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Adsorption of Ammonia on p-doped
Graphene Bilayer Surface; Energetics
and Electronic Structure

A. Sahithi and K. Sumithra

Abstract The adsorption of ammonia on pristine AB stacked graphene bilayers and
also on p-doped surfaces of bilayer graphene are investigated using first principles
density functional calculations.Modifications of the adsorption interactions and elec-
tronic structure effects due to doping and adsorption of ammonia are discussed. The
adsorption of NH3 is investigated for different dopant concentrations and for varied
configurational patterns on the bilayer. Someof the bilayer configurations have strong
interactions with ammonia depending on the dopant pattern and is evidenced by
appreciable binding energies and charge transfer. The chemisorptions are confirmed
by strong mixing of the non-bonding p orbitals of ammonia and with the electron
deficient p-orbitals of the surface. The theoretical results on adsorption energies on
doped bilayer are higher compared to adsorption on dopedmonolayer graphenemore
than 0.65 eV. The boron doped graphene bilayer induce the donor state above the
Fermi level making it useful for sensing ammonia gas. The changes in the elec-
tronic properties of the system due to the interactions are expected to give useful
understanding into the development of novel gas sensor devices.

1 Introduction

Graphene, the thinnest material known to man, has received much attention from a
wide variety of fields, ever since its discovery. The physical properties of thismaterial
have been widely studied yielding various unusual phenomena, making it useful in
super capacitors, field effect transistors,molecular storage etc. [1–3]. The high charge
carrier mobility as well as the presence of Dirac points in the electronic structure
makes it a gapless semiconductor [4–6]. Several studies have been performed on
graphene in an attempt to change the carrier concentration and open a tuneable band
gap. A myriad of ways was found to control the band gap which include doping with
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2 A. Sahithi and K. Sumithra

impurities, applying an electric field, inducing defects and strain engineering [7, 8].
Multi-layered graphene, and in particular, bilayer graphene, has also attracted great
spotlight as, surprisingly, it shows different electronic properties from monolayer
graphene, while retaining much of the physical features of the monolayer [9]. It has
also been observed that multi-layered graphene shows unique properties at room
temperature such as ballistic transport [10].

Bilayer Graphene (BLG) is a two layered structure where a graphene layer is
stacked on top of another graphene layer in two different stackings, namely AA and
AB or Bernal stacking. Bernal stacking has been experimentally observed to be the
preferred stacking arrangement for Bilayers. Electronic structures of both AA and
AB stacked BLGs were studied by Schwingenschlögl et al. [9] and Saito et al. [11].
These density functional studies [9] on bilayer graphene showed that the interlayer
distance after optimisation for AA is 3.6 Å and for AB is 3.4 Å. In AA stacking, the
Dirac point is split into two points slightly away from the K point and in AB stacking,
an overlap of the valence band and conduction band is seen at the K point, with the
dispersion around the K point being parabolic as opposed to linear in monolayer
graphene. Interestingly, BLG show semi-metallic nature in both the AB and AA
stacking.

The effects of dopants on the structures and electronic properties of BLG have
also been studied [9, 11]. The electronic band structures indicate the boron-doped
BLG with characteristics of p-doping and nitrogen-doped BLG with n-doping, with
a band gap opening. Saito et al. [11] also studied the effect of dopant position in
the AB stacking, substituting the dopant atom in each of the non-equivalent sites
on the upper layer. All these studies demonstrate doping of BLG as an effective
way, not only to open the band gaps, but also to tune the magnitude of the band
gaps. Furthermore, it has been previously reported that graphene is sensitive to the
adsorption of gas molecules and many reports exist on the application of graphene
and doped-graphene based systems for the developments of sensors and other nano-
electronic devices [12–14]. The bilayer and multi-layered graphene have not been
under much of this rapid development till recent times except for few studies.

2 Adsorption of Small Gas Molecules on Un-Doped
and Doped BLG

There has been a huge interest in the recent years on adsorption and sensing of
small gaseous molecules, especially atmospheric pollutants, on un-doped and doped
bilayer graphene, owing to the variety of applications that they may offer [15–22]. It
is observed in a Density Functional Theory (DFT) study of the effect of F2 adsorption
on the properties of Bilayer Graphene, by Shayeganfar [15], that the geometry of
the F2 adsorption could tune the induced band gap in BLG. Henrard et al. [16]
investigated the binding energies and electronic properties of F2 adsorption on the
upper single layer of BLG. It is found that the binding energy of adsorption of F
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atoms depend on the sub lattice of the carbon atoms bonded with the fluorine atoms.
Briddon et al. [17] studied the effect of water and ammonia molecules on bilayer
graphene using DFT with Local Density Approximations. The binding energies of
both ammonia and water on one of the layers of the bilayer graphene are found to be
lesser than that of monolayer graphene where the decrease in BE is attributed to the
sharing of electrons to the bottom layer. An electronic device using BLG has been
fabricated [18], to experimentally study the sensing properties of BLG for CO2 gas
at room temperature. The electronic transport in BLG was strongly affected by the
physisorption of CO2 gas molecules onto the surface.

Multiple competing stable configurations that depend on the arrangement of the
hydrogen atoms were found in the study of adsorption of hydrogen adatoms on
bilayer graphene is observed in a studied by Chetty et al. [19]. The interaction
of NO2 molecules with bilayer graphene, both free-standing and on a SiC (0001)
substrate was examined by Abrikosov et al. [20]. The binding energy values with
and without substrate being considered were similar, with the free-standing bilayer
having a higher BE of -114meV. Band structures of the free-standing BLG after NO2

adsorption showed p-doping character, with the Dirac point shifting above the Fermi
level by 0.18 eV. It is seen that the substrate plays an important role in the properties of
the system andmust be taken into consideration for applications involving sensing of
gases using BLGs. There have also been a few investigations of adsorption on doped
BLG. Saito et al. [21] employed a DFT approach to study the effects of p- and n- type
doping of bilayer, on adsorption of toxic gases (CO, CO2, NO, NO2). Low binding
energies show that all the four gas molecules are physically adsorbed on nitrogen
doped BLG. For boron doped bilayer, CO and CO2 are physisorbed whereas NO and
NO2 molecules are chemically bound to the boron atom in the bilayer. Dai et al. [22]
studied the performances of Fe doped bilayer graphene to study the adsorption gases
such as NO, CO, HCN and SO2. All the gas molecules were chemically adsorbed
onto the BLG with a charge transfer from the Fe atom to the gas molecule.

The focus in the current article is on the adsorption of ammonia molecule onto
undoped and boron doped bilayer graphene systems and the subsequent effect of
the interactions on the measurable properties of the system. The effects of external
parameters such as substrates and doping on the interactions are covered. In this
article,we consider the adsorption of ammoniamolecule ongraphene bilayer surfaces
doped with different mole fractions having different patterns.

3 Computational Methodology

All the density functional theory (DFT) calculations are done using VASP [23] with
the projector augmented wave (PAW) [24] basis sets and periodic boundary condi-
tions [25]. The generalized gradient approximation (GGA) [26] with the Perdew-
Burke-Ernzerhof (PBE) [27] exchange–correlation functional is used, and the plane-
wave cut-off energy is set as 520 eV in the calculations. The simulated system
consists of a 4 × 4 graphene supercell bilayer with 64 carbon atoms with a doped
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atom substituting a carbon atom in the top layer and a single NH3 molecule above
the layer. van der Waals correction of DFT-D3 BJ damping [28] is used. The dopant
concentrations that are considered are 1.56%. 3.12, 4.68%. The supercell extended
for more than 18 Å in the direction normal to the graphene surface, in order to
avoid the intervention between the images. In the geometrical structure optimization
and self-consistent calculation, the Brillouin zone is sampled using a 12 × 12 × 1
Monkhorst–Pack k-point grid [29] andMethfessel-Paxton smearing of 0.2 eV, which
is tested to give converged results for all the properties calculated. Atomic positions
are optimized until the maximum force on any ion is less than 0.02 eV/Å for all
systems.

The binding or the adsorption energy is the most important physical quantity to
reflect the adsorption strength and is calculated following Eq. (1):

Ead = Egas+BLG − EBLG − Egas, (1)

where Egas+BLG, EBLG and Egas are the total energies of the adsorbed system, isolated
BLG and the gas molecule, respectively. The negative values of the energy imply
affinity to the surface and vice versa. Charge transfer�ρ betweenNH3 and the bilayer
system is calculated following Bader charge analysis [30]. For the adsorbed systems,
�ρ can be calculated as the charge variation of gas molecules before and after the
adsorption, as below,

�ρ = ρ(gasmolecule+ surface) − (ρ(surface) + ρ(gasmolecule)). (2)

4 Results and Discussions

We have considered adsorption on doped AB stacked bilayer graphene surface,
where different doping patterns and mole-fractions are investigated. AB stacking
is preferred for all calculations due to the stability over the AA stacking. In order to
check the validity of the simulations, a proper referencing is made with the previous
results of un-doped bilayer and single boron atom doped bilayers and compared the
results with the existing results [7, 9, 11]. Both the calculations showmatching results
with the previous studies [9, 11], and the calculated band structure for the single atom
doped bilayer with the mole fraction 1.56% is comparable to that made by Schwin-
genschlögl et al. [9]. The results, the band structures and the corresponding density
of states on un-doped BLG and singly doped BLG are given together in Fig. 1.

The interlayer distance for the intrinsic bilayer is found to be3.4Å forABstacking,
which is in accordance with the experimental results [31]. These values are modified
by the presence of dopant atoms for the concentrations considered in this study, and
an in-plane lattice parameter of ~ 2.5 Å is observed for all the doped surfaces. The
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Fig. 1 The calculated band structure and the corresponding density of states of a intrinsic bilayer
and b doped bilayer graphene in AB stacking with 1.56% boron depicted as 1B-AB

different configurations studied with two different mole fractions of doping 3.12 and
4.68% are shown in Fig. 2.

Two concealed Dirac cones can be seen at the K point in Fig. 1b, which can be
attributed to the layers doped with B (unoccupied cone) and the bare graphene layer
and a band gap of 0.28 eV is observed. Such buried cones are also visible for the other
configurations in the band structures in Fig. 3, for the different surfaces mentioned
in Fig. 1. The energetically favourable distance of ~ 2.5 Å indicates favourable π-π
interactions between the layers. The electronic band structure of theminimum energy
configurations shown in Fig. 3, indicates that the occupation of the various sub-lattice
positions have no influence on the band gap observed, unlike doping in the case of
single layered graphene [12]. The parabolic bands can be seen in the vicinity of the
Fermi energy, as expected for AB stacked bilayer graphene for all the cases. The
band gaps corresponding to these different configurations of BLG are given in Table
1.

It is seen that the band dispersions are not very much affected, except in the case
of certain configurations, and doping in moderate concentrations lead to a band gap
of about 350 meV, on which adsorptions are studied. The B-doped graphene systems
possess holes in the valence bands and are p-type materials on which ammonia with
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Fig. 2 Optimized geometries of doped bilayer structures, depicted with the notations a b-AB b
d-AB c e-AB and d f-AB. b-AB corresponds to the dopant concentration of 3.12% and all other
configurations (b)–(d) correspond to 4.68%

its lone pair of electrons adsorbs strongly. The results of the adsorption of ammonia
on these surfaces are summarised in Table 2.

It is interesting to note that the adsorption energies of NH3 on some of the boron-
doped bilayer graphene, for example on the ‘d-AB’ and the ‘e-AB’ surface are
strong and the adsorption energies and charge transfers correspond to that of typical
chemisorption. On the other hand, on all other configurations, it is only physisorbed
with negligible charge transfer and adsorption energies. The difference in the adsorp-
tions can be explained in terms of charge differences occurring in various substrates.
In the configurations where it is chemisorbed, boron atom are much more electron
deficient than in the other patterns and therefore forms a bond with nitrogen of
ammonia. The B–N distance in this case is of the order of 1.66Å, which falls in the
typical range of B-N single bond distance. Similar adsorption has also been observed
for ammonia adsorption on doped carbon nanotubes [32].

The electronic structure of these adsorption studies is summarised in Fig. 4 where
the structures are shown alongside the electronic band diagram and the corresponding
density of states. It is interesting to note that the electronic band gaps change by
few meV for the cases of strong chemisorption while remaining unaltered for the
physisorptions. Though these are not appreciable, these changes are expected to
cause changes in transport properties. The adsorption energies are appreciable for
the NH3/d-AB and NH3/e-AB and is of the order of -1 eV. The density of states of
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Fig. 3 Band structures of stable BLG structures a b-AB b d-AB c e-AB and d f-AB

Table 1 Band gap and the optimised interlayer distanced for graphene bilayer surfaces with dopant
of different concentrations and patterns

System Band gap
(eV)

D
(Å)

1B-AB 0.28 2.68

b-AB 0.34 2.65

d-AB 0.35 2.71

e-AB 0.38 2.71

f-AB 0.12 2.37

D is the interlayer distance after optimisation

ammonia shown in red indicates that there is a shift to lower energy for two of the
bands. In order to understand the chemisorptive behaviour, this is further analysed.

Analysing the density of states corresponding to the case where chemisorption
is observed in the case of surfaces d-AB and e-AB, orbital hybridization happens
between the ‘2a1’ orbital, which is a non-bonding p orbital on nitrogen of ammonia
and the p orbital on boron. In Fig. 5, the density of states corresponding to ammonia
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Table 2 Adsorption energies, favourable distances and the band gaps for the different systems

System (1Ea) (eV) D1 (Å) D2 (Å) Band gap (eV)

NH3/1B-AB −0.046 2.59 3.2 0.26

NH3/b-AB −0.222 2.59 3.4 0.31

NH3/d-AB −0.989 2.9 1.66 0.28

NH3/e-AB −1.012 2.95 1.66 0.16

NH3/f-AB −0.284 2.62 3 0.12

1Ea is the adsorption energy of bilayer graphenes; D1 is the distance between two layers after
optimisation; D2 is the distance between adsorbate and adsorbent

before and after the adsorption on the surface type ‘d-AB’ is shown. Before adsorp-
tion, (represented by black line) it shows three peaks corresponding to the three
molecular orbitals of ammonia and after the adsorption (blue line) the peak near
the Fermi disappears. The peak near the Fermi corresponds to ‘2a1’ orbital which
is the HOMO, non-bonding p orbital of nitrogen and is occupied. The absence of
this peak corresponding to 2a1 in (d) and (e) in Fig. 4 shows that the chemisorption
takes place with the mixing of this non-bonding orbital and the p- orbitals of the
electron deficient boron to form the bond. For comparison, the electronic structure
corresponding to un-doped bilayer, doped bilayer and adsorption of ammonia are
drawn together in Fig. 6. The changes in the band gap are visible from this plot, and
there is loss of dispersion after the adsorption.

The software, VESTA (Visualization for electronic and structure analysis) [33]
is used to extract and visualise useful information on the electronic structure and
charge transfer contours from the first-principles calculations. The contour plots of
the electronic charge density of the valence and conduction bands of NH3/d-AB are
shown in Fig. 7. To understand the bond formation of B-N bonds further, the electron
density contour plots are constructed. The plane hkl (001) containing N-B-C bonds
are used, for various partitions of electronic charge densities of NH3/d-AB.

The charge density difference between the adsorbed complex, the surface and the
gas molecule NH3 is calculated using Eq. 2, and is plotted in Fig. 7 in two different
outlooks (a) and (b), to see the changes due to adsorption. The electronic changes
due to ammonia adsorption is clear from the difference density plot. The charge
density reorganization takes place due to chemisorptive adsorption. It is possible to
see electron deficient regions in the immediate proximity of boron atoms compared
to the rest of the surface. The red colour from the figure represents nitrogen with
high charge density, yellow iso-charge surfaces represent 2.24e-05 e/Å3 of charge
accumulation, and the bottom cyan colour shows 0.023 e/Å3 charge depletion on
the graphene surface. Moreover, due to the charge accumulated around the nitrogen,
it is attracted towards the charge deficient region (cyan iso-surface, i.e. boron of
graphene bilayer iso-surface) adding to the energetic preference of nitrogen to bond
with the particular boron which is AB stacked to the bottom layer. Here, the valence
charge (cyan) around boron atoms is attracted towards the nitrogen atom (from the
cyan toward the yellow iso-charge surface), resulting in the formation of a covalent
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Fig. 4 The band structures and respective density of sates for different bilayer systems studied with
ammonia as adsorbate a NH3/G-AB (Ammonia on un-doped AB stacked BLG) b NH3/1B-AB c
NH3/b-AB d NH3/d-AB e NH3/e-AB f NH3/f-AB. The partial density of states for ammonia for
these adsorption processes are shown in red
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Fig. 5 Total DOS of ammonia before and after adsorption on surface d-AB of bilayer graphene.
The absence of the blue peak near Fermi indicates the orbital hybridization

Fig. 6 Band Structures of geometry with doped monolayer, doped and with ammonia as adsorbate
respectively a G-AB b d-AB c NH3/d-AB

bond. The bonding states of B–N bonds are on top of the valence bands. The figure
shows that the concentration of charge is distributed among the carbon atoms that
are adjacent to borons or have formed bonds with borons.

5 Conclusion

Graphene bilayer and its doped derivatives clearly show favourable properties
towards adsorption of gases, and correspondingly, show potential for the develop-
ment of gas sensor devices. As has discussed in the article, the doping with moderate
concentrations and adsorption of ammonia on BLG show specific changes in the
electronic properties. The electronic structure for doped systems indicates a band
gap opening for the semi-metallic bilayer and adsorption is favoured on some of
the surface patterns. This could lead to unique dopant combinations for the sensing
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Fig. 7 Electron charge density contour map of ammonia adsorption on the surface d-AB (NH3/d-
AB) a contour plot and b the bird eye view perspective

of various specific gases. Controlling of adsorption parameters by use of dopant
concentrations and varied configurations are observed and can be a key factor in the
development of devices to improve the gas sensing performance.

Overall, the future of bilayer graphene and its derivatives in the field of gas adsorp-
tion and sensing seems promising and could also potentially extend to the storage
and capture of gases. Much effort remains to be done, in understanding the effect of
dopants towards the adsorption of various non-toxic gases such as NH3, CH4, H2O,
H2 andO2. Advancements for the practical applications of these chemically modified
bilayers include its prospective, potential application in the sensing of pollutants like
ammonia.

Acknowledgements Andru Sahithi thanks the support from Birla Institute of Technology and
Science, Hyderabad, campus in the form of scholarship.
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Design and Analysis of Complex
Computer Models

Jeevan Jankar, Hongzhi Wang, Lauren Rose Wilkes, Qian Xiao,
and Abhyuday Mandal

Abstract This chapter presents a review of some state-of-the-art statistical tech-
niques for analyzing real computer experiments which play a significant role in
various scientific research and industrial applications. In computer experiments,
emulators (i.e. surrogate models) are often used to rapidly approximate the out-
comes and reduce the computational expense. Gaussian process (GP) models, also
known as Kriging, are a common choice of emulators, and optimal experimental
designs should be used to improve their accuracy. Specifically, space-filling designs
are widely used in the literature, which proved to be efficient under GP models.
In this chapter, we review different types of GP models as well as various kinds
of space-filling designs. We further provide a practical tutorial on how to construct
space-filling designs and fit GP emulators to analyze real computer experiments.

Keywords Computer experiments · Gaussian process models · Space-filling
designs · Latin hypercube designs

1 Introduction

A computer experiment is a system of complex computer codes simulating a phys-
ical process. They are implemented like a function, taking inputs to produce the
outputs. This automation can reduce the cost, time, and/or management compared
to a traditional lab experiment (see, for example, [20]). Computer experiments are
often deterministic (specified inputs will always produce the same output), making
the results more stable and less prone to random errors compared to traditional lab
experiments. Researchers can manipulate the code to systematically adjust a wide
range of inputs and generate outputs based on what they are trying to study. They
are instrumental in cases where a physical experiment would be impossible, such
as modeling black holes [29]. Due to these characteristics, computer experiments
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become very popular in various scientific research and industrial applications (see,
for more examples, [12, 20]). For example, [8] created a 3D mixed finite element
model to study flexoelectric material. The Flexoelectric Effect is where strain gra-
dients polarize electric fields. This process is complicated to study, especially in a
practical context, so the finite element method is a numerical approach, i.e. computer
experiment, used to study this effect. Mixed finite elements simplify this task further
using an alternative way of handling higher order derivatives.

Computer experiments are often computationally intensive, though computing
power has increased in recent years. To rapidly generate many outcomes and reduce
the computational expenses, emulators (i.e. surrogate models) are needed which are
often fitted with only a few data points. Emulators should also allow uncertainty
quantification to measure how accurate the model is for predictions. If a good emu-
lator is selected, it may be more useful than the underlying physical process as it
eliminates noise. The Gaussian Process (GP) model is a widely used emulator [20,
43]. The GP assumes all observations following a multivariate normal distribution,
which is characterized by a mean vector μ and a covariance matrix�. The GPmodel
would interpolate the observations, which is desirable for computer experiments hav-
ing deterministic outputs. It also allows for accurate uncertainty quantification. By
specifying different types of covariance functions, researchers may further add prior
knowledge about the shape of the response surface.

The GP model has been applied to many computer experiments in Chemistry,
Computational Biology, Robotics and others [30]. As an illustration, it has accu-
rately simulated the collision dynamics of complex molecules [6], the spread of
COVID-19 [52], flagging suspicious Internet claims [63] and autonomous learning
in robots [7]. Data scientists at Microsoft introduced a framework that enables the
application of GP models to data sets containing millions of data points [23]. As
pictured in Fig. 1, a Bayesian framework is used for human body pose tracking [10].
Instead, a GP experiment can be used to take in a description of a human silhou-
ette as inputs and outputs to identify human pose [68]. One useful application of
GP in Astronomy is modeling the collision of two black holes. Researchers cannot
create black holes to observe and experiment with, so computer experiments offer
a veritable way to simulate the outcome of black hole collisions. Figure2 illustrates

Fig. 1 An example of Bayesian framework for human pose tracking Source https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC3292173/ [68]

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292173/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292173/
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Fig. 2 Computer simulation of two black holes colliding Source https://www.black-holes.org/
code/SpEC.html

that computer models and GP emulators are created based on the known properties
of black holes and the surrounding system of space and are compared to naturally
observed black hole movement in order to test how accurate they are [58]. Another
interesting application of GP is on car crash simulation to study the damage on the
car. Here, models are validated by comparing simulation results with an actually
controlled crash. Figure3 depicts some results from a finite element method.

Fig. 3 An example of Gaussian Process experiment in car crash simulation Source https://www.
csm.ornl.gov/SC98/car.html

https://www.black-holes.org/code/SpEC.html
https://www.black-holes.org/code/SpEC.html
https://www.csm.ornl.gov/SC98/car.html
https://www.csm.ornl.gov/SC98/car.html


18 J. Jankar et al.

The remainder of this chapter is organized as follows. In Sect. 2, we systemati-
cally review the GP models. Specifically, we discuss the ordinary and universal GP
in Sect. 2.1, their model estimations and uncertainty quantification in Sect. 2.2 and
methods for including qualitative inputs in Sect. 2.3. In Sect. 3, we review popular
experimental designs used in computer experiments, and we conclude this chapter
in Sect. 4.

2 The Gaussian Process Model

In this section, we aim to understand GP as a flexible nonparametric regression for
surrogate modeling in computer experiments. GP is widely used in many statistical
and probabilistic modeling enterprises. GP is a very generic term, and all it means
is that any finite collection of realizations is modeled as having a multivariate nor-
mal (MVN) distribution. That means, a finite collection of n observations can be
completely characterized by their mean vector μ and covariance matrix �.

Let y(xi) be the output which is assumed to be a deterministic real-valued function
of the d-dimensional variable xi = (xi1, . . . , xid)

T ∈ D ⊂ �d , for i = 1, 2, . . . , n.
Let (Yx)x∈D be a square-integrable random field and y be a realization of (Yx)x∈D .
LetX = {x1, . . . , xn} be the points where their responses have been observed, which
is denoted by y = (y(x1), . . . , y(xn))T . The aim of GP is to optimally predict Yx by
a linear combination of the observations y, for any x ∈ D.

2.1 Model Formulation

Ordinary GP, also known as ordinary Kriging, has the form

y(xi) = μ + Z(xi), (1)

where μ is the mean vector and Z(xi) is a GP such that Z(xi) ∼ GP(0,σ2�).
In the above model, Z(xi) is GP with zero mean, and the covariance function
φ(·) = σ2�(·|θ), where θ = (θ1, . . . , θd)

T is the vector of unknown correlation
parameters with all θk > 0 (k = 1, . . . , d) and � is a stationary correlation func-
tion that determines the correlation between inputs with parameters θ. The mean of
the GP controls the trend, whereas the correlation function controls the smoothness
of its sample paths. Power-exponential, Gaussian and Matérn correlation functions
are the most widely used ones in the literature.

In the power-exponential correlation structure, the (i, j)th element in the corre-
lation matrix is defined as follows:
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�
(
xi , x j | θ

) =
d∏

k=1

exp
{−θk

∣
∣xik − x jk

∣
∣pk} for all i, j, (2)

with two inputs xi = (xi1, . . . , xid)
T and xj = (

x j1, . . . , x jd
)T

and smoothness
parameters p1, . . . , pd , which lie between 0 and 2, with 0 giving the most rough
results and 2 giving the most smooth. If we take pk = 2 for all k = 1, . . . , d, then it
results in the popular Gaussian correlation function:
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exp
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−θk

∣
∣xik − x jk
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for all i, j. (3)

The correlation functions of Matérn family is given by

�(h | θ) =
d∏

k=1

1

�(v)2v−1

(
2
√

v |hk |
θk

)v

Kv

(
2
√

v |hk |
θk

)
, (4)

where v > 0 is a smoothness parameter, �(·) is the Gamma function and Kv(·) is the
modified Bessel function of order v. Two commonly used orders are v = 3/2 and
v = 5/2.

Different correlation functions mentioned above impose different characteristics
for function draws, allowing for different properties when modeling computer mod-
els. For example, when using the power-exponential function, all sample paths are
infinitely differentiable when pk = 2. For the Matérn correlation function, when we
have d = 1, all sample paths are �v� − 1 differentiable. Hence, v is viewed as a
smoothness parameter.

In the literature, two important assumptions are often imposed on the ordinary GP
model to effectively analyze computer experiment. One assumption is that the GP
is separable [9], which means finite-dimensional distributions can determine sample
path properties of function draws which are usually infinite-dimensional. The sec-
ond important assumption is that the model is stationary. Consider {x1, . . . , xn} ∈ D
and any h ∈ �d , then a GP model is said to be stationary if the random vectors
(Y (x1), . . . ,Y (xn)) and (Y (x1 + h), . . . ,Y (xn + h)) follow the same distribution.
This means that both these random vectors should have the same mean and covari-
ance.

The second assumption is restrictive, and we may need more flexibility while
modeling computer experiments. One popular approach is to extend the above ordi-
naryGPmodel to incorporate a global trend function for themean part. This extended
model is known as Universal Kriging which has the form:

y(x) = μ(x) + Z(x), (5)

with μ(x) = f(x)Tβ = ∑m
s=1 βs fs(x), where f is a m-dimensional known function

and β = (β1, . . . ,βm)T is a vector of unknown parameters. The idea is to rely on
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functions in f(x) to de-trend the process and thenmodel any residual variation as zero
mean stationary GP. Taking constant mean f(x) ≡ 1 results in the ordinary GPmodel
discussed above. The stationary correlation functions discussed above in Eqs. (2) and
(4) can also be applied here, that is,

Cov (Z(x + h), Z(x)) = σ2�(h),

where correlation function �(h) is a positive semidefinite function with �(0) = 1
and �(h) = �(−h).

2.2 Estimation and Uncertainty Quantification

In this section, we present equations used for predicting and quantifying uncertainty
on y(x) given observed responses y = (y(x1), . . . , y(xn))T . The question we are
trying to answer is: given examples of function in pairs (x1, y(x1)), . . . , (xn, y(xn)),
what random function realizations could explain or could have generated those
observed values? In other words, we want to calculate the conditional distribution
(Y (x1), . . . ,Y (xn)) |{(x1, y(x1)), . . . , (xn, y(xn))}.

Beforewecalculate thepredictive distribution,weneed to address the keyquestion
of how the parameters β,σ2 and θ are estimated from the data (xi , y(xi ))ni=1. The
most popular approach for parameter estimation is maximum likelihood estimation,
and the log-likelihood function under the above assumed GP model can be written
as

l
(
β,σ2,θ

) = −1

2

[
n logσ2 + log det�θ + 1

σ2
(y − Fβ)�−1

θ (y − Fβ)

]
, (6)

where det�θ is the determinant of the matrix �θ = [
�(xi, xj)

]n n

i=1 j=1 and F =
[ fs(xi)]n m

i=1 s=1. Hence, the MLEs for (β,σ2,θ) are the parameter estimates that
maximize the above log-likelihood function. ML estimates of (β,σ2) for fixed value
of θ can be easily obtained as follows:

β̂θ = (
FT�−1

θ F
)−1

FT�−1
θ y (7)

and

σ̂2
θ = 1

n

(
y − Fβ̂θ

)T
�−1

θ

(
y − Fβ̂θ

)
. (8)

Substituting these ML estimates back into Eq. (6), we get the profile likelihood
function as follows:
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l
(
β̂, σ̂2,θ

)
= −1

2

[
n log σ̂2 + log det�θ + n

]
, (9)

where the MLE of θ is one that maximizes the above function in Eq. (9). This
optimization problem does not enjoy a closed-form solution, so numerical methods,
e.g. quasi-Newton algorithms [40] are used for solving the problem.

Once we have estimates of parameters, we can calculate the conditional distri-

bution as mentioned above. Let
(
β̂, σ̂2, θ̂

)
denote the ML estimates of unknown

parameters for the given GP model. Then for a new input x∗ ∈ �d , the mean and
variance of random variable Y (x∗|y) are as follows:

ŷ
(
x∗) = E

[
Y

(
x∗) | y] = fT

(
x∗) β̂ + rT
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(
x∗) �−1

θ̂
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)
, (10)
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(
x∗)2 = Var

[
Y

(
x∗) | y] = σ̂2

(
1 − rT

θ̂

(
x∗) �−1

θ̂
rθ̂

(
x∗)

)
, (11)

where the covariance vector rθ̂ (x∗) = [
�θ̂ (x∗, x1) ,�θ̂ (x∗, x2) , . . . , �θ̂ (x∗, xn)

]T
.

When some observed data points are very close to each other, the covariance
matrix �θ̂ may become nearly singular, making it difficult to obtain a stable inverse
matrix �−1

θ̂
. This is a common issue for GP models, when the run and/or factor sizes

are large. One way to deal with this problem is to add a positive scalar λ, called the
nugget parameter, to the diagonal elements in �θ̂, i.e. replacing �θ with �θ + λI,
where I is an identity matrix. Adding λ is analogous to adding the ridge parameter
in ridge regression, which helps in moving the smallest eigenvalue of �θ away from
zero, thus stabilizing the calculation of its inverse.

For large data sizes, the estimation of GP models can be very time-consuming,
mainly due to thematrix inverse calculationof orderO(n3). Todealwith this problem,
[21] proposed a localizeGP (LaGP) approach.Based on a local subset of the data, they
provide a family of local sequential design schemes that defines the support points
of a GP predictor. The idea is to make sure that for a given choice of covariance
structure, the data points far from the target location x∗ will have little effect on
the prediction. Hence, it is not unwise to calculate the inverse of the full covariance
matrix, as the elements corresponding to “far away” points will contribute very little
to predicting y(x∗). Interested readers may refer to [21] for further details.

The notion of calibration and sensitivity analysis is important in the context of
physical and computer experiments. In practice, we only observe response yField
instead of observing real physical response yReal . And, we use the above computer
models to approximate yReal as yModel . Now, as we saw in the earlier sections apart
from input variables, computer models also use some more parameters known as
calibration parameters to fine-tune the model. Covariance parameters θ are one such
example of calibration parameters. A Bayesian framework was proposed by [28] to
address this as follows:
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yReal(x) = yModel(x,θ) + b(x)

yField(x) = yModel(x,θ) + b(x) + ε,

where b(x) is a bias and ε is the normal error. Reference [28] used Bayesian methods
to estimate the bias correction function and unknown calibration parameter θ under
a GP prior. Iterative history matching algorithm as one proposed by [53] for calibrat-
ing a galaxy formation model called GALFORM is an alternative to this Bayesian
approach. Recently, [1] used this algorithm for calibrating hydrological time-series
models.

2.3 GP with Qualitative Inputs

The above-mentioned GP model is valid only with quantitative inputs, but there are
many situations in real life where inputs can be both quantitative and qualitative.
One straightforward way to adapt GP models with qualitative inputs is to construct
separate GP models for each level combination of the qualitative factors. Yet, when
there are many high-level qualitative factors, such an approach would require many
observations to fit a large number of GP models. In the current literature, many
integrated GP models for both quantitative and qualitative factors are proposed [22,
41, 50, 65, 66].

Reference [60] proposed a new method called EzGP to deal with such prob-
lems. Let the kth input of the computer emulator be wk = (

xTk , zTk
)T
, where xk =

(
xk1, . . . , xkp

)T
is the continuous part of input as mentioned in the previous sec-

tions and zk = (
zk1, . . . , zkq

)T ∈ N
q is the qualitative part of the input, where

k = 1, . . . , n. The EzGP method is inspired by the idea of Analysis of Variance
(ANOVA) where quantitative and qualitative inputs are jointly modeled as follows:

y(w) = μ + Zz(x), (12)

which suggests that for any given level combination of qualitative factors, y(w) is a
GP. Specifically, they considered the following additive model structure:

Zz(x) = Z0(x) + Zz(1) (x) + · · · + Zz(q) (x), (13)

where Z0 and Zz(h) for h = 1, . . . , q are independent GPs with mean zero and some
covariance functions.Here, Z0 plays the role of baseGPwhich takes only quantitative
inputs reflecting the intrinsic relation between y and x, and other GPs Zz(h) are the
adjustments made to the base GP to reflect the impact of each qualitative factor z(h)

for h = 1, . . . , q. The EzGP method can easily deal with heterogeneity in computer
modelswithmultiple qualitative factors. Twovariants inEzGPare proposed to fit data
with high dimensionality or large run sizes, which can achieve high computational
efficiency.
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3 Designs for Computer Experiments

Computer codes generate outputs in a deterministicmanner in computer experiments,
meaning the same input returns the same output (no random errors). Latin hypercube
designs (LHDs, [38]) are the most popular experimental designs in computer exper-
iments. An n runs and k factors LHD is an n × k matrix with each column being a
random permutation of numbers 1, . . . , n. LHDs do not have replicates in each one-
dimensional projection. There are various types of optimal LHDs for practical needs,
including space-filling LHDs, maximum projection LHDs and orthogonal LHDs.

When we have little or no information about the response surface, it is desirable
to have design points as scattered out as possible in the design space for better explo-
ration. Despite LHDs having a uniform one-dimensional projection property, random
LHDs may have poor space-filling properties over the entire design space. Figure4
is an illustrative example with two LHD designs. The LHD in the left panel is con-
centrated almost entirely on the diagonal, which clearly does not explore the input
space sufficiently. The design points in the right panel are scattered out over the entire
design space, so this design may provide more reliable information. The maximin
distance criterion [25] is a widely used metric for measuring the space-filling prop-
erty of LHDs. It aims to maximize the minimum distances between design points.
LetX denote an LHDmatrix, where the Lq -distance between two runs xi and x j ofX
is given by dq(xi , x j ) = {∑m

k=1 |xik − x jk |q
}1/q

, where q is an integer. Two popular
choices are q = 1 (i.e. the Manhattan distance) and q = 2 (i.e. the Euclidean dis-
tance). The maximin Lq -distance design has the maximized minimum Lq -distance,
i.e. maxmin dq(xi , x j ), where 1 ≤ i < j ≤ n. Reference [24, 39] further proposed
a scalar value to evaluate the maximin distance criterion:
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Fig. 4 Latin hypercube designs for size n = 5 and k = 2
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φp =
{ n−1∑

i=1

n∑

j=i+1

dq(xi , x j )
−p

}1/p

, (14)

where p is a tuning parameter. As p → ∞, the φp criterion in Eq. (14) is asymptot-
ically equivalent to the Maximin distance criterion, and p = 15 is usually sufficient
in practice. The LHDs that minimize the φp criterion are called the maximin distance
LHDs.

In the literature, both algebraic constructions [56, 67] and search algorithms [3,
24, 27, 31, 32, 39] are proposed to constructmaximin distance LHDs.Algebraic con-
structions usually require very little computational cost to generate optimal LHDs,
which are very attractive for large design sizes. Yet, they are only available for cer-
tain design sizes. Search algorithms can generate optimal designs of flexible sizes,
but they often require more computation resources to identify optimal LHDs. As
there are (n!)k−1 possible LHDs with n runs and k factors, search algorithms could
become very costly when n and k are large. Here, wewill briefly survey some popular
construction methods; see [55] for a survey.

Specifically, [56] proposed to generate maximin distance LHDs via good lat-
tice point (GLP) sets [67] and Williams transformation [59]. They proved that the
resulting designs of sizes n × (n − 1) (with n being any odd prime) and n × n (with
2n + 1 or n + 1 being odd prime) are optimal under the maximin L1-distance crite-
rion. The construction method starts by generating a GLP design, and then use the
Williams transformation [59] to improve a linear permuted GLP design. Reference
[51] proposed to construct orthogonal array-based LHDs (OALHDs) from existing
orthogonal arrays (OAs). The key idea of this construction is to deterministically
replace OA entries with a random permutation of LHD elements. OALHDs inherit
the properties of OAs and tend to have better space-filling properties compared to
random LHDs. Note that the design sizes of OALHDs rely on the existence of cor-
responding OAs.

Search algorithms should be used to generate optimal LHDswhen no construction
methods are available. Reference [39] proposed a simulated annealing (SA) algo-
rithm, which randomly exchanges elements to seek improvements over iterations to
identify global best LHDs. Following the work of [39] and [51], [31] proposed to
construct orthogonal array-based LHDs (OALHDs) using the SA algorithm. They
proposed to exchange elements that share the same original OA entry randomly.
Reference [27] proposed a multi-objective criterion and developed a modified SA
algorithm to generate optimal LHDs having good space-filling properties as well as
orthogonality. This algorithm can lead to many good designs, but it is often compu-
tationally heavy, since it calculates all average pairwise correlations and row-wise
distances at each iteration. Besides these SA-based algorithms, [32] proposed to use
a genetic algorithm (GA) for searching optimal designs, which focuses on global
best by exchanging random columns between global best and other candidate solu-
tions. In addition, [3] proposed a version of the particle swarm optimization (PSO)
algorithm by gradually reducing the Hamming distances between each particle and
its personal best (or the global best). Generally speaking, the PSO is recommended
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for small design sizes (n ≤ 7) and the GA has better performance for moderate and
large design sizes.

Uniform designs (UDs) [11, 13] are another popular type of space-filling designs.
There are various measurements of uniformity proposed in the literature, such as
the star L2-discrepancy [57], modified L2-discrepancy [14] and the centered L2-
discrepancy [15]. The search algorithmsmentioned above can be used for identifying
UDs.

Maximin distance LHDs have space-filling properties in the full-dimensional
space, but their two to k − 1-dimensional projectionsmay not be space-filling. Refer-
ence [26] proposed the maximum projection LHDs (MaxPro LHDs) which enhance
the space-filling properties in all possible dimensional projections. Analogous to
[39], [26] defined the maximum projection criterion as

min
X

ψ(X) =
{

1
(n
2

)
n−1∑

i=1

n∑

j=i+1

1

�k
l=1(xil − x jl)2

}1/k

. (15)

LHDs that minimize the ψ values are called MaxPro LHDs. Reference [26] pro-
posed an SA-based search algorithm to identify MaxPro LHDs.

Orthogonal LHDs (OLHDs) are another type of optimal LHDs which aim to
minimize the correlations between factors [16, 45, 48]. Twocorrelation-based criteria
are often used to measure designs’ orthogonality: the average absolute correlation
criterion and the maximum absolute correlation criterion [16], which are defined as

ave(|q|) = 2
∑k−1

i=1

∑k
j=i+1 |qi j |

k(k − 1)
and max |q| = max

i, j
|qi j |, (16)

where qi j is the correlation between the i th and j th columns in the design matrix.
Orthogonal designsmay not exist for all sizes. In practice, designswith small ave(|q|)
or max|q| are preferred.

In the literature, construction methods of OLHDs are widely explored. Specifi-
cally, [62] proposed a method to construct OLHDs with run sizes n = 2m + 1 and
factor sizes k = 2m − 2,wherem is any integer no less than 2.Reference [5] extended
the work of [62] to accommodate more factors. Reference [45] developed a method
based on factorial designs with group rotations for n = 22

m
and k = 2mt , where

m is any positive integer and t is the number of rotation groups. Reference [47]
improved their earlier work [46] to construct OLHDs with even more flexible run
sizes: n = r2c+1 or n = r2c+1 + 1 and k = 2c, where c and r are any two positive
integers. Reference [61] proposed to use generalized orthogonal designs to construct
OLHDs and nearly orthogonal LHDs (NOLHDs) with n = 2r+1 or n = 2r+1 + 1 and
k = 2r , where r is any positive integer. Reference [17] proposed to take advantage of
orthogonal matrices and their full fold-overs for constructing OLHDs with n = 2ak
runs and k factors, where k is the size of orthogonal matrix and a is any positive
integer. Reference [2] implemented the Williams transformation [59] to construct
OLHDs with odd prime run-size n and factor-size k ≤ n − 1. Reference [33] pro-
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posed to couple OLHDs or NOLHDs with OAs to accommodate large numbers of
factors with fewer runs: n2 runs and 2 f p factors, where n and p are design sizes of
the OLHDs or NOLHDs and 2 f is the number of columns in the coupled OA.

4 Discussion

There are many instances in nature where it is either expensive or impossible to
conduct a physical experiment. For example, it is prohibitively difficult to conduct a
study for investigating the devastation caused by a nuclear explosion. Instances like
the formation of a galaxy or the formation of binary black holes cannot be studied
through physical experiments. Computer experiments can simulate such phenom-
ena with reasonable accuracy. Although such computer simulators are a lot more
desirable than real experiments, they are still computationally expensive. To deal
with this problem, scientists use surrogates (emulators) to facilitate the analysis and
optimization of complex systems. GPs are widely used as surrogates (or emulators).
Space-filling designs, such as LHDs, are often used to reap the benefits of utilizing
such surrogates effectively.

Several efficient packages in R are available for fitting the GP model and identi-
fying LHDs. Interested readers can explore different packages for fitting GP: Local
Approximate Gaussian Process Regression (laGP) by [19], DiceKriging (Kriging
Methods for Computer Experiments) by [42] and GP-fit (Gaussian Processes Mod-
eling) by [36]. For obtaining LHDs with flexible run sizes, packages like Latin
Hypercube Designs (LHD) by [54] and Maximin-Distance (Sliced) Latin Hyper-
cube Designs (SLHD) by [44] can be used.

Even though the computing power has increased dramatically over the last few
years, handling big data remains a challenging problem. There is an increasing body
of literature for computer experiments with large numbers of data points, but the
existing literature on large numbers of input variables is still meager. For details,
please refer to the review article by [35]. The problem of data reduction is an active
area of research among statisticians and computer scientists, and much progress
needs to be done in this area. Recent work on this includes techniques like kernel
handling [4] and support points [37].

Different Bayesian approaches for analyzing computer experiments have been
discussed in the literature, particularly in the context of uncertainty quantification,
but most of them are difficult to implement and time-consuming [18, 28]. To solve
this problem, we need more advanced techniques. Another topic of active research
is to incorporate qualitative input variables. Many practical applications have both
quantitative and qualitative inputs, e.g. the data center computer experiment [41]
and the study of high-performance computing systems [64]. However, traditional
GP modeling is designated for only quantitative inputs, since its covariance function
of responses is constructed under the continuous input space with proper distance
metrics. More effective techniques and algorithms need to be developed that can
accommodate qualitative inputs and one such recent work is [60].
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Finally, there is vast existing literature on continuous response, but there are many
instances where the response is binary or non-continuous. For example, binary black
hole formation [34] or computer experiments with binary time series have non-
Gaussian observations [49]. For handling high-dimensional input parameter space,
input variables with non-continuous characteristics and non-Gaussian observations,
new techniques and algorithms need to be developed.
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DNAMolecule Confined in a Cylindrical
Shell: Effect of Partial Confinement

Neha Mathur, Arghya Maity, and Navin Singh

Abstract To study the behaviour of DNA molecules during the encapsulation pro-
cess is a topic of intense research. In the present work, we investigate the stability
of the double-stranded DNA molecule of different lengths in a confined shell using
a statistical model. The DNA molecules of different lengths are confined in a cylin-
drical shell either partially or entirely. We consider cylinders of different sizes and
study the effect of the size of the cylinder on the microscopic details of the opening
of the base pairs.

