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Abstract. The pervasive adoption of machine learning (ML) techniques
by social network operators has led to a growing concern in the personal
data privacy of their customers. ML inevitably accesses and processes
users’ personal data, which could potentially breach the relevant pri-
vacy protection regulations if not performed carefully. In this backdrop,
Federated Learning (FL) is an emerging area that allows ML on dis-
tributed data without the data leaving their stored location. Typically,
FL starts with an initial global model, with each datastore uses its local
data to compute the gradient based on the global model, and uploads
their gradients (instead of the data) to an aggregation server, at which
the global model is updated and then distributed to the local datastores
iteratively. However, depending on the nature of the services operated
by social networks, data captured at different locations may carry differ-
ent significance to the business operation, hence a weighted aggregation
will be highly desirable for enhancing the quality of the FL model. Fur-
thermore, to prevent the data leakage from aggregated gradients, cryp-
tographic mechanisms are needed to allow secure aggregation of FL. As
such, this paper proposes a privacy-enhanced FL scheme, based on cryp-
tographic mechanisms that allow both the data significance evaluation
and weighted aggregation of local models in a privacy-preserving manner.
Experimental results show that our scheme is practical and secure.

Keywords: Federated learning · Secure aggregation · Data significance
evaluation · Homomorphic encryption · Zero-knowledge proof

1 Introduction

Machine learning (ML) has been widely adopted by social network services in
order to enhance user experiences and improve revenue opportunities by pro-
viding personalized recommendations to the social network users. On the other
hand, ML inevitably accesses and processes users’ personal data, which could
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potentially breach the relevant privacy protection regulations if not performed
carefully. The situation is exacerbated by the cloud-based implementation of
social network when user data are captured and stored in distributed loca-
tions, hence aggregation of the user data for ML could be a serious breach
of privacy regulations. Such a scenario where multiple data stores (or custo-
dians) jointly solve a machine learning problem while complying with privacy
regulations has attracted tremendous attention from academia and industry.
Privacy-preserving techniques such as differential privacy (DP), fully homomor-
phic encryption (FHE), and secure multi-party computation (MPC) are widely
believed to be promising approaches to achieve this goal. However, it is well
known that DP requires a tradeoff between data usability and privacy [1], while
MPC and HE offer cryptographic privacy with high communication or compu-
tation overheads. In this backdrop, Federated Learning (FL) is an emerging area
that allows ML on distributed data without the data leaving their stored loca-
tion [2]. Typically, FL starts with an initial global model, with each data store
(in the respective data center) uses its local data to compute the gradient based
on the global model, and uploads their gradients (instead of the data) to an
aggregation server, at which the global model is updated and then distributed
to the local datastores iteratively.

However, depending on the nature of services operated by the social network,
data captured at different locations may exhibit disparity. Hence a weighted
aggregation scheme will be highly desirable for enhancing the quality of the
FL-learned model. In this case, the central server is required to evaluate the
significance across all local datasets in order to compute the weightings, and
then aggregate all the users’ locally trained models according to their weights.
To calculate the weight, data significance evaluation (DSE) on data size and
data quality are widely adopted. For example, in FedAvg [3], the locally trained
models from users are weighted by the percentage of their data size in the total
training data. Based on FedAvg, the authors in [4] further evaluate users’ label
quality by calculating the mutual cross-entropy between data and models of both
the central server and users. Although approaches in previous works resulted in
improved accuracy of the global FL model, they did not address the privacy
guarantee for users’ data.

Furthermore, from the angle of privacy protection, social network operators
need to address the information leakage from the gradients from which one can
derive the users’ local training data [5]. Secure1 aggregation schemes [6,7] aim to
deal with this issue. However, during the FL process, the distributed data stores
and the central server may still receive fraudulent messages due to insider frauds.
For example, a dishonest participant may send fraudulent messages during DSE
so as to obtain a manipulated weight. In other cases, a FL participant may
upload a fraudulent model to affect the distribution of the global FL model in
the current FL round in order to manipulate its weight in the next FL round
[8]. Note that such an issue regarding fraudulent messages can be generalized to
any FL system.

1 We use the terms secure and privacy-preserving interchangeably.
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In order to address the aforementioned issues, we propose a privacy-enhanced
FL scheme with weighted aggregation. To summarize, our contributions are:

– We propose a general privacy-enhanced FL scheme with secure weighted
aggregation, which can deal with both the data significance difference, data
privacy, and dishonest participants (who send fraudulent messages to manip-
ulate the computed weights) in FL systems.

