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Abstract This chapter presents a heuristic-based technique for solving the optimal
network reconfiguration (ONR) in a radial distribution system (RDS) using the
fuzzy-based multi-objective methodology. Minimization of real power losses and
deviation of nodes voltage is considered as the multiple objectives in this work and
they are modeled with fuzzy sets. The developed algorithm determines the optimal
reconfiguration of feeders with the minimum number of tie-line switch operations.
This work focuses on different combinations of ONR along with renewable-based
distributed generation (DG) units, shunt capacitors, and electric vehicle charging
stations (EVCSs). The load flow analysis implemented in this chapter is based on
an iterative approach of the receiving end voltage of RDS. The effectiveness of the
proposed heuristic-based methodology has been implemented on the IEEE 69 bus
RDS.
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Nomenclature

NR Network reconfiguration
DG Distributed generation
DSLF Distribution system load flow
RDS Radial distribution system
EVs Electric vehicles
DERs Distributed energy resources
PEVs Plugin electric vehicles
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BFS Backward forward sweep
LIM Load impedance matrix
OFR Optimal feeder reconfiguration
ONR Optimal network reconfiguration
Nc

EV , N
d
EV Number of EVs charging and discharging

PG2V , PV 2G Active powers from vehicle-to-grid and grid-to-vehicle
ηc, ηd Charging and discharging efficiencies
Rc, Rd Charging and discharging rates
Ntie Number of tie-line switches

1 Introduction

The distribution system plays a crucial role among the other components of the
electrical power system that is generation and transmission. The power system is
becoming more and more complex with the increasing demand. In developing coun-
tries, power generation is usually insufficient to meet the increasing load demand.
Therefore, it is necessary to reduce the total losses in the network of which the
major part is contributed by the distribution system. The power industry is adopting
deregulation to obtain the economic efficiency of power system operation. In the
deregulated scenario, both generation and distribution companies are dedicated to
their function [1], which avoids the monopoly and creates a competitive market envi-
ronment between them. This forces the power utilities to fulfill the energy demand
of the consumers at a reasonable cost.

Recently the electric vehicles (EVs) have gained importance due to the increasing
air pollution, climate change, and increased oil prices. Distributed energy resources
(DERs) such as EVs and distributed generation (DG) are growing as an opportunity
to decarbonize the energy system. The necessity of EVs is very clear with their
great potential to electrify the transportation sector [2]. The renewable-based DG
sources create uncertainty in the power distribution system. At the same time, they
also pose new technical challenges to the power system, which can be addressed
with increased flexibility. For better utilization of electrical energy, the optimization
of both distribution system operation and control becomes necessary. This can be
achieved through the automation of the distribution system. One of the methods
adopted is the remote control of the configuration by which losses in the branches
of the entire system can be minimized. The distribution system reconfiguration is
carried out by modifying the topological structure of the network by changing the
status of the sectionalizing and tie-line switches [3, 4]. And also, the optimal switch
operations may reduce losses in the system. Both of these are met by reconfiguration.
Hence, both the ONR and less number of switching operations will reduce the power
losses and they are met by the proposed ONR approach.

Most of the distribution systems generally operated in radial topology which
enables suitable voltage and power flow control, reduced fault current, and easier
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protection coordination schemes over the meshed system. Typically, the radial distri-
bution systems (RDSs) have two types of switches, namely, sectionalizing switches
which are usually open, and tie-line switches which are usually closed [5]. When the
fault occurs either on distributors or feeders, the tie-line switch allows some portion
of the faulted part to be restored promptly, thereby enhancing the reliability of the
system. According to Ref. [2], the power loss in the distribution network constitutes
70% of the total power loss. Therefore, the major cause of power interruption is due
to problems in the distribution system.

1.1 Related Work

There has been considerable interest in the recent past to develop algorithms for
feeder reconfiguration (FR) of the distribution systemunder various operating contin-
gencies. Usually, distribution companies try to keep active power losses below the
standard ones to gain profit rather than paying penalties. Thus the active power loss
minimization is a major concern of the distribution system researchers, which has
a significant impact on the maximum loadability of the network and hence, on the
power system stability particularly in overburdened networks. Some of the estab-
lished techniques to handle distribution systems under such a competitive scenario
include network reconfiguration (NR), DG allocation, shunt capacitor placement,
and simultaneous NR and DG allocation [6]. Hence, the existing distribution system
requires to be optimized to satisfy the demand in the most reliable, economical,
and environmentally friendlier way, while meeting the associated geographical or
operational constraints.