1 Introduction

Deoxyribonucleic acid (DNA) is one of the interesting and complex biomolecules.
It is central to all living beings and contains the information needed for birth, devel-
opment, living and probably sets the average life. The average length of a DNA
molecule ranges from 2µm (viruses) to∼ 107 µm for more complex organisms [1].
It is an intense field of research to study the evolution of the molecule and how it
acquired the ability to store and transmit genetic information. The recent progress in
genomemapping and the availability of experimental techniques to study the physical
properties of a single molecule indeed made the field very active from both biolog-
ical and physical points of view. The genetic information of the entire organism is
coded in the sequence of four nucleotides which are named as Adenine (A), Guanine
(G), Cytosine (C) and Thymine (T). Soon after discovering the molecule’s structure,
people studied the stability of the DNAmolecule in a thermal ensemble. The disrup-
tion of double-stranded DNA into single-stranded DNA is known as DNA melting

N. Mathur · N. Singh (B)
BITS Pilani, Pilani campus, Pilani, India
e-mail: navin@pilani.bits-pilani.ac.in

N. Mathur
e-mail: p20180045@pilani.bits-pilani.ac.in

A. Maity
Harish Research Institute, Allahabad, India

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
R. Srinivas et al. (eds.), Advances in Computational Modeling and Simulation,
Lecture Notes in Mechanical Engineering,
https://doi.org/10.1007/978-981-16-7857-8_3

31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-7857-8_3&domain=pdf
mailto:navin@pilani.bits-pilani.ac.in
mailto:p20180045@pilani.bits-pilani.ac.in
https://doi.org/10.1007/978-981-16-7857-8_3


32 N. Mathur et al.

or denaturation. We can achieve the melting by changing the pH of the solution as
well as by pulling either of the strands by a mechanical device [2–4]. The research
is going on to use DNA molecules to develop molecular motors, biomedicines and
origami formations. In the gene therapy [5] and nanorobotics [6], DNA degradation
is a major challenge. It may be due to the chemical breakdown or due to mechanical
forces [7]. In gene therapy techniques, DNA is protected by a physical barrier. To
protect it from the damage, the DNA can be confined within gel [8, 9], polymeric
nanocapsules(micelles) [10] and microparticles. People across the globe are using
many elegant and versatile techniques to encapsulate DNA molecules [11].

It has been observed that during the complete process, the processes of encap-
sulation and release of DNA are inversely related. A better encapsulation process
needs a balance between these two sub-processes. Researchers are trying to balance
it in numerous ways. In one of the methods, short DNA is encapsulated in a spheri-
cal inorganic nanoshell with an overall thickness of ∼10nm [12]. Some researchers
found carbon nanotubes as a potential candidate to encapsulate the DNA molecules
[13].

In vivo, the DNAmolecule is confined in a limited space such as the cell chamber
or a channel and is in highly dense solvent conditions [14–17]. The thermal properties
of DNAmolecules are sensitive to the nature of confined space [18]. DNA packing in
eukaryotic chromosomes and viral capsids are some examples in which the activities
of the biomolecules depend on the nature of confinement.

In vitro, in most of the studies, the DNA is confined either in a spherical geome-
try or in a rectangular geometry [14]. Although some significant work is done, our
knowledge about the nature of confinement is limited [19–22]. Motivated by the
experiments on DNA confined in different geometries, we attempt, here, to under-
stand the thermal stability of a DNAmolecule partially confined in a cylindrical shell
using a statistical model. It helps to understand the details of confinement and its
role in the dynamics of the molecule. The present work is divided into the following
sections: in Sect. 2, we introduce the statistical model, and in Sect. 3 we show the
results obtained. In the end, we close the manuscript with a brief discussion and
future scope of the work (Sect. 4).

2 Model and Methods

We consider the well-known Peyrard-Bishop-Dauxois model (PBD) to investigate
the effect of confinement on the thermal denaturation of DNAmolecules. The model
is quasi-one-dimensional in nature and considers the dynamics of the system through
the stretching of the hydrogen bonds between the bases in a pair [23, 24]. Although
it ignores the effect of the molecule’s helicoidal nature and the solvent effect of
the solution, the model has enough details to explain the denaturation/unzipping
process of DNA molecules. The interactions in the DNA, containing N base pairs,
are represented as
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H =
N∑

i=1

[
p2

i

2m
+ VM(yi )

]
+

N−1∑

i=1

[
WS(yi , yi+1)

]
, (1)

here yi represents the separation between two bases in a pair. The separation yi = 0.0
Å refers to the equilibriumposition of two bases in a pair. The first termof themodel is
the momentum termwhich is pi = mẏi . We have taken same reduced mass m = 300
amu for both the AT and GC base pairs [23]. The stacking interaction between the
nearest base pairs along the chain is represented as

WS(yi , yi+1) = k

2
(yi − yi+1)

2[1 + ρe−b(yi +yi+1)]. (2)

Here, k represents the single-strand elasticity. The term ρ represents the anhar-
monicity in the strand elasticity while the parameter, b, describes its range. In the
present work, we choose model parameters k = 0.02 eVÅ−2, ρ = 5.0 and b = 0.35
Å−1. In our earlier works, we have shown that values of k and ρ define the sharpness
in the transition from double strand to single strand [25, 26]. The pairing between
the bases in a pair is represented by the Morse potential as

VM(yi ) = Di (e
−ai yi − 1)2. (3)

Here Di represents the potential depth, and ai represents the inverse of the width
of the potential well. These two parameters have a crucial role in DNA denatura-
tion. From previous results, we know that the bond strengths of these two pairs
are in an approximate ratio of 1.25–1.5 as the GC pairs have three while AT
pairs have two hydrogen bonds [27, 28]. The potential parameters are taken as
aAT = 4.2 Å−1, aGC = 1.5 × aAT and DAT = 0.05 eV while DGC = 1.5 × DAT .
The complete set of parameters are DAT = 0.05 eV, DGC = 0.075 eV, aAT = 4.2 Å−1,
aGC = 6.3 Å−1, ρ = 5.0, κ = 0.02 eV/Å2 and b = 0.35 Å−1. The model parameters are
tuned in such a way that the melting temperature of 12 base pairs chain is between
300–350 K. We can study the thermodynamics of the transition by evaluating the
partition function. For a sequence of N base pairs, the canonical partition function
can be written as

Z =
∫ N∏

i=1

{dyi dpi exp(−βH)} = Z p Zc, (4)

where Z p corresponds to the momentum part of the partition function and is equal
to (2πmkB T )N/2. The configurational part of the partition function, Zc, is defined as

Zc =
∫ ∞

−∞
dy1e− 1

2 βV (y1)

[
N−1∏

i=1

dyi K (yi , yi+1)

]
e− 1

2 βV (yN )dyN , (5)
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where K (yi , yi+1) = e− β
2 [V (yi )+V (yi+1)+2W (yi ,yi+1)].

If one considers the DNAof a homogeneous sequence and periodic boundary con-
dition, one can evaluate the configurational partition function, Zc, using the transfer
integral (TI) technique. For a chain with a random sequence of AT and GC pairs
and open boundaries, partition function calculation is a little bit tricky. In the past,
various researchers have addressed solving the chain’s partition function with het-
erogeneous sequence and open boundaries. Also, the partition function in the PBD
model is divergent in nature. To overcome this problem, an upper cut-off for the
integration needs to be set up [29–31]. In our previous studies, we found that an
upper cut-off of 200 Å is sufficient to overcome the divergence issue of the partition
function. The lower limit of integration is set as –5.0 Å [26, 29]. Once we find the
proper cut-offs, the task is to discretize the integral in Eq.5. In order to get a precise
value of melting temperature (Tm), we have observed that Gaussian quadrature is the
most effective quadrature. We have found that discretization of the space with 900
points is sufficient to get an accurate value of Tm . Once we can evaluate the partition
function, we can determine the thermodynamic quantities of interest by evaluating
the Helmholtz free energy of the system. We define the Helmholtz free energy per
base pair as

f (T ) = −1

2
kB T ln (2πmkB T ) − kB T

N
ln Zc. (6)

The specific heat,Cv , of the system, in the thermal ensemble, is evaluated by taking
the second derivative of the free energy as Cv = −T (∂2 f/∂T 2). We calculate the
melting temperature (Tm) of the chain from the peak in the specific heat curve. Other
quantity of interest is the average separation, 〈y j 〉, of the j th pair of the chain, which
is given by

〈y j 〉 = 1

Z

∫ N∏

i=1

y j exp(−βH)dyi . (7)

This work studies the stability of DNAmolecules confined in a cylindrical shell of
different lengths. We chose DNA of different lengths and confined them in a cylinder
of different dimensions (as shown in Fig. 1). How to realise the confinement in the
model? In the calculation of partition function, we restrict the configuration space of
the system as shown in Fig. 1. Since the confinement restricts the stretching of two

Fig. 1 The schematic representation of the DNA molecule confined in a cylindrical shell. The r is
the distance of the confined wall from the DNA strand. The radius of the cylinder is Rc = r + DNA
radius (10 Å). The DNA is confined in the shell either completely or partially
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bases in the pair, we represent it through the upper cut-off of the integral in themodel.
For a pair that is unconfined, the upper limit of the integration is 200 Å, while for the
pair that is confined, the upper limit of integral is r Å. For the chain confined in the
cylinder of radius 10 Å, the upper limit of integration is 10 Å. Since the confinement
affects outward stretching, we assume that there is no change in the lower limit of
integral [20, 21]. We have assumed that the DNA is not interacting with the walls
of the cylinder. We calculate the partition function with the modified configuration
space and evaluate all the system’s thermodynamical properties for both geometries.

3 Results

We consider the first 12 base pairs of the phage-λ DNA chain and repeat the
sequence to form other sequences for our studies. The sequence of the chain is
−GGGG AAAAGGGG−. Each chain is confined in the cylinder of lengths 20, 50
and 150 bp. Here we consider the length of the cylinder in terms of base pairs for
mathematical simplicity. We calculate free energy per base pair by evaluating the
partition function and hence the specific heat as a function of temperature. Through
the peak in the specific heat, we identify the melting temperature Tm of the chain
at different diameters of the cylinder as shown in Fig. 2. Once we find the melting
temperature of the system, we change the length of the DNA molecule. In our pre-
vious works, we have shown the effect of confinement on the melting temperature
of DNA [20, 21]. In the current work, our interest is to investigate the change in the
melting temperature of the partially confined DNA molecule. The partially confined
system is very close to the translocation of DNA through the cell. First we consider
the cylinder of fixed length l = 20 and radial distance r = 10 Å. Please note that
r = 10 Å means the cylinder is of radius Rc = r + DNA radius. We calculate the
change in the melting temperature of the system with the increasing radial distance.

Fig. 2 The change in
specific heat with the
temperature of the system.
The plot is for DNA
molecules of lengths 12, 36
& 72 base pairs confined in a
cylinder of length 50 base
pairs and radius of 10 Å
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Fig. 3 The melting temperature of the DNA molecules that is confined in a cylinder of different
lengths. We consider lengths as 20 and 50 base pairs. The plots show the changes in the Tm with
the increasing radius of the cylinder for the chains 12–192 base pairs

Fig. 4 The melting
temperature of the DNA
molecules that is confined in
a cylinder of different
lengths. We consider lengths
as 150 base pairs. The plots
show the changes in the Tm
with the increasing radius of
the cylinder for the chains
12–192 base pairs
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The results are shown in Fig. 3. From the plots, it is clear that the melting temperature
of the DNA molecule decreases with increasing radial distance, r . The reason for
the decrease is the available space to the molecule. The stability seems to be as per
the expectation; however, there is a striking and interesting difference at r=10 Å for
the molecules of length larger than 20 base pairs. We find that Tm is almost the same
for 36 and 42 base pairs chain while it lowers for the chains of 72, 96 and 192 base
pairs. We observe a similar kind of feature for the cylinder of different lengths (see
Fig. 3). However, for the molecules confined in a cylinder of length 150 base pairs
(see Fig. 4), the previously observed pattern is lost. The reason for the change is the
confinement length. The entropy, in this case, is suppressed due to the large size
of the cylinder. We plot the change in the value of Tm with different chain lengths
for three different cylinder lengths to understand the process. By varying the size
of DNA molecules from 12 to 192, we calculate the melting temperature of each
chain. The results are shown in Fig. 5. As the chain length increases the melting
temperature, the system’s stability increases up to a certain length and decreases.
When the size of the molecule crosses this limit, two sections of the chain behave
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Fig. 5 The melting temperature of the DNA molecules that is confined in a cylinder of different
lengths. We consider lengths as 20 and 50 base pairs. The plots show the changes in the Tm with
the increasing chain length for different radii of the cylinder

Fig. 6 The melting
temperature of the DNA
molecules that is confined in
a cylinder of different
lengths. We consider lengths
as 150 base pairs. The plots
show the changes in the Tm
with the increasing chain
length for different radii of
the cylinder
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differently. A section that is free to move hence more entropic, and there is a section
of the chain that is still confined. The unconfined or free section of the molecule has
sufficient entropy to drive the system from a zipped state to unzipped state. From
Fig. 6, we find an increase in the melting temperature for r = 10 Å. The point to
note is that the increase is up to the length of the cylinder, while after that, the Tm

decreases. However, the pattern is not universal. For a larger cylinder radius, the Tm

increases and then saturates to a value. For a cylinder of length l = 150 bp, even for
the r = 10 Å, there is no point of inflexion. The model we consider here assumes
DNA in ladder form. For our studies, we ignore the change in the persistence length
of confined DNA [32].

To get a deeper understanding, we calculate the average separation of DNA
molecules of length 12, 36 and 72 base pairs. Each chain is confined in two kinds of
cylinders. One of length 20 bp and radius 10 Å, while the other is of the same length
but different radial distance r = 40 Å. The average separation, 〈yi 〉, of the chain is
defined using Eq.7. The results are shown in Figs. 7, 8 and 9. Some exciting features
of the opening of the DNA molecules are visible in these plots. The opening is more
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Fig. 7 The density plots showing the change in the average separation, 〈y j 〉 for DNA of 12 base
pairs confined in a cylinder of length 20 base pairs and radii r = 10 and r = 40 Å
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Fig. 8 The density plots showing the change in the average separation, 〈y j 〉, for DNA of 36 base
pairs confined in a cylinder of length 20 base pairs and radial distance r = 10 and r = 40 Å
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Fig. 9 The density plots showing the change in the average separation, 〈y j 〉, for DNA of 72 base
pairs confined in a cylinder of length 20 base pairs and radial distance r=10 and r = 40 Å
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or less homogeneous for the completely confined chains. For the chain of 36 base
pairs and r = 10 Å, the chain opens from the free end (see the yellow colour in Fig. 8).
For r = 40 Å, the opening is little homogeneous. In this condition, the molecule has
sufficient space to move now; hence, the effect of confinement is weak in this case.
We observe a very similar kind of pattern in the chain of 72 base pairs. When the
chain is confined in a radial distance of 10 Å, up to 20 base pairs, the maximum
length up to which the base pairs can move is 10 Å, while for a larger radius, this
heterogeneity disappears.

4 Conclusions

We have studied the stability of phage-λ DNA molecule partially confined in a
cylindrical shell using the PBD model. The DNA molecule is partially inside the
cell during the translocation process. Thus, different segments of the same DNA
molecule experience different forces due to the neighbouring molecules. In the cur-
rent manuscript, our focus was to understand the stability of DNA molecule, that is
partially confined in a cylinder. We have considered DNA of different lengths and
confined them in a cylinder of different radii and lengths. With the variation in the
radius and length of the cylinder, we attempt to understand the opening of a hetero-
geneous DNAmolecule confined in the cylinder. By calculating 〈y j 〉, we have found
that the DNA confined in a cylinder experiences a uniform suppression in the sys-
tem’s entropy; however, the opening of partially confined DNA is more interesting.
We want to study the effect of a force applied on the DNA molecule confined in a
cylindrical shell in future work.
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Efficient Physics Informed Neural
Networks Coupled with Domain
Decomposition Methods for Solving
Coupled Multi-physics Problems

Long Nguyen, Maziar Raissi, and Padmanabhan Seshaiyer

Abstract In this work, we introduce a novel coupled methodology called PINNs-
DDM that combines a physics informed neural networks (PINNs) approach with a
domain decomposition method (DDM) approach to solve multi-physics problems.
The coupled methodology is applied to a variety of benchmark problems and vali-
dated against their exact solutions. Motivated by the need to solve coupled problems
in enclosed spaces, we consider an application of coupling scalar transport equations
to fluid dynamics equations using PINNs-DDM.While the examples and benchmark
problemsused in thiswork are in lower dimensions, theyprovide thenecessary insight
into the efficiency of the coupled method. It was noted that one of the key applica-
tions of the method is its performance for problems with limited training data. The
computational results suggest that the method is very robust and can be applied to
study complex real-world applications.

1 Introduction

Research in computational mathematics, which comprises modeling, analysis, simu-
lation, and computing has become the foundation for solving most multidisciplinary
problems in science and engineer. These real-world problems often involve complex
dynamic interactions ofmultiple physical processeswhich presents a significant chal-
lenge, both in representing the physics involved and in handling the resulting coupled
behavior. If the desire to predict and learn from the system is added to the picture,
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then the complexity increases even further. Hence, to capture the complete nature of
the solution to the problem, a coupled multidisciplinary approach is essential.

The efficient solution to a complex coupled system that consists of functionally
distinct components is still a challenging problem in computational sciences research.
Direct numerical solution of the highly non-linear equations governing even themost
simplified models are often challenging. The past few decades have seen significant
advances in algorithms for efficient solutions including finite element methods for
solving coupled multi-physics problems [1, 3, 4, 18, 19], domain decomposition
method (DDM) [10, 11, 29] and multi-fidelity methods and sampling methods for
Partial Differential Equations [21, 22]. Recent advances in machine learning (ML)
methods, automatic differentiation (AD) [7], and ML libraries such as TensorFlow
[20] and Pytorch [17] have made them potentially powerful tools for parameter esti-
mation and data assimilation in multi-physics problems. Recently, Physics-informed
(deep) neural networks (PINNs) were used to learn solutions and parameters in par-
tial and ordinary differential equations [24]. These methodologies have helped to
make tremendous progress in the development, testing, analysis, implementation,
and applications of computational mathematics for simulation, optimization, and
control.

Our work in this chapter is motivated by the following multi-physics application.
Over the last two years, we have been faced with an unprecedented sequence of
events due to COVID-19 that has impacted not only health but also economy, jobs,
education, and many other sectors. As emergency efforts resume and continue in the
coming weeks, thousands of personnel would need to be transported in passenger
and cargo compartments. Many of these passengers would be infected or exposed
to the virus and several agencies are already preparing to develop rapid solutions to
study the speed of the contagion by understanding the airflow inside an aircraft that
is transporting people. One of the principal dynamics involved in this process is the
interplay between the flow from the air vents inside the cabins modeled via compu-
tational fluid dynamics and the scalar transport that models the concentration of the
pathogen. This paper will attempt to create a simplistic model to simulate and predict
the mechanisms of this coupled dynamics through a spatial and temporal distribution
of airborne infection risk in an enclosed space. One of the new contributions in this
work is to re-introduce PINNs and DDM methods and then develop a framework to
solve multi-physics problems using a coupled PINNs-DDM methodology.

Our outline of the chapter is as follows. In Sect. 2, we will introduce the models,
describe themethods and background. Specifically in Sect. 2.1, we recall the Schwarz
Domain Decomposition method and apply it to the Poisson equation. Section2.2
introduces the physics informed neural networks (PINNs) approach to solving PDEs
and is applied toBurger’s equation. In Sect. 2.3,we develop a new algorithm to couple
PINNs with DDM to create a PINNs-DDM algorithm for multi-physics problems
and apply it to various benchmark equations. Finally, in Sect. 3 we present discussion
and future work.
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2 Models, Methods and Background

In this section, we describe a multi-physics model that couples fluid dynamics that
models the air velocity with scalar transport that models the concentration of a
particle in an enclosed space such as an aircraft cabin. For simplicity, we will keep
the exposition in the paper to one dimension that will help provide an insight into
higher dimensions. After a brief introduction of these equations, we introduce DDM
through a parallel Schwarz algorithm and apply it to the Poisson equation. Then, we
will introduce PINNs and apply it as a forward solver to solve the Burgers equation.

The particle transport that models the concentration of a pathogen [12] that is
guided by the air velocity may be modeled using the equation:

∂φ

∂t
+ ∂

∂xi
(ρφUi ) = ∂

∂xi

(
�φ

∂φ

∂xi

)
+ Sφ (1)

whereφ is contaminant concentration (for example, droplets from infectedor exposed
COVID-19 individuals), t is time, xi is coordinate, ρ is air density,Ui is air velocity,
�φ is the diffusion coefficient, and Sφ is the mass flow rate of source per unit volume.
In thiswork,wewill consider a one-dimensional problemwith the following equation
for describing the

∂V

∂t
+U

∂V

∂x
= αV (x)

∂2 V

∂x2
+ SV (2)

where αV and SV are the respective diffusion coefficient and external source term.
Applications of fluid dynamics in studying airflow in ventilated enclosed spaces have
been studied over last several decades [5, 14, 15]. While turbulence models building
on three-dimensional Navier-Stokes equations are typically used to evaluate and
design various air distributions, we will use the following one-dimensional viscous
Burger’s equation in this work for simplicity. This is given by

∂U

∂t
+U

∂U

∂x
= αU (x)

∂2U

∂x2
+ SU (3)

Here, αU and SU correspond to the viscocity of the flow and external source term,
respectively.Often these partial differential equations (2) and (3) are discretized using
appropriate numerical methods (such as, e.g., finite difference, finite elements, finite
volumes) that involves solving a non-linear system of equations. Next, we describe
a framework that can be used with any of these discretization methods to make the
algebraic solution more efficient on parallel computer platforms.
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2.1 Domain Decomposition Method (DDM)

Domain decomposition methods were introduced in the nineteenth century by Ger-
man analyst Herman Schwarz as a way to reformulate and solve any given boundary-
value problem on a computational domain that is partitioned into multiple subdo-
mains [27]. This convenient framework and several variations over the past decades
has allowed for efficient techniques for solving multi-physics problems that are gov-
erned by differential equations of various types in different subregions of the com-
putational domain [2, 6, 8, 9, 26, 30].

To illustrate, DDM, let us consider the Poisson equation −�u = f defined on
the computational domain � with u = g on the boundary ∂�. Let � be the union of
a disk (�1) and a rectangle (�2) as shown in Fig. 1. The key idea behind the classical
Schwarz algorithm is to iteratively solve alternating sub-problems in the domains
�1 and �2 until the algorithm converges as follows:

−�un+1
i = f in �i

un+1
i = g on ∂�i ∩ ∂� \ ∂�i ∩ �3−i

un+1
i = un3−i on ∂�i ∩ �3−i

for i = 1, 2. Schwarz proved the convergence of the algorithm and thus the well-
posedness of the Poisson problem in complex geometries. If the algorithm converges,
the solutions u∞

1 = u∞
2 in the intersection of the subdomains.

We can extend the Schwarz method to a general differential operatorL(u) = f in
� with boundary condition B(u) = g on ∂� as follows:

Algorithm 1:A parallel Domain Decomposition Method for Two Sub-domains
�1, �2

Result: Give initial guess u01 on ∂�1 ∩ �2 and u02 on ∂�2 ∩ �1
initialization;
for n =1 to maxIter do

Solve for uni (i = 1, 2) :
L(uni ) = f in �i

B(uni ) = g on ∂�i ∩ ∂� \ ∂�i ∩ �3−i

uni = un−1
3−i on ∂�i ∩ �3−i

if ||uni − un3−i || ≤ Tol then
STOP;

end
end

To demonstrate the performance of the Schwarz DDM, we consider the Poisson

equation in 1-dimension −d2u

dx2
= 2 on the domain (α, β) with u = −2 at α = −1

and β = 1. The exact solution is u(x) = −x2 − 1 which is plotted as the bold line
in Fig. 2 which shows the convergence of solutions in the two subdomains �1,�2.
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Fig. 1 � = �1 ∪ �2

Fig. 2 Computational domain decomposed into two overlapping subdomains (left) and the Schwarz
convergence of the computational solution (right)

Next we introduce a framework around probabilistic machine learning to discover
governing equations expressed by parametric linear operators.

2.2 Physics Informed Neural Network (PINNs)

Physics informed neural networks (PINNs) are deep learning-based techniques [22–
24] for solving equations describing multi-physics including ordinary and partial
differential, integro-differential and fractional order operators. One of the tools that
makes these deep learning methods successful is the use of neural networks which
is a system of decisions modeled after the human brain [16].

Consider the illustration shown in Fig. 3. The first layer of perceptrons first weighs
and biases the input x . The next layer then will make more complex decisions based
on those inputs, until the final decision layer is reached which generates the outputs
u. The left part of the figure visualizes a standard neural network parameterized by
θ . The middle part in the figure applies the given physical laws to the network. L
and B are the differential and the boundary operators, respectively. The ODE/PDE
data ( f, g) are obtained from random sample points. The loss function is computed
by evaluating L[u] and B[u] on the sample points, which can be done efficiently
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Fig. 3 Illustration of the physics informed neural network approach [24, 28]

through automatic differentiation. Minimizing the loss with respect to the network’s
parameters θ produces a PINNs u(x; θ∗), which serves as an approximation to the
solution to the ODE/PDE.

In this paper, we implement a physics informed neural network-based approach
(PINNs) whichmakes decisions based on appropriate activation functions depending
on the computed bias and weights. The network then seeks to minimize the mean
squared error of the regression with respect to the weights and biases by utilizing
gradient descent type methods used in conjunction with software such as tensorflow.
Todemonstrate the performance of the PINNsmethod,we considerBurger’s equation
given by for x ∈ [0, π ] and t ∈ [0, 10],

ut = 1

5
uxx − uux + e− 2t

5 sin x cos x u(t, 0) = u(t, π) = 0 u(0, x) = sin x

In order to create data for our simulation, we use exact solution given by u(t, x) =
e− t

5 sin x . For our PINNs implementation, we consider 3 hidden layers with size 50
for the neural network. We first choose 200 random data points Nu to estimate u
by neural network denoted as u pred . We also choose 200 random data points N f to
estimate PINNs residual. Defining this by,

f (x, t) = ut − 1

5
ux x + uux − e− 2t

5 sin x cos x

we create a Loss function defined by

Loss = 1

Nu

Nu∑
i=1

(utrain − u pred)
2 + 1

N f

N f∑
i=1

( f (x, t))2 (4)

We train the model via 30,000 iterations using Adam [13] to minimize the Loss given
by Eq. (4). Figure4 shows that the solutions fromPINNs taken at various timesmatch
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Fig. 4 Comparison of PINNs versus exact solution at different times (left) and for all times and
space (right)

very well with the exact solution. The actual relative error in this case is 2 × 10−4,
and the value of the Loss function is 5 × 10−7.

2.3 A Novel PINNS-DDM Approach

In this section, we will discuss how one can efficiently combine PINNs with DDM
which is the novelty of this work, to improve accuracy in the solution methodology.

As described, PINNs is an effective method to solve multi-physics real-world
applications modeled via ODE/PDE especially with good amount of training data.
However in real-world applications, we often get limited data and DDM combined
with PINNs can be an efficient way to solve such problems. The algorithm that will
be described next was applied to the benchmark Poisson equation in 1-dimension
−uxx = 2 on the domain (−1, 1) with u(−1) = u(1) = −2 (See Fig. 5).

The result illustrated in Fig. 6 was generated using the following PINNs-DDM
algorithm. Specifically, both Neural Networks were chosen to have 3 hidden layers
with size of 50 nodes. Choosing random training data points Nui = N fi = 50 for i =
1, 2 as well as N12 = 50 input points in overlap for training. Running the algorithm
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Fig. 5 Performance of PINNs-DDM algorithm

Fig. 6 Training data limited to each sub-domain (left); Approximation using PINNs (middle);
Approximation using PINNs-DDM (right)

for maximum number of iterations of 30, 000, we obtained an error in sub-domain
one to be 8.1 × 10−5 and in sub-domain two to be 3.8 × 10−5. Note that the PINNs-
DDM is able to reproduce the same solution as in Fig. 2.
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Algorithm 2: A novel PINNS-DDM Method for Sub-domains �i , i = 1, 2
Result: Give data and the PDE L(u) = f with boundary conditions B(u) = g
1 Initialize to create Neural Networks Ni in �i \ �1 ∩ �2

2 Input the training Data u j
i,t , j = 1..Nui

3 Predict the solution u j
i,p, j = 1..Nui using the Neural Network Ni on �i \ �1 ∩ �2

4 Define the residuals f ji = fi − L(u j
i ) for j = 1..N fi

5 while n <= maxiter do

– Define the loss functions Loss1 and Loss2 as follows:

Loss1 = 1

Nu1

Nu1∑
j=1

(
u j,n
1,t − u j,n

1,p

)2 + 1

N f1

N f1∑
j=1

( f j,n1 )2

Loss2 = 1

Nu2

Nu2∑
j=1

(
u j,n
2,t − u j,n

2,p

)2 + 1

N f2

N f2∑
j=1

( f j,n2 )2

– Define the loss function Loss12 corresponding to the overlap in the domain decomposion

using predicted functions u j,n
12,i,p for j = 1..Nu12

Loss12 = 1

Nu12

Nu12∑
j=1

(
u j,n
12,1,p − u j,n−1

12,2,p

)2 + 1

Nu12

Nu12∑
j=1

(
u j,n−1
12,1,p − u j,n

12,2,p

)2

+ 1

N f12

N f12∑
j=1

[( f j,n12,1)
2 + ( f j,n12,2)

2]

– Compute total loss Loss = Loss1 + Loss2 + Loss12
– Train the Loss function using Adam’s method [13]
– Update weights and biases
– Compute the solution u12,i in the �1 ∩ �2 with the respective Neural Networks Ni
– if ||un12,1 − un12,2|| ≤ Tol then

STOP;
end

end

Suppose we are only provided training data with each of the subdomains but no
data in the overlap�1 ∩ �2. This is shown in the left panel in Fig. 6where the training
data set is not complete. Using PINNS, the idea would be to solve for the whole
domain by creating two different Neural Networks to solve ui in �i \ (�1 ∩ �2) by
PINNs. This is shown in the middle panel in Fig. 6. Employing only PINNS, we are
able to generate a reasonable estimate of the exact solution with an L2-error of 0.42.
Finally, to improve the accuracy, we employed coupled PINNs-DDM over the entire
domain. This is shown in the last panel in Fig. 6. We noted that the coupled method
is able to approximate the exact solution very well with an L2-error of 0.042. For
generating these solutions 30,000 iterations for both PINNs and PINNs-DDM were
employed.
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Fig. 7 � = �1 ∪ �2

To show the application of PINNs-DDM algorithm created as a part of this work
for multi-physics problems, we apply themethod to the coupled system (2)–(3). Note
that we use this system for simplicity of presentation, but one can extend this to other
complex multi-physics systems as well. For this computation, we use

αV (x) = 1

20
, αU (x) = 1

5
, SU = e− 2

5 t sin x cos x, SV = 2e1−
2
5 t sin x cos 2x

for x ∈ [0, π ] and t ∈ [0, 10].
In order to validate our PINNs-DDM method, we evaluate the error against

the exact solution for this system given by V (x, t) = e1− 2
5 t sin 2x and U (x, t) =

e− 2
5 t sin x .
For the computational domain shown in Fig. 7 where � = [0, π ] × [0, 10], we

assume that we have data in sub-domain one (red rectangle) and in sub-domain 2
(blue rectangle), but no training data in the overlap (green rectangle). As prescribed
by Algorithm 2, we create two Neural Networks that both have both spatial and
temporal inputs (x, t), 3 hidden layers with size of 50 nodes and 2 outputs V and U
that are coupled. Also, we choose randomly 500 training data points for each domain
as well in the overlap, along with 500 input solutions at the points (x, t) for training.

Figure8 shows the plots for errors between the PINNs-DDM solution and the
exact solution in each sub-domain after 50, 000 iterations of training. The plots on
the left denote the approximation for U and on the right for V . Clearly, the errors
indicate superior performance of the PINNs-DDM method.
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Fig. 8 Performance of PINNs-DDM for a coupled multi-physics problem

3 Discussion and Future Work

In this work, we combine a physics informed neural networks (PINNs) approach
with a domain decomposition method (DDM) approach to yield a highly efficient
methodology called PINNs-DDM for solving multi-physics problems is developed.
While the examples and benchmark problems used in this work are not in higher
dimensions, they provide the necessary insight into the efficiency of the method. One
of the interesting findings from this work includes the performance of PINNs-DDM
when only limited data is available to train. Our results suggest that PINNs-DDM
is a robust candidate for solving complex system of PDEs motivated by real-world
applications.

While this work has helped us to develop and design an efficient PINNs-DDM
algorithm, there is still work that needs to be done to understand the convergence
mathematically. As motivated in the introduction, the reason for exploring the sys-
tem (2)–(3) is to understand the spread of droplet concentration (for example, from
COVID-19) in the presence of airflow in enclosed spaces (such as aircraft cabins).
Coupled with these are models that involve epidemiological equations that model
the spread of a disease such as COVID-19. We hope to apply PINNs-DD to such an
application in higher dimensions as well as equations that admit discontinuous coef-
ficients αV and αU in a forthcoming paper. Another interesting aspect is to employ
PINNs-DDM as an inverse approach to conduct parameter identification which is
another aspect that will be investigated in the future.

Acknowledgements This work is supported in part by the Computational Mathematics program
at the National Science Foundation through grant DMS 2031027 and DMS 2031029.
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Estimation of Current Earthquake
Hazard Through Nowcasting Method

Sumanta Pasari

Abstract In several tectonically active regions of the world, large magnitude earth-
quakes on fault systems are observed to occur in near-repetitive cycles as a conse-
quence of stress accumulation and moment release. Since absolute measurements of
stress–strain is unavailable through direct observations at all regions of interest, the
area-based nowcasting method based on earthquake data is a potential alternative to
estimate the uncertain current state of earthquake hazard in a defined region. Using
the concept of natural-time counts, the nowcasting result comprises time-dependent
earthquake potential score—a numerical quantification of earthquake-cycle progres-
sion since the last major event in the region. The nowcast score may be linked to the
instantaneous risk of large events. This paper summarizes some basic formulation
and key concepts of earthquake nowcasting with a demonstration of its applicability
in disaster preparation and risk estimation. A case study from Java, Indonesia, is
considered for illustration.

Keywords Earthquake nowcasting · Natural times · Hazard analysis

1 Introduction

Major earthquakes in large seismically active regions are often observed to occur
in approximately repetitive cycles, though interoccurrence times or interevent small
earthquake counts (natural times) exhibit randomness [1, 2]. Therefore, adequate
knowledge of the current level of earthquake-cycle progression since the last major
event in a geographic region is of great importance to many practical applications,
such as policymaking, city planning, insurance, large-scale engineering construc-
tions, and seismic awareness campaigns [1–5]. The earthquake nowcasting method
[3–5] uses a simple concept of earthquake-cycle in the natural time domain [6], where
the distribution of intermittent small earthquake counts (say, M≥ 4.0) between pairs
of large events (say, M >= 6.0) carries significant information of the time-varying
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cycle progression in a network of geological faults [3–5]. As a consequence, earth-
quake potential scores (EPSs) of a number of local city regions embedded in a
large spatial area allow comparing their current exposure to seismic hazard (risk) for
disaster fund allocation and allied purposes. As the focus is to analyze the current (or,
a very short-span of future) state of regional fault-system, the nowcasting method
does not necessarily provide an implication of the long-term seismic behavior of the
study region. Nonetheless, a deeper knowledge of the current state of hazard certainly
helps in estimating the future state of earthquake hazard in a given region [3].

Conceptually, earthquake nowcasting method may be treated as a stochastic
renewal process where the EPS increases upon every moment when the natural
time increments by unity. By definition of the renewable process, history before the
last large earthquake is all forgotten, though it remembers what happened after the
last major event through the current number of small event counts n(t) at the time of
evaluation t. The nowcasting idea essentially reflects a short-term fault memory in
which the system has no leftover stress for the next cycle, unlike the idea of earth-
quake supercycle in tectonics [1–5]. With the onset of a seismic cycle, the process
starts, continues and the nowcast score increases with the occurrence of each small
magnitude event. The EPS at a specific time can be high, and it will remain high
until a nucleation event (major earthquake) occurs to tip the system over into a new
potential well. Thus, nowcast scores provide direct relevance to estimating seismic
risk of a study region as long as natural time seismicity statistics does not exhibit a
stationary Poisson process. In the latter case, the nowcasting method still provides a
valid measure of earthquake cycle progression, though the estimation of seismic risk
(conditioned on the elapsed time, say n(t), since the last major event) turns out to be
irrelevant to the time-dependent EPS [3–5]. Therefore, in general, EPS determines
the youngness or oldness of earthquake cycle through the observed age of n(t) in a
nice 0–100% scale of extremeness.

The seismic nowcasting approach has been applied to several regional and global
megacities of United States, Chile, Taiwan, Philippines, Indonesia, India, Nepal,
Pakistan, and Bangladesh to obtain a snapshot evaluation of the current progress of
hazard cycle in the respective local regions [3–15]. Themethodwas demonstrated for
a few locations of induced seismicity, great-earthquakes, andmega-tsunamis globally
[3, 4, 9]. Attempts were made to study possible interconnections among earthquake
nowcasting, earthquake forecasting, and their relevance to risk estimation as well as
stress–strain distribution [7].

This article summarizes some basic formulation and key concepts of earthquake
nowcasting with an emphasis on the mathematical explanation of its relevance to
risk estimation. A case study from the seismically active Java Island, Indonesia, has
been considered for illustration.
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2 Formulation

In a large network of fault system, earthquake event occurrences are often associated
with a frequency-magnitude scaling relationship [1]. Thus, the ensemble statistics of
natural-times, interspersed small-magnitude events (say, M >= 4.0) between succes-
sive large events (say, M >= 6.0), may prove to be useful in hazard analysis. The
nowcasting method basically uses a counting of discrete events to mark the devel-
opment of the system, rather than the usual consideration of clock or calendar time.
This area-based approach requires a defined geographic region, just as the fault-
based approaches require definition of the target faults [3]. Comparison of EPS as
time progresses in these defined regions is justified as long as the defined region
remains constant. The key task in nowcasting analysis is to develop seismicity statis-
tics from sufficient number of natural times so that the developed statistics can be
utilized to compute EPS in terms of the cumulative distribution function (CDF) eval-
uated at the current count of small events n(t). A number of reference probability
distributions may be used for this purpose.

Let C1,C2,C3, · · · ,Ck be k number of local city regions within a larger seismic
region C. These local city regions are often described by the area of radius R (say,
300 km) from their respective city centers. In the earthquake catalog of region C,
let there be m cycles of large events and let {N1, N2, · · · , Nm} be the corresponding
random sample of natural times (N). From the data-derived distribution of N and
known small event count n(t) of a local region at the time of evaluation t, the EPS
for the local region is defined as EPS(n(t)) ≡ FN (n(t)) = P{N ≤ n(t)}. Notice
that EPS is an increasing function of time (natural-time) and it provides a measure of
cycle progression since the last major event in the local region, though its relevance
to seismic hazard (risk) is a separate problem.

In an ongoing seismic cycle, the current level of seismic hazard (instantaneous
risk) can be assessed through conditional probability of a large earthquake in the
near future (in natural-time domain) on the basis of the current state EPS(n(t)). In
this case, one can formulate a definition of extremely short-term risk, P large

next , which
is the probability that the next earthquake in the local region is actually a large event.
In fact, to observe the risk of large events in the entire cycle, one has to derive the
probability distribution of the waiting time τ until the next large earthquake in the
local region. At this point, it may be emphasized that EPS through CDF or survival
function describes the distribution of the “waiting time between successive large
earthquakes”, while the risk assessment concerns “the waiting time until the next
large earthquake” based on the current status EPS(n(t)).

3 Illustration of Nowcasting Method

To illustrate themethod of seismic nowcasting, an earthquake catalog (1963–2021) of
Java Island, Indonesia, is considered (Fig. 1). Based on the magnitude-completeness
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Fig. 1 Epicentral locations of earthquake data (1963–2020) on Java Island a; subplots b–d show
cross-section maps of the focal depth and magnitude completeness value [12]

of this catalog, the threshold of “small” events turns out to be Mσ = 4.0, while the
threshold of “large” events is decided as Mλ = 6.5 [12]. There are 31 cycles of large
events, providing a random sample of size 31 to develop natural-time statistics of the
region. Within the large study region, two local city regions, namely Surabaya and
Jakarta, are considered with their respective areas defined by radius R = 300 km
[12].

Three reference distributions, namely exponential, gamma, and Weibull are
considered to fit observed natural-time counts [16–22]. Parameters are estimated
from the maximum likelihood method, and the relative suitability of studied distri-
butions is assessed through the non-parametric Kolmogorov–Smirnov criterion [16,
17]. It is found that the Weibull distribution has the most suitable representation,
meaning that the study region reveals a natural time Weibull statistics. Using the
current counts of small events n(t) = 829 and n(t) = 127, the nowcast scores of
Surabaya and Jakarta are 89% and 43%, respectively [12]. This means that Surabaya
has progressed about 89% of its earthquake cycle of large events, whereas Jakarta has
progressed about 43% of its cycle. With this information, the instantaneous seismic
risk may be computed for policymaking and city planning.

Usually, a sensitivity study of the threshold values (e.g., city radius, small and
large magnitudes, and city region) is associated with earthquake nowcasting [3–5],
though it has been deliberately skipped in the present manuscript.



Estimation of Current Earthquake Hazard … 59

4 Summary

Seismic nowcasting is an area-based indirect method to evaluate the current progres-
sion of earthquake cycle of large events. It helps to assess the present state of regional
fault system and thereby provides some useful information to the city-planners, engi-
neers, and entrepreneurs. Basic formulation of the nowcasting method and some key
concepts are discussed with an emphasis on its relevance to risk estimation. The
case study from Java, Indonesia, has demonstrated the applicability of earthquake
nowcasting in hazard management as well as planning and design considerations.
As on 18 February, 2021, Surabaya observes an EPS score of 89%, while it is 43%
for Jakarta.

The earthquake nowcasting that mainly refers to the estimation of the current state
of earthquake hazard can also be used in earthquake forecasting or plate tectonic
studies using natural time Weibull projection, slider-block toy model, and space–
time clustering behavior of bursts of small earthquakes in seismogenic areas [3, 7].
Like conventional fault-based earthquake hazard analysis, the area-based nowcasting
approach offers a unique characterization of the spatial distribution of regional earth-
quake hazard in terms of earthquake potential score at selected regions. The method-
ology discussed here is general, scalable, and transportable to any seismic area and
in essence, it may serve as a decision support system for disaster preparation and
risk estimation.
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Global Uniqueness Theorem
for a Discrete Population Balance Model
with Application in Astrophysics

Sonali Kaushik and Rajesh Kumar

Abstract The article presents the uniqueness results for the discrete Oort–Hulst–
Safronov equation for the unbounded product coagulation kernel C j,k ≤ jk ∀ j, k ∈
N. The contraction mapping theorem is used along with the properties of the second
and third moments in proving that the solution is unique.

