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Abstract Accuracy and numerical stability of nonlinear coupled fluid-elastic inter-
action simulations largely depends on the coupling and interface modeling algo-
rithms. As part of the numerical coupling, the coupled solver requires to satisfy
the kinematic and dynamic continuity conditions along the interface in addition
to the fluid and structural dynamics governing equations. The interface kinematics
and dynamics conditions are traditionally coupled with the governing equations that
define the dynamics using either a partitioned or monolithic approaches. Irrespective
of the coupling approach considered, the accuracy of the coupled numerical simula-
tions strongly depends on the accuracy of the structural response dynamics, which
in turn depends on the accuracy of the fluid dynamic forces acting on the struc-
ture. Hence, the numerical methods with exact interface become attractive when the
accuracy of the coupled fluid-elastic interactions is of importance. In this paper, we
present a review on the class of quasi-monolithic approaches with exact interface
for numerically modeling the fluid-structure interactions involving rigid and flexible
multi-body systems.

1 Introduction

Fluid-Structure Interaction (FSI) is a branch of multi-physics that is commonly
observed in our day-to-day life, wherein the structure is considered to be elastic
and it can undergo deformation/displacement due to the fluid dynamic forces acting
on it which in turn would influence the fluid dynamic forces acting on them [1, 2]. As
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a result, the aerodynamic/hydrodynamic forces acting on an elastic structure would
be distinctly different from that of a fixed structures [3]. Hence, it is important to
investigate the FSI in the design of tall buildings, buildings housing sensitive equip-
ment, long bridges [4], off-shore floating platforms [5], oil and gas pipelines [6, 7],
wind turbines, micro-air vehicles, etc.

Numerical modeling of coupled FSI would require satisfying the interface kine-
matic (i.e., velocity and displacements) and dynamic (i.e., force) continuity along
the fluid-structure interface along with to the fluid and structural dynamic govern-
ing equations. A FSI computational models can be categorized based on the way
the interface between fluid-structure is modeled and the way in which the interface
conditions are satisfied along the interface. The interface between the fluid-structure
is either modeled by a conforming/non-confirming body fitted mesh for the fluid
and structural domains or by using a non-body fitted Cartesian grid mesh for the
combined fluid-structure domain. Methods such as level set method [8], Lagrangian
multiplier, immersed boundary [9], ghost fluid, and fictitious domain [10] methods
come under the later category of the interface modeling methods. On the other hand,
arbitrary Lagrangian-Eulerian (ALE) is one of the popular approaches that would
come under the body fitted mesh category of the interface modeling. In this coor-
dinate system, the computational nodes can move relative to the spatial coordinate
system. In an ALE approach, the mesh nodes on the fluid-structure interface behave
like material points in a Lagrangian frame and the nodes inside the fluid domain can
be moved arbitrarily to account for the movement of the fluid-structure interfaces so
that the fluid and the structural meshes always remain two distinct non-overlapping
meshes [11]. Hence, a typical body fitted FSI is a three-field problem [12].

Traditionally, in an ALE-based approach, the interface conditions are satisfied
by a partitioned or monolithic approach. In a partitioned approach, the structural
dynamic, the interface kinematic, dynamic continuity boundary conditions, and the
fluid dynamic governing equations are solved in a sequential order [13]. As the gov-
erning equations for each of the physical fields, i.e., the fluid and structure, are solved
sequentially one can use existing traditional fluid and the structural solvers as black-
box solver by transferring the fluid forces acting on the solid from the fluid-solver
to the structural-solver and transferring the structural kinematics, i.e., displacement
and velocity, from the structural-solver to the fluid-solver. Since any fluid/structural
solvers can be coupled with each other to simulate the coupled FSI phenomena, the
partitioned approach offers higher levels of flexibility and modularity. Due to these
traits, partitioned-based approaches are popular. However, as the effects of fluid
and elastic structures on each other are transferred as boundary conditions coupling
between the fluid and solid is not strong enough and can lead to numerical instability
when the structural mass of the structure interacting with surrounding fluid is of
the same order or lower because of the spurious energy produced due to the tempo-
ral inaccuracies [14]. This numerical instability can be solved for certain low mass
cases by satisfying the interface conditions over multiple iterations till the solutions
achieve a kinematic and dynamic convergence [15]. Even this strong fluid-structure
coupling over multiple iterations may not be enough to sustain a numerical stability
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for very lowmass structures and the solutions can either suffer from non-convergence
or convergence to a wrong solution-related issues.

