+2b, a+2b )

)2 +
(
aπx2a+4b

(a + 2b)!
)2] dx

= (a + 1)(a + 2b) − a

(1 + θ)(a + 1)(a + 2b) − a
+ θ

∫ ∞

0

e−ux
[
a(a+1)xa+2b−1

(a+2b)!
]

[(
(θ + 1)(a + 1) + aEi1+a+2b(x) − 2bG3 0

2 3(−x | 1+a+2b,1+a+2b
0, a+2b, a+2b )

)2 +
(
aπx2a+4b

(a + 2b)!
)2

] dx . (4.18)

This is the exact form of the ultimate ruin probability ψ(u), but it is difficult to find
its solution analytically. So, we use numerical approximation method to solve the
integral in (4.18). Numerical values of probability of ultimate ruin are calculated in
the next section for some combinations of values of a and b.

5 Calculation of Ultimate Ruin Probability

In this section, we evaluate ultimate ruin probability for BG distribution by solving
(4.18) using numerical integration inMathematica for some parametric combinations
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Table 1 Ultimate ruin Probability for BG risk model

a = 1 and b = 2

θ = 0.10 θ = 0.25 θ = 0.50 θ = 0.75

u=10 0.9000+4.66E-8 0.7826+1.10E-7 0.6428+1.08E-7 0.5454+1.17E-7

u=20 0.9000+3.73E-9 0.7826+2.11E-8 0.6428+3.74E-9 0.5454+1.60E-8

u=40 0.9000+5.06E-10 0.7826+6.37E-9 0.6428+3.93E-10 0.5454+1.19E-10

a = 3 and b = 2

θ = 0.10 θ = 0.25 θ = 0.50 θ = 0.75

u=10 0.8990+8.87E-11 0.7812+1.74E-10 0.6410+2.59E-10 0.5435+3.16E-10

u=20 0.8990+2.58E-11 0.7812+9.82E-12 0.6410+3.22E-12 0.5435+3.11E-11

u=40 0.8990+2.36E-12 0.7812+1.56E-13 0.6410+1.06E-13 0.5435+2.09E-12

a = 3 and b = 5

θ = 0.10 θ = 0.25 θ = 0.50 θ = 0.75

u=10 0.9041+7.21E-17 0.7903+1.61E-16 0.6533+2.71E-16 0.5568+3.47E-16

u=20 0.9041+2.83E-20 0.7903+5.75E-20 0.6533+8.68E-20 0.5568+1.01E-19

u=40 0.9041+4.57E-23 0.7903+3.43E-23 0.6533+3.67E-23 0.5568+3.01E-23

and different values of u and θ . The values ofψ(u) for these combinations are shown
in Table1.

The values of ultimate ruin probability are calculated by using Mathematica soft-
ware and during evaluation, it was observed that some values of probability are
complex but the coefficient of i is 10−12 which is very very small. So, we ignore
the effect of i and consider only the real part to show the ultimate ruin probabilities.
From Table1, it is concluded that

• as loading factor increases, the probability of ultimate ruin decreases for fixed u;
• an increase in initial reserves leads to no significant decrease in ultimate ruin
probability implying that initial reserves do not have a significant influence on
ultimate ruin probability;

• probability of ultimate ruin decreases as value of a increases for fixed value of b;
• probability of ultimate ruin increases as value of b increases for fixed a;
• when values of both the parameters a and b increase, the probability of ultimate
ruin is slightly higher.

Hence, in case the claim distribution is Benktander Gibrat, the companies should pay
more attention to the loading factor than initial reserves in order to remain solvent.

6 Conclusions

Benktander Gibrat risk model is not very well known in literature but due to char-
acteristics of BG distribution lying between light tailed exponential distribution and
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heavy tailed Pareto distribution, its importance cannot be ignored. We evaluate the
probability of ultimate ruin by assuming claim distribution to be BG and conclude
that companies have to concentrate more on the loading factor than initial reserves
to be solvent.
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Test of Homogeneity of Scale Parameters
Based on Function of Sample Quasi
Ranges

Kalpana K. Mahajan, Sangeeta Arora, and Anil Gaur

Abstract A multi-sample test for homogeneity of scale parameters against simple
ordered alternative based on function of sample quasi ranges is proposed for censored
data, as well as for data contaminated with outliers. These problems find a number of
applications in different fields, such as agriculture, competitive markets, engineering
and quality control. The critical points have been computed through simulation for
the given test in case of standard exponential, standard logistic and standard uniform
distributions. Nonetheless, the proposed test also finds applications in distributions
such as Laplace, Pareto, Weibull, etc. Herein construction is proposed for simul-
taneous one-sided confidence intervals (SOCIs) along with an illustration. Besides
computing the power of the proposed test, some power comparisons have also been
undertaken.

Keywords Ordered alternative · Power comparisons · Quasi ranges · Simulation

1 Introduction

More often than not, in real-life situations the interest is in weeding out the process
or mechanism leading to high variations. For example, a soft-drink filling unit will
like to discard the machines giving high variations in the context, or in animal
husbandry, the interest may be on scaling variations while attempting with different
breeding methods, for successive improvements. In general, such problems are quite
common in almost all walks of life, be it hailing from agriculture, quality control,
engineering or the like, wherein the interest lies in scale parameter of distributions.
Let π1, π2, . . . , πk be k (k ≥ 3) independent populations wherein an observation
from population πi follows a distribution with cumulative distribution function (cdf)
Fi (x) = F[(x − μi )/θi ], such that μi (−∞ < μi < ∞) is location parameter,
θi (θi > 0) is scale parameter and F(.) is any absolutely continuous cdf. Thus, F(.)
is a member of location-scale family, i = 1, 2, . . . , k. Herein the interest lies in
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to “ordering” of the scale parameters of k populations—more precisely to see if the
scale parameter of one distribution is less/more than the other. The null hypothesis
of interest is to test H0 : θ1 = θ2 = · · · = θk against the simple ordered alternative
HA : θ1 ≤ θ2 ≤ · · · ≤ θk with at least one strict inequality.

For this problem,many tests have been proposed in the literature including those of
Kochar andGupta (1985), Kusum andBagai (1988), Hayter (1990), Gill andDhawan
(1999), Shetty and Bhatt (2003), Singh and Gill (2004), Bansal et al. (2011), Gaur
et al., (2012, 2013), Mahajan et al. (2012) and others. For more details, one may refer
to Barlow et al. (1972), Robertson et al. (1988) and Hochberg and Tamhane (1987).
Gill and Dhawan (1999) proposed a test procedure based on maximum likelihood
estimators (MLE) of the scale parameters of two-parameter exponential distribution.
Computations of critical points, simultaneousone-sided confidence intervals (SOCIs)
construction and power computations were carried out using simulation technique
for two-parameter exponential distribution only. Singh and Gill (2004) proposed a
test procedure based on sample quasi ranges and computed the critical points in case
of exponential distribution and uniform distribution using Hayter (1990) technique,
and power computation and comparisons are carried out for equal sample sizes.

The test proposed by Singh and Gill (2004) is more suitable when the practitioner
or experimenter has smaller samples or samples containing outliers to draw infer-
ences. In such cases, the use of sample quasi ranges as a measure of dispersion has
been recommended (see David & Nagaraja, 2003). Further, because of their compu-
tational and distributional conveniences, sample quasi ranges are considered good
measures of dispersion in comparison to measures based on maximum likelihood
estimator (MLE) or best linear unbiased estimator (BLUE).

David and Nagaraja (2003) and Budescu (1980) mentioned that “weighted func-
tion of quasi ranges could be considered a good measure of dispersion”. David and
Nagaraja (2003) showed that “weighted function of quasi ranges is more efficient
than quasi ranges alone”. With this backdrop, a multi-sample test for testing homo-
geneity of scale parameters against simple ordered alternative based on weighted
function of sample quasi ranges is proposed for the situations: (i) when it is not
possible to measure the observations below and above some limits, i.e. experimenter
has censored data for statistical inference; or (ii) there is suspicion that data is contam-
inated with outliers or (iii) when the practitioner or experimenter has smaller samples
to draw statistical inferences. Herein the critical points have been computed for three
distributions, viz. two-parameter standard exponential, standard logistic and standard
uniform. These critical points could also be applied in case of someother distributions
such as Gamma, Laplace, Pareto, Weibull, etc., while using certain transformations.

The scheme of the chapter is as follows: Sect. 1 accounts for the brief introduction
to the problem, and in Sect. 2, a test is proposed for the multi-sample scale problem
under order alternative using weighted function of quasi ranges. The computations
of critical points are shown in detail in Sect. 3, and construction of SOCIs and a
simulated example are taken up in Sect. 4. In Sect. 5, the power of the proposed test
is carried out, and finally conclusion is given in Sect. 6.
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2 Proposed Test Procedure

Sample quasi ranges Rir are defined as Rir = Xi[n−r ] − Xi[r+1],r =
0, 1, . . . , [n/2] − 1, where [x] is the greatest integer less than or equal to x and
Xi[1] ≤ Xi[2] ≤ · · · ≤ Xi[n] be the corresponding order statistics, i = 1, 2, . . . , k
based on a random sample Xi1, Xi2, . . . , Xin of size n from the ith population πi

where i = 1, 2, . . . , k.
The weighted function of quasi ranges is thus defined as

Qi =
∑m

r=1 (n − 2r + 1)Rir

n(n − 1)/2
, (2.1)

where m = [n/2], the integral part of [n/2]. The weighted function of quasi ranges
is in fact a measure of dispersion and this is used in the test statistics proposed below.

Consider null hypothesis of homogeneity of scale parameters

H0 : θ1 = θ2 = · · · = θk,

against the simple ordered alternative

HA : θ1 ≤ θ2 ≤ · · · ≤ θk,

with at least one strict inequality.
The proposed test statistic is given as

TQ = max
1≤i< j≤k

(Q j/Qi ). (2.2)

and the test is to reject H0 at level α iff

TQ ≥ qk, α, n, (2.3)

where qk, α, n are the critical points for k samples each of size n obtained by

P0[TQ ≥ qk, α, n] = α, (2.4)

and P0(A) indicates that the probability of event A is computed under H0 at level of
significance α.

The proposed test captures the concept that if null hypothesis is true, i.e. all the
scale parameters are equal, the ratio in the test statistics will be equal to 1 otherwise
under alternative hypothesis, these ratios will be greater than 1 and maximum of
these ratios should lead to the rejection of the hypothesis.

The proposed statistics is based on functions of sample quasi ranges, and distri-
bution of sample quasi ranges does not depend upon parent distribution (see David
and Nagaraja (2003)) and hence is distribution free.
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3 Calculation of Critical Points for Some Specific
Distributions: Simulation Method

The exact distribution of weighted function of quasi ranges is not available in liter-
ature. Of course, some results regarding distribution of weighted function of quasi
ranges are given in David and Nagaraja (2003), but not the exact distribution. To
compute the exact critical points for the proposed test statistics (stated in Eq. 2.1),
the approach suggested by Hayter (1990) is not adopted here as the exact distribution
of the test statistic which uses ratio of two Qi really gets too complicated without
having any precise form.

Therefore, we have adopted the other technique, i.e. the technique of statis-
tical simulation. The critical points of the proposed test for the above said problem
are obtained through statistical simulation taking 2 × 105 repetitions for different
configuration of ni’s (sample sizes).

The critical points are computed for different distributions, viz. two-parameter
standard exponential, standard logistic and standard uniform distributions. It is inter-
esting to see that these critical points can also be used for some other well-known
distributions using certain transformations. These critical points are provided for
three and more populations.

3.1 Critical Points for Standard Exponential, Standard
Logistic and Standard Uniform Distributions

The critical points are provided for the proposed test statistics as given in Eq. 2.2,
for three distributions: standard exponential, standard logistic and standard uniform.

We have generated 2 × 105 values of test statistic TQ = max
1≤i< j≤k

(Q j/Qi ) taking

equal samples of size n = 6, 7, …, 25, 30, 35 and 40 and using k as 3, 4, …, 0.10
from the above three distributions. The critical points are calculated for 0.05 and
0.01, two different values of level of significance α.

The simulated critical points are reported in Tables 1, 2 and 3 for all the three
distributions for level of significance α = 0.05 and for different samples, i.e. k =
3(1)10.

Remark 3.1 For the proposed test, critical constants are also computed for α = 0.01
and α = 0.10, for standard exponential distribution, standard logistic distribution and
standard uniform distribution for some different samples, i.e. k = 3(1)10. The tables
are available at https://kkmofpu.blogspot.com/p/tables_22.html?m=1.

Remark 3.2 For each of the three distributions, the size of the test is computed to
check the validity of the critical points qk, α, n . It was observed that the actual sizes
were less than the nominal level α. The tables are available at https://kkmofpu.blo
gspot.com/p/tables_22.html?m=1.

https://kkmofpu.blogspot.com/p/tables_22.html%3Fm%3D1
https://kkmofpu.blogspot.com/p/tables_22.html%3Fm%3D1
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Table 1 Simulated critical points for exponential distribution when α = 0.05

n/k 2 3 4 5 6 7 8 9

6 3.2834 4.5324 5.5526 6.2838 6.8237 7.5313 8.0394 8.6553

7 3.0190 3.9617 4.7565 5.3166 5.9110 6.3161 6.6577 7.0068

8 2.7161 3.5861 4.1614 4.7763 5.0677 5.4726 5.7534 6.0740

9 2.5593 3.3097 3.8309 4.2217 4.6049 4.8394 5.1155 5.3508

10 2.4532 3.1014 3.5531 3.8657 4.2235 4.4570 4.6269 4.8737

11 2.2954 2.9361 3.3529 3.6469 3.9062 4.0962 4.2746 4.4897

12 2.2305 2.7531 3.1440 3.4410 3.6490 3.8599 4.0265 4.2241

13 2.1694 2.6919 2.9861 3.2678 3.4379 3.6304 3.7813 3.9422

14 2.0858 2.5622 2.8589 3.0984 3.2858 3.4844 3.5943 3.7422

15 2.0447 2.4412 2.7438 2.9667 3.1634 3.3154 3.4321 3.5967

16 1.9813 2.391328 2.6509 2.8720 3.0487 3.1918 3.2888 3.3983

17 1.9400 2.3430 2.5821 2.7910 2.9165 3.0421 3.1846 3.2908

18 1.9149 2.2646 2.5281 2.6941 2.8292 2.9855 3.0647 3.1513

19 1.8803 2.2275 2.4491 2.6087 2.7632 2.8787 2.9823 3.0508

20 1.8447 2.1764 2.3817 2.5513 2.6802 2.7921 2.8768 2.9798

21 1.8284 2.1521 2.3530 2.4745 2.6262 2.7254 2.7927 2.8949

22 1.7897 2.1038 2.2915 2.4314 2.5519 2.6480 2.7424 2.8151

23 1.7516 2.0477 2.2586 2.3832 2.5079 2.6013 2.6937 2.7359

24 1.7458 2.0343 2.2272 2.3359 2.4570 2.5421 2.6293 2.6512

25 1.7308 2.0077 2.1862 2.3151 2.4186 2.4946 2.5575 2.6172

30 1.6387 1.8775 2.0109 2.1309 2.2125 2.2970 2.3587 2.4247

35 1.5970 1.7843 1.9258 2.0258 2.0841 2.1414 2.2108 2.2565

40 1.5316 1.7288 1.8345 1.9154 1.9886 2.0466 2.1034 2.1400

Remark 3.3 Using some suitable transformations, the critical points obtained above
can also be used for some other distributions, as suggested by Bansal et al. (2011).

4 Simultaneous One-Sided Confidence Intervals (SOCI’s)
of the Proposed Test

Onemay also construct the SOCIs for the ordered pairwise ratios of scale parameters
(see Singh and Gill (2004), Bansal et al. (2011)). The statistical analysis may not
be further necessary if the null hypothesis of homogeneity H0 is not significant.
However, if the null hypothesis is significant, then one may wish to determine which
θi ’s differ and by how much. The test statistic TQ = max

1≤i< j≤k
(Q j/Qi ) and using

Eq. (2.4) allows us to construct 1 − α level SOCIs for the ordered pairwise ratios
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Table 2 Simulated critical points for logistic distribution when α = 0.05

n/k 2 3 4 5 6 7 8 9

6 2.477 3.1796 3.7078 4.1404 4.4026 4.6964 4.9289 5.2753

7 2.2678 2.8581 3.2454 3.5589 3.8617 4.0915 4.2449 4.3974

8 2.1293 2.6312 2.9547 3.2302 3.4096 3.6469 3.7867 3.9362

9 2.0247 2.4732 2.7666 2.9563 3.1617 3.3083 3.4276 3.5275

10 1.9329 2.3011 2.551 2.7695 2.937 3.0624 3.1857 3.2959

11 1.8799 2.2142 2.4412 2.6358 2.7809 2.8688 2.9956 3.1113

12 1.8205 2.1513 2.3599 2.4946 2.6453 2.7319 2.8292 2.9204

13 1.7839 2.0707 2.2667 2.4088 2.5012 2.6343 2.7298 2.7853

14 1.7249 2.0006 2.1871 2.3062 2.4297 2.5302 2.5877 2.6877

15 1.696 1.973 2.1328 2.2362 2.3498 2.4191 2.5007 2.5723

16 1.6602 1.9166 2.0603 2.1837 2.2813 2.3434 2.4224 2.503

17 1.63 1.8923 2.0127 2.1397 2.2155 2.2852 2.3597 2.4178

18 1.6113 1.84 1.9802 2.0808 2.1663 2.2448 2.3023 2.3375

19 1.5839 1.7981 1.9407 2.0418 2.1199 2.1829 2.225 2.2843

20 1.5747 1.7839 1.9011 1.9907 2.0783 2.1402 2.1913 2.2503

21 1.5481 1.7446 1.858 1.9545 2.0272 2.0956 2.144 2.1905

22 1.5345 1.715 1.8317 1.9275 1.9958 2.0573 2.1065 2.1585

23 1.5279 1.7018 1.8062 1.8988 1.9704 2.0173 2.0737 2.1112

24 1.5086 1.6843 1.7953 1.8818 1.9426 1.9821 2.0255 2.0671

25 1.4845 1.6576 1.7689 1.837 1.9098 1.9648 2.0033 2.0472

30 1.4359 1.5868 1.6747 1.7482 1.7978 1.8398 1.8769 1.913

35 1.4016 1.5248 1.6135 1.6697 1.719 1.7555 1.7862 1.82

40 1.3677 1.4902 1.564 1.6229 1.6558 1.6961 1.7229 1.7471

θ j/θi , 1 ≤ i < j ≤ k, as follows (Hayter, 1990; Miller, 1981):

1 − α = P0(TQ ≤ qk, α, n)

= P0

[

max
1≤i< j≤k

(
Q j

Qi

)

≤ qk, α, n

]

= P0

[

max
1≤i< j≤k

(
Q j/θ j

Qi/θi

)

≤ qk, α, n

]

as under H0 : θ1 = θ2 = · · · = θk , ∀i = 1, 2, . . . , k or θ j

θi
= 1, 1 ≤ i < j ≤ k,

where P0(A) indicates that the probability of event A is computed under H0 at level
of significance α and Qi, for i = 1, 2, . . . , k is defined in Eq. (2.1).

Therefore,
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Table 3 Simulated critical points for uniform distribution when α = 0.05

n/k 2 3 4 5 6 7 8 9

6 1.8896 2.3224 2.6073 2.8556 3.0872 3.2381 3.3503 3.4915

7 1.7553 2.0864 2.3102 2.4764 2.613 2.7133 2.8499 2.9384

8 1.6421 1.9108 2.0967 2.2482 2.3407 2.4182 2.5312 2.6083

9 1.5756 1.8059 1.9425 2.0769 2.1795 2.2523 2.3198 2.3689

10 1.5292 1.7099 1.847 1.9518 2.0403 2.1037 2.1578 2.2133

11 1.4843 1.6755 1.7739 1.8731 1.9268 2.0008 2.039 2.0814

12 1.4371 1.6077 1.7022 1.8021 1.8561 1.9186 1.9465 1.9912

13 1.4184 1.5707 1.6604 1.735 1.7922 1.8363 1.8817 1.9159

14 1.4015 1.5271 1.6174 1.6901 1.7427 1.7729 1.8165 1.8408

15 1.3692 1.499 1.5838 1.6501 1.6852 1.7312 1.7638 1.7872

16 1.356 1.4752 1.5492 1.609 1.6557 1.6896 1.7214 1.7518

17 1.338 1.4528 1.5221 1.5716 1.6166 1.6524 1.678 1.7069

18 1.3217 1.4295 1.503 1.5539 1.5801 1.6173 1.6464 1.6745

19 1.3015 1.4208 1.4815 1.5268 1.5703 1.5903 1.6231 1.6517

20 1.2895 1.4014 1.4579 1.5073 1.5415 1.5738 1.5934 1.616

21 1.2902 1.3874 1.437 1.4894 1.5185 1.5485 1.5727 1.59

22 1.2791 1.3783 1.4343 1.4668 1.4996 1.5241 1.5528 1.5654

23 1.2744 1.3631 1.4199 1.4578 1.4859 1.5114 1.5363 1.5526

24 1.2692 1.3533 1.4022 1.4451 1.4704 1.4925 1.513 1.5353

25 1.2564 1.3365 1.3943 1.4267 1.4573 1.4779 1.4986 1.5162

30 1.2211 1.3033 1.3406 1.3769 1.3998 1.4215 1.437 1.4508

35 1.2091 1.2698 1.3115 1.3383 1.3559 1.3749 1.3907 1.4026

40 1.1899 1.2479 1.2888 1.3063 1.3304 1.3431 1.3593 1.3689

1 − α = P

[(
Q j/θ j

Qi/θi

)

≤ qk, α, n, 1 ≤ i < j ≤ k

]

= P

[
θ j

θi
≥ Q j

Qi

1

qk, α, n
, 1 ≤ i < j ≤ k

]

(4.1)

It may be noted that the validity of the simultaneous confidence intervals given in
(4.1) does not depend on the assumption whether heterogeneity among θi ’s follow
the simple ordering and are valid only if this ordering is specified independently
without any examination of data. Although if the knowledge of the likely ordering
θ1 ≤ θ2 ≤ · · · ≤ θk is known in advance, then this information may be used to
improve the confidence intervals given by (4.1). One can see that the lower end of
the confidence intervals given by (4.1) with a value less than one, in this case, be
non-informative, and may be truncated at one. Close values of the lower end points
of the SOCIs given by (4.1) indicate closeness among the scale parameters. These
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SOCIs are of interest to the experimenter in agriculture, engineering, quality control,
etc., to see which of the treatments are heterogeneous.

4.1 Simulated Example to Compute Test Statistic and SOCIs

Computation of test statistic and construction of SOCIs for the ordered pairwise
ratios of scale parameters with the help of the following data generated from four
logistic distributions is shown

L(0, 1): −0.25538, 1.41174, −0.16191, 0.35481, −0.92192, 0.86421, 2.73712,
0.25074,−0.01846, 0.30758,−1.18180, 0.67576, 1.17131,−0.89851,−
2.82519

L(1, 3): 6.00785, 7.19795, 1.03843, −4.38304, 9.59191, −10.17868, −0.54060,
−5.86195, 0.38682, −6.48398, −4.69253, 6.91611, 1.62835, 5.15529,
11.25271

L(3, 5): −5.41441,−4.59933, 3.02097,−9.81064,−7.67931, 5.00972, 12.87510,
9.53253, 5.46022, −3.08865, 0.49221, 3.20816, −1.30717, 5.73115,
4.90288

L(2, 8): 27.21326, 13.76259, 12.61635, −10.64983, −9.71614, −7.04021,
9.32855, 18.79243, −22.04662, −12.76820, 10.85363, 9.91979, −
8.58689, −10.87091, 11.32912

where L(a, b) denotes the logistic distribution with location (scale) parameter a(b).
Here Q1 = 1.45081, Q2 = 7.65743, Q3 = 7.57082 and Q4 = 16.55985. Using these
values, we can get TQ = 11.41421 which is significant at 5% level of significance, as
the critical value qk, α, n = q4, 0.05, 15, from Table 3, is 2.1328. The set of 95% SOCIs,
using (4.1) with lower end of the confidence interval truncated at one if it is less than
one, for Q2/Q1, Q3/Q1, Q4/Q1, Q3/Q2, Q4/Q2 and Q4/Q3 are computed as:

[[2.4747, ∞), [2.4467, ∞), [5.3517, ∞), [1, ∞), [1.0139, ∞), [1.0255, ∞)].

5 Power of the Proposed Test

Earlier, in Sect. 2, the test was proposed, and in this section, statistical simulation is
carried out for power computations. For the exponential, logistic and uniform distri-
butions, power is computed under some particular configuration of scale parameters
for k = 3 & 5 at different levels of α and ni’s. These tables are available at https://
kkmofpu.blogspot.com/p/tables_22.html?m=1. The tables suggest that the power of
the test is quite high and increases with the increasing sample size.

https://kkmofpu.blogspot.com/p/tables_22.html%3Fm%3D1
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For testing the homogeneity of scale parameters against the simple ordered alter-
native, based on sample quasi ranges, Singh and Gill (2004) proposed the test
Wr = max

1≤i< j≤k
(R jr/Rir ), where Rir is as defined in Sect. 2.

A class of tests (Tk) was proposed by Kusum and Bagai (1988) for testing
the homogeneity of scale parameters against simple ordered alternative based on
linear combination of two-sample U-statistics which was proposed by Deshpande
and Kusum (1984). Kusum and Bagai (1988) in turn proposed test when the k
(k ≥ 3) populations differing in scale parameters only. Later, Shetty and Bhatt
(2003) proposed a class of tests (Lc,d) for testing homogeneity of scale parameters
against simple ordered alternative based on linear combination of two-sample U-
statistics which was proposed by Shetty and Bhatt (1993) using sub-sample median
and extremes.

Herein power comparisons are undertaken for the proposed test with respect to the
Singh–Gill test (2004), the Kusum–Bagai test (1988) and Shetty–Bhatt test (2003)
when the samples have outliers using Monte Carlo simulation technique. Simulation
was undertaken for 2 × 105 repetitions, where in each repetition, a fresh random
sample of size n contaminated with two outliers from ith distribution F(θ), i =
1, 2, . . . , k was generated as given below:

Let δ (δ > 1) be a given constant.

1. n − 2 observations generated from distribution, F(θ).
2. A contaminated observation was generated from distribution F(θδ), a distribu-

tion with scale parameter greater than θ .
3. Another contaminated observation was generated from distribution F(θ/δ), a

distribution with scale parameter smaller than θ .

Thus, random samples of sizes n from each population were contaminated with
two outliers. One outlier was observation from the distribution with small-scale
parameter, and another is observation from distribution with large-scale parameter.
We take four samples (k = 4) from exponential, logistic and uniform distributions
with different parameters as:

I ∼ E(0, 1); II ∼ E(0, 2.1); III ∼ E(0, 3.2); and IV ∼ E(0.4.3)

I ∼ L(0, 1); II ∼ L(0, 2.2); III ∼ L(0, 3.2); and IV ∼ L(0.4.1)

I ∼ U (0, 1); II ∼ U (0, 1.2); III ∼ U (0, 1.5); and IV ∼ U (0.1.7)

where E(a, b), L(a, b) andU(a, b) are exponential, logistic and uniform distributions,
respectively.

The power comparisons of the proposed test (TQ) with that of the Singh–Gill test
(Wr , r = 0, 1, 2), the Kusum–Bagai test (Tk) and the Shetty–Bhatt test (L3,3) are
done in Table 4 when α = 0.05, δ = 1.0, 1.5, k = 4 (for other table, when α = 0.05, δ
= 2.0, 2.5, k = 4, see https://kkmofpu.blogspot.com/p/tables_22.html?m=1). From
these tables, it can be noticed that the power of the proposed test is considerably
higher than the other tests for all the distributions, except for uniform distribution
when power of the proposed test is on the lower side compared to test W0 when

https://kkmofpu.blogspot.com/p/tables_22.html%3Fm%3D1
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Table 4 Power comparison of the proposed test when α = 0.05, δ = 1.0, 1.5, k = 4

Distribution N δ TQ W0 W1 W2 Tk L3,3

Exponential 6 1.0 0.5352 0.3931 0.2876 0.1083 0.1174 0.0523

8 1.0 0.6552 0.4981 0.4397 0.2745 0.1598 0.0456

10 1.0 0.7655 0.5756 0.5596 0.4688 0.1806 0.0442

12 1.0 0.8507 0.6182 0.6631 0.5906 0.2056 0.0375

Logistic 6 1.0 0.7467 0.6565 0.3932 0.1094 0.4726 0.2292

8 1.0 0.9034 0.8054 0.6838 0.3778 0.6572 0.3445

10 1.0 0.9916 0.8662 0.8298 0.6662 0.7882 0.4483

12 1.0 1.0000 0.9206 0.9144 0.8329 0.8672 0.5680

Uniform 6 1.0 0.3486 0.2573 0.1177 0.0706 0.2656 0.1155

8 1.0 0.5011 0.4673 0.2128 0.1280 0.3504 0.1226

10 1.0 0.6752 0.7441 0.3494 0.1935 0.4308 0.1512

12 1.0 0.8070 0.9238 0.5046 0.2873 0.4658 0.1869

Exponential 6 1.5 0.5612 0.4172 0.2912 0.1051 0.1271 0.0498

8 1.5 0.6553 0.5152 0.4486 0.2815 0.1568 0.0434

10 1.5 0.7612 0.5849 0.5651 0.4712 0.1758 0.0417

12 1.5 0.8613 0.6311 0.6640 0.6017 0.2014 0.0387

Logistic 6 1.5 0.7537 0.6682 0.4042 0.1030 0.4362 0.2580

8 1.5 0.9109 0.7847 0.6744 0.3642 0.6516 0.3540

10 1.5 0.9858 0.8691 0.8377 0.6614 0.7802 0.4481

12 1.5 1.000 0.9115 0.9181 0.8391 0.8640 0.5354

Uniform 6 1.5 0.4219 0.3843 0.1135 0.0679 0.1698 0.1054

8 1.5 0.5964 0.5792 0.2081 0.1157 0.2452 0.1427

10 1.5 0.7113 0.7598 0.3424 0.1908 0.3102 0.1626

12 1.5 0.7951 0.8573 0.5216 0.2967 0.3612 0.1688

sample size is higher but power is on higher side compared toW0 when sample size
is small.