A high-performance nonlinear sliding mode controller has been proposed in Ref.
[7] for an EV charging system to improve the power factor (pf) to handle the unbal-
anced EV chargers and to compensate for voltage distortions. The super sense genetic
algorithm (SSGA) is applied in Ref. [8] to solve the problem of complex combina-
torial NR problem of RDSs. An approach for the optimal network rearrangement by
incorporating the plugin electric vehicles (PEVs) proposed in Ref. [9] is based on the
random programming model of the Monte Carlo simulation method. An approach
for optimal placement and sizing of electric vehicle charging stations (EVCSs) on
a distribution network is proposed in [10]. A fuzzy approach-based multi-objective
heuristic technique for ONR in distribution systems considering the DGs is proposed
in [11].A single-phase (1-ϕ) EVcharging coordination approachwith the three-phase
(3-ϕ) supply and chargers connected to the EVs with the less loaded phase of the
feeder at the starting of charging has been proposed in [12]. The optimal planning
approach of EVCSs and shunt capacitors is proposed in [13] and it is solved by using
the dragonfly algorithm (DA).

An equilibrium optimizer algorithm has been applied to the ONR problem in Ref.
[14] with loss reduction, voltage magnitude enhancement, and reliability indices
improvement objectives. An efficient technique for balanced and unbalanced RDSs
optimization by ONR and optimal capacitor placement has been proposed in [15].
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The ONR allows better penetration of renewable energy sources (RESs) in the RDS
and it is solved in Ref. [16] using the mixed particle swarm optimization (PSO) for
loss minimization and voltage profile enhancement improvement. Reference [17]
proposes optimal battery energy storage systems and allocation of PV-based DG
have been solved by the PSO algorithm.

1.2 Scope and Contributions

From the literature on ONR with loss minimization objective in the distribution
system, the research gap has been identified and explored the work area with current
research performance and its limitations. From the literature, it has been identified
that there is a requirement for solving the ONR problem by simultaneously installing
the renewable-based DG units, shunt capacitors, and EVCSs. Renewable-based DG
units, i.e., wind plants and solar PV farms have wind speed and solar insolation as
input parameters and they are highly intermittent. The distribution load flow (DLF)
used in this chapter is based on the iterative approach. The potential of this approach
has made the ONR approach is very powerful and can be applied to any size of the
distribution network. The ONR and DG allocation to strengthen the efficiency of
distribution systems based on power loss minimization and voltage deviation mini-
mization, as these are two major issues in the recent competitive power scenario, and
they are considered as the objective functions with the presence of shunt capacitors
and EVCSs. The simulation has occurred to both balanced as well as unbalanced
radial distribution systems (RDSs).

This chapter is organized as follows: The description of RDS, ONR, and the
summary of the literature work has been presented in Sect. 1. A brief description
of distribution load flow (DLF) analysis has been presented in Sect. 2. Section 3
describes the modeling of shunt capacitors and EVCSs in the distribution system.
Problem formulation is presented in Sect. 4. Section 5 describes the solutionmethod-
ology. Section 6 describes the results and discussion on the 69 bus test system. The
conclusions of this chapter have been summarized in Sect. 7.

2 Distribution Load Flow (DLF) Analysis

The analysis of DLF is basic but it is an essential mathematical tool for the analysis
of distribution systems in both the planning and operational stages. The primary aim
of the power flow analysis is to determine the magnitude and phase of steady-state
voltage at all buses, active and reactive power flows in each line, for a specified
loading. There are numerous power flow methods like Newton Raphson, Gauss-
Seidel, fast decoupled methods, and many more methods with a modification in
conventional ones. Due to the different properties of the distribution systems, these
methods are not suitable for load flow analysis [18]. Certain applications including
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distribution automation and power system optimization require efficient and robust
load flow solutions. Over the last few decades, these load flow methods have been
evolved in several different dimensions to handle both static and dynamic power
distribution system problems. Traditionally, the Backward Forward Sweep (BFS)
load flow techniques are applied to distribution systems and it has two-step analyses.
Other load flow methods include little modification into existing techniques for their
advantage over the older ones. In literature, several conventional methods have been
utilized to solve distribution systemproblems [19]. The open branches are electrically
represented with very high impedance. Whenever a branch is connected, then its
parameters are replaced with actual values (i.e., resistance and reactance values) and
vice versa when a branch is removed or disconnected. In other words, when a branch
exchange takes place, only those parameters will be modified accordingly for further
processing. This saves a lot of computation burden.