In a monolithic approach, the governing equations that define the fluid dynamics,
structural dynamics, interface continuity, andmesh dynamics are all assembled into a
single large matrix and solved together [16]. These schemes provide good numerical
stability even for problems with very low mass structures that experience strong
inertial effects. However, monolithic approaches lack the flexibility and modularity
of using an established fluid/structural solvers. In addition to the lack of flexibility,
monolithic approaches can suffer from the computational resource- and convergence-
related issues for solving large ill-conditioned system of linear equations. This would
necessitate development of special kind of pre-conditioners for solving the matrix
system of equations.

Key objective of the current work is to present a review on ALE-based FSI formu-
lations which are numerically stable and computationally efficient for low structure
to fluid-mass ratio where the inertial effects are very strong. As part of the review,
we have considered two FSI coupling formulations based on improvised monolithic
approach [17–19]. Unlike the traditional monolithic approaches wherein the gov-
erning equations pertaining to fluid, structure, interface, and mesh update are all
solved together in a single large matrix, in the improvised monolithic approaches
the equations pertaining to the mesh update algorithm are decoupled from the fluid,
structure, and interface continuity equations by explicitly predicting the structural
positions at the start of each time step. Explicit prediction on structural positions
also enables linearization of the convective terms. Additionally, in these schemes,
the interface kinematic and dynamic continuity conditions are implicitly satisfied by
the construction of a single unified governing equation for combined fluid-structure
system.

In the current work, we begin with a brief overview of the governing equations
involved in the numerical modeling in Sect. 2. In Sect. 3, we construct the variational
weak form of the combined fluid-structure governing equations. We then present
in the complete second-order time-accurate quasi-monolithic with exact interface
tracking formulation in Sect. 4. We then present Galerkin least square stabilized
quasi-monolithic formulation in Sect. 5. We conclude the work by providing a sum-
mary of the two quasi-monolithic solvers reviewed in this work in Sect. 6.

2 Governing Equations

Let us consider x as a spatial point that belongs to the three-dimensional fluid domain
�f(t) with boundary �f(t) at any time t and can move randomly in�f(t). The domain
boundary �f is made up of the Dirichlet (�f

D), Neumann (�f
N), and the fluid-structure

interface (�) boundaries. Similarly, let us also consider a material point Z corre-
sponding to the initial three-dimensional structural domain �s with boundary �s

that is made up of the Dirichlet (�s
D), Neumann (�s

N), and the interface (�). The
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Navier–Stokes equations governing the dynamics of viscous incompressible fluid
flow in an ALE reference frame are given as

ρf
∂uf

∂t
+ ρf

(
uf − w

) · ∇uf = ∇ ·
[
−p I + μf 1

2

(
∇uf + (∇uf

)T )]
+ f f in �f(t), (1)

∇ · uf = 0 in �f(t), (2)

where ρf and μf are the fluid density and dynamic viscosity; uf = uf(x, t), w =
w(x, t), and p = p(x, t) represent thefluidvelocity, fluidmeshvelocity, andpressure
defined at x for a time t ; I is the second-order identity tensor; and f f denotes the
body force.