– We give a detailed example application of our proposed scheme with perfor-
mance evaluation.

– Compared to existing FL schemes, experimental results show the practical-
ity of our proposed scheme that achieves privacy-enhanced FL with weighted
aggregation while providing an additional security guarantee against fraud-
ulent messages with an affordable 1.2 times of run time overheads and 1.3
times communication costs.

Related Works. There have been several schemes proposed to perform privacy-
preserving and dropout-resilient aggregation. The main idea of these schemes
is to integrate FL with privacy-preserving techniques such as DP, HE, and
MPC. For example, the authors in [9] propose a DP-based FL scheme that
a level of noise is added to each user’s locally trained model before aggrega-
tion, which involves the trade-off between model performance and privacy. For
HE-based aggregation schemes, each user’s locally trained model is encrypted
before uploading. Then the central server aggregates the users’ model in cipher-
text using HE operations and publishes the result for decryption. To deal with
dropped participants, the private key is distributed among all participants [10].
Such HE-based schemes incur infeasible overhead for a large-scale FL system
as the underlying threshold crypto-system involve expensive protocols. A more
efficient and dropout-robust aggregation scheme is based on MPC, as proposed
in [6]. In this scheme, each user’s locally trained model is masked that the seeds
for generating masks are secretly shared among all users using a threshold secret
sharing scheme to handle the dropout users. The improved version [7] upon
[6] replaces the complete communication graph in [6] with a k-regular graph
to further reduce the communication overheads. Another variant TurboAgg [11]
divides users into multiple groups and follows a multi-group circular structure for
communication. NIKE [12] adopts a non-interactive key exchange protocol rely-
ing on non-colluding servers. Nevertheless, all of the schemes mentioned above
focus on achieving FL from a privacy-preserving perspective, issues still exist
that both the central server and users may send fraudulent messages to each
other.

Organisation of the Paper. The rest of the paper is organized as follows.
In Sect. 2, we introduce the preliminaries and supporting protocols. In Sect. 3,
we describe the rationales for our proposed scheme together with a high-level
overview, and the threat model. Then we describe a detailed example of the
application of our proposed scheme, and discuss its privacy and security in
Sect. 4. Experimental results are presented in Sect. 5 followed by the conclusions
in Sect. 6.
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2 Preliminaries and Supporting Protocols

This section briefly describes the preliminaries of data significance evaluation,
secure aggregation, and related cryptographic protocols used in this work. The
participants in our system are divided into two classes: a server S and K
users2 U = {u1, u2, . . . , uK} that each user ui ∈ U holds a local dataset
Di = {(xj

i , y
j
i )|j = 1, . . . , ni} with size ni, where xj

i and yj
i are the j-th sample

and corresponding label in Di respectively.

2.1 Data Significance Evaluation

Data significance evaluation scheme is essential for weighted aggregation of users’
models in FL. In this work, we adapt the label quality evaluation scheme pro-
posed in [4] to illustrate how to construct an interactive evaluation scheme in
a privacy-preserving manner. Note that this scheme can be generalized to any
data significance evaluation scheme for federated learning.

By maintaining a small set of benchmark dataset Ds, the central server S
is allowed to quantify the credibility Ci of each local dataset Di by computing
the mutual cross-entropy Ei. In specific, Ei evaluates both the performance of
the global model M on the local dataset Di, i.e., LLi, and the performance of
the local model of the user Mi on the benchmark dataset Ds, i.e., LSi, which is
given by:

Ei = LSi + LLi

LSi = −
∑

(xs,ys)∈Ds

ys log P (y | xs;Mi)

LLi = −
∑

(xu,yu)∈Di

yu log P (y | xu;M)

Then the weight of user i’s model can be defined as: wi = niCi∑K
j=1 njCi

where

Ci = 1− eαEi
∑K

j=1 eαEj
. Here α is a hyper-parameter for normalization. These weights

can be used in subsequent weighted aggregation to obtain the new global model
as

∑K
i=1 wiMi.