Remark 5.1 The power and size of the test TQ can also be computed when sample
size (n) varies and also when location parameter varies.

Remark 5.2 In David and Nagaraja (2003) and Budescu (1980), we can notice that
Qi as given in (2.1) is nothing but weighted function of spacing, which is given as

Qi = π1/2 ∑n−1
r=1 r(n − r)(Xi[r+1] − Xi[r ])

n(n − 1)
.

The weighted function of spacing is considered as a robust estimator of scale
parameter like weighted function of quasi ranges.
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6 Conclusion

The proposed test based on weighted function of sample quasi ranges is more useful
for a situationwherein, due to limitations ofmeasurementmechanism, it is difficult to
measure the observations above or below some reference point, or may be when data
is subject to double censoring. The proposed test is also more robust in comparison
to other tests based on complete samples and even in the case of small samples, as
also when the outliers are suspected. As it is, the proposed test is easy to understand
and easy to use by practitioners.
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A Bayesian Response-Adaptive,
Covariate-Balanced
and Q-Learning-Decision-Consistent
Randomization Method for SMART
Designs

Tianjiao Dai and Sanjay Shete

Abstract In clinical trials, various randomization strategies have been developed to
allocate subjects to different interventions or treatment arms. The preferred strategy is
one that balances the distribution of covariates across the treatment arms and assigns
more subjects to the treatments associated with better outcomes. Sequential multiple
assignment randomized trial (SMART) designs involve an initial stage in which
participants are randomized to a set of intervention options, followed by subsequent
stages in which some or all of the individuals are re-randomized to the interven-
tion options available at that stage. For SMART designs, the intervention for each
subject can be optimized individually using a Q-learning-based optimization algo-
rithm. However, such response-adaptive or Q-learning-based randomization strate-
gies lead to covariate imbalance that can result in biased inference when the imbal-
anced covariates are associatedwith the outcomeof interest, particularlywith small to
moderate sample sizes. To combine the advantages ofQ-learning-decision-consistent
strategies and response-adaptive designs while controlling for covariate balance, we
propose a Bayesian response-adaptive, covariate-balanced and Q-learning-decision-
consistent randomization method (RCQ) for SMART designs. Simulation studies to
illustrate the performance of the proposed method show that the RCQ randomization
method assigned the lowest percentage of subjects to the inferior intervention arms
and the highest percentage of subjects to optimal Q-learning-decision-consistent
strategies that maximize the long-term outcome for the individual while exhibiting
well-controlled covariate balance. The alternative randomization strategies showed
pronounced covariate imbalance or assigned higher percentages of subjects to infe-
rior interventions or were not consistent with the Q-learning-based optimal decision
strategy.
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1 Introduction

In the clinical trial literature, various randomization strategies have been developed
to allocate subjects to different interventions. In addition to standard equal random-
ization, in which subjects are randomized to different interventions with equal prob-
ability, subjects can be assigned to interventions according to their baseline charac-
teristics, intermediate covariates or intermediate outcomes, or historical information.
The goal of such allocation schemes is to have higher probability of assigning subjects
to the superior interventions.

Response-adaptive randomization, in which the allocation probabilities are
adjusted based on the previous patients’ responses in the study, allows more patients
to be assigned to the superior treatment as the trial progresses. For example, Efron
(1973) proposed a biased coin design to balance the numbers of individuals in the
experimental treatment and control armswhile avoiding various experimental biases;
Berry and Eick (1995) compared a balanced randomization strategy to adaptive
randomization in clinical research; Rosenberger et al. (2001) developed an optimal
allocation between two treatments in a clinical trial; Thall et al. (2002) proposed
an adaptive Bayesian design for patients with hematologic malignancies; Zhang
and Rosenberger (2006) evaluated the performance of different response-adaptive
randomization procedures in clinical trials with continuous outcomes; and Sverdlov
et al. (2014) proposed a multiple-objective response-adaptive design.

However, response-adaptive designs also lead to covariate imbalance, which
results in bias when comparing treatment efficacy. Imbalance of prognostic factors,
covariates that affect study outcomes, can lead to observed differences in the inter-
vention groups that may reflect patient heterogeneity across the intervention groups
rather than the treatment effects. Several methods have been proposed to balance
covariate distributions across intervention arms during randomization. For example,
Signorini et al. (1993) proposed a randomizationmethod for balancing treatment allo-
cations both within strata and across the trial. This approach was further improved
by Heritier et al. (2005) to maintain a marginal balance over important strata.
Thall and Wathen (2005) proposed a Bayesian design for a multi-center, random-
ized clinical trial using covariate-adjusted adaptive randomization. Shao and Yu
(2013) established asymptotic results for covariate-adaptive biased coin randomiza-
tion under generalized linear models. Recent research efforts have combined these
two approaches. For example, for trials with binary outcomes, Ning and Huang
(2010) developed a patient allocation scheme that adjusts the covariate imbalance
during response-adaptive randomization. In particular, Yuan et al. (2011) proposed
a randomization procedure and incorporated this method into a group sequential
response-adaptive randomization design with a goal of achieving the benefits of the
response-adaptive design while balancing the covariates. These methods have the
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advantage of assigning fewer patients to inferior treatments or controlling the imbal-
ance of covariates across treatments when the sample size is moderate or small.
Scott et al. (2002) and Green et al. (2001) provided comprehensive reviews on the
allocation method of minimization for balancing treatment groups.

However, these randomization strategies are not straightforward to apply for
sequential multiple assignment randomized trial (SMART) designs because partici-
pants are re-randomized in multiple stages, and the design involves embedded inter-
ventions. A method that is applicable to studies based on the SMART design is
Q-learning (Moodie et al., 2012; Nahum-Shani et al. 2012), which uses backward
steps to construct a sequence of decision rules that link the patient-specific variables
and treatment responses with the most efficient intervention that can maximize the
long-term primary outcome for each individual. Importantly, Q-learning reduces the
potential bias resulting from unmeasured causes associated with both the tailoring
variables and primary outcomes.

In this article, our goal is to develop a randomization strategy for SMART designs
that capitalizes on (1) a Q-learning-based approach for constructing high-quality
decision rules that maximize the long-term outcome for each individual; (2) adapting
to treatment responses in the trial, with the goal of assigning more patients to the
superior treatment(s) as the trial progresses; and (3) balancing covariate distributions
across intervention arms during randomization so that we can compare treatment
efficacy.

Furthermore, in the proposed randomization strategy, instead of randomizing the
subjects all at one time, we use the more practical approach of assigning subjects to
treatments in sequential groups based on the information obtained from previously
enrolled groups. We perform simulation studies to compare the proposed allocation
strategy to alternate randomization strategies.

2 Methods

2.1 Overview of the SMART Design

In the SMART design, each individual enrolled in the trial goes through multiple
stages with a critical decision point corresponding to each stage (Almirall et al.,
2012, 2014; Lei et al., 2012; Kelleher et al., 2017). Specifically, it involves an initial
stage in which participants are randomized to all the available intervention options,
such as different types of medical treatments or behavioral interventions, followed
by subsequent stages in which some or all of the individuals are re-randomized to the
intervention options available at that stage. Re-randomization and the intervention
options at each subsequent stage depend on the information obtained from previous
stages, such as patient adherence or response status. Because the complexity of the
SMART design increases with the number of stages, a two-stage SMART design is
most commonly used for its simplicity and ability to study various clinical problems.
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Wemotivate ourmethodologywith one of the standard two-stage SMARTdesigns
(depicted in Fig. 1) in which subjects in the first stage are randomized to one of two
interventions: medication (A1 = +1) or behavioral intervention (A1 = −1). At the
second stage, only non-responders from the first stage are re-randomized to either
an increased dose of the first-stage intervention (A2 = +1) or augmenting the first-
stage intervention with the alternative intervention (A2 = −1). For example, non-
responders for those receiving the medication in first-stage (M) are re-randomized to
increaseddose ofmedication (M+) or addedbehavioral intervention to themedication
(M + B).

LetO1 be the baseline covariates assessed before the first-stage intervention (e.g.,
level of depression, sex, age) and O2 be the intermediate covariates assessed prior to
the second-stage intervention (e.g., adherence to the first-stage intervention). Let Y
be the final outcome value at the end of the trial.

We utilize a strategy to enroll participants in the SMART in a group sequen-
tial manner such that the resulting design skews the allocation probability toward the
better interventions to optimize the final outcomes and lowers the covariate imbalance
based on the information from previous participants. Specifically, subjects enroll in
a SMART in sequential groups of sizes {Nk}, k = 1, . . . , K , where Nk is the sample
size of the kth group. The subjects enter the trial sequentially, and the allocation prob-
abilities are updated using the observed data from participants previously enrolled in
the study. If little information regarding the superiority of the interventions is known
before conducting the trial, subjects in the 1st (k = 1) group are allocated randomly

Fig. 1 SMART design, in which re-randomization to different second-stage intervention options
depends on an intermediate outcome (only non-responders are re-randomized in the second stage)



A Bayesian Response-Adaptive, Covariate-Balanced … 203

to the interventions at both stages of the SMART, i.e., the allocation probability is
0.5. Other randomization probabilities can be applied to the first group if historical
information regarding the embedded interventions is known before the trial, or based
on the baseline characteristics, intermediate covariates or intermediate outcomes of
the subjects. For subsequent groups (k = 2, …, K), calculations of the allocation
probability are based on our proposed approach, described in Sect. 2.5.

2.2 Randomization Probability Using Q-Learning-Based
Optimal Decisions

First, we briefly introduce the Q-learning approach that can be used to develop adap-
tive interventions (Moodie et al., 2012; Nahum-Shani et al., 2012). In Q-learning,
optimal decisions are derived by maximizing the Q-functions if a higher value of
outcome is desired (minimizing the Q-functions if a lower value of the final outcome
is desired). In this approach, optimal decisions are constructed using backward induc-
tion by first finding the optimal decision rule at the second stage, d2*, using linear
regression, as follows

d∗
2 (O1, A1, O2) = maxQ2(O1, A1, O2, A2),

where Q2(O1, A1, O2, A2) = E(Y |O1, A1, O2, A2) and maximization is over the
values of A2. Based on the linear regression model, the Q2-function for the second
stage is Q2(O1, A1, O2, A2, γ2, α2) = γ20 +γ21O1 +γ22O2 +γ23A1 +γ24A1 ·O1 +
(α20 + α21A1 + α22O2) · A2, where O1 = (O11, O12, . . .) and O2 = (O21, O22, . . .)

are the respective vectors of the baseline and intermediate covariates. The parame-
ters α2 = (α20, α21, α22) reflect how the second-stage intervention (A2) varies as a
function of the candidate tailoring variables (here, A1 and O2). Based on this equa-
tion, the second-stage intervention option (A2) that maximizes Q2 is the one that
maximizes the term (α20 + α21A1 + α22O2)A2. If (α20 + α21A1i + α22O2i) > 0,
the term (α20 + α21A1i + α22O2i)A2i attains its maximal value for A2i = 1; and
if (α20 + α21A1i + α22O2i) < 0, the term (α20 + α21A1i + α22O2i)A2i attains its
maximal value for A2i = −1. Thus, the optimal second-stage decision for subject
i is d∗

2i = sign(α20 + α21A1i + α22O2i ). Therefore, the decision rule probability
according to Q-learning optimization for assigning subject i to the second-stage
intervention A2 = +1 is

pQ(2)
ki = Pr(α20 + α21A1i + α22O2i > 0|Dk). (2.1)

Next, we move backward in time to construct the first-stage decision rule by
similarlymaximizing the first-stageQ-function: Q1(O1, A1; γ1, α1) = γ10+γ11O1+
(α10 +α11O1) · A1, which leads to the optimal first-stage decision d∗

1i = sign(α10 +
α11O1i ). Therefore, the first-stage decision rule probability for subject i toA1 = +1 is
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pQ(1)
ki = Pr(α10 + α11O1i > 0|Dk). (2.2)

Excellent papers by Moodie et al. (2012) and Nahum-Shani et al. (2012) provide
more details about constructing these decision rules. In our implementation of this
approach,we estimate themodel parameters using aBayesian linear regressionmodel
with the data from the previous k − 1 groups, i.e., Dk . In this Bayesian approach,
we assume a vague normally distributed prior, N (0, 106), for all model parameters,
which is a type of prior that is commonly used when little information is known
about the parameters. We call the randomization strategy in Eqs. (2.1) and (2.2) for
two stages of the SMART design the Q-learning-decision-consistent randomization
method (Q).

2.3 Covariate-Balanced Randomization Probability
According to the Prognostic Score for SMART Designs

As stated in the introduction, response-adaptive designs lead to covariate imbalance,
which results in bias when comparing treatment efficacy. An imbalance of prog-
nostic factors, which are covariates that affect the study outcome, can lead to biased
inference, particularly when the sample sizes are small or moderate (Ning & Huang,
2010; Yuan et al., 2011). Next, we extend the prognostic score approach developed
by Yuan et al. (2011) to the SMART design.

For each subject i (i = N ·(k−1)+1, . . . , N ·k) in the kth (k = 1, . . . , K ) group,
the outcome is defined as E(Y ) = β20+β21O1 + β22O2+β23A1+β24A2+β25A1A2,
where the coefficients β21 = (β1

21
, β2

21
, . . .) and β22 = (β1

22, β
2
22, . . .) reflect the

importance of the baseline covariates O1 = (O11, O12, . . .) and intermediate covari-
ates O2 = (O21, O22, . . .) in predicting the final outcomes. Following the approaches
of Stuart et al. (2013) and Yuan et al. (2011), the prognostic score for subjects in
group k is defined as = β21O1 + β22O2. This definition allows us to balance the
covariates through a single variable w while accommodating both categorical and
continuous covariates in O1 andO2.

All the coefficients in this model are assumed to have normal distributions
with vague prior N (0, 106), and their posterior means are estimated as

∼
β2=( ∼

β20,
∼

β21,
∼

β22,
∼

β23,
∼

β24,
∼

β25

)
usingMarkov chainMonte Carlo (MCMC) regression

with datak . Let w̃A1,A2 be the vector of the current prognostic score for the non-
responders who received interventions (A1, A2), which is calculated using the esti-

mated posteriormeans
∼
β2. Then K SA1i ,A2,i , A1 = +1 or−1 are the twoKolmogorov–

Smirnov (KS) statistics (Gail&Green, 1976;Grover, 1977) for subject i who received
intervention A1i at the first stage and was then assigned to the second-stage interven-
tion A2(A2 = +1 or −1) based on w̃A1i,A2=+1 or w̃A1i,A2=−1. Because higher values
of the KS statistics indicate more severe imbalance, the covariate-balanced proba-
bility of assigning subject i to intervention A2 = +1 at the second stage is defined as
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pC(2)
ki = K SA1i ,A2=−1,i

K SA1i ,A2=−1,i + K SA1i ,A2=+1,i
. (2.3)

To avoid extreme values (i.e., values close to 1 or 0) in certain circumstances, a
root transformation such as that suggested by Yuan et al. (2011) and Lin et al. (2015)

can be applied to stabilize the probability in (2.3) as pC(2)
ki,stablized=

√
pC(2)
ki√

pC(2)
ki +

√
1−pC(2)

ki

.

For simplicity, we use pC(2)
ki to denote pC(2)

ki,stablized for simplicity.
Similarly, for the first-stage assignment, the probability of randomizing subject i

to the intervention A1 = +1 is

pC(1)
ki = K SA1=−1,i

K SA1=−1,i + K SA1=+1,i
, (2.4)

where K SA1=+1,i and K SA1=−1,i are the two KS statistics calculated for subject i when
assigned to the first-stage interventions A1 = +1 and A1 = −1, respectively. The
probability in (2.4)may also be stabilized by the aforementioned root transformation.
We refer to the randomization strategy in Eqs. (2.3) and (2.4) for the two stages of
the SMART design as the covariate-balanced randomization method (C).

2.4 Response-Adaptive Randomization Probability Based
on Outcomes of Previous Groups

Next, we extend the standard response-adaptive randomization method to the
SMART design. As done previously, the outcomes (Y) of the intervention (A1, A2)

at the second stage are assumed to follow a normal distribution with mean μA1,A2 ,
which are further assumed to be normally distributed with vague priors N (0, 106).
The subjects in the kth group posterior distribution of μA1,A2 follow a normal distri-

bution, N (
∼
μ

(k)

A1,A2
, Ṽ (k)

A1,A2
). Therefore, the posterior distribution of the difference

(μa1,A2=+1 − μa1,A2=−1) is normally distributed with mean (
∼
μ

(k)

a1,A2=+1 − ∼
μ

(k)

a1,A2=−1)

and variance
(
ṽ

(k)
a1,A2=+1

)2 +
(
ṽ

(k)
a1,A2=−1

)2
. If higher values of the final outcomes are

desired, the response-adaptive randomization probability for intervention = A2 +1
at the second stage is calculated as

pR(2)
k = Pr(μa1,A2=+1 − μa1,A2=−1 > 0|Dk) (2.5)

for a subject who received A1 = a1 as the first-stage intervention. This probability is
common for all the subjects in the kth group and may also be stabilized with a root
transformation:
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pR(2)
k,stablized=

√
pR(2)
k√

pR(2)
k +

√
1−pR(2)

k

.

Similarly, the probability of randomizing subjects to interventions A1 = +1 at
the first stage is calculated by MCMC regression as

pR(1)
k = Pr

(
μA1=+1 − μA1=−1 > 0|Dk

)
(2.6)

where μA1=+1 and μA1=−1 are the means of the final outcomes for subjects who
received first-stage interventions A1 = +1 and A1 = −1, respectively. We call the
randomization strategy in Eqs. (2.5) and (2.6) for two stages of the SMART design
the response-adaptive randomization method (R).

2.5 Response-Adaptive, Covariate-Balanced
and Q-Learning-Decision-Consistent (RCQ)
Randomization Method

Our proposed approach is to combine (i) Q-learning-decision-consistent randomiza-
tion (Q) described in Sect. 2.2; (ii) the extended covariate-balanced randomization for
SMART designs (C), described in Sect. 2.3; and (iii) the extended response-adaptive
randomization for SMART designs (R), described in Sect. 2.4.

The response-adaptive, covariate-balanced and Q-learning-decision-consistent
(RCQ) probability of assigning each individual i in the kth group to intervention
A1 = +1 at the first stage is

p(1)
ki = pR(1)

k .pC(1)
ki .pQ(1)

ki∑
k p

R(1)
k .pC(1)

ki .pQ(1)
ki

(2.7)

where pR(1)
k is the response-adaptive probability, pC(1)

ki is the covariate-balanced
probability and pQ(1)

ki is theQ-learning-decision-consistent probability. Similarly, the
allocation probability of assigning each individual i in the kth group to intervention
A2 = +1 at the second stage is

p(2)
ki = pR(2)

k .pC(2)
ki .pQ(2)

ki∑
k p

R(2)
k .pC(2)

ki .pQ(2)
ki

(2.8)

Data from the first k groups, i.e., datak , are used for calculating the allocation
probability for the subjects in the (k + 1)th group. Therefore, the allocation prob-
abilities are updated with data from the ongoing trial. Similar to the approach by
Yuan et al. (2011), the allocation of the randomization probability in the proposed
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strategy is a function of the multiplication of the randomization probabilities from
(i) to (iii) above; however, other functional forms of allocation probabilities can also
be considered (see Discussion).

3 Simulations Models and Assessment Measures

3.1 Simulation Models

We evaluated the proposed randomizationmethod using the SMART design depicted
in Fig. 1.We used simulation studies to evaluate the proposed randomization strategy
RCQ and compared it with alternative randomization strategies Q only, as defined in
Sect. 2.2; with equal randomization (E), where subject assignment at each stage uses
an equal probability of 0.5; with C only, as defined in Sect. 2.3; and with R only, as
defined in Sect. 2.4.

We generated data for subject i using the following model

Yi = γ20 + γ21O1i + γ22O2i + γ23A1i + α20A2i

+ α21A1i A2i + γ24A1i O1i + α22A2i O1i + εi

where A1 and A2 are intervention indicators of the two stages of SMART, O1 is the
baseline covariate vector, O2 is the intermediate covariate vector, and errors follow
the standard normal distribution. The results reported in Tables 1, 2, 3 and 4 are
based on 1000 replicates. For each comparison, we carried out simulations with
equal randomization (probability equal to 0.5) and unequal randomization (i.e., the
probability of randomizing a non-responder in the initial first group depends on the
value of his/her intermediate covariates, O2).We used theMCMCpack (Martin et al.,
2011) package in R to estimate the model parameters.

Table 1 Simulation results based on 1000 replicates for SMART from Fig. 1 with parameter values
γ20 = 1, γ21 = 1, γ22 = −1, γ23 = −0.3, γ24 = 0.1, α20 = 0.1, α21 = −0.2 and α22 = −0.2;
sample size is 200 with group sizes of 40; non-responders in the first group are assigned to the
second-stage intervention based on their intermediate outcome O2 (i.e., unequal randomization)

Method ITN% Percentage of significant covariate
imbalance

ODQ%

A1 = 1 A1 = −1

RCQ (%) 22.73 2.0 2.0 67.21

E (%) 34.94 5.0 6.5 50.13

Q (%) 26.12 7.5 6.0 62.60

R (%) 27.46 8.5 9.0 60.51

C (%) 35.20 1.5 1.5 50.24
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3.2 Assessment Measures

We considered three summary measures to compare these randomization strategies.
(i) We used the percentage of the inferior treatment number (ITN%), which is the
percentage of subjects who were assigned to the inferior intervention arms (i.e.,
interventions for which the expected final outcomes are lower than those expected
for the competing interventions). (ii)Wecalculated theKS statistics for the prognostic
score.We reported the percentageof the occurrenceof significant covariate imbalance
for each of the two first-stage interventions, A1 = 1 and A1 = −1, by calculating the
percentage of the p-values of the KS statistics that are less than 0.05. (iii)We reported
the percentage of subjects assigned to their optimal adaptive strategies according to
the Q-learning algorithm (ODQ%).

3.3 Simulation Results

Tables 1, 2, 3 and 4 provide the simulation results based on the SMART design
shown in Fig. 1. Data for the simulations were generated using the simulation model
with the following parameter choices: γ20 = 1, γ21 = 1, γ22 = −1, γ23 = −0.3,
γ24 = 0.1, α20 = 0.1, α21 = −0.2 and α22 = −0.2. The values of O1 and O2, which
are univariate covariates, were generated from the normal distributions N (3, 12) and
N (0.1, 0.32), respectively.

In Table 1, the total study sample size is 200 individuals, and the group size is 40,
i.e., the allocation probability is updated for each sequential group of 40 subjects.
The non-responders in the first group were assigned to the second-stage intervention
based on their intermediate covariate O2 (i.e., unequal randomization). Specifically,
a non-responder was assigned to the intervention A2 = 1 with probability equal
to the cumulative normal distribution at his/her observed O2 value. As shown in
Table 1, the percentage of subjects who were assigned to the inferior intervention

Table 2 Simulation results based on 1000 replicates for SMART from Fig. 1 with parameter values
γ20 = 1, γ21 = 1, γ22 = −1, γ23 = −0.3, γ24 = 0.1, α20 = 0.1, α21 = −0.2 and α22 = −0.2;
sample size is 200 with group sizes of 40; non-responders in the first group are assigned to the
second-stage intervention completely at random (i.e., equal randomization)

Method ITN% Percentage of significant covariate
imbalance

ODQ%

A1 = 1 A1 = −1

RCQ (%) 21.97 2.5 2.5 68.35

E (%) 34.64 6.0 4.5 50.60

Q (%) 25.87 6.5 5.0 63.02

R (%) 27.87 8.0 5.5 60.04

C (%) 34.66 2.5 1.0 50.49
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Table 3 Simulation results based on 1000 replicates for SMART in Fig. 1 with parameter values
γ20 = 1, γ21 = 1, γ22 = −1, γ23 = −0.3, γ24 = 0.1, α20 = 0.1, α21 = −0.2 and α22 = −0.2;
sample size is 500 with group sizes of 100; non-responders in the first group are assigned to the
second-stage intervention based on their intermediate outcome O2 (i.e., unequal randomization)

Method ITN% Percentage of significant covariate
imbalance

ODQ%

A1 = 1 A1 = −1

RCQ (%) 17.49 7.5 9.0 74.41

E (%) 35.03 4.0 7.0 49.74

Q (%) 21.79 10.5 11.0 68.95

R (%) 22.38 4.5 5.5 67.32

C (%) 34.84 3.5 3.0 49.96

Table 4 Simulation results based on 1000 replicates for SMART from Fig. 1 with parameter values
γ20 = 1, γ21 = 1, γ22 = −1, γ23 = −0.3, γ24 = 0.1, α20 = 0.1, α21 = −0.2 and α22 = −0.2;
sample size is 500 with group sizes of 100; non-responders in the first group are assigned to the
second-stage intervention completely at random (i.e., equal randomization)

Method ITN% Percentage of significant covariate
imbalance

ODQ%

A1 = 1 A1 = −1

RCQ (%) 18.44 4.0 4.0 73.39

E (%) 35.02 3.0 5.0 49.97

Q (%) 21.47 9.5 6.0 69.30

R (%) 23.85 4.5 5.5 65.75

C (%) 35.17 2.5 2.5 49.75

arms was 22.73% for the proposed RCQ randomization method, which is lower than
the percentages for the other randomization methods: 34.94% for E, 26.12% for
Q, 27.46% for R, and 35.20% for C. Our method also had the highest percentage
of subjects assigned to the most optimal adaptive strategy: 67.21%, compared to
62.60% for Q and 60.51% for R. The ODQ% was 50.13% and 50.24% for the E and
C methods, respectively. Importantly, the proposed RCQ method had an acceptable
percentage of significant covariate imbalance (2%, 2%) compared with that of the Q
(7.5%, 6%), and R (8.5%, 9%) methods for each of the two first-stage interventions:
A1 = 1 and A1 = −1. The levels of imbalance for the E and C methods were also
acceptable.

In Table 2, we present the results for the same sample sizes and the same parameter
configurations as in Table 1, except instead of unequal randomization, we applied
equal randomization to the initial group (the first group of 40 individuals) in the
trial (i.e., subjects were randomized to the two interventions with probability of 0.5).
Overall, the results are similar to those shown in Table 1. The proposed RCQmethod
had the lowest ITN% (21.97%), an acceptable level (2.5%) of significant covariate
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imbalance, and the highest ODQ% (68.35%). The E and C methods showed the
highest ITN% (34.64% and 34.66%, respectively) and lowest ODQ% (50.60% and
50.49%) among all the methods. The percentages of significant covariate imbalance
for the alternative randomization strategies were C (2.5% and 1%), Q (6.5% and
5%), E (6% and 4.5%) and R (8% and 5.5%).

Table 3 shows the results for the same simulation parameters shown in Table 1,
except that the group size is 100, with a total sample size of 500. Similar to the results
in Table 1, the proposed RCQ had the lowest ITN% (17.49%) and highest ODQ%
(74.41%) of all the methods. The percentage of significant covariate imbalance for
the RCQ method was 7.5%, 9%. Although the percentages of significant covariate
imbalance were acceptable for the E and C methods, 4%, 7% and 3.5%, 3% respec-
tively, thesemethods had higher ITN% (35.03% and 34.84%, respectively) and lower
ODQ% (49.74% and 49.96%, respectively) when compared to those values for the
proposed RCQ.

Table 4 shows the results of the same simulation parameters shown in Table 2,
except that the group size is 100 and the total sample size is 500. The proposed
RCQ method again showed the best performance with respect to all three metrics,
i.e., lowest ITN% (18.44%), highest ODQ% (73.39%) and acceptable percentages
of significant covariate imbalance (4%, for both first stages).

4 Discussion

We have proposed a Bayesian response-adaptive, covariate-balanced and optimal
Q-learning-decision-consistent randomization strategy for SMART designs (RCQ)
that successfully combines the advantages of the response-adaptive randomization
strategy and the covariate-balanced randomization strategy while having the highest
consistency for the optimal interventions derived using the Q-learning algorithm. In
this approach, the assignment probability for a new subject who enters the SMART
depends on his/her covariates and the previous subjects’ treatment assignments and
responses. In this method, more subjects are assigned to the better interventions
because the randomization probability uses both the response-adaptive random-
ization strategy and the individual’s optimal decisions under the Q-learning algo-
rithm, which leads to higher ODQ%, maximizes the long-term primary outcome,
and reduces bias resulting from unmeasured covariates.