Keywords Oort–Hulst–Safronov (OHS) model · Discrete population balance
equation · Product kernel · Moments · Uniqueness

1 Introduction

The discrete OHS or Safronov–Dubovski coagulation equation was introduced by
Dubovski [1, 2] in 1999 and then further studied by Bagland [3] and Davidson [4,
5]. The equation is given by

dφ j (τ )

dτ
= φ j−1(τ )

j−1∑

k=1

kC j−1,kφk(τ ) − φ j (τ )

j∑

k=1

kC j,kφk(τ ) −
∞∑

k= j

C j,kφ j (τ )φk(τ ), (1)

for τ ∈ [0,∞), j, k ∈ N and with the initial condition

φ j (0) = φin
j . (2)

The equation explains a process of collision between particles of mass js0 and ks0,
where s0 > 0 is the mass of the smallest particle in the system. This leads to the
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formation ofmonomers from the x-mer (a particle ofmass xs0), which, in turn, results
in the coalescence of the monomers with the y-mer, where x ≤ y (here x, y = j, k).
The first term depicts the addition of a j sized cluster in the system due to the
coagulation of an ( j − 1)-mer and a monomer. The second and third terms followed
by a negative sign signifies the death of a j-mer. The second expression is present due
to the formation of particles of mass greater than js0. The third term is the flag-bearer
for the case x = j and y = k, i.e., when a j-mer breaks into monomers and they
coagulate with a k-mer. Here, φ j (τ ) is the concentration of particles of size j at time
τ and C j,k , j �= k is the rate at which particles of sizes j and k collide and is called
the coagulation kernel. Moreover, C j, j can be calculated by halving the collision
rate of a j-mer. The kernel C j,k is assumed to be non-negative and symmetric, i.e.,
C j,k ≥ 0 and C j,k = Ck, j .
In addition to the concentration of particles, following moments are also of interest
in the sense of using in real life applications or in proving some theoretical results.
The rth moment is given by

Mr (τ ) =
∞∑

j=1

j rφ j (τ ), (3)

in which r = 0 leads to the total number of particles (zeroth moment) and the total
mass in the system (first moment) is obtained by taking r = 1.
The expression involves two major events, collision followed by coagulation. There
are various examples of the phenomenon explained by the Safronov–Dubovksi equa-
tion (being the discrete version of the Oort–Hulst–Safronov equation [6, 7]), namely,
the collision of asteroids [8], formation of saturn’s rings [9], formation of protoplan-
etary disc around a newly formed star [10]. There are a number of real life problems
caused due to the coagulation of particles, be it the health hazards of sand and dust
storms [11], analysis of nano-metal dust explosions [12] or the impact on glacier
mass as an aftermath of the accumulation of volcanic dust [13].
Very few literatures are available on the well-posedness of such model and also in
the direction of numerical implementation. Bagland [3] considered the Eq. (1) and
discussed the existence of solution for a bounded kernel of the form,

lim
l→∞

C j,l

l
= 0

with the initial condition satisfying
∑∞

j=1 jφin
j (0) < ∞. In 2014, Davidson [4]

proved the global existence of the solution for bounded as well as unbounded kernels.
The results are shown for the bounded kernel of the form kC j,k ≤ M when k ≤ j and
M being a positive constant while the unbounded kernels C j,k ≤ Mg jgk are taken
under the assumption that g j

j → 0 as j → ∞. His work includes the uniqueness
result but only for the bounded kernel C j,k ≤ M . Further, in his dissertation [5], the
existence theory is investigated for product kernel C j,k ≤ c1 jk, where c1 is a con-
stant. The solutions are proven to be non-negative and exist in the space l1, j with the
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norm

||z||1 =
∞∑

j=1

j |z j |.

The assumptions used to prove the existence include the initial second moment to
be finite and the bound for the second moment is finite, i.e.,

M2(0) < ∞ and sup
0≤τ≤T

M2(τ ) = N2 < ∞.

The author [5] has also included the plots of M0(t), M1(t) and M2(t) for t =
0, 0.1, 0.2 and plotted the numerical solutions using an implicit iteration scheme
given by

φ(n+1)
j − φ(n)

j

η
= φ(n+1)

j−1 (τ )

j−1∑

k=1

jk2φ(n+1)
k (τ ) − φ(n+1)

j (τ )

j∑

k=1

jk2φ(n+1)
k (τ ) −

J∑

k= j

jkφ(n+1)
j (τ )φ(n)

k (τ ) (4)

with

φ j (0) = 1

2 j
for j ≥ 1. (5)

Here, the time step η = 0.0025 and the maximum value of j are taken as J = 5000.
But, the comparison of numerical solutions with the analytical solutions was not
carried out. For this, we need the guarantee that there is only one analytical solution
so that the error calculation can be validated. This requires the study of uniqueness
theory for the Eq. (1). So far, such results are not available for the product kernel.
Therefore, our main aim in this article is to deal with the analysis of conditions under
which the solution to the Eq. (1) is unique when C j,k ≤ jk for all j, k ≥ 1.
The contraction mapping theorem and the Gronwall’s lemma play a vital role in
proving the uniqueness result. The bounds of higher moments, in particular, up to
third moment was indispensable for the application of the theorem. To analyze our
results, the weighted space l1, j is considered with norms defined by

||z||1 =
∞∑

j=1

j2|z j | (6)

and
|||z||| = sup

0≤τ≤T
||z||1. (7)

From (1), the definition of the solution φ j (τ ) can be given as
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φ j (τ ) = φ j (0)

+
∫ τ

0

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ j−1(s)
j−1∑

k=1

kC j−1,kφk(s)

−φ j (s)
j∑

k=1

kC j,kφk(s)

−
∞∑

k= j

C j,kφ j (s)φk(s)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ds := L(φ) j (8)

where L is the non-linear operator. The second and third moments are of special
interest here and are, respectively, defined as

M2(τ ) =
∞∑

j=1

j2φ j (τ ) (9)

and

M3(τ ) =
∞∑

j=1

j3φ j (τ ). (10)

The paper is organized as follows. In Sect. 2, the lemma providing the bound for the
third moment is stated and proved. The result established in the lemma is required to
prove the uniqueness result, which is further presented in Sect. 3. The Sect. 4 includes
some numerical results regarding the product kernel. Finally, some conclusions are
placed at the end of the article.

2 Bounds of Moments

Here, we analyze the third moment and discuss its boundedness over a finite time
interval. The proof makes use of a property of the first moment, namely M1(τ ) ≤
M1(0); see [4].Another assumption required to establish the result is the boundedness
of the second moment, same as in [5], i.e.

sup
0≤τ≤T

n∑

j=1

j2φ j (τ ) = α (11)

where α is a constant depending on T .

Lemma 2.1 Let φ j (τ ) is the solution of (1) such that the Eq. (11) holds and Mi (0),
i = 1, 2, 3 are finite. Then the third moment M3(τ ), defined by (10) is bounded for
the product kernel C j,k ≤ jk for all j, k ≥ 1 such as
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M3(τ ) ≤ β (12)

when τ ∈ [0, T ] and β is a constant.

Proof Multiplying the Eq. (8) by j3 on both the sides and taking summation over j
from 1 to n lead to

n∑

j=1

j3φ j (τ ) =
n∑

j=1

j3φ j (0)

+
∫ τ

0

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑

j=2

j3φ j−1

j−1∑

k=1

kC j−1,kφk

−
n∑

j=1

j3φ j

j∑

k=1

kC j,kφk

−
n∑

j=1

j3φ j

∞∑

k= j

C j,kφk

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(s)ds.

Substituting j − 1 by j ′, further taking j ′ → j in the first term of the above equation
and some simplifications yield

n∑

j=1

j3φ j (τ ) =
n∑

j=1

j3φ j (0)

+
∫ τ

0

⎛

⎜⎜⎜⎜⎜⎝

n∑

j=1

j∑

k=1

(3 j2 + 3 j + 1)kC j,kφ j (s)φk(s)

−(n + 1)3φn(s)
n∑

k=1

kCn,kφk(s)

⎞

⎟⎟⎟⎟⎟⎠

−
∫ τ

0

⎛

⎝
n∑

j=1

∞∑

k= j

j3φ j (s)C j,kφk(s)

⎞

⎠

≤
n∑

j=1

j3φ j (0) +
∫ τ

0

n∑

j=1

j∑

k=1

(3 j2 + 3 j + 1)kC j,kφ j (s)φk(s)ds.

Now, putting C j,k ≤ jk and using (11) one can obtain for τ ∈ [0, T ]
n∑

j=1

j3φ j (τ ) ≤
n∑

j=1

j3φ j (0) +
∫ τ

0
3α

n∑

j=1

j3φ j (s)ds + 3α2 T + αM1(0)T .
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Thus, Gronwall’s lemma concludes that

n∑

j=1

j3φ j (τ ) ≤ (M3(0) + 3α2 T + αM1(0)T )e3ατ .

The finiteness of M3(0), α and M1(0) allows us to pass the limit into the equation
and so letting n → ∞ gives the above expression as

M3(τ ) ≤ β, τ ∈ [0, T ]

for β is a constant depending on M3(0), α, M1(0) and T . �

3 Uniqueness

Theorem 3.1 Let φ j (τ ) be a non-negative solution of the Eq. (1) and α,β are the
constants defined earlier. Also, the following hypotheses

1. (H1) ‖φ‖1 ≥ 1 and
2. (H2) 5β+7α

12α(β+1) < 1
hold, then φ j (τ ) is the only solution on [0,∞).

Proof The outline of the proof is as follows. First, the bound for T is calculatedwhich
will be helpful in proving that there is a contraction mapping for L : l1, j → l1, j
endowed with ||| · ||| norm. This step proves the continuity of the solution φ j (τ ).
Then, a function u(τ ) is defined as the difference between the two solutions of the
Safronov–Dubovksi equationwhich ensures the non-negativity of u(τ ). Finally, u(τ )

is proven to be identically zero by the application of Gronwall’s lemma.
To find the bound, we assume that ||| · ||| satisfies the invariance relation

|||L(φ)||| ≤ |||φ|||. (13)

Thus, by the definition of norm (6), it yields

‖L(φ)‖1 =
∞∑

j=1

j2

∣∣∣∣φ j (0) +
∫ τ

0

(
φ j−1(s)

j−1∑

k=1

kC j−1,kφk (s) − φ j (s)
j∑

k=1

kC j,kφk (s) −
∞∑

k= j

C j,kφ j (s)φk (s)

)
ds

∣∣∣∣.

Replacing j − 1 by j ′ and then j ′ ↔ j in the above expression yields
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‖L(φ)‖1 ≤ M2(0) +
∞∑

j=1

2 j2
∣∣∣∣
∫ τ

0
φ j (s)

j∑

k=1

kC j,kφk (s)ds

∣∣∣∣ +
∞∑

j=1

2 j

∣∣∣∣
∫ τ

0

j∑

k=1

kC j,kφk (s)φ j (s)ds

∣∣∣∣

+
∞∑

j=1

∣∣∣∣
∫ τ

0

j∑

k=1

kC j,kφk (s)φ j (s)ds

∣∣∣∣

+
∞∑

j=1

j2
∣∣∣∣
∫ τ

0

∞∑

k= j

C j,kφ j (s)φk (s)ds

∣∣∣∣.

Putting C j,k ≤ jk ∀ j, k ≥ 1, one can obtain

‖L(φ)‖1

≤ M2(0) +
∫ τ

0

∞∑

j=1

j∑

k=1

(
2 j3k2 + 2 j2k2 + jk2

) |φ j (s)φk(s)|ds

+
∫ τ

0

∞∑

j=1

∞∑

k= j

j3k|φ j (s)φk(s)|ds.

Some simplifications and applying Lemma 2.1 lead to the following equation

‖L(φ)‖1 ≤ α +
∫ τ

0
2β‖φ‖1 + 2‖φ‖21 + ‖φ‖21 + β‖φ‖1ds.

Further, (H1) and the definition of ||| · ||| guarantees that

|||L(φ)||| ≤ α + 3|||φ|||2T (β + 1).

For the invariance property to hold, the expression given below must hold true

α + 3|||φ|||2T (β + 1) − |||φ||| ≤ 0.

To have the real roots for the above inequality, the discriminant must be positive,
which gives us the bound for T as

T ≤ 1

12α(β + 1)
. (14)

Next, we need to show that, there is a contractionmapping for the non-linear operator
L which is possible if

|||L(φ) − L(λ)||| ≤ b |||φ − λ|||, b < 1 (15)

is proved. The definition of L(φ) yields
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‖L(φ) − L(λ)‖1

=
∞∑

j=1

j2
∣∣∣∣φ j (0) +

∫ τ

0

(
φ j−1(s)

j−1∑

k=1

kC j−1,kφk(s) − φ j (s)
j∑

k=1

kC j,kφk(s) −
∞∑

k= j

C j,kφ j (s)φk(s)

)
ds

− λ j (0) −
∫ τ

0

(
λ j−1(s)

j−1∑

k=1

kC j−1,kλk(s) − λ j (s)
j∑

k=1

kC j,kλk(s) −
∞∑

k= j

C j,kλ j (s)λk(s)

)
ds

∣∣∣∣

≤
∞∑

j=1

(2 j2 + 2 j + 1)

∣∣∣∣
∫ τ

0

j∑

k=1

kC j,k (φ j (s)φk(s) − λ j (s)λk(s))ds

∣∣∣∣

+
∞∑

j=1

j2
∣∣∣∣
∫ τ

0

∞∑

k= j

C j,k(φ j (s)φk(s) − λ j (s)λk(s))ds

∣∣∣∣.

Further, by using the relation xy − x̃ ỹ = 1
2 [(x − y)(x̃ + ỹ) + (x + y)(x̃ − ỹ)] and

φ j (0) = λ j (0), the above expression reduces to

‖L(φ) − L(λ)‖1 ≤
∞∑

j=1

(
j2 + j + 1

2

)

∫ τ

0

j∑

k=1

kC j,k (|φ j (s) − λ j (s)||φk (s) + λk (s)| + |φk (s) − λk (s)||φ j (s) + λ j (s)|)ds

+
∞∑

j=1

j2

2

∫ τ

0

∞∑

k= j

C j,k (|φ j (s) − λ j (s)||φk (s) + λk (s)| + |φk (s) − λk (s)||φ j (s) + λ j (s)|)ds

:= S1 + S2 + S3 + S4. (16)

We simplify each term Si , i = 1, 2, 3, 4 separately. PuttingC j,k ≤ jk and some com-
putations, changing the order of summation, enable us to have

S1 ≤
∫ τ

0

∞∑

j=1

∞∑

k= j

j2k3|φ j (s) − λ j (s)||φk(s) + λk(s)|ds

+
∫ τ

0

∞∑

j=1

j∑

k=1

j3k2|φk(s) − λk(s)||φ j (s) + λ j (s)|ds

≤
∫ τ

0
4β||φ − λ||1ds. (17)

Secondly, by simplifying S2, one can easily obtain

S2 ≤
∫ τ

0

∞∑

j=1

j∑

k=1

j2k2(|φ j (s) − λ j (s)||φk (s) + λk (s)| + |φk (s) − λk (s)||φ j (s) + λ j (s)|)ds

≤
∫ τ

0
4α||φ − λ||1ds. (18)

The third sum from (16) can be evaluated as
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S3 ≤
∫ τ

0

∞∑

j=1

j∑

k=1

jk2

2
(|φ j (s) − λ j (s)||φk (s) + λk (s)| + |φk (s) − λk (s)||φ j (s) + λ j (s)|)ds

≤
∫ τ

0

∞∑

j=1

j∑

k=1

j2k2

2
(|φ j (s) − λ j (s)||φk (s) + λk (s)| + |φk (s) − λk (s)||φ j (s) + λ j (s)|)ds

≤
∫ τ

0
2α||φ − λ||1ds. (19)

Finally, the term S4 yields

S4 ≤
∫ τ

0

∞∑

j=1

∞∑

k= j

j2k2

2
|φ j (s) − λ j (s)||φk(s) + λk(s)|ds

+
∫ τ

0

∞∑

j=1

∞∑

k= j

j3k2

2
|φk(s) − λk(s)||φ j (s) + λ j (s)|ds

≤
∫ τ

0
(α + β)||φ − λ||1ds. (20)

Hence, using the Eqs. (17)–(20) in (16), it is easy to see that

‖L(φ) − L(λ)‖1 ≤
∫ τ

0
(5β + 7α)||φ − λ||1ds

which can further be taken as

|||L(φ) − L(λ)||| ≤ (5β + 7α)|||φ − λ|||T .

Using Eq. (14) and (H2), the desired result is accomplished for τ ∈ [0, T ]. Thus,
the solution φ j (τ ) is continuous when 0 ≤ τ ≤ T where T < 1

12α(β+1) . To proceed
further, in order to achieve the uniqueness result, let us assume that φ j (τ ) and λ j (τ )

are two solutions of the Safronov–Dubovski coagulation equation with the same
initial condition, i.e.

φ j (0) = λ j (0). (21)

Now, consider

u(τ ) =
∞∑

j=1

|φ j (τ ) − λ j (τ )|,

where φ j (τ ) is given by the Eq. (8) and so we have
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u(τ ) =
∞∑

j=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ j (0)

+
∫ τ

0

⎛

⎜⎜⎜⎜⎜⎜⎝

φ j−1(s)
j−1∑

k=1

kC j−1,kφk (s) − φ j (s)
j∑

k=1

kC j,kφk (s)

−
∞∑

k= j

C j,kφ j (s)φk (s)

⎞

⎟⎟⎟⎟⎟⎟⎠
ds − λ j (0)

−
∫ τ

0

⎛

⎜⎜⎜⎜⎜⎜⎝

λ j−1(s)
j−1∑

k=1

kC j−1,kλk (s) − λ j (s)
j∑

k=1

kC j,kλk (s)

−
∞∑

k= j

C j,kλ j (s)λk (s)

⎞

⎟⎟⎟⎟⎟⎟⎠
ds

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Using Eq. (21) and replacing j − 1 by j ′ in the first sum and fourth sum, the above
equation becomes

u(τ ) ≤ 2
∞∑

j=1

∣∣∣∣
∫ τ

0

j∑

k=1

kC j,k (φ j (s)φk(s) − λ j (s)λk(s))ds

∣∣∣∣ +
∞∑

j=1

∣∣∣∣
∫ τ

0

∞∑

k= j

C j,k(λ j (s)λk(s) − φ j (s)φk(s))ds

∣∣∣∣

≤
∫ τ

0

∞∑

j=1

j∑

k=1

kC j,k(|λ j (s) − φ j (s)||λk (s) + φk(s)| + |λ j (s) + φ j (s)||λk(s) − φk(s)|)ds

+
∫ τ

0

∞∑

j=1

∞∑

k= j

C j,k

2
(|λ j (s) − φ j (s)||λk(s) + φk(s)| + |λ j (s) + φ j (s)||λk (s) − φk (s)|)ds.

Now, substituting C j,k ≤ jk yields

u(τ ) ≤
∫ τ

0

∞∑

j=1

j∑

k=1

jk2(|λ j (s) − φ j (s)||λk (s) + φk (s)| + |λ j (s) + φ j (s)||λk (s) − φk (s)|)ds

+
∫ τ

0

∞∑

j=1

∞∑

k= j

jk

2
(|λ j (s) − φ j (s)||λk (s) + φk (s)| + |λ j (s) + φ j (s)||λk (s) − φk (s)|)ds.

By changing the order of summation and some simplifications, one can obtain

u(τ ) ≤
∫ τ

0

( ∞∑

j=1

∞∑

k= j

k3|λ j (s) − φ j (s)||λk (s) + φk(s)| +
∞∑

j=1

j∑

k=1

j3|λ j (s) + φ j (s)||λk (s) − φk(s)|
)
ds

+
∫ τ

0

( ∞∑

j=1

∞∑

k= j

k2

2
|λ j (s) − φ j (s)||λk (s) + φk(s)| +

∞∑

j=1

j∑

k=1

j2

2
|λ j (s) + φ j (s)||λk (s) − φk(s)|

)
ds.

Using the definition of u(τ ) and Lemma 2.1, it is easy to observe that

u(τ ) ≤ (4β + 2α)

∫ τ

0
u(s)ds.
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(b) Concentration against size(a) Concentration wrt time

Fig. 1 Concentration φ j (τ )

(a) Uniqueness condition wrt size (b) Uniqueness condition against time

Fig. 2 Validation for (H2)

Hence, an application of Gronwall’s lemma validates u(τ ) ≡ 0 when 0 ≤ τ ≤ T and
so φ j (τ ) = λ j (τ ) ∀ j and 0 ≤ τ ≤ T . Since, T is arbitrary, this completes the proof
of Theorem 3.1.

4 Numerical Simulations

The section illustrates the numerical solution of the discrete population balance
Eq. (1) for the kernel C j,k = jk. We have used fourth order-Runge–Kutta method to
compute the numerical results. The numerical solution aids in plotting the second
and third moments. Finally, these plots ensures the validation of (H2) and confirm
the existence of a unique solution. The hypothesis (H1) is validated by computing
the value of the second moment at various time intervals.
The following graphs are plotted by using ode45 in MATLAB. The other important
parameters are the initial condition φ j (0) = 1

2 j , n = 50 and τ ∈ [0, 50].
Figure1 presents the numerical plot for the concentration φ j (τ ) at different values of
τ ∈ [0, 50] (Fig. 1a) and the normalized concentration for different sizes of particles
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is depicted through the Fig. 1b. Figure1b clearly establishes the existence of a steady
state, which can be the focus of a possible future work. Further, the uniqueness
condition (H2) is validated for the numerical solution with the help of the Fig. 2.
For the sake of convenience, the expression 7α+5β

12α(β+1) is denoted as �. In Fig. 2a, the
values of � are plotted at different values of j for τ = 35, 40, 45, 50. The figure
depicts that the value of � increases first upto a maximum value and then decreases
until the value becomes less than 1. This would mean that the solution is unique
when j ∈ [1, 8) and j ∈ [43, 50] at τ = 50. The plot of the linear combination of
the second and third moments at these four values of τ seems to follow the same
behaviour. The value of � is shown to be maximum at τ = 50 and minimum at
τ = 35 for any fixed j . The plot of �, when drawn for n = 35, 40, 45, 50 indicates
that since 45, 50 ∈ [43, 50], this implies that � < 1 and hence solution is unique for
n = 45, 50 for every τ ∈ [0, 50]. It also illustrates that as the value of n increases,
the solution becomes unique for every τ . Figure2 ensures that � is an increasing
function wrt time but non-monotonic wrt size.
Now, that we have the validation for the hypothesis (H2), the following table estab-
lishes that the hypothesis (H1) also holds true for the example considered.

τ 0 10 20 30 40 50
||φ||1 1510 60.86 30.87 20.68 15.55 12.71

5 Concluding Remarks

The uniqueness of the solution required a condition on the finiteness of the second and
third moments and then the relation between these finite quantities. The uniqueness
condition helped us locate the values of j for which the solution is unique for every
τ . Now, that the solution of the Safronov–Dubovski equation is unique forC j,k ≤ jk
∀ j, k ∈ N, it would be interesting to study, in future, the analytical solution and
steady-state solution for such model.
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Hybrid Modeling of COVID-19 Spatial
Propagation over an Island Country

Jayrold P. Arcede, Rachel C. Basañez, and Youcef Mammeri

Abstract Wepropose a coupledmetapopulation reaction-diffusionmodel to explain
thepropagationof theCOVID-19over an island country such as thePhilippines. In the
main islands, only susceptible, exposed, and asymptomatic individuals are traveling.
The model takes into account the mean daily movement and the transfers and is
parametrized using data on the confirmed cases and deaths from the Philippines. To
proceed, we set up the system of partial and ordinary differential equations whereby
the basic reproduction number, R0, is obtained. Next, we simulate the spatial spread
of COVID-19 during the first 140 days of infection using a combination of level-set
and finite difference methods. Afterward, scenarios of lockdown and unlockdown
were studied. Our results displayed a remarkably close similarity to what happened
in the Philippines during its first 140 days.

1 Introduction

A year has passed since January 30, 2020, where the Philippines’ first index case
of Corona Virus Disease 2019 (COVID-19) was recorded. However, the country
continues to grapple with its impact on health, economic, social, and mental health
[1, 12]. As of June 15, SARS-COV2, the virus that causes COVID-19, ravaged the
whole world with over four (4) million deaths while infecting at least 176 million.
In the Philippines, over a million infections had been confirmed, in which nearly 23
thousand had died while over one (1) million have recovered [2].
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In the early phase, the Philippines implemented the most extended lockdown.
Yet, last April 2021, the country experienced a second wave of infections where
cases reached as high as 15 thousand a day. The worst is that the infections crawled
their way to the provinces where it now outweighs the number of cases from the
NationalCapitalRegion (NCR), shifting epidemichotspots toVisayas andMindanao.
Consequently, the government implemented a series of lockdowns with an average
of two (2) weeks over the archipelago to flatten the curve. The sad reality, however,
lockdowns only offer a short-term solution. Vaccination, regarded as the key to beat
COVID-19, has been too slow for the Philippines (1.6% vaccinated individuals only
as of June 14, 2021). Hence, to buy time, lockdowns were implemented by the
government.

Mathematical modeling has been at the forefront in all decision-making related
to COVID-19 [19], and there have been many papers related to COVID-19, which
uses different mathematical tools to track down COVID-19 spread. We searched
existing literature along this line and found that most proposed models are either
discrete or continuous SIR type while a few only consider spatial spread. To mention
some, Gardner [9] evaluated the expected number of cases in mainland China at
the end of January 2020 using an SEIR-type metapopulation network. Wu et al. [22]
simulated theCOVID-19 thanks to anSEIRmetapopulationmodel.Dailymovements
are considered by Danon et al. [7] and Giuliani et al. [10] utilized a statistical model
to deal with the spread of COVID-19 in Italy. Recently, Mammeri [15] successfully
applied a spatial propagation model in the case of France. We wonder if it can be
adapted in an archipelago like the Philippines.

The rest of the paper is organized as follows. Section2 outlines our model. Here,
the qualitative analysis is done, and the computation of reproductive number R0 is
provided. Section3 deals with the numerical simulations. Section4 concludes the
paper.

2 Mathematical Model and Its Study

2.1 Description of the Model

In our study, five (5) components of the epidemic flow are examined (Fig. 1), i.e.,
the densities of Susceptible individual (S), Exposed individual (E), symptomatic
Infected individual (Is), asymptomatic Infected individual (Ia), and Removed indi-
vidual (R).We assumed that susceptible could be infected by exposed and by infected
individuals [3]. Further, we suppose that only susceptible, exposed, and asymptotic
individuals are traveling. Following the literature concerning epidemic modeling
[4], the dynamics is described in each island by a system of three partial differential
equations (PDE) and three (3) ordinary differential equations (ODE) as follows, for
x = (x, y) ∈ � = ⋃

1≤i≤l �i ⊂ R
2, t > 0, and 1 ≤ i ≤ l
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Fig. 1 Compartmental representation of the hybrid SE Ia Is R−model. Blue arrows represent the
infection flow. Purple arrows denote the death. Green compartments indicate moving individuals

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t Si − di�Si = −ωi
(
βe,i Ei + βs,i Is,i + βa,i Ia,i

) Si
Ni

+
l∑

j=1

g ji S j − gi j Si

∂t Ei − di�Ei = ωi
(
βe,i Ei + βs,i Is,i + βa,i Ia,i

) Si
Ni

− δEi +
l∑

j=1

g ji E j − gi j Ei

∂t Ia,i − �Ia,i = (1 − pi )δi Ei − γi Ia +
l∑

j=1

g ji Ia, j − gi j Ia,i

I ′
s,i = piδi Ei − (γi + μi )Is,i

R′
i = γi (Ia,i + Is,i ).

(1)
Homogeneous Neumann boundary conditions are imposed on islands, connectivity
matrix G = (gi j ) translates travels between islands. The death is D′(t) = ∑

i μi Is,i
and the total living population is N = S + E + Ia + Is + R := ∑

i Si + Ei + Ia,i +
Is,i + Ri . The parameters are summarized in Table1.

2.2 Initial Boundary Value Problem and Basic Reproduction
Number

We suppose that all parameters are positive and bounded. Following [8, 15, 16], it
can be proved that the model is globally well-posed.

Theorem 1 For all 1 ≤ i ≤ l. Let 0 ≤ S0,i , E0,i , Ia,i,0, Is,i,0, R0,i ≤ N0,i be the ini-
tial datumwith

∑
i N0,i ≤ N0. Then there exists a unique global in timeweak solution

(Si , Ei , Ia,i , Is,i , Ri ) in L∞(R+, L∞(�))5l , of the initial boundary value problem.
Moreover, the solution is nonnegative and

∑
i Si + Ei + Ia,i + Is,i + Ri ≤ N0.

Moreover, if di = d and gi j = g
k j
, and ω0βe ≤ δ, then the solution converges

almost everywhere to theDisease-Free Equilibrium (S∗, 0, 0, 0, R∗)with S∗ + R∗ =
N ∗.
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Exponential initial growth is ensured by the following condition.

Theorem 2 If the local basic reproduction number, for 1 ≤ i ≤ l,

R0,i := ω0,i

(
βe,i

δi + ∑l
j=1 gi j

+ (1 − pi )βa,i

γi + ∑l
j=1 gi j

+ piβs,i

γi + μi

)
S0,i
N0,i

> 1,

then (Ei , Ia,i , Is,i ) exponentially grows.

The transmission rate due to exposed individuals during the average latency period
1/δi , accounting for all emigration gi j of exposed individuals, is given by the term

βe,i

δi+∑
j gi j

. The dissemination due to asymptomatic individuals during the average

infection period 1/γi , accounting for all emigration gi j of asymptomatic individuals,
is given by (1−pi )βa,i

γi+∑
j gi j

. The last term concerns those symptomatic individuals who are

not traveling.

Proof A linearization around (S0,i , E0,i , Ia,i,0, Is,i,0, 0, 0) is written as

⎛

⎝
Ei

Ia,i

Is,i

⎞

⎠

′

=
⎛

⎜
⎝

di� + ωiβe,i
S0,i
N0,i

− δi − ∑
j gi j ωiβa,i

S0,i
N0,i

ωiβs,i
S0,i
N0,i

(1 − pi )δi di� − γi − ∑
j gi j 0

pi δ 0 −(γi + μi )

⎞

⎟
⎠

⎛

⎝
Ei

Ia,i

Is,i

⎞

⎠ +
⎛

⎝

∑
j g ji E j∑
j g ji I j
0

⎞

⎠ .

Let (vk)k≥1 be an orthonormal basis of eigenfunctions of theLaplace operatorwith the
homogeneousNeumannboundary condition, i.e.,−�vk = k2vk .Writing Ei , Ia,i , Is,i
as a linear combination of (vk)k≥1, it is therefore enough to study the characteristic
polynomial reading as Pk,i (x) = x3 + a2x2 + a1x + a0,witha0 = (γi + μi )(dik2 +
γi + ∑l

j=1 gi j )(dik
2 + δi + ∑l

j=1 gi j )
(
1 − Rk,i

)
and

Rk,i := ω0,i

(
βe,i

d0,i k2 + δi + ∑l
j=1 gi j

+ (1 − pi )βa,i

d0,i k2 + γi + ∑l
j=1 gi j

+ piβs,i

γi + μi

)
S0,i
N0,i

.

At least one (1) positive eigenvalue exists if R0,i > 1, which leads to the initial
exponential growth rate of solutions. �

Remark 1 Infection is depicted by the individuals in Ei , Ia,i and Is,i , new infections
(Fi ) and transitions between compartments (Vi ) are

Fi =
(

ωi (βe,i Ei + βs,i Is,i + βa,i Ia,i )
Si
Ni

0
0

)

, Vi =
(

δi Ei − ∑l
j=1 g ji E j + gi j Ei

γi Ia,i − (1 − pi )δi Ei − ∑l
j=1 g ji I j + gi j Ii

(γi + μi )Is,i − pi δi Ei

)

,

then the local basic reproduction number R0,i := ρ(FiV
−1
i ) [21].
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3 Numerical Results

3.1 Numerical Discretization

To simply discretize an island country, the level-set [18] is defined as the function
φ such that the territory � := {

x ∈ R
2; φ(x) < 0

}
, and its boundary is the zero

level of φ. The exterior normal is n = ∇φ

||∇φ|| . The computation domain consists of a
Cartesian grid which is given by the image pixels (Fig. 2). Then the map of popula-
tion density allows the building of initial population density, N0(x) (Fig. 2). Finally,
Runge-Kutta fourth order discretizes the time derivative and the second-order central
finite difference solves the space derivative.

3.2 Parameters Calibration

Latency period and infection period have been evaluated as five (5) days and seven
(7) days, respectively [13], and thus δ = 1/5, γ = 1/7. Local lockdowns and new
variants are computed by updating the average number of contacts [14, 15]

ωi (t) =

⎧
⎪⎪⎨

⎪⎪⎩

ω0,i if t ≤ tlockstart,i

ω0,ie
−ρl,i (t−tlockstart,i ) if tlockstart,i ≤ t ≤ tlockend,i

ηiω0,i

1 + (ηieρl,i (tlockend,i−tlockstart,i ) − 1)e−ρu,i (t−tlockend,i )
if t ≥ tlockend,i ,

(2)
and by updating the diffusion coefficient

(a) (b) (c)

Fig. 2 a Map of population density of the Philippines. b Level-set and computation domain con-
sisting in the Cartesian grid. c Five (5) main islands of the Philippines and its airports as red dots
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di (t) =

⎧
⎪⎪⎨

⎪⎪⎩

d0,i if t ≤ tlockstart,i

d0,ie
−ρl,i (t−tlockstart,i ) if tlockstart,i ≤ t ≤ tlockend,i

d0,i
1 + (eρl,i (tlockend,i−tlockstart,i ) − 1)e−ρu,i (t−tlockend,i )

if t ≥ tlockend,i .

(3)

Here, lockstart, i denotes for start of lockdown and lockend, i for end of lockdown
in island i . The parameter ηi provides the infection multiplier rate according to the
compliance with distancing rules, or introduction of new variants in patch i .

Since data are not fully available in each island, parameters θ = (ρl, ρu, η, ωi,0βe,

ωi,0βs, ωi,0βa, p, μ) are calibrated for thewhole country using approximateBayesian
computation of the nonlinear least square cost function.

The COVID-19 dataset is openly provided by Philippine government. The dataset
can be downloaded from https://data.gov.ph. The first confirmed infection was on
January 30, 2020. We remind that lockdown in the Philippines started on March 15,
i.e., 45 days after the first infection, then extended untilMay 31 and finally reimposed
on August 4. The daily commuting is set to 15km and the value of d0 is fixed equal
to 152

16 [20]. Table1 shows the mean estimated parameters after 2000 runs.

Table 1 List of parameters and its fitted value

J Relative cost function 0.00218

i Patch number 1 − 5

di Diffusion coefficient 152
16

ωi Contact rate Not identifiable

βi Probability transmission Not identifiable

ωi,0βe,i Transmission rate from Si to Ei from contact with Ei 0.0748

ωi,0βs,i Transmission rate from Si to Ei from contact with Is,i 0.2879

ωi,0βa,i Transmission rate from Si to Ei from contact with Ia,i 0.3381

ηi Infection multiplier in patch i 0.5179

ρl,i Exponential decay for lockdown 0.0094

ρu,i Exponential decay for unlockdown 0.8013

δi Latency rate 1/5

pi Probability of being symptomatic 0.4388

1 − pi Probability of being asymptomatic 0.5612

γi Recovery rate 1/7

μi Death rate 0.00016

R0 Basic reproduction number 2.5435

https://data.gov.ph
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3.3 Spatial Spread of COVID-19

We consider the five (5) main islands and five (5) main airports in the Philippines.
The connectivity coefficients gi j are given as the number of passengers traveling
between i and j , divided by the number of passengers in i . Because the data are not
openly accessible, we assume that the very first infected individuals were located at
Manila Airport on day one (1), and moved to each of the six (6) chosen airports on
day two (2). This is the only assumed travel during the simulation.

The day before lockdown is depicted in Fig. 3-A. The disease is mostly located in
the NCR,Western Visayas, and a big part ofMindanao encompassing Davao Region,
Socksargen, Northern Mindanao, and Caraga. After 92 days, (Fig. 3-B1), the disease
persists in these regions. It almost vanishes in small islands. Given that lockdowns
continue, the density of symptomatic infected individuals reduces until day 140 but
completely extinguished in all of Visayas andMindanao. At the same time, it shifts to
the central part of Luzon, i.e., Cordillera Region, Cagayan Valley, and Ilocos Region
(Fig. 3-B2).

Figure3-C depicts the situation without lockdown. After 92 days, the disease is
in the same regions, but with many infected individuals. As a result, the propagation

Fig. 3 A Spatial distribution of symptomatic infected density on day 45. B Spatial distribution of
symptomatic infected density on day 92 (B1) and on day 140 (B2) when lockdown started on day
45. C Spatial distribution of symptomatic infected density on day 92 (C1) and on day 140 (C2)
without lockdown
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moves to the north. While the disease vanishes in the southern part of the country,
after 140 days the north is peaking.

4 Conclusion

We have presented a spatiotemporal model for COVID-19 spread in the Philippines.
Remarkably, the simulation pattern captured the actual spread of COVID-19 dynam-
ics in the country. That is, with or without lockdown and discounting delay, the
propagation focused around NCR where dense cities like Quezon City and Manila
served as the epicenters [17]. After that, the disease spreads simultaneously to the
other following big islands of Visayas (Cebu City as a hotspot) [6] and Mindanao
(Davao City as a hotspot) [5] then it goes back to Luzon again to the north with
Mountain Province experiencing some cluster [11].

The proposed model is capable of generating maps describing the spatiotemporal
propagation of the epidemic for island country. Provided that data on movement
between patches is available, it would be possible to provide a global as well as a
local policy support with maps embedded with effective reproduction numbers.

Acknowledgements This work was supported by DOST-PCHRD under the project Understanding
COVID-19 Pandemic Situation in Caraga Region through Epidemiological Models and Resiliency
Studies (UnCOVER) 2020. YM is funded by the Agence National de la Recherche and Région
Hauts-de-France, projet Space-covid ANR Résilience.

References

1. COVID-19: an ongoing public health crisis in the Philippines. Lancet Reg Health—Western
Pac 9:100160 (2021)

2. Philippines COVID: 1,315,639 Cases and 22,788 Deaths—Worldometer (2021)
3. Arcede JP, Caga-anan RL, Mentuda CQ, Mammeri Y (2020) Accounting for symptomatic and

asymptomatic in a seir-type model of covid-19. Math Mod Nat Pheno
4. Brauer F, Castillo-Chavez C (2012) Mathematical models in population biology and epidemi-

ology. Springer, New York, NY
5. Crisostomo S, Romero A,Mendez C (2020) Nine mindanao provinces emerging as COVID-19

Hotspots; Gov’t seeks ways to open up the economy
6. Dancel R (2020) Covid-19 ‘hot spot’ Cebu City to remain on lockdown; manila restrictions

eased further, July 2020
7. Danon L, Brooks-Pollock E, Bailey M, Keeling MJ (2020) A spatial model of covid-19 trans-

mission in england and wales: early spread and peak timing. MedRxiv
8. FitzgibbonWE,LanglaisM,Morgan JJ (2007)Amathematicalmodel for indirectly transmitted

diseases. Math Biosci 206:233–248
9. Gardner L (2020) Modeling the spreading risk of 2019-ncov. Technical report, Center for

Systems Science and Engineering, Johns Hopkins University
10. Giuliani D, DicksonMM, Espa G, Santi F (2020)Modelling and predicting the spatio-temporal

spread of coronavirus disease 2019 (covid-19) in Italy



Hybrid Modeling of COVID-19 Spatial Propagation … 83

11. Gonzales C (2021) DOH reports 8 more cases of UK Covid-19 variant; total in PH now 25,
Feb 2021

12. Kahambing JGS (2021) Psychosocial wellbeing and Stress Coping Strategies during COVID-
19 of Social Workers in Southern Leyte, Philippines. Asian J Psychiatr 102733 (2021)

13. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, Azman AS, Reich NG, Lessler
J (2019) The incubation period of coronavirus disease, (covid-19) from publicly reported
confirmed cases: estimation and application. Ann Int Med 03:2020

14. Liu Z, Magal P, Seydi O, Webb G (2020) Predicting the cumulative number of cases for the
covid-19 epidemic in china from early data. Math Bios Eng 17:3040

15. Mammeri Y (2020) A reaction-diffusion system to better comprehend the unlockdown: appli-
cation of seir-type model with diffusion to the spatial spread of covid-19 in France. Comput
Math Biophys 8(1):102–113

16. McCormackRK,AllenLJS (2007)Multi-patch deterministic and stochasticmodels forwildlife
diseases. J Bio Dyn 63–85

17. Mercado NA (2020) Makati, Quezon City remain as virus hotspots; localized lockdowns
pushed, Dec 2020

18. Osher S, Fedkiw R (2002) Level set methods and dynamic implicit surfaces. Springer, New
York

19. Panovska-Griffiths J (2020) Can mathematical modelling solve the current Covid-19 crisis?
BMC Publ Health 20(1):551

20. Shigesada N, Kawasaki K (1997) Biological invasions: theory and practice. Oxford University
Press

21. van den Driessche P, Watmough J (2000) Reproduction numbers and sub-threshold endemic
equilibria for compartmental models of disease transmission. Math Biosci 180(1–2):29–48

22. Wu JT, Leung K, Leung GM (2020) Nowcasting and forecasting the potential domestic and
international spread of the 2019-NCOV outbreak originating in Wuhan, China: a modelling
study. The Lancet 395(10225):689–697



Identification of Potential Inhibitors
Against SARS-CoV-2 3CLpro, PLpro,
and RdRP Proteins: An In-Silico
Approach
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Abstract The COVID-19 pandemic is still evolving and is caused by SARS-CoV-2.
Me-too drugs are chemically, structurally, or functionally similar to preexisting drugs.
These drugs may be chemically related to the prototype, and may have an identical
mechanism of action with enhanced target specificity and reduced risks of adverse
reactions. In the present study, we have performed a chemical similarity analysis to
identify Me-too (similar) ligands relative to previously reported potential drug hits
(reference compounds) against the major viral proteins, including 3CLpro, PLpro, and
RdRP. The binding efficiency of the similar molecules was then evaluated by using
molecular docking and molecular dynamics simulation approaches to assess their
binding effectiveness relative to the reference compounds. Our results indicate that
severalmolecules showbetter interaction compared to the referencemolecules. These
moleculesmay be potential drugs inhibiting different stages of the SARS-CoV-2 viral
lifecycle.
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1 Introduction

Theglobal outbreak of the current coronavirus disease 2019 (COVID-19) is caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The virus belongs
to the Coronaviridae family of Betacoronavirus genus (Coronaviridae Study Group
of the International Committee on Taxonomy of Viruses, 2020). In the past two
decades, two other coronaviruses of the same genus, SARS-CoV and MERS-CoV,
had caused two major worldwide outbreaks [1]. The World Health Organization
(WHO) declared COVID-19 a pandemic inMarch 2020 [2]. The disease had resulted
in >216 million cumulative cases globally causing more than 4.49 million deaths as
of 30th August, 2021 [3]. Though efforts are being made for large-scale vaccination
drives in majority of the countries, additional threats from mutated variants of the
virus [4], incidents of infection in vaccinated individuals, possibilities of reinfection
in recovered patients [4, 5], and short duration of seropositivity for neutralizing
antibodies [4] in vaccinated individuals raise alarm about the future course of the
current COVID-19 pandemic.

The coronavirus genome encodes four structural proteins, spike (S), nucleocapsid
(N),membrane (M) and envelope (E) proteins, and 16 non-structural proteins (NSPs).
Spike is a transmembrane homotrimeric glycoprotein that protrudes from the virus
surface [6] and is responsible for host cell recognition and viral fusion. The N protein
coats the positive single-stranded RNA genome of the virus forming a capsid. It
protects the viral genome from the harsh environment of the host cell [7]. M protein
is an integral membrane protein that determines the shape of the viral envelope
and interacts with S and N proteins [8]. The E protein is the smallest structural
protein that acts as a scaffold to facilitate viral assembly and release [9]. Once the
virus is inside the host cell, the replicase gene present in the viral genomic RNA is
translated. This gene encodes two polyproteins, pp1a and pp1ab, that are cleaved
into individual NSPs. Two proteases, main protease, 3CLpro (NSP5) and papain-like
protease, PLpro (NSP3), cleave the polyproteins to form other NSPs. Many of these
NSPs, including the primary RNA-dependent RNA polymerase (RdRP; NSP12),
NSP7–NSP8 primase complex, a helicase–triphosphatase (NSP13), an exoribonu-
clease (NSP14), an endonuclease (NSP15), and N7- and 2′O-methyltransferases
(NSP10 and NSP16) then form a replicase–transcriptase complex (RTC) which is
ultimately involved in RNA replication and transcription [10].

In-silico approaches for virtual screening of ligands have emerged as a powerful
tool in drug discovery. Since the outbreak of COVID-19, several studies have used a
molecular docking approach to screen for drugs against SARS-CoV-2, which either
target the virus entry into the host cell or the viral replication and transcription
machinery [11–18]. Since the early phase of the pandemic, several such drugs have
been undergoing clinical trials worldwide for their efficacy against the disease [19].
However, a number of trials were discontinued due to limited evidence for viral effi-
cacy [20–23]. Chemical similarity analysis is another in-silico approach for potential
drug identification. The systematic exposition of chemical network analysis offers
the possibility of faster designing and reduced complexity in drug discovery [24, 25].
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This approach is capable of integrating with biological knowledge-based databases
(Uniprot, GO) and high-throughput biology platforms (proteomic, genetic, etc.) for
system-wide drug target validation [26]. It generates “Me-too” drugs that are chem-
ically, structurally, or functionally similar to preexisting drugs. These drugs may be
chemically related to the prototype, and may have an identical mechanism of action.
More than 60% of medicines listed on the WHO’s essential list are Me-too drugs.
Advantages of Me-too drugs include enhanced target specificity, reduced risks of
adverse reactions and drug–drug interactions, increased chance of benefit in some
patients, and improved drug delivery [27].

In the present study, we have performed a chemical similarity analysis to iden-
tify Me-too (similar) ligands relative to the previously reported potential drug hits
(reference compounds) against the major viral proteins, including 3CLpro, PLpro, and
RdRP. The binding efficiency of the similar molecules was then evaluated by using
the molecular docking approach to assess their binding effectiveness with relative
to the reference compounds. Finally, the stability of a lead protein–ligand complex
was validated using molecular dynamics simulation.