2.2 Secure Aggregation

Assume there is a set of client U , and let each client u ∈ U holds a vector xu,
Secure aggregation scheme [6,7] enables a server S to calculate a sum z =

∑
xu

while preserving the privacy of xu. In secure aggregation scheme, a pairwise
additive mask is added to xu (assume a total order on clients) and the client u
uploads yu to the central server instead of xu, i.e. yu = xu +

∑
u<v PRG(su,v)−∑

u>v PRG(sv,u). Here pseudorandom generator (PRG) is able to generate a
sequence of random numbers using the seed su,v which is agreed between client

2 We use the terms user and client interchangeably.
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u and client v. It is straightforward to observe that when aggregating all the xu,
the masks will be canceled such that

z =
∑

u∈U
yu =

∑

u∈U

(
xu +

∑

u<v

PRG(su,v) −
∑

u>v

PRG(sv,u)

)
=

∑

u∈U
xu

Furthermore, the seeds are shared among the clients using standard Shamir
secret sharing (n, t) scheme [13] to handle dropout clients. Specifically, we omit
some details and summarize the illustrative secure aggregation protocol z ←
πSecAgg(U , {Mi}, t) as follows.

Mask Generation ({Ri}ui∈U1 ,U1) ← πMG(t,U). Each user ui ∈ U generates a
random matrix R to mask the local model M. The set of alive users after mask
generation is denoted as U1.

Masked Model Aggregation (y,U2) ← πMMA({M}u∈U1 , {Ri}ui∈U1 , U1, t).
Each user ui ∈ U1 computes its masked model yu = M + R and uploads it to
the server. Then the server collects all masked models from the set of alive users,
denoted as U2 ⊆ U1, and computes the sum y =

∑
u∈U2

yu.

Model Aggregation Recovery z ← πMAR(y,U1,U2, t). The users ui ∈ U2

send information according to U2 \ U1 to the server to recover the masks of
dropout users u ∈ U2 \ U1. Then the server can compute the sum of models of
the alive users z =

∑
ui∈U2

M.

2.3 Cryptographic Tools

We now introduce the cryptographic tools used in our proposed scheme.

Homomorphic Encryption. A homomorphic crypto-system is a form of
encryption scheme that allows computation to be performed on encrypted data
directly. It can be denoted as a tuple of algorithms, i.e. HE = (KeyGen,Enc,Dec),
where KeyGen is a key generation algorithm, Enc and Dec are used for encryption
and decryption, respectively.

In this paper, we adopt Paillier [14] crypto-system which consistsof following
algorithms:

– HE.KeyGen(p, q): For large primes p and q that gcd(pq, (p − 1)(q − 1)) = 1,
compute n = p · q and λ = lcm(p − 1, q − 1). Then, select a random integer
g ∈ Z

∗
n2 that ensure gcd(n,L(gλ mod n2)) = 1, where function L is defined

as L(x) = x−1
n and λ = ϕ(n). Finally, output a key pair (sk, pk) where the

public key is pk = (n, g) and the private key is sk = (p, q).
– HE.Enc(pk,m, r): For message m ∈ ZN , taking the public key pk and a ran-

dom number r ∈ Z
∗
N , output a ciphertext c = Enc(m) = gmrn (mod n2).

– HE.Dec(sk, c): For a ciphertext c < n2, taking private key sk, output the

plaintext message m = Dec(c) =
L(cλ(mod n2))
L(gλ(modn2))

.
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Paillier supports two types of operations over ciphertext: (i) homomor-
phic addition between two ciphertext such that Enc(m1) · Enc(m2)(mod n2) =
Enc(m1 + m2 (mod n2)), and (ii) homomorphic multiplication between a plain-
text and a ciphertext such that (Enc(m1))m2 (mod n2) = Enc(m1m2 (mod n)).
For simplicity, we sometimes abuse the notation Enc and Dec instead of
HE.Enc(pk,m, r) and HE.Dec(sk, c) when the context is clear. Note that we
denote � with the homomorphic addition between two ciphertexts, and � with
the homomorphic multiplication between a ciphertext and a plaintext. In addi-
tion, Paillier crypto-system provides semantic security against chosen-plaintext
attacks (IND-CPA) such that an adversary will be unable to distinguish pairs
of ciphertexts based on the message they encrypt [14].