The structural dynamic of a flexible structure is typical governed by Navier’s
equation which is written as

ρs
∂2ηs

∂t2
= ∇ · σs + f s in �s, (3)

where ρs is the structural density and ηs(Z, t) is the displacement vector that maps
the material point Z from its initial position to its position at time t . σs denotes the
first Piola-Kirchhoff stress tensor and f s represents the body force vector acting on
the structure. For a linear elastic material

σs (ηs) = μs
[
∇ηs + (∇ηs)

T
]

+ λs(∇ · ηs)I, (4)

where μs and λs are the Lamé coefficients of a material satisfying [20]. Similarly,
the constitutive relation for a St. Venant-Kirchhoff (SVK) material [20, 21] is

σs (ηs) = 2μsFE + λs [tr (E)] F, (5)

where tr(·) is the tensor trace operator, F and E represent the deformation gradient
and the Green-Lagrangian strain tensors, respectively, and are given as [20]

F = (I + ∇ηs) , E = 1

2

(
FTF − I

)
. (6)

For simplicity, one can rewrite the structural Eq. (3) as

ρs
∂us

∂t
= ∇ · σs + f s in �s, (7)

considering

us(Z, t) = ∂ϕs

∂t
. (8)
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The above simplification enables the implicit implementation of the kinematic con-
tinuity condition along the fluid-structure interface.

The fluid and structural dynamics governing equations presented above need to
satisfy the Dirichlet and Neumann conditions along the respective non-interface
domain boundaries, which can be expressed below:

u(x, t)f = uf
D ∀x ∈ �f

D and σf(x, t) · nf = σf
N ∀x ∈ �f

N. (9)

us(Z, t) = us
D ∀Z ∈ �s

D and σs(ϕs) · ns = σs
N ∀Z ∈ �s

N. (10)

In addition to the above boundary conditions about the non-interface boundaries,
for an FSI phenomena the fluid and structure governing equations should also satisfy
the kinematic and dynamic continuity conditions along the fluid-structure interface
� and can be written as

uf(ϕs(Z, t), t) = us(Z, t) ∀Z ∈ �, (11)
∫

ϕs(γ,t)
σf(x, t) · nfd� +

∫

γ

σs(Z, t) · nsd� = 0 ∀γ ⊂ �, (12)

where γ is any element on the fluid-structure interface � at t = 0 and ϕs(Z, t) is the
deformed position the material point Z at time t . In the above equation, nf and ns

are the unit outward normal vectors to the fluid and structural domain boundaries.
As described earlier, in an ALE approach, the fluid nodes inside the fluid domain

needs to be shifted so that thefluid and structural domain interior nodes donot overlap.
The dynamics of fluid mesh motion can be modeled by considering a pseudo-elastic
constitutive equation given by

∇ · σm = 0 where σm = (1 + τm)
[(

∇ηf (χ, t) + (∇ηf (χ, t)
)T )

+ (∇ · ηf (χ, t))I
]
,

(13)

satisfying the boundary conditions

ηf(Z, t) = ϕs(Z, t) − Z ∀ Z ∈ �, (14)

ηf(χ, t) = 0 ∀ χ ∈ (∂�f(0))\�. (15)

Here ηf is the displacement of the fluid mesh node and τm is the element-level
stiffness to limit the distortion of the small elements.
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3 Weak Variational Form: Combined Fluid-Structure
Formulation

To construct theweak form for the fluid-structure systemby introducing trial function
spaces Suuu and Sppp and corresponding test function spaces Vuuu and Vppp for the fluid-
structure velocity and fluid pressure, respectively. The definition of the trial-and-test
function spaces is as follows:

Suuu = {
(uf , us)|(uf , us) ∈ H 1(�f(t)) × H 1(�s),

uf(ϕs(Z, t)) = us(Z, t) ∀Z ∈ �,

u(x, t)f = uf
D ∀x ∈ �f

D and us(Z, t) = us
D ∀Z ∈ �s

D

}
,

Sppp ={p| p ∈ L2(�f(t))}.

Vuuu = {
(φf ,φs)|(φf ,φs) ∈ H 1(�f(t)) × H 1(�s),

φf(ϕs(Z, t)) = φs(Z) ∀Z ∈ �,

φf(x) = 0 ∀ x ∈ �f
D and φs(Z) = 0 ∀ Z ∈ �s

D

}
,

Vppp ={q| q ∈ L2(�f(t))}.