2 Material and Methods

An overview of the methodology of the current work is represented in Fig. 1 and
explained in details below.

Fig. 1 Schematic flow chart of overall workflow of the in-silicoMe-too drug repurposing pipeline
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2.1 Chemical Similarity Analysis

Ligands, which are under clinical trial or have been previously reported, till August
2020, as potential drug targets against SARS-CoV-2, were selected as reference
compounds. Networks of similar ligands relative to the reference compounds were
generated using the web-based tool for Chemical Similarity Network Analysis Pull-
down (CSNAP) analysis (https://services.mbi.ucla.edu/CSNAP/index.html) [24].
CSNAP is a network-based approach for automated compound target identification
basedon the current artificial intelligence and chemical similarity graphs [25, 26].The
FP2 parameter was chosen for both search and cluster fingerprints. This parameter
has high specificity and is applicable to any ligand size. Structurally similar ligands
were retrieved from the CHEMBL database version 20 using Tanimoto coefficient
(Tc) and Z-scores. Tc is the most widely used parameter for chemical similarity
analysis in cheminformatics studies. It is represented as the ratio between conserved
features and the total number of features for each molecule. Its values range from
0 (no similarity) to 1 (total similarity). The statistical significance of this similarity
coefficient is assessed using Z-score, which is based on the overall mean and standard
deviation of score distribution of the hits [28]. In our current study, we have used a
Tc and Z-score cutoff of 0.85 and 2.5, respectively, to identify theMe-too molecules.

2.2 Preparation of the Protein Targets for Docking

The crystal structures of 3CLpro (PDB ID: 6Y2E; resolution: 1.75 Å) [29], PLpro

(PDB ID: 6WX4; resolution: 1.66 Å) [30], and RdRP (PDB ID: 6M71; resolution:
2.90 Å) [31] were obtained from the Protein Data Bank at the RCSB site (http://
www.rcsb.org). The proteinswere preprocessed usingAutodockMGLTools (Version
1.5.6) by removing co-crystallized water, inhibitors, and small molecules. Further
preprocessing was performed by addition of polar hydrogens and Kollman charge.

2.3 Preparation of Ligands for Docking

Two-dimensional (2D)/three-dimensional (3D) SDFfiles of the reference ligands and
their similar ligands were downloaded from the PubChem database. Web version of
the Open Babel tool was used to convert the 2D structures to the 3D format and
downloaded as.pdb file. The 3D structures were further manually verified using
either PyMol (The PyMOL Molecular Graphics System, Version 2.0 Schrödinger,
LLC), UCSF Chimera version 1.14 [32], or Avagadro [33]. Finally, polar hydrogens
and Gasteiger charge were applied to all of the ligands using Autodock MGL Tools
(Version 1.5.6) and saved as .pdbqt files.

https://services.mbi.ucla.edu/CSNAP/index.html
http://www.rcsb.org
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2.4 Molecular Docking

Receptor grid boxes were generated by AutoGrid4 around the active site of proteins.
Grid-box dimensions for each of the proteins are as follows: 100 Å× 100 Å× 100 Å
and 0.2 Å spacing were used for 3CLpro, PLpro, and RdRP. 3CLpro grid was centered
at X = −13.553, Y = −27.671, and Z = 0.825 around amino acid residues GLN189,
HIS163, GLU166, CYS145, and HIS41 [29]. The grid for PLpro was centered at X =
12.314, Y = −23.045, and Z = −40.204 around the amino acid residues CYS111,
GLY163, HIS272, GLN269, ASP286, TYR273, and ASP302 [30]. A grid center size
of X = 123.910, Y = 113.340, Z = 122.605 around amino acid residues ASP618,
ASP760, and SER759 was used for RdRP [34, 35]. The genetic algorithm (GA)
search parameter was used for docking in combination with the grid-based energy
evaluation method. A total number of 10 GA were used to run the docking program.
The molecular docking results for protein–ligand interactions were evaluated using
the PyMOL Molecular Graphics System and Discovery Studio (Dassault Systems
BIOVIA).

2.5 Molecular Dynamics Simulations

Molecular dynamics simulations of RdRP protein with the Remdesivir similar
compound-155 complex were performed using GROMACS package [36] with the
CHARMM36 [37] force field starting from the docked state of the drug. A cubic
box (with 10 Å additional space in all directions from the ends of the protein–ligand
complex) filled with TIP3P [38] water molecules and Na +/Cl− atoms to neutralize
charges were used. After energy minimization, the complex was allowed to equili-
brate for 1 ns each under NVT and NPT ensemble with position restraints attached
to ensure that the complex is stable. Then, a production run was performed for up
to 70 ns. The MD trajectories have been saved every 10 ps for the entire simulation.
The time step is 2 fs. During equilibration, position restraints were applied to both
ligands and proteins so that there are no drastic changes in the structure during equi-
libration. The root mean square deviations (RMSD) of the protein and the ligand was
calculated with respect to the starting structure of MD production run to understand
the stability of the complex. In order to understand the binding energies, a molecular
mechanics Poisson–Boltzmann surface area (MM–PBSA) analysis is performed over
a selected number of frames taken between 50 and 70 ns simulations. The formation
of hydrogen bonds between the protein and ligands was analyzed using an in-house
code, where we identify the residues that are closer to the ligand by at the most 15 Å,
followed by scanning for hydrogen bonds between polar atoms (N and O) with H
atoms with a maximum interaction length of 2.5 Å.
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3 Results and Discussion

With increasing number of cases and deaths, the current COVID-19 pandemic
requires immediate therapeutic modalities. For the past several months, studies
have identified potential drugs against SARS-CoV-2 proteins using virtual screening
approach. Several of these molecules showed encouraging in vitro activity against
the virus [12]; however, many of them are thought to have a poor selectivity index,
indicating that higher tolerable levels of the drug might be required to achieve mean-
ingful inhibition in vivo [39]. This is further supported by the fact that two such
molecules, Lopinavir and Ritonavir, showed encouraging in vitro activity against
coronaviruses in the earlier studies [39]. However, recent studies show limited effi-
cacy in randomized controlled trials for SARS-CoV-2 [22]. Similarly, recent studies
on hydroxychloroquine also showed limited efficacy [21]. Over the next few months
whenmore clinical trialswill reach thefinal stage, several potential drugs are expected
to show limited efficacy against the disease. It is therefore imperative to identify new
molecules with improved binding efficacy against the viral proteins. In the present
study, we attempt to perform virtual screening to identify ligands having better
binding affinity with the viral proteins compared to previously reported potential
inhibitors.

3.1 Chemical Similarity Analysis

CSNAP is a powerful computational target identification method that utilizes
chemical similarity networks for large-scale chemotype recognition and drug
target profiling [26]. Me-too drugs were identified using CSNAP against previ-
ously reported potential COVID-19 drugs (reference compounds). We carefully
selected these reference compounds from the peer-reviewed literature using in-silico
approaches for virtual screening of ligands to novel SARS-CoV-2 [11, 13, 40–43].
Shortlisted compounds for our study included FDA-approved drugs or drugs under
clinical trials. Our chemical similarity analysis of 78 reference compounds resulted
in more than 453 similar Me-too molecules, with the Tanimoto coefficient (Tc) score
and a Z-score cutoff of 0.85 and 2.5, respectively (Supplementary File A). These
compounds are structurally similar and might possess a similar mechanism of action
to that of their reference drugs [44]. Molecular docking analysis was then performed
with all of the ligands against their corresponding proteins to assess their binding
efficacy.
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3.2 Inhibitors of 3CLpro

3CLpro consists of 306 amino acids and cleaves at 11 different sites of the polypro-
tein to produce NSP4 to NSP16. It is essential for the lifecycle of virus and
hence is considered as a potent drugable target [14]. During the preparation
of this manuscript, evidences show that more than 18 experimental drugs were
repurposed for targeting 3CLpro and some are under clinical trials. These include
acefluranol, benaxibine, tobramycin, sulfamoxole, sulfaethidole, sulfametrole, penti-
somicin, glybuthiazol, tanzisertib, ramifenazone, etersalate, alpelisib, bisantrene,
menatetrenone, bucindolol, mannitol, curcumin, and RO-24-7429 [11, 14–17, 45–
48] (Supplementary Table S1 A). Using CSNAP analysis with these drugs as
the main reference compounds we identified a total of 70 similar compounds
against 3CLpro. A complete list of the compounds can be found in Supplemen-
tary File A. The binding energy of these similar ligands generated from molecular
docking analysis shows that the Me-too compounds either bind similarly or more
effectively to the active site of the enzyme compared to the respective reference
molecules (Supplementary File A, Supplementary Table S1 B). It is worthwhile
to mention that compound-302 (−9.96 kcal/mol), compound-361 (−9.87 kcal/mol),
and compound-368 (−10.7 kcal/mol) showed improved binding energy compared
to their corresponding reference compounds acefluranol (−8.67 kcal/mol), alpelisib
(−8.51 kcal/mol), and bisantrene (−9.4 kcal/mol), respectively (Fig. 2).

Acefluranol is an estrogen antagonist and is used as an estrogen blocker. It is
used as a combination therapy for the treatment of estrogen-sensitive diseases [49].
CSNAP cheminformatics analysis of acefluranol resulted in a lead similar molecule,
compound-302 (Scheme 1, Fig. 2a). Molecular docking analysis revealed that this
similar molecule showed a better docking score compared to acefluranol (Fig. 2d).

Upon analyzing the 3D and 2D interaction maps between the ligand and
3CLprocomplex, it was found that compound-302 forms six hydrogen bonds with the
amino acid residues, GLN192, THR190, SER144, ASN142, and CYS145 (Fig. 3a, b,
Table 1). In contrast, acefluranol interacts with the protein with three hydrogen bonds
(Supplementary Figure S1A, S1B, Supplementary Table S2). Further, an addi-
tional methyl group in compound-302 helps it to interact with 3CLpro using an extra
pi-alkyl interaction with MET49 (Fig. 3b, Supplementary Figure S1B) leading to
its improved binding affinity compared to acefluranol.

Alpelisib is a FDA-approved drug for the treatment of breast cancer. It is a phos-
phatidylinositol 3-kinase (PI3K) inhibitor that specifically inhibits the PI3K/AKT
kinase (or protein kinase B) signaling pathway [50–52]. CSNAP cheminformatics
analysis of alpelisib resulted in seven similar compounds (Fig. 2b). Among them,
compound-361 was considered as the lead molecule because it showed the highest
docking score (Scheme 2, Fig. 2e). A higher score can be explained by the fact
that this molecule interacts with GLY143 with a strong conventional hydrogen bond
(1.78Å), compared to alpelisib (1.84Å).Additionally, the absence of a fluoride group
in compound-361 allows it to orient in a way that it forms the alkyl interaction with
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Fig. 2 Chemical similarity analysis using CSNAP to identify Me-too drugs against SARS-CoV-2
3CLPro. Similarity network map for reference repurposed drugs a acefluranol, b alpelisib, and c
bisantrene. d–f Column plots representing molecular docking score of the Me-too drugs compared
to the corresponding reference drugs. (Note: Ligands that could not be docked due to structural
complexity are not included in the bar graph.)

Acefluranol (Pubchem# 170368)   Compound-302 (Pubchem# 12610668) 

Scheme 1 Chemical structure of acefluranol and compound-302

LEU27 (Fig. 3c, d) compared with alpelisib (Supplementary Figure S1C, S1D).
Other interactions involved can be found in Table 1 and Supplementary Table S2.

Bisantrene is an antineoplastic drug that intercalates with and disrupts the config-
uration of DNA, thereby inhibiting DNA replication [53]. CSNAP cheminformatics
analysis of bisantrene resulted in five similar compounds (Fig. 2c). Among them,
compound-368 was considered as the lead molecule because it showed the highest
docking score (Scheme3, Fig. 2f).A higher score can be explained by the fact that this
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Fig. 3 Low-energy binding conformations of the SARS-CoV-2 3CLPro–ligand docked complex
showing 3D interactions (a, c, e) created by Pymol, 2D interaction (b, d, f) of ligand with amino
acid residues of 3CLPro created by discovery studio for compounds-302, 361, and 368, respectively
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Table 1 List of interacting amino acid residues of SARS-CoV-2 3CLPro with selected novel lead
compounds-302, 361, and 368

Compound PubChem ID Hydrogen
bonds

Hydrophobic
interaction

Other
interactions

Binding energy
(kcal/mol)

302 12610668 GLN192,
THR190,
CYS145,
SER144,
ASN142

GLN189,
MET165,
MET49, HIS41,
CYS145

ARG188,
LEU141,
HIS163,
HIS164

−9.96

361 71682652 GLU166 ,
GLY143

PRO168,
MET165,
MET49, HIS41,
LEU27, CYS145

GLU166,
LEU167,
MET49,
LEU141,
ASN142,
SER144,
THR26,
THR35,
GLN189

−9.87

368 44365428 ASN142,
THR26,
GLN189

CYS145, HIS41,
MET49,
MET165

THR24,
SER46,
THR45,
CYS44,
LEU27,
HIS163,
HIS164

−10.7

Alpelisib (PubChem# 56649450) Compound-361 (PubChem# 71682652)

Scheme 2 Chemical structure of alpelisib and compound-361

molecule interacts with 3CLpro amino acid residues, ASN142, THR26, andGLN189,
via three hydrogen bonds (Fig. 3e, f, Table 1), whereas bisantrene is involved in two
such interactions (Supplementary Figure S1E, S1F, Supplementary Table S2).
Further, an extra benzyl group in compound-368 helps it to interact with the enzyme
by additional hydrophobic and van der Waals interactions (Fig. 3f).

Additionally, all of these lead compounds were verified for binding specific to the
active site by comparing the full ribbon structure of the receptor and ligand docked
complex along with their reference drugs (Fig. 4).
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Bisantrene (PubChem# 5351322) Compound-368 (PubChem# 44365428) 

Scheme 3 Chemical structure of bisantrene and compound-368

Fig. 4 Docked protein complex of top hit compounds for SARS-Cov-2 3CLPro protein. a Ribbon
structure of docked protein complex of top hit compounds-302, 361, and 368 with their reference
drugs alpelisib, acefluranol, and bisantrene, respectively, showing ligands docked at the active pocket
(highlighted in square box). b Surface protein image and active site binding of compounds-302,
361, and 368 surface colored by hydrogen bond type

3.3 Inhibitors of Papain-like Protease (PLpro)

PLpro is a large multi-domain membrane-bound protein with 194 amino acids. It
cleaves pp1a to generate three NSPs 1, 2, and 3, as products. It is considered
as a drugable target, as it not only is involved in active replication of virus, but
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also negatively regulates antiviral innate immune response [54]. During the prepa-
ration of this manuscript, reports show that more than 36 experimental drugs,
including FDA-approved drugs and drugs under clinical trials, were repurposed for
targeting PLpro. These include praziquantel (biltricide), cinacalcet, procainamide,
terbinafine,meperidine, labetalol, tetryzoline, ticlopidine, ethoheptazine, levamisole,
amitriptyiline, naphazoline, arformoterol, benzylpencillin, chloroquine, chloroth-
iazide, ribavirin, valganciclovir, aspartame, oxprenolol, acetophenazine, iopromide,
riboflavin, reproterol, chloramphenicol, chlorophensin carbamate, levodropropizine,
cefamandole, floxuridine, pemetrexed, glutathione, hesperetin, ademethionine,
masoprocol, isotretinoin, silybin, and nicardipine [17, 55–61] (Supplementary
Table S3 A). Using these drugs as reference compounds, a similar compound
network was generated by CSNAP. A total of 159 compounds were shortlisted from
CSNAP analysis for molecular docking studies (Supplementary File A). Molecular
docking analysis of these compounds showed that majority of the similar compounds
were able to block the active site of PLpro with either increased or similar binding
efficiency, as indicated by their binding energy values (Supplementary Table S3
B). Except compound-507 (0.48 kcal/mol), a similar compound of cinacalcet and
compound-509 (0.48 kcal/mol), a similar compound of procainamide, all others
were able to bind efficiently to the active site of PLpro. Me-too compounds with
a better or similar binding energy can be found in Supplementary Table S3. A
complete list of the compounds docked against PLpro and their binding energy can
be found in the Supplementary excel file. Out of these potential compounds we short-
listed two top hit lead compounds, compound-502 (−8.97 kcal/mol) and compound-
565 (−6.94 kcal/mol), based on the binding energy difference compared to their
corresponding reference compounds, praziquantel (−7.68 kcal/mol) and ribavirin
(−5.71 kcal/mol), respectively (Fig. 5).

Praziquantel is an FDA-approved trematodicide drug, which is an anthelmintic
agent. It is widely used for the treatment of worm infections [62]. CSNAP chem-
informatics analysis of praziquantel resulted in five similar compounds (Fig. 5a).
Among them, compound-502 was considered as the lead molecule as it showed the
highest docking score (Scheme 4, Fig. 5c). A higher score can be explained by the
fact that compound-502 forms three alkyl interactions with the amino acid residue
LEU162 of PLpro (Fig. 6a, b, Table 2), In contrast, LEU162 forms only one alkyl
interaction with praziquantel (Supplementary Figure S2A, S2B, Supplementary
Table S4). Additionally, compound-502 forms carbon–hydrogen bond interaction
with TYR268, which further improves its binding efficiency. Moreover, activity and
safety efficacy of thismolecule is established against Schistosomamansoni infections
[63] and therefore maybe considered for further studies against COVID-19.

Ribavirin is a nucleoside analog, which is effective against the hepatitis C virus
(HCV), human respiratory syncytial virus (RSV), and other wide range of RNA
viruses [56]. It gets incorporated into viral RNA thereby disturbing viral RNA
synthesis [64]. Ribavirin is one of the safest and most effective medicines, which
is listed as an essential medicine by the WHO [65]. Recent studies have suggested
that ribavirin may be effective against the treatment of COVID-19 [66]. Additionally,
another in vitro studywithVeroE6 cells showed that ribavirin inhibited SARS-CoV-2
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Fig. 5 Chemical similarity analysis using CSNAP to identify Me-too drugs against SARS-CoV-
2 PLPro. Similarity network map for reference repurposed drugs a praziquantel, b ribavirin. c–d
Column plots representing molecular docking score of the Me-too drugs compared to the corre-
sponding reference drugs. (Note: Ligands that could not be docked due to structural complexity are
not included in the bar graph.)

Praziquantel (PubChem# 4891) Compound-502 (PubChem# 46885737) 

Scheme 4 Chemical structure of praziquantel and compound-502

infectionwith an IC50 of 0.8μM[67]. It is also shown to shorten the duration of virus
shedding and decrease cytokine responses during the phase 2 trial [68]. Our CSNAP
cheminformatics analysis of ribavirin resulted in six similar compounds (Fig. 5B).
Uponmolecular docking analysis, compound-565 showed the highest binding energy
difference when compared to ribavirin (Scheme 5, Fig. 5d) compound-565, also
known as levovirin, is an analog, and stereoisomer of ribavirin [69]. Upon analyzing
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Fig. 6 Low-energy binding conformations of SARS-CoV-2PLPro–liganddocked complex showing
3D interactions (a, c) created by Pymol and 2D interactions (b, d) of the ligand with amino acid
residues of PLPro created by discovery studio for compounds-502 and 565, respectively

Table 2 List of interacting amino acid residues of SARS-CoV-2 PLPro with selected novel lead
compounds-502 and 565

Compound PubChem ID Hydrogen
bonds

Hydrophobic
interaction

Other
interactions

Binding energy
(kcal/mol)

502 46,885,737 – LEU162,
ARG166

TYR268,
PRO247,
THR301,
ARG166,
ALA246,
ASP164,
ASP273,
SER245

−8.97

565 460,516 CYS111,
GLY271,
GLY163,
TYR273,
ASP164,
TYR268

LEU162,
TYR264

HIS272,
TYR112,
VAL165,
CYS270,
GLN269

−6.94
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Ribavirin (PubChem# 37542) Compound-565 (PubChem# 460516) 

Scheme 5 Chemical structure of ribavirin and compound-565

the 3D and 2D interaction maps between the ligand and PLpro, it was found that
compound-565 interacts with the protein via eight hydrogen bonds; two each with
CYS111 and GLY163, and one each GLY271, GLY163, TYR273, and ASP164
residues (Fig. 6c, d and Table 2). In contrast, ribavirin interacts with only six such
bonds (Supplementary Figure S5 C and S5 D). Earlier reports on compound-565
show that it is has an antiviral effect against bovine viral diarrhea virus by inhibiting
IMPDH enzyme [70]. Further, it is reported to show reduced toxicity, antiviral effects
with retention of both immunomodulatory activity and reduction of hepatitis [69, 71].
With our results showing improved binding affinity of this molecule for PLpro, it may
be considered as a better therapeutic candidate than ribavirin against SARS-CoV-2.

We further confirmed their binding by crosschecking with the ribbon structures
of protein and confirmed that all of these ligands docked at the active site of the
protease enzyme (Fig. 7).

Fig. 7 Docked protein complex of top hit compounds for SARS-Cov-2 PLPro protein. a Ribbon
structure of docked protein complex of top hit compounds-502 and 565 with their reference drugs,
praziquantel and ribavirin, showing ligands docked at the active pocket of the protease (highlighted
in square box). b Surface protein image and active site binding of compounds-502 and 565 surface
colored by hydrogen bond type
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3.4 Inhibitors Against RNA-Dependent RNA Polymerase

RNA-dependentRNApolymerase (RdRP), also knownasNSP12, is a key component
of the replication–transcription complex of SARS-CoV-2. It plays a central role in
the viral replication and transcription cycle in associationwith two other NSPs, NSP7
and NSP8. It is therefore, considered as an ideal target for drug designing. During the
preparation of this manuscript, reports show that more than 24 experimental drugs
are repurposed for targeting RdRP and some are under clinical trials. These include
cortisone, novobiocin, silybin, saquinavir, tipranavir, lonafarnib, filibuvir, simprevir,
cepharanthine, remdesivir, galidesivir, tenofovir, sofosbuvir, ribavirin, setrobuvir,
balapiravir, mericitabine, IDX-184, BMS-986094, YAK, PSI-6130, R-1479, chloro-
hexidine, and chenodeoxycholic acid [11, 13, 16–18, 56, 72–75] (Supplemen-
tary Table S5 A). Using CSNAP analysis with these drugs as the main reference
compoundswe identified a total of 152 similar compounds showing a similarity score
of more than 0.85. A complete list of the compounds can be found in Supplemen-
tary File A. The binding energy of these similar ligands generated from molecular
docking analysis shows that the Me-too compounds bind either similarly or more
effectively to the active site of the enzyme compared to the respective reference
molecules (Supplementary File A, Supplementary Table S5 B). It is worthwhile
to mention that compound-155 (−7.47 kcal/mol), compound-124 (−8.81 kcal/mol),
and compound-20 (−8.52 kcal/mol) showed improved binding energy compared to
their corresponding reference compounds remdesivir (−5.24 kcal/mol), tipranavir
(−6.93 kcal/mol), and novobiocin (−6.8 kcal/mol), respectively (Fig. 8).

Remdesivir has been reported to showpromise for the treatment ofCOVID-19 [76,
77]. Initial studieswith remdesivir showed that it was able to reduce the recovery time
of hospitalized COVID-19 patients from 15 to 11 days [78]. Recently, accumulating
multiple evidences show remdesivir can inhibit SARS-COV-2 in both in vitro and
in vivomodels [79]. Another in vivo study revealed that remdesivir can be an antiviral
agent through targeting RdRP in rhesus monkeys [80]. CSNAP cheminformatics
analysis of remdesivir resulted in nine similar compounds (Fig. 8a). Among them,
compound-155 was considered as the leadmolecule as it showed the highest docking
score of−7.47 kcal/mol (Scheme 6, Fig. 8d). Furthermore, it is worth noting that the
main plasma metabolite of remdesivir, is GS-441524 [81], which is shown to inhibit
SARS-COV-2 infection in Vero E6 cells in vitro with an EC50 of 5.188 μM [82].
When this active metabolite was docked against RdRP, our results show a binding
energy of −5.55 kcal/mol. It is therefore, imperative that compound-155 shows
improved binding affinity compared to both the prodrugs, remdesivir and its active
metabolite, GS-44124. A higher binding score of compound-155 can be explained
by the fact that this molecule interacts with RdRP amino acid residues, TYR619,
PHE793, and SER795, via three hydrogen bonds (Fig. 9a, b, Table 3), whereas
remdesivir is involved in only two such interactions (Supplementary Figure S3A,
S3B, Supplementary Table S6). Further, an extra benzyl group in compound-155
helps it to interact with the enzyme with additional hydrophobic and van der Waals
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Fig. 8 Chemical similarity analysis using CSNAP to identify Me-too drugs against SARS-CoV-2
RdRP. Similarity network map for reference repurposed drugs a remdesivir, b tipranavir, and c
novobiocin. d–f Column plots representing molecular docking score of theMe-too drugs compared
to the corresponding reference drugs. (Note: Ligands that could not be docked due to structural
complexity are not included in the bar graph.)

Remdesivir (PubChem#
121304016)

GS-441524 (PubChem#
44468216)

Compound-155 (PubChem# 
76325302)

Scheme 6 Chemical structure of remdesivir, GS-441524, and compound-155
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Fig. 9 Low-energy binding conformations of SARS-CoV-2 RdRP-ligand docked complex.
Showing 3D interactions (a, c, e) created by Pymol, 2D interaction (b, d, f) of ligand with amino
acid residues of RdRP created by discovery studio for compounds-155, 124, and 20 respectively
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Table 3 List of interacting amino acid residues of SARS-CoV-2 RdRP with selected novel lead
compounds-155, 124, and 20

Compound
entry no

PubChem ID Hydrogen
bonds

Hydrophobic
interaction

Other
interactions

Binding
energy
(kcal/mol)

155 76325302 TYR619,
PHE793,
SER795

LYS798 ASP618,
LYS798,
PRO620,
LYS621

−7.47

124 54685540,
163329584

LYS621,
TYR619,
ASP760 (2),
CYS813,
SER814

TYR619,
ASP761,
TRP800

CYS622,
PRO620,
PHE812,
ASP618,
GLU811,
TRP617,
CYS799,
GLY616

−8.81

20 54713167 GLU167 ,
LYS621,
ASP761

PHE793,
LYS621,
PRO620,
ASP618,
LYS798,
TRP800

PRO620,
LYS798,
ALA762,
LYS551,
CYS799

−8.52

interactions with PRO620, LYS621, and LYS798 (Fig. 9b). Interestingly, compound-
155 is also reported to be an effective antiviral drug with activity against HCV [83].
Apart from the binding affinity forRdRP and potential antiviral activity, thismolecule
may be further explored as a potential drug against SARS-CoV-2.

Tipranavir is widely used in antiretroviral therapy (ART) for the treatment of
acquired immunodeficiency syndrome (AIDS) patients [84]. It has potent antiretro-
viral protease inhibition activity and is shown to inhibit human immunodeficient virus
(HIV) [85]. Tipranavir binds to the active site of the HIV protease, thereby inhibiting
the activity of enzyme. This inhibition prevents the cleavage of the polyprotein which
results in immature non-infectious viral particles. Recent studies show that tipranavir
was able to inhibit SARS-CoV-2 replication in vitro in VeroE6 cells [72]. CSNAP
cheminformatics analysis of tipranavir resulted in four similar compounds (Fig. 8b).
Among them, compound-124 was considered as the leadmolecule because it showed
the highest docking score (Scheme 7, Fig. 8e). Upon analyzing the 3D and 2D inter-
action maps between the ligand and RdRP, it was found that compound-124 forms
a total six hydrogen bonds, one with each amino acid residues LYS621, TYR619,
CYS813, and SER814 additionally two bonds with ASP760 (Fig. 9c, d, Table 3).
In contrast, tripranavir interacts with the protein with only three hydrogen bonds
(Supplementary Figure S3A, S3B, Supplementary Table S6).

Novobiocin is an aminocoumarin group of antibiotic drug. It is known to be a
potent inhibitor of bacterial DNAgyrase andATPase [86]. It has also shown anti-viral
activity against zika and vaccinia viruses earlier [87, 88]. CSNAP cheminformatics
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Tipranavir (PubChem# 4682461) Compound-124 (PubChem#54685540) 

Scheme 7 Chemical structure of tipranavir and compound-124

Novobiocin (PubChem# 54675769) Compound-20 (PubChem# 54713167)

Scheme 8 Chemical structure of novobiocin and compound-20

analysis of novobiocin resulted in seven similar compounds (Fig. 8c). Among them,
compound-20 was considered as the lead molecule because it showed the highest
docking score (Scheme 8, Fig. 8f). Upon analyzing the 3D and 2D interaction maps
between the ligand and RdRP, it was found that this molecule forms four hydrogen
bonds, one each with amino acid residues, GLU167, LYS621, and two bonds with
ASP761 (Fig. 9e, f, Table 3). In contrast, novobiocin interacts with RdRP protein
with only three hydrogen bonds (Supplementary Figure S3E, S3F, Supplementary
Table S6). Additionally, compound-20 was able to form the carbon–hydrogen bond
interactions with ALA762, LYS798, and PRO620. All of these lead ligands are
verified manually for their binding site to confirm that they are binding to the active
site of SARS-Cov-2 RdRP by comparing with the PDB structure 7BV2 which is an
RdRP complex bound to remdesivir [89] (Fig. 10).
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Fig. 10 Docked protein complex of top hit compounds for SARS-Cov-2 RdRP protein. a ribbon
structure of complex compared with the PDB structure remdesivir–RdRP complex 7BV2 (nsp12–
nsp7–nsp8 complex bound to the template-primer RNA and remdesivir). All the ligands docked at
the active pocket (highlighted in square box) of RdRP similar to 7BV2. b Surface protein image
and active site binding of compound-155, compound-124, and compound-20, surface colored by
hydrogen bond type

3.5 Molecular Dynamic Simulation

Among the eight best Me-too molecules, compound-155 showed the highest binding
energy difference compared to its corresponding referencemolecule, remdesivir.We,
therefore, selected it for molecular dynamics simulation analysis to assess its binding
stability with RdRP. Our simulation analysis shows that the ligand remained close
to its original position with an RMSD of 3 Å up to 10 ns. Between 10 and 50 ns, the
ligand slightly deviated compared to the protein. Toward the end of the simulation,
between 50 and 70 ns, the ligand returned close to its original position with an RMSD
of 3 Å (Fig. 11a). These results indicate that compound-155 is stable in binding to
the RdRP protein. To assess the binding affinity, MM-PBSA analysis was performed
to calculate the binding energy, which was found to be−67.778 kcal/mol, indicating
strong interaction of compound-155 with RdRP. Further, our hydrogen bond analysis
indicates thatASP618, LYS798, andGLU811 residues are involved in hydrogen bond
interaction with the protein in majority of the time frames during the simulation run
(Fig. 11b). These residues impart stability to the protein–ligand complex.
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Fig. 11 Molecular dynamics simulation analysis of compound-155 and RdRP complex. a 70 ns-
MD simulation RMSD plots of ligand (compound-155) bound RdRP. b Hydrogen bond fraction
interaction with the selected amino acid residues

4 Conclusion

The ongoing pandemic of COVID-19 has become a threat to human health and
life with no drugs or other therapeutics presently approved by the FDA. Since the
onset of the disease, accumulating evidences reveal that trials for several promising
drugs against the disease were either halted due to safety concerns or completed with
showing poor and limited efficacy [20–23]. Furthermore, vaccines alone cannot elim-
inate the COVID-19 pandemic. It is nowwidely recognized that a collective approach
including widespread vaccination and therapeutics will be required to control the
pandemic. Hence, a constant search for novel therapeutics is essential. It is therefore,
imperative to explore more potential drugs to combat this pandemic. In the current
study, we have used a chemical similarity-based approach to identify more than 450
potential ligands including Me-too drugs that are similar to drugs being explored
for SARS-CoV-2. Upon molecular docking analysis, we have shortlisted three lead
molecules each for 3CLpro and RdRP and two for PLpro based on their binding energy
values. These lead molecules show better interactions compared to the reference
molecules due to an increase in hydrogen bonds or other interactions with the viral
proteins. Finally, among the eight lead molecules, we selected compound-155 for
molecular dynamics simulation analysis. Our results indicate that the protein–ligand
complex for this molecule is stable during the 70 ns run. In summary, our in-silico
findings identify several molecules, can be potential drugs inhibiting different stages
of the SARS-CoV-2 viral lifecycle (Fig. 12), or can be used as a new way for devel-
oping novel drugs against the disease. However, further in vitro and in vivo studies
are essential to ascertain our findings.
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Fig. 12 a Early stages of SARS-CoV-2 lifecycle, early events of protease cleavage by PLPro, and
3CLPro to yield NSPs from pp1a and pp1ab. Second stage where RdRP translates viral RNA to
multiple viral proteins. b Structure of PLPro and its active site (PDB structure-6WX4). c Structure
of 3CLPro and its active site (PDB structure-6Y2E). d Structure of RdRP and its active site (PDB
structure-6M71) where lead Me-too inhibitors bind
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Influences of Top-Surface Topography
on Structural and Residual Trapping
During Geological CO2 Sequestration

Pradeep Reddy Punnam, Balaji Krishnamurthy,
and Vikranth Kumar Surasani

Abstract This work was conducted to investigate the influence of caprock topog-
raphy parameters on structural trapping and residual trapping during geological CO2

sequestration. The study is carried out on two types of geological folds, asymmetrical
and chevron folds, which are integrated on three different sloping synthetic domains.
Results show that the structural and residual trapping depends on the types of folds
and perturbations on the geological domains. Geological parameters are analysed by
evaluating the sweeping efficiency and entrapment percentage of the structural and
residual trapping. The outcome of the study provides insight into the influence of the
topography on geological CO2 sequestration.

1 Introduction

The rise of CO2 concentration in the atmosphere has been the major concern that
contributing global warming. Significant CO2 emissions are released into the atmo-
sphere due to the anthropogenic activities of a human being. Industries from various
sectors (mainly power and pyrometallurgy) are main contributors to CO2 emissions.
Carbon Capture and Storage (CCS) can be a considerable technology where the CO2

emission into the atmosphere can be substantially reduced [1]. In theCCS technology,
the geological CO2 sequestration process is one of the critical processes where the
captured CO2 is injected into the geological subsurface, where the CO2 is trapped
and stored safely from entering the earth’s atmosphere [2].

Due to in situ thermodynamic conditions, CO2 is injected in supercritical state as it
occupies less space than the gaseous state. Further in themanuscript, the supercritical
CO2 is referred to as CO2. The injected CO2 moves upwards in the subsurface due to
the buoyancy. Once the CO2 reaches the impermeable caprock, its upwardmovement
is restricted and tends to migrate in the lateral direction depending on the caprock
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topography. The CO2 plume, which moves freely in the observable domain without
any restraints, is called moving plume. During lateral migration, the CO2 plume will
get trap in the geological domain’s top surface perturbations; this trappingmechanism
is called structural trapping. When the CO2 is migrating upwards from the injection
point, it encounters numerous traps, restricting theCO2 frommigrating upwards. This
quantity of CO2 gets clogged in the migration pathway is called residual trapping
[3–5].

The structurally and residually trapped CO2 will interact with the connate water
and dissolute into it; this trapping mechanism is called solubility trapping. The
injected CO2 that undergoes dissolution reaction with the connate water forms weak
carbonic acids and decreases the pH surrounding domain, which will trigger the
mineral reaction in the domain. This mineralisation that happens in the geolog-
ical subsurface domain is known as the mineral trapping mechanism. This way, the
harmful CO2 is eradicated in the subsurface geological domain using the geolog-
ical CO2 sequestration process [1]. The structural and residual trapping mechanism
is crucial among the four trapping mechanisms during the primary phase of the
geological CO2 sequestration process.

During geological CO2 sequestration process, many geological parameters influ-
ence the structural and residual trapping. Caprock topography is one of the geological
parameters that can influence the safe storage of CO2 [4, 6, 7]. This study focuses on
top-surface topographical parameters (Top-surface perturbations and morphological
structure) integrated with two types of folds (asymmetrical and chevron folds). Many
researchers developed numerical tools to elucidate and to explain the influences of
different topographical surfaces on CO2 geological sequestration [5, 8].

2 Theory

2.1 Multiphase Flow Equations

The multiphase mass conservation equations for CO2 and water, and energy conser-
vation equation are solved to analyse the influences of top-surface topography on
CO2 geological sequestration [5, 8]. In formulating the conservation equations, three
assumptions were made. First, it is assumed that only two phases water and CO2

present; second, mineral trapping is neglected in the domain i.e. no geochemical
reactions will take place in the domain. Third assumption is that initially the compu-
tation domain is fully saturated with water. The multiphase flow equations consist of
mass conversation equations for both water and CO2, and the total energy equation
are illustrated in Eqs. (1)–(3) [8, 9].
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Equations (1) and (2) represent the conservation of water and CO2 respectively,
andEq. (3) is energy conservation equation. InEqs. (1)–(3), the first term is associated
with accumulation, the second term is with net property flux, and the third term
denotes the source/sink terms (Qw, Qc, and Qe). The superscript l and g represent
the liquid and gases phases. The φ denotes the porosity of the domain. The terms
ql or g, Sl or g, and Dl or g represent the Darcy velocity, phase saturation, and phase
diffusivity coefficient, respectively. Additionally, Hl or g represents the enthalpy, and
Ul or g represents the internal energy for the phases l and g. The terms ρr , cr , T, and κ ,

represent the rock density, rock heat capacity, temperature, and thermal conductivity,
respectively. The term X denotes the mole fraction of the species. In this study, only
the multiphase flow is considered to analyse the structural and residual trapping
adequately. Therefore, only two species are consideredwith predefined phases,which
are liquid water (l) and supercritical CO2 (g) [8, 9].

The Brooks-Corey relation is used to relate the capillary pressure to invading fluid
saturation as

Sg =
{

(Pc/Pe)
−n.

b , i f Pc > Pe
1, i f Pc≤ Pe

(4)

The Pe and Pc terms represent the entry pressure and capillary pressure. To form a
relation between the relative permeability and saturation, the Brooks-Corey-Mualem
equation is utilised, which is illustrated in Eqs. (5) and (6) [9].

kr,l = (Sl)
n1+n2n3 (5)

kr,g = (
1 − Se,l

)n1[1 − (Sl)
n2

]n3 (6)

The terms kr,l or g represent the relative permeability of liquid water and supercrit-
ical CO2. The terms n1, n2, and n3 are parameter constants; the value of n1 is 1, n2 is
1 + 1/nb, and n3 is 2. The term nb is related to the pore-size distribution; its range is
from 0.2 to 5; in current simulation analysis, the value is taken as 2.5 [9].
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2.2 Modelling Synthetic Domain

To explain the influences of top surface topography, a numerical simulation is
conducted on the modelled synthetic simulation domain. The geological topography
of the structural domain is constructed by using the membrane and trigonometric
functions in MATLAB numerical tool. The membrane function accommodates the
anticline and syncline structure on the surface. The sine and cosine functions are
used to integrate the arbitrary perturbations and folds structure onto the domain so
that it can act as a naturally available geological formation layer [5, 9]. The synthetic
domain considered in this manuscript is modelled so that the sloping elevation shows
dominance for large regions on the top surface. The reason for this consideration is
to show the influence and dependences of caprock elevation on the migrated plume
and trapping mechanisms.

Two types of folds integrated on the three different domains are considered to study
the influences of top-surface perturbations on the structural and residual trapping.
The asymmetric and chevron folds are integrated on the (i) plain sloping domain, (ii)
sloping anticline domain, and (iii) sloping high perturbation domain (including both
anticline and syncline). Figure 1 illustrates the three-dimensional grid structure of all
the considered simulation domains. The estimation of structural and residual trapping
is carried out based on the porosity φ, pore-volume (Vs and Vr structural and residual
trapping cells volume), and CO2 saturation (Sco2 ) of the cells. Following Eqs. (7)
and (8) are used to estimate the entrapment percentage of structural and residual
trapping. The remaining quantity of CO2 in the domain apart from structural and
residual trapping quantity is measured as movable plume [8].

Fig. 1 Illustration of the three-dimensional grid structure of all the geological domains considered
for structural and residual trapping
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Structural trapping =
n f∑

n=1

(
∅Vsρco2

) × Sco2 (7)

Residual trapping =
n f∑

n=1

(
∅Vrρco2

) × Sco2 (8)

For the modelling of the synthetic computational domain, first, the top surface
layer is constructed. Then the grid cells are assigned below the top surface layer
to build the computation domain. The top surface layer is modelled by using the
mesh grid function of MATLAB. The 50 grid cells are assigned in length and width
direction, and in the depth axis, 20 grid cells are assigned. A total of 50,000 (50× 50
× 20) grid cells are used to model the geological synthetic simulation domain. The
quadratic cells are used in the modelling of the synthetic simulation domain. The
physical dimensions of the synthetic simulation domain are 1000 × 1000 × 15 m.
Each grid cells have eight vertices; these vertices are shared with neighbouring cells,
except the top, bottom, and side face cells of a domain. The vertices coordinate in
the width and length directions is assigned according to the physical dimensions of
the domain. But the depth coordinates start from 800 m, which indicates that the
CO2 injection is carried out below 800 m. The pressure at each cell is calculated
with using ρwgh. ρw represents the density of water, g represents the gravitational
acceleration, and h is the depth axis cell centroid value [9, 10]. The pressure value for
each individual cell changes according to the depth axis cell centroid of individual
cells. The porosity range that is considered for all the domains is ranging from 0.2 to
0.4 [11]. The range of permeability of the domains is varying from 10 to 1500 mD
[11]. The petrophysical properties for individual grid cells are arbitrarily assigned.
The injection point for all the domains is selected at (240, 240, 810) coordinates. The
volumetric injection rate of 1 m3/day is considered for all the simulations of different
synthetic domains.

3 Results

3.1 Influences of Top-Surface on Sweeping Efficiency

The results show that the chevron folds sweeping efficiency was slightly high
compared to the asymmetrical folds in all considered synthetic domains. This set
of observations has provided insight into the influences of geological folds on the
sweeping efficiency. From Fig. 2, it can be notice that the sweeping efficiency in
the anticline dome (third column) of the same fold is higher than the sloping plain
domain (second column) results. It shows that the presence of topographical structure
like anticline dome has a sure impact on the migration movement and sweeping effi-
ciency. The anticline structure has increased the sweeping efficiency in the synthetic
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Fig. 2 Illustration ofCO2 saturation distribution in all three syntheticmodelled geological domains,
for a Asymmetrical folds and b Chevron folds. Results are presented for two discrete geological
times, first at the end of the injection period (20 years) and second at the end of the simulation
(1000 years)

geological domain. In the high perturbations integrated domain (fourth column) the
migration path of CO2 in the domain changes. The sweeping area covered by CO2

plume was less compared to two other domains (plain domain and low perturbed
domain integrated with anticline domain). In highly perturbed domain, the CO2

plume movement is restricted in the domain. These results have shown that when
the CO2 has to be restricted under certain limits of the geological domain, injecting
near the vicinity of the highly perturbed region is a good option. This will prevent
the injected CO2 plume from exploring the geological faults.
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Fig. 3 Illustration of CO2 entrapment percentage of structural trapping, residual trapping, and
movable plume in all three synthetic domains at the 1000th year, for a Asymmetrical folds and b
Chevron folds

3.2 Influences of Top-Surface on Structural and Residual
Trapping Percentage

The previous section has illustrated and explained the sweeping efficiency of each
domain that are used in this study. In Fig. 3, the histogramplots illustrate the structural
trapping, residual trapping, and movable plume percentage for all synthetic domains
obtained at the end of 1000 years.

As illustrated in Fig. 2, the chevron folds havemore sweeping efficiency compared
to the asymmetric folds. Because of this, the total entrapment percentage for chevron
folds is slightly more compared to the asymmetric folds. The distance and area
covered by the CO2 plume are high, so more traps were encountered by the CO2

plume in the chevron folds integrated domains compared to asymmetrical folds (see
Fig. 3a and b). When the anticline dome is integrated on the plain sloping domain,
the sweeping distances increased even more, so for this reason, the structural and
residual trapping is more in the anticline integrated domain than the plain sloping
domain. This trend was observed irrespective of the types of folds integrated on
synthetic domains. It is evident that both folds have shown a similar visual trends in
the trapping, see Fig. 3, for all three synthetic domains. By comparing both the folds,
the Chevron folds have a low movable plume percentage, which indicates a higher
trapping percentage is recorded compared to asymmetrical folds; this observation
is consistent for all three synthetic domains. The sweeping distance in the high
perturbed sloping domain is low compared to the other two domains for both types
of folds. So, for this reason, the residual trapping is lower compared to the low
perturbed sloping domain. But the structural trapping is higher compared to the
low perturbed sloping domain because, in the high perturbed sloping domain, the
synthetic geological perturbation confines the CO2 plume movement. Therefore,
more amount of CO2 will get trapped structurally and restrict CO2 in exploring
the migration traps for residual trapping. Compared to the other two domains, the
high perturbed domain has a more significant total entrapment percentage and a
low movable plume recorded. And it was also observed that recorded movable CO2
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plume quantity dominates in the plain sloping domain by far compared to the other
two domains.