One can also consider an approach such as combining the Q-learning-decision-
consistent probability with only the response-adaptive probability. Such a method
would have the advantages of the two strategies: response-adaptive and Q-learning-
decision-consistent randomization, i.e., low ITN% and high ODQ%; however, we
found that such an approach leads to higher covariate imbalance, especially when
the first group in the trial was randomized according to the intermediate covariates.

For all themethods, when the group sizes were larger, the observed imbalancewas
higher, as seen by comparing Tables 3 and 4 to Tables 1 and 2. The parameters can
be better estimated using the larger group sizes; however, because each subject was
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allocated based on only the covariate imbalance of the previous groups, the assign-
ment of the current group of subjects was “over-skewed,” which resulted in higher
covariate imbalance. This trade-off needs to be taken into account when random-
izing subjects into a SMART. We can use simulations to determine the appropriate
group size. In many behavioral interventions, relatively smaller group sizes (e.g., 10
or 20, which is likely the most practical approach) are used; therefore, the proposed
methods are appropriate in such scenarios.

We illustrated the proposed methods and compared them to other randomization
strategies by applying them to the two-stage SMART design depicted in Fig. 1. They
can also be applied to multi-stage SMART designs (i.e., SMARTs with more than
two stages), and the allocation probabilities of the sth stage are defined similarly to
those in Eqs. (2.7) and (2.8) for RCQ.

The proposed RCQ combines the three parts of adaptive probability in a multi-
plicative manner; however, other combinations can also be used. For example, one
may define the allocation probability for subject i for stage s as.

psi = ϕ1

(
pR(s)
k

)
·ϕ2

(
pC(s)
ki

)
·ϕ3

(
pQ(s)
ki

)
, whereϕ1, ϕ2 andϕ3 can be anymonotonic

increasing function (Yuan et al., 2011). In addition, one can also weight the three
probabilities unequally in order of their importance in the treatment assignment
strategy. Furthermore, the randomization probabilities can be updated as frequently
as one wishes, and the group size can be adjusted to serve this purpose.

In our simulations, we updated the randomization probabilities after each group
using vague priors for the model parameters in MCMC regression, which allows for
independent estimation of the parameters. One can also estimate the model param-
eters using other priors such as distributions of historical data from similar trials or
the posteriors obtained based on previous groups. However, such an approach may
lead to an exclusive assignment to one of the interventions (i.e., subjects may all
be assigned to one intervention) after several sequential updates, which may lead to
difficulty in parameter estimation and comparison of embedded interventions in the
SMART. As a remedy, a mixture of this strategy and a randomization strategy that
has higher uncertainty can be applied.

In conclusion, among all the randomization methods we compared, the proposed
RCQ randomizationmethod showed the best performance in assigning fewer subjects
to the inferior interventions andmore subjects to the optimalQ-learning interventions
than the other methods while controlling the covariate balance at an acceptable level
when an appropriate group size was used.
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An Introduction to Bayesian Inference
for Finite Population Characteristics

J. Sedransk

Abstract With an increased interest in using Bayesian methods for the analysis
of sample survey data, it is timely to provide an introduction. We start from first
principles, progressing to relatively simple parametric models. With the latter one
can see how the likelihood and prior information are combined to make inferences.
Assuming that the values ofY in the finite population come fromanormal distribution
with known variance, a sample of size n, and a conjugate prior distribution, explicit
expressions for the posterior mean and variance of the finite population mean and
variance are presented and interpreted. In a similar way, explicit expressions are
given for the case where the finite population is generated from a linear regression of
Y on X through the origin. This is a model typically seen in establishment surveys
where Yi and Xi represent the survey and census values for unit i . A useful extension
when there is hidden cluster structure in the data is to use a Dirichlet process rather
than simple parametric models such as those described in this chapter. Multiple
regression with post-stratification (MRP) is based on the use of many categorical
variables and specialized hierarchical priors. MRP has seen widespread application,
especiallywhen the data are fromnonprobability samples or probability sampleswith
low response rates. Finally, there is an extensive discussion of alternative (Bayesian)
inferential methods when the data are categorical. This is an attractive option when
one wishes to avoid postulating parametric continuous distributions.

Keywords Categorical data · Dirichlet process · Post-stratification · Survey
sampling

1 Introduction

Bayesian methodology is well developed, and there are successful applications in
many areas of substantive research. An important advantage of using a Bayesian
approach is that it permits the use of more appropriate but complicated models.
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Typically, analyses are carried out using computational methods, notably Markov
chain Monte Carlo, thus avoiding the necessity of using large-sample approxima-
tions; examples are presented in Sects. 5 and 6 of this chapter. The formal structure of
a Bayesian analysis makes it easier to incorporate available prior information, com-
mon in many repeated surveys. For some, the foundational arguments for inference
are compelling. In short, from the Bayesian viewpoint, inferences should be based
on what we have observed, not on samples that we might have observed.

However, the use of such methods in survey sampling has been limited. The
reasons for this include the presence of a well-developed methodology, i.e. design-
based inference, the complexity of many survey designs, and the “observational”
nature of the data. There are, though, many applications where a Bayesian approach
will provide improved inferences.

In this chapter, we start from first principles, progressing to relatively simple para-
metric models. With the latter one can see how the likelihood and prior information
are combined to make inferences. In special cases, these inferences are seen to be
equivalent to those obtained by using a design-based approach.

Ericson (1969) is the first paper that presents the modern approach to Bayesian
inference for finite population quantities using sample survey data. Themethodology
presented in this chapter assumes that the values of Y for the units in the finite
population come from a model where the random variables are exchangeable. In
such circumstances, one would often have selected the sample using simple random
sampling or a similar design. In this chapter, it is assumed that there is neither
nonresponse nor measurement error, and there are no selection effects. The approach
and results given in this chapter provide the foundation for the analysis of data that are
obtained using more complex survey designs or, in some cases, from observational
studies.

The basic Bayesian approach to inference for finite population quantities is to
make (predictive) inference for the nonsampled units, conditioning on the values
for the units that have been observed. Define a finite population of N distinguishable
elements labelled by the integers 1, 2, . . . , N . LetN = (1, 2, . . . , N ) define the label
set andY = (Y1, . . . ,YN )where Yi is the unknown value of Y for the i-th population
element. The unknown Yi can be vector valued but, for simplicity, only the scalar
case is considered in this chapter. Inference concerns the N-dimensional vector Y
and functions of Y such as the finite population total or median.

For a sample of size n, selected without replacement, define the statistic (s, ys)
to be the set of indices of distinct population elements, s = (i1, . . . , in) in N ,
together with the observed values y j of Y j , j ∈ s. Finally, define the operator
S(Y) = (Yi1 , . . . ,Yin ) where, for definiteness, i1 < i2 < · · · < in .

Ericson’s representation of the posterior distribution of Y is

p(Y|(s, ys)) ∝ p(s|Y)p(Y) if, and only if, S(Y) = ys . (1.1)

In Ericson’s formulation, inference is for the entire finite population vector,Y. The
prior density, p(Y), is multiplied by the selection probability, p(s|Y), and modified
by requiring that Y be consistent with ys , the set of observed values in the sample.
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In other words, Y is free to vary over RN , say, except that the components of Y in
the sample must agree with ys , i.e. S(Y) = ys .

If p(s|Y) in (1.1) is independent of Y, then

p(Y|(s, ys)) = p(Y)
∫
S(Y)=ys

p(Y)dY
if, and only if, S(Y) = ys . (1.2)

For example, the expression in (1.2) holds if the selection probability depends only
on a design variable Z , and the values for the entire population, Z = (Z1, . . . , ZN ),
are known. If only the sample values of Z are known, it can be shown that p(s|Y) is
not independent of Y; see Sedransk (2022) for details. In this chapter, the objective
is to introduce the Bayesian methodology, so the simpler formulation in (1.2) is
assumed.

Note that (1.1) and (1.2) imply that onemustmodel the entire population vectorY.
In this chapter, it is assumed that the members ofY are exchangeable, an assumption
consistent with the notion that there are no subpopulations of N with important
differences in distributions. Specifically, it is assumed that given a superpopulation
parameter θ, the elements of Y are independent and identically distributed with
density function f (Y |θ) and θ has a prior distribution with density p(θ).

Assuming exchangeability and S(Y) = ys ,

p(Y|(s, ys))∝
∫

θ

[
∏

i /∈s
p(Yi |θ)

∏

i∈s
p(yi |θ)

]

p(θ)dθ (1.3)

and, alternatively,

p(Y|(s, ys))∝
∫

θ

[
∏

i /∈s
p(Yi |θ)

]

p(θ|ys)dθ. (1.4)

More generally, one can consider an initial sample of sizem that contains repeated
measurements on the same individual. However, Ericson notes that (s, ys), nowbased
on the n distinct individuals selected in the sample, is a sufficient statistic. Thus, in
this case, (1.4) is the appropriate posterior distribution.

In practice, one will make inference about Y from (1.4) using a sampling-based
method. However, it is informative to display the posterior mean and variance for
several simple cases.

To introduce the methodology, a simple, straightforward model is assumed in
Sect. 2.
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2 Normal Distribution

Assume that Y is normally distributed with unknown mean θ and known variance v.
Further, assume that the prior on θ is normal with mean m ′ and variance v′. This is
a conjugate prior distribution, discussed in DeGroot (1970, Chap.9).

Given a sample of n distinct units, observed values ys = (y1, . . . , yn), and sample
mean, y, the posterior distribution of θ is normal with mean

E(θ|(s, ys)) ≡ m ′′ = λy + (1 − λ)m ′

where λ = v′/(v′ + (v/n)), and variance

Var(θ|(s, ys)) ≡ v′′ = ((n/v) + (1/v′))−1 =
(

v/n

v′ + (v/n)

)

v′.

Thus, the posterior mean of θ is a weighted average of the sample mean, y, and
the prior mean, m ′, with weights inversely proportional to the sampling variance of
y and the prior variance v′. The posterior variance of θ is the reciprocal of the sum
of these weights.

From (1.4), the posterior distribution ofY is an N − n dimensional normal distri-
bution since the probability is concentrated on the subspace where S(Y) = ys . Then,
writing the finite population mean, Y , as

Y = N−1(ny +
∑

i /∈s
Yi ),

the posterior distribution of Y is normal with mean

N−1(ny + (N − n)m ′′)

and variance

N−2((N − n)(v + v′′) + (N − n)(N − n − 1)v′′). (2.1)

These moments can also be written as

E(Y |(s, ys)) = n(Nv′ + v)y + (N − n)vm ′

N (nv′ + v)

and

Var(Y |(s, ys)) = N − n

N

v/n

v′ + (v/n)
(v′ + (v/N )). (2.2)

The posteriormean is aweighted average of the samplemean y and priormeanm ′.
The weight on y is inversely proportional to the prior expectation of the conditional
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variance of y givenY , EY [Var(y|Y )]while theweight onm ′ is inversely proportional
to the prior variance of Y . Extensive algebra is required to obtain the posterior mean
of Y and the explanatory forms of the weights. See Sect. 2.3 of Ericson (1969).

The posterior variance in (2.2) has three terms. The first is the usual finite popula-
tion correction factor. From (2.1), the second term is v′′/v′, the ratio of the posterior
variance of θ to the prior variance of θ. The third term is the prior variance of Y .
Extensive algebraic manipulation is required to obtain the posterior mean of Y and
the explanatory forms of the weights. See Sect. 2.3 of Ericson (1969).

Note that if the prior distribution on θ is taken as locally uniform, the posterior
distribution of Y is normal with mean y and variance ((N − n)/N )(v/n). These
moments are, of course, similar to the expressions for the mean and variance from a
design-based analysis assuming simple random sampling.

Inference for any function of Y can be made by noting that the posterior distri-
bution of the unobserved coordinates, S(Y), i.e. the values of Y for the nonsampled
units, is (N − n) dimensional normal with common means, variances and covari-
ances, m ′′, v′′, v + v′′.

The extension of these results to unknown sampling variance is straightforward,
although the formulas are more cumbersome. Now, assume that Y is normally dis-
tributed with unknown mean θ and variance 1/h. Assuming that θ and 1/h follow
a normal-gamma distribution (DeGroot, 1970, Chap.9), Ericson gives, in detail, the
posterior distribution of Y . For the special case where the prior for (θ, 1/h) is taken
to be proportional to 1/h, Y is distributed as y + tn−1((N − n)s2/Nn)1/2 where y
and s2 are the sample mean and variance. That is, (Y − y)/((N − n)s2/Nn)1/2 has
the t distribution with (n − 1) degrees of freedom, a familiar form.

3 Regression

A further extension assumes a simple regression model, appropriate for many estab-
lishment surveyswhere, for a single establishment,Y denotes the value of the variable
of interest from the current survey and X denotes the value from a census. Ericson
gives explicit results for the following independent samplingmodel for i = 1, . . . , N :
Given xi ,

Yi ∼ N (αxi , zi/h)

where zi = g(xi ) for a prespecified positive function g. Three special cases are
considered in some detail, i.e. zi = (x2i , xi , 1). Ericson (1969) assigns a normal-
gamma prior to (α, h) and gives detailed results for posterior inference about (α, h)

and predictive inference for the finite population mean Y . These results will be useful
in situations where the prior information is in the form of data from a prior survey
similar in nature to that of the main survey. Here, we summarize results obtained by
using a noninformative prior distribution for (α, h), namely p(α, h) ∝ h−1.

Given (s, ys), Y is distributed as
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n

N
ys + α∗ (N − n)

N
xs + t∗ν

[
v∗(n∗zs + xs)

n∗N 2

]0.5

where ys is the sample mean of Y , xs is the mean of X for the nonsampled units,
ν∗ = n − 1, n∗ = ∑

i∈s x
2
i /zi ,

α∗ =
∑

i∈s xi yi/zi
n∗ ,

and

v∗ν∗ =
∑

i∈s x
2
i /zi

∑
i∈s y

2
i /zi − (

∑
i∈s yi xi/zi )2∑

i∈s x
2
i /zi

.

Thus, the posterior mean and variance of the finite population mean are

E(Y |s, ys) = n

N
ys + N − n

N
xsα

∗

and

V (Y |s, ys) = v∗ν∗

ν∗ − 2

n∗zs + x2s
n∗N 2

where xs is the sum of x for the nonsampled units.
Note that the numerator of the posterior mean of Y is the sum of the sampled y

and the sum of values of Y predicted for the nonsampled units, i.e. (N − n)α∗xs . For
the regression model with zi = xi , i.e. the variance is proportional to xi , the posterior
mean of Y is

ys
xs

y,

i.e. the usual ratio estimator, as one may have expected.

4 Dirichlet Process

The assumption of a normal distribution in Sect. 2 (and the extension to unknown
sampling variance) may be tenuous. Nandram and Yin (2016) provide a useful alter-
native by assuming a (nonparametric) Dirichlet process (DP) instead. Their basic
method enables predictive inference for the set of nonsampled values of Y , useful
when the finite population is of moderate size. When the size of the finite population
is large, they provide a good approximation to the posterior distribution of the finite
population mean, Y . The methodology in Nandram and Yin (2016) is an extension
of work by Binder (1982) and Lo (1986). The methodology should be useful when
there is hidden cluster structure in the data, and the data have ties.
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Starting with the model Y1, . . . ,YN |θ, v i id∼ N (θ, v), p(θ, v) ∝ 1/v, with −∞
< θ < ∞, v > 0, the Bayes prediction interval for the finite population mean is

y ± tn−1,υ

√
N−n
Nn s where tn−1,υ is the υth percentile of the t distribution with n − 1

degrees of freedom, a result also noted in Sect. 2. While this interval is typically
used in a conventional survey sampling analysis, it is not robust to non-normality,
especially when the sample size is small.

Alternatively, one may use (Nandram and Yin, 2016) a DP model for the popula-
tion values. The DP is

Y1, . . . ,YN |G iid∼ G and G|α, Hγ(y) ∼ DP(α, Hγ(y)) (4.1)

where the mean and variance of the DP are E(G(y)) = Hγ(y) and Var(G(y)) =
Hγ(y)[1 − Hγ(y)]/(α + 1).

In this context, it is natural to take Hγ(y) to be the cdf of the normal random
variable with mean θ and variance v. Note that Appendix 1 in Nandram and Yin
(2016) reviews the DP.

The prior distribution that Nandram and Yin (2016) use assumes independence
among θ, v andαwith a Cauchy prior (two degrees of freedom in both the numerator
and denominator) for α, i.e. p(α, θ, v) ∝ 1

(α+1)2
1
v
with −∞ < θ < ∞, α, v > 0.

With the distribution for (Y1, . . . ,YN ) in (4.1) and this prior, the posterior distribution
can be written as

p(θ, v,α|ys) ∝ 1

v(α + 1)2
g(y1|θ, v)

n∏

i=2

⎡

⎣ 1

α + i + 1

i−1∑

j=1

δy j (yi ) + αg(yi |θ, v)

⎤

⎦

(4.2)
where g is the pdf associated with the (DP) cdf G, and δy j (yi ) denotes a unit point
mass at yi = y j .

Inference for the nonsampled units uses the posterior distribution

p(Yns,α, θ, v|ys) = p(Yns |α, θ, v, ys)p(α, θ, v|ys). (4.3)

First, sample from p(α, θ, v|ys), and, given α, θ, v, sample Yns from
p(Yns |α, θ, v, ys).

Let y∗
k = (y∗

1 , . . . , y
∗
k ) denote the k distinct sample values, k ≥ 2. Writing

p(ys |α, θ, v) ≡ p(k, y∗
k |α, θ, v), Antoniak (1974) has shown that

p(k, y∗
k |α, θ, v) = p(y∗

k |θ, v)p(k|α). (4.4)

Using (4.4) and the prior, p(α, θ, v) ∝ 1
v(1+α)2

, yields the posterior distribution,

p(θ, v,α|ys). Now, y∗
1 , . . . , y

∗
k |k, θ, v

i id∼ N (θ, v). Thus, defining y∗ and s2∗ as the
sample mean and variance of the y∗

i ,
√
k(θ − y∗)/s∗|y∗

k ∼ tk−1, and v−2|s2∗, k ∼
Gamma ((k − 1)/2, (k − 2)s2∗/2). Thus, it is straightforward to sample values of
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θ, v. Nandram andYin (2016) give an improvedmethod of drawingα from p(α|k) ∝
αk�(α)

�(α+n)(α+1)2
,α > 0. Transforming α to ρ = 1

(α+1) , they describe a one-dimensional
grid method for sampling from p(ρ|k); see their Sect. 2.1.

In principle, it is easy to drawYns from p(Yns |α, θ, v, ys) in (4.3). WritingYns =
{Yn+1, . . . ,YN } and ys = {y1, . . . , yn},

y ≡ yn+ j+1|(α, θ, v, ys, y1, . . . , yn+ j ) ∼ n + j

α + n + j
Fn+ j (y) + α

α + n + j
Hγ(y)

(4.5)
where j = 1, . . . , N − n − 1, Fn+ j (y) = ∑n+ j

i=1 Fyi (y)/(n + j), Hγ(y) is the
expected value of G(y) in (4.1) and Fyi (y) is the cdf of a point mass at yi . For
j = 0 in (4.5), the conditioning is limited to α, θ, v and ys .

It is easy to draw the nonsampled values using (4.5). One may proceed more
quickly by drawing from Fn+ j (y) using the multinomial distribution because values
are repeated among those already drawn.

To obtain samples from the posterior distribution of Yns given ys use

p(Yns |ys) =
∫

p(Yns |α, θ, v, ys)p(α, θ, v|ys)dαdθdv.

First, sample (α, θ, v) from p(α, θ, v|ys) as described below (4.4). Then for the
chosen (α, θ, v), sampleYns from p(Yns |α, θ, v, ys) using (4.5). Repeating M times

yieldsY(1)
ns , . . . ,Y(M)

ns . With ys known we have Y
(1)

, . . . ,Y
(M)

, i.e. M realizations of
Y from its posterior distribution.

Order these M values and use (Y M(α/2),Y M(1−(α/2))) as the 100(1 − α)% predic-
tion interval. This procedure can also be used to make inference about quantiles. For
each draw of the entire finite population, compute the required quantile, Q, and then
a 100(1 − α)% credible interval is (QMα/2, QM(1−(α/2)). However, when N is much
larger than n, the computation time will be longer. Typically, n is much smaller than
N so the time to fit the model is negligible compared with the time to draw the N − n
nonsampled values from the DP model.

There is a good, approximate, Bayesian predictive interval for the finite population
mean. Nandram and Yin (2016) show that, asymptotically,

Y |θ, v,α, ys ∼ N (E(Y |θ, v,α, ys), Var(Y |θ, v,α, ys)). (4.6)

First, take M draws from the posterior density of θ, v,α, ys as described above.
Then for each draw use (4.6) to obtain a value of Y . Order these values and use
(Y Mα/2,Y M(1−(α/2))) as the prediction interval.

To enhance understanding, it is useful to describe E(Y |θ, v,α, ys) and

Var(Y |θ, v,α, ys),



An Introduction to Bayesian Inference … 223

given by Binder (1982). Let λ = n(α + N )/N (α + n), 0 ≤ λ ≤ 1, a shrinkage
parameter, and φ = 1/(α + n + 1), the posterior correlation, Then

E(Y ) ≡ E(Y |θ, v,α, ys) = λy + (1 − λ)θ, and
Var(Y ) ≡ Var(Y |θ, v,α, ys)=λ[(n − 1)φ(1 − (n/N ))s2/n + (1 − λ){φ(y − θ)2

+ (1 − φ)v/n}].
Asα → 0,φ → 1/(n + 1) andλ → 1. If it is assumed that the datawere obtained

from a simple random sample, E(Y ) = y, the design-based estimator of Y . Also,
Var(Y ) = [(n − 1)/(n + 1)](N − n)s2/Nn, equal to the design-based estimator of
the variance of y when n is large.

As α → ∞,φ → 0 and λ → f where f = n/N . Then, E(Y ) → f y + (1 −
f )θ, the (baseline) mean under normality, and Var(Y ) → (1 − f )v/N , the prior
variance. Thus, when α is large, draws are made mostly from the normal distribu-
tion, and when α is small, draws are made mostly from the Polya posterior. See
Ghosh and Meeden (1997) for a thorough description of the Polya posterior.

5 Multiple Regression with Post-stratification

Si et al. (2020) use extensive post-stratification and global local priors to make finite
population inference. The covariates, X , are discretized and their cross-tabulation
constructs the (post-stratification) cells, j , with population and sample sizes N j and
n j . Si et al. (2020) take

Y ji
ind∼ N (θ j ,σ

2
y)

where j = 1, . . . , k and i = 1, . . . , N j for the population while i = 1, . . . , n j for
the sample, the N j assumed to be known.

Denoting θ = (θ1, . . . , θk) and adding covariates to (1.4)

p(Y|(s, ys)) ∝
∫ k∏

j=1

⎡

⎣
N j∏

i=n j+1

exp

{

− 1

2σ2
y

(Y ji − θ j )
2

}⎤

⎦ p(θ|ys)dθ

where p(θ|ys) ∝ p(θ)
∏n j

i=1 exp{− 1
2σ2

y
(y ji − θ j )

2}.
An important aspect of this work is that, within cells, the selection process is

assumed to be ignorable, i.e. “the post-stratification implicitly assumes that the units
in each cell are included with equal probability.” A key feature of Si et al. (2020) is
that p(θ) is a structured prior distribution, chosen tomitigate the effects of sparse and
unbalanced cell structure. Clearly, other choices of the prior density may be made.

The details of the model and prior are:
First, express the population cell mean, θ j , as

θ j = α0 +
∑

k∈S(1)

α(1)
jk +

∑

k∈S(2)

α(2)
jk + · · · +

∑

k∈S(q)

α
(q)

jk (5.1)
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where S(l) is the set of all possible l-way interaction terms, and α(l)
jk represents the

k-th of the l-way interaction terms in the set S(l) for cell j . For example, the α(1)
jk with

k ∈ S(1) refers to the main effects, and the α(2)
jk with k ∈ S(2) the two-way interaction

terms for cell j . As seen in (5.1), the expression for θ j includes all of the interactions
among the q variables. The authors note that when the cell structure is sparse, variable
selection is necessary.

The prior distributions, described below, are intended to handle deep interactions
and account for their hierarchical structure where the high-order interaction terms
will be excluded if one of the corresponding main effects is not selected. The authors
note that larger main effects often lead to larger effects for the involved interaction
terms. Ideally, greater shrinkage should be put on the high-order interactions than
that on the main effects, and the prior setting should reflect the nested structure.

Independent prior distributions are used for the regression parameters, α, i.e.

α(l)
jk ∼ N (0, (λ(l)

k σ)
2
),

where λ(l)
k represents the local scale and σ is the global error scale for k ∈ S(l) for

l = 1, . . . , q. The error scale is the same across the main effects and high-order inter-
actions, while the local scales are different. The shrinkage effect is induced through
the specification of the local scales. For the local scale of high-order interactions

λ(l)
k = δ(l)

∏

l0∈M (k)

λ(1)
l0

,

where δ(l) is the relative magnitude adjustment and M (k) is the collection of corre-
sponding main effects that construct the k-th l-way interaction in the set S(l).

The hyperpriors on the scale parameters are taken as

σ ∼ Cauchy+(0, 1)

λ(1)
k ∼ N+(0, 1)

δl ∼ N+(0, 1)

where the subscript + denotes the positive part of the indicated distribution.
Finally, the authors assign a noninformative prior to α0 and a weakly informative

prior to σy , i.e. Cauchy+(0, 5). In Si et al. (2020), there is additional discussion of
these prior assumptions, details about computation and analysis of data from the
survey, “Longitudinal Study of Wellbeing.”
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6 Categorical Data

Assume a categorical variable Y , possibly a continuous variable that has been dis-
cretized for public release. That is, Y takes on only k different values, y1, . . . , yk , in
the finite populationwhere Pr(Y = y j )=θ j with

∑k
j=1 θ j = 1. Let θ = (θ1, . . . , θk)

and assume that, conditional on θ, the Yi are independent random variables. Then
one may use (1.4) to make inference for Y.

Denote by N j and n j the total numbers of units with Y = y j in the population
and sample, and let Mj = N j − n j . Also, let N = {N1, . . . , Nk},n = {n1, . . . , nk},
and M = {M1, . . . , Mk}. Then, from (1.3),

p(Y|(s, ys)) ∝
∫

θ

k∏

j=1

(θ
Mj

j )(θ
n j

j )p(θ)dθ. (6.1)

It is clear from (6.1) that for specified {y1, . . . , yk} and observed n, inference
about Y only requires inference about M. For example, the finite population total
is

∑k
j=1 y j (Mj + n j ). The κ-th percentile of the finite population, ξκ, is such that

ξκ = yr if r is the smallest integer forwhich
∑r

i=1 Ni ≥ Nκ. Since ξκ ≤ yr whenever∑r
i=1 Ni ≥ Nκ, the posterior distribution function of ξκ depends only on M.
Rather than using (6.1), it is more convenient to represent the inference for M

given n directly. Using (1.3),

p(M|(s, ys)) ∝
∫

θ

k∏

j=1

(
θ
Mj

j

M j !

)

(θ
n j

j )p(θ)dθ. (6.2)

Taking p(θ) to be the Dirichlet density, defined below in (6.3), provides a sim-
plified, conjugate analysis. A positive feature is that a Dirichlet distribution can be
thought of as representing data from a prior survey of the same type as that of the
current one. Moreover, special cases of the Dirichlet distribution exhibit interesting
properties. A negative aspect is that the correlation between θi and θ j is negative,
troublesome when there is an underlying structure in θ. Modifications, discussed
below, mitigate this problem.

The Dirichlet density, p(θ), is defined on the (k − 1)-dimensional simplex of θ
such that θ j > 0 and

∑k
j=1 θ j = 1, i.e.,

p(θ) = �(
∑k

j=1 υ j )
∏k

j=1 �(υ j )

k∏

j=1

θ
υ j−1
j (6.3)

with θ j > 0 and
∑k

j=1 θ j = 1.
From (6.2) and (6.3), the posterior distribution, p(M|(s, ys)), is proportional to
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∫

θ

p(M|θ)p(θ|n)dθ ∝
∫

θ

k∏

j=1

θ
Mj

j

M j !θ
n j+υ j−1
j dθ. (6.4)

When υ j = 1 for j = 1, . . . , k,

p(M|(s, ys)) ∝
k∏

j=1

(
N j

n j

)

. (6.5)

Hartley andRao (1968) use a different approach to inference. They start by assum-
ing simple random sampling, leading to their likelihood, proportional to

∏k
j=1

(N j

n j

)
.

Assuming a uniform prior for N (subject to
∑k

j=1 N j = N ) yields a posterior dis-
tribution for M that is the same as the one in (6.5). This result shows that in some
situations, design-based andmodel-based likelihoods lead to the sameposterior infer-
ence. Note that Hartley and Rao (1968) obtain a more general result by replacing
the uniform prior on N by one attributed to work by Hoadley, i.e. the compound
multinomial distribution p(N) ∝ ∏k

j=1

(N j+υ j−1
N j

)
with ν j > 0.

