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Clinical Application of Molecular
Bioinformatics
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Abstract With the rapid development of bioinformatics, this subject is more and
more closely combined with clinical practice. Clinical bioinformatics not only is
used more and more in disease diagnosis and prognosis prediction but also plays an
important role in the study of pathogenesis, the search of disease markers, the
prediction of drug targets, and other aspects. Here, we highlight some of the
techniques of clinical bioinformatics and add examples of using bioinformatics
methods to solve clinical problems. It focuses on how molecular networks or
protein-protein interaction networks influence diseases and how gene
co-expression networks relate to clinical phenotypes. The possibility of assigning
chronic obstructive pulmonary disease subtypes based on gene expression was also
explored.

Yifei Liu, Furong Yan, Xiaoping Liu and Meili Weng contributed equally with all other
contributors.

Y. Liu · F. Yan · X. Wang (*) · H. Gao
Clinical Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian
Medical University, Quanzhou, Fujian, China
e-mail: xdwang@fuccb.com

X. Liu
School of Mathematics and Statistics, Shandong University at Weihai, Weihai, Shandong
Province, China

M. Weng
Department of Pulmonary and Critical Care Medicine, Respiratory Medicine Center of Fujian
Province, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China

Y. Zeng
Clinical Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian
Medical University, Quanzhou, Fujian, China

Department of Pulmonary and Critical Care Medicine, Respiratory Medicine Center of Fujian
Province, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
e-mail: zengyiming@fjmu.edu.cn

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
H. Shen et al. (eds.), Regionalized Management of Medicine, Translational
Bioinformatics 17, https://doi.org/10.1007/978-981-16-7893-6_13

187

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-7893-6_13&domain=pdf
mailto:xdwang@fuccb.com
mailto:zengyiming@fjmu.edu.cn
https://doi.org/10.1007/978-981-16-7893-6_13#DOI


The application of molecular bioinformatics to re-understand diseases is very
important and will provide a broader prospect for the diagnosis and treatment of
diseases.

Keywords Clinical bioinformatics · Molecular networks · Subtype · Genomics ·
Regional medical

13.1 Introduction

Bioinformatics plays an important role in clinical diagnosis and research. At present,
clinical bioinformatics has been widely used in the discovery of disease-related
genes, determination of new drug molecular targets, disease diagnosis, and progno-
sis prediction (Wooller et al. 2017; Oliver et al. 2015; Fu et al. 2020). In clinical
practice, bioinformatics can effectively predict the prognosis of patients or the
occurrence and development of diseases based on the integration of previous
diagnosis and treatment data and sequencing data and provide guidance for the
diagnosis and treatment of diseases. For diseases whose pathogenesis is not clear,
bioinformatics can also provide strong guidance, which can effectively save time
and avoid aimless experiments.

The clinical identification of disease subtypes has mainly relied on pathology and
symptoms, but the use of molecular bioinformatics to identify molecular subtypes
has just begun. The molecular subtypes of diseases can be associated with clinical
phenotypes, which may indicate the causes of phenotypic changes and explain the
different symptoms of the same disease at the molecular level. This paper introduces
how clinical bioinformatics can integrate molecular networks into clinical practice
and how bioinformatics can be used to reclassify disease and solve clinical problems
in regional medicine.

13.2 Methods Suitable for Clinical Practice

Clinical bioinformatics is widely used, which can not only integrate phenotype and
gene expression but also predict phenotype and even find etiology through gene
expression. It could also focus on genes, regulatory elements, or microRNAs to find
potential ways to treat diseases. The following are some bioinformatics methods that
can be popularized in clinical practice.
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13.2.1 Weighted Gene Co-expression Network Analysis
(WGCNA)

Correlation network analysis is becoming more and more widely used in biological
research. Weighted correlation network analysis (WGCNA) is a method used to
describe the gene association patterns among different samples. It can be used to
identify highly covariated gene sets and to identify alternative biomarker genes or
therapeutic targets based on the connectivity of the gene sets and the association
between the gene sets and phenotypes. Compared with the research method of
focusing on differentially expressed genes, WGCNA can study thousands of genes
with the greatest variation or all detected genes, form co-expression networks, and
then conduct significant association analysis of phenotypes. This can either make
full use of the information or obtain the important genes associated with the
phenotype by screening the hub genes of the module and also provide reference
and inspiration for the diagnosis and treatment of clinical diseases (Yin et al. 2018;
Bai et al. 2020). WGCNA mainly include the establishment of gene co-expression
network, formation of co-expressed gene modules, correlation of co-expressed gene
modules with clinical data, correlations between modules and among genes within
modules, and screening of hub genes according to gene significance and module
membership (Langfelder and Horvath 2008), of which the WGCNA workflow is
shown in Fig. 13.1a.