4 Conclusions

In this work, an attempt was made to analyse the influences of caprock topography
on structural and residual trapping. The study has provided that the caprock surface
integrated fold structure influences the CO2 plume migration and sweeping effi-
ciency, which further affects the entrapment percentage. The presence of an anticline
dome has increased the sweeping efficiency and residual trapping percentage. For the
synthetic domain having more perturbations, the structural trapping is dominant, but
the residual trapping seen less. The CO2 sweeping plays a crucial role in the residual
trapping; it is observed that when the sweeping efficiency or area cover by the CO2

plume is larger, the CO2 trapped in the residual trapping is increasing. Future work
includes the consideration of reactive transport by including geochemical reactions
that deals the solubility trapping and mineral trapping mechanisms.

Acknowledgement The authors would like to acknowledge Science and Engineering Research
Board (SERB), India, for providing financial support under the Core Research Grant with file no.
EMR/2017/02450.

References

1. Zhang D, Song J (2013) Mechanisms for geological carbon sequestration. In: Procedia inter-
national union of theoretical and applied mechanics IUTAM. Elsevier, pp 319–327. https://doi.
org/10.1016/j.piutam.2014.01.027

2. Viebahn P, Vallentin D, Höller S (2014) Prospects of carbon capture and storage (CCS) in
India’s power sector—an integrated assessment. Appl Energy 117:62–75. https://doi.org/10.
1016/J.APENERGY.2013.11.054

3. Niu B, Al-Menhali A, Krevor SC (2015) The impact of reservoir conditions on the residual
trapping of carbon dioxide in Berea sandstone. Water Resour Res 51:2009–2029. https://doi.
org/10.1002/2014WR016441

4. Nilsen HM, Syversveen AR, Lie KA et al (2012) Impact of top-surface morphology on CO2
storage capacity. Int J Greenh Gas Control 11:221–235. https://doi.org/10.1016/j.ijggc.2012.
08.012

5. Lie K-A, Nilsen HM, Andersen O, Møyner O (2016) A simulation workflow for large-scale
CO2 storage in theNorwegianNorth Sea. Comput Geosci 20:607–622. https://doi.org/10.1007/
s10596-015-9487-6

6. Punnam PR, Krishnamurthy B, Surasani VK (2021) Investigations of structural and residual
trapping phenomena during CO2 Sequestration in Deccan Volcanic Province of the Saurashtra
Region, Gujarat. Int J Chem Eng 2021:1–16. https://doi.org/10.1155/2021/7762127

7. BachuS (2008)CO2 storage in geologicalmedia: role,means, status andbarriers to deployment.
Prog Energy Combust Sci 34:254–273. https://doi.org/10.1016/j.pecs.2007.10.001

https://doi.org/10.1016/j.piutam.2014.01.027
https://doi.org/10.1016/J.APENERGY.2013.11.054
https://doi.org/10.1002/2014WR016441
https://doi.org/10.1016/j.ijggc.2012.08.012
https://doi.org/10.1007/s10596-015-9487-6
https://doi.org/10.1155/2021/7762127
https://doi.org/10.1016/j.pecs.2007.10.001


Influences of Top-Surface Topography on Structural … 121

8. Hammond GE, Laboratories SN, Lichtner P (2012) PFLOTRAN: reactive flow & transport
code for use on laptops to leadership-class supercomputers. Groundw React Transp Model
141–159. https://doi.org/10.2174/978160805306311201010141

9. Lie K-A (2019) An introduction to reservoir simulation using MATLAB/GNU octave.
Cambridge University Press

10. Møll NilsenH, LieK-A, AndersenO (2015) Analysis of CO2 trapping capacities and long-term
migration for geological formations in the Norwegian North Sea using MRST-co2lab. Comput
Geosci 79:15–26. https://doi.org/10.1016/j.cageo.2015.03.001

11. Prasanna Lakshmi KJ, Senthil Kumar P, Vijayakumar K et al (2014) Petrophysical properties
of the Deccan basalts exposed in the Western Ghats escarpment around Mahabaleshwar and
Koyna, India. J Asian Earth Sci 84:176–187. https://doi.org/10.1016/j.jseaes.2013.08.028

https://doi.org/10.2174/978160805306311201010141
https://doi.org/10.1016/j.cageo.2015.03.001
https://doi.org/10.1016/j.jseaes.2013.08.028


Isotopes for Improving Hydrologic
Modeling and Simulation of Watershed
Processes

Joe Magner, Brajeswar Das, Rallapalli Srinivas, Anupam Singhal,
and Anu Sharma

Abstract Lake water quality management is an important component of watershed
protection and restoration. Hydraulic residence time (HRT) is a guiding parameter
for quantifying the extent of exposure of lake ecosystem to chemicals. The impact on
the δD and δ18O-year amplitude depends on the lake shape, basin size, connectivity,
geology and climate characteristics, perineal fluctuations in lake water mass balance,
and hydraulic residence time. HRT in the lake can be dynamic. Usually, HRT is
calculated based on the balance between lake’s volume and its input and output
parameters, but there is a relatively simple and approximate method that uses stable
water isotopes to assess the direction and possible speed of runoff in a lake. This
study establishes the importance of stable isotopes in hydrologic modeling.

Keywords Isotope fractionation · Hydraulic residence time · Lake management ·
Hydrology ·Water quality

1 Introduction

Isotope are elements having equal number of protons but unequal number of neutrons.
The additional number of neutron or the absence of a neutron does not alter any of its
chemical properties. But a relatively small variation in the mass of individual atoms
expresses itself when a medium undergoes phase transition (from a vapor phase to
a liquid phase). The compounds containing the heavier isotope atoms form heavier
compound require relatively more specific energy for transition from liquid to vapor
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phase in case of evaporation as compared to condensation. This gives rise to isotopic
fractionation, which a modification of the isotopic composition of water caused by
the change from one phase to another phase.

Water is composed of hydrogen and oxygen. There are two stable isotopes of
hydrogen:1H protium the lighter isotope and D (deuterium), twice as heavier. The
third isotope, 3H or tritium, has radioactive property having a half-life of 12.3 years.
99.985% of the hydrogen atoms in the hydrosphere are of 1H isotope, and 2H only
accounts for 0.015% [1]. Oxygen has three stable isotopes: 99.859% of 16O in the
hydrosphere, 0.038%of 17O, and 0.2%of 18O. Isotopes account for a very small part
of the total, but this difference can bemeasured, determined, and expressed as the ratio
of the lightest to heaviest isotope [2, 3]. One can infer about watershed characteristics
based on variation of the number of different isotopes. A standard called VSMOW
(Vienna Standard Ocean Water Index) agreed with the IAEA (International Atomic
Energy Agency) is used to determine the difference between the ratio of heavy
isotopes and light isotopes [4].

During a storm, molecules with heavier isotopes are more likely to condense into
sediments than molecules with lighter isotopes. As water moves in the hydrological
cycle, the evaporation and condensation process redistribute the relative abundances
of δD and δ18O. Values of δ2H and corresponding δ18O in precipitation are inter-
dependent and follow a linear relationship on a global scale [5]. This relationship is
defined as ‘Global Meteoric Water Line’ (GMWL) with a slope of 8 and an intercept
of 10 (Fig. 1).

Fig. 1 Global meteoric water line [6, 7]
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Rozansky et al. [8] determined Eq. (1) based on data from 206 global precipitation
collection stations in the IAEA network:

δ2H = 8.17± 0.06 · δ18O + 10.35± 0.65% (1)

Kumar et al. [9] reported the Meteorological Water Level (MWL) in India and
several regional waterways (RMWL) in northern India, southern India, and western
Himalayas (Eqs. 2–5). The differences in the slope and intersection of these lines are
due to different geographic and meteorological condition.

• Meteoric Water Line for India (MWL_I):

δ2H = 7.93± 0.06 · δ18O + 9.94± 0.51%
(
n = 272; r2 = 0.98

)
(2)

• Regional Meteoric Water Line for northern India:

δ2H = 8.15± 0.12 · δ18O + 9.55± 0.80%0
(
n = 65; r2 = 0.99

)
(3)

• Regional Meteoric Water Line for southern India:

δ2H = 7.82± 0.17 · δ18O + 10.23± 0.85%0
(
n = 62; r2 = 0.97

)
(4)

• Regional Meteoric Water Line for thewestern Himalayas:

δ2H = 7.95± 0.09 · δ18O + 11.51± 0.89%
(
n = 123; r2 = 0.99

)
(5)

2 Calculation of Hydraulic Residence Time (HRT)

Lake’s ecosystem equilibrium is greatly dependent on water quality indicators which
in turn are governed by the HRT of the lake. Hydraulic residence time is a guiding
parameter for quantifying the exposure of lake ecosystem to chemicals. For calcu-
lating HRT, many variable parameters of the lake like watershed size, volume, loca-
tion within a watershed and climatic variability need to be considered. Owing to
complex network of inputs and outputs and their interdependencies, calculation of
exact HRT becomes extraneous.

To quantify the water balance of the lake and assess its sensitivity to pollutant
penetration, the increased residence time in the water is a decisive parameter. Higher
HRTwould imply prolonged exposure to chemical agents which in turn would result
in growth of cyano bacteria [10] There are several techniques for calculating HRT
including but not limited to Lacustrine water budgets, groundwater flow net anal-
ysis, hydro-chemical lake water budgets, tracer analysis, thermal indicators, seepage
parameter, and biological parameters [11, 12]. The difficulty with these methods is
that the result depends on small pressure drops and small-scale changes in hydraulic
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conductivity would be not bemeasured. Estimates based on stable isotopes are highly
dependent on relative humidity and the isotopic composition of atmospheric vapor
and evaporation [13]. All these parameters are error-prone; however, the use of stable
isotopes of water requires relatively less data points and the uncertainty in the esti-
mating hydraulic residence time is less. The works demonstrate the ability of stable
isotope technology to estimate the long-term average residence time in lake water
recharged by groundwater based on a relatively small amount of data. Lake manage-
ment variable data and groundwater isotope composition, accompanied by complete
and high-quality long-term meteorological and isotopic data (precipitation) from
nearbymeasuring stations, can be used to simulate the annual cycle of the stablewater
isotope inventory in the lake, which can then be compared with the lake inventory
observation value at a specific time.

2.1 Calculation of HRT Using Isotope Mass Balance

The technical interpretation of hydraulic radius varies for different stakeholders,
some use water discharge rates, and others use groundwater outflow rate and evapo-
ration. The use of δ18O and δ2H is to determine Lacustrine groundwater discharge
(LGD), and lake residence time is based on isotope mass balance. This requires
the isotope composition of all components of the lake water balance, where δL, δP,
δGi, δGo, and δE are the isotope composition of lakes, precipitation, groundwater
runoff, seepage water, and evaporation. The annual isotope mass balance under the
assumption of constant lake volume over time is given using Eq. (6).

Pδp + GiδGi = EδE + GoδG0 (6)

The dynamic isotope mass balance for a well-mixed lake can be written using
Eq. (7):

δLt+1 = δLt +
[
PtδPt + GiδG − EtδEt − G0δG0

]

V
(7)

The equation can be rearranged and solved for Gi or Go. Although δL, δP, and
δGi can be measured directly, it is usually assumed that δGo is equal to δL. δE is not
easy to measure. Since evaporation is the process that determines the evolution of
the isotope composition of lakes, its accurate estimation is critical to the accuracy of
water balance. δE is calculated using the linear resistivity model of Craig and Gordon
[6] (Eq. 8), which describes δE as a function of relative humidity, temperature, lake
surface isotope composition (δLs), and air humidity (δA isotope composition).

δE =
δs−ε+
a+ − hδA − εK

1− h + 10−3εK
(8)
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The variables in Eq. (8) are the equilibrium isotopic separation ε + (temperature
dependent), the equilibrium isotopic fraction factor α+ (temperature dependent), the
kinetic isotopic separation εK (humidity dependent), and the relative humidity h [−].
It is possible to measure or estimate δA from δP and air temperature. Compensation
is necessary because δA and δP are usually out of balance throughout the year under
seasonal weather conditions. The seasonal coefficient k ranges from 0.5 for strong
seasonal climates to 1 for non-seasonal climates and is estimated by dual analysis
of δ2H and δ18O. �A weighted by the annual average of the evaporation flow is
corrected (optimization of k) to adapt δE (Eq. 9) to the local evaporation line.

δA = δp − kε+

1+ 10−3kε+
(9)

3 Case Study: Minnesota’s Sentinel Lakes

Amplitude of fractionation of lake water and water vapor was studied to predict the
hydraulic retention time of 24 lakes in Minnesota. Figure 2 shows local meteoric
water line of Minnesota sentinel lakes. Over a period of three years, the lakes were

Fig. 2 Local meteoric water line (LMWL) of Minnesota sentinel lakes
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sampled in spring, summer, and autumn. The results indicate that the annual contri-
bution of water sources, basin area and connectivity have all changed. The calculated
annual interval of HRT is 18.8 to 0.4 years. The annual amplitudes of δD and δ18O
provide directional information about the residence time of each lake and record
seasonal changes in the components of lake D and δ18O. δD and δ18O can provide
water quality managers with a cost-effective tool to better understand, protect, and
restore lakes and their catchment areas.

From 2008 to 2010, 24 lakes were visited in May, July, and October respectively,
and water samples were collected for δD and δ18O stable isotope analysis. The
sampling period is kept exactly the same as the crop rotation in spring and autumn and
midsummer. In the case of maximum evaporation, sampling during these important
time periods is the best way to capture the δD and δ18O fluctuations of each lake.
Comparison of the composition of stable isotopes with the isotopic composition
of water vapor in the atmosphere, which has known that isotopic concentrations
at certain latitudes and temperatures have been performed. In order to predict the
hydraulic retention time δ18O, the deviation between the fractionation amplitude
and seawater is modeled by water vapor. The estimated value of the seasonal value
of water vapor is determined based on the minimum and maximum average seasonal
temperature using Eq. (10)

δ18O = (0.521± 0.014) × T (C)−
(14.96± 0.21)

(10)

Theminimumandmaximum seasonal temperatures are calculated to represent the
expected range of stable atmospheric water vapor isotopic composition for each lake.
The maximum seasonal range is modeled with the isotopic concentration observed
in the lake water to estimate the hydraulic retention time.

By comparing the width of the best-fit curve for precipitation with the width of the
same curve for the water of interest, equation (original HRT) is used to estimate the
hydraulic residence time. The seasonal variation of δ18O precipitation components
in temperate regions tends to be sinusoidal. This pattern can be observed throughout
the year, reflecting seasonal changes in tropospheric temperature. The measurement
changes of δ18O components in rivers, lakes, ponds, groundwater, or groundwater
at a given location in different seasons has been obtained. When seasonal water is
considered stationary and well mixed with the exponential distribution of residence
time, the average value of the hydraulic system can be calculated using the original
HRT equation.

In Minnesota, the D and δ18O trends of the four Major Land Use Regions
(MLRUs) studied were similar. In Lake Minnesota, there was a general transition
from lighter to higher values for δD and δ18O values from north to south. This was
the result of weather conditions unique to the Canadian MLUR shield. The weather
system in this area is usually originated in the Arctic, and compared with the weather
system originated in theGulf ofMexico, it produced a small amount of isotopic water
vapor source. The lake in the study and the Minnesota evaporation line showed a
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Fig. 3 Seasonal Isotope pattern (Canadian shield)

strong correlation with R2 = 0.950 (Fig. 3). The deviation from MWL could be
seen on various scales. The results are interpreted by state, Major Land Use Regions
(MLUR), and individual lakes. The evaporation line shows that the lake water is
richer in δ18O. Compared with the other three MLURs, the Canadian Shield Lake
tracked below and near the MWL is a water body with very low oxygen content.

4 Conclusions

Based on the deviation of ratios stable isotopes δD and δ18O, annual and seasonal
variations of water source and hydraulic residence time can be identified, taking into
account the potential of pollutant input in the catchment area. If best management
practices (BMP) are not followed, it is likely to release large amounts of pollutants
into the lake. The D and δ18O amplitudes of some lakes are very conservative. The
basin and lake model uses hydraulic retention time to determine amount of time of
exposure of pollutants to the lake. Usually, the hydraulic residence time is calculated
based on the balance between the volume of the lake and the lake’s input and output.
Compared with physical mass balance methods, δD and δ18O data can be used to
understand hydraulic retention time andwater supply contribution faster and cheaper.
The determination of the proportion of water sources and the influence of seasonal
fluctuations on the composition of D and δ18O are of decisive significance for the
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determination of lake pollution. Analysis and decision-making considering isotopic
composition data can revolutionize lacustrine watershed management systems and
improve targeted and optimized catchment management.
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Kinetic Energy Correction Factor
for a Converging–Diverging Nozzle

Sadhya Gulati, Snehaunshu Chowdhury, and Eldhose Iype

Abstract Kinetic energy correction factor is often neglectedwhile using Bernoulli’s
equation for many applications. Here, flow through a converging–diverging (CD)
nozzle is simulated to show that the kinetic energy correction factor (α) can take
values between 1 and 3. A large reduction is observed in total mechanical energy in
the diverging section of the nozzlewhenα is not accounted for. A negative correlation
is observed between Reynolds number and α.

1 Introduction

Bernoulli’s equation explains the relationship between pressure and fluid velocity for
inviscid fluid flows. In its simplest form, the equation is an expression of mechan-
ical energy conservation. For incompressible flows, this mathematical expression is
written as

p + 1

2
ρv2 + ρgh = constant, (1)

where ρ is the density, p is the pressure, v is the velocity, h is elevation measured with
respect to any arbitrary datum, and g (= 9.8ms−2) is the gravitational acceleration
directed vertically downward. This implies that the sum of kinetic energy, gravita-
tional potential energy, and pressure energy remains constant along a streamline.
One of the assumptions in using Bernoulli’s equation is that the flow is frictionless.
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Meaning, the viscous effects are negligible. But in practical situations (especially
in internal flows), this assumption is often violated. Prior experiments show that
total mechanical energy is not constant across the cross section of flow [2, 3]. In
order to account for this variation, kinetic energy correction factor (α), i.e. the ratio
between actual kinetic energy and the kinetic energy with uniform velocity profile,
is introduced in the Bernoulli’s equation. This is defined as below.

α = 1

A

∫
(u/v )3d A. (2)

The modified Bernoulli’s equation becomes

p + α
1

2
ρv2 + ρgh = constant. (3)

Here, A is the cross-sectional area, u is the velocity at any point within the cross
section, and v is the average velocity. The kinetic energy correction factor considers
that the velocity profile is not uniform and estimates the difference between the actual
velocity distribution and an idealized uniform profile, viz., the average velocity. For
a fully developed laminar flow through a pipe, α value is around 2, whereas for
turbulent flow, it is about 1.05 [3]. The average of α values obtained for a compound
channel flume is reported to be 1.094, for regular channels is 1.15 [4], for natural
streams and torrents, it is 1.30, and for river under ice cover is 1.50 [5]. Fenton [6]
shows that α values for a turbulent logarithmic velocity distribution in moderately
rough pipes and channels range from 1.05 to 1.1, whereas for a small irrigation
channel it ranges from 1.10 to 1.20 [7]. The literature, therefore, shows a significant
variation of α values depending on the flow geometries and conditions.

A commonly used geometry in many practical applications is the converging–
diverging (CD) nozzle. Such geometries are used for supersonic applications [8],
flashing flows [9], venturi meter, etc., to name a few. To the best of our knowledge,
α values have never been reported for a CD nozzle. CD nozzle is important because
most of the experiments used to validate Bernoulli’s equation are performed on a
CD nozzle. Some experiments on the flow through sudden contractions and expan-
sions were performed by McNeil and Morris [10]. However, the α values for such
geometries are missing. Sudden expansion creates more flow eddies than sudden
contraction, and therefore more losses occur at the point where expansion in the
pipe begins [11], i.e., the diverging section of the CD nozzle. For an internal flow
undergoing sudden expansion, kinetic energy is lost and pressure is not fully recov-
ered [12]. A static pressure change, which results in energy loss, is observed across
the expansion [13] cross section. In this present study, we have simulated the flow
through a CD nozzle, and numerically investigated the changes in kinetic energy
correction factor (α) for an incompressible Newtonian fluid (water) at different flow
rates including both laminar and turbulent regions. This is expected to fill the void
in literature on (α) for flows through CD nozzles.
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2 Methodology

A two-dimensional axi-symmetric simulation of flow through a CD nozzle is
conducted using ANSYS Fluent software. Water is chosen as the fluid flowing
through the CD nozzle. Default values in Fluent are used for relevant properties of
water. A 60 cm long converging–diverging nozzle (equal length on both converging
and diverging sections) with a throat in the middle (Fig. 1) is used to simulate the
flow. The inner radii at the entrance and exit are 3 cm each, and that of the throat is
1.5 cm. In order to ensure fully developed flow near the entrance of the nozzle and
to eliminate end-effects, the pipe is extended by 13.5 cm in both the directions. The
geometry and the mesh are shown in Fig. 1. Special care is taken to have finer mesh
adjacent to the walls to capture viscous gradients as this is important in calculation
of α.

The volume flow rates are chosen to represent flows in the laminar, transition, and
turbulent regimes for the given geometry based on inlet dimensions. The details are
given in Table 1.

The outlet is kept as a velocity outlet with the same velocity as the inlet for all
flow rates. The axis of the CD nozzle is a symmetry line, while the outer radii at any
axial location is defined as a solid wall. The flow is modeled using k-epsilon model.
After the solution is converged, velocity and pressure values at nine equidistant cross-
sectional surfaces between the entry and exit of the CD nozzle for each flow rate are
noted. The surface integrals of velocities were computed for all the cross-sectional
areas in order to calculate the kinetic energy correction factor, α. A grid convergence
test confirmed that further mesh refinement was not necessary. The final optimized
mesh contained 11,200 cells and 11,781 nodes with a maximum aspect ratio of 11.6.
There were no red flags or convergence issues raised by the solver.

Fig. 1 Geometry and mesh of the converging–diverging nozzle
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Table 1 Flow rates and inlet
velocities used for simulation

Regime Volume flow rate
(LPH)

Inlet velocities
(m/s)

Laminar and
transition

120 0.0541

160 0.0721

200 0.0902

240 0.108

Turbulent 800 0.361

900 0.406

950 0.428

1000 0.451

3 Results

3.1 Kinetic Energy Correction Factor for Various Flow Rates

Different values of kinetic energy correction factors were obtained using Eq. (2),
ranging from 1 to 3.13, for all 9 locations at different flow rates as shown in Fig. 2.
For the converging section, the α values were found to be almost constant for all the
flow rates; however, the alpha values were found to be decreasing with increasing
flow rate for diverging section (see inset in Fig. 2). For flows toward turbulent regime,
the local velocity (u) becomes more and more uniform across the cross section, and

Fig. 2 Changes in kinetic energy correction factor (α) at various location in the converging–
diverging nozzle for various flow rates
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therefore, the local velocity becomes closer to the average velocity (v). This causes
the value of α to decrease. It has been reported in the literature that as the flow
rate increases, α values decrease and eventually becomes constant [5]. However,
the influence of viscous effects is known to increase the value of α [14]. At higher
Reynolds number (turbulent regime), contribution of viscous losses is lower than
kinetic energy factor due to cross sectional changes. Therefore, the loss of kinetic
energy is taken into account and frictional effects (viscosity factor) are neglected
[15]. Thus, the accuracy of the Bernoulli equation is improved for higher Reynolds
number as the kinetic energy term dominates and hence lower α values are required
for more turbulent flow [16].

3.2 Total Mechanical Energy Conservation with Kinetic
Energy Correction

The total mechanical energy, i.e. the sum of pressure energy, kinetic energy, and
gravitational potential energy, was calculated at all the 9 cross-sections for different
flow rates. The changes in the total energy across all nine positions are shown in
Fig. 3a for turbulent flow and in Fig. 3b for laminar or transition flow, respectively.
The kinetic energy is multiplied by the kinetic energy correction factors (α) obtained
above and the corrected total energy profiles are also given. For turbulent flow, the
energy is almost constant near the entrance; however, it decreases as the fluid moves
along the nozzle. This is because of large frictional losses at the diverging section.
However, when kinetic energy correction factor is added, the rate of decrease in total
energy reduces. In the case of laminar and transition regimes (Fig. 3b), the frictional
losses are almost negligible, and therefore therewas barely any change in total energy
while using kinetic energy correction factor.

3.3 Kinetic Energy Correction Factor verus Reynolds
Number

The diameter of the CD nozzle changes with axial position. Obeying the continuity
relation, this implies a change in the velocity of the liquid axially. This also leads to
a variation of local Reynolds number as both the diameter and the velocity changes
with position. Thus, an analysis of the variation of kinetic energy correction factor
with Reynolds number gives an insight into a potential correlation for this geometry.
Figure 4a shows the variation of kinetic energy correction factor with Reynolds
number for the converging section. As can be seen, the kinetic energy correction
factor decreaseswithReynolds number almost hyperbolically. At very highReynolds
numbers, α almost reaches a value of unity, which corresponds to the turbulent flow
correction factor for flow through a pipe. In the case of diverging section of the pipe,
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Fig. 3 Total energy (sum of potential, kinetic and pressure energy) with and without kinetic energy
correction as a function of position along the nozzle. a turbulent flow b laminar or transition flow

the magnitude of α is significantly higher than that for converging section (compare
the y-axis values for the same). Although α seems to be slightly correlated with
Reynolds number for the diverging section, the values are mostly dependent on the
diameter of the location. This is evident from the clusters that we see corresponding
to individual locations within the nozzle that we see in Fig. 4b.
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Fig. 4 Kinetic energy correction factor versus Reynolds number for a Converging section, b
diverging section of the nozzle

4 Conclusion

In this study, we analyzed the kinetic energy correction factor (α) in the Bernoulli
equation for a converging–diverging nozzle at different flow rates representing
laminar, transition, and turbulent regimes. For the converging section, the α values
are almost close to unity while for the diverging section, it can go up to 3. This
is attributed to large pressure drag or form drag due to boundary layer separation
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and recirculation in the diverging section of the nozzle. For the diverging section, the
laminar and transitional flow show different characteristics compared to the turbulent
flow. Whereas, for the converging portion, they show gradual and similar behavior.
It is found that the use of kinetic energy correction factor is essential in the diverging
section in order to get a correct energy profile for turbulent flows. We also conclude
that an inverse relationship exists between α and Reynolds number in the converging
part, whereas for the diverging part, α values were found to be dependent only on
their location in the nozzle.
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Modeling of Fluid-Structure Interactions
with Exact Interface Tracking Methods

Pardha S. Gurugubelli and Vaibhav Joshi

Abstract Accuracy and numerical stability of nonlinear coupled fluid-elastic inter-
action simulations largely depends on the coupling and interface modeling algo-
rithms. As part of the numerical coupling, the coupled solver requires to satisfy
the kinematic and dynamic continuity conditions along the interface in addition
to the fluid and structural dynamics governing equations. The interface kinematics
and dynamics conditions are traditionally coupled with the governing equations that
define the dynamics using either a partitioned or monolithic approaches. Irrespective
of the coupling approach considered, the accuracy of the coupled numerical simula-
tions strongly depends on the accuracy of the structural response dynamics, which
in turn depends on the accuracy of the fluid dynamic forces acting on the struc-
ture. Hence, the numerical methods with exact interface become attractive when the
accuracy of the coupled fluid-elastic interactions is of importance. In this paper, we
present a review on the class of quasi-monolithic approaches with exact interface
for numerically modeling the fluid-structure interactions involving rigid and flexible
multi-body systems.

1 Introduction

Fluid-Structure Interaction (FSI) is a branch of multi-physics that is commonly
observed in our day-to-day life, wherein the structure is considered to be elastic
and it can undergo deformation/displacement due to the fluid dynamic forces acting
on it which in turn would influence the fluid dynamic forces acting on them [1, 2]. As

P. S. Gurugubelli (B)
Department of Mechanical Engineering, Birla Institute of Technology & Science Pilani,
Hyderabad Campus, Hyderabad, India
e-mail: pardhasg@hyderabad.bits-pilani.ac.in

V. Joshi
Department of Mechanical Engineering, Birla Institute of Technology & Science Pilani,
K K Birla Goa Campus, Goa, India
e-mail: vaibhavj@goa.bits-pilani.ac.in

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
R. Srinivas et al. (eds.), Advances in Computational Modeling and Simulation,
Lecture Notes in Mechanical Engineering,
https://doi.org/10.1007/978-981-16-7857-8_12

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-7857-8_12&domain=pdf
mailto:pardhasg@hyderabad.bits-pilani.ac.in
mailto:vaibhavj@goa.bits-pilani.ac.in
https://doi.org/10.1007/978-981-16-7857-8_12


140 P. S. Gurugubelli and V. Joshi

a result, the aerodynamic/hydrodynamic forces acting on an elastic structure would
be distinctly different from that of a fixed structures [3]. Hence, it is important to
investigate the FSI in the design of tall buildings, buildings housing sensitive equip-
ment, long bridges [4], off-shore floating platforms [5], oil and gas pipelines [6, 7],
wind turbines, micro-air vehicles, etc.

Numerical modeling of coupled FSI would require satisfying the interface kine-
matic (i.e., velocity and displacements) and dynamic (i.e., force) continuity along
the fluid-structure interface along with to the fluid and structural dynamic govern-
ing equations. A FSI computational models can be categorized based on the way
the interface between fluid-structure is modeled and the way in which the interface
conditions are satisfied along the interface. The interface between the fluid-structure
is either modeled by a conforming/non-confirming body fitted mesh for the fluid
and structural domains or by using a non-body fitted Cartesian grid mesh for the
combined fluid-structure domain. Methods such as level set method [8], Lagrangian
multiplier, immersed boundary [9], ghost fluid, and fictitious domain [10] methods
come under the later category of the interface modeling methods. On the other hand,
arbitrary Lagrangian-Eulerian (ALE) is one of the popular approaches that would
come under the body fitted mesh category of the interface modeling. In this coor-
dinate system, the computational nodes can move relative to the spatial coordinate
system. In an ALE approach, the mesh nodes on the fluid-structure interface behave
like material points in a Lagrangian frame and the nodes inside the fluid domain can
be moved arbitrarily to account for the movement of the fluid-structure interfaces so
that the fluid and the structural meshes always remain two distinct non-overlapping
meshes [11]. Hence, a typical body fitted FSI is a three-field problem [12].

Traditionally, in an ALE-based approach, the interface conditions are satisfied
by a partitioned or monolithic approach. In a partitioned approach, the structural
dynamic, the interface kinematic, dynamic continuity boundary conditions, and the
fluid dynamic governing equations are solved in a sequential order [13]. As the gov-
erning equations for each of the physical fields, i.e., the fluid and structure, are solved
sequentially one can use existing traditional fluid and the structural solvers as black-
box solver by transferring the fluid forces acting on the solid from the fluid-solver
to the structural-solver and transferring the structural kinematics, i.e., displacement
and velocity, from the structural-solver to the fluid-solver. Since any fluid/structural
solvers can be coupled with each other to simulate the coupled FSI phenomena, the
partitioned approach offers higher levels of flexibility and modularity. Due to these
traits, partitioned-based approaches are popular. However, as the effects of fluid
and elastic structures on each other are transferred as boundary conditions coupling
between the fluid and solid is not strong enough and can lead to numerical instability
when the structural mass of the structure interacting with surrounding fluid is of
the same order or lower because of the spurious energy produced due to the tempo-
ral inaccuracies [14]. This numerical instability can be solved for certain low mass
cases by satisfying the interface conditions over multiple iterations till the solutions
achieve a kinematic and dynamic convergence [15]. Even this strong fluid-structure
coupling over multiple iterations may not be enough to sustain a numerical stability
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for very lowmass structures and the solutions can either suffer from non-convergence
or convergence to a wrong solution-related issues.

In a monolithic approach, the governing equations that define the fluid dynamics,
structural dynamics, interface continuity, andmesh dynamics are all assembled into a
single large matrix and solved together [16]. These schemes provide good numerical
stability even for problems with very low mass structures that experience strong
inertial effects. However, monolithic approaches lack the flexibility and modularity
of using an established fluid/structural solvers. In addition to the lack of flexibility,
monolithic approaches can suffer from the computational resource- and convergence-
related issues for solving large ill-conditioned system of linear equations. This would
necessitate development of special kind of pre-conditioners for solving the matrix
system of equations.

Key objective of the current work is to present a review on ALE-based FSI formu-
lations which are numerically stable and computationally efficient for low structure
to fluid-mass ratio where the inertial effects are very strong. As part of the review,
we have considered two FSI coupling formulations based on improvised monolithic
approach [17–19]. Unlike the traditional monolithic approaches wherein the gov-
erning equations pertaining to fluid, structure, interface, and mesh update are all
solved together in a single large matrix, in the improvised monolithic approaches
the equations pertaining to the mesh update algorithm are decoupled from the fluid,
structure, and interface continuity equations by explicitly predicting the structural
positions at the start of each time step. Explicit prediction on structural positions
also enables linearization of the convective terms. Additionally, in these schemes,
the interface kinematic and dynamic continuity conditions are implicitly satisfied by
the construction of a single unified governing equation for combined fluid-structure
system.

In the current work, we begin with a brief overview of the governing equations
involved in the numerical modeling in Sect. 2. In Sect. 3, we construct the variational
weak form of the combined fluid-structure governing equations. We then present
in the complete second-order time-accurate quasi-monolithic with exact interface
tracking formulation in Sect. 4. We then present Galerkin least square stabilized
quasi-monolithic formulation in Sect. 5. We conclude the work by providing a sum-
mary of the two quasi-monolithic solvers reviewed in this work in Sect. 6.

2 Governing Equations

Let us consider x as a spatial point that belongs to the three-dimensional fluid domain
�f(t) with boundary �f(t) at any time t and can move randomly in�f(t). The domain
boundary �f is made up of the Dirichlet (�f

D), Neumann (�f
N), and the fluid-structure

interface (�) boundaries. Similarly, let us also consider a material point Z corre-
sponding to the initial three-dimensional structural domain �s with boundary �s

that is made up of the Dirichlet (�s
D), Neumann (�s

N), and the interface (�). The
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Navier–Stokes equations governing the dynamics of viscous incompressible fluid
flow in an ALE reference frame are given as

ρf
∂uf

∂t
+ ρf

(
uf − w

) · ∇uf = ∇ ·
[
−p I + μf 1

2

(
∇uf + (∇uf

)T )]
+ f f in �f(t), (1)

∇ · uf = 0 in �f(t), (2)

where ρf and μf are the fluid density and dynamic viscosity; uf = uf(x, t), w =
w(x, t), and p = p(x, t) represent thefluidvelocity, fluidmeshvelocity, andpressure
defined at x for a time t ; I is the second-order identity tensor; and f f denotes the
body force.

The structural dynamic of a flexible structure is typical governed by Navier’s
equation which is written as

ρs
∂2ηs

∂t2
= ∇ · σs + f s in �s, (3)

where ρs is the structural density and ηs(Z, t) is the displacement vector that maps
the material point Z from its initial position to its position at time t . σs denotes the
first Piola-Kirchhoff stress tensor and f s represents the body force vector acting on
the structure. For a linear elastic material

σs (ηs) = μs
[
∇ηs + (∇ηs)

T
]

+ λs(∇ · ηs)I, (4)

where μs and λs are the Lamé coefficients of a material satisfying [20]. Similarly,
the constitutive relation for a St. Venant-Kirchhoff (SVK) material [20, 21] is

σs (ηs) = 2μsFE + λs [tr (E)] F, (5)

where tr(·) is the tensor trace operator, F and E represent the deformation gradient
and the Green-Lagrangian strain tensors, respectively, and are given as [20]

F = (I + ∇ηs) , E = 1

2

(
FTF − I

)
. (6)

For simplicity, one can rewrite the structural Eq. (3) as

ρs
∂us

∂t
= ∇ · σs + f s in �s, (7)

considering

us(Z, t) = ∂ϕs

∂t
. (8)



Modeling of Fluid-Structure Interactions … 143

The above simplification enables the implicit implementation of the kinematic con-
tinuity condition along the fluid-structure interface.

The fluid and structural dynamics governing equations presented above need to
satisfy the Dirichlet and Neumann conditions along the respective non-interface
domain boundaries, which can be expressed below:

u(x, t)f = uf
D ∀x ∈ �f

D and σf(x, t) · nf = σf
N ∀x ∈ �f

N. (9)

us(Z, t) = us
D ∀Z ∈ �s

D and σs(ϕs) · ns = σs
N ∀Z ∈ �s

N. (10)

In addition to the above boundary conditions about the non-interface boundaries,
for an FSI phenomena the fluid and structure governing equations should also satisfy
the kinematic and dynamic continuity conditions along the fluid-structure interface
� and can be written as

uf(ϕs(Z, t), t) = us(Z, t) ∀Z ∈ �, (11)
∫

ϕs(γ,t)
σf(x, t) · nfd� +

∫

γ

σs(Z, t) · nsd� = 0 ∀γ ⊂ �, (12)

where γ is any element on the fluid-structure interface � at t = 0 and ϕs(Z, t) is the
deformed position the material point Z at time t . In the above equation, nf and ns

are the unit outward normal vectors to the fluid and structural domain boundaries.
As described earlier, in an ALE approach, the fluid nodes inside the fluid domain

needs to be shifted so that thefluid and structural domain interior nodes donot overlap.
The dynamics of fluid mesh motion can be modeled by considering a pseudo-elastic
constitutive equation given by

∇ · σm = 0 where σm = (1 + τm)
[(

∇ηf (χ, t) + (∇ηf (χ, t)
)T )

+ (∇ · ηf (χ, t))I
]
,

(13)

satisfying the boundary conditions

ηf(Z, t) = ϕs(Z, t) − Z ∀ Z ∈ �, (14)

ηf(χ, t) = 0 ∀ χ ∈ (∂�f(0))\�. (15)

Here ηf is the displacement of the fluid mesh node and τm is the element-level
stiffness to limit the distortion of the small elements.
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3 Weak Variational Form: Combined Fluid-Structure
Formulation

To construct theweak form for the fluid-structure systemby introducing trial function
spaces Suuu and Sppp and corresponding test function spaces Vuuu and Vppp for the fluid-
structure velocity and fluid pressure, respectively. The definition of the trial-and-test
function spaces is as follows:

Suuu = {
(uf , us)|(uf , us) ∈ H 1(�f(t)) × H 1(�s),

uf(ϕs(Z, t)) = us(Z, t) ∀Z ∈ �,

u(x, t)f = uf
D ∀x ∈ �f

D and us(Z, t) = us
D ∀Z ∈ �s

D

}
,

Sppp ={p| p ∈ L2(�f(t))}.

Vuuu = {
(φf ,φs)|(φf ,φs) ∈ H 1(�f(t)) × H 1(�s),

φf(ϕs(Z, t)) = φs(Z) ∀Z ∈ �,

φf(x) = 0 ∀ x ∈ �f
D and φs(Z) = 0 ∀ Z ∈ �s

D

}
,

Vppp ={q| q ∈ L2(�f(t))}.

The weak form of the Navier–Stokes Eqs. (1) and (2) can be expressed as

∫

�f(t)
ρf

(
∂uf

∂t

∣∣
∣∣
χ

+ (
uf − w

) · ∇uf

)

· φfdx +
∫

�f(t)
σf : ∇φfdx =

∫

�f(t)
f f · φfdx +

∫

�f
H

σf
H · φfd� +

∫

�(t)

(
σf(x, t) · nf

) · φfd�, (16)

∫

�f (t)
∇ · ufqdx = 0. (17)

Similarly, weak form of the structural dynamics Eq. (7) can be written as

∫

�s
ρs

∂us

∂t
· φsdZ +

∫

�s
σs : ∇φsdZ =

∫

�s
f s · φsdZ +

∫

�s
H

σs · H · φsd� +
∫

�

(σs(Z, t)ns) · φs(Z)d�. (18)

The weak form of the dynamic traction continuity condition in Eq. (12) will be

∫

�(t)

(
σf(x, t) · nf

) · φf(x)d� +
∫

�

(σs(Z, t) · ns) · φs(Z)d� = 0, (19)
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whereφf andφs are required to satisfyφf(ϕs(·)) = φs(·) on�. A detailed derivation
of the above weak form in Eq. (19) from its strong form in Eq. (12) can be found in
[17]. Nowwe can combine Eqs. (16)–(18) using Eqs. (19) to construct a single unique
relation for the combined fluid-structure domain, which is given as find

(
uf , us, p

) ∈
Suuu × Sppp such that for all

(
φf ,φs, q

) ∈ Vuuu × Vppp

∫

�f(t)
ρf

(
∂uf

∂t

∣∣∣∣
χ

+ (uf − w) · ∇uf

)

· φf(x)dx +
∫

�f(t)
σf : ∇φfdx

−
∫

�f (t)
∇ · ufqdx

+
∫

�s
ρs

∂us

∂t
· φsdZ +

∫

�s
σs : ∇φsdZ =

∫

�f(t)
f f · φfdx +

∫

�f
H

σf
H · φfd� +

∫

�s
f s · φsdZ +

∫

�s
H

σs
H · φsd�. (20)

The idea here is to solve the discrete fluid and structural domains as a single unique
domain � = �f ∪ �s. In the above form, the velocity and displacement continuity
conditions are satisfied implicitly.While the traction continuity condition is absorbed
into the weak formulation.

4 Quasi-Monolithic Formulation

In this section, we will present a second-order time discretization of the combined
fluid-structure formulation given in Sect. 3. The explicit construction of the interface
at the start of each time step decouples the solid position and fluid mesh motion from
the computation of fluid-structure variables (uf , p, us). Additionally, the decoupling
of the fluid mesh motion enables us to determine the convective velocity of the
fluid flow explicitly and linearize the nonlinear Navier–Stokes relation. Hence, the
quasi-monolithic formulation does not require nonlinear iteration per time step.

4.1 Second Order in Time Discretization

Let P2(�h) denote the standard second-order Lagrange finite element space on
domain �h = �f

h ∪ �s
h. First, we employ the second-order extrapolation to describe

the displacement vector ηs,n
h of the flexible structural as

ηs,n
h (Zi) = ηs,n−1

h (Zi) + 3�t

2
us,n−1
h (Zi) − �t

2
us,n−2
h (Zi) ∀Zi ∈ T s

h . (21)
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Now that we have both the boundary conditions Eqs. (14) and (15) required for
solving the ALE Eq. (13), we solve Eq. (13) employing P1 finite element space.
The edges of an isoparametric element are assumed straight unless they are on the
interface or on a curved boundaries. This assumption enables us to use P1 finite
element instead of the P2 for updating the mesh. As a result of this, size of the
system of linear equations required for solving the fluid mesh displacement, ηf,n

h ,
on finite element space with P1 discretization would be smaller than the system of
linear equations required for solving the P2 discretization space without losing the
accuracy of the coupled fluid-structure solver.

We now use the solution of ηf,n
h computed on the P1 finite element space to update

the location of triangular mesh T f
h,tn vertices. Since the interior edges are straight, we

can position the non-vertex computational node at the center of the edge. In this way,
we are able to determine the fluid mesh displacement for all the P2 finite element
mesh T f

h,tn computational nodes even by solving the ALE Eq. (13) on a P1 finite
element mesh.

The nonlinear convective term can be linearized by defining a second-order time-
accurate extrapolation function given below:

ǔf
h(�

n
h(x, tn)) = 2uf,n−1

h (�n
h(x, tn−1)) − uf,n−2

h (�n
h(x, tn−2)), (22)

where�n
h(·, tn−j) is the backward mapping function for the spatial grid points on the

mesh T f
h,tn to T f

h,tn−j and mesh velocity wn
h(x) is defined as

wn
h(x) =

G∑

i=1

φf,n
i (x)

1

�t

((
xni − xn−1

i

) + 1

2

(
xn−1
i − xn−2

i

) − 1

2

(
xn−2
i − xn−3

i

))

=
G∑

i=1

φf,n
i (x)

1

�t

(
xni − 1

2
xn−1
i − xn−2

i + 1

2
xn−3
i

)
. (23)

Here wn
h is a second-order approximation of the fluid mesh velocity ∂t�

n
h(x, tn)

f ′(tn) = 1

�t

(
f (tn) − 1

2
f (tn−1) − f (tn−2) + 1

2
f (tn−3)

)
+ O(�t2).

We next show that
wn

h(x
n
j ) = ǔf

h(x
n
j ) on �h,tn . (24)

To prove the above equation, we rewrite Eq. (23) as

wn
h(x

n
j ) = 1

�t

(
(xnj − xn−1

j ) + 1

2

(
xn−1
j − xn−2

j

)
− 1

2

(
xn−2
j − xn−3

j

))

=ϕs,n
h (Zj) − ϕs,n−1

h (Zj)

�t
+ ϕs,n−1

h (Zj) − ϕs,n−2
h (Zj)

2�t
− ϕs,n−2

h (Zj) − ϕs,n−3
h (Zj)

2�t
∀ Zj ∈ �h,tn .