Ericson (1969) gives results for the Haldane prior in (6.3), i.e. υ j = 0 for all j
(also known as the Bayesian bootstrap, Rubin (1981)). It is notable that the posterior
mean of the finite populationmean, Y , is y, the samplemean.Moreover, the posterior
variance of Y is N−n

N
s2

n , where s
2 is the sample variance. These results are analogous

to the usual estimates of the finite population mean and sampling variance when
viewed from a design-based perspective, and simple random sampling is assumed.
This is not surprising because the assumptions made here are exchangeability and
little prior information. Ericson (1969) also gives general expressions for moments
of the posterior distribution of N. In addition, Ericson gives explicit expressions for
the posterior distribution of a percentile of the finite population.

For posterior inference, one would, in practice, sample θ from p(θ|n) and M
from p(M|θ) in (6.4). Then one would use the set of possible values of Y , {y j :
j = 1, . . . , k}, the observed n and the sample value ofM from (6.4) to calculate the
desired q(Y), the quantity of interest. Finally, this process is repeated B times.

Since the probabilities, {θ j : j = 1, . . . , k}, are nearly independent in a Dirich-
let distribution, using an alternative class of prior distributions may be benefi-
cial. Aitchison and Shen (1980), Aitchison (1982) and Aitchison (1985) develop
the logistic-normal distribution, evaluate its properties and suggest extensions.
The main idea is to apply the logistic transformation to a k − 1-dimensional nor-
mal distribution. This produces a distribution over the k − 1-dimensional simplex
Sk−1 = {θ : 0 < θ j , j = 1, . . . , k − 1;∑k−1

j=1 θ j < 1}. Let v follow the multinormal
distribution Nk−1(μ, �). Then the logistic transformation

θ j = ev j

(1 + ∑k−1
j=1 e

v j )
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with θk = 1 − ∑k−1
j=1 θ j can be used to define a logistic-normal distribution over Sk−1.

A further alternative is to smooth the prior distribution in (6.3) by adding order
restrictions, if warranted by the application. To illustrate, consider a two-phase
survey (Nandram et al., 1997) of Atlantic cod whose objective is to make infer-
ence about the age distribution of the population. At the first phase, a large sam-
ple is selected and each fish is assigned to a stratum consisting of all fish having
length in a specified range. At the second phase, a much smaller sample is chosen
from each stratum, and the age of each of these fish is determined. Considering
here only a single post-stratum, there are k age classes, i.e. y j = j, j = 1, . . . , k.
With Pr(y j = j |θ j ) = θ j , it is well known that {θ j : j = 1, . . . , k} obey the order
restriction R(t)

k = {θ : θ1 ≤ · · · ≤ θt ≥ · · · ≥ θk, 0 ≤ θ j ≤ 1,
∑k

j=1 θ j = 1}, where,
for this illustration, the position of the maximal value is known. Then the prior
distribution for θ ∈ Rt

k is

p(θ|t) ∝
k∏

j=1

θ
υ(t)
j −1

j , θ ∈ Rt
k . (6.6)

If the value of t is unknown, one may assign a prior distribution, {p(t) : t =
1, . . . , k}, to the possible values of t . Then posterior inference about θ accounts for
uncertainty about the value of t .

Obtaining the posterior distribution of θ from the sample likelihood

n!
∏k

j=1 n j !
k∏

j=1

θ
n j

j (6.7)

and (6.6), Sedransk et al. (1985) describe posterior inference for θ given t , and also
introduce inference for θ. Given the expression to select values of θ from its posterior
distribution, it is, of course, straightforward, to select values ofM from its posterior
predictive distribution. See the left side of (6.4) where, now, p(θ|n) involves the
order restrictions.

Sedransk et al. (1985) emphasize inference for the posterior mean of a general
function, h(θ). They use importance sampling and give an efficient method to make
posterior inference for this specific problem.

A general method to make inference for θ is to use the Gibbs sampler. Assuming
the restricted region R(t)

k with t fixed, and using (6.6) and (6.7), it is straightforward
to show that

p(θ j |θ1, . . . , θ j−1, θ j+1, . . . , θk) ∝ κ
n j+υ(t)

j

j (1 − κ
nt+υ(t)

j

j ) (6.8)

where κ j = p j/(1 − (p1 + · · · + p j−1 + p j+1 + · · · + pt−1) with restrictions
θ j−1 ≤ θ j ≤ θ j+1 if 1 ≤ j ≤ t − 1 with θ0 = 0.
θ j ≥ max(θt−1, θt+1) if j = t .
θ j+1 ≤ θ j ≤ θ j−1 if j ≥ t + 1.
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That is, p(θ j |θ1, . . . , θ j−1, θ j+1, . . . , θk) is the density of a Beta random variable
subject to a linear inequality. One may use the following algorithm from Devroye
(1986) to select values directly from (6.8) subject to the appropriate restriction.

Let X be a random variable with distribution function F and truncated random
variable Y by its distribution function G, i.e.

= 0 x < a

G = F(x) − F(a)

F(b) − F(a)
a ≤ x ≤ b

= 1 x > b

Then Y can be generated as F−1(F(a) +U (F(b) − F(a))) whereU ∼ U [0, 1].

7 Summary and Discussion

This introduction to Bayesian inference for finite population characteristics is selec-
tive, starting with a simple case, i.e. where the units in the finite population are gener-
ated from a normal distribution with known variance. This enables one to see how the
sample and prior information are combined to provide inferences. The second case,
regression through the origin, is a specification that is appropriate for many estab-
lishment surveys, e.g. when the outcome variable and a covariate measure the same
quantity at different times. The extension to use of aDirichlet process prior rather than
a simple parametric model gives an example where only a model-based approach is
feasible. TheMRP,multiple regressionwith post-stratification, was included because
it illustrates a common feature, i.e. extensive use of post-stratification, but also an
innovative model and choice of prior distribution. The last section describes several
inferential methods when the variables are categorical. Suchmethodology (including
MRP) reduces the need to specify a parametric model.

As a selective introduction, many important features of survey sampling have not
been described. The Bayesian literature that gives specific coverage of stratified sam-
pling is limited and, for the most part, outdated. Rao and Ghangurde (1972) provides
a good starting point. There is an extensive literature associated with multistage
cluster sampling, but it is scattered. The first significant paper is Scott and Smith
(1969), extended in Malec and Sedransk (1985), then further in Datta and Ghosh
(1991). For categorical data, two papers that provide a starting point are Malec et al.
(1997) and Ha and Sedransk (2019). For informative sampling, the review paper,
Sedransk (2022), includes a discussion of probability proportional to size sampling.
Inference for quantities associated with small geographical areas and populations,
i.e. small area inference, is essentially a separate field. It is well established that such
inferences require a model-based approach. A good place to start reading about the
Bayesian approach to small area inference is Chap.10 of Rao and Molina (2015).
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With amodel-based approach using complexmodels, analyses require using either
asymptotic approximations or computational methods. Over the past twenty years,
the preferred approach is computational, largely using Markov chain Monte Carlo
(MCMC). For small area inference, there is an introduction inRao andMolina (2015).
However, in general, no single method is used. Even within MCMC, the approach is
typically tailored to the specific application.

Acknowledgements The author is grateful to the reviewers for their comments. They have
improved the focus of this chapter.
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Reliability Measures of Repairable
Systems with Arrival Time of Server

S. C. Malik

Abstract An approach to determine reliability measures of repairable systems of
one or more units with arrival time of the server has been described. The use of
semi-Markov process and regenerative point technique has been made to derive the
expressions formean time to system failure (MTSF) and availability of the systems in
the long run. The behaviour of thesemeasures has been examined for arbitrary values
of the parameters associated with failure, repair and arrival rates. The comparison
of MTSF and availability of the system models have also been made for arbitrary
values of the parameters which follow negative exponential distribution. The results
are numerically presented in the tables. The applications of thework can be visualized
in various mechanical and electronic systems such as the system of power supply
through electric transformer and generator in standby mode where components can
be structured with cold standby redundancy and parallel redundancy. The system
of electric transformer can be considered as an example of a single unit repairable
system.

Keywords Repairable systems · Reliability measures · Exponential distribution ·
Semi-Markov process · Regenerative point technique

1 Introduction

Over the years, the subject reliability has gained more importance to fulfil the expec-
tation of the users of repairable systems with minimum possible snags. In fact, the
term reliability appeared in day-to-day activities after World War 2 and particularly
when the failure of electronic equipment was observed at large scale in that war as
a result of which several research institutions started work to know the causes of
failures of the equipment. The US department of defence established a committee
in 1950 known as AGREE. Robert Lusser was the first who gave the definition of
reliability at a symposium in San Diego. In his words, ‘Reliability is basically an
ability of a system to perform the intended function’.
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Today, the main stress of the system designers and engineers is on the develop-
ment of reliable systems with least possible manufacturing and operating costs. The
researchers have tried a lot to provide reliability improvement techniques for the
systems, and somehow, they got success in it. There exist systems of one or more
units which are being frequently used in most of the industries and management
sectors. In view of these practical situations in mind, the purpose of the present
chapter is to provide an approach to determine reliability measures of systems of
one or more units with arrival time of the server. The reliability models for a single
unit system and a system with two units in cold standby mode as well as in parallel
mode are developed to see the effect of redundancy on availability of the system.
The expressions for mean time to system failure (MTSF) and availability have been
derived in steady state by using semi-Markov process and regenerative point tech-
nique. The behaviour of these measures has been examined for arbitrary values of
various parameters. The comparison of MTSF and availability of the system models
have also been made for a particular case. The results are presented numerically in
Tables 1, 2, 3, 4, 5 and 6. The applications of the work can be visualized in various
mechanical and electronic systems such as the system of power supply through

Table 1 MTSF versus failure
rate (λ) of the unit (for a
single unit system)

Failure rate (λ) MTSF

0.001 1000.0

0.002 500.00

0.003 333.33

0.004 250.00

0.005 200.00

0.006 166.66

0.007 142.85

0.008 125.00

0.009 111.11

Table 2 Availability versus
failure rate (λ) of the unit (for
a single unit system)

Failure Rate (λ) α, β = 2 α = 3, β = 2 α = 2, β = 3

0.001 0.99900 0.99916 0.99916

0.002 0.99800 0.99833 0.99833

0.003 0.99700 0.99750 0.99750

0.004 0.99601 0.99667 0.99667

0.005 0.99502 0.99585 0.99585

0.006 0.99403 0.99502 0.99502

0.007 0.99304 0.99420 0.99420

0.008 0.99206 0.99337 0.99337

0.009 0.99108 0.99255 0.99255
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Table 3 MTSF versus failure rate (λ) of the unit (for a cold standby system)

Failure Rate (λ) α, β = 2 α = 3, β = 2 α = 2, β = 3

0.001 1,001,750 1,201,760 1,201,760

0.002 250,875 300,880 300,880

0.003 111,694 133,920 133,920

0.004 62,937 75,440 75,440

0.005 40,350 48,352 48,352

0.006 28,069 33,626 33,626

0.007 20,658 24,741 24,741

0.008 15,843 18,970 18,970

0.009 12,540 15,010 15,010

Table 4 Availability versus failure rate (λ) of the unit (for a cold standby system)

Failure Rate (λ) α, β = 2 α = 3, β = 2 α = 2, β = 3

0.001 0.999999251 0.99999947287 0.9999994727

0.002 0.999997007 0.999997894 0.9999976714

0.003 0.999993276 0.99999526746 0.9999947661

0.004 0.999988063 0.99999159691 0.9999907048

0.005 0.999981374 0.99998688626 0.9999854911

0.006 0.999973215 0.99998113936 0.9999791286

0.007 0.999963591 0.99997436001 0.9999716208

0.008 0.999952508 0.99996655204 0.9999629713

0.009 0.999939974 0.99995771925 0.9999531836

Table 5 MTSF versus failure rate (λ) of the unit (for a parallel system)

Failure Rate (λ) α, β = 2 α = 3, β = 2 α = 2, β = 3

0.001 501,375 601,380 601,380

0.002 125,687 150,690 150,690

0.003 56,013 67,126 67,126

0.004 31,593 37,845 37,845

0.005 20,275 24,276 24,276

0.006 14,118 16,896 16,896

0.007 10,400 12,442 12,442

0.008 7984 9547 9547

0.009 6325 7560 7560
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Table 6 Availability versus
failure rate (λ) of the unit (for
a parallel system)

Failure Rate(λ) α, β = 2 α = 3, β = 2 α = 2, β = 3

0.001 0.999998503 0.999998947 0.999998946

0.002 0.999994028 0.999995795 0.999995793

0.003 0.999986594 0.999990558 0.999990552

0.004 0.999976223 0.99998325 0.999983235

0.005 0.999962934 0.999973881 0.999973853

0.006 0.999946749 0.999962466 0.999962417

0.007 0.999927687 0.999949016 0.999948939

0.008 0.999905769 0.999933545 0.99993343

0.009 0.999881014 0.999916065 0.999915902

electric transformer and generator in standby mode where components can be struc-
tured with cold standby redundancy and parallel redundancy. The system of electric
transformer can be considered as an example of a single unit repairable system.

2 Literature Review

The long-run availability of a parallel redundant systemwasobtainedbyGaver (1963)
by considering random failure and arbitrary distributions for repair times. Barlow
and Proschan (1965) propagated the research work in reliability through the clas-
sical book ‘Mathematical Theory of Reliability’. The use of semi-Markov process
was considered by Branson and Shah (1971) for evaluating reliability measures of a
system assuming exponential time and general repair time distribution. The regen-
erative point technique was adopted by Srinivasan and Gopalan (1973) to analyse a
two-unit system with warm standby and single repair facility. Zuckerman (1978) has
investigated semi-Markov shock models with optimal stopping. Murari and Goyal
(1984) compared reliability models of a two-unit cold standby system with three
types of repair facilities. Singh (1989) carried out profit of a two-unit cold standby
systemwith a repair facility which appears and disappears randomly. Mokaddis et al.
(1997) examined a two-unit warm standby system subject to degradation. Kadyan
et al. (2004) analysed a system of non-identical units using the concepts of priority
and different failure modes.

The idea of priority for operation and repair was introduced by Chander (2005)
while studying reliability models of repairable systems. Pawar et al. (2010) discussed
on operating systemwith repair at different level of damages subject to inspection and
weather conditions. The reliability models for a computer system have been probed
byAnand (2012)with the concepts of cold standby redundancy and inspection. Later,
Ashish (2013) carried out cost–benefit analysis of computer systems with preventive
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maintenance after a maximum operation time. Gitanjali (2014) suggested reliability
models for a parallel system with repair by different servers. Bhardwaj and Kaur
(2014) obtained reliability and profit of a cold standby system with possible renewal
of standby subject to inspection. The cost–benefit analysis of a repairable systemwas
done by Malik and Gitanjali (2019) with alternate repair and Weibull distribution.
Nandal and Malik (2019) used Lindley distribution for profit analysis of a three-unit
cold standby system subject to arrival time of the server.

3 Some Fundamentals

Here, we shall describe in brief the following fundamentals.

3.1 Reliability

If ‘T’ is the lifetime of the system, then the system reliability is defined as follows:

R(t) = Pr [T > t] = ∞∫
t

f (u)du = 1 − F(t) = F(t)

where f (t) is a probability density function of lifetime ‘T’, F(t) is the cumulative
density function of lifetime ‘T’ or unreliability of the system, and R(t) is the proba-
bility that the item does not fail in the time interval (0, 1] and is still functioning at
time ‘t’.

3.2 Mean Time to System Failure (MTSF)

The expected time before the system completely fail is called mean time to system
failure. Let f (t) be the failure density function, then

MT SF =E(T ) = ∞∫
0

t f (t)dt,where, T is the time to failure

= lim
t→∞

t∫
0

R(t)dt = lim
s→0

R∗(s)where R∗(s) is the Laplace transform ofR(t)
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3.3 Steady-State Availability

The probability that the system is operating successfully at time ‘t’ is called
availability of the system which is given by

Availability A(t) = SystemU pT ime

SystemU pT ime + System DownT ime

The expected fraction of time that the system operates satisfactorily in the long
run is known as steady-state availability. Thus, steady-state availability is

A(∞) = lim
t→∞ A(t)

3.4 Redundancy

Redundancy is a common approach to improve the reliability and availability of
a system. The provision of parallel paths (or alternative means) in a system for
performing a given task such that all means must fail before causing the system
failure is called redundancy. It is mainly of two types: active redundancy and standby
redundancy. The redundancy inwhich all spare units operate simultaneously is known
as active redundancy while the standby redundancy is that in which failed unit is
replaced manually or automatically by its similar spare unit, and this process will
continue until all the spare units (standby) have been exhausted.

For example, the system of power supply through electric transformer and gener-
ator is a case of standby system where generator is kept as spare (called redundant)
and can be switched on as and when power supply through electric transformer is
interrupted.

3.5 Semi-Markov Process

The semi-Markov process is a process in which transition from one state to another
is governed by the transition probabilities of a Markov process, but the time spent
in each state before a transition occurs is a random variable depending upon the last
transition made.

Mathematically, we assume that the process is time homogeneous, i.e.
Pr{Xn+1 = j, tn+1−−tn〈t |Xn = i} = Qi j (t), i, j ∈ s is independent of n, then

there exist limiting transition probabilities.
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Here, Qi j (t) is theCDFof passage time from regenerative state Si to a regenerative
state Sj or to a failed state Sj without visiting any other regenerative state in (0, t].

pi j = lim Qi j (t) = Pr{Xn+1 = j |Xn = i},
then {Xn, n = 0, 1, 2, . . . . . . ..} constitute a Markov chain with state space E

and transition probability matrix (TPM)

P = [
pi j

]

3.6 Regenerative Point Process

Regenerative stochastic process was defined by Smith (1955) and has been crucial
in the analysis of complex system. In this, we take time points at which the system
history prior to the time points is irrelevant to the system conditions. These points are
called regenerative points. Let X (t) be the state of the system of epoch. If t1, t2, . . . ..
are the epochs at which the process probabilistically restarts, then these epochs are
called regenerative epochs, and the process {X(t), t = t1, t2, . . . . . . . . .} is called
regenerative process.

4 Common Notations

O The system is operating

λ The constant failure rate of the system

Cs The unit is in cold standby

w(t)/W (t) PDF/CDF of the random variable associated with arrival time of the server

g(t)/G(t) PDF/CDF of the random variable associated with repair time of the unit

Fwr/FW R The system is failed and waiting for repair/waiting for repair continuously from
previous state

Fur/FU R The system is failed and under repair/ under repair unit continuously from
previous state

qi j /Qi j PDF/CDF of passage time from regenerative state Si to a regenerative state S j or

to a failed state S j without visiting any other regenerative state in (0, t]

�/© Symbol for Laplace–Stieltjes convolution/Laplace convolution

*/** Symbol for Laplace transform(LT)/Laplace–Stieltjes transform (LST)
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5 Reliability Measures of Repairable Systems

The reliabilitymeasures of the following repairable systems are discussed as follows:

5.1 A single unit system model with arrival time of the server
5.2 A two-unit cold standby system model with arrival time of the server
5.3 A two-unit parallel system model with arrival time of the server

5.1 MTSF and Availability of a Single Unit System
with Arrival Time of the Server

Let us consider a single unit system with constant failure rate (λ). The system
has two modes—operative (normal mode) and completely failed. The system has
complete failure from normal mode. A single server which takes some time to arrive
at the system (called arrival time) is provided to carry out repair activities. The state
transition diagram is shown in Fig. 1.

5.1.1 System Description

S0 The initial state in which system is good and operating

S1 The system is failed and waiting for repair due to non-availability of the server

S2 The system is failed and under repair

Fig. 1 State transition
diagram (for a single unit
system)

•: Regenerative Point, О: Operative state, □: Failed state 

1
w(t)g(t)

λ
O

Fwr

Fur

0

2
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5.1.2 Transition Probabilities and Mean Sojourn Time

Simple probabilistic considerations yield the following expressions for the nonzero

elements pi j = Qi j (∞) = ∞∫
0

qi j (t)dt as

d Q01(t) = q01(t)dt = λe−λt dt, d Q12(t) = w(t)dtd Q20(t) = g(t)dt

Taking Laplace–Stieltjes Transform, we get

Q∗∗
01(s) = ∞∫

0
e−st [d Q01(t)] = λ

λ + s
, Q∗∗

12(s) = w∗(s), Q∗∗
20(s) = g∗(s)

Taking lim s → 0, we get the following transition probabilities:

p01 = 1, p12 = 1, p20 = 1

Mean sojourn times

μi =
∑

j

mi j (i = 0, 1)

But, mi j = − d

ds

[
Q∗∗

i j (s)
]

s=0

So, m01 = − d

ds

[
λ

λ + s

]

s=0

= 1

λ
, m12 = −w∗,

(0), m20 = −g∗,

(0)

Now, μ0 = m01 = 1

λ
, μ1 = m12 = −w∗,

(0), μ2 = m20 = −g∗,

(0)

5.1.3 Reliability and Mean Time to System Failure (MTSF)

It is defined as the expected time for which the system is in operation before it
completely fails. Let f (t)be the probability density function of lifetimeof the system.

We have,

MT SF = E(T ) = ∞∫
0

t f (t)dt = ∞∫
0

R(t)dt

Also, lim
s→0

R∗(s) = ∞∫
0

R(t)dt and MT SF = lim
S→0

R∗(s)
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Let ∅0(t) be the cumulative distribution function of the first passage time from
the initial state to a failed state, then

R∗(s) = 1 − ∅∗∗
0 (s)

s

From above equations, we have

MTSF = lim
s→0

R∗(s) = lim
S→0

1 − ∅∗∗
0 (s)

s

where R∗(s) and∅∗∗
0 (s) are, respectively, theLaplace transformandLaplace–Stieltjes

transform of R(t) and ∅0(t).
Let ∅i (t) be the CDF of first passage time from regenerative state Si to a failed

state. Regarding the failed state as absorbing state, we have the following recursive
relations for ∅i (t):

∅0(t) = Q01(t)

Taking Laplace–Stieltjes transform, it can be written as

∅∗∗
0 (s) = Q∗∗

01(s)

Now, MT SF = lim
S→0

1 − ∅∗∗
0 (s)

s
= lim

S→0

1 − N1
D1

D1
= lim

s→0

[D1 − N1]

s D1

(
0

0

)
Form

So, by applying L’ Hospital rule, we get

MT SF = Q∗∗′
01 (0) = m01 = μ0 = 1

λ

Hence, MTSF = 1

λ

Reliability

We have,

R∗(s) = 1 − ∅∗∗
0 (s)

s
= 1 − Q∗∗

01(s)

s
= 1

λ + S

The reliability of the system model can be obtained by taking Laplace inverse of
R∗(s), and we get



Reliability Measures of Repairable Systems … 241

R(t)=L−1

(
1

λ + S

)
= e−λt , t >0

Hence,

R(t) = e−λt for t >0

5.1.4 Availability Analysis

Let Ai (t) be the probability that the system is in upstate at instant ‘t’ given that the
system entered regenerative state Si at t = 0. The recursive relations for Ai (t) are
given as

A0(t) = M0(t) + q01(t)©A1(t), A1(t) = q12(t)©A2(t),

A2(t) = q20(t)©A0(t)

Where, M0(t) = e−λt

Taking Laplace transform of above equations, it can be written as follows:

A∗
0(s) = M∗

0 (s) + q∗
01(s).A

∗
1(s), A∗

1(s) = q∗
12(s).A

∗
2(s),

A∗
2(s) = q∗

20(s).A
∗
0(s)

or

A∗
0(s)−q∗

01(s).A
∗
1(s) = M∗

0(s),A
∗
1(s)−q∗

12(s).A
∗
2(s) = 0,

A∗
2(s)−q∗

20(s).A
∗
0(s) = 0

⎡

⎣
1 −q∗

01(s) 0
0 1 −q∗

12(s)
−q∗

20(s) 0 1

⎤

⎦

⎡

⎣
A∗
0(s)

A∗
1(s)

A∗
2(s)

⎤

⎦ =
⎡

⎣
M∗

0 (s)
0
0

⎤

⎦

The above expression is of the type AX = B

|| = 1−q∗
01(s)q

∗
12(s)q

∗
20(s)

|�1| =
∣∣
∣∣∣∣

M∗
0 (s) −q∗

01(s) 0
0 1 −q∗

12(s)
0 0 1

∣∣
∣∣∣∣
, || = (s)

Applying Crammer’s rule and solving for A∗
0 (s), we get
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A∗
0(s) = M∗

0 (s)

1 − q∗
01(s)q

∗
12(s)q

∗
20(s)

The steady-state availability is given by

A(∞) = lim
t→∞ A(t) = lim

s→0
s A∗

0(s) = lim
s→0

s[ M∗
0 (s)

1 − q∗
01(s)q

∗
12(s)q

∗
20(s)

(
0

0
f orm

)

Using L’ Hospital rule, we get

A(∞) = lim
s→0

s

[
M∗

0 (s)

1 − q∗
01(s)q

∗
12(s)q

∗
20(s)

]
= lim

s→0

1

1 − λ
[
w∗′

(0)g∗(0) + w∗(0)g∗′
(0)

]

A(∞) = 1

1 − λ
[
w∗′

(0) + g∗′
(0)

]

5.1.5 Particular Case

Suppose repair rate g(t) and arrival timeof the serverw(t) follownegative exponential
distribution, i.e. g(t) = α e−αt and w(t) = β e−βt .

Taking Laplace transform, it can be written as follows:

s) = α

α + s
, g∗,

(s) = − α

(α + s)2
, g∗,

(0) = − 1

α

w∗(s) = β

β + s
, w∗,

(s) = − β

(β + s)2
,w∗,

(s) = − 1

β

Hence, A(∞) = αβ

αβ+λ[α+β] .