13.2.2 Identification of Disease Subtypes

Clinically, diseases are often classified according to their symptomatic characteris-
tics. Consensus clustering provides a new way to classify molecular subtypes of
diseases according to gene expression. Based on consensus clustering results,
clinical phenotypes of different molecular subtypes were studied by statistical
methods such as chi-square test and T test, or WGCNA was used to construct
co-expression network to correlate molecular subtypes with clinical phenotypes,
which is beneficial to more efficient and accurate diagnosis and treatment of
diseases. The consistent clustering method takes sub-sampling from the gene expres-
sion matrix to determine the clusters with a specific cluster count (k). For the
consensus value, the two items have the same cluster in the number of occurrences
in the same subsample, which is calculated and stored in the symmetric consensus
matrix for each k. There are many methods to determine the optimal clustering
number K value of consensus clustering. The optimal cluster number can be deter-
mined by (principal component analysis) PCA method or by consensus CDF
(Fig. 13.1b, c). However, no matter which method is used, the final clustering results
need to pass the evaluation of clustering significance.
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Fig. 13.1 Introduction to several bioinformatics methods. (a) The flowchart of WGCNA. First, the
co-expression network was constructed, and then gene modules were formed, which were corre-
lated with clinical phenotypes, and HUB genes were selected. (b, c) The method of consensus
clustering to select K value. (d) A schematic diagram of the ceRNA network, which is usually
composed of mRNAs, microRNAs, and lncRNAs. (e, j) Part of the results of single-cell sequencing
analysis, and the analysis data came from the dataset PBMC3K provided by R package Seurat
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In addition, before using consensus clustering to classify molecular subtypes of
diseases, it is necessary to ensure that no batch effect exists; otherwise, the effect
caused by batch effect needs to be eliminated.

13.2.3 The ceRNA Regulatory Network

Competitive endogenous RNA (ceRNA) has attracted much attention in academic
circles in recent years. It represents a new regulation mode of gene expression.
Compared with the mRNA-miRNA regulation network, the ceRNA regulation
network is more sophisticated and complex, involving more RNA molecules,
including mRNA, pseudogenes of coding genes, long non-coding RNAs and
miRNAs, etc. ceRNA network provides a new way of studying transcriptome and
can explain some biological phenomena more deeply. Common ceRNA networks
generally contain differentially expressed mRNAs, microRNAs, and lncRNAs or
circRNAs. Among them, the expression trend of mRNAs and lncRNAs was consis-
tent, while the expression trend of microRNAs and mRNAs was opposite, and the
same was true between microRNAs and lncRNAs. The regulatory relationships
among microRNAs, mRNAs, and lncRNAs can be effectively predicted through
the construction of the ceRNA regulatory network. It is helpful to excavate gene
function and regulation mechanism at a deeper level and facilitate to understand
many biological phenomena in a more thorough and comprehensive way
(Fig. 13.1d).

13.2.4 Single-Cell Sequencing

Biomarkers are analyzed and mined based on genomics, proteomics, and
transcriptomics in a large number of cell or tissue samples, of which the information
always ignores the heterogeneity of the sample. In order to fully explore the
heterogeneity of cells or tissues and explore the trajectory of cell differentiation,
single-cell sequencing is essential (Wang and Song 2017). Techniques such as
scRNA-seq and scATAC-seq are gaining popularity in scientific research.

By using Cell Ranger to process single-cell FASTQ files and mapping reads to
the reference genome, we can obtain gene expression matrix, annotation informa-
tion, and cell information. Data are imported into R packages such as Seurat (Satija
et al. 2015; Durruthy-Durruthy et al. 2014) and Monocle (https://cole-trapnell-lab.
github.io/monocle3/) (Trapnell et al. 2014) to create objects, and then principal
component analysis (PCA), T-SNE, and other methods can be used to cluster
cells, and marker of different clusters can be identified. In addition, cell types can
also be identified based on marker identification results. For example, in the clus-
tering results of PBMC samples, we can pick out the cell cluster with CD8a as
marker and mark it as CD8+ T cells or pick out the cell clusters with GNLY and
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NKG7 as marker and mark them as NK cells (Fig. 13.1e). It is worth noting that
different single-cell sequencing methods have different ways of identifying cell
types. For example, single-cell ATAC-seq can also identify and cluster similar cell
types and states, but it generally uses the open promoter region as a signal of
transcriptional activity.

Based on the above analysis results, further pseudotime analysis can be
performed. As the cell transitions between states, it undergoes a process of tran-
scriptional recombination, in which some genes are silenced and others are activated.
These states are often hard to characterize. Pseudotime analysis of single-cell
RNA-seq can view these states without the need to purify the cells (Guerrero-
Juarez et al. 2019) (Fig. 13.1j). The single-cell transcriptome analysis data was
derived from the PBMC3K dataset provided by R package Seurat.