(25)
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By substituting the definition of ϕs,n(Z) from Eq. (21) into Eq. (25) and simplifying
will yield

wn
h(x

n
j ) =2

(
3

4
us,n−1
h (Zj) + 1

2
us,n−2
h (Zj) − 1

4
us,n−3
h (Zj)

)

−
(
3

4
us,n−2
h (Zj) + 1

2
us,n−3
h (Zj) − 1

4
us,n−4
h (Zj)

)
.

4.2 Complete Scheme

In this subsection, we present the fully discretized finite element form of the quasi-
monolithic formulation. The variational statement reads as

find (uf,n
h , pf,nh , us,n

h ) ∈ Vh

(
tn,ϕs,n

h ,
3

4
,
1

2
us,n−1
h − 1

4
us,n−2
h

)

with uf,n
h |�f

D
= uf

D and us,n
h |�s

D
= us

D so that for any finite element triple

(φf , q f ,φs) ∈ Vh(t
n,ϕs,n

h , 1, 0) (26)

with φf
h|�f

D
= 0 and φs

h|�s
D

= 0, such that

∫

�f
h,tn

[
ρf

�t

(
3

2
uf,nh (x) − 2uf,n−1

h (�n
h(x, tn−1)) + 1

2
uf,n−2
h (�n

h(x, tn−2))

)

+
(
ǔfh − wn

h

)
· ∇uf,nh + 1

2

(
∇ǔfh

)
uf,nh

]
· φfdx

+
∫

�f
h,tn

ρfνf
(
∇uf,nh + (∇uf,nh )T

)
: ∇φfdx

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

A

−
∫

�f
h,tn

pf,nh (∇ · φf )dx
}
B

−
∫

�f
h,tn

qf (∇ · uf,nh )dx
}
C

+
∫

�s
h

ρs

�t

(
3

2
us,nh − 2us,n−1

h + 1

2
us,n−2
h

)
· φsdZ

+1

2

∫

�s
h

(
σs(ϕs,n−1

h ) + σs(ϕs,n+1
h )

)
: ∇φsdZ

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

D

=
∫

�f
h,tn

f f · φfd� +
∫

(�f
H)h

σf
H · φfd� +

∫

�s
h

f s · φsd� +
∫

(�s
H)h

σs
H · φfd�,

}

E, (27)
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where A and B contain the fluid velocity and pressure terms from the Navier–Stokes
momentum equation, C is the Navier–Stokes continuity terms, D denotes Navier’s
equation for structural dynamics, and E is the right-hand side part of the combined
fluid-structure system consisting of the boundary condition and external body force

terms. The 1
2

(
∇ǔf

h

)
uf,n
h term in part A of Eq. (27) to stabilize the convective term

is introduced and discussed in detail in [22].

4.3 Algorithm

The foregoing variational formulation can be expressed in the form of an algorithm.
To begin with, the details of the initial setup are as follows: there is a mesh T s

h for
the solid reference domain �s which shares a part of its boundary grid points with
T h

� along �. Assuming uf,n−1
h , us,n−1

h and ηs
h are known for the mesh T f

h,tn−1 which is
defined on the domain�f

h,tn−1. Here�f
h,tn−1 denotes the numerical approximation for

thefluid domain at time tn−1. It should be noted thatwehave consideredPm/Pm−1/Pm

elements. To ensure the optimal rate of approximation on an isoparametric finite ele-
ment mesh, all the constituent elements are considered as straight-edged standard
Lagrangian elements. The basic steps to be performed in the quasi-monolithic com-
bined fluid-structure formulation are summarized below:

Algorithm 1: Second-order quasi-monolithic formulation for fluid-structure
interactions
1. Start with known uf,n−1

h , us,n−1
h ,ηs

h at time tn−1 and tn−2

2. Advance from tn−1 to tn

(a) Determine the structural displacements ηs
h using Eq. (21)

(b) Solve Eq. (13) using P1 elements on �f
h,t0

to determine mesh displacements

(c) Update the fluid mesh �f
h,tn using the mesh displacements from (b)

(d) Evaluate ǔfh and wn
h by Eqs. (22) and (23)

(e) Solve for the updated field properties uf,nh , pnh , and us,nh at current time tn using Eq. (27)

5 Fully Stabilized Quasi-Monolithic Formulation

One of the primary limitations of the Galerkin finite element discretization used for
discretizing�f and�s of the quasi-monolithic formulation presented in Sect. 4 is that
it will experience nonphysical spurious oscillations for convection-dominant prob-
lems [23]. Traditionally, these spurious oscillations are circumvented by replacing
the traditional Galerkin method with Petrov-Galerkin methods which utilize weight-
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ing functions that have more weightage for the upstream part of the flow than the
downstream [24, 25]. Such streamwise upwind techniques can be interpreted as a
combination of traditional Galerkin method and a stabilization term calculated at
the interior of an element. This elemental-level stabilization term introduces artifi-
cial numerical diffusion which stabilizes the spurious oscillations. The weak form
of the combined fluid-structure formulation given in Eq. (20) can be written in the
Galerkin/Least square (GLS) stabilization form as

∫

�f
h(t)

ρf
(
∂tuf +

(
ûf − w

)
· ∇uf

)
· φfd� +

∫

�f (t)
σf : ∇φfd�

−
∫

�f (t)
∇ · ufqd�

⎫
⎪⎪⎬

⎪⎪⎭
A

+
nel∑

e=1

∫

�e
τm

[
ρf

(
uf − w

) · ∇φf + ∇q
] ·

[
ρf∂tuf + ρf

(
uf − w

) · ∇uf − ∇ · σf − f f
]
d�e

⎫
⎪⎪⎬

⎪⎪⎭
B

+
nel∑

e=1

∫

�e
∇ · φfτc∇ · ufd�e

}

C

+
∫

�s
ρs∂tus · φsd� +

∫

�s
σs : ∇φsd� =

}
D

∫

�f
h,tn

f f · φfd� +
∫

(�f
H)h

σf
H · φfd� +

∫

�s
h

f s · φsd� +
∫

(�s
H)h

σs
H · φfd�.

}

E

(28)

One can observe that terms A, D, and E combine to form the Galerkin weak form
presented in Eq. (20). On the other hand, the term B represents the GLS terms for
the convective and pressure to suppress the spurious oscillations for the convection-
dominant problems and to circumvent the inf-sup/LBB condition, respectively. Term
C denotes the stabilization term for the incompressibility constraint to provide addi-
tional stability. Unlike P2/P1/P2 finite element discretization for the fluid velocity,
pressure and structural velocity to justify the well-posedness. The above stabilized
combined fluid-structure weak form in Eq. (28) is discretized using equal order ele-
ments for both fluid velocity and pressure to simplify the computational framework
significantly.

The stabilization parameters τm and τc in the term B represent the variational
stabilization factors for the momentum and continuity equations [24, 26–28]. The
stabilization parameter τm for the momentum equation is defined as [29]

τm =
[(

2ρf

�t

)2

+ (
ρf

)2 (
uf − w

) · G · (
uf − w

) + 12(μf)2G : G
]− 1

2

, (29)
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where G is the elemental contravariant metric tensor which is defined as

G =
(

∂ξ

∂x

)T ∂ξ

∂x
, (30)

where ξ is local element-level coordinate system and it depends on the element
shape. τm in Eq.29 consists of three parts, the first term represents the stabiliza-
tion for the temporal dominant, second for advection dominant, and the last for
diffusion-dominated cases. The stabilization factors are generally developed using
the variational multiscale approach, where the finite element space is decomposed
into coarse resolvable scales and fine non-resolvable scales. Therefore, the equation
for non-resolvable scales forms the equation for error and the solution of this equa-
tion is approximated as the average of appropriate small-scale Green’s function. This
solution of the fine scale is used for determining the stabilization factors τm and τc.
For more detailed mathematical treatment refer to [30] and [31]. The stabilization
parameter τc for the continuity equation is defined as

τc = 1

8 tr (G) τm
. (31)

The fully discretized quasi-monolithic fluid-structure formulation for multiple
structures using BDF2 can be written as

∫

�f
h,tn

[
ρf

�t

(
3

2
uf,nh (x) − 2uf,n−1

h (�n
h(x, tn−1)) + 1

2
uf,n−2
h (�n

h(x, tn−2))

)

+
(
ǔfh − wn

h

)
· ∇uf,nh + 1

2

(
∇ǔfh

)
uf,nh

]
· φfdx

+
∫

�f
h,tn

ρfνf
(
∇uf,nh + (∇uf,nh )T

)
: ∇φfdx −

∫

�f
h,tn

pf,nh (∇ · φf )dx

−
∫

�f
h,tn

qf (∇ · uf,nh )dx

+
nel∑

e=1

∫

�e
h

τm

[
ρf

(
ǔfh − wn

h

)
· ∇φf + ∇q

]
·

[
ρf

�t

(
1.5uf,nh − 2uf,n−1

h + 0.5uf,n−2
h

)
+ ρf

(
ǔfh − wn

h

)
· ∇uf,nh − ∇ · σf,nh − f f

]
d�e

+
nel∑

e=1

∫

�e
h

∇ · φfτc∇ · uf,nh d�e

+
∫

�s
h

ρs

�t

(
3

2
us,nh − 2us,n−1

h + 1

2
us,n−2
h

)
· φsdZ

+1

2

∫

�s
h

(
σs(ϕs,n−1

h ) + σs(ϕs,n+1
h )

)
: ∇φsdZ
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=
∫

�f
h,tn

f f · φfd� +
∫

(�f
H)h

σf
H · φfd� +

∫

�s
h

f s · φsd� +
∫

(�s
H)h

σs
H · φfd�.

(32)

The implementation of the above fully stabilized quasi-monolithic combined
fluid-structure formulation differs slightly from the implementation in Sect. 4. Instead
of Eq. (22) we define an alternative second-order time-accurate explicit function
given by

ǔf
h(�

n
h(x, tn)) = 2.25uf,n−1

h (�n
h(x, tn−1)) − 1.5uf,n−2

h (�n
h(x, tn−2))

+ 0.25uf,n−3
h (�n

h(x, tn−3)). (33)

Similarly, we also define an alternate function for wn
h as

wn
h(x) =

G∑

i=1

φf,n
i (x)

1

�t

(
3

2
xni − 2xn−1

i + 1

2
xn−2
i

)
. (34)

The main reason behind redefining ǔf
h and wh is that Eqs. (33)–(34) enable us to

implement the exact interface continuity, i.e.,

uf,n
h = us,n

h (35)

instead of the second-order approximation in time given by Eq. (22). Unlike the
velocity continuity in Eq. (11) which requires us to enforce the condition explicitly,
we can satisfy the velocity continuity in Eq. (35) implicitly by treating the fluid and
its corresponding solid node on the interface as a single unique node. Thereby, we
can decrease the size of the algebraic system of equations required per time step
compared to the implementation presented in Sect. 4.

5.1 Algorithm

Unlike the quasi-monolithic combined fluid-structure formulation in Sect. 4 where
we have considered Pm/Pm−1/Pm elements to satisfy the inf-sup or LBB condition,
here we use equal order elements for both fluid pressure and velocity. The basic steps
to be performed in the fully stabilized quasi-monolithic combined fluid-structure
formulation are summarized below:

Similar to the quasi-monolithic formulation presented in Sect. 4, the fully stabi-
lized quasi-monolithic formulation also solves the combined fluid-structure system
only once per time step. A matrix-free version of Krylov subspace-based iterative
solvers is utilized to solve the system of equations that arise from both pseudo-elastic
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Algorithm 2: Second-order fully stabilized quasi-monolithic formulation for
fluid-structure interactions
1. Start with known solutions uf,n−1

h , us,n−1
h ,ηs,n−1

h at times tn−1 and tn−1

2. Advance from tn−1 to tn

(a) Determine the structural displacements ηs,n
h using Eq. (21)

(b) Solve Eq. (13) on �f
h,t0

to determine mesh displacements

(c) Update the fluid mesh �f
h,tn using the mesh displacement from (b)

(d) Evaluate ǔfh and wn
h by Eqs. (33) and (34)

(e) Determine the element level stabilization parameters τm and τc using
Eqs. (29) and (31) respectively.

(f) Solve for the updated field properties uf,nh , pnh , and us,nh at current time tn

using Eq. (32)

mesh motion and combined fluid-structure equations. To scale the fluid-structure
solver for large-scale computations using distributed memory parallel cluster, we
next present the parallel finite element implementation of three-dimensional incom-
pressible flow interacting with generic elastic structures for high Re flow.

6 Conclusions

In this work, we have discussed about two different ALE-based improvised mono-
lithics, i.e., quasi-monolithic, FSI formulations that are computationally efficient
and numerical stable for low mass ratios. In both these formulations, the fluid mesh
motion has been decoupled from themonolithicmatrix consisting of governing equa-
tions that describe the fluid flow, structural dynamics, interface conditions, and the
mesh motion. As a result, the size of the matrix which needs to be solved reduces
by a maximum of 20% in the case of two-dimensional simulations and a maximum
of 40% for the three-dimensional simulations. The decoupling of mesh motion has
been made possible by predicting the structural displacements at the start of each
time step based on the previous time step velocities. Additionally, both thesemethods
linearlize the convective velocities by using a second-order explicit approximation
based on previous time step information. The first quasi-monolothic approach dis-

cussed uses an extra stabilization term, 1
2

(
∇ǔf

h

)
uf,n
h , which has been proposed by

Temam to provide numerical stability. This term plays a role in proving the uncondi-
tional stability of the method theoretically. The formulation is stable for any mixed
finite element discretization for the velocity and pressure. On the other hand, the
second approach discussed in this paper considers a Galerkin least square-based sta-
bilization to provide convective stabilization for convectively dominant problems.
Additionally, this method requires equal order finite element for the fluid velocity
and pressure. As a result, this approach would require lower memory requirements
compared to the first approach.
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Multi-Phase Fluid-Structure Interaction
with Diffused Interface Capturing

Vaibhav Joshi and Pardha S. Gurugubelli

Abstract Two-phase fluid-structure interactions are commonly observed phenom-
ena in industries as well as daily life ranging from small-scale droplet interactions
to large-scale ocean wave-current interaction with offshore marine structures. These
applications involve complex multiscale and coupled nonlinear dynamics which can
be quite challenging to predict and analyze via physical experiments and theoreti-
cal ways. We form a three-dimensional numerical framework based on variational
finite element methods for such complex problems. The flow is modeled using
incompressible Navier–Stokes equations while the fluid-fluid two-phase interface
is evolved by solving phase-field Allen-Cahn equation, both written in an arbitrary
Lagrangian-Eulerian (ALE) setting. The structure ismodeled by themultibody struc-
tural equation and the fluid-structure interface is tracked exactly by moving the grid.
Thus, the formulation gives a hybrid Allen-Cahn/ALE scheme having the feature of
sharp-interface tracking for the fluid-structure interface and interface capturing for
the fluid-fluid interface. The coupling is carried out in a partitioned block-iterative
manner which ensures flexibility and ease of implementation in the 3D parallel vari-
ational solver. The study is concluded by demonstrating the practical application
of the drilling vessel-riser system with turbulent ocean current, wind streams, and
free-surface waves.
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1 Introduction

Two-phase fluid-structure interaction (FSI) finds its applications in offshore pipelines
which carry two-phase oil-gas mixture [1, 2], marine ships/vessels which are sub-
jected to free-surface ocean waves, hemodynamics, and flow through heat exchang-
ers, among others. The present study deals with the offshore drilling process where
an offshore vessel drills the ocean floor via long slender pipelines known as risers
to extract natural resources. These pipelines are subjected to turbulent ocean cur-
rents which may lead to fluid-elastic instabilities such as vortex-induced vibrations
(VIV) [3, 4], while the vessel is subjected to the free-surface ocean waves. This
complex drilling vessel-riser system when exposed to adverse ocean environments
may lead to failure of the structure and operational delay due to the nonlinear effects
of FSI. Therefore, it is imperative to study the coupled FSI problem to mitigate such
circumstances of failure and provide better engineering designs.

Fundamentally, two-phase FSI comprises nonlinear interactions at the interfaces,
viz., fluid-structure interface and fluid-fluid interface. Some of the challenges are
the satisfaction of the no-slip condition at the fluid-structure interface, the defor-
mation of the fluid-fluid interface with time, the accurate tracking of the structure
as it deforms, and the satisfaction of equilibrium conditions at the fluid-structure
interface. The boundary conditions at the fluid-structure interface can either be mod-
eled by a fictitious force field using immersed boundary approach [5, 6], or it can
be tracked exactly with the help of conforming body-fitted moving mesh approach
by arbitrary Lagrangian-Eulerian (ALE) description [7], which is advantageous in
accurate modeling of the boundary layer characteristics and near-wall turbulence.

On the other hand, the fluid-fluid interface between the two fluid phases can be
represented by two techniques: interface-tracking (front tracking [8], particle track-
ing [9], ALE) and interface-capturing (level-set [10], volume-of-fluid [11], phase
field). The former technique requires remeshing and other numerically expensive
corrections in case of large topological changes of the fluid-fluid interface such as
merging and breaking. However, interface-capturing implicitly captures the inter-
face on a fixed Eulerian mesh. Level-set and volume-of-fluid (VOF) methods further
require geometric manipulations such as re-initialization and reconstruction, respec-
tively, to evaluate the curvature of the interface, making them tedious to implement
in three dimensions for generic unstructured meshes on complex geometries. The
diffused interface phase-field method assumes a gradual and smooth variation of the
physical properties across the interface of a finite thickness. The physical properties
such as density and viscosity of the fluid phases gradually transit across the diffused
interface as a function of phase indicator or order parameter, which is solved by
the minimization of free-energy functional [12]. The phase-field method does not
require any geometric manipulation at the fluid-fluid interface and the curvatures to
model the capillary/surface tension effects are evaluated implicitly. Moreover, the
mass conservation can be imposed in a relatively simple manner, in contrast to the
level-set approach. As the mesh is fixed, topological changes in the interface can also
be captured to sufficient accuracy. Therefore, phase-field method for the fluid-fluid
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Fig. 1 Schematic of the two-phase fluid-structure interaction depicting a the initial undeformed
state at t = 0, and b deformed configuration of the structure at time t > 0. Here, �f (0) and �f (t)
denote the fluid domain at the different configurations, and�s,�s(t) represent the structural domain
at the initial and the deformed configurations, respectively. The fluid-structure interface �fs is
assumed sharp, while the fluid-fluid interface �ff is diffused and has a finite thickness

interface along with the exact mesh movement (ALE) of the fluid-structure interface
offers advantages with regard to two-phase FSI modeling. This forms the numeri-
cal treatment of the interfaces for the present study, which has been summarized in
Fig. 1.

The coupling of the different physical fields in FSI can be carried out by either
monolithic [13–15] or partitioned approach [16–19]. Although robust and stable for
low structure-to-fluid mass ratios, the monolithic approach does not offer flexibil-
ity and modularity in the numerical implementation, which are very essential when
dealing with such complex large-scale coupled system consisting of multiple fields,
namely, fluid, structure, mesh, phase field, and turbulence. In a partitioned approach,
the different fields are solved in a sequential manner, while data across the different
interfaces is exchanged. Partitioned methods suffer from convergence issues in the
low structure-to-fluid mass ratio regimes [20–22], typically found in offshore appli-
cations. Therefore, special treatment for accelerating the convergence is required
[20, 23, 24] which consists of nonlinear iterations to correct the fluid forces trans-
ferred from the fluid to the structural domain. Using a partitioned approach for such
complex coupling gives some attractive advantages with regard to iterative solvers,
preconditioning strategies, scalability, and parallel processing.

In the current work, we follow the partitioned strategy tomodel the drilling vessel-
riser system where the vessel is subject to two-phase free-surface ocean waves, the
riser interacts with turbulent ocean current, and the vessel-riser system is represented
as a multibody structural system. We begin with a brief overview of the governing
equations involved in the model, leading to the partitioned two-phase FSI solver in
Sect. 2. We then perform numerical computations pertaining to internal two-phase
flow in a riser in Sect. 3, followed by validation for the free-surface flowover aWigley
hull in Sect. 4 and finally demonstrate the drilling vessel-riser system in Sect. 5. We
conclude the work by providing a summary and key findings in Sect. 6.
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2 Two-Phase Fluid-Structure Interaction Formulation

We briefly discuss the governing equations involved in the two-phase turbulent fluid-
structure interaction via a hybrid ALE/phase-field methodology. The discretization
of the equations has not been discussed here for brevity. Then, the partitioned strategy
for the coupling of the different equations is summarized for the formulation.

2.1 The Governing Equations

The Two-Phase Flow Equations
Consider a d-dimensional spatial fluid domain �f(t) ⊂ R

d with a piecewise smooth
boundary �f(t). The domain �f(t) consists of two immiscible, incompressible, and
Newtonian fluid phases occupying the sub-domains�f

1(t) and�f
2(t)with a fluid-fluid

interface �ff(t) between them. The governing equations for the one-fluid formula-
tion for a viscous, incompressible, and immiscible two-phase system in the ALE
referential coordinate system χ are given by the Navier–Stokes equations as

ρf
∂vf

∂t

∣
∣
∣
∣
χ

+ ρf (vf − w) · ∇vf = ∇ · σf + ∇ · σturb + sf + ρf bf , on �f (t) × [0, T ], (1)

∇ · vf = 0, on �f (t) × [0, T ], (2)

where vf and w represent the fluid and the mesh velocities, respectively, defined for
each spatial point xf ∈ �f(t), ρf is the fluid density, sf denotes the surface tension
singular force replaced by the continuum surface force in the diffused interface
description, and bf =g is the body force applied on the fluid such as the gravitational
force, with g being the acceleration due to gravity. The Cauchy stress tensor is
denoted by σf = −p I + μf(∇vf + (∇vf)T ), where p is the fluid pressure and μf is
the dynamic viscosity of the fluid. The turbulent stress term is represented by σturb.
The density and viscosity are dependent on the phase indicator function φ (known
as the order parameter) as ρf(φ) = 1+φ

2 ρf1 + 1−φ
2 ρf2 and μf(φ) = 1+φ

2 μf
1 + 1−φ

2 μf
2,

respectively, where ρfi and μf
i are the density and dynamic viscosity of the i th phase

of the fluid, respectively. Thefluid-fluid interface is evolved by solving the phase-field
equation for the order parameter. The flow equations are discretized by stabilized
finite element variational formulation, the details of which can be found in [24, 25].

The Allen-Cahn Equation
The order parameter φ which indicates the fluid-fluid interface is evolved by phase-
field equation. Here, we utilize the second-order Allen-Cahn equation [26] which
minimizes the Ginzburg-Landau free-energy functional E(φ) = ∫

�f (t)

(
ε2

2 |∇φ|2 +
F(φ)

)

d�, where the first and the second terms denote the interfacial and the bulk
energy of the two-phase fluid system , respectively. Here, F(φ) = 1

4 (φ
2 − 1)2 is a

double-well potential function having two minima (φ = 1 and φ = −1) correspond-
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ing to the two stable phases, and ε is a measure of the thickness of the diffused
interface. The mass conservative Allen-Cahn equation in the moving mesh ALE
framework (to account for the moving fluid-structure interface) is given by [25, 27]

∂φ

∂t

∣
∣
∣
∣
χ

+ (vf − w) · ∇φ − γ
(

ε2∇2φ − F ′(φ) + β(t)
√

F(φ)
) = 0, on �f (t) × [0, T ], (3)

where γ is a mobility parameter selected as 1 for simplicity, F ′(φ) is the derivative of
the potential function with respect to φ, and β(t) is the time-dependent component
of the Lagrange multiplier term for imparting the mass conservation property [25,
27].

As the fluid-fluid interface involves high gradients of the physical properties such
as density, viscosity, and pressure across the two phases, it is a numerical challenge to
sufficiently resolve these gradients and avoid any spurious unphysical oscillations in
the numerical solution. In the present scenario, we have utilized the recently proposed
positivity-preserving variational (PPV) scheme [25, 28, 29].

The Fluid-Fluid Interface
Equilibrium at the fluid-fluid interface of the two phases requires the satisfaction of
the pressure-jump and the velocity continuity conditions. In the diffused interface
description, these conditions are replaced by a continuum surface force (CSF) [30]
depending on the order parameter. Thus, the surface tension force in Eq. (1) can be
written in several forms reviewed in [31, 32]. Here we consider sf(φ) = σεαsf∇ ·
(|∇φ|2 I − ∇φ ⊗ ∇φ), where αsf = 3

√
2/4 is a constant and σ is the surface tension

coefficient between the two fluid phases.

The Turbulence Equation
The turbulence stress term in Eq. (1) is represented by a hybrid RANS/LES model
which relies onSpalart-Allmaras-based delayed detached eddy simulation. The stress
term is given byσturb = μf

T (∇vf + (∇vf)T ), whereμf
T denotes the turbulent dynamic

viscosity, which is computed by solving for turbulent eddy viscosity ν̃ in the ALE
moving mesh framework as

∂ν̃

∂t

∣
∣
∣
∣
χ

+ (vf − w) · ∇ν̃ = P − D + 1

σ̃
[∇ · ((νf + ν̃)∇ν̃) + cb2(∇ν̃)2], on �f (t) × [0, T ],

(4)

where D = cw1 fw(ν̃/d̃)2 and P = cb1 S̃ν̃ denote the destruction and production
terms; S̃ = S + (ν̃/(κ2d̃2)) fv2, S being the magnitude of vorticity; d̃ denoting a
function depending on the distance to the closest wall; and cb1, cb2, σ̃, κ, cw1, and
fw have been defined in [33]. The turbulence equation is also discretized using the
stabilized finite element formulation employing the PPV scheme [34, 35].

The Multibody Structural Equation
The two-phase fluid interacts with amultibody structural system, thus resulting in the
deformation of the structure. For modeling the structure, consider a d-dimensional
structural domain of a component i in a multibody system�s

i ⊂ R
d with a piecewise
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smooth boundary �s
i at time t = 0, consisting of the material coordinates X . Subject

to the fluid forces, the structure deforms to a new configuration �s
i (t) at time t .

Let ϕ(X, t) : �s
i → �s

i (t) be a one-to-one mapping (denoting the position vector)
between the material coordinates X at t = 0 to its position in �s

i (t). The structural
equation for a multibody component i is given as

ρsi
∂2ϕ

∂t2
= ∇ · σs + ρsi b

s, on �s
i , (5)

where ρsi and bs denote the density and the body force on the structural com-
ponent i , respectively. The quantity σs is the first Piola-Kirchhoff stress tensor
which can be expressed as a function of Cauchy-Green-Lagrangian strain ten-
sor E(us) = (1/2)[(I + ∇us)T (I + ∇us) − I], where us is the displacement field
for the structure, i.e., us = ϕ(X, t) − X . Furthermore, the structural velocity is
expressed as vs = ∂ϕ/∂t = ∂us/∂t . Further details can be found in [34, 36, 37].

The Fluid-Structure Interface
The fluid-structure interface is treated as a sharp interface in the present descrip-
tion and is tracked exactly via the moving mesh ALE framework. For the coupling
between the fluid and the structural fields, the kinematic and dynamic equilibrium
conditions are required to be satisfied at the fluid-structure interface. Let �fs denote
the fluid-structure interface at t = 0, i.e., at the undeformed configuration of the
structure. The conditions can be written mathematically as

vf(ϕ(X, t), t) = vs(X, t), ∀X ∈ �fs, (6)
∫

ϕ(̂γ,t)
σf(xf , t) · nfd� +

∫

γ̂

σs(X, t) · nsd� = 0, ∀̂γ ⊂ �fs, (7)

where nf and ns denote the outward unit normals to the fluid and the structural
domains, respectively, γ̂ is any part of the interface �fs, and ϕ(̂γ, t) denotes the
corresponding fluid part of the interface at time t . The continuity of velocity across
the interface is ensured by Eq. (6) and the balance of tractions across the interface is
depicted by Eq. (7).

The Mesh Equation
Apart from the two fluid-structure interface conditions described above, a displace-
ment continuity condition is also satisfied at the fluid-structure interface, where the
displacement of the mesh nodes is equated with that of the structural displacement at
the interface. Let uf denote themesh displacement field of the fluid domainmesh. The
displacement continuity condition is thus written as uf = us, on �fs. For the motion
of the fluid nodes apart from the fluid-structure interface, the equation ∇ · σm = 0 is
solved, where σm denotes the stress experienced by the fluid mesh due to the strain
as a result of the structural motion. Assuming the fluid mesh to be linearly elastic,
σm = (1 + τmesh)

[∇uf + (∇uf)T + (∇ · uf)I
]

, where τmesh represents a mesh stiff-
ness parameter which can be adjusted to check the distortion of the small elements.
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Fig. 2 Schematic of the partitioned iterative coupling of the two-phase turbulent fluid-structure
interaction formulation

The fluid mesh velocity can thus be evaluated as w = ∂uf/∂t and forms the closure
for the moving mesh framework in the two-phase flow equations.

2.2 The Partitioned Iterative Coupling

In this section, we present the nonlinear partitioned iterative coupling between the
different fields of equations involved in the two-phase turbulent fluid-structure inter-
action formulation. The schematic of the coupling is shown in Fig. 2.

Each field equation is solved separately and the required data is transferred
between the respective fields in a sequential manner. Numerical FSI instabilities
pertaining to low structure-to-fluid mass ratios are resolved by nonlinear iterative
force correction (NIFC) scheme involving corrections of the fluid forces via non-
linear iterations [20, 23, 24]. This technique increases stability and convergence of
the FSI solver. Furthermore, the partitioned strategy is advantageous in providing
flexibility and ease in numerical implementation and coding. The linear system of
equations is solved by the generalized minimal residual (GMRES) algorithm [38].
The coupled two-phase FSI system has been implemented to have the benefits of
hybrid parallelism [39] for parallel computing, consisting of the state-of-the-art hier-
archical memory and parallel architectures.



162 V. Joshi and P. S. Gurugubelli

Fig. 3 Schematic of the FSI of a flexible riser with internal two-phase flow: a the X − Z cross
section of the riser with the velocity profile for the two-phase flow, and b the computational domain
and boundary conditions

The presented partitioned coupling for the modeling of two-phase turbulent fluid-
structure interaction has been validated extensively for several benchmark tests in
[24, 25, 29, 34, 40], and thus we do not present those numerical tests here for brevity.

3 FSI of a Flexible Riser with Internal Two-Phase Flow

In this section, we present the application of the two-phase FSI framework to a
practical problem of a riser (with internal two-phase flow) subjected to external
uniform current flow, which is typically observed during the drilling process at
an offshore site. The schematic of the problem statement is depicted in Fig. 3.
The riser is selected as a concentric pipe with outer diameter of D and aspect
ratio L/D = 20. A uniform freestream velocity of vf = (U∞, 0, 0) interacts with
the outer surface of the riser, whereas a two-phase flow (consisting of the phases
�f

1 and �f
2) exists inside the riser. For the internal two-phase flow, a concen-

tric velocity profile is prescribed at the inlet and outlet of the riser, as shown in
Fig. 3a. The profile of the velocity is such that the flow entering the riser is co-
annular, fully developed, and laminar [41]. The parameters considered for the prob-
lem are r1 = 0.2, r2 = 0.4 and g = (0, 0, 0), i.e., no acceleration due to gravity.
To model the riser structure, we utilize the modal analysis of the Euler-Bernoulli
beam equation. The non-dimensional parameters for the VIV of the riser with the
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Fig. 4 FSI of flexible riser with internal two-phase flow at tU∞/D: a 80, b 90 and c the internal
two-phase flow pattern along the riser. The inset figure shows the magnitude of velocity at the
mid-point of the riser span

internal flow are the Reynolds number Re = (ρf1U∞D)/μf
1 = (ρf2U∞D)/μf

2 = 100,
mass ratio m∗ = ms/(πD2Lρf1/4) = 2.89, density ratio ρ∗ = ρf1/ρ

f
2 = 100, viscos-

ity ratio μ∗ = μf
1/μ

f
2 = 100, reduced velocity Ur = U∞/( f1D) = 5, dimensionless

axial tension P∗ = P/(ρf1U
2∞D2) = 0.34, dimensionless flexural rigidity E I ∗ =

(E I )/(ρf1U
2∞D4) = 5872.8, and ρs/ρf1 = 6.68. Here, f1 denotes the first eigenmode

frequency of the riser.
The amplitude of the riser is found to be maximum at the mid-point along its

span and a standing wave-like pattern is observed along the riser, both in the in-line
(X ) and the cross-flow (Y ) directions. The Z -vorticity contours along the span of the
riser are shown in Fig. 4 where the internal two-phase flow is also visualized with
the help of order parameter φ. The topological evolution of the two-phase fluid-fluid
interface is captured qualitatively, where a transition in the two-phase flow pattern
is observed. Such changes in flow patterns due to VIV are crucial for improving
multiphase flow assurance in these pipelines.

4 Flow Across a Wigley Hull

Before demonstrating the solver for a drillship-riser system, we validate the free-
surface effects on a simplified parabolic Wigley hull. The length, beam, and draft
of the hull are L = 4 m, B = 0.4 m, and D = 0.25 m, respectively. The computa-
tional domain with the initial free-surface position at z = 0 m is shown in Fig. 5.
We study the wave pattern on the hull at two Froude numbers Fr = U∞/

√|g|L ,
viz., 0.25 and 0.316, where U∞ is the freestream velocity of the incoming flow and
g = (0, 0,−9.81) is the acceleration due to gravity. Systematic mesh convergence
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Fig. 5 Computational domain for free-surface flow across a parabolic Wigley hull

study is conducted by considering three meshes with increasing refinement. Meshes
1, 2, and 3 consist of 0.38 million, 2.4 million, and 4.6 million nodes, respectively.
The wave profiles along the hull surface are measured and compared with the exper-
imental results [42] for two Froude numbers in Fig. 6 where a good agreement is
found.

The contours of the free-surface colored by the wave elevation for Fr = 0.25
are shown in Fig. 7 where we observe the formation of the Kelvin waves near the
downstream of the hull. Pertaining to the symmetry of the hull along the X − Z -
plane, the contours are mirrored to visualize the Kelvin waves on both sides of the
hull.

5 Coupled Drillship-Riser System

We next demonstrate the developed numerical formulation for a more complicated
geometry of the hull and analyze the effect of the free-surface ocean waves and
turbulent current on the coupled motion of the ship-riser system. The ship hull is
considered as the geometry of Navy surface combatant model DTMB 5415 [43] with
a scale of 1:1. This corresponds to a length between perpendiculars of L pp = 142 m
with a draft of 6.15mand displaced volume ofwater of 8424.4m3.A riser of diameter
D = 1m and aspect ratio L/D = 200 is attached to the bottom of the vessel.

We present the response of the vessel and the riser which are subjected to the com-
bined effects of turbulent ocean current and the free-surface ocean waves, as shown
in Fig. 8a. The computational mesh is also depicted in Fig. 8b. The mesh is refined
near the fluid-fluid interface (free-surface). The free-surface waves are generated by
prescribing second-order nonlinear Stokes waves at the inlet boundary. The ship is
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Fig. 6 Wave profile elevation along the Wigley hull: comparison between the experimental data
and numerical results at a Fr = 0.25 and b Fr = 0.316. Here, η denotes the elevation of the free
surface along the surface of the hull

Fig. 7 Wave elevation contour along the Wigley hull at Fr = 0.25

modeled as a rigid body having three translational degrees of freedom, whereas the
riser is solved as a nonlinear flexible beam. The connection between the ship and the
riser is assumed to be rigid, i.e., the response of the ship gets completely transferred to
the riser and vice versa. The non-dimensional parameters employed for the demon-
stration can be summarized as: Re = ρf1U∞L pp/μ

f
1 = 1.42 × 108, ρ∗ = ρf1/ρ

f
2 =

816, μ∗ = μf
1/μ

f
2 = 50, Fr = U∞/(

√|g|L pp) = 0.027,m∗
ship = ms

ship/(ρ
f
1Vdisp) =

1.0, m∗
riser = ms

riser/(ρ
f
1D

2Lπ/4) = 2.23, E I ∗ = E I/(ρf1U
2∞D4) = 2.1158 × 107,

E A∗ = E A/(ρf1U
2∞D2) = 1.7706 × 108, andUr = U∞/( f1D) = 7.33,wherem∗

ship
andm∗

riser are the mass ratios of the ship and the riser, respectively, E I ∗ and E A∗ are
the non-dimensional flexural and axial rigidity, respectively, and Ur is the reduced
velocity of the riser assuming its first natural frequency.
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Fig. 8 Demonstration of coupled drillship-riser system: a schematic of the full-scale DTMB 5415
with the computational domain and b computational mesh (the inset provides the discretization of
the ship hull)

Fig. 9 Flow across the drillship-riser system: a displacement response (ηs
ship/L pp) of the drillship,

b fluid forces (F/(ρf1U
2∞L2

pp)) on the drillship, and c displacement response (ηs
riser/D) at the mid-

point of the riser of diameter D at z/L = 0.5; in the surge (X ), sway (Y ), and heave (Z ) directions
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Fig. 10 Response envelope along the spanof the riser in a in-line (X ) and b cross-flow (Y ) directions

The displacement and hydrodynamic force responses for the drillship are shown
in Fig. 9a, b, respectively, in the surge (X ), sway (Y ), and heave (Z ) directions.
The displacement response of the riser mid-point at z/L = 0.5 is shown in Fig. 9c,
corresponding to the location with the maximum amplitude response along the riser.
The cross-flow response of the drillshipmanifests two frequencieswith f L pp/U∞ =
5.2 being the dominant one. It is observed that the dominant in-line and cross-flow
frequencies along the riser are in synchronizationwith the surge and sway frequencies
of the drillship. The riser oscillateswith a high amplitude (∼ O(D)) albeit its reduced
velocity being away from the typical “lock-in” range of Ur ∈ [4 − 6]. This high
amplitude may be attributed to the synchronization of the riser response amplitude
with that of the vessel, leading to vessel-induced motion of the riser. The response
envelope of the riser depicting the amplitude response along the riser with temporal
variation is shown in Fig. 10 where we observe a standing wave-like pattern in the
cross-flow response.

The contour plot of the vessel and the riser at tU∞/L pp = 1.535 is shown in
Fig. 11 where we observe the formation of the Kelvin waves downstream of the
vessel and the vortex shedding process along the riser. Note that the computational
mesh employed for the demonstration is coarse. Further analyses employing a finer
mesh is required for detailed physical understanding.

6 Conclusions

The present work discusses the novel formulation for the numerical modeling of two-
phase turbulent flows interacting withmultibody structures. The formulation benefits
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Fig. 11 Coupled
drillship-riser system
subjected to free-surface
waves and ocean current at
tU∞/L pp = 1.535. The free
surface of the waves is
represented by the
iso-surface of the order
parameter at φ = 0 colored
by the elevation. The inset
provides the Z -vorticity
contours along the riser
surface with red and blue
colors representing positive
and negative vorticities,
respectively

from the advantages of both exact tracking of the fluid-structure interface by ALE
technique, and diffused interface capturing of the two-phase fluid-fluid interface
via phase-field Allen-Cahn equation. Furthermore, the partitioned strategy for the
coupling allows for flexibility and ease in numerical implementation of the formula-
tion. The solver has been extensively validated with standard benchmark problems.
Applications involving complex internal two-phase flow in pipelines subjected to
flow externally have been carried out. Finally, the solver has been demonstrated
for a drillship-riser system where the drillship interacts with the free-surface ocean
waves and the riser is exposed to turbulent ocean current. The results show a coupled
response between the drillship and the riser, which is very imperative to study for
predicting the behavior of such complex system in drastic ocean environments.
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Multiscale Modeling of Chromatin
Considering the State and Shape
of Molecules

Yuichi Togashi

Abstract Chromatin is a complex of DNA and proteins in the eukaryotic cell
nucleus. This highly complex structure helps not only to fold long DNA and
compactly store it into the nucleus but also to control how the information on the
DNA is processed. Hence, the structural dynamics of chromatin is important for the
understanding of genomic processes. To track the behavior, as well as imaging exper-
iments, molecular dynamics simulations are adopted. However, as the chromatin in
the whole nucleus is huge, it is always required to reduce the computational cost to
a realistic level. Hence, coarse-grained and multiscale models have been developed,
although it is still underway. In this Chapter, recent modeling efforts for the chro-
matin structure, including our adaptive resolution approach and future directions, are
briefly introduced.

Keywords DNA · Nucleosome · Chromatin ·Molecular machine ·
Coarse-graining ·Multiscale model ·Molecular dynamics simulation

1 Introduction

Genetic information is coded on genomic DNA and stored in the nucleus in eukary-
otic cells. For example, each human cell has 46 chromosomes including 2 m of
DNA in total. To pack them into the 10-µm-sized nucleus, DNA is folded with help
of binding proteins, and the DNA–protein complex is called chromatin. Typically,
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DNA is wrapped around histone proteins to form barrel-like structures called nucleo-
somes, which then stack one another to form chromatin fibers, and are finally shaped
into chromosomes. On the other hand, to read out the DNA information, molecular
machines such as replicases must access the DNA strand, which may be blocked if
the DNA is tightly packed with proteins. That is even utilized for regulation of gene
expression; there are regions called heterochromatin, whereDNA is so tightly packed
with proteins that the expression of genes there is strongly suppressed, in contrast to
euchromatin permissible for gene expression. In other words, the shape, or how the
DNA is folded, can determine how the information recorded there is read and used.
In this sense, DNA is not merely a data tape but an information-processing machine
by itself. Hence, the structure and dynamics of chromatin have attracted attention in
recent years. Experimental observation techniques such as single-molecule imaging
and next-generation sequencers enabled us to track the structural changes. Still, it is
difficult to track the conformational changes as a whole and over time experimen-
tally, and hence modeling and simulation of chromatin dynamics are expected to
complement experimental data and are currently under development.

2 Modeling and Simulation of Chromatin

2.1 Molecular Dynamics Simulation

Molecular dynamics simulation is a popular tool for tracking conformational change
and motion of molecules or molecular complexes. It is based on classical (Newto-
nian) dynamics.Whenwe use an all-atommodel, typically, each atom ismodeled as a
material point, and the force on each atom is calculated according to a potential func-
tion (called force field) depending on the conformation i.e. positions of the atoms. By
simply solving the equation of motion numerically, we can track the motion of each
atom. There are popular force fields such asAMBERorCHARMM,which have been
improved over years and used for a variety of biomolecules. However, the compu-
tational cost is so large that the applicable timescale is still limited to only micro-
to milli-seconds. Hence, simplified and coarse-grained models are wanted, particu-
larly for large molecular complexes such as chromatin. As a bottom-up approach,
there are coarse-grained models in which a group of atoms (e.g. an amino acid
residue in a protein) is represented by a point, e.g. MARTINI and Gō models. In case
further simplification is required, more abstract models e.g. bead-spring polymers
or even continuum models (e.g. phase-field model [1]) are used. In such drastically
simplifiedmodels, unlike all-atommodels, it is difficult to construct the force-field or
governing equation from the first principles. For chromatin, all-atom or residue-level
coarse-grained models have been applied at the microscopic nucleosome level, and
polymer models or reaction–diffusion-like models have been adopted for the macro-
scopic chromosome or nucleus level; however modeling scheme at the intermediate
mesoscopic level has not been fully established yet.
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2.2 Multiscale Modeling

Apart from the case of chromatin, there is amethodology calledmultiscalemodeling,
to deal with systems where both microscopic properties and macroscopic behavior
should be considered. Multiscale models are typically constructed in such a bottom-
up way; first, a small part of the system is simulated at the most microscopic scale
using a detailed (often first-principle) model, and properties or phenomenological
laws are extracted from the result to construct a model at the next scale, i.e., a slightly
coarse-grained and/or simplified model. This procedure can be iteratively applied to
generate a model at the next scale, to obtain a hierarchy of models. Finally, these
models are simulated concertedly. For example, starting from the molecular level,
a multiscale model was constructed for a whole human heart, which could hence
reproduce e.g. how mutation of the protein affects the dynamics of the heart [2]. Of
course, the model at the microscopic scale can be used only for a small part and
a short time; otherwise, the computational cost will be unrealistic. Fortunately, it
usually works well because, in general, 1. Within a short time, the effects of an event
can propagate only within a small region, and 2. At the macroscopic scale, in the long
run, fast behavior and fluctuations are averaged out, and only the mean properties
and their slow changes govern the system; thus, it is enough to consider only fast
microscopic behavior and slow macroscopic behavior.