5.1.6 Numerical and Graphical Representation of MTSF
and Availability

5.2 MTSF and Availability of a Two-Unit Cold Standby
System with Arrival Time of the Server

Let us consider a system of two identical units in which one unit is operative and the
other unit is kept as spare in cold standby. There is a single server which takes some
time to arrive at the system. The possible transition between states is shown in the
following state transition diagram (Fig. 2):
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О:  Operative state     •: Regenerative point    □: Failed state 
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Fig. 2 State transition diagram (for a cold standby system)

5.2.1 System Description

S0 The initial state in which one unit is operative and the other is kept as cold standby

S1 The state in which one unit is operative and the other failed unit is waiting for repair

S2 The state in which one unit is operative and the other unit is under repair

S3 The state in which one failed unit is waiting for repair and the other failed unit is
also waiting for repair continuously from previous state

S4 The state in which both the units are failed, and one unit is under repair and the
another unit is waiting for repair

S5 The final state in which one unit is under repair from previous state and another unit is
waiting for repair

5.2.2 Transition Probabilities and Mean Sojourn Times.

Simple probabilistic considerations yield the following expressions for the nonzero

elements pi j = Qi j (∞) =
∞∫

0
qi j (t)dt as
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d Q01(t) = q01(t)dt = λe(−λt)dt, d Q12(t) = e−λtw(t)dt,

d Q13(t) = λe(−λt)W (t)dt

d Q20(t) = e−λt g(t)dt, d Q25(t) = λe−λt G(t)dt,

d Q12.34(t) = d Q13(t)d Q34(t)d Q42(t)

d Q34(t) = w(t)dt, d Q42(t) = g(t)dt,

d Q22.5(t) = e−λt G(t)g(t)dt, d Q52(t) = g(t)dt

Taking Laplace–Stieltjes transform, we have

Q∗∗
01(s) = ∞∫

0
e−std[Q01(t)] = λ

λ + S
, Q∗∗

12(s) = w∗(λ + s),

Q∗∗
13(s) = λ

λ + S

[
1 − w∗(λ + s)

]

Q∗∗
20 = g∗(λ + s), Q∗∗

25(s) = λ

λ + S

[
1 − g∗(λ + s)

]

Q∗∗
12.34(s) = λ

λ + S

[
1 − w∗(λ + s)

]
w∗(s)g∗(s),

Q∗∗
34(s) = w∗(s), Q∗∗

42 = g∗(s), Q∗∗
22.5 = λ

λ + S

[
1 − g∗(λ + s)

]
g∗(s),

Q∗∗
52g∗(s) = g∗(s)

Taking limit s → 0, we get the following transition probabilities:

p01 = 1, p12 = w∗(λ), p13 = [
1 − w∗(λ)

]
, p20 = g∗(λ),

p25 = [
1 − g∗(λ)

]

p12.34 = [
1 − w∗(λ)

]
, p34 = 1, p42 = 1, p22.5 = [1 − g∗(λ)], p52 = 1

It can be easily verified that

p01 = p01 + p13 = p20 + p22.5 = p20 + p25 = p12 + p12.34 = p34 = p42 = p52 = 1

Mean sojourn times

μi =
∑

j

mi j (i = 0, 1)

But, mi j = − d

ds

[
Q∗∗

i j (s)
]
s
= 0,
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So, m01 = − − d

ds

[
λ

λ + S

]

s = 0

= 1

λ
, m12 = −w∗,

(λ),

m13 = w∗,

(λ) + 1

λ

[
1 − w∗(λ)

]

m20 = g∗′
(λ), m25 = g∗′

(λ) + 1

λ

[
1 − g∗(λ)

]

m12.34 = λw∗′
(λ) − λ[1 − w∗(λ)]g∗′

(0) − λ[1 − w∗(λ)]w∗′
(0) + [1 − w∗(λ)]

λ

m22.5 = λg∗′
(λ) − λ[1 − g∗(λ)]g∗′

(0) + [1 − g∗(λ)]w∗′
(0)

λ

Now,μ0 = m01 = 1

λ
,μ1 = m12 + m13 = 1

λ

[
1 − w∗(λ)

]

μ2 = m20 + m25 = 1

λ

[
1 − g∗(λ)

]

μ′
1 = m12 + m12.34 = 1

λ

{[
1 − w∗(λ)

] − λ
[
1 − w∗(λ)

]
g∗′

(0) − λ
[
1 − w∗(λ)

]
w∗′

(0)
}

μ′
2 = m20 + m22.5 = 1

λ

{[
1 − g∗(λ)

] − λ
[
1 − g∗(λ)

]
g∗′

(0)
}

5.2.3 Reliability and Mean Time to System Failure (MTSF)

Let ∅i (t) be the CDF of first passage time from regenerative state Si to a failed
state. Regarding the failed state as absorbing state, we have the following recursive
relations for ∅i (t):

∅0(t) = Q01(t)∅1(t),∅1(t) = Q12(t)∅2(t) + Q13(t),∅2(t) = Q20(t)∅0(t) + Q25(t)

Taking Laplace–Stieltjes transform, it can be written as

∅∗∗
0 (s) = Q∗∗

01(s)∅∗∗
1 (s),∅∗∗

1 (s) = Q∗∗
12(s)∅∗∗

2 (s) + Q∗∗
13(s),∅∗∗

2 (s) = Q∗∗
20(s)∅∗∗

0 (s) + Q∗∗
25(s)

or
⎡

⎣
1 −Q∗∗

01(s) 0
0 1 −Q∗∗

12(s)−Q∗∗
20(s) 0 1

⎤

⎦

⎡

⎣
∅∗∗
0 (s)

∅∗∗
1 (s)

∅∗∗
2 (s)

⎤

⎦ =
⎡

⎣
0

Q∗∗
13(s)

Q∗∗
25(s)

⎤

⎦

Or AX = B

D1 = |A| = 1 − Q∗∗
01(s)Q∗∗

12(s)Q∗∗
20(s)
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N1 =
∣∣∣∣∣
∣

0 −Q∗∗
01(s) 0

Q∗∗
13(s) 1 −Q∗∗

12(s)
Q∗∗

25(s) 0 1

∣∣∣∣∣
∣
= Q∗∗

01(s)Q∗∗
13(s) + Q∗∗

01(s)Q∗∗
12(s)Q∗∗

25(s)

On solving for ∅
∗∗
0 (s) by Crammer’s rule, we get

We have ∅∗∗
0 (s) = Q∗∗

01(s)Q∗∗
13(s) + Q∗∗

01(s)Q∗∗
12(s)Q∗∗

25(s)

1 − Q∗∗
01(s)Q∗∗

12(s)Q∗∗
20(s)

Also, MT SF = lim
S→0

1 − ∅∗∗
0 (s)

s
= lim

S→0

1 − Q∗∗
01(s)Q∗∗

13(s)+Q∗∗
01(s)Q∗∗

12(s)Q∗∗
25(s)

1−Q∗∗
01(s)Q∗∗

12(s)Q∗∗
20(s)

s

= lim
S→0

Q∗∗
01(s)Q∗∗

13(s) + Q∗∗
01(s)Q∗∗

12(s)Q∗∗
25(s)

s
[
1 − Q∗∗

01(s)Q∗∗
12(s)Q∗∗

20(s)
] = lim

s→0

1 − N1
D1

s
= lim

s→0

[D1 − N1]

sD1

(
0

0

)
Form

So, by applying L’ Hospital rule, we get

MT SF = μ0 + μ1 + μ2 p12

1 − p12 p20

So, we get R∗(s) = 1 − ∅∗∗
0 (s)

s
= Q∗∗

01(s)Q∗∗
13(s) + Q∗∗

01(s)Q∗∗
12(s)Q∗∗

25(s)

s
[
1 − Q∗∗

01(s)Q∗∗
12(s)Q∗∗

20(s)
]

The reliability of the system model can be obtained by taking Laplace inverse of
R∗(s), and we get

R(t) = L−1{ Q∗∗
01(s)Q∗∗

13(s) + Q∗∗
01(s)Q∗∗

12(s)Q∗∗
25(s)

s
[
1 − Q∗∗

01(s)Q∗∗
12(s)Q∗∗

20(s)
]

5.2.4 Availability Analysis

Let Ai (t) be the probability that the system is in upstate at instant ‘t’ given that the
system entered regenerative state Si at t = 0. The recursive relations for Ai (t) are
given as

A0(t) =M0(t) + q01(t)©A1(t)

A1(t) =M1(t) + q12(t)©A2(t) + q12.34(t)©A2(t)

A2(t) =M2(t) + q20(t)©t A0(t) + q22.5(t)©A2(t)

where Mi (t) is the probability that the system is up initially in state Si ∈ E which
is up at time t without visiting to any other regenerative state, and we have

M0(t) = e−λt , M1(t) = e−λt W (t), M2 = G(t)
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Taking Laplace transform of above equations,it can be written as

A∗
0(s) =M∗

0 (s) + q∗
01(s)A∗

1(s)

A∗
1(s) =M∗

1 (s) + q∗
12(s)A∗

2(s) + q∗
12.34(s)A∗

2(s)

A∗
2(s) =M∗

2 (s) + q∗
20(s)A∗

0(s) + q∗
22.5(s)A∗

2(s)

Or

A∗
0(s) − q∗

01(s)A∗
1(s) =M∗

0 (s)

A∗
1(s) − q∗

10(s)A∗
0(s) − q∗

11.2(s)A∗
1(s) =M∗

1 (s)

A∗
2(s) − q∗

20(s)A∗
0(s) − q∗

22.5(s)A∗
2(s) =M∗

2 (s)

⎡

⎣
1 −q∗

01(s) 0
0 1 −[

q∗
12(s) + q∗

12.34(s)
]

−q∗
20(s) 0 1 − q∗

22.5(s)

⎤

⎦

⎡

⎣
A∗
0(s)

A∗
1(s)

A∗
2(s)

⎤

⎦ =
⎡

⎣
M∗

0 (s)
M∗

1 (s)
M∗

2 (s)

⎤

⎦

|�| =
∣∣∣
∣∣∣

1 −q∗
01(s) 0

0 1 −[
q∗
12(s) + q∗

12.34(s)
]

−q∗
20(s) 0 1 − q∗

22.5(s)

∣∣∣
∣∣∣

= 1 − q∗
22.5(s) − q∗

01(s)q
∗
20(s)q

∗
12(s)−−q∗

01(s)q
∗
20(s)q

∗
12.34(s)

|�1| =
∣
∣∣
∣∣
∣

M∗
0 (s) −q∗

01(s) 0
M∗

1 (s) 1 −[
q∗
12(s) + q∗

12.34(s)
]

M∗
2 (s) 0 1 − q∗

22.5(s)

∣
∣∣
∣∣
∣

= M∗
0 (s)[1 − q∗

22.5(s)] + q∗
01(s)M∗

1 (s)[1 − q∗
22.5(s)] + M∗

2 (s)[q∗
12(s) + q∗

12.34(s)]

On solving for A∗
0(s) by Crammer’s rule, we get

Thus,

A∗
0(s) = M∗

0 (s)
[
1 − q∗

22.5(s)
] + q∗

01(s)M∗
1 (s)

[
1 − q∗

22.5(s)
] + M∗

2 (s)
[
q∗
12(s) + q∗

12.34(s)
]

1 − q∗
22.5(s) − q∗

01(s)q
∗
20(s)q

∗
12(s)−−q∗

01(s)q
∗
20(s)q

∗
12.34(s)

The steady-state (long run) availability is given by

A(∞) = lim
t→∞ A(t) = lim

s→0
s A∗

0(s)

= lim
s→0

s

{
M∗

0 (s)
[
1 − q∗

22.5 (s)
] + q∗

01(s)M∗
1 (s)

[
1 − q∗

22.5 (s)
]

+M∗
2 (s)

[
q∗
12(s) + q∗

12.34(s)
]

}

1 − q∗
22.5(s) − q∗

01(s)q
∗
20(s)q

∗
12(s) −− q∗

01(s)q
∗
20(s)q

∗
12.34(s)

= lim
s→0

s
N

D

(
0

0

)
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From,
So, by applying L’ Hospital rule, we get

A(∞) = μ0 p20 + μ1 p20 + μ2

μ′
2 + μ0 p20 + μ′

1 p20

5.2.5 Particular Case

Suppose repair rate g(t) and arrival time of the server w(t) follow negative
exponential distribution, i.e.

g(t) = αe−αt andw(t) = βe−βt

Taking Laplace transform, it can be written as

g∗(s) = α

α + s
, g∗,

(s) = − α

(α + s)2
, g∗,

(0) = − 1

α

w∗(s) = β

β + s
, w∗,

(s) = − β

(β + s)2
, w∗,

(0) = − 1

β

MT SF = μ0 + μ1 + μ2 p12

1 − p12 p20
= (α + λ)(α + λ) + (α + λ)λ + βλ

λ[(β + λ)(α + λ) − αβ]

A(∞) = μ0 p20 + μ1 p20 + μ2

μ′
2 + μ0 p20 + μ′

1 p20
= αβ[α(β + λ) + αλ + λ(β + λ)]

βλ(β + λ)(α + λ) + α2β(β + λ) + λ2αβ + λ2α2 + λα2β

5.2.6 Numerical and Graphical Representation of MTSF
and Availability

5.3 MTSF and Availability of a Two-Unit Parallel System
with Arrival Time of the Server

Let us consider a system of two identical units in which both units are operative in
parallel mode. There is a single server which is allowed to take some time to arrive at
the system (called arrival time of the server). The possible transition between states
is shown in the following state transition diagram (Fig. 3):
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О:  Operative state    •: Regenerative point    □: Failed state 
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Fig. 3 State transition diagram (for a parallel system)

5.3.1 System Description

S0 The initial state in which one unit is operative and the other one unit in parallel

S1 The state in which one unit is operative and the other failed unit is waiting for repair

S2 The state in which one unit is operative and the other unit is under repair

S3 The state in which one failed unit is waiting for repair and the other failed unit is
continuously waiting for repair from previous state

S4 The state in which one failed unit is under repair and the other failed unit is
continuously waiting for repair from previous state

S5 The final state in which one unit is under repair from previous state and other unit is
waiting for repair

5.3.2 Transition Probabilities and Mean Sojourn Times

Simple probabilistic considerations yield the following expressions for the nonzero

elements pi j = Qi j (∞) = ∞∫
0

qi j (t)dt as
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d Q01(t) = q01(t)dt = 2λe−2λt dt, d Q12(t) = e−λtw(t)dt,

d Q13(t) = λe−λt W (t)dt

d Q20(t) = e−λt g(t)dt, d Q25(t) = λe−λt G(t)dt, d Q12.34(t) = d Q13(t)©d Q34(t)©d Q42(t)

d Q34(t) = w(t)dt, d Q42(t) = g(t)dt, d Q22.5(t) = λe−λt G(t)g(t)dt,

d Q52(t) = g(t)dt

Taking Laplace–Stieltjes transform, we have

Q∗∗
01(s) = ∞∫

0
e−st [Q01(t)] = 2λ

2λ + S
, Q∗∗

12(s) = w∗(λ + s),

Q∗∗
13(s) = λ

λ + S

[
1 − w∗(λ + s)

]

Q∗∗
20(s) = g∗(λ + s), Q∗∗

25(s) = λ

λ + S

[
1 − g∗(λ + s)

]
,

Q∗∗
12.34(s) = λ

λ + S

[
1 − w∗(λ + s)

]
w∗(s)g∗(s),

Q∗∗
34(s) = w∗(s), Q∗∗

42(s) = g∗(s),

Q∗∗
22.5(s) = λ

λ + S

[
1 − g∗(λ + s)

]
g∗(s), Q∗∗

52(s) = g∗(s)

Taking lims → 0, we get the following transition probabilities:

p01 = 1, p12 = w∗(λ), p13 = [
1 − w∗(λ)

]
, p20 = g∗(λ)

p25 = [
1 − g∗(λ)

]
, p12.34 = [

1 − w∗(λ)
]
, p34 = 1, p42 = 1,

p22.5 = [1 − g∗(λ)], p52 = 1

It can be easily verified that

p01 = p01 + p13 = p20 + p22.5 = p20 + p25 = p12 + p12.34 = p34 = p42 = p52 = 1

Mean sojourn times

μi =
∑

j

mi j (i = 0, 1)

But, mi j = − d

ds
[Q∗∗

i j (s)]s=0, m01 = − d

ds
[]s=0 = 1

2λ
, m12 = −w∗,

(λ)
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m13 = w∗,

(λ) + 1

λ

[
1 − w∗(λ)

]
, m20 = g∗,

(λ),

m25 = g∗,

(λ) + 1

λ

[
1 − g∗(λ)

]

m12.34 = λw∗′
(λ) − λ[1 − w∗(λ)]g∗′

(0) − λ[1 − w∗(λ)]w∗′
(0) + [1 − w∗(λ)]

λ

m22.5 = λg∗′
(λ) − λ[1 − g∗(λ)]g∗′

(0) + [1 − g∗(λ)]w∗′
(0)

λ

Now,μ0 = m01 = 1

2λ
,μ1 = m12 + m13 = 1

λ

[
1 − w∗(λ)

]

μ2 = m20 + m25 = 1

λ

[
1 − g∗(λ)

]

μ′
1 = m12 + m12.34 = 1

λ

{[
1 − w∗(λ)

] − λ
[
1 − w∗(λ)

]
g∗,

(0) − λ
[
1 − w∗(λ)

]
w∗,

(0)
}

μ′
2 =m20 + m22.5 = 1

λ

{[
1 − g∗(λ)

] − λ
[
1 − g∗(λ)

]
g∗,

(0)
}

5.3.3 Reliability and Mean Time to System Failure (MTSF)

Let ∅i (t) be the CDF of first passage time from regenerative state Si to a failed
state. Regarding the failed state as absorbing state, we have the following recursive
relations for ∅i (t):

∅0(t) = Q01(t)∅1(t)

∅1(t) = Q12(t)∅2(t) + Q13(t)

∅2(t) = Q20(t)∅0(t) + Q25(t)

Taking Laplace–Stieltjes transform, it can be written as

∅∗∗
0 (s) = Q∗∗

01(s)∅∗∗
1 (s)

∅∗∗
1 (s) = Q∗∗

12(s)∅∗∗
2 (s) + Q∗∗

13(s)

∅∗∗
2 (s) = Q∗∗

20(s)∅∗∗
0 (s) + Q∗∗

25(s)

Or

⎡

⎣
1 −Q∗∗

01(s) 0
0 1 −Q∗∗

12(s)
−Q∗∗

20(s) 0 1

⎤

⎦

⎡

⎣
∅∗∗
0 (s)

∅∗∗
1 (s)

∅∗∗
2 (s)

⎤

⎦ =
⎡

⎣
0

Q∗∗
13(s)

Q∗∗
25(s)

⎤

⎦
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Or AX = B

|�| = 1 − Q∗∗
01(s)Q∗∗

12(s)Q∗∗
20(s)

|�1| =
∣∣∣
∣∣∣

0 −Q∗∗
01(s) 0

Q∗∗
13(s) 1 −Q∗∗

12(s)
Q∗∗

25(s) 0 1

∣∣∣
∣∣∣

= Q∗∗
01(s)Q∗∗

13(s) + Q∗∗
01(s)Q∗∗

12(s)Q∗∗
25(s)

On solving for ∅∗∗
0 (s) by Crammer’s rule, we get

∅∗∗
0 (s) = Q∗∗

01(s)Q∗∗
13(s) + Q∗∗

01(s)Q∗∗
12(s)Q∗∗

25(s)

1 − Q∗∗
01(s)Q∗∗

12(s)Q∗∗
20(s)

Now,

MTSF = lim
S→0

1 − ∅∗∗
0 (s)

s
= lim

S→0

1 − Q∗∗
01(s)Q∗∗

13(s)+Q∗∗
01(s)Q∗∗

12(s)Q∗∗
25(s)

1−Q∗∗
01(s)Q∗∗

12(s)Q∗∗
20(s)

s

= lim
S→0

Q∗∗
01(s)Q∗∗

13(s) + Q∗∗
01(s)Q∗∗

12(s)Q∗∗
25(s)

s
[
1 − Q∗∗

01(s)Q∗∗
12(s)Q∗∗

20(s)
] = lim

S→0

1 − N1
D1

S
= lim

S→0

[D1 − N1]

SD1

(
0

0

)

Indeterminant Form.
So, by applying L’ Hospital rule, we get

MTSF = μ0 + μ1 + μ2 p12

1 − p12 p20

So, we have

R∗(s) = 1 − ∅∗∗
0 (s)

s
= Q∗∗

01(s)Q∗∗
13(s) + Q∗∗

01(s)Q∗∗
12(s)Q∗∗

25(s)

s
[
1 − Q∗∗

01(s)Q∗∗
12(s)Q∗∗

20(s)
]

The reliability of the system model can be obtained by taking Laplace inverse of
R*(s), and we get

R(t) = L−1

{
Q∗∗

01(s)Q∗∗
13(s) + Q∗∗

01(s)Q∗∗
12(s)Q∗∗

25(s)

s
[
1 − Q∗∗

01(s)Q∗∗
12(s)Q∗∗

20(s)
]

}

5.3.4 Availability Analysis

Let Ai (t) be the probability that the system is in upstate at instant ‘t’ given that the
system entered regenerative state Si at t = 0. The recursive relations for Ai (t) are
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given as

A0(t) = M0(t) + q01(t)©A1(t)

A1(t) = M1(t) + q12(t)©A2(t) + q12.34(t)©A2(t)

A2(t) = M2(t) + q20(t)©A0(t) + q22.5(t)©A2(t)

where Mi (t) is the probability that the system is up initially in state SiεE which
is up at time t without visiting to any other regenerative state, and we have

M0(t) = e−2λt , M1(t) = e−λt W (t), M2(t) = G(t)

Taking Laplace transform of above equations, it can be written as
or

A∗
0(s) = M∗

0 (s) + q∗
01(s) + A∗

1(s) = (s) + (s)

A∗
1(s) = M∗

1 (s) + q∗
12(s) + A∗

2(s) + q∗
12.34(s) + A∗

2(s)

A∗
2(s) = M∗

2 (s) + q∗
20(s) + A∗

0(s) + q∗
22.5(s) + A∗

2(s)

or

A∗
0(s) − q∗

01(s)A∗
1(s) = M∗

0 (s)

A∗
1(s) − q∗

10(s)A∗
0(s) − q∗

11.2(s)A∗
1(s) = M∗

1 (s)

A∗
2(s) − q∗

20(s)A∗
0(s) − q∗

22.5(s)A∗
2(s) = M∗

2 (s)
⎡

⎣
1 −q∗

01(s) 0
0 1 −[

q∗
12(s) + q∗

12.34(s)
]

−q∗
20(s) 0 1 − q∗

22.5(s)

⎤

⎦

⎡

⎣
A∗
0(s)

A∗
1(s)

A∗
2(s)

⎤

⎦ =
⎡

⎣
M∗

0 (s)
M∗

1 (s)
M∗

2 (s)

⎤

⎦

On solving for A∗
0(s) by Crammer’s rule, we get

|�| =
∣∣∣∣∣∣

1 −q∗
01(s) 0

0 1 −[
q∗
12(s) + q∗

12.34(s)
]

−q∗
20(s) 0 1 − q∗

22.5(s)

∣∣∣∣∣∣

= 1 − q∗
22.5(s) − q∗

01(s)q
∗
20(s)q

∗
12(s) − q∗

01(s)q
∗
20(s)q

∗
12.34(s)

|�1| =
∣∣∣
∣∣
∣

M∗
0 (s) −q∗

01(s) 0
M∗

1 (s) 1 −[
q∗
12(s) + q∗

12.34(s)
]

M∗
2 (s) 0 1 − q∗

22.5 (s)

∣∣∣
∣∣
∣

=M∗
0 (s)

[
1 − q∗

22.5 (s)
] + q∗

01(s)M∗
1 (s)

[
1 − q∗

22.5 (s)
] + M∗

2 (s)
[
q∗
12(s) + q∗

12.34(s)
]

On solving for A∗
0(s) by Crammer’s rule, we get

Thus,

A∗
0(s) = M∗

0 (s)
[
1 − q∗

22.5(s)
] + q∗

01(s)M∗
1 (s)

[
1 − q∗

22.5(s)
] + M∗

2 (s)
[
q∗
12(s) + q∗

12.34(s)
]

1 − q∗
22.5(s) − q∗

01(s)q
∗
20(s)q

∗
12(s)−−q∗

01(s)q
∗
20(s)q

∗
12.34(s)
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The steady-state (long run) availability is given by

A(∞) = lim
t→∞ A(t) = lim

s→0
s A∗

0(s)

= lim
s→0

s

{M∗
0 (s)

[
1 − q∗

22.5 (s)
] + q∗

01(s)M∗
1 (s)

[
1 − q∗

22.5 (s)
]

+M∗
2 (s)

[
q∗
12(s) + q∗

12.34(s)
]}

1 − q∗
22.5(s) − q∗

01(s)q
∗
20(s)q

∗
12(s) −− q∗

01(s)q
∗
20(s)q

∗
12.34(s)

(
0

0

)
From

So, by applying L’ Hospital rule, we get

A(∞) = μ0 p20 + μ1 p20 + μ2

μ′
2 + μ0 p20 + μ′

1 p20

5.3.5 Particular Case

Suppose repair rate g(t) and arrival time of the server w(t) follow negative
exponential distribution, i.e.

g(t) = αe−αt andw(t) = βe−βt

Taking Laplace transform, it can be written as

g∗(s) = α

α + s
, g∗·(s) = − α

(α + s)2
, g∗·(0) = − 1

α

w∗(s) = β

β + s
, w∗,

(s) = − β

(β + s)2
, w∗,

(0) = − 1

β

MT SF = μ0 + μ1 + μ2 p12

1 − p12 p20
= (α + λ)(β + λ) + (α + λ)2λ + 2βλ

2λ[(β + λ)(α + λ) − αβ]

A(∞) = μ0 p20 + μ1 p20 + μ2

μ′
2 + μ0 p20 + μ′

1 p20
= αβ[α(β + 3λ) + 2λ(β + λ)]

α[αβ(β + λ) + 2λ(αλ + βλ + αβ)] + 2βλ(α + λ)(β + λ)

5.3.6 Numerical and Graphical Representation of MTSF
and Availability

See Tables 5 and 6.
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6 Discussion and Conclusion

An approach to determine mean time to system failure (MTSF) and availability of
repairable systems has been given in this chapter. The systems with single unit and
two units are considered to know the effect of redundancy (cold standby and parallel
standby) on reliability measures. The reliability measures are obtained in steady state
using semi-Markov process and regenerative point technique. The random variables
associated with failure time of the unit, repair time of the unit and arrival time of the
server follow negative exponential distribution. A single repair facility has been taken
up for all types of repair activities, and it takes some time to attend the system (called
arrival time of the server). For arbitrary values of the parameters, it is observed that
the mean time to system failure (MTSF) and availability decrease with the increase
of failure rate of the unit while the values of these measures keep on increasing
with the increase of repair rate of the unit and arrival rate of the server. The mean
time to system failure and availability of a single unit system are less than that of
cold standby system followed by the parallel system. Hence, the provision of cold
standby redundancy is more helpful in improving the system performance and thus
reliability.
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Stress-strength Reliability Estimation
for Multi-component System Based
on Upper Record Values Under New
Weibull-Pareto Distribution

Parameshwar V. Pandit and Shubhashree Joshi

Abstract In this chapter, estimation of multi-component system reliability, partic-
ularly, s-out-of-k system is considered, where the system has k independent and
similar components under stress-strength setup. The system reliability is evaluated
assuming new Weibull-Pareto distribution for strength and stress variables. Likeli-
hood ratio test is also constructed to test the equality of scale parameters on which the
reliability of the system depends. Maximum likelihood estimator of the system reli-
ability is obtained based on upper records. Approximate Bayes estimators are also
obtained using Lindley’s approximation technique. The estimators are compared
based on mean squares error criteria using simulation. The estimation procedures
are illustrated using real data.

Keywords Bayes estimator ·Maximum likelihood estimator · NewWeibull-Pareto
distribution · Stress-strength reliability · Upper record values

1 Introduction

The study of reliability is related to know the ability of a component, equipment,
subsystem or a system to perform a required function, under given environmental
and operational conditions for a specified period. Hence, reliability can be defined as
probability that a systemwill satisfactorily perform its intended function under given
circumstances. Stress-strength model is one of the important models studied in the
literature. The term stress-strength can be described as the assessment of reliability
of a component in terms of random variables representing ‘stress’ of the component
and that representing ‘strength’ of the component available to overcome the possible
stress. If the stress exceeds the strength, then the system fails. The stress is a function
of the environment in which the component is located and can be estimated from
the available technological knowledge about the relevant conditions of the system
and the manner in which they interact. Stress can be treated as a random variable
based on a priori considerations and can only be estimated by means of statistical
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methods from the results of the tests specifically geared for this purpose. However,
considerations regarding the nature of stress and strength do not require that they are
related in any way. Hence, many authors studied inference about P(X > Y) under the
assumption that strength X and stress Y are independent variables.

The stress-strength model was originated in a non-parametric setup which can
be found in the works of Birnbaum (1956), Birnbaum and McCarty (1958), Govin-
drajulu (1967), among others. By the end of seventies, the estimation of P(X <
Y) was carried out for the major distributions such as exponential (Kelley et al.,
1976, Tong, 1974), normal (Church & Harris, 1970) and exponential families (Tong,
1977). Further, after the introduction of variety of bivariate exponential distribution
by Freund (1961), Marshall and Olkin (1967), Block and Basu (1974) and others,
it became possible to study dependent exponential random variables with various
types of dependence. The estimation of reliability for bivariate exponential distribu-
tionwas considered byHanagal (1995).Hanagal (1997a) addressed a similar problem
for bivariate Pareto and exponential distributions. The estimation of reliability for a
two-parameter inverse Chen distributionwas considered by Pandit and Joshi (2019a).
Pandit and Joshi (2019b) and Joshi and Pandit 2018) studied the estimation of multi-
component system reliability for a bivariate generalized Rayleigh distribution and
inverse Chen distribution, respectively. Hanagal (1997b) considered the estimation
of stress-strength reliability by censoring stress at strength where stress and strength
follow bivariate exponential (BVE) model of Marshall and Olkin (1967). Huizhen
and Krishnamoorthy (2004) considered the problem of testing and interval estima-
tion of the reliability parameter P(Y1 > Y2), where Y1 and Y2 are independent normal
random variables with unknown means and variances.

Recently, many authors are interested in estimating multi-component stress-
strength reliability for various distributions like log-logistic, generalized exponential,
generalized inverted exponential, Rayleigh, Burr Type XII and generalized Rayleigh
distributions, respectively, by Rao andKantam (2010), Rao (2012a, b, 2014) and Rao
et al., (2013, 2015). Pandit and Kantu (2013) and Pandit and Joshi (2018) developed
procedures for estimating multi-component stress-strength reliability when strength
and stress variables follow exponential distribution and generalized Pareto distribu-
tion, respectively. Hassan et al. (2015) studied the estimation of R when X and Y
are independently distributed Burr XII random variables based on different ranked
set sampling schemes. Nadar and Kizilaslan (2015, 2016) considered estimation
of multi-component stress-strength reliability using both classical and Bayesian
approaches when underlying distribution is Weibull and bivariate Kumarswamy
distributions. Joshi and Pandit (2018) studied the estimation of system reliability
in s-out-of-k system under stress-strength setup for inverse Chen distribution.

Themodelling of systems in a stress-strength setup has attractedmany researchers
in the field of statistics, particularly, who are interested in application of statistics in
engineering and technology. The problem of estimation of the stress-strength relia-
bility of s-out-of-k system has received a considerable attention of many researchers.
The researchers like Rao and Kantam (2010), Rao (2014), Nadar and Kizilaslan
(2015, 2016) studied the problem of estimating stress-strength reliability of an s-out-
of-k systemwhen theunderlyingdistributions, respectively, are log-logistic,Rayleigh
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distribution, Weibull, bivariate Kumarswamy, etc. Estimation of stress-strength reli-
ability for parallel and series systems was considered by the application of s-out-of-k
system which can be seen in many real-life situations, particularly in industry and
military (refer Kuo & Zuo, 2003).

In this chapter, estimation of system reliability is considered using upper record
values. The main idea of record values was introduced by Chandler (1952). This
record values have become important field of research in recent years due to its vast
applications in the sports, hydrology and life tests. The advantage of using record
values is the reduction in number of measurements to be made as compared to that in
complete sample, and the measurement saving can be done when the measurements
of the experiments are expensive in case of destructive experiments. We give below
the definition of upper record values as in the literature.