13.3 Example of Molecular Bioinformatics in Application

Data analysis based on presentation matrices usually requires normalization of the
data. Just as the count value in RNA-seq is normalized to obtain the FPKM value, the
microarray expression data also needs to be normalized, which can be determined by
plotting a boxplot (Fig. 13.2a). If you are using a Series Matrix File on the Geo
Dataset for analysis, another problem you may encounter is whether you need to
perform log2 transformations on the data. It can be preliminarily judged from the
value of each expression quantity in the expression matrix. The analysis results
should not only conform to the set threshold but also be analyzed in combination
with the actual situation.

13.3.1 mRNA-MicroRNA Interaction Network

We studied the regulatory networks of mRNA and microRNA in non-specific
interstitial pneumonia (NSIP) based on two datasets of GEO dataset GSE110147
(Cecchini et al. 2018) and GSE32538 (Yang et al. 2013) (Table 13.1). The online
differential expression analysis tool GEO2R (http://www.ncbi.nlm.nih.gov/geo/
geo2r/) was used to analyze the differences in the two datasets (GSE110147 and
GSE32538), respectively, to obtain the genes and microRNAs differentially
expressed in NSIP. Cutoff values were adjusted p-value < 0.01 and |logFC|>1.3
(FC: fold change of expression between NSIP and normal tissue) for DEGs and
adjusted p-value < 0.01 for DEMs. GO and KEGG analysis of DEGs was done by
DAVID database (https://david-d.ncifcrf.gov/) (Kanehisa et al. 2016). The p < 0.05
serves as the cutoff value.

The regulatory relationship between mRNAs and microRNAs was predicted
based on the miRWalk database (Dweep et al. 2011; Sticht et al. 2018). Protein-
protein interaction (PPI) network was obtained from STRING (http://string-db.org/)
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Fig. 13.2 NSIP-related differentially expressed genes and network analysis. (a) Boxplot of gene
expression data, according to which the normalized of data can be roughly judged. (b) Heat map of
the top 10 upregulated genes and the top 10 downregulated genes. According to the results of cluster
analysis, 10 samples on the left were taken from NSIP patients, and 11 samples on the right were
normal tissue controls. (c) Protein-protein interaction (PPI) network of differentially expressed
genes with the highest score. (d) Interaction network between differentially expressed genes and
differentially expressed microRNAs; 123 interactions between 18 DEMs and 14 DEGs were
selected

Table 13.1 The situation of GSE110147 and GSE32538 in GEO database, respectively

GEO number GSE110147 GSE32538

Experiment type Expression profiling by array Non-coding RNA profiling by array

Years 2018 2013

City London Aurora

NSIP 10 14

control 11 50
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database (Szklarczyk et al. 2015). PPI network was drawn by Cytoscape (Su et al.
2014). The cutoff values were a combined confident score of >0.7 for the PPI
network and a node degree of �10 for screening hub genes. We used the Molecular
Complex Detection (MCODE) plug-in for Cytoscape to screen hub genes from the
PPI network. As a result, there were 2099 differential expressed genes to be
identified between NSIP and normal lung tissue samples, and these genes were
potential disease-associated genes for NSIP. 450 genes were upregulated from
normal to NSIP, and 1649 genes were downregulated. These genes maybe play
key roles in disease onset of NSIP. The heat map of expression quantity of DEGs
(the top 10 upregulated genes and the top 10 downregulated genes) was shown in
Fig. 13.2b. In addition, we used to adjust p-value<0.01 as a threshold and identified
21 DEMs between NSIP and normal lung tissue samples.

The functional analysis was performed on GO and KEGG for the 2099 DEGs by
DAVID database. In the result analysis, p< 0.05 was used as the threshold. The GO
analysis revealed that the differential expressed genes were significantly enriched in
immune response mechanisms, such as “innate immune response,” “adaptive
immune response based on somatic recombination of immune receptors built from
immunoglobulin superfamily domains,” “adaptive immune response,” “immuno-
globulin-mediated immune response,” “activation of plasma proteins involved in
acute inflammatory response,” “immunoglobulin production,” etc. (Table 13.2a).
Furthermore, by KEGG pathway analysis, the results indicated that DEGs were
significantly enriched in tumor and cell cycle-related pathways, such as “Cell cycle,”
“p53 signaling pathway,” or “Pathways in cancer” (Table 13.2b).