2.3 Adaptive Resolution Approach

In some cases, there are regions where microscopic details are particularly important
for the process. If the important regions are fixed throughout the simulation, we
can construct a hybrid model combining a detailed high-resolution model for such
important regions and a simplified low-resolution model for the others; methods for
multi-scalemodelingwould be useful for properly connecting the regions represented
by different models. It is however not always guaranteed. For example, when we
consider the searching process by DNA-binding proteins for certain binding sites on
DNA, the DNA segments near the protein molecules are important for the process,
which should of coursemove as the proteins travel. Ideally,we can efficiently simulate
such a system if the resolution of each region in the hybrid model can be adjusted on
the fly (Fig. 1), and that is possible if the models are reversibly transferred to each
other by the following conversions: 1. a model to a lower resolution model (coarse-
graining); 2. a model to a higher resolution model (“fine-graining”). The former
is usually simple and just similar to the multi-scale modeling case. The latter is
however complicated, as themicroscopic information ismissing in the original (lower
resolution) model and hence must be inferred or reconstructed without discrepancy.

We tried to construct such an adaptive resolutionmodel and succeeded for a simple
Rouse polymer case [3]. The Rouse model consists of material points connected by
linear springs. To increase the resolution of a certain part, points must be added, as
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Fig. 1 Schematic representation of the concept of the adaptive resolution approach. Only important
regions, e.g. near thewalkermolecule orwith specialmodification, are simulated at a high resolution;
otherwise at a low resolution

well as the parameters for the points and springs should be adjusted. In this simple
case, such points can be relatively easily sampled, not violating the equilibriumdistri-
bution, and the parameter conversion is quite simple. In contrast, points are removed
when the resolution is decreased. Note that, information on the microscopic confor-
mation represented by those points is lost upon the removal; when the resolution
is increased again, the positions of the new points are resampled regardless of the
previous conformation.

3 Current Problems and Outlook

3.1 Difficulties Intrinsic to Chromatin

As mentioned above, we constructed an adaptive resolution model for Rouse poly-
mers. Based on this, we aimed to include features of chromatin fibers, to attain
a comprehensive and efficient modeling framework for the structural dynamics of
chromatin. Nevertheless, there is a pitfall intrinsic to the case of chromatin.

Suppose that we reduce the resolution for a part of the model and then increase
the resolution back again. As already mentioned, the system forgets the previous
microscopic conformation when the resolution is reduced, and the conformation is
resampledwhen the resolution is recovered. For the resampling, we generally assume
a (quasi-)steady-state distribution depending only on the variables (conformation)
of the lower resolution model, although not necessarily in equilibrium in terms of
physics, and the new conformation to be sampled is independent of the previous one.
As microscopic structures rapidly fluctuate, we can assume this for simple polymers
as long as the interval between these changes of the resolution is long enough.

However, in the case of chromatin, there are microscopic modifications such as
DNA methylation or histone modification. Although such a modification itself is a
fast process typically exerted by enzymatic reactions, the intervals of modification
events can be very long (e.g. days). Hence, itmaywork as a long-termmemory,which
is a unique feature of chromatin and important for its biological function. At the same
time, though, microscopic behavior cannot be averaged out even at the timescale of
the macroscopic model, which means that the methodology of the adaptive resolu-
tion modeling and also typical multiscale modeling breaks down. Particularly, when
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the lifetime of the memory is longer than typical switching intervals of the model
resolution, the precondition for the independent resampling of conformation is no
longer valid.

3.2 Future Directions

This problem arises from the fundamental nature of chromatin and is hence difficult
to solve. One way to mitigate the problem is by combining the model with experi-
ments. Recently, we proposed a method to estimate the fractal dimension and size of
chromatin domains from the sub-diffusional motion of single nucleosomes there [4].
Fractal dimension indicates how compactly the chromatin fiber is folded, which may
be useful in the fine-graining operation in the adaptive resolutionmethod, to generate
more realistic microscopic structures from a small number of parameters. Also, we
suggested a bead-spring polymer-like model for chromatin, for which parameters
of the springs are estimated from a contact map obtained by the Hi-C experiment
[5]. Using this method, we can simulate dynamics of chromatin corresponding to
a certain experimental dataset or even reproduce motion connecting (morphing)
multiple contact maps. Complementary to such data-driven approaches, artificial or
abstract models may be useful for realizing concepts, e.g. the state and operation
cycles of molecular machines could be incorporated into reaction–diffusion models
[6] and bead-spring polymer models.

Recently, as experimental techniques have been evolving, huge data sets obtained
by differentmethodologies have been accumulated in databases. An important role of
modeling and simulation is to combine such multi-modal data into a comprehensive
model and show the underlying mechanism in a comprehensible manner. We hope
that the abovementioned approaches including ours will be further improved, to
faithfully play this role.
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Numerical Methods for the Isoperimetric
Problem on Surfaces

Amit R. Singh

Abstract The isoperimetric problem on a surface is to find a sub-surface that has
a specified area and the least possible perimeter. We discuss the development of a
numerical technique to identify locally minimizing sub-surface for a given surface
and area. The numerical technique is applied to some sample surfaces for varying
prescribed areas and the results are presented.

1 Introduction

The isoperimetric problem has an interesting mythological connection. Ancient
Roman and Greek records mention the story of Dido, the queen of Carthage, a
city in ancient Phoenicia. She fled the tyrannical rule of her brother and founded
the city of Carthage in North Africa. But there she had to strike a deal with a local
monarch who put forth an interesting proposition to Dido—she could own as much
land as she could surround with the hide of a bull. Dido decided to cut the bull’s
hide in narrow strips and enclosed a vast circular land out of it! Thus, the intelligent
Dido solved the extremal geometry problem of what is the maximum area one can
enclose by a given length of the perimeter. This is the classical isoperimetric problem
on a plane surface. The solution, as Dido found, is a circle. There are many analogs
and variations of this problem. For example, the inverse problem is to identify the
surface of the smallest area that can span a specified closed space curve. This is called
the Plateau’s problem. In high-school physics, we learn that the sphere encloses the
maximum volume with the least surface area. This is a three-dimensional exten-
sion of the same problem. The isoperimetric problem also arises in geometry-driven
flow. For instance, it is known that a geometric flow of a surface curve driven by its
geodesic curvature under the constraint of a fixed enclosed surface area necessarily
minimizes the length of the closed curve [5]. Thus, the isoperimetric problem on a
three-dimensional surface physically represents a two-phase flow where one of the
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phases forms an island in the second phase and it flows under the line tension at the
interface of the two phases.

In the following sections, wewill develop some numerical tools step by step to find
approximate solutions to the isoperimetric problem on three-dimensional surfaces.
Wewill restrict our discussions toMonge patches i.e. surfaceswhich can be expressed
as z = f(x, y) [3]. We will choose a sample surface for which the minimizing solution
can be determined by visual inspection. We will validate our numerical methods for
this surface. First, we will show a direct approach to minimize the perimeter under a
global area constraint. We will try to understand the numerical artifacts of the direct
approach. Next, we will discuss some strategies to overcome the limitations of the
direct approach.

2 Direct Method

Given a 3D surface in theMonge form and an area value less than the total area of the
surface, we have to find the location of a sub-surface that has the lowest perimeter. To
achieve this, we will start with an initial guess for the sub-surface. We will discretize
the sub-surface into a mesh of 3D triangles. The x- and y-coordinates of the vertices
of the triangles will be the unknown degrees of freedom of our optimization problem.
We will identify the edges of the triangles that lie on the boundary of the meshed
region. The sum of the lengths of the boundary edges will be the objective function
for our optimization problem. We will include a constraint on the sum of the areas
of all the triangles as a penalty term in the objective function. We will minimize the
objective function using the L-BFGS-B [10] routine.

2.1 Discretization of the Initial Guess

Intuitively, we can say that the perimeter enclosed by a surface area will be the
minimum if the surface is a geodesic disk. If the surface is a flat plane, this gives us
a flat circular disk as the minimizer. So we will start with an initial guess where the
projection of the Monge patch in the (x-y)-plane is a circular disk. Of course, this
does not imply that the 3D surface will be a geodesic disk but it is a reasonable initial
guess for the optimization routine. A good quality mesh is desirable for numerical
techniques.

To discretize the 2D circular projection, we will make use of the following algo-
rithm to first generate vertices of the circular mesh. The vertices will be connected
into triangles using theDelaunay triangulation algorithm [2]. The advantage of Algo-
rithm 1 is that it allows us to have triangles of specified size almost uniformly dis-
tributed over the mesh. The desired element size is an input to the algorithm.

In Algorithm 1, we calculate the radius of the circular disk from the given area and
then divide the radius into equal parts based on the input element size. The number of
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Algorithm 1 Generate vertices for triangulation of a circular disk.
1: function CreateVertices(A, x, y, s) � A → area, (x, y) → center, s → element size
2: R ← √

A/π � R → radius of the disk
3: Nrings ← round(R/s)
4: Npoints ← round

(
3Nrings

(
Nrings + 1

) + 1
)

5: Points ← Empty array of Npoints vertices
6: i ← 1 � Counter for the number of vertices generated
7: for j ← 1, Nrings do
8: r ← j

(
R/Npoints

) � Radius of the j th ring
9: Nringpoints ← 6 j � Number of points in the j th ring
10: �θ ← 2π/Nringpoints
11: for k ← 1, Nringpoints do
12: θ ← (k − 1)�θ

13: Points[i] ←
{
x + r cos θ
y + r sin θ

}

14: i ← i + 1
15: end for
16: end for

17: Points[i] ←
{
x
y

}
� Add a vertex at the center

18: return Points
19: end function

parts the radius is divided into gives us the number of “rings” in the mesh. Then we
place points at equal angular spacing along each ring. Figure1a shows an example
of the ring of points obtained using this algorithm. Figure1b shows the Delaunay
triangulation of the vertices of Fig. 1a. The edges in red in Fig. 1b are the boundary
edges which are identified by the fact that they belong to only one triangle in the
mesh unlike the interior edges (in gray) which are shared between two triangles.

To obtain the initial guess for the optimization problem,wewill project the vertices
of the triangulation of the circular disk obtained using Algorithm 1 to the 3D surface.
This requires that the equation of the Monge patch z = f (x, y) is known to us. For
example, if the Monge patch equation is (surface rendered in Fig. 2)

z =
(
10e

5x
2 + 5y

2 − 9e
5y
2 + 8 − 7e

5x
2

)
e− x2

8 − 5x
4 − y2

8 − 5y
4 − 25

4 , (1)

after projecting the z-coordinates of the vertices of the mesh of Fig. 1b we get the
3D initial guess for our optimization problem as shown in Fig. 3.

2.2 Calculating the Perimeter Length and the Surface Area

Theoptimization algorithm requires thatwe are able to evaluate the objective function
for a given set of optimization degrees of freedom values. Our objective function is
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Fig. 1 a Vertices generated using Algorithm 1 for a circular disk of area A = 9π and element size
0.5. The total radius of the disk is R = 3 and we get six rings shown as gray circles. b Delaunay
triangulation of vertices of Fig. 1a. The red edges mark the boundary edges which occur only in one
triangle

Fig. 2 The 3D surface of
Eq.1
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Fig. 3 The 3D mesh
obtained using Algorithm 1
after projecting the vertices
of Fig. 1b to the surface
given by Eq.1. The center of
the 2D projected disk is at
(2.5, 5.0). The actual surface
area of the mesh is 63.85
although the area of the mesh
projected on the (x-y)-plane
is 9π

minF (X) = L (X) +
∑

triangle

1

2
k

(A (
Xtriangle

) − A0,triangle
)2

, (2)

where L (X) is the length of the perimeter as a function of the degrees of freedom
X and A (

Xtriangle
)
is the surface area of a triangle of the 3D mesh as a function of

the degrees of freedomX (the x, y-coordinates of the vertices of the mesh). We have
imposed the area constraintA (

X�
) = A0,triangle as a penalty term with coefficient k

in Eq.2 for every triangle. ThemoreA (
Xtriangle

)
deviates from the constrained value,

the objective function increases quadratically. Thus, the optimization algorithm will
try to keep the penalty terms small.

The advantage of the direct method lies in the simplicity of calculating L (X) and
A (

Xtriangle
)
. We have already identified the boundary edges (shown as red in Fig. 1b

and Fig. 3) using the criterion that each boundary edge occurs only in one triangle in
the mesh. Therefore,

L (X) =
∑

boundary
edges

Ledge (3)

Ledge
(
Xi ,X j

) = ‖Xi − X j‖, (4)

where Ledge is the Euclidean distance between the vertices with position vectors Xi

andX j that constitute the edge. The total surface area of the meshed sub-surface can
be calculated as



182 A. R. Singh

∑

triangle

A (
Xtriangle

) =
∑

triangles

Atriangle
(
Xi ,X j ,Xk

)
(5)

Atriangle
(
Xi ,X j ,Xk

) = 1

2
‖(X j − Xi

) × (Xk − Xi )‖ (6)

with Atriangle as the area of a triangular element of the mesh made up of the vertices
with position vectors Xi , X j , and Xk .

2.3 Calculating the Derivative of the Objective Function

The L-BFGS-B optimization routine that we plan to use requires an analytical deriva-
tive of the objective function with respect to the degrees of freedom. It is possible to
use numerical differentiation to approximate the derivative but it will slow down the
optimization program a lot. We can calculate it as

F
X

= L
X

+
∑

triangle

k
(A (

Xtriangle
) − A0,triangle

) A
Xtriangle

. (7)

In Eq.7, the derivatives are vectors of the same shape as X. To proceed further, we
note that to calculate the derivatives of L andA, we only need to be able to calculate
the derivatives of Ledge and Atriangle. Now we will make use of index notation [7] to
make the analytical calculations tractable.

Let Xai denote the coordinates of the i th vertex where a = 1, 2 indicate the x-
and y-coordinates of the vertex, respectively. We can write length of an edge made
up of the i th and the j th vertices as

Ledge
(
Xi ,X j

) =
[

2∑

a=1

(
Xai − Xaj

) (
Xai − Xaj

)
]1/2

, (8)

where the repeated index a indicates summation which has also been explicitly
shown. But we will avoid showing the summation explicitly from now on. Next, let
us differentiate Eq.8 with respect to the coordinates of the k th vertex.

Ledge

Xbk
= [(

Xai − Xaj
) (

Xai − Xaj
)]−1/2 (

Xai − Xaj
) (

Xai

Xbk
− Xaj

Xbk

)
(9)

= 1

Ledge

(
Xai − Xaj

) (
δabδik − δabδ jk

)
,

where δ is the Kronecker Delta [8].
We can write the area of a triangle in index notation as
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Atriangle
(
Xi ,X j ,Xk

) = 1

2

[(
Xaj − Xai

)
(Xbk − Xbi ) εabc

(
Xd j − Xdi

)
(Xek − Xei ) εdec

]1/2
,

(10)

where εabc denotes the Levi-Civita [9] symbol. Using the property of Levi-Civita
symbol, we can write

εabcεdec = δadδbe − δaeδdb.

This simplifies Eq.10 as

Atriangle
(
Xi ,X j ,Xk

) = 1

2

[(
Xaj − Xai

)2
(Xbk − Xbi )

2 − (
Xaj − Xai

)
(Xbk − Xbi )

(
Xbj − Xbi

)
(Xak − Xai )

]1/2
.

(11)
Now we can write the derivative as

∂Atriangle
∂Xcl

= 1

8Atriangle

(
−2

(
Xai − Xaj

)2
(Xci − Xcl ) + (

Xai − Xaj
)
(Xai − Xal )

(
Xci − Xcj

)

+ (Xai − Xak ) (Xai − Xal ) (Xci − Xck ) + 2
(−Xaj + Xal

)2
(−Xck + Xcl )

− (−Xaj + Xal
)
(−Xak + Xal )

(−Xcj + Xcl
) − (−Xaj + Xal

)
(−Xak + Xal ) (−Xck + Xcl )

+ (
Xbi − Xbj

)
(Xbi − Xbl )

(
Xci − Xcj

) − 2 (Xbi − Xbk )
2 (Xci − Xcl )

+ (Xbi − Xbk ) (Xbi − Xbl ) (Xci − Xck ) − (−Xbj + Xbl
)
(−Xbk + Xbl )

(−Xcj + Xcl
)

− (−Xbj + Xbl
)
(−Xbk + Xbl ) (−Xck + Xcl ) + 2 (−Xbk + Xbl )

2 (−Xcj + Xcl
))

. (12)

With the equations for the objective function and its derivative with respect to the
degrees of freedom, we have all the information needed to solve the optimization
problem.

3 Numerical Simulations

We will solve our optimization problem on a sample surface for some constrained
area values and different initial guesses.

3.1 Shortcomings of the Direct Method

Let us use the surface of Eq.1 as the underlying surface and the mesh of Fig. 3 as
the initial guess. This implies that the constrained area is 9π and our initial guess is
the sub-surface centered at (2.5, 5.0). The result of optimizing Eq.2 with the initial
guess as the mesh shown in Fig. 3 is shown in Fig. 4. The key observation is that in
the final state the mesh is all jumbled up and it has not reached the expected position
on top of the “peak” on which it is located.
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Fig. 4 On the left: the initial guess mesh of Fig. 3 overlayed on top of the surface of Eq.1.On the
right: The mesh obtained as a result of the optimization algorithm applied to the initial guess

Why has the solution mesh jumbled up? The answer lies in the nature of the
objective function. The area term in Eq.2 is defined as a summation over each triangle
of the mesh. Certainly, the vertices of the mesh in the interior are shared between
multiple triangles. So a change in the coordinates of the vertex due to the area term
will affect multiple triangles. Yet, there is nothing in the objective function that
ensures that the vertices should displace in a way that maintains continuity of the
displacement field across the triangles. In other words, although we have expressed
the objective function in terms of the triangles, after substituting the coordinates of
the vertices, the information about the juxtaposition of the triangular elements is
retained only in the terms of coincident vertices. The triangles are thus free to fold
over themselves or even overlap or cross over each other as the vertices are iteratively
displaced during the optimization routine. Mathematically, the final state shown in
Fig. 4 minimizes the sum of the lengths of the boundary edges while retaining the
constrained value of the areas of the triangles. So it is a mathematical minimizer but
because it lacks the non-overlapping feature of the triangles of the initial mesh it is
not the physically desirable solution.

3.2 Improving the Direct Method Solution Strategy

As we have noted in the previous section, we need to incorporate information about
spatial continuity across the triangles in our numerical scheme to avoid the non-
physical solution shown in the final state of Fig. 4. To achieve this end, we will
borrow some tricks from the Finite Element Method [11].
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1. We already have a triangularmesh.Wewill equip themwith linear triangular shape
functions (refer [11] or any standard textbook on the Finite Element Method for
more details on linear triangular elements).

2. We will redefine our objective function in terms of a displacement field defined
over the initial mesh instead of solving directly for the final coordinates of the
solution mesh. The mathematical formulation of the basis functions of the linear
triangular finite elements ensures continuity of the displacement field across the
elements and this should address our issue of the triangles crossing over each
other during the optimization iterations.

minF (u) = L (X + u) +
∑

triangle

1

2
k

(A (
Xtriangle + utriangle

) − A0,triangle
)2

(13)

ua =
all vertices∑

vertex i

uai Ni (ξ, η) where a = 1, 2. (14)

Here, ua denotes the x, y-components of the displacement field of the vertices of
the mesh. Ni (ξ, η) are the shape functions of the “standard isoparametric” linear
triangular finite element (see [11] or any other standard text on the finite element
method for the meaning of “isoparametric” and “standard” elements). Figure5
shows the “standard” linear triangle element. The equations for the length of the
boundary and its derivative with respect to the components of the displacement
degrees of freedom can be written analogously to Eqs. 8 and 9. We discuss the
calculations for the areas next.

3. Instead of calculating areas of the triangles in terms of the vertex coordinates
directly, we will make use of differential geometry and redefine area of a triangle
as an integration over the triangle’s projection in the x − y-plane. The integration
will be converted into a summation using Gaussian quadrature [1] that is com-
monly used in finite element analysis.
The differential area of a Monge patch z(x, y) is given as

Fig. 5 The standard linear
triangle with second-order
Gauss quadrature points
shown as the red dots
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ds2 =
√
EG − F2dxdy where (15)

E =
(

1 + ∂z

∂x

2
)

(16)

F = ∂z

∂x

∂z

∂y
(17)

G =
(

1 + ∂z

∂y

2
)

. (18)

The area of a 3D triangle of the mesh can then be written as

Atriangle =
∫

�

√
EG − F2 dxdy. (19)

A commonmathematical convenience used in the finite element method is to map
the (x-y)-coordinates of the triangles to a “standard reference triangle” shown in
Fig. 5. This leads to simplification in carrying out numerical integration over the
triangles as the shape function and its derivatives can be calculated just once for the
reference triangle and reused for the remaining triangles. The mapping between
the physical and the reference coordinates is captured through the Jacobian J
defined in Eq.20. Then, we can rewrite the area integral of Eq.19 as Eq.21 where
|J | = det J .

J =
[

∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

]

(20)

Atriangle =
∫ 1

0

∫ 1−ξ

0

√
EG − F2 |J |dηdξ (21)

=
3∑

q=1

wq

√
EG − F2 |J |. (22)

In Eq.22, we convert the integration over the standard triangle as a summation
using Gauss quadrature of second order. The three Gauss quadrature points are
shown in Fig. 5. It should be noted that in Eq.21, the integrand must be evaluated
at (x, y) values corresponding to (ξ, η) values at the Gauss quadrature points.

4. After all the modifications discussed above, our objective function will be a func-
tion of unknown uai which are the displacements of the vertices of the mesh in the
x- and y-directions. To carry out optimization, we need to calculate the derivative
of the objective function with respect to uai . This is non-trivial and to avoid errors
it is recommended to use automatic differentiation [4]. We can also use symbolic
differentiation and code generation abilities of packages like SymPy [6].
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5. To gain insight into the trajectory of the degrees of freedom as the optimiza-
tion iterations proceed, we will use the gradient descent method for solving our
optimization problem. Gradient descent can be written as

un+1 = un − γ
∂F
∂un

. (23)

Mathematically, we move the degrees of freedom in the direction of the steepest
descent with a step size controlled by γ. The termination criterion can be when

Fig. 6 The results of the simulations after implementing the improvements to the direct method
as discussed in Sect. 3.2. The iteration number “0000” corresponds to the degrees of freedom after
the first 1000 iterations. The other iteration numbers should be multiplied by 1000. The key result
is that the mesh has converged on the peak of the surface which offers the least perimeter for the
given area constraint
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the change ‖un+1 − un‖ < tolerance is satisfied for several iterations which may
be accompanied with the norm of the gradient ‖ ∂F

∂un ‖ remaining very small for
several iterations.

3.3 Improved Results

The simulation results for the direct method with the improvements discussed in
Sect. 3.2 are shown in Fig. 6. As seen from the figure, the mesh does not get jumbled
up and the final state is the expected perimeter minimizing state at the top of the peak
on the surface. It is also noteworthy that before climbing to the peak, the mesh first
shrinks to bridge the gap between the initial area value of 63.85 and the constrained
area value of 9π ≈ 28.37.

4 Conclusion

We have presented a direct numerical method to find the location of a surface patch
of specified area value lying on a general 3D surface z(x, y) such that its perimeter
is minimum. We have discussed the challenges one can encounter when taking a
naive approach to solve the problem. We have also presented some numerical tech-
niques borrowed from the finite element method to mitigate the issues of the naive
approach. We have demonstrated the effectiveness of the improved solution strategy
by discussing a non-trivial numerical example where the correctness of the obtained
solution can be verified by visual inspection.
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QSAR—An Important In-Silico Tool
in Drug Design and Discovery

Ravichandran Veerasamy

Abstract QSAR (Quantitative structure–activity relationship) study is important
thirst area in drug design and discovery via computational studies of chemistry. The
hypothesis, alterations in structure of molecules reflect proportional variations in
the pharmacological or biological activity, is the centre for focus of QSAR anal-
ysis. Currently one dimensional to six dimensional QSAR methods is available,
and they are used in lead optimization, classification, and prediction of pharmaco-
logical or biological activity, pharmacokinetic properties, and toxicity of chemical
compounds. The accomplishment of various models of QSAR depends on many
factors or criteria’s such as input data accuracy, selection of descriptors, feature
selection, model development, and validation as reported in OECD principle for
QSAR. Validation is an important step in QSAR, and it is used to establish reliability
and significance of a procedure of specific purpose. However, to be useful, QSAR
models should be revealing and easily understandable in explaining the essential
molecular features that plays a major role in the alteration of biological activity.
Thus, the goal of the current chapter is to briefly discuss the principle, prerequisites
to set up correct models, methods, validation, limitations of model applications, and
the significance of QSAR in drug discovery.
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1 Introduction

Drugdesign and development is an essential research area in pharmaceutical industry,
and it has many challenges and hurdle such as problem in efficacy and delivery, long
time span, and cost effect. One of the main obstacles with the study was the complex
and big data that were received from different genomic studies and clinical trials. All
the above-mentioned issues and challenges in drug discovery are solved by artificial
intelligence (AI) and machine learning (ML) technology, and these algorithms have
modernized the drug designing. ML algorithms are already used in numerous drug
discovery methods such as peptide synthesis, virtual screening (structure and ligand
based), drug monitoring and release, pharmacophore modelling, QSAR, drug repo-
sitioning, poly-pharmacology, toxicity, and physiochemical properties forecasting
[1]. As total, computer aided drug design (CADD) is one of the important areas in
the current arena of drug development process (Fig. 1).

In silico approaches which are based on the chemistry-biology-informatics triad
can bring pharmacology to new heights. Over the last 50 years, QSAR models have
played a major role in establishing relationship between chemical’s molecular struc-
ture and their biological effects like potency, toxicity, ADME, and physico-chemical
properties [2]. Numerical representatives of 2D and 3D molecular descriptors of
chemical structures are a vital feature of QSAR. QSAR concept has also been used
in virtual high throughput screening (VHTS), and it becomes an essential part of lead
discovery process.

In the process of drug discovery, QSAR has begun and progressed to fulfil the
needs and desire of chemists. Kubinyi (2002) summarized the detailed history of
QSAR in one of his inspiring articles [3]. QSAR is a ligand-based approach (Fig. 2)
since it uses the information of ligands in model development. The ligand-based
approaches are most appropriate method in drug design when there is a lack of
information about the various targets. The motives for using QSAR and quantitative
structure–property relationship (QSPR) models in drug discovery are (i) to cut down
time duration and cost; (ii) to make robust calculation of activities/properties; (iii)
to avoid unwanted synthesis; (iv) to extract details from big data; (vi) to gather
details about MoA of biological activities. Both approaches have broad applications
in life sciences (biology, agriculture and medicine) [4], as well as physical sciences

Fig. 1 Role of computer aided drug design in drug discovery



QSAR—An Important In-Silico Tool in Drug Design and Discovery 193

Fig. 2 Different in-silico tools used in drug design

(organic chemistry, physical chemistry, materials sciences) [5]. It is certainly a tough
task to design a drug for the interested target while it shows proper pharmacokinetic
properties and be devoid of toxicity. Gleeson (2008) discovered a set of easy and
explainable and interpretable rules to recognize the source of ADMET properties by
simple forms like molecular weight, partition coefficient (logP) ionization state, etc.
[6].

The robustness of QSAR is mainly altered by the prediction ability of that model.
Principally, all the compounds in a dataset are described by a set of quantitative or
qualitative independent variables that are mathematically related with the biological
(pIC50) or chemical (i.e. logP) endpoint of interest by using statistical analysis.
However, the QSAR models are most suitable for the data that was used to develop
it. QSAR models should be deliberated as a complementary tool for assisting the
decision-making process, but not pondered as the replacement for knowledge of the
scientist [7].

Another advantage of QSAR is to design or analyse ligands for multiple/dual
targets using the additivity of the molecular fields [8, 9]. For example, Huang et al.
(2010) used 3D-QSAR techniques like CoMFA and CoMSIA models to find out the
multitarget activity of PPAR agonist to treat obesity and stroke [8]. The major draw-
backs of QSAR include false correlations due to the experimental error in biological
data, and many QSAR results are failure to produce or predict the particular activity.
Generally, QSAR studies contain various challenges like effect of quality and quan-
tity of underlying training data, incompatible calculations by differentQSARmodels,
predictive power of QSAR tools varies with the chemical set, limitation in knowing
the knowledge of the drug action in the whole body, and insufficient description of
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some important interactions. QSAR is used in finding out the mechanism of action
of drug, identify and analyse the pharmacological or biological activity as well as
toxicity, optimization of lead, environmental chemistry, and nano chemistry.

The complete utilization of QSAR models has not yet been attained because the
present research is mainly focussed on creating good predictive models but failing in
interpretability. Most robust ML algorithms are used in producing predictive QSAR
models with improved predictive ability, but they are not providing any information
about the specific or underlying features that influencing the activity, and so-called
as a black box. Further, a careful data curation is essential for a robust and reliable
model. This can only be achieved by expertise of trained practitioners, since all the
data are not modellable or may fail to provide accurate results all time since there are
several inherent issues. Most of those problems have been deliberated in this chapter.

2 History of QSAR

Actually, the foundation ofQSAR (molecular structures directly influence the biolog-
ical activity) was begun when Cros (1863) observed an inverse correlation among
toxicity and aqueous solubility [10]. In 1962, Hansch et al. officially introduced the
termQSAR [11]. Free andWilson in 1964, introduced a simple and effective method
of QSAR, which was named as ‘Free-Wilson model’ [12]. The Free-Wilson model
is a numerical method which correlates structural topographies (presence or absence
of functional groups) with biological properties. However, both Hansch and Free-
Wilson methods are closely interrelated in theoretical view along with their practical
applicability [13].

Latermixed approach (Hansch and Free-Wilson) has been used to explain the rela-
tion between the interested biological activity and both physicochemical and Free-
Wilson type parameters [13, 14]. Fruitful applications of this mixed model approach
on the SAR of enzyme inhibitors [15–22], revealed the better performance of mixed
classical QSAR. Later, the non-classical QSAR approach––model developed from a
huge, heterogeneous, and data with numerous MoA––was introduced [23]. Then the
QSAR models for numerous compounds against various target proteins (so-called
proteochemometric, also named as computational chemogenomics) was ensued [24,
25]. In 2006, Kubinyi have reported the success stories of QSAR with other CADD
methods [26].

3 QSAR Methodology

As mentioned earlier, classical to six dimensional QSARmethods are available [27].
Conformational arrangement of atoms in space does not affect 2D-QSAR, while 3D-
QSAR needs the 3D structures of ligand and require alignment of ligands in three
spatial dimensions. 4D-QSAR represents multiple conformations, orientations, and
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Fig. 3 Descriptors used in classical QSAR studies

the protonation state of ligand [28–32]. Induced-fit scenarios of ligands on active
site represents 5D and solvation models can be thought of 6D-QSAR, respectively.
7D is real target-based receptor model. Molecular descriptors (Fig. 3, Table 1) used
in QSAR model as independent variables are numerical representative of chemical
data of a molecular structure.

The general QSAR model can be expressed as:

Predicted Biological Activity = Function (Chemical Structure)

The QSAR model development workflow can be split into three main steps such
as preparation of data analysis of data, and model validation (Fig. 4). Acquiring a
predictiveQSARmodel was influenced by some of the factors such as the of endpoint
data and descriptors quality, feature selection, validation of various methods used to
develop various kind ofmodels [33–35]. In the first decade of twenty-first century, the
European Organization for Economic Co-operation and Development (OECD) has
formed a set of standards––appropriate measures of goodness-of-fit, robustness, and
predictive potential––for the development and validation of QSARmodels [36]. The
OECD guidance especially emphasizes on validation of developed QSAR model by
using sets of compounds that were not actually included in the model development.
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Table 1 Different dimensional molecular descriptors

Descriptor Description Example

0D QSAR Descriptors derived from
molecular formula

Molecular weight, number and
type of atoms, polarizability,
volume, electronegativity, etc.

1D QSAR The 1D descriptors are counts
and properties of the functional
groups and sub-structural
fragments, also referred as
fingerprints

Functional groups, rings,
bonds, substituents, etc.

2D QSAR Obtained from graph
theoretical representation such
as topological and connectivity
descriptors

Total path count, molecular
connectivity indices, etc.

3D QSAR Encode various geometrical as
well as 3D spatial information
of a molecule in terms of their
shape, steric and electronic
features

Polar and non-polar surface
area, molecular volume, and
other geometrical properties

4D QSAR The fourth dimension is an
ensemble of conformation of
each ligand

—

5D-QSAR Like 4D QSAR with added
advantage of explicit
demonstration of diverse
induced-fit models

—

6D-QSAR Further incorporating different
solvation scenarios in
5D-QSAR

—

Physicochemical properties These are calculated measured
quantities based on
parameterization with
measured data

logP, pKa, solubility measures,
etc.

Table 2 Summary of OECD principles for QSAR modelling

No OECD Principles Description

1 Defined endpoint To ensure that all endpoint values within a
given data set are consistent

2 Unambiguous algorithm To ensure transparency and reproducibility
of the proposed QSAR model

3 Defined applicability domain To determine the boundaries in which the
model is robust for predicting query
compounds

4 Measures of model’s predictive potential To evaluate the internal and external
predictive power of the model

5 Mechanistic interpretation To ensure that the underlying mechanism of
action of compounds can be elucidated
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Fig. 4 Workflow of QSAR model development

3.1 Statistical Methods Used in QSAR Modelling

3.1.1 Linear Methods (LM)

Simple linear regression (SLR), multiple linear regression (MLR), principal compo-
nent regression (PCR), partial least squares (PLS) regression, genetic function
approximation (GFA), genetic partial least squares (G/PLS) techniques, etc. are the
various LM used in QSAR modelling.

PLS regression method is exclusively useful when the number of descriptors is
more than the number of compounds and/or there is a correlation between variables
[37, 38]. MLR is a mathematical technique used to predict some unknown dependent
variables from several independent variables [39]. K-means clustering is top-down
approach, and in this method the objects are segregated into a fixed number (k) of
cluster based on the similarity in variables or descriptor value [40]. PCA is used
to estimate the number of clusters in the data [41]. Genetic algorithm (GA) is used
in finding solutions for optimization. The general application of GA is topology
optimizations, genetic training algorithm, and control parameters optimization.

3.1.2 Nonlinear Methods (NM)

• NM can be obtained from more complicated methodologies
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• LM becomes NM if nonlinear terms of some descriptors are added.
• Many NM are developed from LM via kernel trick.

Nonlinear methods include support vector machine (SVM), support vector
regression (SVR), artificial neural network (ANN or NN), etc.

ANN is an interconnection group of artificial neurons that uses a mathemat-
ical model or computational model. For example, in 2019, Zuvela et al. showed
that the antioxidant activity of flavonoids is determined by using this method. The
two well-established antioxidant activity mechanisms, namely, the hydrogen atom
transfer (HAT) mechanism defined with the minimum bond dissociation enthalpy,
and the sequential proton-loss electron transfer (SPLET) mechanism defined with
proton affinity and electron transfer enthalpy [42]. Zhou et al. (2015) have devel-
oped nonlinear QSAR models with high-dimensional descriptor selection and
SVR to improve toxicity prediction and evaluation of phenols on Photobacterium
phosphoreum [43].

SVM are a group of related supervised learning methods that can be used for
the classification and regression. A special property of SVM is that they simulta-
neously minimize the empirical classification error and geometric margin. Ramandi
et al. (2020) have constructed QSAR models by combining Genetic Algorithms
with Multiple Linear Regressions (GA-MLR) and Support Vector Machine (SVM)
to explore the anticoagulant activity of factor Xa inhibitors [44]. Decision forest
(DF) is a decision support tool which can be applied to regression and classification
models. Random forest (RF) is an ensemble of unpruned regression tree [45, 46]
that is used to construct the model with 2/3 of a training data set and the dataset to
evaluate the model predictive power.

3.2 Validation

The usage of a QSAR model is mainly depending on the calculation capacity of
model. For good prediction, the QSAR model must be properly validated, otherwise
it leads to false prediction. So, validation is a vital step in QSAR studies [35]. Only in
the last two decades, validation of QSAR models has acquired significant attention
[33–35, 47, 48]. The validity of a QSAR model is assessed by (i) cross/internal vali-
dation, (ii) bootstrapping, (iii) randomization, and (iv) external validation. Numerous
principles were framed for judging the validity of QSAR models at an international
workshop held in Setubal (Portugal), which were subsequently modified in 2004
by the OECD Work Programme on QSARs [36, 49]. The formula for calculation of
different internal and external validation parameters and threshold values are given in
Tables 3 and 4, respectively. The external validation technique is always considered
as a best validation method in QSAR modelling.

Bootstrap resampling (or bootstrapping) (Efron 1979) is one more technique used
for internal validation––alternative to LMO [50]. A high average q2 in the bootstrap
validation confirm the model robustness. Further, Y-randomization test is used to



QSAR—An Important In-Silico Tool in Drug Design and Discovery 199

Table 3 Formula for calculation of some important QSAR model validation parameters

Validation parameters
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∧
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where r2 is the squared correlation coefficient between observed and predicted values and r20 is
the squared correlation coefficient between observed and predicted values with intercept value
set to zero of test set
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where r2r is squared mean correlation coefficient of the randomized models and r2 is squared
correlation coefficient of the non-randomized model
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where y is experimental data and ŷ is external prediction data
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Table 4 Minimum criteria
for some common statistical
parameters in QSAR
validation

Statistical
parameters

Validation Conditions*

r2 Internal >0.6 (for in vivo
data)

CCCtr Internal >0.85

q2LOO Internal >0.5

CCCcv Internal >0.85

q2LMO Internal >0.5

pred_r2 External >0.6

CCCext External >0.85

q2-F1 External >0.6**

q2-F2 External >0.6**

q2-F3 External >0.6**

r2m External >0.5***

r
′2
m External >0.5

�r2m External < 0.2

r2m average External > 0.5

k’ External 0.85 < k’ < 1.15

k External 0.85 < k < 1.15

r2-r20/r2 External <0.1

r2-r’20/ r2 External <0.1

r2m (overall) Internal and External >0.5

r
′2
m (overall) Internal and External >0.5

r2m average
(overall)

Internal and External >0.5

�r2m (overall) Internal and External <0.2

r2p Internal
(Randomization)

>0.5

* The criteria may change depending on the QSAR model devel-
opment method used and the heterogeneity of scaffold. ** The
criteria may be > 0.70 and *** > 0.65 as proposed by Chirico et al.
(n.d.) [53]

confirm model robustness. In Y-randomization, the dependent variable values are
scrambled, and all the calculations can be repeated for at least five (better, more)
times. The main of this method is to confirm that the obtained models’ good statistics
are not due to over-fitting [51, 52]. These statisticalmethodologies are used to confirm
the sound and unbiasedness (“good model”) of generated QSAR models.

A designed model can be agreed generally in QSAR (MLR, PLS regression, etc.)
studies when it fulfils (but not always) the limit values given in Table 4 (the values
may be the minimum recommended values for significant QSAR model). The other
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threshold values to accept the QSAR models are 1. The standard deviation ‘s’ is
not greater than standard deviation of the biological data. 2. The F value indicates
that overall significance level (better than 95%). 3. The confidence interval of all
individual regression coefficients proves that they are justified at the 95% significance
level. 4. Randomized r2 value should be as low as to r2. 5. Randomized q2 value
should be as low as to q2. Moreover, the biological data should be well distributed
with at least two or even more logarithmic units. Also, physicochemical parameter
should be scaled and with free from collinearity issues [52].

3.2.1 Dispute on QSAR Validation

Hawkins et al. [54, 55] have claimed that it is good to better to utilize LOO cross-
validation when the sample size is small, since it is meaningless to divide the data
set in to training and test [54, 55]. An inconsistency among the internal and external
prediction was stated in a fewQSAR studies [56, 57], and some other studies claimed
that there is no association between internal and external prediction [58]. In many
cases, it is very difficult to find out the final topmost model because somemodels had
better internal validation parameters than external one, and vice-versa. Other than
the mentioned validation parameters, the real outliers and structural similarity must
be analysed, and necessary action must be implemented to rectify the issues.

4 Nano—QSAR Model

The basic principle of QSAR for nanoparticles or nano-QSAR is focused on calcu-
lating the mathematical relationship between the variance in molecular properties
programmed, hence known as nano-descriptors and the variance in biological activity
for a set of nanomaterial.

5 Errors in QSARs/QSPRs

The various kind of errors obtained during QSAR/QSPR development are depicted
in Table 5, along with the respective OECD principle(s) [59].

Outlier is a data point which has high standardized residuals when compared with
other samples of the data set (biological space) or the compound fall outside the
applicability domain (chemical space) (Fig. 5). In Fig. 5, compound number 283 is
an activity outlier since the compound standardized residual value is more than the
recommended+ 2.5 standardized residual, and 347 is a structural and activity outlier
since the compound is far away from the recommended standardized residual of -2.5
and the calculated Hat value of 2.45. Both the compounds 283 and 347 are belong to
prediction set. The biological space outlier can be carefully eliminated from QSAR
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Table 5 Common types of error found in QSAR/QSPR model development

No OECD Principles Type of error

1 Defined endpoint Failure to consider data heterogeneity
account
Inclusion of undefined biological values

2 Unambiguous algorithm Use of collinear descriptors
Use of incomprehensible descriptors
Error in descriptor values

3 Defined applicability domain Inadequate/undefined applicability domain
Use of inadequate data
Duplication of compounds in dataset
Unacknowledged omission of data points
Too narrow range of endpoint values

4 Measures of model’s predictive potential Over-fitting of data
Lack of descriptor auto-scaling
Inadequate training/test set selection
Lack of/inadequate/ misuse of statistics
Use of excessive numbers of descriptors in
QSAR
Failure to consider distribution of residuals
Failure to do internal or external or both
internal and external validation

5 Mechanistic interpretation Lack of mechanistic interpretation

Fig. 5 Williamson plot for applicability domain
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Table 6 Applicability
domain techniques

Technique Method

Ranges in descriptor space Bounding box
PCA bounding box

Distance-based Leverage approach
Euclidean distance
Mahalanobis distance
KNN approach
Tanimoto similarity

Probability density distribution Parametric method
Non-parametric method

Response variable based Range of the experimental data

Miscellaneous Standardization approach
Kernel-based

models. However, chemical space outlier needs further attention. The following are
the reasons why some of the compounds are outlier in a congeneric data set: 1. may
have differentmechanism; 2.may interact with its respective target in differentmode;
3. conformational flexibility of target protein binding site [60–62]. The applicability
domain (AD) of a QSAR method describes the model limitations with relates to its
structural subspace and response space [63]. The different techniques used to find
out AD are given in Table 6 [64].

6 Open-Source Software for QSAR Modelling

Some open-source software’s utilised for calculation of descriptors and quantitative
structure activity modelling are given in Table 7.

7 Conclusion

The accomplishment of drug discovery mainly based on the utilisation of various
kind of SAR techniques. QSAR study was initially developed by Corwin Hansch
and his colleagues about more than 55 years ago. Over the years, there is a lot of
growth in QSAR field such as various new types of algorithm and techniques. In
spite of certain drawbacks, the QSAR concept remains as one of the active areas in
drug design development and discovery. The disadvantages and faults in QSAR are
continuously being recognised, resolved, and improved by researchers to develop a
more robust QSAR model. The OECD standards and principles in QSAR modelling
will help the research community to develop good-fit, reliable, robust, and predictive
QSAR models in drug design and discovery.
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Table 7 Resources and software for performing QSAR modelling

Software/Web server References

Open-source descriptor calculation software CDK [65, 66]

PaDEL [67, 68]

RCPI [69]

Chemical
Descriptors
Library (CDL)

[70]

ChemoPy [71]

Babel [72]

MORDRED [73]

RDkit [74]

Software for performing QSAR modelling AutoWeka [75]

AZOrange [76]

CDK-Taverna [77]

CHARMMing [78]

ChemBench [79]

ChemMine [80]

CORAL [81]

DMax Chemistry
Assistant

[82]

OCHEM [83]

OCED QSAR
Toolbox

[84]

PASS Online [85]

QSARINS [86]

QSAR Workbench [87]

Toxtree [88]

LQTAgrid [89]

QSAR-Co-X [90]

DTC-QSAR [91]

DPubChem [92]

BioPPSy [93]
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Abstract High resolution Light Detection and Ranging (LiDAR)-derived Digital
Elevation Models (DEMs) have significantly enhanced hydrological modeling and
agricultural planning. However, it is important to accurately simulate the landscape
flow network by modifying the LiDAR derived DEM. Hydro-conditioning identi-
fies false pools and depressions and places breach lines to ensure continuous flow
through the surfaces such as bridges, culverts, and railroads. This study explores the
variations in the criteria namely flow network, impeded flows, depression etc. which
determine the finest locations of best management practices using watershedmodels.
Study compares different levels of hydro-conditioned DEMs for the PlumCreek sub-
watershed, Minnesota. Results indicate that both manual and automated ‘hDEMs’
facilitate field scale planning and practice siting to different degrees. Outcomes help
in planning cost-effective precision agriculture activities.
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1 Introduction

Simulation and modeling of hydrology across the landscape is pivotal for any water-
shed modeling [1]. The transport and fate of the pollutants in the agricultural water-
sheds is very much dependent on the proper hydrologic simulation [2, 3]. Success
of robust watershed models is a function of usage of high-resolution LiDAR based
Digital ElevationModels [4, 5]. Recently, hydrologic modelers observed that despite
the availability of high-resolution LiDAR images of digital elevation models, it is a
challenge for LiDAR sensors to capture the hydrologic processes happening under
the earth’s surfaces like (bridges, railroads, culverts, etc.). As a result, flow direc-
tion/accumulation network generated using such a DEM is not simulating the flow
with accuracy [6, 7].