The weak form of the Navier–Stokes Eqs. (1) and (2) can be expressed as

∫

�f(t)
ρf

(
∂uf

∂t

∣∣
∣∣
χ

+ (
uf − w

) · ∇uf

)

· φfdx +
∫

�f(t)
σf : ∇φfdx =

∫

�f(t)
f f · φfdx +

∫

�f
H

σf
H · φfd� +

∫

�(t)

(
σf(x, t) · nf

) · φfd�, (16)

∫

�f (t)
∇ · ufqdx = 0. (17)

Similarly, weak form of the structural dynamics Eq. (7) can be written as

∫

�s
ρs

∂us

∂t
· φsdZ +

∫

�s
σs : ∇φsdZ =

∫

�s
f s · φsdZ +

∫

�s
H

σs · H · φsd� +
∫

�

(σs(Z, t)ns) · φs(Z)d�. (18)

The weak form of the dynamic traction continuity condition in Eq. (12) will be

∫

�(t)

(
σf(x, t) · nf

) · φf(x)d� +
∫

�

(σs(Z, t) · ns) · φs(Z)d� = 0, (19)
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whereφf andφs are required to satisfyφf(ϕs(·)) = φs(·) on�. A detailed derivation
of the above weak form in Eq. (19) from its strong form in Eq. (12) can be found in
[17]. Nowwe can combine Eqs. (16)–(18) using Eqs. (19) to construct a single unique
relation for the combined fluid-structure domain, which is given as find

(
uf , us, p

) ∈
Suuu × Sppp such that for all

(
φf ,φs, q

) ∈ Vuuu × Vppp

∫

�f(t)
ρf

(
∂uf

∂t

∣∣∣∣
χ

+ (uf − w) · ∇uf

)

· φf(x)dx +
∫

�f(t)
σf : ∇φfdx

−
∫

�f (t)
∇ · ufqdx

+
∫

�s
ρs

∂us

∂t
· φsdZ +

∫

�s
σs : ∇φsdZ =

∫

�f(t)
f f · φfdx +

∫

�f
H

σf
H · φfd� +

∫

�s
f s · φsdZ +

∫

�s
H

σs
H · φsd�. (20)

The idea here is to solve the discrete fluid and structural domains as a single unique
domain � = �f ∪ �s. In the above form, the velocity and displacement continuity
conditions are satisfied implicitly.While the traction continuity condition is absorbed
into the weak formulation.

4 Quasi-Monolithic Formulation

In this section, we will present a second-order time discretization of the combined
fluid-structure formulation given in Sect. 3. The explicit construction of the interface
at the start of each time step decouples the solid position and fluid mesh motion from
the computation of fluid-structure variables (uf , p, us). Additionally, the decoupling
of the fluid mesh motion enables us to determine the convective velocity of the
fluid flow explicitly and linearize the nonlinear Navier–Stokes relation. Hence, the
quasi-monolithic formulation does not require nonlinear iteration per time step.

4.1 Second Order in Time Discretization

Let P2(�h) denote the standard second-order Lagrange finite element space on
domain �h = �f

h ∪ �s
h. First, we employ the second-order extrapolation to describe

the displacement vector ηs,n
h of the flexible structural as

ηs,n
h (Zi) = ηs,n−1

h (Zi) + 3�t

2
us,n−1
h (Zi) − �t

2
us,n−2
h (Zi) ∀Zi ∈ T s

h . (21)
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Now that we have both the boundary conditions Eqs. (14) and (15) required for
solving the ALE Eq. (13), we solve Eq. (13) employing P1 finite element space.
The edges of an isoparametric element are assumed straight unless they are on the
interface or on a curved boundaries. This assumption enables us to use P1 finite
element instead of the P2 for updating the mesh. As a result of this, size of the
system of linear equations required for solving the fluid mesh displacement, ηf,n

h ,
on finite element space with P1 discretization would be smaller than the system of
linear equations required for solving the P2 discretization space without losing the
accuracy of the coupled fluid-structure solver.

We now use the solution of ηf,n
h computed on the P1 finite element space to update

the location of triangular mesh T f
h,tn vertices. Since the interior edges are straight, we

can position the non-vertex computational node at the center of the edge. In this way,
we are able to determine the fluid mesh displacement for all the P2 finite element
mesh T f

h,tn computational nodes even by solving the ALE Eq. (13) on a P1 finite
element mesh.