The molecular sub-network was identified by mapping the differential expressed
genes into the PPI network, choosing the nodes in which the combined score is
greater than 0.7 and the degree value is greater than 10. A sub-network with
131 nodes and 1009 edges was obtained from the network. By MCODE, a signif-
icant module containing 23 nodes and 246 edges was identified (Fig. 13.2c). We
selected the ten genes with the highest degree (degree-value¼ 22): PLRG1, SRSF4,
SNRPA1, HNRNPR, CDC40, DDX42, CWC22, HNRNPU, CPSF2, and CSTF3.
Other genes in the significant module network are DDX46, HNRNP, HNRNPH1,
SRSF5, POLR2H, POLR2B, SF3B5, CWC27, SKIV2L2, SYF2, SLU7, PRPF40A,
and NAA38. Using adjusted p-value < 0.01 as the threshold for DEMs,
21 microRNAs were identified as differential expressed microRNAs between
NSIP and normal tissue samples. With miRwalk3.0, a microRNA target gene
prediction tool was obtained, and the score >0.95 serves as the cutoff. We predicted
the target genes of 21 microRNAs and screened out the overlap between the target
genes and the differentially expressed genes. A total of 3687 DEG-DEM interactions
are obtained.

In addition, we drew DEG-DEM interaction networks by Cytoscape, calculated
degree values of nodes, and further studied sub-networks with degree values �
9. According to the interaction relationship, we further screened out the pairs of
interaction relationship with opposite expression trend, selected a total of 123 inter-
actions between 18 DEMs and 14 DEGs (Fig. 13.2d), and listed them in Table 13.3.
In 14 target genes, MDM2, as a target gene of hsa-let-7b-5p, hsa-miR-126-3p,
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hsa-miR-1268a, hsa-miR-193a-3p, hsa-miR-422a, hsa-miR-423-3p, and hsa-miR-
532-5p, has been confirmed to be related to NSIP, but the regulatory effects of these
four microRNAs on MDM2 in NSIP have not been reported in the literature. Studies
have shown that compared with normal lung parenchyma, MDM2 in the epithelial
cells of IPF and NSIP patients is significantly upregulated (Nakashima et al. 2005).
In addition, CEP128 as a target gene of hsa-let-7b-5p, hsa-miR-1268a, hsa-miR-
193a-3p, hsa-miR-20a-5p, hsa-miR-30d-5p, hsa-miR-345-5p, hsa-miR-422a, and
hsa-miR-532-5p is an autoimmune thyroid diseases’ pathogenic factor (Wang
et al. 2019).

Based on the above research results, we have identified the interaction relation-
ship between 18 DEMs and 14 DEGs associated with NSIP, which has not been
reported yet. Of the 14 NSIP-related DEGs, MDM2 has been shown to be related to
NSIP in previous studies (Chen et al. 2017; Wurz and Cee 2019). Therefore, the
interaction relationship between 18 DEMs and 14 DEGs selected in this study,
especially 4 interaction relationships of MDM2, may provide new ideas for the
research of NSIP.

Table 13.2 Shows the GO and KEGG analysis results of DEGs, in which Table 13.2(a) is the GO
analysis results and Table 13.2(b) is the KEGG analysis results with the ten pathways with the
lowest p-value

Category Term Involved in p-Value

(a)

GOTERM_BP_FAT GO:0002252 Immune effector process 8.23E�04

GOTERM_BP_FAT GO:0045087 Innate immune response 0.011

GOTERM_BP_FAT GO:0002449 Lymphocyte-mediated immunity 0.015

GOTERM_BP_FAT GO:0002250 Adaptive immune response 0.015

GOTERM_BP_FAT GO:0016064 Immunoglobulin-mediated immune
response

0.025

GOTERM_BP_FAT GO:0002377 Immunoglobulin production 0.035

GOTERM_BP_FAT GO:0002253 Activation of immune response 0.040

GOTERM_BP_FAT GO:0002440 Production of molecular mediator of
immune response

0.041

(b)

KEGG_PATHWAY hsa03040 Spliceosome 3.03E�04

KEGG_PATHWAY hsa03018 RNA degradation 0.002

KEGG_PATHWAY hsa04110 Cell cycle 0.003

KEGG_PATHWAY hsa05222 Small cell lung cancer 0.007

KEGG_PATHWAY hsa05218 Melanoma 0.007

KEGG_PATHWAY hsa04510 Focal adhesion 0.008

KEGG_PATHWAY hsa05016 Huntington's disease 0.009

KEGG_PATHWAY hsa05200 Pathways in cancer 0.009

KEGG_PATHWAY hsa05120 Epithelial cell signaling in Helicobacter
pylori infection

0.012

KEGG_PATHWAY hsa00190 Oxidative phosphorylation 0.020
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13.3.2 Identification of Genes Associated with Open Regions
of Chromatin and Super-enhancers in Lung
Adenocarcinoma

In addition to the analysis of mRNA-microRNA interaction regulatory network,
which can explain the causes of some gene expression changes, the causes of gene
expression changes are often explored through the identification of enhancers, super-
enhancers, and open regions of chromatin. The presence of super-enhancers and
open regions of chromatin generally leads to the upregulation of the corresponding

Table 13.3 The list of microRNAs with differential expression and the predicted target genes with
an opposing expression trend