Definition 1.1: for a sequence of independent and identically distributed random
variables {X1, X2, ....}, a random variable X j is said to be an upper record if X j >

Xi for every i < j . An analogous definition can be given for lower records.
Use of record values in estimating system reliability in a stress-strength setup has

been studied in the literature by many authors for various distributions to mention a
fewWang and Shi (2013) and Tarvirdizade and Ahmadpour (2016) when underlying
distributions are exponential and two-parameter bathtub-shaped.

This chapter discusses stress-strength reliability of s-out-of-k (s ≤ k) system
when the underlying distribution is new Weibull-Pareto (NWP) due to Tahir et al.
(2016), and it is extensively discussed by Nasiru and Luguterah (2015). Cumulative
distribution function and probability density function of NWP distribution are given
below

F(x) = 1 − e−δ( x
θ )

β

, x > 0, δ, θ, β > 0

and

f (x) = βδ

θ

( x
θ

)β−1
e−δ( x

θ )
β

, x > 0, δ, θ, β > 0

This distribution has constant failure rate when β = 1 and increasing (decreasing)
failure rates when β > 1 (β < 1).

In Sect. 2, the reliability of s-out-of-k system (Rs,k) under stress-strength setup is
derived. Section 3 consists of maximum likelihood estimation of the parameters of
NWP distribution. The likelihood ratio test is developed for testing equality of scale
parameters in Sect. 4. The maximum likelihood estimator and Bayes estimators of
Rs,k are given in Sect. 5. In Sect. 6, the mean square errors (MSEs) are obtained
using a simulation study, and real-life example is given in Sect. 7. Section 8 gives
summary and conclusions.
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2 System Reliability

Bhattacharyya and Johnson (1974) derived the general expression for the reliability
of s-out-of-k system in a stress-strength setup which is given by

Rs, k = P(atleast s of the (X1,X2, ...,Xk) exceed Y)

=
k∑

i=s

(
k
i

) ∫ ∞

0
[1 − F(y)]i [F(y)]k−i dG(y) (2.1)

where the strengths X1, X2, …, Xk are independent random variables with common
distribution function F(x) and stress Y is a random variable with distribution function
G(y).

Here, our focus is on studying s-out-of-k (s ≤ k) system reliability when compo-
nent strengths X1, X2, …, Xk follow NWP distribution with parameters (δ1, θ, β)
and stress Y follow NWP distribution with parameters (δ2, θ, β). For this setup, the
system reliability, Rs,k is derived using (2.1) and is given by

Rs,k =
k∑

i=s

(
k
i

) ∫ ∞

0

δ2β

θ

(
1 −

(
1 − e−δ1(

y
θ
)β

))i (
1 − e−δ1(

y
θ
)β

)k−i( y

θ

)β−1
e−δ2(

y
θ
)β dy

=

⎧
⎪⎪⎨
⎪⎪⎩

∑k
i=s

∑k−i
j=0

(
k
i

)(
k − i
j

)
(−1) j δ2

[δ1(i+ j) +δ2 ]
i f δ1 �= δ2

∑k
i=s

∑k−i
j=0

(
k
i

)(
k − i
j

)
(−1) j 1

(i+ j+1) i f δ1 = δ2 = δ

(Using binomial expansion)
It is to be noted that the case when stress and strengths are identically distributed

according to NWP distribution with parameters (δ, θ, β), the reliability of s-out-of-
k (s≤k) system does not depend on the parameters (δ, θ, β). Hence, estimation of
reliability of the system suffices to estimating Rs,k only when stress and strength
variables are not identically distributed (i.e. δ1 �= δ2). However, to check whether
δ1 = δ2 or not, we conduct likelihood ratio (LR) test. For that, first, the maximum
likelihood estimators of the parameters when δ1 = δ2 and δ1 �= δ2 are derived.

3 Maximum Likelihood Estimators (MLE) of Parameters

Let u
∼

= (u1, . . . , un) and v
∼

= (v1, . . . , vm) be the sets of upper records from

distributions with pdfs of f and g, respectively. Let F and G be the cdfs of f and g,
respectively. Then, the likelihood given records are obtained as product of L1 and L2

(L = L1 L2), where L1 and L2 are given by
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L1(δ1, θ, β) = f (un)
n−1∏
i=1

(
f (ui )

1 − F(ui )

)
, 0 < u1 < . . . < un < ∞

L2(δ2, θ, β) = g(vm)

m−1∏
j=1

(
g(v j )

1 − G(v j )

)
, 0 < v1 < . . . < vm < ∞

(see Chandler (1952) for details).
Now, the parameters are estimated based on records when.

(i) stress and strength variables are identically distributed with NWP (i.e. δ1 =
δ2).

(ii) stress and strength variables are not identically distributed with NWP which
differ only with respect to scale parameter δ (i.e. δ1�=δ2).

Case 1: Let u1, . . . , un and v1, . . . , vmbe two sets of records from NWP distribu-
tion with parameters (δ, θ, β) (i.e. for the case δ1 = δ2). Then, likelihood function
is given by.

L(δ, θ, β) =
(

δβ

θ

)n

e−δ( un
θ )

β
n∏

i=1

(ui
θ

)β−1
(

δβ

θ

)m

e−δ( vm
θ )

β
m∏
j=1

(v j

θ

)β−1

Thus, the log-likelihood function of δ,θ and β is

log L(δ, θ, β ) = (n + m) log δ + (n + m) logβ − (n + m) log θ + (β − 1)
n∑

i=1

log
(ui

θ

)

+ (β − 1)
m∑
j=1

log
(v j

θ

)
− δ

[(un
θ

)β +
(vm

θ

)β
]

The likelihood equations are

∂ log L

∂δ
=n + m

δ
−

[(un
θ

)β +
(vm

θ

)β
]

= 0;
∂ log L

∂θ
= −

(
n + m

θ

)
+ δβ(un)

β

θβ+1
+ δβ(vm)β

θβ+1
− n

θ
(β − 1) − m

θ
(β − 1) = 0 and

∂ log L

∂β
=n + m

β
− δ

(un
θ

)β

log
(un

θ

)
− δ

(vm

θ

)β

log
(vm

θ

)

+
n∑

i=1

log
(ui

θ

)
+

m∑
j=1

log
(v j

θ

)
= 0

We obtain the MLE of δ as a function of β and θ .
The maximum likelihood estimators are



262 P. V. Pandit and S. Joshi

δ̂ = n + m[( un
θ

)β + (
vm
θ

)β
]

where β̂ and θ̂ are the solution of the nonlinear equation of the form,

(
n + m

θ

)
+ δβ(un)β

θβ+1 + δβ(vm)β

θβ+1 − n

θ
(β − 1) − m

θ
(β − 1) = 0 and

n + m

β
− δ

(un
θ

)β

log
(un

θ

)
− δ

(vm

θ

)β

log
(vm

θ

)
+

n∑
i=1

log
(ui

θ

)
+

m∑
j=1

log
(v j

θ

)
= 0.

Here, β̂ and θ̂ can be obtained by using any iterative scheme, in particular, using
Newton–Raphson method.

Case 2: Let u1, ..., un be the records from NWP distribution with parameters
(δ1, θ, β) and v1, ..., vm be the records from NWP distribution with parameters
(δ2, θ, β) (i.e. δ1 �= δ2).

Now, the likelihood function is given by

L1(δ1, δ2, θ, β) =
{(

δ1β

θ

)n

e−δ1(
un
θ )

β
n∏

i=1

(ui
θ

)β−1
}⎧

⎨
⎩

(
δ2β

θ

)m

e−δ2(
vm
θ )

β
m∏
j=1

(v j

θ

)β−1

⎫
⎬
⎭

Thus, the log-likelihood function of δ1,δ2,θ and β is

log L(δ1, δ2, θ, β ) =n log δ1 + m log δ2 + (n + m) logβ − (n + m)β log θ + (β − 1)
n∑

i=1

log
(ui

θ

)

+ (β − 1)
m∑
j=1

log
(v j

θ

)
− δ1

(un
θ

)β − δ2

(vm

θ

)β

.

The likelihood equations are

∂ log L

∂δ1
= n

δ1
−

(un
θ

)β = 0; ∂ log L

∂δ2
= m

δ2
−

(vm

θ

)β = 0

∂ log L

∂θ
= −

(
n + m

θ

)
+ δ1β(un)

β

θβ+1
+ δ2β(vm)β

θβ+1
− n

θ
(β − 1) − m

θ
(β − 1) = 0 and

∂ log L

∂β
=n + m

β
− δ1

(un
θ

)β

log
(un

θ

)
− δ2

(vm

θ

)β

log
(vm

θ

)

+
n∑

i=1

log
(ui

θ

)
+

m∑
j=1

log
(v j

θ

)
= 0

The MLEs of δ1,δ2 are obtained as functions of β and θ .
The maximum likelihood estimators are.
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δ̂1 = n( un
θ

)β
and δ̂2 = m(

vm
θ

)β

where β̂ and θ̂ are the solution of the nonlinear equation of the form,

(
n + m

θ

)
+ δ1β(un)β

θβ+1 + δ2β(vm)β

θβ+1 − n

θ
(β − 1) − m

θ
(β − 1) = 0 and

n + m

β
− δ1

(un
θ

)β

log
(un

θ

)
− δ2

(vm

θ

)β

log
(vm

θ

)
+

n∑
i=1

log
(ui

θ

)
+

m∑
j=1

log
(v j

θ

)
= 0.

Here, β̂ and θ̂ can be obtained by using any iterative scheme, namely Newton–
Raphson method.

The estimators β̂ and θ̂ of β and θ are used to obtain MLEs of δ1 and δ2.

4 Likelihood Ratio (LR) Test for Equality of Scale
Parameters

Suppose, u
∼

= (u1, . . . , un) and v
∼

= (v1, . . . , vm) are the sets of upper records from

distributions with pdfs f and g, respectively.
The likelihood function of μ = (δ1, δ2, θ, β) given u

∼

,v
∼

is

L(μ) = L1(δ1, θ, β) L2(δ2, θ, β)

The LR test is constructed for the problem of testing of testing H0 : δ1 = δ2 = δ

against H1 : δ1 �= δ2.
For that, the whole parameter space is� = {μ = (δ1, δ2, θ, β) : δ1, δ2, θ, β > 0},

and the parameter space underH0 is�0 = {μ = (δ1, δ2, θ, β) : δ1 = δ2 = δ, θ, β >

0}.
Then, the likelihood ratio statistic is given by

λn,m =
sup
μ∈�0

L(μ, x, y)

sup
μ∈�

L(μ, x, y)

If μ̂0 = (δ̂, θ̂ , β̂) is MLE of θ under �0 and μ̂ = (δ̂1, δ̂2, θ̂ , β̂) is MLE of θ under
�, then

λn,m = L(μ̂0, x, y)

L(μ̂, x, y)
.
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The test criterion is to rejectH0 ifλn,m > c. The null distribution ofλn,m is tedious.
However, the asymptotic distribution of −2 log λn,m is chi-square distribution with
one degree of freedom. Hence, the test criterion for large n, m is to reject H0 if
−2 log λn,m > χ2

1 (1−α)whereχ2
1 (1−α) is determined such that PH0(−2 log λn,m >

χ2
1 (1 − α)) = α.
The behaviour of LR test in terms empirical power is evaluated for n, m =

25,30,40,50. For different combinations of (δ1, δ2) with (θ, β) as (1,1), (0.4,0.7),
(0.5,0.7) and (1,0.6) are considered for evaluating empirical powers.

Tables for empirical powers are not reported to limit the number of pages.
However, the observations on the power of the test are given below:

1. The power of LRTs increases as the difference in the parameter values increases.
2. The power of the tests increases as the sample size increases.
3. Both the above observations reveal that the LR test constructed here possesses

the desirable property of any reasonable test such as

(a) The chance of rejection is more when the value of the parameter moves
away from the parameters under null hypothesis.

(b) The LR test is consistent.

5 Estimation of Rs,k Using Maximum Likelihood
and Bayesian Methods

Based on the decision of the LR test, the estimators of Rs,k are obtained. If the LR
test rejectsH0 (δ1 �= δ2), then using invariance property, the MLE of Rs,k is given by,

R̂s,k =
k∑

i=s

k−i∑
j=0

(
k
i

)(
k − i
j

)
(−1) j

δ̂2[
δ̂1(i + j) + δ̂2

]

(Using the results of Sect. 3).
Next, the Bayes estimator of Rs,k is obtained for s-out-of-k (s ≤ k) system under

stress-strength reliability assuming prior distribution for δ1,δ2,θ and β as below.
Here, the

prior distribution for δ1,δ2,θ and β is assumed to be gamma with hyperparameter
((c1, d1), (c2, d2), (c3, d3) and (c4, d4)), respectively.
The joint pdf of (δ1, δ2, θ, β) is

g(δ1, δ2, θ, β) = g(δ1) g(δ2) g(θ)g(β),

where

g(δ1) = dc1
1


c1
δ
c1−1
1 e−δ1d1; δ1 > 0, c1, d1 > 0
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g(δ2) = dc2
2


c2 δ

δ
c2−1
2 e−δ2d2; δ2 > 0, c2, d2 > 0

g(θ) = dc3
3


c3
θ c1−1e−θd1; θ > 0, c3, d3 > 0

g(β) = dc4
4


c4
βc4−1e−βd4; β > 0, c4, d4 > 0

The corresponding joint posterior density function of δ1,δ2,θ and β is

π(δ1, δ2, θ, β) = g(δ1, δ2, θ, β)Ls(δ1, δ2, θ, β)∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0 g(δ1, δ2, θ, β)Ls(δ1, δ2, θ, β) dδ1 dδ2dθ dβ

= A∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0 A dδ1 dδ2dθ dβ

where

A = δ
n+c1−1
1 δ

m+c2−1
2 θ−(n+m)+c3−1βn+m+c4−1

n∏
i=1

ui
θ

β−1 m∏
j=1

v j

θ

β−1
e
−δ1

(
( un

θ )
β+d1

)

e
−δ2

(
( vm

θ )
β+d2

)
e−d3θe−d4β

Here, it is to be noted that under squared error (SE) loss function, Bayes estimator
of Rs,k is given by

R̂B
s,k

=
∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0
Rs,k π(δ1, δ2, θ, β) dδ1 dδ2dθ dβ

The evaluation of posterior mean is not tractable. However, approximate posterior
mean is obtained using Lindley’s approximation method Lindley (1980).

The Bayes estimator under squared error loss function is

R̂B = u + (u1a1 + u2a2 + a4) + 1

2

[
A(u1σ11) + B(u2σ22)

+C(u1σ31 + u2σ32) + D(u1σ41 + u2σ42)

]

where,

a1 =ρ1σ11 + ρ3σ13 + ρ4σ14, a2 = ρ2σ22 + ρ3σ23 + ρ4σ24, a4 = 1

2
(u11σ11 + u22σ22).

A =σ11L111 + σ33L331 + 2σ34L341 + σ44L441,

B =2σ23L232 + σ22L222 + σ33L332 + 2σ34L342 + 2σ24L242 + σ44L442 + 2σ14L142,

C =2σ13L133 + 2σ23L233 + σ33L333 + 2σ34L343 + 2σ24L243 + σ44L443 + 2σ14L143,

D =2σ13L134 + 2σ23L234 + σ33L334 + 2σ34L344 + 2σ24L244 + σ44L444 + 2σ14L144,
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Here,

ρ1 = (c1 − 1)

δ1
− d1, ρ2 = (c2 − 1)

δ2
− d2, ρ3 = (c3 − 1)

θ
− d3 and ρ4 = (c4 − 1)

β
− d4.

The values of Lij can be obtained as follows for i, j = 1,2,3,4.

L11 = − n

δ21
, L13 = L31 = β

uβ
n

θβ+1
, L14 = L41 = −

(un
θ

)β

ln
(un

θ

)
, L22 = −m

δ22
.

L23 = L32 = β
v

β
m

θβ+1
, L24 = L42 = −

(vm

θ

)β

ln
(vm

θ

)
,

L33 = −n + m

θ2
− δ1

β uβ
n
(β + 1)

θβ+2
− δ2

β vβ
m
(β + 1)

θβ+2
− n(β − 1)

θ2
− m(β − 1)

θ2

L34 = nθ + mθ + δ1
β uβ

n
(β[ln un − ln θ ] + 1)

θβ+1
+ δ2

β vβ
m
(β[ln vm − ln θ ] + 1)

θβ+1

L44 = − (n + m)

β2
− δ1

(un
θ

)β[
ln

(un
θ

)]2 − δ2

(vm

θ

)β[
ln

(vm

θ

)]2
,

and the values of Lijk for i, j, k = 1, 2, 3,4 are

L111 =2n

δ31
, L222 = 2m

δ32
, L331 = L133 = L313 = −βuβ

n (β + 1)

θβ+2
,

L441 = −
(un

θ

)β[
log

(un
θ

)]2
, L332 = L233 = L323 = −βv

β
m(β + 1)

θβ+2
,

L342 =v
β
m(β(ln vm − ln θ) + 1)

θβ+1
, L442 = −

(vm

θ

)β[
log

(vm

θ

)]2
,

L333 =2(n + m)

θ3
+ δ1β(β + 1)(β + 2)

θβ+3
+ δ2β(β + 1)(β + 2)

θβ+3

L444 =2(n + m)

β3
− δ1

(un
θ

)β[
log

(un
θ

)]3 − δ2

(vm

θ

)β[
log

(vm

θ

)]3

L343 =n + m −
[
βθβ + (β + 1)θβ(β ln un − β ln θ + 1)

]

θ2(β+1)

−
[
βθβ + (β + 1)θβ(β ln vm − β ln θ + 1)

]

θ2(β+1)

L443 = − δ1

[
uβ
n ln

(un
θ

)(
2θ−β+1 − ln

(un
θ

)
βθ−(β+1)

)]

− δ2

[
vβ
m ln

(vm

θ

)(
2θ−β+1 − ln

(vm

θ

)
βθ−(β+1)

)]

since u = u(δ1, δ2, θ, β) = Rs,k,
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u1 =
k∑

i=s

k−i∑
j=o

(
k
i

)(
k − i
j

)
(−1) j

−δ2(i + j)

(δ1(i + j) + δ2)
2 ,

u2 =
k∑

i=s

k−i∑
j=o

(
k
i

)(
k − i
j

)
(−1) j

δ1(i + j)

(δ1(i + j) + δ2)
2 .

u11 =
k∑

i=s

k−i∑
j=o

(
k
i

)(
k − i
j

)
(−1) j

−2δ2(i + j)

(δ1(i + j) + δ2)
3 ,

u22 =
k∑

i=s

k−i∑
j=o

(
k
i

)(
k − i
j

)
(−1) j

−2δ1(i + j)

(δ1(i + j) + δ2)
3 .

u12 =
k∑

i=s

k−i∑
j=o

(
k
i

)(
k − i
j

)
(−1) j

(i + j)(δ1(i + j) − δ2)

(δ1(i + j) + δ2)
3

6 Simulation Study

A simulation study is conducted to compute mean square error of the estimators by
generating samples fromnewWeibull-Pareto distribution for comparisonof estimates
based on 100,000 random samples of size n andm.Wehave evaluated empiricalmean
square errors for different sets of values for (δ1, δ2, θ, β) for an s-out-of-k system.
The results are shown for particular sets of values of δ1, δ2, θ, β in Tables 1, 2, 3
and 4.

For the present study, the values (δ1, δ2, θ, β) are (0.2, 0.1, 1, 1), (1.4, 1.2, 0.4,
0.7), (0.5, 0.6, 0.5, 0.7) and (0.2, 0.7, 1, 0.6). The corresponding true values of stress-
strength reliability for s-out-of-k system with (s, k) = (1, 3) are 0.5428, 0.7068,
0.7970 and 0.9627 that for (s, k) = (2, 4) are 0.3904, 0.5516, 0.6565 and 0.9104.

The Bayesian estimators under squared error loss function using gamma prior are
c1 = 2, c2 = 7, c3 = 4, d1 = 3, d2 = 5, d3 = 2 (Prior 1) and c1 = 1, c2 = 1, c3 = 1,
d1 = 1, d2 = 1, d3 = 1 (Prior 2).

7 Real Data Analysis

In this section, we present a real data sets which was reported by (Saracoglu et al.,
2012). For the data sets, to check the goodness of fit of new Weibull-Pareto model,
the Kolmogorov–Smirnov (K-S) test is used. The estimated parameters with corre-
sponding standard errors, K-S distances and the corresponding p-values are presented
in table given below.
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Table 1 MLE and Bayes estimates of reliability and corresponding mean square errors

δ1 = 0.5, δ2 = 0.1, θ = 1, β = 1.2, Prior 1

(s, k) Rs,k n = m R̂M
s,k R̂B

s,k MSE(R̂M
s,k ) MSE(R̂B

s,k )

(1, 3) 0.5428 10 0.5500 0.5497 0.0081 0.0073

15 0.5490 0.5521 0.0077 0.0071

20 0.5514 0.5471 0.0072 0.0059

30 0.5489 0.5473 0.0065 0.0034

35 0.5446 0.5456 0.0051 0.0025

40 0.5423 0.5420 0.0022 0.0012

50 0.5416 0.5412 0.0013 0.0008

(2, 4) 0.3904 10 0.3987 0.3976 0.0086 0.0075

15 0.3990 0.3962 0.0072 0.0081

20 0.3978 0.3951 0.0054 0.0043

30 0.3964 0.3934 0.0037 0.0026

35 0.3945 0.3929 0.0028 0.0018

40 0.3921 0.3913 0.0016 0.0010

50 0.3911 0.3900 0.0009 0.0005

Table 2 MLE and Bayes estimates of reliability and corresponding mean square errors

δ1 = 1.4, δ2 = 1.2, θ = 0.7, β = 0.4, prior2

(s, k) Rs,k n = m R̂M
s,k R̂B

s,k MSE(R̂M
s,k ) MSE(R̂B

s,k )

(1, 3) 0.7068 10 0.7122 0.7081 0.0088 0.0071

15 0.7097 0.7088 0.0076 0.0057

20 0.7084 0.7077 0.0064 0.0042

30 0.7076 0.7065 0.0051 0.0025

35 0.7071 0.7054 0.0032 0.0016

40 0.7067 0.7061 0.0012 0.0010

50 0.7059 0.7055 0.0007 0.0005

(2, 4) 0.5516 10 0.5612 0.5608 0.0077 0.0063

15 0.5609 0.5597 0.0053 0.0042

20 0.5591 0.5581 0.0042 0.0037

30 0.5574 0.5557 0.0039 0.0024

35 0.5537 0.5543 0.0025 0.0014

40 0.5524 0.5512 0.0014 0.0011

50 0.5510 0.5504 0.0009 0.0004
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Table 3 MLE and Bayes estimates of reliability and corresponding mean square errors

δ1 = 0.5, δ2 = 0.6, θ = 0.7, β = 0.5, Prior 1

(s, k) Rs,k n = m R̂M
s,k R̂B

s,k MSE(R̂M
s,k ) MSE(R̂B

s,k )

(1, 3) 0.7970 10 0.7984 0.7997 0.0087 0.0081

15 0.7981 0.7972 0.0074 0.0062

20 0.7976 0.7971 0.0065 0.0058

30 0.7971 0.7964 0.0047 0.0035

35 0.7969 0.7961 0.0032 0.0024

40 0.7965 0.7954 0.0017 0.0011

50 0.7963 0.7957 0.0005 0.0003

(2, 4) 0.6565 10 0.6587 0.6577 0.0079 0.0064

15 0.6584 0.6572 0.0067 0.0058

20 0.6571 0.6584 0.0066 0.0047

30 0.6569 0.6564 0.0057 0.0039

35 0.6564 0.6559 0.0041 0.0024

40 0.6557 0.6543 0.0038 0.0012

50 0.6551 0.6544 0.0015 0.0009

Table 4 MLE and Bayes estimates of reliability and corresponding mean square errors

δ1 = 0.2, δ2 = 0.7, θ = 0.6, β = 1, Prior 2

(s, k) Rs,k n = m R̂M
s,k R̂B

s,k MSE(R̂M
s,k ) MSE(R̂B

s,k )

(1, 3) 0.9627 10 0.9681 0.9696 0.0086 0.0089

15 0.9675 0.9671 0.0078 0.0071

20 0.9668 0.9664 0.0065 0.0047

30 0.9657 0.9645 0.0057 0.0034

35 0.9644 0.9637 0.0051 0.0027

40 0.9634 0.9624 0.0034 0.0016

50 0.9631 0.9614 0.0019 0.0004

(2, 4) 0.9104 10 0.9194 0.9188 0.0085 0.0077

15 0.9182 0.9176 0.0071 0.0066

20 0.9174 0.9163 0.0062 0.0045

30 0.9166 0.9154 0.0058 0.0037

35 0.9148 0.9129 0.0043 0.0025

40 0.9127 0.9117 0.0026 0.0014

50 0.9111 0.9109 0.0016 0.0007
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Data set δ̂ β̂ θ̂ K-S distances P-value

X 0.06808
(0.1613)

1.56534
(0.1038)

2.75988
(4.1515)

1.8041e−16 0.9599

Y 14.9301
(1.0026)

1.36069
(0.0461)

22.794
(1.5281)

6.9389e−18 0.9634

For the data considered here, upper record values are observed as follows.
u: 21.8, 70.7, 138.6, 151.9.
v: 71.46, 419.02, 585.57, 688.16, 756.70, 765.14.
From the result, it can be seen that new Weibull-Pareto distribution fits better for

the data sets. When the estimated parameter values are
δ1 = 1.5654 , δ2 = 1.3610, θ = 3.1769, β = 0.1526 , the maximum

likelihood and Bayes estimate are obtained as R̂M
(1,3) = 0.7656, R̂B = 0.7741

under Prior 1 and R̂M
(2,4) = 0.6115, R̂B = 0.6224 under Prior 2.

8 Summary and Conclusions

The estimation of s-out-of-k (s ≤ k) system reliability under stress-strength setup is
considered in this chapter when the underlying distributions for stress and strength
variables are newWeibull-Pareto. The maximum likelihood estimators of the param-
eters of NWP distribution based on record values are derived. The likelihood ratio
test is constructed to check whether the strength and stress variables are identically
distributed or not with reference to scale parameters. The estimation of system reli-
ability depends on the decision taken using LR test. The system reliability using
maximum likelihood and Bayes methods is obtained based on the decision taken
using LR test. Bayes estimator is obtained using Lindley’s approximation under
squared error loss function with conjugate priors. Simulation study results indicate
that MSEs of both MLE and Bayes estimators of system reliability are inversely
proportional to the sample sizes. Bayes estimator with the gamma priors performs
better than maximum likelihood estimator in terms of MSE. A real data analysis is
conducted to illustrate the estimation procedures studied in this chapter.

Acknowledgements Authors gratefully thank the editor and reviewers for their comments which
lead to the improvement of the contents of the chapter.
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Record Values and Associated Inference
on Muth Distribution

V. S. Vaidyanathan and Hassan Bakouch

Abstract In this chapter, specific distributional results associated with upper record
values from Muth distribution, namely survival function, joint and conditional den-
sities, and expression for the kth moment, are derived. Parameter estimation based
on upper record values is carried out using the method of moments, maximum like-
lihood, and Bayesian approach. Further, prediction of future upper record values is
made using both frequentist and Bayesian methods. Numerical illustration is pro-
vided through simulated and real-life data sets.

Keywords Likelihood function · Metropolis-Hastings algorithm · Monte Carlo
integration · Moments · Muth distribution · Record values

1 Introduction

Record values have been used in the literature to characterize various distributions
and to make inference on the parameters involved. The primary advantage of using
record values is that modelling and inference can be done using only a handful
of ‘record’ observations rather than the entire sample observations. This may save
time and cost associated with measuring and recording all the observations. Further,
record values and associated statistics are of great interest in many real-life situations
involving data relating to sports, economics, weather, and life testing. Let X1, X2, ...

be a sequence of independent and identically distributed (iid) random variables with
cumulative distribution function (cdf) F(x; θ) and probability density function (pdf)
f (x; θ). The j th upper (lower) record value denoted by R j of this sequence is defined
as

R j = Ym i f Ym > (<)R j−1, j = 2, 3, .... (1.1)
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where Ym = max (min){X1, X2, ..., Xm}, m > 1. R1, the first record value, is usu-
ally taken as X1. Thus, R1, R2, ... denote the sequence of record values based on
X1, X2, .... A comprehensive study on record values together with various results
and applications can be found in Arnold et al. (1998). Statistical inference on life-
time distributions using record values has been attempted by various researchers in
the last decade. Some references include Asgharzadeh et al. (2016), Kumar (2015),
MirMostaface et al. (2016), Teimouri and Gupta (2012). Among the many life-time
distributions available in literature, Muth distribution introduced by Muth (1977)
has strict positive memory, and its mean residual life function corresponds to that of
exponential distribution. It can be used to model positively skewed data. The cdf and
pdf of a random variable X having Muth distribution are given by

F(x;α) = 1 − exp(αx − 1

α
(eαx − 1)), x > 0, (1.2)

f (x;α) = (eαx − α)exp(αx − 1

α
(eαx − 1)), x > 0, (1.3)

where α ∈ (0, 1] denotes the shape parameter. This distribution has been overlooked
in the literature until recently when Pedro Jodrá et al. (2015) studied its various math-
ematical and statistical properties. It is a unimodal distribution with limiting distri-
bution as standard exponential when the parameter α ↓ 0. One interesting property
of this distribution is that it has less tail probability when compared with common
unimodal distributions like gamma, Weibull. Moreover, we provide the next new
remarks on this distribution.