The nonlinear convective term can be linearized by defining a second-order time-
accurate extrapolation function given below:

ǔf
h(�

n
h(x, tn)) = 2uf,n−1

h (�n
h(x, tn−1)) − uf,n−2

h (�n
h(x, tn−2)), (22)

where�n
h(·, tn−j) is the backward mapping function for the spatial grid points on the

mesh T f
h,tn to T f

h,tn−j and mesh velocity wn
h(x) is defined as

wn
h(x) =

G∑

i=1

φf,n
i (x)

1

�t

((
xni − xn−1

i

) + 1

2

(
xn−1
i − xn−2

i

) − 1

2

(
xn−2
i − xn−3

i

))

=
G∑

i=1

φf,n
i (x)

1

�t

(
xni − 1

2
xn−1
i − xn−2

i + 1

2
xn−3
i

)
. (23)

Here wn
h is a second-order approximation of the fluid mesh velocity ∂t�

n
h(x, tn)

f ′(tn) = 1

�t

(
f (tn) − 1

2
f (tn−1) − f (tn−2) + 1

2
f (tn−3)

)
+ O(�t2).

We next show that
wn

h(x
n
j ) = ǔf

h(x
n
j ) on �h,tn . (24)

To prove the above equation, we rewrite Eq. (23) as

wn
h(x

n
j ) = 1

�t

(
(xnj − xn−1

j ) + 1

2

(
xn−1
j − xn−2

j

)
− 1

2

(
xn−2
j − xn−3

j

))

=ϕs,n
h (Zj) − ϕs,n−1

h (Zj)

�t
+ ϕs,n−1

h (Zj) − ϕs,n−2
h (Zj)

2�t
− ϕs,n−2

h (Zj) − ϕs,n−3
h (Zj)

2�t
∀ Zj ∈ �h,tn .

(25)
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By substituting the definition of ϕs,n(Z) from Eq. (21) into Eq. (25) and simplifying
will yield

wn
h(x

n
j ) =2

(
3

4
us,n−1
h (Zj) + 1

2
us,n−2
h (Zj) − 1

4
us,n−3
h (Zj)

)

−
(
3

4
us,n−2
h (Zj) + 1

2
us,n−3
h (Zj) − 1

4
us,n−4
h (Zj)

)
.

4.2 Complete Scheme

In this subsection, we present the fully discretized finite element form of the quasi-
monolithic formulation. The variational statement reads as

find (uf,n
h , pf,nh , us,n

h ) ∈ Vh

(
tn,ϕs,n

h ,
3

4
,
1

2
us,n−1
h − 1

4
us,n−2
h

)

with uf,n
h |�f

D
= uf

D and us,n
h |�s

D
= us

D so that for any finite element triple

(φf , q f ,φs) ∈ Vh(t
n,ϕs,n

h , 1, 0) (26)

with φf
h|�f

D
= 0 and φs

h|�s
D

= 0, such that

∫

�f
h,tn

[
ρf

�t

(
3

2
uf,nh (x) − 2uf,n−1

h (�n
h(x, tn−1)) + 1

2
uf,n−2
h (�n

h(x, tn−2))

)

+
(
ǔfh − wn

h

)
· ∇uf,nh + 1

2

(
∇ǔfh

)
uf,nh

]
· φfdx

+
∫

�f
h,tn

ρfνf
(
∇uf,nh + (∇uf,nh )T

)
: ∇φfdx

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

A

−
∫

�f
h,tn

pf,nh (∇ · φf )dx
}
B

−
∫

�f
h,tn

qf (∇ · uf,nh )dx
}
C

+
∫

�s
h

ρs

�t

(
3

2
us,nh − 2us,n−1

h + 1

2
us,n−2
h

)
· φsdZ

+1

2

∫

�s
h

(
σs(ϕs,n−1

h ) + σs(ϕs,n+1
h )