Target
genes MicroRNA

ADGRF1 hsa-let-7b-5p, hsa-miR-1268a, hsa-miR-193a-3p, hsa-miR-197-3p, hsa-miR-20a-
5p, hsa-miR-345-5p, hsa-miR-423-3p, hsa-miR-532-5p

CEP128 hsa-let-7b-5p, hsa-miR-1268a, hsa-miR-193a-3p, hsa-miR-20a-5p, hsa-miR-30d-
5p, hsa-miR-345-5p, hsa-miR-422a, hsa-miR-532-5p

CEP57L1 hsa-miR-126-3p, hsa-miR-1268a, hsa-miR-193a-3p, hsa-miR-197-3p, hsa-miR-
20a-5p, hsa-miR-345-5p, hsa-miR-423-3p, hsa-miR-551b-3p

FER hsa-let-7b-5p, hsa-miR-1268a, hsa-miR-193a-3p, hsa-miR-197-3p, hsa-miR-20a-
5p, hsa-miR-27a-3p, hsa-miR-422a, hsa-miR-532-5p

FIGNL1 hsa-let-7b-5p, hsa-miR-1268a, hsa-miR-181c-5p, hsa-miR-193a-3p, hsa-miR-197-
3p, hsa-miR-223-3p, hsa-miR-27a-3p, hsa-miR-345-5p, hsa-miR-422a, hsa-miR-
551b-3p

KRAS hsa-let-7b-5p, hsa-miR-1268a, hsa-miR-181c-5p, hsa-miR-193a-3p, hsa-miR-29a-
3p, hsa-miR-423-3p, hsa-miR-532-5p

MDM2 hsa-let-7b-5p, hsa-miR-126-3p, hsa-miR-1268a, hsa-miR-193a-3p, hsa-miR-422a,
hsa-miR-423-3p, hsa-miR-532-5p

NCBP2 hsa-let-7b-5p, hsa-miR-1268a, hsa-miR-18a-5p, hsa-miR-197-3p, hsa-miR-20a-
5p, hsa-miR-223-3p, hsa-miR-29a-3p, hsa-miR-30d-5p, hsa-miR-345-5p,
hsa-miR-422a, hsa-miR-423-3p

PANK2 hsa-let-7b-5p, hsa-miR-1268a, hsa-miR-181c-5p, hsa-miR-18a-5p, hsa-miR-193a-
3p, hsa-miR-197-3p, hsa-miR-20a-5p, hsa-miR-223-3p, hsa-miR-29a-3p, hsa-miR-
345-5p, hsa-miR-422a, hsa-miR-551b-3p

TOR1AIP2 hsa-let-7b-5p, hsa-miR-1268a, hsa-miR-18a-5p, hsa-miR-197-3p, hsa-miR-20a-
5p, hsa-miR-30a-5p, hsa-miR-30d-5p, hsa-miR-345-5p, hsa-miR-551b-3p

UGGT1 hsa-let-7b-5p, hsa-miR-18a-5p, hsa-miR-193a-3p, hsa-miR-197-3p, hsa-miR-20a-
5p, hsa-miR-29a-3p, hsa-miR-30a-5p, hsa-miR-345-5p, hsa-miR-422a, hsa-miR-
532-5p

UHMK1 hsa-miR-1268a, hsa-miR-18a-5p, hsa-miR-193a-3p, hsa-miR-197-3p, hsa-miR-
223-3p, hsa-miR-27a-3p, hsa-miR-345-5p, hsa-miR-532-5p

ZFYVE16 hsa-miR-18a-5p, hsa-miR-20a-5p, hsa-miR-223-3p, hsa-miR-27a-3p, hsa-miR-
30d-5p, hsa-miR-345-5p, hsa-miR-422a, hsa-miR-532-5p, hsa-miR-551b-3p

ZNF106 hsa-miR-18a-5p, hsa-miR-193a-3p, hsa-miR-197-3p, hsa-miR-20a-5p, hsa-miR-
345-5p, hsa-miR-422a, hsa-miR-532-5p, hsa-miR-551b-3p

This table contains 14 genes and 18 microRNAs
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genes (Buenrostro et al. 2015; Peng and Zhang 2018). Super-enhancers are generally
identified by analyzing ChIP-seq processed with H3K27ac (Jiang et al. 2017). The
general analysis flow of super-enhancer identification is shown in Fig. 13.3a.