Zero Knowledge Proof of Plaintext Knowledge. A zero-knowledge proof
of plaintext knowledge (ZKPoPK) algorithm enables a prover to prove the knowl-
edge of a plaintext m of some ciphertext C = Enc(m) to a verifier in a given
public encryption scheme, without revealing anything about message m. Pailler
provides the algorithm PZKPoPKoZ as given in Algorithm 1 for ZKPoPK of Zero.
As such, the prover with a key pair (pk, sk) can prove the knowledge of zero of
a ciphertext u = HE.Enc(pk, 0, v) ∈ Zn2 to the honest verifier. The correctness
and security proof of Algorithm1 can be found in [15].

Algorithm 1. Paillier-based ZKPoPK of Zero b ← PZKPoPKoZ(n, u, pk, sk, v)
Public input: n, u, pk.
Private input of the prover: sk, v ∈ Z

∗
n, such that u = HE.Enc(pk, 0, v).

Output: β

1: The prover randomly chooses r ∈ Z
∗
n and sends a = HE.Enc(pk, 0, r) to the verifier.

2: The verifier chooses a random e and sends it to the prover.
3: The prover sends z = rve mod n to the verifier.
4: The verifier checks that u, a, z are prime to n and that HE.Enc(pk, 0, z) = aue mod

n2. If and only if these requirements satisfy, output β = 1; otherwise, output β = 0.

3 Proposed Scheme

To evaluate the quality of each user’s locally trained model hence the data signif-
icance, the standard method is to have the central server keeping a benchmark
dataset and having the access to users’ models and datasets, which enables com-
puting the weights using some evaluation algorithms [7]. However, a privacy-
preserving FL requires that both the user’s data and locally trained models
cannot be learned by any other participant. As such, the intuitive method is to
have the server evaluating the weight using HE based on the encrypted dataset
and model of the user. After that, the server and users can jointly aggregate the
weighted model using secure aggregation protocol.
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In this case, the FL scheme inevitably involves the interaction between the
user and the server where participants may send fraudulent messages to manip-
ulate the computed weight. Recall that the user can (i) publish the fraudulent
weight (as we use HE for privately computing the weight, thus the decryption
is on the user-side, we will explain this in detail later), and (ii) upload the
fraudulent locally trained model. Therefore, a verification protocol is needed to
guarantee the correctness of both computed weights and users’ locally trained
models. Our security definition follows the Universal Composability (UC) frame-
work [16]. Active malicious participants can send fraudulent messages. Besides,
we assume authenticated channels and signature schemes to ensure the confi-
dentiality and integrity of messages sent by participants.

Fig. 1. Privacy-enhanced federated learning scheme with weighted aggregation.

High-Level Overview. As shown in Fig. 1, before proceeding to computing the
weight, each user ui uploads its encrypted dataset Enc(Di), encrypted locally
trained model Enc(Mi), and encrypted mask matrix Enc(Ri) to the server S.
Note that the encrypted datasets are uploaded only once at the very beginning
of FL. After that, the server S calculates the weight Enc(wi) following a DSE
algorithm for each user ui using HE operations based on the received encrypted
dataset Enc(Di), encrypted model Enc(Mi) from each user ui, public global FL
model M, and benchmark dataset Ds. Then the server S sends encrypted weight
Enc(wi) to the user ui and the user decrypts the weight and publishes wi to the
all participants. Note that the user holds the private key, and the decryption of
weight is on the user-side. Thus, the user may perform fraudulent decryption of
the weight. ZKP is adopted here to guarantee the correctness.

However, the user may still upload fraudulent masked weighted model
wiMi + Ri to the server for its benefit. Addressing such issue is not trivial as
the solution may involve complicated incentive mechanisms. Luckily, since the
real encrypted user’s model Enc(Mi) and encrypted mask Enc(Ri) have already
been uploaded to the server at the very beginning, and the verified (real) weight
of each user is public, the ZKP technique can be adopted here to guarantee the
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correctness. In specific, the server can obtain the real masked weighted model in
ciphertext by computing wiEnc(Mi) + Enc(Ri) using HE operations, and then
asks the user to upload its weighted model wiMi + Ri for aggregation. In this
case, by having both the plaintext and ciphertext of the masked weighted model,
the server can require each user to prove the plaintext knowledge of its masked
weighted model. Note that as the scheme requires users to upload the encrypted
model Enc(Mi) and encrypted mask matrix Enc(Ri) at the very beginning of
each round of FL, the users will not deviate from the protocol as they do not
know how to design Mi or Ri to manipulate their weights for benefits without
knowing the information of their weights and locally trained models in the cur-
rent round [8]. After that, the server and users can jointly aggregate the verified
weighted models using standard secure aggregation protocol.