)
: ∇φsdZ

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

D

=
∫

�f
h,tn

f f · φfd� +
∫

(�f
H)h

σf
H · φfd� +

∫

�s
h

f s · φsd� +
∫

(�s
H)h

σs
H · φfd�,

}

E, (27)
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where A and B contain the fluid velocity and pressure terms from the Navier–Stokes
momentum equation, C is the Navier–Stokes continuity terms, D denotes Navier’s
equation for structural dynamics, and E is the right-hand side part of the combined
fluid-structure system consisting of the boundary condition and external body force

terms. The 1
2

(
∇ǔf

h

)
uf,n
h term in part A of Eq. (27) to stabilize the convective term

is introduced and discussed in detail in [22].

4.3 Algorithm

The foregoing variational formulation can be expressed in the form of an algorithm.
To begin with, the details of the initial setup are as follows: there is a mesh T s

h for
the solid reference domain �s which shares a part of its boundary grid points with
T h

� along �. Assuming uf,n−1
h , us,n−1

h and ηs
h are known for the mesh T f

h,tn−1 which is
defined on the domain�f

h,tn−1. Here�f
h,tn−1 denotes the numerical approximation for

thefluid domain at time tn−1. It should be noted thatwehave consideredPm/Pm−1/Pm

elements. To ensure the optimal rate of approximation on an isoparametric finite ele-
ment mesh, all the constituent elements are considered as straight-edged standard
Lagrangian elements. The basic steps to be performed in the quasi-monolithic com-
bined fluid-structure formulation are summarized below:

Algorithm 1: Second-order quasi-monolithic formulation for fluid-structure
interactions
1. Start with known uf,n−1

h , us,n−1
h ,ηs

h at time tn−1 and tn−2

2. Advance from tn−1 to tn

(a) Determine the structural displacements ηs
h using Eq. (21)

(b) Solve Eq. (13) using P1 elements on �f
h,t0

to determine mesh displacements

(c) Update the fluid mesh �f
h,tn using the mesh displacements from (b)

(d) Evaluate ǔfh and wn
h by Eqs. (22) and (23)

(e) Solve for the updated field properties uf,nh , pnh , and us,nh at current time tn using Eq. (27)

5 Fully Stabilized Quasi-Monolithic Formulation

One of the primary limitations of the Galerkin finite element discretization used for
discretizing�f and�s of the quasi-monolithic formulation presented in Sect. 4 is that
it will experience nonphysical spurious oscillations for convection-dominant prob-
lems [23]. Traditionally, these spurious oscillations are circumvented by replacing
the traditional Galerkin method with Petrov-Galerkin methods which utilize weight-
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ing functions that have more weightage for the upstream part of the flow than the
downstream [24, 25]. Such streamwise upwind techniques can be interpreted as a
combination of traditional Galerkin method and a stabilization term calculated at
the interior of an element. This elemental-level stabilization term introduces artifi-
cial numerical diffusion which stabilizes the spurious oscillations. The weak form
of the combined fluid-structure formulation given in Eq. (20) can be written in the
Galerkin/Least square (GLS) stabilization form as

∫

�f
h(t)

ρf
(
∂tuf +

(
ûf − w

)
· ∇uf

)
· φfd� +

∫

�f (t)
σf : ∇φfd�

−
∫

�f (t)
∇ · ufqd�

⎫
⎪⎪⎬

⎪⎪⎭
A

+
nel∑

e=1

∫

�e
τm

[
ρf

(
uf − w

) · ∇φf + ∇q
] ·

[
ρf∂tuf + ρf

(
uf − w

) · ∇uf − ∇ · σf − f f
]
d�e

⎫
⎪⎪⎬

⎪⎪⎭
B

+
nel∑

e=1

∫

�e
∇ · φfτc∇ · ufd�e

}

C

+
∫

�s
ρs∂tus · φsd� +

∫

�s
σs : ∇φsd� =

}
D

∫

�f
h,tn

f f · φfd� +
∫

(�f
H)h

σf
H · φfd� +

∫

�s
h

f s · φsd� +
∫

(�s
H)h

σs
H · φfd�.