The proposed load flow solution presented in this chapter depends on an itera-
tive approach of the receiving end voltage of the RDS. It is successfully applied on
ill-conditioned RDS with consideration of realistic load [20]. In the first step, the
effective power at each bus is determined after forming adjacent branches and adja-
cent node matrices. A sparse technique is used to determine the branches and nodes
beyond a particular node. The detailed mathematical formulation is given below
considering the electrical equivalent of a branch connected between the nodes a and
b of RDS, and it is shown in Fig. 1.

The amount of current flowing from node a to node b can be expressed as [20],

Iab = |Va|∠δa − |Vb|∠δb

Rab + j Xab
= Pb − j Qb

(|Vb|∠δb)
∗ (1)

where active power (Pb) can be expressed in terms of active power load at a bus/node
i (PDi ) and active power loss of line k (Ploss,k). Mathematically, it can be expressed
as,

Pb =
Nb∑

i=1

PDi +
Nbr∑

k=1

Ploss,k (2)

where Nb shows all the buses beyond the bus b. Nbr shows all the branches beyond
the bus b. From Eq. (1), Pb can be expressed as [21],

Fig. 1 Electrical equivalent
of a typical distribution
system branch

PDb+jQDb

Iab

a
Pb+jQb

Rab+jXab

b

a aV δ∠ b bV δ∠

PDa+jQDa
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Pb = |Va||Vb| sin(δa − δb) + RabQb

Xab
(3)

From the above equation, the voltage magnitude (|Vb|) and angle (δb) at the end
of receiving node can be calculated by using,

|Vb| = −
[
|Va|

(
Rab

Xab
sin δ − cos δ

)]

+
[(

|Va| Rab

Xab
sin δ − cos δ

)2

− 4Qb

(
R2
ab

Xab
+ Xab

)]1/2

(4)

where δ = δa − δb.

δb = δa − tan−1

[
PbXab − QbRab

|Vb|2 + PbRab + QbXab

]
(5)

The active and reactive power losses are calculated by using Eq. (3), and they are
expressed as,

Ploss,ab =
(
P2
b + Q2

b

)
Rab

|Vb|2
(6)

Qloss,ab =
(
P2
b + Q2

b

)
Xab

|Vb|2
(7)

All such techniques work well with static systems where there is no change in
the topology of the network [22]. Again under critical loading conditions, there
is no guarantee of their convergence. Even in converged cases, these methods are
very inefficient in respect of storage requirements and solution speed. Moreover,
for dynamic systems, it is a challenge to arrange the line data as per the load flow
requirement and to maintain the radiality, and ensure connectivity. This necessitates
the utilization of improved data structure-based techniques.

3 Modeling of Shunt Capacitor and EVCS
in the Distribution System

The ever-growing population leads to a significant increment in customer load
demand. It leads to the placement of DGs in RDS being nearer to the load demand.
Among the various renewable-based DGs, solar PV and wind energy are widely used
as they are abundantly available. As there is a rapid growth in load demand, the line
losses in the distribution network are quite high and need to be taken care of [23].
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Various techniques have been implemented to RDSs apart from the DG penetration
to optimize the power losses in the RDS. This section presents the modeling of shunt
capacitors and EVCSs in the RDS.

3.1 Modeling of Shunt Capacitor

Shunt capacitors supply the amount of reactive power to the RDS at the bus where
they are connected. This in turn causes a reduction in reactive power flowing in the
line. If the reactive power and the system voltage are assumed to be constant, then
the losses are inversely proportional to the power factor, and hence improvement in
the power factor causes a reduction in system losses. The other benefits of installing
the shunt capacitors are voltage profile improvement, decrease in kVA loading, and
reduces system improvement cost/kVA of load supplied [24]. And also, to overcome
the compensation during the light load conditions, the automatic switching units can
be provided but this switching equipment is costly and this, in turn, will limit the
number of capacitors and thus the minimum capacity of the capacitor bank that has
to be provided on the feeder.

The placement of shunt capacitors in the DS reduces the system losses, enhances
the voltage profile, and also corrects the power factor. Figure 2 depicts the represen-
tation of the shunt capacitor in the DS. This capacitor injects reactive power (Qc)
into the system.