4 Example Application

This section describes an example application of our proposed scheme in detail.
Specifically, we use Paillier [14] as the HE scheme and devise the Paillier based
ZKP of plaintext knowledge technique for verification. We adopt the state-of-
the-art secure aggregation scheme [6,7] (see Sect. 2.2) for efficiency and dropout-
resilience. The DSE algorithm is from [4] that allows the server to quantify the
label quality of each user’s dataset (See Sect. 2.1). Besides, we adapt the DSE
algorithm to dropped users to keep the consistency of dropout-resilient secure
aggregation protocol.

Recall that the server S maintains a benchmark dataset Ds = {(xs, ys)|s =
1, 2, . . . , ns} and a global FL model M, and the user ui holds a local dataset
Di = {(xu, yu)|u = 1, 2, . . . , ni} and a locally trained model Mi as well as a
Paillier key pair (ski, pki). Before proceeding to the data significance evaluation
(computing the weight), each user ui uses its pki to encrypt its dataset and
locally trained model as Enc(Di) = {(Enc(xu),Enc(yu))| u = 1, 2, . . . , ni} and
Enc(Mi) respectively, and uploads them to the server. After that, the server is
able to compute the weight using HE operations.

4.1 Data Significance Evaluation

The privacy-preserving data significance evaluation works as follows (see Sect. 2.1
for the version over plaintext). First, the server computes and sends the mutual
cross entropy Ei in ciphertext Enc(Ei) to the user i as:

Enc(Ei) = Enc(LSi) � Enc(LLi) (1)

Enc(LSi) = −
∑

(xs,ys)∈Ds

ys � log P (y | xs;Enc(Mi)) (2)

Enc(LLi) = −
∑

(xu,yu)∈Di

Enc(yu) � log P (y | Enc(xu);Ms) (3)

Note that the computation of LSi and LLi involves calculating non-linear
functions which cannot be directly evaluated using HE operations. A common
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method to address this issue is to replace these non-linear functions with poly-
nomials. For instance, for logistic regression model l = σ(θ · x) where θ is the
hyper-parameter and σ is the sigmoid function σ(x) = 1

1+e−x , in terms of a good
tradeoff between efficiency and accuracy, the sigmoid function can be approx-
imated by a cubic polynomial σ(x) = s0 + s1x + s2x

2 + s3x
3, and thus the y

in Eq. 2 and 3 can be calculated by y = σ(l) = s0 + s1l + s2l
2 + s3l

3. Since in
our scheme, either one of θ and x is in ciphertext, the server can only obtain
Enc(l), which means that the n-th power of l cannot be calculated using Paillier
as it does not support multiplication of ciphertext. Therefore, one more round of
communication is needed to compute y. Specifically, the server chooses a random
value r ∈ 2κ to mask l as z = l + r where κ is the security parameter, and sends
Enc(z) = Enc(l) � Enc(r) to the user. Then the user decrypts Enc(z), computes
Enc(z2) and Enc(σ(z)) from z and sends (Enc(z2),Enc(σ(z))) to the server. Since
y = σ(l) = σ(z − r) = σ(z) − σ(r) +

(
s0 + 3s3r

3
) − 3s3rz

2 − (
2s2r − 3s3r

2
)
l,

the Enc(y) can be calculated by

Enc(y) =Enc(σ(z)) � Enc(−r) � Enc(s0 + 3s3r
3)

� ((−3s3r)Enc(z2)) � ((−2s2r + 3s3r
2)Enc(l)).

(4)

Note that since l = θ · x is masked by r, the user has no information of
how to design fraudulent (Enc(z2),Enc(σ(z))) for its benefit. In addition, there
is a difference between the computation of Enc(LSi) and Enc(LLi) as the
former involves multiplication of plaintext while the latter involves multipli-
cation of ciphertext. This means that Eq. 2 can be directly evaluated using
Paillier and Eq. 3 needs one more round for computation. Specifically, let
Enc(h) = log P (y | Enc(xu);Ms) in Eq. 3, the server first sends Enc(h) to the
user for decryption. To protect h which may leak information of x against
the server, the user decrypts Enc(h) and masks h using a randomly chosen
value r then sends h + r to the server. Following that, the server computes
Enc(yuh+yur) = Enc(yu)� (h+r). Assume that Enc(yur) has been uploaded to
the server, the server is able to compute Enc(yuh) = Enc(yuh+yur)�Enc(−yur).
Note that r is secure even if the server holds Enc(yu) and Enc(yur). Such secu-
rity is provided by the IND-CPA property of Paillier. In addition, for computing
the cross-entropy after sigmod function, we can further simplify the polyno-
mial replacement of their combined function using the similar above mentioned
method.