}

E

(28)

One can observe that terms A, D, and E combine to form the Galerkin weak form
presented in Eq. (20). On the other hand, the term B represents the GLS terms for
the convective and pressure to suppress the spurious oscillations for the convection-
dominant problems and to circumvent the inf-sup/LBB condition, respectively. Term
C denotes the stabilization term for the incompressibility constraint to provide addi-
tional stability. Unlike P2/P1/P2 finite element discretization for the fluid velocity,
pressure and structural velocity to justify the well-posedness. The above stabilized
combined fluid-structure weak form in Eq. (28) is discretized using equal order ele-
ments for both fluid velocity and pressure to simplify the computational framework
significantly.

The stabilization parameters τm and τc in the term B represent the variational
stabilization factors for the momentum and continuity equations [24, 26–28]. The
stabilization parameter τm for the momentum equation is defined as [29]

τm =
[(

2ρf

�t

)2

+ (
ρf

)2 (
uf − w

) · G · (
uf − w

) + 12(μf)2G : G
]− 1

2

, (29)
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where G is the elemental contravariant metric tensor which is defined as

G =
(

∂ξ

∂x

)T ∂ξ

∂x
, (30)

where ξ is local element-level coordinate system and it depends on the element
shape. τm in Eq.29 consists of three parts, the first term represents the stabiliza-
tion for the temporal dominant, second for advection dominant, and the last for
diffusion-dominated cases. The stabilization factors are generally developed using
the variational multiscale approach, where the finite element space is decomposed
into coarse resolvable scales and fine non-resolvable scales. Therefore, the equation
for non-resolvable scales forms the equation for error and the solution of this equa-
tion is approximated as the average of appropriate small-scale Green’s function. This
solution of the fine scale is used for determining the stabilization factors τm and τc.
For more detailed mathematical treatment refer to [30] and [31]. The stabilization
parameter τc for the continuity equation is defined as

τc = 1

8 tr (G) τm
. (31)

The fully discretized quasi-monolithic fluid-structure formulation for multiple
structures using BDF2 can be written as

∫

�f
h,tn

[
ρf

�t

(
3

2
uf,nh (x) − 2uf,n−1

h (�n
h(x, tn−1)) + 1

2
uf,n−2
h (�n

h(x, tn−2))

)

+
(
ǔfh − wn

h

)
· ∇uf,nh + 1

2

(
∇ǔfh

)
uf,nh

]
· φfdx

+
∫

�f
h,tn

ρfνf
(
∇uf,nh + (∇uf,nh )T

)
: ∇φfdx −

∫

�f
h,tn

pf,nh (∇ · φf )dx

−
∫

�f
h,tn

qf (∇ · uf,nh )dx

+
nel∑

e=1

∫

�e
h

τm

[
ρf

(
ǔfh − wn

h

)
· ∇φf + ∇q

]
·

[
ρf

�t

(
1.5uf,nh − 2uf,n−1

h + 0.5uf,n−2
h

)
+ ρf

(
ǔfh − wn

h

)
· ∇uf,nh − ∇ · σf,nh − f f

]
d�e

+
nel∑

e=1

∫

�e
h

∇ · φfτc∇ · uf,nh d�e

+
∫

�s
h

ρs

�t

(
3

2
us,nh − 2us,n−1

h + 1

2
us,n−2
h

)
· φsdZ

+1

2

∫

�s
h

(
σs(ϕs,n−1

h ) + σs(ϕs,n+1
h )

)
: ∇φsdZ
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=
∫

�f
h,tn

f f · φfd� +
∫

(�f
H)h

σf
H · φfd� +

∫

�s
h

f s · φsd� +
∫

(�s
H)h

σs
H · φfd�.