Amount of reactive power injected at bus b (Qinj,b) can be expressed by [25],

Qinj,b = QDb − Qc (8)

Now the active power loss with shunt capacitor (Pc
loss,ab) can be expressed as [25],

Pc
loss,ab =

(
P2
b + Q2

in j,b

)
Rab

|Vb|2
=

[
P2
b + (QDb − Qc)

2
]
Rab

|Vb|2
(9)

Pc
loss,ab =

(
P2
b + Q2

b

)
Rab

|Vb|2
+

(
Q2

c − 2QDbQc
)
Rab

|Vb|2
= Ploss,ab + �Pc

loss,ab (10)

Fig. 2 Representation of
shunt capacitor in the
distribution system

PDb+jQDb

Iab

a
Pb+jQb
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where�Pc
loss,ab is the reduction in power loss, i.e., active power loss before and after

placing the shunt capacitor [26], and it can be expressed from Eq. (10) as,

�Pc
loss,ab =

(
Q2

c − 2QDbQc
)
Rab

|Vb|2
(11)

3.2 Modeling of EVCS in the Distribution System

Figure 3 depicts the representation of EVCS in the distribution system.
The power demand of EVCS at bus b (PEVCS

Db ) can be calculated by using [27,
28],

PEVCS
Db = Nc

EV PG2Vηc Rc − Nd
EV PV 2Gηd Rd (12)

4 Problem Formulation

This section presents the general description of distribution systems and the mathe-
matical modeling of optimal feeder reconfiguration (OFR) or optimal network recon-
figuration (ONR). Factors that are affecting the increase in the power losses in the
distribution network are feeder length, low voltage, low power factor, poor workman-
ship in fittings, and reduction of line losses. Various methods used for the reduction
of distribution system losses are the construction of a new substation, reinforcement
of feeder, reactive power compensation, HV distribution system, grading of conduc-
tors, and feeder reconfiguration [29]. In this work, two objectives, i.e., real power
loss and voltage deviations are modeled with fuzzy sets [29, 30]. Some heuristics
are developed to reduce the number of tie-line switching operations.

Fig. 3 Representation of
EVCS in the RDS

EVCS

Iab

a
Pb+jQb

Rab+jXab

b

a aV δ∠ b bV δ∠

PDa+jQDa
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4.1 Fuzzy Membership Function for Active Power Loss
Reduction (µLi )

The basic purpose for membership function, i.e., objective in the fuzzy domain is to
minimize the active power loss of the system. The variable αi can be defined as

αi = Ploss(i)

P0
loss

f or i = 1, 2, . . . , Nk (13)

where Nk is total number of lines in loop including the tie-line, when the kth tie-
switch is closed, Ploss(i) is total active power loss when ith line in the loop is opened,
and P0

loss is total real power loss before the NR. Membership/objective function for
active power loss reduction (μLi ) can be written as [30],

μLi =

⎧
⎪⎨

⎪⎩

αmax−αi
αmax−αmin

f or αmin < αi < αmax

1 f or αi ≤ αmin

0 f or αi ≥ αmax

(14)

4.2 Fuzzy Membership Function for Maximum Node Voltage
Deviation (µVi)

The main aim of this function is to minimize the deviation of nodes’ voltage. The
variable βi can be expressed as

βi = max
(∣∣Vi, j − Vs

∣∣) f or i = 1, 2, . . . , Nk; j = 1, 2, . . . , NB (15)

where NB is total number of buses in RDS, Vs is substation voltage, and Vi, j is jth bus
voltage corresponding to the opening of the ith line [29, 30]. The fuzzy membership
function for maximum bus voltage deviation (μVi ) can be expressed as,

μVi =

⎧
⎪⎨

⎪⎩

βmax−βi

βmax−βmin
f or βmin < βi < βmax

1 f or βi ≤ βmin

0 f or βi ≥ βmax

(16)
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4.3 Constraints

The active and reactive power balances of the RDS system including the DG units,
shunt capacitors, and EVCSs are expressed as [31, 32],

PD = PGrid
G + PEVCS

Db +
NDG∑

i=1

PDG,i (17)

QD = QGrid
G +

NDG∑

i=1

QDG,i +
Nc∑

j=1

Qc, j (18)

Voltages at each bus can be expressed as,

0.95 ≤ Vi ≤ 1.05 (19)