Modelers and planners are spending technical and economic resources toward a
new technology namely hydro-conditioning (hydro-enforcement) which is capable
of modifying the existing LiDAR derived DEM to accurately map the flow of water
under or through the various features on the earth surfaces [8]. Without hydro-
enforcement, natural flow of water is obstructed in the DEM and roads would appear
as dams and there will be false pooling on the upstream side. Such faulty representa-
tion has a detrimental effect on the outputs of the watershed models which use these
un-hydro conditioned DEMs [9]. These days, watershedmodels play a critical role in
estimating the optimal locations of BMPs in the agricultural field. To obtain accurate
outcomes at a field-scale, hydro-conditioning is required as it performs a thorough
terrain analysis, accurate calculations of runoff parameters. Ultimately, stream flow
network is simulated to replicate landscape hydrology with least errors.

There are different levels of hydro-conditioning depending on the available time,
capital and expertise. It also depends on the goals of a watershed planning and
management committee. Broadly these are termed as manual and automated hydro-
conditioning. In this study, we try to assess the impact of using manually and auto-
matically generated hydro-conditioned DEMs on the criteria such as stream flow
network, impeded/false flows, boundaries of the catchments, and true/false depres-
sions. All these criteria are used by a conservation precision technologies or water-
shed models such as Agricultura Conservation Planning Framework (ACPF), Prior-
itize Target and Measure Application [1, 10]. A case of Plum creek watershed in
Minnesota, USA, has been demonstrated.

2 Manual and Automated Hydro-Conditioning Process

Hydro-conditioning demands extensive knowledge of watershed characteristics as
well as technical andmodeling skills.Moreover, it is an expensive process aswemove
toward better accuracy. The level of accuracy and detail in the hydro-conditioning
depends on the purpose and specific needs of the watershed committee and decision
makers [7]. In this study, we will try to understand that how manually (HEI, 2016)
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and automatically Gelder [6] generated hydro-conditioned DEMs affect the flow
network of a watershed. The detailed process of generating these DEMs is given in
literature [6, 8]. Tables 1 and 2 highlight the major utilities and difference of these
DEMs.

Table 1 Utilities manual and automated hydro-conditioned DEMs
Watershed 
area

Flow and load routing 
for field scale BMP 
siting, preliminary 
BMP design 

Flow and 
load routing 
at field scale 
BMP siting

Flow and 
load 
routing at 
watershed 
scale + 
Lake 
analysis

Flow and 
load 
routing at 
watershed 
scale

Delineating 
watershed+ 
Basic 
terrain 
analysis

Single field 
(≤ 40 acres)

Public Land 
Survey 
System (40 
acres to 1 sq. 
miles)

Planning and implementation at field scale-
Generated using manual process (HE, 2016)

Sub-
watershed (1 
to 50 sq. 
miles)

Planning, especially for Daily 
Erosion Project - Generated using 
automated process (Gelder, 2015)

Major 
watershed (> 
50 sq. miles)

Table 2 Description of manual and automated hydro-conditioned DEMs

Type of hydro-conditioning Description

Generated using automated process (Gelder
2015)

Pit-filling and Hole punching done
Impediments resulting from intersections of
perennial watercourse crossings and major river
conveyance landforms are removed from the
DEM
Impediments associated with DNR mapped
watercourses are removed from the hDEM in a
watershed of interest
Automated code is written to identify true
depressions

Generated using manual process (HEI 2016) In addition to automated corrections,
All impediments affecting modeled flow and
proper flow path develop are removed from the
hDEM throughout a watershed of interest. In
addition, it is ensured that ‘true depressions’ are
maintained in the DEM
Manual verification is done
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3 Results

Purpose of both manual and automated hDEM is to identify and accurately represent
the impeded flows, true depressions, and flow network. These parameters are neces-
sary for delineation of BMP sites. Adequate simulation and modeling of hydrology
(flow routing) is a function of algorithm used for identification of impeded flows and
true/false depressions. Impeded flows are usually observed at the obstructions (such
as roads), which create inaccurate flow paths (ponding effect and spilling over-flow).
Using the manual and automated DEMs, impeded flows are generated in ArcGIS
module (Fig. 1) for Plum creek watershed in Minnesota. Figure 1 shows that manual
‘hDEM’ has comparatively lesser number of impeded flows as compared to auto-
mated one. This is because there are optimum number of field-verified cut lines
placed in manual hydro-enforcement. Moreover, automated hDEM also ensures that
true depressions on the landscape are maintained in order to replicate the landscape
hydrology as accurately as possible. Figure 2 shows the variation in the number of
false depressions, which reduce with high-level enforcement and finally, ‘manual
hDEM’ represents only true depressions. The number of depressions reduce to 160
(manual hDEM) from 655 (automated hDEM), which shows a significant reduction
in false depressions (Table 3). It is also interesting to note that the maximum depth
of depressions in manual hDEM is 178 cm as compared to 285 cm for automated
hDEM. The total sum of depth of depressions also varied from 35,509 to 12,093 cm.

a. Automated ‘hDEM’ b. Manual ‘hDEM’ 

Fig. 1 Representation of impeded flows for automated and manual hydro-conditioning
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a. Automated ‘hDEM’ b. Manual ‘hDEM’ 

Fig. 2 Depressions in automated and manual hydro-conditioning

Table 3 Depressions
corresponding to
hydro-conditioning

Attribute Automated Manual

Count 655 160

Min depth (cm) 30 30

Max depth (cm) 285 178

Sum (cm) 35,509 12,093

These numbers give a clear indication to the watershed modelers that how hydro-
conditioning can have a significant impact on impeded flows and depressions and
thus, the flow network simulation.

Simulated hydrology (flow network) generated using automated and manual
hDEMs are represented in Fig. 3. Flow detailing as well as continuity significantly
varies with hydro-conditioning levels. The improved stream network in manual
hDEM is due to proper breaching of the impeded flows with breach lines to ensure
hydrologic connectivity, which is essential for generating catchments as well as for
siting BMPs especially riparian practices. Manual verification improves the flow
network interpretation. The total count of flow lines varies from 1741 (automated)
to 2090 (manual) due to placement of an optimal number of breach (cut/burn) lines
resulting in a total sum of 823,923.2 m of flow lines in a ‘manual hDEM’ (Table
4). Watershed models focus on siting BMPs such as saturated buffers and riparian
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Fig. 3 Flow network of automated (left) and manual (right) hydro-conditioned DEM

Table 4 Statistics related to
flow network based on
hydro-conditioning

Attribute Automated Manual

Count 1,741 2,090

Count/km2 6 7

Min length (m) 3 2.12

Max length (m) 2,495.42 2,730.57

Sum (m) 711,927 823,923.2

functionswhich render ecological benefits alongwith enhanced denitrification. Thus,
accurate hydrologic representation is a key.

4 Conclusions

The study compares manual and automated hDEMs in terms of their ability in repli-
cating the landscape hydrology which is crucial for application of watershed models.
The results indicate that both hDEMs delineate hydrology with different accuracy;
however, manual hDEMs have an advantage as the DEM is continuously enhanced
based on manual field verification. On the other hand, automated hDEM has an auto-
matic code which can differentiate between true and false depressions with good
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accuracy. The study therefore proposes the integration of both technologies to have
better interpretation and simulation of landscape hydrology.
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Abstract This paper presents the development and assessment of a smoothing tech-
nique for the random properties of the matrix phase of a fibre-reinforced composite
as part of a multiscale reliability framework. Many sectors in the industry are using
fibre-reinforced composite materials, utilising their high stiffness-to-mass density
ratio. Still, many uncertainties occur in their properties because of their multiscale
build-up nature. Hence, structural reliability analysis can produce efficient designs,
but it requires an understanding of how all sources of uncertainty affect performance.
Among other approaches, the authors developed a multiscale surrogate-based frame-
work for reliability analysis, which uses large representative volume elements that
can correlate and propagate the effect of several uncertainties, including a spatial
variation of matrix properties. The framework uses a blur kernel to smooth matrix
properties. In this study, the effect of using the blur kernel filter and other larger filters
is examined in terms of their impact on the statistical properties of the matrix phase
and the overall stiffness reliability of an analytical laminate example. The developed
kernels proportionally reduce the standard deviation of the matrix property towards
a lower limit as they increase in size. It is also shown that the stiffness reliability of
the selected composite example (which includes the chosen parameters for laminate
configuration, loading type, material, and other uncertainties in the system) is not
affected by the use of the matrix smoothing technique.
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1 Introduction

Utilisation of composite materials in various industries is on the rise, replacing alloys
in many areas, benefiting from their higher stiffness-to-weight ratio. From a tech-
nical perspective, the multi-material build-up of fibre-reinforced materials permits
numerous uncertainties to occur across thematerial scales, which often is not the case
in homogeneous alloys [1–8]. Therefore, to design composites effectively, there is a
need to consider the effect of composite uncertainties and propagate their influence
between the material scales to clearly understand the overall composite properties.
This modelling strategy could lead to reliable designs and optimum use of the mate-
rial [9–12]. Monte Carlo simulation (MCS) can be used to achieve this probabilistic
design approach; inwhichMCS generates sets of randomuncertainties based on their
corresponding statistical data. The generated random variables are then propagated
through the material scales using homogenisation models to assess their influence
on the composite properties at the laminate or component scale. Homogenisation
methods are broadly divided into two categories, analytical and numerical. The last
is commonly used as it permits examining many design variables compared with
analytical methods that are often hindered by assumptions and limitations [12–14].

FEA-based homogenisation strategy requires defining a Representative Volume
Element (RVE).Using detailed and large-scale RVEs allow representingmany uncer-
tainties, including spatial variations. However, it can increase the computational cost
and limit the possibility of constructing a probabilistic analysis framework. There-
fore, to have a numerical framework capable of analysing many RVEs as part of
the MCS reliability analysis, efficient surrogate models are employed to replace
FEA simulationwith analytical approximations [14–16]. For example, previouswork
by the authors [12, 17, 18] established a probabilistic framework that use efficient
FEA-based surrogate models to calculate the stiffness properties of UD composite
laminates considering uncertainties at micro, meso, and laminate scales. This frame-
work can capture more uncertainties between the micro and laminate scale compared
with other methods as it developed an inclusive large representative volume element
(LRVE). The LRVE represents a larger section of uncertainties associating random
RVEs through several spatial correlation principles. The LRVE accounts for the
micro- and meso-scale uncertainties, including fibre stacking, uncertain fibre cross-
sectional areas, andmaterial properties of the fibre-matrix constituents. For the latter,
matrix phase within the composite is an uninterrupted media, unlike fibres. Conse-
quently, having sharp changes in its property values is unrealistic; Any change in its
property value should be gradual. However, few studies evaluating matrix property
variation at this scale are available to support this theory; One of which is a study by
Riaño et al. [19]; this study used atomic force microscopy (AFM) to determine the
thickness and the elastic modulus of the matrix–fibre interphase region, assuming the
rest of the matrix to be uniform. In the first 0.2 µm from the fibre/matrix interface,
the modulus showed an approximate decrease of 35% compared with the average
matrix modulus obtained within the scanned 1.0 µm frame.
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In authors’ previous work, an image processing concept was used to smooth
out the randomness of matrix material properties within the LRVE. In this study, the
influence of the property smoothing approach used in the LRVE is investigated using
different blur kernels and observing their effect on the statistical properties of the
matrix phase and the overall stiffness reliability of an analytical composite laminate
example. Although the developed kernels are not backed by experimental data, frame
size and kernel weights allow customisation if such data became available.

In Sect. 2 of this paper, the methodology of the study is explained. Then, Sect. 3
demonstrates anddiscusses applying the developedkernels to an analytical composite
laminate example. Finally, Sect. 4 highlights the key findings of the study.

2 Methodology

Assessing composite component reliability at a design point requires propagating the
influence of uncertainties across the component scales. To achieve this, the authors
have previously developed an efficient FEA-based multiscale probabilistic frame-
work that generates an offline library of probabilistic material properties [17]. This
probabilistic framework comprises of FEA-based, computationally efficient surro-
gate models, capable of capturing the effect of various multiscale uncertainties on the
homogenised elastic properties of continuous fibre-reinforced composites. It takes
the statistical information of uncertainties as an input and uses the LRVE that can
model spatial variation of uncertainties because of its size, compared with a single
RVE which contains only one or two fibres, as shown in Fig. 1. Computational effi-
ciency using the LRVE is achieved by employing a string of surrogate models trained
using a reduced number of FE data points. The data points are obtained using the peri-
odic RVE homogenisation method [20]. This approach makes it feasible to assess the

Fig. 1 The structure of homogenisation frameworks adopted to examinematrix property smoothing
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reliability accurately using MCS with a large amount of probabilistic homogenised
properties.

The spatial correlation of the RVEs that form the LRVE is considered in the
developed framework to precisely describe a larger portion of the material at the
meso scale by assembling defined number of micro-scale RVEs. Namely, fibres of
neighbouring RVEs are correlated with respect to their properties and geometric
arrangements. As for the matrix, the LRVE uses an image processing concept to
smooth out the matrix property randomness and avoid unrealistic jumps between
neighbouring RVEs. In our previous work, a 3 × 3 smoothing blur kernel was used
to smooth the random matrix stiffness properties of each RVE within the LRVE. In
this study, the effect of the blur kernel on computed reliability is investigated. The
configuration of the representative units’ and the different kernels developed in this
study are illustrated in the following sections.

2.1 Single Micro-Scale RVE

In the previous work [12], the reliability of composite laminates was computed using
homogenised stiffness properties of randomly generated RVEs, where no spatial
variation was considered for the uncertain parameters within a single lamina ply.
Thus, the properties of each lamina are derived from a single 1× 1 random RVE, see
Fig. 1a. This model is used in this study as a baseline to compare against the LRVE
model with different matrix blur kernels.

2.2 LRVE and Blur Kernels

Adopting LRVEs allows an inclusivematerial representation, describingmore uncer-
tainties between the micro and laminate scale. In this study, 8 × 8 LRVEs are used
with the following kernels:

1‧‧1kernel (without smoothing): The randomly generated matrix stiffness
properties are directly used without any filtering effect, see Eq. 1 and Fig. 2a.

1·1kernel = [1] (1)

3‧‧3kernel: Matrix material properties for an RVE (within the LRVE) are calcu-
lated as the average of the random matrix properties within a 3 × 3 grid centred on
the RVE, see Eq. 2. It is important to note that there is a need to generate additional
matrix random values surrounding the LRVE edges to populate the grid at all posi-
tions; hence, for an 8 × 8 LRVE, we start with a 10 × 10 grid of randomly generated
matrix material properties, see Fig. 2b.
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Fig. 2 The different sizes of blur kernels used in this study to smooth random matrix stiffness of
8 × 8 LRVEs
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3·3kernel = 1

9

⎡
⎣
1 1 1
1 1 1
1 1 1

⎤
⎦ (2)

5‧‧5kernel and7‧7kernel: These kernels work the same as the 3−3kernel, but
average the matrix material properties over a larger area: 5× 5 and 7× 7 RVE grids,
respectively, see Fig. 2c, d.

3 Example

The effect of using different matrix blur kernels is assessed using an analytical lami-
nate example. The laminate is made of symmetrically arranged set of four specially
orthotropic 0.5 mm thick laminas (see Fig. 3). For which, buckling stiffness relia-
bility is selected for the assessment. The properties of each lamina are obtained from
the randomRVEs and LRVEs. Thus, the classical lamination theory is used estimates
the laminate properties using four lamina stiffness properties in each MCS sample.
On top of material properties and geometry uncertainties within the micro and meso
scale, other uncertainties such as lamina ply thickness (t) and ply orientation (θp)
are considered as illustrated in Sect. 3.1.2.

The limit state function (LSF) calculations of the specially orthotropic laminate
configuration adopted are simplified as this laminate example only requires stiffness
components D11, D12, D22, and D66. Uncertainties are randomly generated using
MCS; these are then used to compute stiffness properties using the homogenisation
surrogate models. Dij stiffness terms along with the effect of laminate-scale uncer-
tainties are calculated with classical lamination theory [21, 22]. Finally, the LSF
for each randomly generated laminate is evaluated to assess failure probability as

Fig. 3 The selected buckling loading condition for a symmetrically specially orthotropic laminate
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serviceability limits are attained:Pf = P[g(X) ≤ 0], see Eq. 3 [23].

gb(X) = N − NLS = π2

⎡
⎢⎣
D11

[m
a

]2 + 2(D12 + 2D66)
[n
b

]2

+D22

[n
b

]4[ a
m

]2

⎤
⎥⎦ − NLS (3)

The above applies for a simply supported symmetrical specially orthotropic
laminate, where:

NLS : Buckling load along the width of the
laminate (155N/mm)

m, n: The number of half wavelengths at 0°
and 90°-direction, respectively, m = 2
and n = 1 for buckling

Dij: Laminate stiffness components a, b: Laminate length (100mm), and width
(50mm), respectively

3.1 Propagated Uncertainties

In this study, E-glass fibre-epoxy composite is selected as the material of the lami-
nate. Uncertainties for this composite material system are introduced within two
categories: the micro and meso scales, and laminate scale. These two categories
are briefly explained below, and their detailed implementation can be found in the
authors’ previous work [17].

3.1.1 Micro and Meso Scales Uncertainties

Material uncertainties: These uncertainties are represented by varying the stiffness
properties of each phase based on their statistical properties. For a single RVE, this
includes one matrix and five fibre sections (central fibre and four quarters), as shown
in Fig. 1a.

Fibre stacking and volume ratio uncertainties: The developed reliability frame-
work splits fibres into fixed and non-fixed fibres. RVEs’ four fibre corner quarters
represent the fixed fibres; in which these quarters remain in place and have the same
diameter to preserve connection with its neighbouring RVE. On the other hand, the
central non-fixed fibres can shift within the RVE to model stacking (r and θ ) and Vf

ratio uncertainties without violating RVE’s boundary periodicity.
In the case of the single RVE, designating material property uncertainties is

straightforward as each sample in the MCS uses a separate RVE. But in the case
of the LRVE, two types of correlations are used:
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Table 1 The material properties and their statistical information for the E-glass fibre-epoxy
composite

Property Mean/lower
limit

Distribution CoV/limits Categories

Fibre
(E-glass)

Em (GPa) 72.45 Normal 5% Micro and
Meso scalesvm (ratio) 0.25 Normal 5%

Fibre-volume
ratio Vf

0.52 Normal 5%

Fibre stacking
(r and θ)

RVE centre,
0o

Uniform r : 0–8%a, θ :
0°-360o

Matrix
(Epoxy)

E f (GPa) 4.0 Normal 5%

v f (ratio) 0.3 Normal 5%

Lamina ply thickness (t) 0.5 mm Normal 5% Laminate
scaleply orientation

(θp)
[0°/90 o]S Normal 5 o

a Percentage of the RVE edge length

Fibre phase properties: Neighbouring RVEs within each LRVE are correlated
by assigning the same fibre material property values to all adjacent fixed corner fibre,
forming a link between individual RVEs and their surroundings.

Matrix phase property uncertainties: The proposed blur kernels listed in
Sect. 2.2 are used to avoid having unrealistic sharp changes in matrix material
properties, as it is a continuous media.

3.1.2 Laminate Scale Uncertainties

This category of uncertainties is within the laminate scale; it includes uncertainty in
both ply thickness and ply orientation.

The properties and their associated statistical information for the example used
in this study are listed in Table 1, where the distributions are similar to those used in
previous studies [24–27].

3.2 Impact of Kernels on Statistical Distribution
of the Matrix Properties

Before examining the effect of using different matrix blur kernels on reliability, their
impact on the statistics of thematrix propertieswithin the LRVEs is investigated. This
is done by plotting the distribution of smoothed matrix stiffness values for 10,000
LRVEs (which sums to 640,000 RVEs, or data points for each kernel), as seen in
the shaded regions within Fig. 4. This data is also fitted with normal distribution
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Fig. 4 Distribution of 640,000 normalisedmatrix property data points and fitted normal distribution
curves

curves (the dotted lines in Fig. 4), showing that the data of all kernels follow normal
distributions. Yet, the standard deviation decreases as the size of the kernel increases,
which is expected as a larger number of samples are averaged within each grid,
reducing the variance around the mean matrix stiffness value of 4.0 GPa. However,
the data also shows that results for the 5−5kernel and 7−7kernal are almost the same,
with a coefficient of variation of approximately 1%. Thus, variance reduction as the
kernel size increases does not continue when the kernel is sufficiently large. This
suggests that, for an 8 × 8 LRVE, results will not be significantly affected if the
kernel is increased beyond a 5 × 5 grid. This is investigated further below.

3.3 Impact of Kernels on Reliability

The buckling reliability of the specially orthotropic laminate examplewith uncertain-
ties illustrated in Table 1 is assessed employing the developed mutliscale framework
[17] for five different configurations of material representative units: Single RVE,
8 × 8 LRVE with 1‧1kernel, 3‧3kernel, 5‧5kernel, and 7‧7kernel. The amount of
MCS samples required (S) for each of the five configurations is calculated applying
the relation shown in Eq. 4 [28], aiming for an initial probability of failure of P

′
f =

10–3, with a confidence level (α) of 80%, and maximum allowable error (δPf ) of
10%.
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Fig. 5 Probability of failure assessment for the specially orthotropic laminate when using different
sized blur kernels

S =
P

′
f

(
1 − P

′
f

)

δ2Pf

Z2
1+α
2

= 10−3
(
1 − 10−3

)
(
1 ∗ 10−4

)2 (1.28)2

≈ 160, 000 (4)

Because failure probability is a binomial distribution and nPf > 5, it is acceptable
to use Z to estimate the inverse of the standard normal cumulative distribution for
the value (1 + α)/2.

The first observation of the reliability results in Fig. 5 is the fact that the single
RVE has a higher Pf compared with the 8 × 8 LRVEs. It is understood that the
decrease in the Pf is because homogenised properties at the lamina-scale of the
larger representative elements have less variation, consequently reducing the odds of
allocating exceptionally low stiffness values to the lamina and trigger failure. As for
the use of differentmatrix normalisation kernels within the selected 8× 8 LRVE size,
Pf results indicate that there is no clear impact on the reliability in this example, with
all four models computing a Pf of approximately 2.3 × 10–3. This can be explained
asmatrix stiffness property uncertainty is just one ofmany uncertainties in the system
(see Table 1), and the fact that the blur kernel only affects the matrix stiffness in the
LRVE, which is propagated to the laminate scale, along with the effects of all other
uncertainties. Therefore, even though using a larger blur kernel reduces variance
in the matrix stiffness properties (as seen in Fig. 4), it does not significantly affect
the laminate scale when computing reliability. This suggests that, at least for some
problems, the computed reliability is not sensitive to the choice of blur kernel size,
or whether a blur kernel is even used.
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4 Conclusions and Future Work

An efficient FEA-based multiscale reliability framework for continuous fibre-
reinforced composites was previously developed by the authors. The framework uses
a blur kernel to smooth matrix properties in the meso-scale LRVE to avoid unreal-
istic sharp changes as random property values are generated. Thus, the neighbouring
RVEs become spatially correlated, offering a more realistic representation because
the matrix phase is a continuous media. In previous work, the framework used a
blur kernel with a 3 × 3 grid to demonstrate the possibility of implementing matrix
property correlation. In this study, the influence of matrix property smoothing is
further investigated using different blur kernel sizes in addition to the developed
3‧3kernel; these are 5‧5kernel and 7‧7kernel. Furthermore, a 1‧1kernel (LRVE
without matrix property smoothing) and a single RVE representation are used to
establish a comparison baseline.

The results show that although using larger kernels decreases the standard devi-
ation of the smoothed matrix properties, the probability of failure remains largely
unaffectedbykernel choice, although there is a clear differencebetweenusing a single
RVE and an 8 × 8 LRVE. Hence, neglecting matrix smoothing or using a 3‧3kernel
remains valid. Nevertheless, it is essential to note that this conclusion reflects the
impact seen for the selected analytical example and its parameters. Adopting another
example or varying statistical information of the uncertainties can influence the sensi-
tivity of the blur kernels. Hence, future work can investigate the effect and sensitivity
of filter sizes on the reliability of complex numerical examples and correlate the use
of blur frame size with either experimental-based matrix property data; or output
from numerical simulations that consider the effect of fibre thermal properties on the
cure (or crystallisation in the case of thermoplastic composites) of surrounding resin
phase, and hence, effect on matrix mechanical properties.
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Understanding the Binding Affinity
and Specificity of miRNAs: A Molecular
Dynamics Study

Swarnima Kushwaha, Ayushi Mandloi, and Shibasish Chowdhury

Abstract MicroRNAs (miRNA) are endogenously produced small (21–27
nucleotides long) non-codingRNAmolecules that can play post-transcriptional regu-
lation of gene expression either by cleavage of the mRNA strand or by translational
repression. However, recognizing mRNA targets by miRNAs is not clearly under-
stood. It is observed that one miRNA molecule can target hundreds of different
mRNA sites and different miRNAs can target a single mRNA site. The majority of
miRNAtarget prediction algorithmsmainly consider the complementarity on the seed
region of miRNA for their target selection. To explore the role of different regions
of miRNA for target selection, explicit solvent unrestrained molecular dynamics
simulation has been performed on miRNA-RNA duplex. Our studies revealed that
seed region complementary base pairing is sufficient to maintain the integrity of
the duplex, whereas bulge and 3′ end regions are highly flexible which can interact
with target mRNA through non-canonical hydrogen bonds and regulate translational
repression.

Keywords miRNA · RNA duplex structure · Molecular dynamics simulation ·
Hydrogen bonds

1 Introduction

Small non-coding RNAs, called microRNAs (miRNAs), are 21–27 nucleotides long
that carry out and regulate various biological processes. Over the years, researchers
have found this small, non-coding RNAs have crucial role in eukaryotic gene expres-
sionby their ability to degrade anmRNAor suppress translation [1]. PrimarymiRNAs
are generated from genes which are then cleaved by the microprocessor complex
giving rise to precursor-miRNAs. These pre-miRNAs are then interactedwith endori-
bonuclease DICER to formmature miRNAs [2]. Furthermore, these mature miRNAs
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act onmRNA to degrade or silence their expression with the help of an RNA-induced
silencing complex (RISC). The potent role of target recognition is played by the 5’
end of miRNA, also known as the “seed” region. This core element consists of
2–7 nucleotides and forms central components of many computer-based miRNA
target prediction tools. Target selection in RNA silencing is governed by this “seed
sequence” at the 5’ end of the guide strand, with overall binding free energy (�G)
values of this miRNA-mRNA interaction. Though the bulge (mid) and 3′ region
of the miRNA is inconsequential it can attune this activity in certain unforeseen
circumstances. Currently, a large number of miRNA target prediction tools like
miRanda, TargetScan, DIANA-microT, MirTarget2, SVMicrO, PITA, and RNAhy-
brid are available, which majorly utilizes information regarding seed pairing, evolu-
tionary conservation of miRNA sequences among different species, the free energy
of miRNA target binding, and miRNA site accessibility to predict mRNA targets [3].
However, various studies also indicated that the interaction of miRNA with target
mRNAmight not be the sole determining factor for gene regulation as miRNA local-
ization, target mRNA concentration, and many protein factors associated with RISC
are involved in this process [4]. Interestingly, it was shown that mismatches within
the seed region increase the specificity and efficiency of miRNA-guided silencing
by extensive complementarity on the non-seed regions [5, 6]. In this regard, G:U
wobble pairing may play a crucial role in target selection [7].

Expression levels of both the mRNA and the miRNA and their probable matching
binding sites on other mRNAs need to be considered to understand the endoge-
nous regulation of mRNA by the miRNA. Various experimental studies, including
comparative genomics and high-throughput experimental studies, indicated that a
miRNA binds to hundreds of sites on mRNA and a particular gene can be regulated
by hundreds of miRNAs [8]. It has also been noticed that most of the predicted
miRNA targets undergo changes at the mRNA and protein levels when the miRNA
expression is disturbed. Similarly, different miRNAs have an unpredictable effect
on target gene expression. There are approximately 200–255 miRNAs in the human
genome [9], and in terms of their expression levels, some miRNAs are expressed
more than 1000 copies per cell [10]. Although miRNA-regulated gene expression is
now well established, exact identification of miRNA target is still elusive as miRNA
can bind multiple sites within an mRNA target that cannot be easily studied exper-
imentally [11–13]. Hence, computational methods including molecular dynamics
(MD) simulation for miRNA target prediction become critical. Due to the dynamics
and polymorphic nature of the miRNA target complex, MD simulation becomes
very useful in accurately predicting the stability of the miRNA target complex with
precise, detailed knowledge of interaction [14].

hsa-miR-7-5p is one of the widely studied miRNAs with various roles in multiple
cancers, including negative regulation of sprouting angiogenesis and the inhibition of
the EGF receptor and the Akt pathway [15, 16]. It also inhibits colorectal cancer cell
proliferation and induces apoptosis by targeting XRCC2 [17]. A miRTarBase search
has resulted in a total of 579 mRNA targets of hsa-miR-7-5p [18]. To understand the
molecular basis of target selection of miRNA, we have selected two mRNA targets
of hsa-miR-7-5p within PAK1 (serine/threonine-protein kinase) gene. This study
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Fig. 1 Schematic diagram representing potential hydrogen bonding scheme and basepair interac-
tion scheme of has-miR-7-5p (miRNA) with (a) mRNA target 1 (b) mRNA target 2. The bases
within the seed region (2–8 nucleotides of miRNA) and bulge region (9–12) are shown in pink and
green colors, respectively. The canonical Watson–Crick (WC) hydrogen bond scheme was shown
by solid line within the base pair, while a possible hydrogen bonding scheme within G:U wobble
pair is shown in the dotted line

evaluated the stability and interaction pattern of hsa-miR-7-5p with its two mRNA
targets using MD simulation. The role of a different region of miRNA (seed, bulge,
and 3′ end) on mRNA recognition is also explored through MD simulation.

2 Materials and Methods

2.1 Initial Duplex Model

The initial model of has-miR-7-5p (5′-UGGAAGACUAGUGAUUUUGUUGUU-
3′) and its both targets mRNA (5′-UAAAUAAAUGUUUCUAGUCUUCCG-3′ and
5′-UUUAU AACAUUGAGAGGUUUUCUA-3′) were built using RNAComposer
server [19]. The starting A-RNA duplex models of miRNA with both the mRNA
targets were modeled using the experimentally verified interaction pattern [18]. The
hydrogen bonding scheme and basepair interaction scheme of has-miR-7-5p with
both the targets are shown in Fig. 1a, b. The initial model of miRNA-target-1 duplex
consists of a total of 51 hydrogen bonds between two strands, whereas, initially, 56
hydrogen bonds are observed for miRNA-target-2 duplex. In the subsequent discus-
sion, themiRNA-target-1 duplexwill be termed as target 1,while themiRNA-target-2
duplex will be designated as target 2.

2.2 Molecular Dynamics Simulation

The structural fluctuations and stability of the miRNA-mRNA complex were
analyzed by time-dependent molecular dynamics (MD) simulation studies. Each
miRNA-mRNA complex was simulated in three steps—generation of the simula-
tion environment, equilibration phase, and unrestrained production simulation. The
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tleap module of AMBER 18 [20] was used to neutralize the charge of the initial
miRNA-mRNA A-RNA duplex model by placing a total of 46 Na+ ions at posi-
tions with high electronegative potential. miRNA-mRNA complex and counterions
were then placed in a pre-equilibrated octahedron box of TIP3P water molecules.
The periodic box of water was extended to a distance of 10 Å from RNA duplex
and counterions. The prepared system was minimized in two stages. In the first
stage, solvent and ions were subjected to 5000 steps (1000 cycles of steepest descent
followed by 4000 cycles of conjugate gradient minimization) of minimization while
RNA duplex was constrained. In the next stage, entire system was subjected to 5000
cycles of unconstrained minimization. Molecular dynamics was performed with the
SANDER module of the AMBER 18 program using the all-atom RNA ff99OL3
force field [21]. The particle mesh Ewald method (PME) was used for the calcula-
tion of electrostatic interactions. Periodic boundary conditions were imposed in all
directions. The long-range electrostatic interactions have been calculatedwithout any
truncation, while a 12 Å cutoff was applied to Lennard–Jones interactions. SHAKE
algorithm [22] was applied to constrain the bond involving hydrogens. The tempera-
ture was controlled at 300K using Langevin dynamics with the collision frequency 1.
A time step of 2 fswas used and the structureswere saved at every 10ps interval for the
entire duration of the MD run. Equilibrium simulation was comprised of the solute’s
restrained heating phase (temperature was increased from 0 to 300 K within 50 ps)
of constant NVT simulation with restraints on the RNA atoms, constant NPT simu-
lation (150 ps) with restraints on RNA atoms, and unrestrained simulation (300 ps).
The unrestrained 250 ns simulation with NPT ensembles at 300 K was considered
as production simulation.

2.3 MD Trajectory and Structural Analysis

MD trajectories were analyzed by using the PTRAJ module of AMBER 18. The
MD average structures are initially obtained from the coordinates saved between
290 and 300 ns. These structures were first solvated and charges are neutralized with
TIP3P water molecules and Na+ ions, respectively. The solvated structures were then
subjected to 10,000 cycles of unrestraint energyminimization. The energyminimized
MD average structures were considered as MD average structures. RNA duplex
structures were visualized in VMD [23] and structural parameters were calculated
using the program NUPARM [24]. The binding free energy for the association of
miRNAs with its target was calculated using the MMPBSA module of AMBER 18
[25].
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3 Results and Discussion

3.1 Stability of miRNA-mRNA Interaction

To study the interaction, specificity, and structural stability of has-miR-7-5pmolecule
with its mRNA (PAK1) targets, we performed unrestrained 300 ns explicit solvent
molecular dynamics simulations of has-miR-7-5p with its two mRNA targets (target
1 and target 2). The temperature, density, and potential energy plots (Fig. 2) show
that the simulated systems are equilibrated well within 500 ps.

The root mean square (RMS) deviation values for the initial energy minimized
structure was calculated for all the heavy atoms in both the RNA duplex and for the
seed, bulge, and 3′ end region separately (shown in Fig. 3).

It is observed that during the simulation, the average RMS deviation of target 1
(5.88Å) from its initial model as well as RMSDfluctuation of target 1 complex (stan-
dard deviation of 1.41) is more than that of target 2 (5.77 Å and 1.28, respectively),
which is mainly due to the structural alteration in the 3′ end of the target 1 complex.
However, the average RMS deviation in the bulge region of target 2 (3.63Å) is signif-
icantly higher than that of target 1 (1.48 Å). RMSD plot (Fig. 3) suggests that 3′ end
of target 1 was altered considerably from its initial model during the simulation,
whereas the bulge region of target 2 was changed significantly from its initial model.
The structural fluctuation and deviation from the initial models are marginal for the

Fig. 2 System temperature (in Kelvin), density (g/ml), and total potential energy (in kcal/mol) are
shown during the entire 300 ns of MD simulation of target 1 (first column) and target 2 (second
column). The logarithm scale of time (in picosecond) is plotted along the x-axis
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Fig. 3 Root mean square deviation (RMSD) profiles during the MD simulation of target 1 and
target 2 with respect to their respective initial energy minimized structures. The four plots in each
figure correspond to the RMSD for all atoms (black lines), the seed region (pink lines), bulge region
(blue lines) and 3′ end (green lines) region

seed regions of both the targets as perfect complementarity was present within seed
regions. Nevertheless, the compactness of both RNA duplex was retained during the
entire simulation as the radius of gyration of both RNA duplexes remains close to
their initial values (Fig. 4), indicating the robustness of the miRNA-mRNA duplex.

The superimposition of initial energy minimized miRNA-mRNA duplex models
andMDaverage structures (Fig. 5a, b) during the last 10 ns of dynamics also confirms
the result obtained from RMS analysis. It is also noticed that the RNA backbone of
3′ end of MD average target 1 structure is less smooth than that of the remaining
duplex indicating that 3′ end of the duplex molecule undergoes larger fluctuation
during the simulation and it is possibly more flexible (Fig. 5a).
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Fig. 4 Trajectories showing the radius of gyration of target 1 and target 2. The average radius of
gyration of both the targets during the last 10 ns of the simulation was very close to each other and
was 18.9 Å and 19.0 Å, respectively
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Fig. 5 Energy minimized initial RNA duplex (in blue lines) is shown superimposed on energy
minimized MD average structures (in red lines) of (a) target 1 and (b) target 2. The RNA backbone
is shown by tube. The 3′ end of mRNA target is labeled in both the figures

On the other hand, the bulge region of target 2 is more flexible than other parts of
the RNA duplex. It is observed that the RNA backbone of the bulge region of theMD
average structure significantly deviated from that of the initial model (Fig. 5b). The
MMPBSA-based binding free energy of both the miRNA-mRNA complexes was
calculated during MD simulation using the snapshots saved between 100 and 300 ns
of simulation. The binding free energy of target 1 was − 15.56 kcal/mol, which
is almost similar to the average binding free energy of 171 experimentally tested
miRNA-mRNA interactions in Drosophila melanogaster (−15.6 kcal/mol) [26]. In
comparison, the binding free energy of target 2 was 4.33 kcal/mol indicating that the
interaction of miRNA with target 1 possibly produces effective gene silencing as the
complex of miRNA with target 1 is about 20 kcal/mol more stable than that of target
2.

3.2 Structural Parameters of RNA Duplex

The RNA backbone geometry of initial energy minimized and MD averaged duplex
of both the targets are analyzed and tabulated in Table 1.
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Table 1 Backbone torsion angles, the glycosidic torsion angle χ, and the ribose sugar ring pseu-
dorotation phase angle P values for the A-RNA fiber model [27] and initial as well as MD average
structure of both target 1 and target 2 are tabulated. The values are averaged over all residues in a
duplex. The standard deviation values are given within parentheses. All values are in degree (°)

– A-RNA Target 1 Target 2

– – Initial MD average Initial MD average

α −62 −98 (39) −85 (31) −100 (44) − 107 (63)

β 180 171 (20) 174 (8) 167 (33) 173 (8)

γ 47 79 (34) 69 (17) 88 (47) 65 (9)

δ 83 89 (16) 82 (10) 87 (16) 87 (21)

ε −151 − 155 (26) −160 (14) − 161 (26) − 161 (25)

ζ −74 −83 (53) − 73 (35) −92 (70) − 107 (88)

χ −166 −152 (29) − 154 (23) − 144 (20) −150 (27)

P 13 27 (44) 26 (24) 21 (41) 28 (53)

It is observed that backbone conformation of majority of nucleotides in MD
averaged target 1 adopted canonical A-RNA conformation [27] with alpha (α), beta
(β), gamma (γ), delta (δ), epsilon (ε), and zeta (ζ) values are in gauche− (g−), trans
(t), gauche+ (g+), gauche+ (g+) trans (t), and gauche− (g−) region, respectively.
Only ζ torsion angle of the first nucleotide of RNA target and α and γ torsion angles
of the second residue of RNA target are in g+, g+, and t region, respectively. The
backbone geometry of target 1 becomes more uniform during the MD simulation
as the standard deviation of torsion angles in the MD average structure is much
smaller than that of the initial model (Table 1). The glycosidic torsion angles of
MD average structure of target 1 remain in anti-orientation while the pseudorotation
phase angles (P) are around C3′-endo region. During the MD simulation, the RNA
overall backbone geometry of target 2 duplex also remains in canonical A-RNA
conformation [27]. However, in comparison to target 1, the backbone of target 2 is
less uniform as we observed that quite a few torsion angles adopted non-canonical
A-RNA conformation. For example, few α torsion angles are in the g+ or t region, δ
torsion angles are in the t region, and ζs are in the g+ region. Few ribose sugars are
moved from canonical C3′-endo sugar conformation to C4′-exo conformation.

The inter- and intra-basepair structural parameters were calculated for the MD
average structures of both the targets, and then comparedwith initial models and fiber
A-RNA duplex [27]. It is noticed that the seed region of both the targets maintained
the A-RNA helical geometry during the MD simulation and average local helical
structural parameters are very close to the fiber RNA model (Table 2).

However, in comparison to target 1, the variation of structural parameters like
“Inclination,” “Tip,” “Twist,” “dx,” and “dz” is larger in target 2 (as seen fromstandard
deviation values in Table 2), indicating that seed region of target 1 possibly more
firmly held through hydrogen bonds. A similar trend is also observed in the case
of intra-basepair parameters like “Propeller twist,” “Buckle,” and “Opening.” Local
step parameters within the seed regions are also close to the fiber RNA structure.
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The “Slide” value is slightly smaller in the fiber model than that of the MD average
structures. Since ample mismatches are present within the bulge and 3′ end region
of both the targets, local helical, intra-basepair, and local step parameters within
those regions have substantially deviated from structural parameters of canonical
A-RNA fiber structure. However, when compared with target 1, deviation from the
fiber model is more in the bulge region of target 2, whereas 3′ end of target 1 is more
deviated from 3′ end region of target 2 (Table 2). This observation reinforced that 3′
end region of target 1 and bulge region of target 2 are more flexible.

3.3 Hydrogen Bonding Pattern

The hydrogen bonding pattern and its flexibility were monitored throughout the MD
simulation. It is noticed that for both the targets, all the canonical Watson–Crick
hydrogen bonds within the seed region were retained during the entire length of
simulation to provide the required integrity of the RNA duplex. Interestingly, in the
case of target 2, even the less favorable G:U pairing within the seed region retains
its hydrogen bonds with occasional deformation (Fig. 6a, b).

However, alteration in hydrogen bond patterns is observed in both bulge and 3′
end region of both the duplexes. In the case of target 1, all the bases within the bulge
region were hydrogen bonded. Interestingly, a U:U base pair was stabilized by two
hydrogen bonds (Fig. 7a). However, during the simulation, a translational movement
of uracil bases altered the hydrogen bonding patterns within the U:U pair (Fig. 7b).
This alteration of hydrogen bonding distance was monitored during the simulation,
which is shown in Fig. 7c.

On the contrary, we did not observe any stable hydrogen-bonded pairing between
RNA bases in the bulge region of target 2. During the simulation, few transient
hydrogen bonds are formed among few bases, making the bulge region extremely
flexible. Despite having a larger number of canonical A:U base pairs (with 6 A:U
basepair in total) within the 3′ region, in comparison with target 2, target 1 suffered
larger deformation during simulation, which is mainly because of the formation of a
larger number of G:U wobble pairs within the 3′-end of target 2. Few of these G:U
pairs were even stabilized by two hydrogen bonds (Fig. 8).

Trajectory analysis has revealed that, on average, 39.6 hydrogen bonds were
present within target 1, whereas 40 hydrogen bonds were observed within target
2, indicating that the number of hydrogen bonds in these structures may not be a
deciding factor for their relative stability.

4 Conclusion

Present MD simulations explore the interaction patterns of miRNA-mRNA
complexes, which are crucial for their stability. Our simulation data indicated that
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a

b

Fig. 6 (a) Trajectories showing the distances between N1 (G6) and O2 (U42) and O6 (G6) and N3
(U42) in target 2. Time (in picosecond) is along the x-axis and distance (in Å) is along the y-axis.
(b) Hydrogen bonding scheme of G6:U42 pair in energy minimized MD average structure of target
2 is shown. The dotted line indicates hydrogen bonding between N1-H1–O2 and O6–H3-N3

the bulge (mid) and 3′ end regions of the duplex are more flexible. Non-canonical
hydrogen bonds, including G:U wobble pairs, are frequently formed within these
regions, whereas seed regions are relatively rigid with stable hydrogen-bonded base
pairing. G:U pairings are found to be critical to the stability of the duplex. Non-seed
parts are possibly playing a critical role in alternative target selection.
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Fig. 7 Hydrogen bonding scheme of U12:U36 pair in (a) initial energy minimized target 1.
The dotted line indicates hydrogen bonding between O2(U12)–-H3-N3(U36) and N3-H3(U12)–-
O4(U36) (b) energy minimizedMD average structure of target 1 is shown. The dotted line indicates
hydrogen bonding between N3-H3(U12) –-O2(U36) and O4(U12) –-H3-N3(U36) (c) Trajectories
showing the distances between N3 (U12) and O4 (U36), O2 (U12) and N3 (U36), N3 (U12) and
O2 (36), O4 (U12) and N3 (U36) in target 1. Time (in picosecond) is along the x-axis and distance
(in Å) is along the y-axis
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Fig. 8 Hydrogen bonding scheme of a representative G:U wobble base pairing is shown for energy
minimized MD average target 2 structure. Dotted lines indicate the hydrogen bond between atoms
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