After that, each user i decrypts Enc(Ei) and publishes Ei. Finally, all par-
ticipants can compute the credibility Ci and weight wi for each user i following:

wi =
niCi∑K

k=1 nkCi

=
nie

αREi

∑
k nkeαREk

, such that
∑

i

wi = 1 (5)

where Ci = eαREi
∑

k eαREk
, REi = 1

Ei
. Here Eq. 5 is the adapted version of that in

[4] in order to handle dropped users by simply adjusting the denominator of wi

in Eq. 5 on server-side during subsequent weighted aggregation (see Sect. 4.2).
As discussed in Sect. 3, since the user i may deviate from the protocol by pub-

lishing fraudulent decryption of Ei, a verification scheme is needed to guarantee
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the correct decryption of Ei on the user-side. To address this issue, we construct
a variant of the ZKPoPK of Zero algorithm given in Sect. 2.3 to enable a user ui

with a key pair (pki, ski) to convince the server S the fact that a message m is
the correct decryption of ciphertext c. To do so, given the message m, the server
can compute c′ = c −Enc(m) and then requires the user to prove the knowledge
of zero of the ciphertext c′ following Algorithm 1. The detail of this algorithm is
given in Algorithm 2.

Assume that the server receives a message E′
i which is the decryption of

Enc(Ei) from the user ui. Following Algorithm 2, the server S and the user ui

get β ← PPoPK(Enc(Ei), E′
i, pki, ski). The server accepts E′

i as the plaintext
of Enc(Ei) if and only if β = 1, which means the user ui honestly decrypts
Enc(Ei). Otherwise, the server refuses the message E′

i and removes the user ui

from the user set for aggregation. Similar approach can be adopted to guarantee
the correct decryption of h.

Algorithm 2. Paillier-based PoPK β ← PPoPK(c,m, pki, ski)
Public input: c, m, pki = (n, g).
Private input for the user ui: ski = (p, q)
Output: β

1: The server randomly chooses rs ∈ Z
∗
n, and computes c′ = c −

HE.Enc(pki, m, rs)(modn2). The server sends c′ to the user.
2: The user computes r′ = c′d mod n, where d = n−1 mod ϕ(n).
3: The server and the user jointly follow Algorithm 1 to get β ←

PZKPoPKoZ(n, c′, pki, ski, r
′).

The correctness is proved as follows. If the message m provided by the user is
the decryption of c, c′ = c−HE.Enc(pki,m, rs)( mod n2) should be the ciphertext
of zero with respect to r′ that c′ mod n2 = (c′)n·d mod n2 = (r′)n mod n2 =
HE.Enc(pki, 0, r′). Therefore, the output β of the algorithm PZKPoPKoZ in step
3 is 1. Similarly, if m is not the decryption of c, the algorithm PZKPoPKoZ
outputs β = 0.

Theorem 1 (Security against malicious users). The Paillier-based Proof
of Plaintext Knowledge is secure against malicious users. If there exists a prob-
abilistic polynomial time (PPT) adversary A with Paillier key pair (sk, pk) pro-
viding a fraudulent plaintext m′ as the decryption of c that HE.Dec(sk, c) �=
m′. The probability of the server accepting the fraudulent decryption Pr[1 ←
PPoPKA(c,m′, pk, sk)] � 2−k/2 where k is the bit length of n as the Paillier
public key.

Proof. Assume that a PPT adversary A with key pair (sk, pk) provides a
fraudulent decryption m′ of a ciphertext c, while HE.Dec (sk, c) = m and
m �= m′, the server accepts m′ only if 1 ← PPoPK(c, m′, pk, sk). Given
the Algorithm 2, the server randomly chooses rs ∈ Z

∗
n to compute c′ =

c − HE.Enc(pki,m
′, rs)(mod n2) = Enc(m − m′) and sends c′ to the adversary
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A. To make the server accept m′, the adversary A has to prove that c′ is a
ciphertext of zero. Therefore, the security of PPoPK follows from the security of
PZKPoPKoZ such that the probability of the adversary make the server accept
the fraudulent decryption m′ is less than 2−k/2 where k is the bit length of n as
the Paillier public key.