The potential regulatory genes of the super-enhancer can be identified by anno-
tating the genes in the upstream and downstream 50kb range of the super-enhancer.
The image shows the results of ChIP-seq analysis of the lung adenocarcinoma cell
line A549, Calu-3, and lung fibroblast cell line IMR-90 (Fig. 13.3b–d). Among
them, the ChIP-seq data of A549 cell line was derived from the Encyclopedia of
DNA Elements (ENCODE) Project (Consortium EP 2012); GEO Accession num-
bers are GSE91337 and GSM2421889. The ChIP-seq data of the Calu-3 cell line
came from the GEO database; GEO Accession numbers are GSM1548075 and
GSM1548073 (Fossum et al. 2014). ChIP-seq data for IMR-90 cell line was derived
from the Encyclopedia of DNA Elements (ENCODE) Project (Consortium EP
2012); GEO Accession number is GSE16256 (Lister et al. 2009; Hawkins et al.
2010; Bernstein et al. 2010; Lister et al. 2011; Schultz et al. 2015; Micheletti et al.
2017; Rajagopal et al. 2013).

The process of ATAC-seq to identify open regions of chromatin is similar to that
of ChIP-seq, but data quality control is required. ATAC-seq data for the A549 cell
line came from the Encyclopedia of DNA Elements (ENCODE) Project (Consortium
EP 2012); GEO Accession number is GSE114202. Differential expression results of
lung adenocarcinoma and normal controls based on TCGA database (Tomczak et al.
2015), we finally screened out five genes: EFNA5, HAVCR1, ATP1B1, DUSP4,
and IGF2BP3, among which DUSP4 and IGF2BP3 are associated with prognosis.
Prognostic analysis results were obtained from UALCAN (http://ualcan.path.uab.
edu/) (Chandrashekar et al. 2017) (Fig. 13.3l–p).

13.4 Disease Categories Based on Molecular Networks

In the past, clinical phenotypes have been an important basis for distinguishing
disease subtypes. Now, the concept of molecular subtype provides a new research
idea for the diagnosis and treatment of diseases. Here, we present a case study of
molecular subtypes associated with immune genes in COPD. Chronic obstructive
pulmonary disease (COPD) is a form of chronic bronchitis or emphysema charac-
terized by blocked airflow. If not treated, it often develops into pulmonary heart
disease or respiratory failure (Blanchette et al. 2014; Kim et al. 2017). With the
increase of air pollution, the incidence of COPD is increasing, but its mechanism is
still not fully understood. Currently, COPD is still diagnosed and treated based on
simple clinical presentation (degree of airflow limitation, symptoms and frequency
of exacerbations, etc.). With the popularization of the concept of precision medicine,
it has become a general trend to treat patients according to their individual differ-
ences (Zhang et al. 2018; Hogg et al. 2004). Reclassification of COPD is essential for
developing more effective new treatments or optimizing existing treatments. There-
fore, it is necessary for bioinformatics technology and the existing large amount of
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high-throughput data to redefine and interpret large amounts of multi-level informa-
tion. Two new research strategies (systems biology and network medicine) have the
potential to provide new perspectives on the pathology of COPD. Our research has
found that the immune-based COPD classification can be used as an auxiliary
reference for clinical treatment, which is helpful to the advancement and develop-
ment of precision medicine.

Common detection items of COPD patients are FEV1 (forced expiratory volume
in 1 second) (Chuang and Lin 2019), FVC (forced vital capacity) (Chuang and Lin
2019), emphysema (F-950), DLCO (Hao et al. 2019), etc. DLCO tests the lung’s
ability to diffuse carbon monoxide. FEV1 is the rapid exhalation of air within 1 s
after inspiration to total lung volume. FVC is the maximum amount of breath that
can be exhaled as soon as possible after inhaling as much as possible. Emphysema
(F-950) is the index involved in quantifying emphysema on CT images by using the
density mask method to calculate voxel fraction of the lung (Radder et al. 2017).
These indicators play an important role in the clinical diagnosis of COPD.

Although many articles have reported the influence of immune genes and path-
ways on COPD, the study on the classification of COPD according to the immune
gene expression mode of patients’ lung tissues has not been reported. COPD is a
complex disease driven by a combination of genes; because the gene combinations
of different patients are very different, COPD are wildly heterogeneous. Immune-
based COPD classification may be used as an auxiliary reference for clinical
treatment, which is conducive to the advancement and development of precision
medicine.

The expression data of COPD (GSE47460) (Peng et al. 2016; Anathy et al. 2018;
Kim et al. 2015; Yu et al. 2018; Tan et al. 2016) were downloaded from Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/gds/). We
excluded whole lung homogenate samples with interstitial lung disease and at risk
and selected 139 COPD whole lung homogenate samples with different gold stages
for analysis. Download the immune gene list from the ImmPort database (https://
www.immport.org/: SDY1205, DOI: 10.21430/M37N6PJEQT) for research.