(32)

The implementation of the above fully stabilized quasi-monolithic combined
fluid-structure formulation differs slightly from the implementation in Sect. 4. Instead
of Eq. (22) we define an alternative second-order time-accurate explicit function
given by

ǔf
h(�

n
h(x, tn)) = 2.25uf,n−1

h (�n
h(x, tn−1)) − 1.5uf,n−2

h (�n
h(x, tn−2))

+ 0.25uf,n−3
h (�n

h(x, tn−3)). (33)

Similarly, we also define an alternate function for wn
h as

wn
h(x) =

G∑

i=1

φf,n
i (x)

1

�t

(
3

2
xni − 2xn−1

i + 1

2
xn−2
i

)
. (34)

The main reason behind redefining ǔf
h and wh is that Eqs. (33)–(34) enable us to

implement the exact interface continuity, i.e.,

uf,n
h = us,n

h (35)

instead of the second-order approximation in time given by Eq. (22). Unlike the
velocity continuity in Eq. (11) which requires us to enforce the condition explicitly,
we can satisfy the velocity continuity in Eq. (35) implicitly by treating the fluid and
its corresponding solid node on the interface as a single unique node. Thereby, we
can decrease the size of the algebraic system of equations required per time step
compared to the implementation presented in Sect. 4.

5.1 Algorithm

Unlike the quasi-monolithic combined fluid-structure formulation in Sect. 4 where
we have considered Pm/Pm−1/Pm elements to satisfy the inf-sup or LBB condition,
here we use equal order elements for both fluid pressure and velocity. The basic steps
to be performed in the fully stabilized quasi-monolithic combined fluid-structure
formulation are summarized below:

Similar to the quasi-monolithic formulation presented in Sect. 4, the fully stabi-
lized quasi-monolithic formulation also solves the combined fluid-structure system
only once per time step. A matrix-free version of Krylov subspace-based iterative
solvers is utilized to solve the system of equations that arise from both pseudo-elastic
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Algorithm 2: Second-order fully stabilized quasi-monolithic formulation for
fluid-structure interactions
1. Start with known solutions uf,n−1

h , us,n−1
h ,ηs,n−1

h at times tn−1 and tn−1

2. Advance from tn−1 to tn

(a) Determine the structural displacements ηs,n
h using Eq. (21)

(b) Solve Eq. (13) on �f
h,t0

to determine mesh displacements

(c) Update the fluid mesh �f
h,tn using the mesh displacement from (b)

(d) Evaluate ǔfh and wn
h by Eqs. (33) and (34)

(e) Determine the element level stabilization parameters τm and τc using
Eqs. (29) and (31) respectively.

(f) Solve for the updated field properties uf,nh , pnh , and us,nh at current time tn

using Eq. (32)

mesh motion and combined fluid-structure equations. To scale the fluid-structure
solver for large-scale computations using distributed memory parallel cluster, we
next present the parallel finite element implementation of three-dimensional incom-
pressible flow interacting with generic elastic structures for high Re flow.

6 Conclusions

In this work, we have discussed about two different ALE-based improvised mono-
lithics, i.e., quasi-monolithic, FSI formulations that are computationally efficient
and numerical stable for low mass ratios. In both these formulations, the fluid mesh
motion has been decoupled from themonolithicmatrix consisting of governing equa-
tions that describe the fluid flow, structural dynamics, interface conditions, and the
mesh motion. As a result, the size of the matrix which needs to be solved reduces
by a maximum of 20% in the case of two-dimensional simulations and a maximum
of 40% for the three-dimensional simulations. The decoupling of mesh motion has
been made possible by predicting the structural displacements at the start of each
time step based on the previous time step velocities. Additionally, both thesemethods
linearlize the convective velocities by using a second-order explicit approximation
based on previous time step information. The first quasi-monolothic approach dis-

cussed uses an extra stabilization term, 1
2

(
∇ǔf

h

)
uf,n
h , which has been proposed by

Temam to provide numerical stability. This term plays a role in proving the uncondi-
tional stability of the method theoretically. The formulation is stable for any mixed
finite element discretization for the velocity and pressure. On the other hand, the
second approach discussed in this paper considers a Galerkin least square-based sta-
bilization to provide convective stabilization for convectively dominant problems.
Additionally, this method requires equal order finite element for the fluid velocity
and pressure. As a result, this approach would require lower memory requirements
compared to the first approach.
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