4.2 Weighted Aggregation

After obtained the verified weights, we can proceed to the weighted aggregation
where the server can securely aggregate user’s locally trained models to update
the global FL model M according to their corresponding weights w, i.e. M =∑

ui∈U ′ wiMi such that
∑

ui∈U ′ wi = 1, where wi and Mi are the weight and
local model of user ui, and U ′ is the selected user set in the current round of FL.

Let the numerator of wi in Eq. 5 be ωi = nie
αREi , we can rewrite Eq. 5:

M =
1∑

uj∈U ′ njeαREj

∑

ui∈U ′
ωiMi (6)

Therefore, the server can deal with dropped users by adjusting U ′ and aggregates
the models from alive users.

To prevent users from uploading fraudulent weighted models to the server,
as we discussed in Sect. 3, the server first computes

Enc(yi) = ωi � Enc(Mi) � Enc(Ri) (7)

Then the server can verify if the user uploads its real masked weighted model
relying on the Algorithm 2 with zero knowledge by checking the equality between
yi and uploaded masked weighted model y′

i.
Note that the Enc(Ri) should be uploaded at the very beginning of each FL

round according to the analysis in Sect. 3 to prevent the user from manipulating
Ri for their benefits. Besides, since verified weight ωi is a public value and
Enc(Mi) has been uploaded during data significance evaluation, the server can
calculate y′

i using Pallier HE operations. The detailed description of this example
of our proposed scheme for one FL round is given in Protocol 4.1. Note that the
Setup step is only performed once at the very beginning of federated learning.
Step 0 to step 4 are performed in every FL round.

4.3 Discussion on Privacy and Security

First, we give the discussion from the angle of privacy protection. Since both the
user’s dataset Di and locally trained model Mi are encrypted in step Setup and
step 1, then uploaded to the server, the server learns nothing from the ciphertext.
After that, during computing the weight in step 1, HE operations are applied, and
thus additions between ciphertexts do not leak any information. For computing
a polynomial f(l) which consists of multiplication between ciphertexts where the
server keeps Enc(l), a trick is adopted as described in Sect. 2.1. The main idea is
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to use a random r to mask l to enable the computation f(l + r) over plaintext,
then deduct the redundant terms of f(l + r) to obtain the encryption of f(l)
using HE. The security of the trick is based on that the user does not know
the value of r. The privacy of the public masked weighted model wiMi + Ri

in step 3 and step 4 is protected by the mask Ri randomly chosen by the user
ui. Therefore, there is no information leakage of both user’s dataset and model
during the execution of our proposed protocol.

Next, we discuss from the angle of security against fraudulent messages.
Since the server has the encryption of the real user’s model yi, real mutual
cross-entropy Ei, and real mask Ri after step setup, step 0, and step 1, while
zero-knowledge proof is adopted in step 2 to ensure the correct decryption of
Ei, both the server and user can compute real wi, hence the encryption of real
masked weighted model wiMi + Ri, which can be used for the zero-knowledge
proof in step 3. Therefore, our scheme guarantees security against fraudulent
messages regarding both the users’ datesets, models, and the computed weights.

5 Performance Analysis

System Setting. Our prototype is tested over two Linux workstations with an
Intel Xeon E5-2603v4 CPU (1.70 GHz) and 64 GB of RAM, running CentOS
7 in the same region. The average latency of the network is 0.207 ms, and the
average bandwidth is 1.25 GB/s. The central server runs in multi-thread on one
workstation, while the users are running in parallel in the other workstation.
In our experiments, the ring size N for Paillier is set to be a 1024-bit integer,
and the security parameter κ is set to be 80. We use AES-GCM with 128-bit
keys for authenticated channels, and adopt SecAgg+ scheme [7] for dropout-
resilient aggregation. The performance is evaluated on several datasets from
UCI repository from which each user randomly chooses samples of the same size
to construct its local dataset. The details are given in Table 1.