Combined with the list of immune genes, all the immune gene expression data in
the expression data were taken for consensus clustering by using R package
ConsensusClusterPlus (Wilkerson and Hayes 2010). According to the results of
the first consensus clustering, we pre-classified the samples into 2 categories,
68 subtype I and 71 subtype II (Fig. 13.4a). By using R package Limma (Ritchie
et al. 2015) for differential gene analysis of the 2 subtypes (Fig. 13.4b), 158 different
immune genes were obtained. According to the screened 158 immune genes,
consensus clustering was carried out for the second time, and the result of 69 subtype
I and 70 subtype II was obtained (Fig. 13.4c). 134 immune genes were differentially
expressed between the 2 subtypes. Through the third consensus cluster analysis of
the 134 different immune genes, the final subtype grouping was obtained, including
70 subtype I and 69 subtype II. A total of 131 immune-related differentially
expressed genes were found between the 2 subtypes.
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The R package SigClust (Huang et al. 2012) was used to evaluate the clustering
results, and the clustering significance p-values of the two subtypes obtained were
shown in Table 13.4. The p-value of the third cluster is the smallest.

In general, the series matrix file of GEO database has preprocessed the data. But
we are still trying to verify whether there is a batch effect in the data. To ensure that
the intergroup differences we analyzed were not due to batch effect, we queried the
sample data one by one from the GEO database and obtained the batch information
of 139 COPD samples we used. First, we performed principal component analysis

Fig. 13.4 Molecular subtype analysis of chronic obstructive pulmonary disease. (a–c) The result of
thrice consensus clustering. (d, e) Principal component analysis (PCA) of immune-related genes.
PCA results confirm that the molecular subtypes obtained in this study are not caused by batch
effect. (f, g) GO and KEGG enrichment analysis results of differentially expressed genes between
subtype I and the control group. (h) GO enrichment analysis result of differentially expressed genes
between subtype II and the control group, but there is no significant enrichment KEGG pathway
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(PCA) on the total expression data of 139 COPD samples and on the immune genes
differentially expressed between subtypes I and II in the third consensus cluster.
Batch or subtype information was labeled in the three-dimensional scatter plot to
verify whether the differential gene expression between different subtypes was
caused by batch effect. In addition, we did the same for 131 differentially expressed
immune genes in the third consensus cluster. Ensure the consistency of clustering
results and intergroup differences are independent of the batch effect. As shown in
Fig. 13.4d–e, the clustering results of labeled batch information are inconsistent with
the clustering results of labeled subtype information, which proves that the subtype
we obtained is not caused by batch effect.

To determine the differences between different subtypes and the normal control
group, we set p < 0.01 and fold change ¼ 0.5 which were used as thresholds to
obtain differentially expressed genes between subtypes, and functional enrichment
analysis was performed on the results. Functional enrichment analysis was
performed using R package clusterProfiler (Yu et al. 2012). As shown in
Fig. 13.4g, subtype I was significantly enriched in immune-related pathways,
while subtype II was not. This seems to indicate that the immune subtype I identified
is more immune-dependent than the immune subtype II.

In combination with clinical data, we investigated the relationship between two
immune subtypes and clinical data. We performed chi-square tests on gold stages in
the two subtypes. Results showed that the proportion of gold III and gold IV patients
in subtype I patients was significantly higher than that in subtype II patients
(Table 13.5).

We used R package WGCNA (Langfelder and Horvath 2008) to further investi-
gate the genes that play a key role in the division of molecular subtypes. All the
genes in the dataset were included in the analysis so as not to miss out on key
information. The results showed that the turquoise module was significantly corre-
lated with the molecular subtypes (Fig. 13.5c). According to gene significance and
module membership (Fig. 13.5d), we screened out 11 key genes for subtype
classification (Fig. 13.5e–g).

Through bioinformatics and computational analysis, we have determined the
possible set of mutations associated with immunity, as well as genes, cell types,

Table 13.4 shows the clustering significance between the two subtypes of the third consensus
clustering

Subtype I Subtype II

Subtype I 1 6.175072e�05

Subtype II 6.175072e�05 1

Table 13.5 Chi-square test results between clinical data and subtypes

Subtype I Subtype II df X-squared p-value

Gold stages Gold I and II 38 50 1 4.1916 0.04063

Gold III and IV 32 19

The results showed that gold staging is significantly correlated with the two subtypes
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Fig. 13.5 Weighted gene co-expression network analysis and HUB gene screening. (a) The
horizontal axis is soft threshold (power), and the vertical axis is the evaluation parameter of
scale-free network. The higher the value is, the more the network conforms to the non-scale feature.
(b) Gene clustering results. (c) Results of association between gene co-expression modules and
clinical phenotypes. Correlation coefficient of threshold setting is greater than 0.5, and p-value is
less than 0.05. (d) Correlation between genes and modules and phenotypes in turquoise module.
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and biological pathways. Our analysis provides further support for the genetic
susceptibility and immune heterogeneity of COPD. We identify the characteristics
in each subtype of COPD, which may provide new insights into the biological
mechanisms to promote the progress. Studying the use of these endotypes and
biomarkers may be helpful for the diagnosis and treatment of COPD and the
development of precision medicine.