Remark 1 Let X have the cdf defined by (1.2) and consider the transformation
Y = eαX − 1. Then, the distribution of Y has the cdf

F(y;α) = 1 − (1 + y) e− 1
α y, y > 0,α ∈ (0, 1].

This form of cdf is not available in the literature. However, Dara (2012) has
proposed a similar cdf of the form

F(y;λ) = 1 − (1 + λy) e−λy, y > 0,λ > 0.

Remark 2 The pdf of the Muth distribution given in (1.3) can be represented as a
weighted version of the Gompertz distribution as follows. The classical Gompertz
distribution has the pdf

g(x;λ,σ) = λσeλx−σ(eλx−1), x > 0,λ,σ > 0.

Reparametrizing λ and σ to α and 1
α
, respectively, we get

g(x;α) = eαx− 1
α (eαx−1).
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Applying the weight functionw(x) = eαx − α, x > 0,α ∈ (0, 1] , to g(x;α), we
get the pdf of the Muth distribution given by (1.3), noting that E[w(x)] = 1.

Considering the various properties of Muth distribution mentioned above and
motivated by the fact that not much work has been done on this distribution, in the
present article, certain distributional results based on record values are derived. In
addition, estimation of parameter using record values and prediction of future records
are addressed. Apart from the introduction section, the chapter contains six sections
organized as follows. In Sect. 2, expression for survival function, joint and condi-
tional densities, and kthmoment based on upper record values fromMuth distribution
is derived. Parameter estimation based on upper record values using moments, like-
lihood and Bayesian approach is discussed in Sect. 3. Section4 contains numerical
illustration through simulated data sets and Sect. 5 presents results from real-life
application. Section6 details prediction of future upper records using frequentist and
Bayesian approaches. Concluding remarks are given in Sect. 7.

2 Survival Function, Joint and Conditional Densities,
and Moments of Upper Records from Muth Distribution

Let R1, R2, ... denote the sequence of upper record values from a continuous distri-
bution with pdf f (x; θ) and cdf F(x; θ). Then the following results are established
(see Arnold et al. (1998)).
1. The survival function of nth record is given by

S(rn) = P(Rn > rn) = [1 − F(rn)]
n∑

k=0

[−log(1 − F(rn))]k
k! . (2.1)

The corresponding cdf is

P(Rn ≤ rn) =
∫ [−log(1−F(rn))]

0

wne−w

n! dw. (2.2)

If F is absolutely continuous, then the pdf of Rn is given by

fRn (rn) = f (rn)[−log(1 − F(rn))]n
n! . (2.3)

2. The joint pdf of the set of records R1, R2, ..., Rn is given by

fR1,R2,...,Rn (r1, r2, ..., rn) = f (rn)
n−1∏

i=1

h(ri ), (2.4)
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where h(r) = f (r)
1−F(r) is the failure rate function.

3. The joint pdf of the records Rm, Rn is given by

fRm ,Rn (rm , rn) = [−log(1 − F(rm))]m
m!

[−log( 1−F(rn)
1−F(rm)

)]n−m−1

(n − m − 1)!
f (rm) f (rn)

[1 − F(rm)] , rm < rn .

(2.5)
4. The conditional density of (n-1) records given nth record is given by

f (r1, r2, ..., rn−1|rn) = n!
∏n−1

i=1 h(ri )

[−log(1 − F(rn))]n . (2.6)

5. The kth moment of Rn is given by

E(Rk
n) =

∫ ∞

0
rkn fRn (rn)drn. (2.7)

Using Equations (2.1) to (2.7) and the cdf and pdf given in (1.2) and (1.3), the
corresponding expressions for Muth distribution based on upper record values are
obtained as below.
1. The pdf of Rn is

fRn (rn) = (eαrn − α)e(αrn− (eαrn −1)
α )

[ (eαrn −1)
α

− αrn]n
n! , 0 ≤ rn < ∞,

and the survival function is

S(rn) = e(αrn−[ eαrn −1
α ])

n∑

k=0

[( eαrn −1
α

) − αrn]k
k! , 0 ≤ rn < ∞.

2. The joint pdf of R1, R2, ..., Rn is

fR1,R2,...,Rn (r1, r2, ..., rn) = (eαrn − α)e(αrn− (eαrn −1)
α )

n−1∏

i=1

(eαri − α).

3. The joint pdf of the records Rm, Rn is given by

fRm ,Rn (rm, rn) = T1T2T3,

where

T1 =[ (e
αrm − 1)

α
− αrm]m[ (e

αrn − eαrm )

α
− α(rn − rm)]n−m−1,

T2 =e(αrn−α)e(αrn− eαrn −1
α )[ (e

αrn − 1)

α
− α]n,
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T3 =e(αrm−α)[ (e
αrm − 1)

α
− α]m 1

n!(m!)2(n − m − 1)!
4. The conditional density of (n-1) records given nth record is

f (r1, r2, ..., rn−1|rn) = n!
[ (eαrn −1)

α
− αrn]n

n−1∏

i=1

(eαri − α).

5. To obtain the expression for the kth moment based of Rn , we proceed as follows.
Consider

E(Rk
n) =

∫ ∞

0
rkn (e

αrn − α)exp(αrn − [e
αrn − 1

α
]) [(

eαrn −1
α

) − αrn]n
n! drn (2.8)

Let

I =
∫ ∞

0
rkn (e

αrn − α)exp(αrn − [e
αrn − 1

α
]) [(

eαrn −1
α

) − αrn]n
n! drn.

Put z = eαrn −1
α

⇒ rn = 1
α
ln(1 + αz) ⇒ drn = 1

1+αz dz so

I = α−k
∫ ∞

0
(ln(1 + αz))k(1 + αz − α)eln(1+αz)−z [(z − ln(1 + αz)]n

n!
1

1 + αz
dz

= α−k

n!
∫ ∞

0
(ln(1 + αz))k(1 − α + αz)e−z zn[(1 − ln(1 + αz)

z
]ndz

= α−k

n!
n∑

m=0

(
n

m

)
(−1)m

∫ ∞

0
(ln(1 + αz))k+mzn−m(1 − α + αz)e−zdz.

Put 1 + αz = g ⇒ z = g−1
α

⇒ dz = dg

α
so

I = α−k−1

n!
n∑

m=0

(
n

m

)
(−1)m

∫ ∞

1
ln(g)k+m(

g − 1

α
)n−m(g − α)e− g

α + 1
α dg

= e
1
α

n!
n∑

m=0

(
n

m

)
(−1)m

αn+k+1−m

∫ ∞

1
ln(g)k+m(g − 1)n−m(g − α)e− g

α dg

= e
1
α

n!
n∑

m=0

n−m∑

h=0

(
n

m

)(
n − m

h

)
(−1)m+n−m−h

αn+k+1−m

∫ ∞

1
ln(g)k+mgh(g − α)e− g

α dg.
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By using the integral as given in Page number 576 (4.358) of Gradshteyn and Ryzhik
(2007), we have

∫ ∞

1
xv−1e−uxln(x)ndx = ∂nu−v�(v, u)

∂vn
, n = 0, 1, 2, 3, . . . ; v > 0, u > 0.

Now, replacing n by k + m, u by 1
α
and v by h + 2, h + 1, respectively, we get,

I = e
1
α

n!
n∑

m=0

n−m∑

h=0

(
n

m

)(
n − m

h

)
(−1)m+n−m−h

αn+k+1−m
{ ∂k+mαh+2�(h + 2, 1

α )

∂(h + 2)k+m
− α(

∂k+mαh+1�(h + 1, 1
α )

∂(h + 1)k+m
)}

= e
1
α

n!αn+k

n∑

m=0

n−m∑

h=0

(
n

m

)(
n − m

h

)
(−1)n−h{ ∂k+mαh+m+1�(h + 2, 1

α )

∂(h + 2)k+m
− (

∂k+mαh+m+1�(h + 1, 1
α )

∂(h + 1)k+m
)}

(2.9)
Using (2.9), moments of Rn can be determined. However, obtaining numerical values
for moments using (2.9) is difficult due to the presence of partial derivatives. Towards
this, we use Monte Carlo integration. Note that, (2.8) can be expressed as

E(Rk
n) =

∫ ∞

0
g(rn) f (rn;α)drn,

where g(rn) = [rnk] [( eαrn −1
α )−αrn ]n

n! and f (rn;α) is the density function of Muth dis-
tribution evaluated at x = rn . Using Monte Carlo integration, the above integral can

be approximated by ḡn =
∑m

j=1 g(rn j )

m , where rn j is the simulated record values from
f (rn;α) and m denotes the number of samples generated. Method of simulating
observations from Muth distribution is explained in Sect. 4. The variance of ḡn can

be estimated from the sample values using V (ḡn) =
∑m

j=1[g(rn j )−ḡn ]2
m2 (see Robert and

Casella (2004)). Thus, for large m, ḡn−E(Rk
n )√

(V (ḡn))
is approximately distributed as N (0, 1)

variable, and hence, confidence intervals (CI) for moments of Rn can be constructed.
Numerical values of first order moments, their estimated variances, and width of
95% CI’s are displayed in Table1 for first five records. Values inside parenthesis
denote estimated variance and those inside square bracket denote width of CI. Sci-
entific notation of decimal number has been used wherever necessary. For example
1.33E-03 denotes 1.33 ∗ 10−3 and 2.37E+02 denotes 2.37 ∗ 102.
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Table 1 Values of E(Rn), estimated variance, and width of 95% CI for different records and α

Record α

0.15 0.30 0.45 0.60 0.75 0.90

R1 1.88 1.7 1.66 1.56 1.5 1.44

(1.33E-03) (9.38E-04) (7.20E-04) (5.91E-04) (4.90E-04) (4.30E-04)

[0.143] [0.120] [0.106] [0.095] [0.087] [0.082]

R2 9.83 8.53 7.65 6.77 6.34 5.63

(0.045) (0.038) (0.025) (0.017) (0.015) (0.011)

[0.836] [0.769] [0.628] [0.521] [0.482] [0.420]

R3 44.14 36 31.51 26.36 24.03 21.39

(1.880) (0.875) (0.643) (0.389) (0.313) (0.265)

[5.379] [3.668] [3.144] [2.445] [2.194] [2.021]

R4 158.79 126.37 105.71 94.33 85.23 75.14

(23.632) (14.323) (9.375) (6.700) (5.344) (3.981)

[19.057] [14.836] [12.003] [10.148] [9.062] [7.821]

R5 514.76 387.38 323.41 291.75 267.91 221.7

(2.37E+02) (1.47E+02) (9.30E+01) (7.61E+01) (7.12E+01) (4.46E+01)

[60.374] [47.506] [37.797] [34.206] [33.196] [26.181]

3 Parameter Estimation Based on Upper Records Using
Moment, Likelihood, and Bayesian Approaches

3.1 Moment Estimation of α

In this section, we find the moment estimate of α based on upper records through
inverse transformation (Asgharzadeh et al. (2016)). Defining Vi = −log[1 − F(xi )],
we have V ∗

i = −log[1 − F(ri )], where V ∗
i is the i th upper record arising from

a sequence of iid standard exponential random variables Vi . Set Y1 = V ∗
1 , Yi =

V ∗
i − V ∗

i−1, i = 2, 3, ..., n. From Arnold et al. (1998), we have Yi as iid random
variables from a standard exponential distribution. Note that, S = ∑n

i=1 V
∗
i can be

considered as a weighted sum of Yi as S = ∑n
i=1(n − i + 1)Yi . It is easy to ver-

ify that E(S) = n(n+1)
2 and Var(S) = n(n+1)(2n+1)

6 . Using Markov inequality, we
get S

n(n+1)
2

→ 1 in probability as n → ∞, i.e. S → n(n+1)
2 in probability as n → ∞,

where S = ∑n
i=1 V

∗
i = ∑n

i=1[ e
αRi −1

α
− αRi ]. Thus, a moment estimate of α can be

obtained by solving the nonlinear equation

n∑

i=1

[e
αRi − 1

α
− αRi ] = n(n + 1)

2
.
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A 100(1 − p)% confidence interval for α can be constructed using

P[s( p
2
) < S < s(1− p

2 )] = 1 − p, p ∈ (0, 1),

where s( p
2 ) and s(1− p

2 ) denote the lower and upper (
p
2 )th percentage points of S. These

points can be computed using the pdf of S given by

fS(t) =
n∑

i=1

Ci,nλi e
λi t , t > 0,

where Ci,n = ∏n
j=1, j 
=i

λ j

λ j−λi
. (See Asgharzadeh et al. (2016)).

Thus, a 100(1 − p)% confidence interval for α is given by (L,U) where L and U are
the solutions of the equations

n∑

i=1

[e
αRi − 1

α
− αRi ] = s( p

2 )

and
n∑

i=1

[e
αRi − 1

α
− αRi ] = s(1− p

2 ),

respectively.

3.2 Maximum Likelihood Estimation

From (1.3), the likelihood function (L) based on the upper records is

L(α|r1, r2, ..., rn) =(eαrn − α)e(αrn− (eαrn −1)
α )

n−1∏

i=1

(eαri − α). (3.1)

The corresponding log likelihood function is

lnL =
n∑

i=1

ln(eαri − α) + αrn − (eαrn − 1)

α
.

TheMLestimator α̂ ofα is the solution of the log likelihood equation dlnL
dα

= 0,where

dlnL

dα
=

n∑

i=1

(ri eαri − 1)

eαri − α
+ rn − rneαrn

α
+ (eαrn − 1)

α2
.



Record Values and Associated Inference on Muth Distribution 281

Since the log likelihood equation is nonlinear in α, one has to use numerical
methods or gradient-based search algorithms to obtain the estimate α̂ of α. An
estimate of the variance of α̂ can then be obtained from the sample Fisher information
measure using

d2lnL

dα2 =
n∑

i=1

[ (e
αri − α)(r2i e

αri ) − (ri eαri − 1)2

(eαri − α)2
] − r2n e

αrn

α

+rneαrn

α2 − (α2rneαrn − (eαrn − 1)2α)

α4

evaluated at α̂.

3.3 Bayesian Estimation

In this section, we discuss the method of estimating α using Bayesian approach.
Since α takes values between 0 and 1, a natural choice for the prior distribution of α
is beta distribution of first kind with density function of the form

π(α) = αa−1(1 − α)b−1

B(a, b)
, 0 < α ≤ 1; a, b > 0, (3.2)

where a and b are the hyperparameters and B(a, b) = �(a)�(b)
�(a+b) .

Using (3.1) and (3.2), the posterior density of α is obtained as

π(α|r1, r2, ..., rn) ∝L(α|r1, r2, ..., rn)π(α)

=(eαrn − α)e(αrn− (eαrn −1)
α )

n−1∏

i=1

(eαri − α)
αa−1(1 − α)b−1

B(a, b)
. (3.3)

The proportionality constant is defined as m = ∫ 1
0 L(α|r1, r2, ..., rn)π(α)dα.

Bayes estimators in general are obtained under squared error loss (SEL) func-
tion or linear-exponential (LINEX) loss function. Let δ be a decision rule for
estimating the parameter α. Then, SEL function associated with δ is defined
as LSEL(δ,α) = (δ − α)2. The corresponding LINEX loss function is given by
LLI (δ,α) ∝ ec(δ−α) − c(δ − α) − 1, c 
= 0. Here, c denotes the shape parameter
associated with the loss function. It should be noted that LINEX loss function is
an asymmetric loss function, and the shape parameter controls the degree and direc-
tion of symmetry. For more details on these loss functions, one may refer to Casella
and Berger (2002). The Bayes estimator of α under SEL, say α̂SEL , is defined as the
posterior mean of α, i.e.
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α̂SEL =E(α|r1, r2, ..., rn)
=

∫ 1

0
απ(α|r1, r2, ..., rn)dα

= 1

m

∫ 1

0
(eαrn − α)e(αrn− (eαrn −1)

α )

n−1∏

i=1

(eαri − α)
αa(1 − α)b−1

B(a, b)
dα. (3.4)

Under LINEX loss function, Bayes estimator of α, say α̂L I , is given by

α̂L I =−1

c
ln[E(e−cα|r1, r2, ..., rn)], c 
= o

=−1

c
ln[ 1

m

∫ 1

0
e−cα(eαrn − α)e(αrn− (eαrn −1)

α )

n−1∏

i=1

(eαri − α)
αa−1(1 − α)b−1

B(a, b)
dα].
(3.5)

The above integrals are complex to evaluate, and hence, to estimate α, we make
use ofMonte CarloMarkov Chain (MCMC) technique. Since the posterior density of
α given in (3.3) is not in closed form,Metropolis-Hastings (MH) algorithm is used to
simulate samples. MH algorithm is an iterative procedure to generate samples from
the posterior density using the proposal (candidate) density function. At each step,
the algorithm generates sample based on the proposal distribution and makes use of
acceptance probability to either accept or reject the generated sample value. More
details on the algorithm and its working principle can be found in Robert and Casella
(2004). The proposal distribution can be either symmetric or asymmetric. In the
former case, the acceptance probability is independent of the candidate distribution,
and this makes computation easy. In the present work, normal distribution is taken as
the candidate distribution. The parameters of the candidate distribution are estimated
usingMLE and the inverse of sample Fisher information value. Based on the samples
generated from posterior distribution, Bayes estimate of α under SEL and LINEX
loss function are obtained as

α̂SEL = 1

N

N∑

i=1

αi . (3.6)

α̂L I = −1

c
ln(

1

N

N∑

i=1

e(−cαi )), c 
= 0. (3.7)

Here,αi , i = 1, 2, ..., N denote the posterior sample observations, and N denotes
the sample size.
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4 Numerical Illustration

In this section, comparison of the estimates of α obtained from record values of
Muth distribution based on ML and Bayesian approach is presented using simulated
data sets. To simulate samples from Muth distribution, the inverse transformation
approach is used. Let X have Muth distribution with cdf as given in (1.2). Then,
equating F(x;α) = u for u ∈ (0, 1) and solving for x, we get,

x = 1

α
log(1 − u) − 1

α
W−1(

u − 1

αe
1
α

) − 1

α2
. (4.1)

Here, W−1 denotes the negative branch of Lambert function.
In the simulation study, random samples fromMuth distribution are generated using
(4.1) for three choices of parameter values, namely α = 0.4, 0.6 and 0.8. The num-
ber of record values (n) considered under each choice is 5 and 8 respectively. ML
estimates are obtained by implementing the maxLik function available in R using the
likelihood function given in (3.1). Bayes estimate of α is obtained using the SEL and
LINEX loss functions (with c = 1 and -2) under two choices of the hyperparameters
of the prior distribution, namely (1) a=1,b=2 and (2) a=2,b=4. These choices of the
hyperparameters are taken so that the prior distribution has equal means but unequal
variances. Samples of size 50000 is generated from the posterior distribution using
MH algorithm with a burn-in period of 10000 samples that are discarded. Estimates
of the parameter based on the remaining 40000 samples are computed using (3.6)
and (3.7). The total number of simulation runs performed is 100. Table2 presents the
mean value of the estimates (estimate), average bias (bias), and mean square error
(MSE) under ML and Bayesian approach.

From the simulation results presented in Table2, the following can be established.

1. The average bias associated with estimates obtained by ML is large when com-
pared with Bayesian approach.

2. As the number of record observation increases, the estimates become closer to the
true parameter values. This is reflected by the diminishingMSE values associated
with the estimates.

3. For large α, the estimates obtained are ‘good’ in terms of small bias and MSE.
4. The MSE values of the estimates obtained under Bayesian approach are smaller

when compared with ML. The choice of taking normal distribution as proposal
distribution in MH algorithm for generating samples and thereby determining
the estimate is justified by the high acceptance rate of the algorithm as given in
Table3.



284 V. S. Vaidyanathan and H. Bakouch

Table 2 Estimate, Bias, and MSE based on simulated data

α n Measure ML Prior 1 Prior 2

SEL c=1 c=-2 SEL c=1 c=-2

0.4 5 Estimate 0.6938 0.5682 0.5538 0.5921 0.5414 0.5329 0.5580

Bias 0.2938 0.1682 0.1538 0.1921 0.1414 0.1329 0.1580

MSE 0.1567 0.0678 0.0754 0.0665 0.0465 0.0425 0.0553

8 Estimate 0.5207 0.4810 0.4671 0.4962 0.4788 0.4751 0.4863

Bias 0.1207 0.0810 0.0671 0.0962 0.0788 0.0751 0.0863

MSE 0.0323 0.0302 0.0422 0.0268 0.0192 0.0188 0.0202

0.6 5 Estimate 0.7666 0.6394 0.6266 0.6629 0.6092 0.6022 0.6234

Bias 0.1666 0.0394 0.0266 0.0629 0.0922 0.0022 0.0234

MSE 0.0795 0.0502 0.0639 0.0371 0.0288 0.0283 0.0293

8 Estimate 0.6871 0.6412 0.6369 0.6494 0.6099 0.6064 0.6169

Bias 0.0871 0.0412 0.0369 0.0494 0.0099 0.0064 0.0169

MSE 0.0407 0.0242 0.0241 0.0246 0.0197 0.0198 0.0196

0.8 5 Estimate 0.8996 0.7138 0.7058 0.7292 0.6626 0.6567 0.6751

Bias 0.0996 -0.086 -0.094 -0.707 -0.137 -0.143 -0.124

MSE 0.0825 0.0261 0.0293 0.0209 0.0341 0.0363 0.0299

8 Estimate 0.8814 0.7881 0.7844 0.7954 0.7385 0.7349 0.7455

Bias 0.0814 -0.011 -0.015 -0.004 -0.061 -0.065 -0.054

MSE 0.0373 0.0103 0.0102 0.0106 0.0020 0.0020 0.0219

Table 3 Mean acceptance rate

α n Prior 1 Prior 2

0.4 5 0.6151 0.4795

8 0.7217 0.6512

0.6 5 0.5874 0.4379

8 0.7145 0.5945

0.8 5 0.5167 0.3464

8 0.5770 0.3962

5 Real-life Application

In this section, a real-life application of the estimating procedure is illustrated through
Carrol data set. The data set contains 83 observations (with n=5 upper record values)
on themonthly total rainfall (inmm) during the period from January 2000 to February
2007 in the rain gauge station ofCarrol,Australia. The suitability ofMuth distribution
to model the data is verified by Pedro Jodrá et al. (2015) through several goodness
of fit tests. The ML estimate for the parameter α as reported by them is α̂ = 0.4608.
Here, we attempt to estimate α through record observations using ML and Bayesian
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Table 4 Estimates for real-life data

ML Prior 1 Prior 2

SEL c=1 c=-2 SEL c=1 c=-2

0.5281 0.4676 0.4571 0.4879 0.4468 0.4387 0.4628

approach. The choice of prior and hyperparameters is same as indicated in Sect. 4.
Also, normal distribution is used as proposal distribution in MH algorithm. The
resulting estimates for α using likelihood and Bayesian approach are presented in
Table4.

From the results, it is observed that the estimates obtained using Bayesian
approach are in close agreement with the estimate provided by Jodrá et al. In partic-
ular, estimate obtained using Prior 2 under LINEX loss function (with c=-2) turns
out be fairly close when compared with the other estimates. Also, the acceptance
rate of the MH algorithm under the two priors is found to be 0.7442 and 0.6491,
respectively, which is more than the rule of thumb cutoff 0.4.

6 Prediction of Future Records

The prediction of future record value based on current records is dealt in this section
using (i) frequentist approach and (ii) Bayesian approach.

6.1 Frequentist Approach

Let R1, R2, ..., Rm denote ‘m’ record values observed from a population with density
function f (x;α), and let Z = Rn denote the future record. Since record values satisfy
Markovian property, the conditional density of Rn given R1, R2, ..., Rm depends only
on Rm . The conditional density of Z given Rm called the predictive probability density
is given by

fZ |Rm=rm (z) =[H(z) − H(rm)]n−m−1

�(n − m)

f (z;α)

1 − F(rm;α)
, z > rm, (6.1)

where H(.) is the cumulative hazard function defined as H(.) = −ln[1 − F(.)]. For
Muth distribution, we have H(x) = eαx−1

α
− αx , and therefore,

H(z) − H(rm) =eαz − eαrm

α
+ α(rm − z). (6.2)
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Also,

f (z;α)

1 − F(rm;α)
= (eαz − α)e[αz− eαz−1

α ]

e[αrm− eαrm −1
α ] . (6.3)

Substituting (6.2),(6.3) in (6.1), we get the predictive probability density of Z given
Rm as

fZ |Rm=rm (z) =[[ (eαz−eαrm )

α
] + α(rm − z)]n−m−1

(n − m − 1)! (eαz−α)eα(z−rm )− (eαz−eαrm )

α , z > rm .

(6.4)

Using (6.4), a 100(1 − p)% prediction interval for z, namely (zL , zU ), can be
obtained by solving

∫ zL

rm

fZ |Rm=rm (z)dz = p

2
(6.5)

and
∫ ∞

zU

fZ |Rm=rm (z)dz = p

2
, (6.6)

where p ∈ (0, 1).

6.2 Bayesian Approach

The posterior predictive density of the future record Z = Rn given the records R =
(R1, R2, ..., Rm) is given by

p(z|r) =
∫ 1

0
fZ |Rm=rm (z)π(α|r)dα. (6.7)

Using (3.3) and (6.4) in (6.7), we get

p(z|r) =
∫ 1

0
{ [

(eαz−eαrm )

α
+ α(rm − z)]n−m−1

(n − m − 1)!
(eαz − α)eα(z−rm )− (eαz−eαrm )

α

m(r)
αa−1(1 − α)b−1

B(a, b)
e[αrm− (eαrm )−1

α ]

m∏

i=1

(eαri − α)}dα,

(6.8)
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where m(r) is the proportionality constant so that
∫ 1
0 π(α|r)dα = 1. Upon simpli-

fying (6.8), we get

p(z|r) = m(r)
B(a, b)

∫ 1

0
(eαz − α)2

m∏

i=1

(eαri − α)
[ (eαz−eαrm )

α + α(rm − z)]n−m−1

(n − m − 1)! eαz− (eαz−1)
α αa−1(1 − α)b−1dα.

(6.9)

It can be seen that the above integral cannot be solved analytically to get a nice
form of the posterior predictive density. When n=m+1, (6.9) reduces to

p(z|r) = m(r)
B(a, b)

∫ 1

0
(eαz − α)2

m∏

i=1

(eαri − α)eαz− (eαz−1)
α αa−1(1 − α)b−1dα.

(6.10)

To compute E(Z |r), one can use MH algorithm to generate samples from the
posterior predictive density. Suppose α1,α2, ...,αN denote the generated samples,
then a consistent estimator of p(z|r) is given by

p̂(z|r) = 1

N

N∑

j=1

fZ |Rm=rm (z;α j ), (6.11)

where fZ |Rm=rm (z;α j ) is obtained from (6.4) at α = α j . Under squared error and
LINEX loss functions, the Bayes predictor of Z = Rm is given by

Ẑ SEL =E(Z |r)
=

∫ ∞

rm

zp(z|r)dz

and

Ẑ L I =−1

c
ln[E(e−cZ |r)]

=−1

c
ln[

∫ ∞

rm

e−cZ p(z|r)]dz,

respectively. Thus, the sample based Bayes predictor of Z will be

Ẑ SEL = 1

N

N∑

j=1

∫ ∞

rm

z fZ |Rm=rm (z;α j )dz

and
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Ẑ L I = 1

N

N∑

j=1

∫ ∞

rm

e−cz fZ |Rm=rm (z;α j )dz,

respectively. A 100(1 − p)% prediction interval for the future upper record Z = Rn

is obtained by solving

∫ ZL

rm

p(z|r)dz = p

2

and
∫ ∞

ZU

p(z|r)dz = p

2
,

respectively, with respect to the lower and upper limits ZL and ZU .

7 Concluding Remarks

Studies on Muth distribution are scarce in the literature, and the present work has
focused on deriving expression for survival function, joint cum conditional densities,
moments, and estimating the parameter using record values. Parameter estimation
is done using moment, likelihood, and Bayesian approach with beta distribution as
prior. Due to the complex nature of integrals involved in evaluating the posterior
distribution, the Metropolis-Hastings algorithm is used with normal distribution as
the proposal distribution to generate random samples. The simulation study and
real-life application suggest that the Bayesian approach yields better estimates when
compared with the likelihood approach.
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Statistical Linear Calibration in Data
with Measurement Errors

Shalabh

Abstract The direct and inverse regression-based estimators are used for linear sta-
tistical calibration. The direct regression finds the relationship between the dependent
and independent variables, and inverse regression uses it for calibration. When both
the dependent and independent variables in linear calibration are subjected to mea-
surement errors, the resultant estimators become biased and inconsistent. Assuming
the availability of replicated observations on the independent variable, a calibration
estimator is presented which has zero large sample asymptotic bias. The large sample
efficiency properties of the calibration estimators are derived and analyzed assuming
the random errors are not necessarily normally distributed.