As seen in Fig. 2, the accuracy of the global FL model before and after using
our scheme shows a consistent tolerance of fraudulent messages. We can observe
that sending fraudulent weights (assign Ei = 1) results in much fewer effects than
sending fraudulent models. This indicates the difficulty of detecting fraudulent
weights and the significant adverse impact of sending fraudulent models, hence
the necessity of our proposed scheme. In addition, Fig. 3 shows the convergence
performance when fraudulent messages exist in the FL system with and without
our scheme. We should note that the tolerance of fraudulent messages on the
performance of the FL model varies from datasets and models.

We also evaluate the scalability of our proposed scheme with respect to the
number of parties and dropout rate, compared to the model aggregation coun-
terpart of SecAgg [6] and the improved version SecAgg+ [7]. Note that we treat
the users who do not pass PoKE and PoKM as dropout users as demonstrated
in Protocol 4.1. In specific, we consider the “worst-case” dropout scenario where
the users drop out during PoKE in the first phase as the server has already
completed the calculation of the weights, or PoKM in the second phase as the
users have already uploaded their weighted models. In Table 2, we can observe
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that dropout users cause a significant increasement in the total run time because
of the high cost of dealing with dropout users in the underlying secure aggre-
gation scheme. As shown in Fig. 4, the experimental results show that our
scheme provides an additional security guarantee against fraudulent messages
with affordable overheads compared to the previous works. In particular, our
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scheme achieves around 1.2 times in run time and 1.3 times in communication
cost upon the state-of-the-art secure aggregation scheme SecAgg+, which indi-
cates the practicality of our scheme.

Table 1. Datasets used in our experiments. The number of clients is fixed to 100.

Dataset #Attributes #total
samples

#Training samples
per client

#Sample of
benchmark dataset

ADULT [17] 14 48842 200 15060

CREDIT [18] 24 30000 240 10000

BK [19] 17 45211 350 9042

RFID-AC [20] 6 75128 400 10497

Fig. 2. FL performance over different fraudulent messages. Note that the meaning of
x-axis labels are A: no fraudulent message; B1, B2, B3: the fraction of clients sending
fraudulent weights 10%, 20%, 30% (similar setting of SecAgg [6]); C1, C2, C3: the
fraction of clients sending fraudulent models 10%, 20%, 30%; D1, D2, D3: the fraction
of clients sending both fraudulent weights and models 10%, 20%, 30%.

Fig. 3. The convergence performance of FL with different fraudulent message rate. The
number of clients is fixed to 100.
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Fig. 4. The performance of our proposed scheme SWAgg compared with SecAgg [6]
and SecAgg+ [7] with different dropout rate.

Table 2. The run time (s)/communication costs (MB) of the user (each) and the server
(with all users) for each step of our proposed scheme in one FL round. The number
of users is set to be 500. R1 and R2 are the fractions of dropout users in PoKE and
PoKM, respectively.

R1 R2 Init ComE PoKE PoKM WAgg Total

User 0 0 0.93/0.48 5.65/1.02 0.01/0.01 0.02/0.01 0.04/0.02 6.65/1.54

Server 0 0 1.22/240 10.97/512 0.04/3 0.13/6 67.31/10 79.67/771

Server 10% 0 1.24/240 10.92/513 0.04/3 0.12/6 173.27/11 185.59/773

Server 0 10% 1.24/240 10.92/513 0.04/4 0.13/5 172.80/12 185.13/774

Server 5% 5% 1.24/240 10.95/513 0.04/3 0.12/5 172.16/13 184.51/774

Server 30% 0 1.23/241 10.92/512 0.04/3 0.10/4 351.78/14 364.07/774

Server 0 30% 1.24/240 10.95/512 0.04/4 0.12/4 354.40/15 366.75/775

Server 15% 15% 1.23/240 10.92/513 0.04/3 0.11/3 349.07/15 361.37/775

6 Conclusion

In this paper, we proposed a privacy-enhanced FL scheme for supporting secure
weighted aggregation. Our scheme is able to deal with both data disparity, data
privacy, and dishonest participants (who send fraudulent messages to manip-
ulate the computed weights) in FL systems. Experimental results show that
our scheme is practical and secure. Compared to existing FL approaches, our
scheme achieves secure weighted aggregation with an additional security guar-
antee against fraudulent messages with affordable runtime overheads and com-
munication costs.
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