13.5 Conclusion

Gene sequencing technology helps doctors diagnose patients with symptoms that
have no clear cause. But the large amount of data generated is often difficult to get
answers quickly. The use of molecular bioinformatics solved this problem. Most
diseases are not caused by a single genetic defect but are caused by the interaction of
a variety of different genes. Gene expression products such as RNA and proteins
interact with other proteins and metabolites in the cell to form a signal regulation
network of the disease. Gene mutation did not occur at exactly the same place, but
some mutations occur in genes on the same signaling pathway. Gene expression can
be changed by the environment, and when changed, specific disease subtypes or
endotypes can be formed. Many interventions in the experimental model cannot be
completely reproduced on the human body, and therefore molecular bioinformatics
provides a way to explore the molecular complexity of a particular disease, to
identify disease pathways and modules, and to explore the molecular connections
between the different phenotypes. Therefore, molecular bioinformatics has the
potential to discover new disease genes, reveal the biological importance of
disease-associated mutations, and identify complex diseases, drug targets, and bio-
markers (Agusti et al. 2017). The rapid development of molecular bioinformatics
provides new ideas for the diagnosis and treatment of diseases. Molecular bioinfor-
matics is defined as a treatment tailored to the individual needs of patients, which
distinguishes specific patients from other patients with similar clinical manifesta-
tions based on genes, biomarkers, phenotypes, or psychosocial characteristics.
Bioinformatics can often reduce research costs and be quick and effective, by
computing a large number of sample data, summarizing rules, and associating
phenotypes. It helps the precision medicine enter the primary medical system.

For primary hospitals, the simplification of methods is more conducive to the
promotion of bioinformatics technology. As bioinformatics tools become more and
more accessible, information learning loses some of its complexity and is easier to
master quickly through short training. The transition from clinical practice to
precision medicine is a more effective and safer way to treat patients than existing

⁄�

Fig. 13.5 (continued) Genes with GS greater than 0.4 and Mm greater than 0.9 were selected as hub
genes. (e–g) The difference and significance of hub genes’ expression in the two subtypes and the
control group

13 Clinical Application of Molecular Bioinformatics 203



treatment methods. For the primary medical institutions, it has more development
prospects. Most of the training and research related to bioinformatics take place in
high-income areas and resource-rich medical institutions, while in primary medical
institutions, bioinformatics technology cannot be popularized due to the limited
funds and talents. It is becoming more and more urgent to assist primary medical
institutions to train professionally talents in the field of bioinformatics. Our article
offers an important perspective: molecular bioinformatics can be used in hospitals,
and the basic approach we describe is clinically achievable. By learning the methods
involved in our research, the personnel of primary medical institutions can use
existing resources to re-analyze the published data which helps to re-understand
the disease. In addition, the increasing popularity of cloud resources and the avail-
ability of online training materials provide excellent opportunities for researchers in
primary medical institutions with limited resources. Researchers in primary medical
institutions can use cloud resources to analyze large omics datasets, which can
reduce the differences caused by equipment shortages to some extent (Mangul
et al. 2019). The development of bioinformatics in primary medical institutions is
conducive to discovering local related genetic abnormalities.

According to biomedical and life sciences researches, bioinformatics is essential
for science to explain treatments and high-throughput omics data meaningful. In the
process of disease recognition, diseases are often diagnosed and treated according to
phenotypes. Using molecular biological information technology to classify ovarian
cancer, it was found that the FGF pathway, a pathway related to tumor proliferation
and angiogenesis, plays a significant role in one of the subtypes of ovarian cancer
(Hofree et al. 2013). The subtype of liver cancer that overexpress seven hub genes
may lead to reduced overall survival in patients (Li et al. 2021). According to the
data searched from the public database, bladder cancer is divided into two main
molecular subtypes, basic type and differentiated type, and it is found that basic type
tumors are associated with a shorter survival period (Volkmer et al. 2012). Cancer
involves not only individual mutations but also dysregulation of multiple pathways
governing fundamental cell processes such as cell proliferation and apoptosis
(Kreeger and Lauffenburger 2010). Increased researches have successfully inte-
grated that database with the molecular to map the signal network of cancer.
Through the use of bioinformatics analysis in the molecular signal network, we
can subdivide a set of tumor mutation into different subtypes via their biological and
clinical information. These subtypes are different from those classified by other
clinical markers that are well known to be associated with survival. The subtypes
may provide new insight for biological mechanisms driving disease progression.

As molecular bioinformatics become integrated into clinical treatments (Seiler
et al. 2017), molecular subtype will become critical for determining the intrinsic
feature of many diseases. Heterogeneity is a major challenge to promote precision
medicine. If molecular bioinformatics is applied to clinical practice, the treatment
and prognosis of diseases will be improved to a new height. We hope that the
integration of molecular bioinformatics and multi-omics data will enable patients to
receive more accurate, effective, and safe treatments.
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