Keywords Measurement errors · Calibration · Direct regression · Inverse
regression · Non-normal errors

1 Introduction

Statistical calibration is an important aspect in many real applications, see, e.g., Sun
et al. (2014) Salter et al. (2016), Joseph et al. (2015), Sansó et al. (2009), Gregory
et al. (1993), etc. for a variety of application of statistical calibration. It is used in
the creation of a scale on any measuring device which improves the precision of
the instruments. The process of calibration involves two steps. In the first step, the
readings from two different instruments or measuring devices are obtained. Then
in the second step, a statistical relationship between the two sets of observations is
established. In the next step, the thus obtained relationship is used for making the
prediction of measurements of one device on the basis of readings obtained from the
other device. Generally, it is expensive, tedious, complex and may be destructive to
get accurate observations from one of the instrument. This instrument is considered
as a standard instrument, and the obtained observations from it are termed as true
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values. On the other hand, another device yields observations which are relatively
much cheaper, easy to get, simple and nondestructive. Such obtained observations
are termed as readings. This type of setup of calibration is used in many areas such
as medical science, engineering science, physical science, etc. In spite of being so
useful, such an approach poses several challenges in real data analysis in drawing
statistical inference; see, e.g., Osborne (1991) for an interesting review of statistical
developments on calibration.

The direct or classical regression and inverse regression estimationmethods under
linear regression model are utilized in controlled calibration experiments assuming
that the observations are accurately recordedwithout any error; see Scheffé (1973) for
a detailed discussion on statistical calibration. Such an assumption may not always
hold in practice, and instead, the observations are contaminated by measurement
errors. The difference between the observed and true values of the variable is termed
as measurement error. The measurement errors enter into the data due to many rea-
sons. For example, suppose someone wants to measure the content of nitrogen in the
soil after sprinkling a known quantity of fertilizer over a given field. When the nitro-
gen content is to be measured, a sample of soil is taken, and the chemical analysis
determines the concentration of true level of nitrogen. Since the content of nitrogen
will be varying in soil fromone point to another in the entire agricultural field/forestry
land and a single value is reported based on chemical analysis, so the recorded values
will have measurement errors. Thus if we wish to analyze the relationship between
the soil nitrogen and the yield of a certain crop, it may have issues arising due
to measurement errors in the observations. So assuming the measurement error-free
observations may not be tenable in many practical situations, and the values of work-
ing standards may be subjected to measurement errors as pointed out by Lwin and
Spiegelman (1986). In such circumstances, it is imperative to employ the framework
of measurement error models; see, e.g., Cheng and Van Ness (1999), Fuller (1987)
and Rao (2008) for an interesting exposition. The presence of measurement errors in
the data disturbs the optimal properties of direct and inverse regression estimators,
which become biased as well as inconsistent estimators of the regression coefficient.

The classical or direct regression technique in a linear model is employed to
obtain the true relationship between the dependent and independent variables. Then
the inverse regression is used based on the determined relationship to know the value
of the variable. The performance properties of the classical and inverse calibration
estimators along with others have been analyzed by Yum and Lee (1991) under
the framework of the functional variant of the measurement error model; see also
Lee and Yum (1989), Srivastava and Shalabh (1997). An interesting observation
emerging from such investigations is that both the calibration estimators generally
possess nonzero asymptotic bias which may often be substantial even when there are
replicated observations on the working standards.

Another common assumption in the statistical analysis of calibration estimators
is that the random errors follow a normal distribution. How the properties of the
calibration estimators deviate when there is a departure from the normal distribution
of measurement errors is a question which has been treated neglectfully in the lit-
erature. Most of the work in calibration estimators are available under the normally
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distributed random errors and in a no measurement error situation. The performance
properties of the classical and inverse calibration estimators along with their mod-
ified and extended forms under the normality of errors have been studied by, e.g.,
Osborne (1991). Later, Brown (1993, Chap.2) discusses the aspect of controlled cal-
ibration with classical and inverse calibration estimators but under the assumption
of the normal distribution of errors.

We have attempted and present amodest effort in finding a calibration estimator in
this chapterwhich is asymptotically unbiased in the sense of having zero large sample
asymptotic bias and discuss the effect of non-normally distributed measurement
errors.

The organization of this chapter is as follows. In Sect. 2, we describe themodel and
present the calibration estimators. Their approximate asymptotic bias and variance
are derived using the large sample asymptotic approximation theory and are discussed
in Sect. 3. An illustrative example is presented in Sect. 4, and some conclusions are
placed in Sect. 5. Lastly, the derivations of the main results are provided in the
Appendix.

2 Development of Calibration Estimators

Consider a calibration experiment in which Y1,Y2, . . . ,Yn denote the true val-
ues on the dependent or study variables corresponding to the true standard values
X1, X2, . . . , Xn , respectively. Thus, we postulate the following linear relationship
between the true values Yi and Xi

Yi = α + βXi , i = 1, 2, . . . , n (2.1)

where α is the intercept term and β is the slope parameter. Due to the presence of
measurement errors in the data, the true values on dependent variables are obtained
as y1, y2, . . . , yn and we can postulate the relationship with additive measurement
errors as

yi = Yi + ui , i = 1, 2, . . . , n

where ui is the measurement error associated with the i th observed value of the
dependent variable yi . Without loss of generality, we assume that the usual random
error in the model (2.1) is subsumed in ui . Further, the standard values on indepen-
dent variables Xi are also subjected to the measurement errors, and we assume that
p replicated observations are available corresponding to each standard value which
are observed with measurement errors. Accordingly, let xi1, xi2, . . . , xip be the p
replicated observed values of Xi . The j th observation on the i th value of the inde-
pendent variable Xi is obtained as xi j which is affected by the measurement errors
vi j . Assuming the measurement errors to be additive, we can express

xi j = Xi + vi j j = 1, 2, . . . , p
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wherevi j is themeasurement error associatedwith the j th observationon the i th value
of the independent variable. Further, ui and vi j ’s (i = 1, 2, . . . , n; j = 1, 2, . . . , p)
are assumed to be independent of each other.

Now a value Y of the dependent variable is recorded corresponding to an unknown
standard value, X , and the problem is to predict or estimate X .

We can thus express

Y = α + βX +U (2.2)

where U denotes the random error.
If we write

x̄i = 1

p

∑

j

xi j , ¯̄x = 1

np

∑

i

∑

j

xi j , ȳ = 1

n

∑

i

yi ,

the classical and inverse regression estimators of β, denoted as bc and bI respectively,
are given by

bc = p
∑

(x̄i − ¯̄x)(yi − ȳ)
∑∑

(xi j − ¯̄x)2 (2.3)

bI =
∑

(yi − ȳ)2
∑

(x̄i − ¯̄x)(yi − ȳ)
(2.4)

which are inconsistent for β in the presence of measurement errors in the data;
see, e.g., Cheng and Van Ness (1999) and Fuller (1987). The inconsistency of these
estimators can be corrected either by using some information fromoutside the sample
or using the replicated observations, provided they are available.

So we assume the availability of replicated observations on independent variables
which are also measurement error ridden. Then it is possible to construct a consistent
estimator of β as follows:

b∗
c = p

∑
(x̄i − ¯̄x)(yi − ȳ)

∑∑
(xi j − ¯̄x)2 − (

p
p−1 )

∑∑
(xi j − x̄i )2

. (2.5)

Utilizing these estimators (2.3)–(2.5), we get the following calibration estimator
of X :

X̂c = ¯̄x +
∑∑

(xi j − ¯̄x)2
p

∑
x̄i − ¯̄x)(yi − ȳ)

(Y − ȳ) (2.6)

X̂∗
c = ¯̄x +

∑ ∑
(xi j − ¯̄x)2 − (

p
p−1 )

∑ ∑
(xi j − x̄i )2

p
∑

(x̄i − ¯̄x)(yi − ȳ)
(Y − ȳ) (2.7)

X̂ I = ¯̄x +
∑

(x̄i − ¯̄x)(yi − ȳ)∑
(yi − ȳ)2

(Y − ȳ). (2.8)
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Here, X̂c and X̂ I are the conventional classical and inverse calibration estimators
respectively, while the calibration estimator X̂∗

c is a modified version of X̂c.
The area of calibration estimators has remained a popular choice of research

among researchers due to its enormous utility in various applications. Krutchkoff
(1967, 1969) considered the calibration estimators based on direct and inverse regres-
sion estimators. Using the findings from Monte Carlo simulation experiment, it was
concluded that the estimators based on inverse calibration approach yield better cali-
bration estimators thandirect regression approachunder the criterion ofmean squared
error in the range of calibration but have a larger mean squared error in extrapolation.
ThenHalperin (1970) andWilliams (1969) investigated and concluded that the classi-
cal calibration estimator is superior even within the range of calibration. Shalabh and
Toutenburg (2006) derived the efficiency properties of the direct and inverse calibra-
tion estimators using small error asymptotic theory. Krutchkoff (1971) numerically
investigated the issue of dominance of direct and inverse calibration estimators under
the criterion of Pitman closeness and concluded that the inverse calibration estima-
tor is superior or equivalent to classical calibration estimator and the ranges where
classical calibration estimator is superior, it is only mildly superior. Scheffé (1973)
presented a detailed discussion of the calibration problem. Tallis (1969) discussed
the theory of identifiability of mixtures of distribution in calibration. Pepper (1973)
discussed the calibration issue from the randomwalk perspective. Dunsmore (1968),
Williford et al. (1979) and Hunter and Lamboy (1981) considered the Bayesian
framework and discussed the calibration problem; see also Gray et al. (2019). Fried-
land (1977) and Brown (1982) discussed various issues concerned with multivariate
calibration; see also Brown and Sundberg (1987, 1989). Gregory et al. (1993) studied
the calibration in macroeconomics. Misquitta and Ruymgaart (2005) considered the
statistical calibration in a nonparametric setup. Sansó et al. (2009), Sansó and Forest
(2009) considered statistical calibration of the climate system. Yu et al. (2010) con-
sidered the regression calibration in semiparametric accelerated failure time models.
Spiegelman et al. (2011) considered the regression calibration with heteroscedastic
error variance. Spiegelman (2013) and Strand et al. (2015) used regression calibration
with instrumental variables for longitudinal models and used it to study air pollution.
Blas et al. (2013) generalized the controlled calibration model by assuming repli-
cation on both variables and used the likelihood-based methodology for the point
and interval estimation of the parameters. Han et al. (2016) studied the calibration
and simultaneous tolerance intervals in polynomial regression. Bartlett et al. (2018)
examined the Bayesian correction for covariate measurement error in regression cal-
ibration. Some other aspects of calibration issues are considered in Aitchison (1977),
Berkson (1969), Minder and Whitney (1975), Lwin and Maritz (1980), Wang et al.
(1997), Huang (2005) and Skrondal et al. (2012). All such works were considered
in a no measurement error situation except Gray et al. (2019).
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3 Performance Properties

In order to analyze the performance properties of calibrations estimators, we assume
that u1, u2, . . . , un,U are independently and identically distributed random vari-
ables following a distribution having mean 0, variance σ2

u , third moment σ3
uγ1u and

fourth moment σ4
u(γ2u + 3). Similarly, v11, v12, . . . , vnp are independently and iden-

tically distributed random variables following a distribution having mean 0, variance
σ2
v , third moment σ3

vγ1v and fourth moment σ4
v(γ2v + 3). Here γ1· and γ2· are the

coefficients of skewness and kurtosis respectively associated with the respective dis-
tribution. Further, both the sets of random variables on u’s and v’s are stochastically
independent. Thus we do not assume any specific functional form like normality
for the error distributions. Only the existence of the first four finite moments of the
corresponding random variables is assumed.

Let us now introduce the following notations:

d =
(
X̄ − X

σv

)
,

s2 = 1

n

∑
(Xi − X̄)2,

λx = s2

s2 + σ2
v

, 0 ≤ λx ≤ 1,

λy = β2s2

β2s2 + σ2
u

, 0 ≤ λx ≤ 1,

θ =
(
1 − λy

λy

)
+

(
1 − λx

λx

)
d2

where X̄ is the mean of X1, X2, . . . , Xn .
The quantities λy and λx are the reliability ratios associated with the dependent

and independent variables, respectively. The reliability ratio is defined as the ratio
of variances of true and observed values of the variables. The concept of reliabil-
ity ratios is popular in psychometrics, and their values can be found using various
psychological tools. The information on reliability ratio also helps in obtaining the
consistent estimators of β in measurement error models when the replicated observa-
tions are not available; see Gleser (1992, 1993). Deriving the exact sample properties
of these calibration estimators is complicated and cumbersome. Even if obtained, the
expressions may be so complicated that they may not provide any clear inference.
So we have employed the large sample asymptotic approximation theory to derive
the properties of these calibration estimators.
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3.1 Large Sample Asymptotic Bias (LSAB)

Theorem 1 The large sample asymptotic approximation of the bias (LSAB) of the
calibration estimator X̂c, X̂ I and X̂∗

c to order O(n−1/2) is given by

LSAB(X̂c) = E(X̂c − X) = −
(
1 − λx

λx

)
σvd (3.1)

LSAB(X̂ I ) = E(X̂ I − X) = (1 − λy)σvd (3.2)

LSAB(X̂∗
c ) = E(X̂∗

c − X) = 0. (3.3)

Proof See Appendix.

It is interesting to observe from the above results that the calibration estimator X̂∗
c

is asymptotically unbiased in the sense of having zero LSAB. On the other hand, X̂c

and X̂ I are asymptotically biased in the sense of having nonzero LSAB, and their
biases are in opposite directions. Further, the calibration estimator X̂c has smaller
magnitude of LSAB in comparison to X̂ I when

(
λy + 1

λx

)
< 2 (3.4)

where it may be noticed that λx and λy lie between 0 and 1.
The opposite is true, i.e., the calibration estimator X̂ I has a smaller magnitude of

LSAB than X̂c when the condition (3.4) holds with a reversed inequality sign.

3.2 Large Sample Asymptotic Variance (LSAV)

As the calibration estimators X̂c and X̂ I have nonzero LSAB while X̂∗
c has zero

LSAB, it is more appropriate to compare them with respect to the criterion of large
sample asymptotic approximation of variance (LSAV) rather than the corresponding
mean squared error.

Theorem 2 The large sample asymptotic approximation of variance (LSAV) of the
calibration estimators X̂c, X̂ I and X̂∗

c to order O(n−1) is given by

LSAV (X̂c) = E[X̂c − E(X̂c)]2

= σ2
v

np

[
1 + p(1 − λy)

λyλx (1 − λx )

+ θ

λ2
x

{
1

λy
− 2λx (1 − λx ) + pλx (1 − λy)

λy(1 − λx )

}
− Nc

]
(3.5)

LSAV (X̂ I ) = E[X̂ I − E(X̂ I )]2
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= σ2
v

np

[
1 + pλxλy(1 − λy)

(1 − λx )

+ θλy

{
1 + pλx

(
1 − λy

1 − λx

)
(1 − 2λy + 2λ2

y)

}
− NI

]
(3.6)

LSAV (X̂∗
c ) = E[X̂∗

c − E(X̂∗
c )]2

= σ2
v

np

[
1 + pλx (1 − λy)

λy(1 − λx )

+ θ

{
1

λy
+ 2

(1 − λx )

(p − 1)λx
+ pλx (1 − λy)

λy(1 − λx )

}]
(3.7)

where

Nc =
(
1 − λx

λx

)
[2dγ1v − θγ2v] (3.8)

NI = λ3/2
y (1 − λy)

3/2

(
λx

1 − λx

)1/2
[
2dγ1u − θ(λxλy)

1/2

(
1 − λy

1 − λx

)1/2

γ2u

]
.

(3.9)

Proof See Appendix.

It is interesting to observe from the above expressions that the skewness and
kurtosis of the distribution of measurement errors associated with the independent
variable or working standards influence the LSAV of the calibration estimation X̂c,
while the skewness and kurtosis of the distribution of errors associated with the
measurements on the dependent variable influence the LSAV of X̂ I . However, the
LSAV of X̂∗

c remains the same for all kinds of error distributions. Thus, the efficiency
properties of X̂c and X̂ I may be altered by the departures from normality of errors
but such is not the case with X̂∗

c and it is fully robust, at least asymptotically, with
respect to departures from normality.

Now, if we assume that themeasurement errors are normally distributed so that Nc

and NI given by (3.8) and (3.9), respectively are zero, it follows from (3.6) and (3.7)
that the X̂∗

c with zero LSAB has always larger LSAV than the calibration estimator
X̂ I having nonzero LSAB.However, X̂∗

c is not having only zero LSAB in comparison
to X̂c but it also has smaller LSAV than X̂c when

[
pλx (1 − λy)

λy(1 − λx )
+ θq

]
> 0 (3.10)

where

q = 1

λy
+ pλx (1 − λy)

λy(1 − λx )
− 2

(
p

p − 1

) (
λx

1 + λx

)
. (3.11)
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The reliability ratio λy associated with the dependent variable (the instrument
being calibrated) will generally be smaller than the reliability ratio λx associated
with the independent variables (working standards). In any case, λy will not be
substantially larger than λx . In such situations, the quantity q will be positive for
p = 2 and the condition (3.10) will be satisfied implying the superiority of X̂∗

c over
X̂c. However, if p > 2, the quantity q is always positive and it then follows from
(3.10) that X̂∗

c has better performance than X̂c.
A more exciting and challenging issue will be to extend the analysis for the multi-

ple linear regression models. A question arises how to define the inverse calibration
estimator in such a case and then to use it in the measurement error models. The finite
sample properties and confidence interval estimation for the calibration estimators
are also a challenge in itself as it is not so straightforward to derive the confidence
intervals for regression coefficients in measurement error models.

4 An Example

Consider the dataset, given in Fuller (1987, p. 198), related to the yield (y) of corn and
the soil nitrogen (x) collected at 25 sites on Marshall soil in Iowa (U.S.A.) presented
in Table1. The level of nitrogen is estimated by the chemical analysis of soil, and
two determinations are made at each site.

From the given observations, σ2
v and s2 are consistently estimated by

σ̂2
v = 1

n(p − 1)

∑∑
(xi j − x̄i )

2 = 54.80,

ŝ2 = 1

np

∑ ∑
(xi j − ¯̄x)2 − σ̂2

v = 283.53,

so that a consistent estimator of λx is obtained as λ̂x = ŝ2

ŝ2+σ̂2
v

= 0.838.

Similarly, the consistent estimator of β and σ2
u is obtained as follows:

β̂ = p
∑

(x̄i − ¯̄x)(yi − ȳ)
∑∑

(xi j − ¯̄x)2 −
(

p
p−1

)∑ ∑
(xi j − x̄i )2

= 0.476,

σ̂2
u = 1

n

∑
(yi − ȳ)2 − β̂2ŝ2 = 50.40,

so that λy is consistently estimated by λ̂y = β̂2 ŝ2

β̂2 ŝ2+σ̂2
u

= 0.56.

Using the consistent estimates λ̂x and λ̂y in place of λx and λy in (3.1) and (3.2)
respectively, the estimates of LSABs of the calibration estimates X̂c and X̂ I are
obtained as follows:
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Table 1 Yield of corn and the soil nitrogen of 25 sites in Iowa, USA from Fuller (1987, p. 198)

Observation number Soil nitrogen (x) Corn yield (y)

Determination 1 Determination 2

1 71.00 70.00 106.00

2 78.00 66.00 119.00

3 76.00 77.00 87.00

4 59.00 58.00 100.00

5 97.00 87.00 105.00

6 53.00 69.00 98.00

7 76.00 63.00 98.00

8 43.00 45.00 97.00

9 86.00 81.00 99.00

10 44.00 58.00 88.00

11 89.00 71.00 105.00

12 46.00 66.00 91.00

13 66.00 53.00 90.00

14 62.00 54.00 94.00

15 76.00 69.00 95.00

16 59.00 57.00 83.00

17 61.00 76.00 94.00

18 70.00 69.00 101.00

19 34.00 47.00 78.00

20 93.00 87.00 115.00

21 59.00 62.00 80.00

22 48.00 40.00 93.00

23 64.00 48.00 91.00

24 95.00 103.00 111.00

25 100.00 97.00 118.00

̂LSAB(X̂c) = −1.431d

̂LSAB(X̂ I ) = 3.257d

which may give us an idea about the nature of asymptotic bias.
Similarly, the estimates of LSAVs from (3.5), (3.6) and (3.7) are given by

̂LSAV (X̂c) = 12.80 + 1.454d2 − 0.387dγ1v + (0.152 + 0.032d2)γ2v

̂LSAV (X̂ I ) = 2.743 + 0.196d2 − 0.609 dγ1u + (0.270 + 0.665d2)γ2u

̂LSAV (X̂∗
c ) = 9.438 + 1.091d2

where use has been made of the result θ = 0.786 + 0.193 d2.
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We thus observe that, under the normality of errors, X̂∗
c has not only zero LSAB

in comparison to X̂c, but it has smaller LSAV too. However, X̂∗
c has larger LSAV

than X̂ I , and this is the price one has to pay for asymptotic unbiasedness.
Comparing the calibration estimator X̂c and X̂ I having nonzero LSAB under the

normality of errors, we find that X̂c has a smaller magnitude of LSAB but larger
LSAV than X̂ I .

5 Conclusions

We have considered the problem of calibration when both the measurements on the
dependent and independent variables are subjected to errors, and replicated observa-
tions are available on the independent variable.We have presented amodified version
of the classical calibration estimator such that it has zero LSAB and in this sense, it
is asymptotically unbiased. Interestingly enough, the proposed calibration estimator
always has the sameLSAVwhether or not the distributions of themeasurement errors
are normal, and is thus robust, at least asymptotically with respect to departures from
the normality of errors. This is, however, not the case with the classical and inverse
calibration estimators whose LSAVs are influenced by the skewness and kurtosis of
the error distributions.

When the distributions of the measurement errors are assumed to be normal,
the calibration estimator with zero LSAB fails to perform better than the inverse
calibration estimator with nonzero LSAB under the criterion of LSAV, and this is
the price that one has to pay for the elimination of LSAB. When compared with the
classical calibration estimator, the proposed calibration estimator has only zeroLSAB
but smaller LSAV too in most of the practical situations. It may be added that the
relative performance of one calibration estimator over the other under the normality
of errors may not remain the same when the measurement errors are not normally
distributed. One can consider using the replicated observations on the dependent
variable or when the replicated observations are available on both the variables to
construct other calibration estimators.
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Appendix

Let us first introduce the following notation

A = Inp − 1

np
enpe

′
np

B = 1

p
(In ⊗ e′

p) − 1

np
ene

′
np

C = In − 1

n
ene

′
n

D = 1

p
(In ⊗ epe

′
p) − 1

np
enpe

′
np

where⊗ denotes the Kronecker product operator of matrices and e denotes a column
vector with all elements unity and its suffix indicating the number of elements in it.

The following properties of these matrices may be noted:

AD = D, BD = D, pB ′B = D, pBB ′ = C,

tr A = (np − 1), trC = tr D = (n − 1), (5.1)

Aenp = 0, Benp = 0, e′
n B = 0, Cen = 0.

Further, if Z denotes a m × 1 random vector such that its elements are indepen-
dently and identically distributed with mean 0, variance σ2

z , third moment σ3
zγ1z and

fourth moment σ4
z (γ2z + 3), we have

E(Z ′GZ) = σ2
z trG

E(Z ′GZ .Z) = σ3
zγ1z(I ∗ G)em (5.2)

E(Z ′GZ .Z ′MZ) = σ4
z [γ2z tr H(I ∗ G) + (trG)(tr H) + 2trGH ]

where G and H are m × m symmetric matrices with nonstochastic elements and ∗
denotes the Hadamard product operator of matrices.

If we define

fxx = 2

n1/2
X ′Bv + n1/2

p

(
v′Av
n

− pσ2
v

)

fxy = 1

n1/2

[
1

β
(X ′Cu + u′Bv) + X ′Bv

]

fyy = 2

βn1/2
X ′CY + n1/2

β2

(
u′Cu

n
− σ2

u

)

f = n1/2
[
v′(A − D)v

n(p − 1)
− σ2

v

]
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fx = 1

pn1/2
∑

i

∑

j

vi j

f y = 1

βn1/2
∑

i

ui ,

it is observed that all these quantities are of order Op(1)where u = (u1, u2, . . . , un)
and v = (v11, v12, . . . , vnp) are column vectors of order n × 1 and np × 1 respec-
tively.

Now, from (2.6), we can express

(X̂c − X) = σvd + fx
n1/2

+ s2 + σ2
v + fxx

n1/2

s2 + fxy
n1/2

(
U

β
− σvd − fy

n1/2

)

= σvd + fx
n1/2

+
(
U

β
− σvd − fy

n1/2

) (
1

λx
+ fxx

s2n1/2

) (
1 + fxy

s2n1/2

)−1

where s2 and λx are defined in (3.1).
Expanding and retaining terms to order Op(n−1/2), we get

(X̂c − X) = 1

λx

[
U

β
− (1 − λx )σvd

]
+ 1

n1/2
ξ̂c + Op

(
1

n

)

where

ξ̂c = fx − 1

λx
fy + 1

s2

(
U

β
− σvd

) (
fxx − 1

λx
fxy

)
.

Similarly, from (2.7), we obtain

(X̂∗
c − X) = σvd + fx

n1/2
+

(
U

β
− σvd − fy

n1/2

) [
1 + fxx − f

s2n1/2

(
1 + fxy

s2n1/2

)−1
]

= U

β
+ 1

n1/2
ξ̂∗
c + Op

(
1

n

)

where

ξ̂∗
c = fx − fy + 1

s2

(
U

β
− σvd

) (
fxx − fxy − f

)
.

Likewise, it is easy to see from (2.8) that

(X̂ I − X) = σvd + fx
n1/2

+
(
U

β
− σvd − fy

n1/2

)
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(
β2 fxy

(β2s2 + σ2u)n1/2
+ β2s2

β2s2 + σ2u

) (
1 + β2 fyy

(β2s2 + σ2u)n1/2

)−1

= σvd + fx
n1/2

+
(
U

β
− σvd − fy

n1/2

)(
λy + λy fxy

s2n1/2

) (
1 − λy fyy

s2n1/2
+ . . .

)

= λyU

β
+ (1 − λy)σvd + 1

n1/2
ξ̂I + Op(n

−1)

where

ξ̂I = fx − λy fy + λy

s2

(
U

β
− σvd

) (
fxy − λy fyy

)
.

Observing that

E( fxx ) = − σ2
v

n1/2 p
, E( fyy) = − σ2

u

n1/2β2
,

E( fxy) = E( f ) = E( fx ) = E( fy) = 0,

the LSABs of X̂c, X̂ I and X̂∗
c to O(n−1/2) are given by

E(X̂c − X) = 1

λx

[
1

β
E(U ) − (1 − λx )σvd

]
+ 1

n1/2
E(ξ̂c)

= −
(
1 − λx

λx

)
σvd

E(X̂∗
c − X) = 1

β
E(U ) + 1

n1/2
E(ξ̂∗

c )

= 0

E(X̂ I − X) = λy

β
E(U ) − (1 − λy)σvd + 1

n1/2
E(ξ̂I )

= (1 − λy)σvd

which are the results stated in Theorem 1.
By virtue of the distributional properties of u and v, the following results are

obtained:

E( f 2xx ) = s4(1 − λx )

pλx

[
4 +

(
1 − λx

λx

)
(2 − γ2v)

]
+ O

(
1

n

)

E( f 2xy) = s4(1 − λx )

pλxλy

[
1 + pλx

(
1 − λy

1 − λx

)]
+ O

(
1

n

)

E( f 2yy) = s4(1 − λy)

λy

[
4 +

(
1 − λy

λy

)
(2 + γ2v)

]
+ O

(
1

n

)
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E( f 2) = s4(1 − λx )
2

pλ2
x

[
2

(
p

p − 1

)
+ γ2v

]
+ O

(
1

n

)

E( fxx fxy) = 2s4(1 − λx )

pλx
+ O

(
1

n

)

E( fxx f ) = s4(1 − λx )
2

pλ2
y

(2 + γ2v) + O

(
1

n

)

E( fxy fyy) = 2s4(1 − λy)

λy

E( fx fxx ) = s2σvγ1v(1 − λx )

pλx
+ O

(
1

n

)

E( fx f ) = s2σvγ1v(1 − λx )

pλx

E( fy fyy) = s2σuγ1u(1 − λy)

βλy
+ O

(
1

n

)

E( f 2x ) = σ2
v

p

E( f 2y ) = σ2
vλx (1 − λy)

λy(1 − λx )

and

E( fxy f ) = E( fx fxy) = E( fx fyy) = E( fy fxx ) = E( fy fxy) = E( fy f ) = E( fx fy) = 0

where repeated use has been made of (5.1) and (5.2)
Utilizing these results and we obtain the LSAVs to order O(n−1) as follows:

E[X̂c − E(X̂c)]2 = 1

n
E(ξ̂2c )

E[X̂∗
c − E(X̂∗

c )]2 = 1

n
E(ξ̂∗2

c )

E[X̂ I − E(X̂ I )]2 = 1

n
E(ξ̂2I )

which gives the results mentioned in Theorem 2.
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