Active and reactive powers of DG units can be expressed as [33, 34],

Pmin
DG,i ≤ PDG,i ≤ Pmax

DG,i (20)

Qmin
DG,i ≤ QDG,i ≤ Qmax

DG,i (21)

4.4 Selection of Best-Compromised Solution

When optimizing two or more objectives simultaneously, a best-compromised
solution needs to be determined [35]. The procedure for determining the best-
compromised solution using the min-max principle is determined next:

The membership function values of the two objectives are determined. When the
kth tie-line switch of RDS is closed, a loop is formed with number of lines in the
loop Nk . After opening the ith line in the loop, run the DLF to determine μLi and
μVi for i = 1, 2, …, Nk . Determine the fuzzy decision for overall satisfaction [36,
37] by using,

Dk,i = min(μLi , μVi ) f or 1, 2, . . . , Nk (22)

The optimal solution is the maximum of overall degrees of satisfaction, and it is
expressed as [38],

OSk = max
(
Dk,i

)
f or 1, 2, . . . , Nk (23)
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5 Solution Methodology

This section presents heuristics for minimizing the number of operations of tie-line
switches. Here, heuristic rules are developed to minimize the number of tie-line
switch operations [39, 40]. The flow chart of the proposed solution methodology has
been depicted in Fig. 4, and the step-by-step approach is presented next:

• Step 1: Read the RDS test system data.

Read the input data related To the distribution system and convert all the line 
parameters to per unit values. Read the number of tie-line switches (       ) for 

the test system under consideration.

Is k <      ?
Yes

No

tieN

Run the load flow described in section 2, and calculate the line 
losses. The base case losses is designated as 0

lossP

Determine the voltage difference (VD) across open tie-line 
switches and identify the tie-line switches that are open 

across which the VD is maximum. 

Is max(VD)<ε? STOP

Compute the membership values and then the overall satisfaction.

No

( ), mink i i iD L and Vμ μ=

When the selected tie-line switch is closed then identify 
the number of branches (     ) in the loop. kN

Run the load flow with the branch k open. 
Calculate the line losses. 

Yes

Compute the membership values and then the overall satisfaction.
( ), mink i i iD L and Vμ μ=

kNk = k+1

Determine the optimal solution for the operation of tie-line switch k.
                             Where i=1,2,3, ,,max( )k k iOS D= kN

1tie tieN N= −

Is         > 0 ?tieN

STOP
No

Yes

Fig. 4 Flow chart of the proposed ONR/OFR algorithm
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• Step 2: Execute the load flow solution as described in Sect. 2.
• Step 3: Determine voltage difference (�Vtie) across the open tie-line switches.
• Step 4: Identify the open tie-line switch across which �Vtie is maximum, and it

can be represented as (�Vmax
tie ).

• Step 5: If �Vmax
t ie > specified value (ε), then go to Step 6 else go to Step 11.

• Step 6: When the selected tie-line switch is closed then identify the number of
branches (Nk) in the loop.

• Step 7: Open one line at a time in the loop, and determine the membership value
for each objective function. Compute μLi and μVi using the Eqs. (14) and (16),
respectively.

• Step 8: Compute the overall degree of satisfaction using Eq. (22).
• Step 9: Determine the optimal solution for the operation of the kth tie-line switch

using Eq. (23).
• Step 10: Make the number of tie-line switches (Ntie) equal to Ntie − 1, and

rearrange the coding of the rest of the tie-line switches, and go to Step 2.
• Step 11: Display the output results.

6 Results and Discussion

The proposed ONRmethodology has been implemented on IEEE 69 bus test system
which has a single feeder with a single substation [41]. Figure 5 depicts the single-
line diagram of 69 bus RDS. System load demand, line, and tie-line data have been
taken from Ref. [42]. This system has 68 lines, i.e., sectionalizing switches, they
are 1–68 and they are normally closed. Five tie-line switches (which form 5 loops)
considered in this work are 69, 70, 71, 72, and 73, they open tie switches. The base
voltage and kVA are 12.66 kV and 1000 kVA, respectively. The real and reactive
power load of 3,802 kW and 2,694 kVAr, respectively. In this test system, the DG
units are placed at buses 5, 28, 45, and 60; shunt capacitors are placed at buses 22,
36, and 64; EVCSs are placed at buses 18 and 59.

In the present work, the convergence criterion (ε) is considered as 0.01, and it has
been assumed that αmin is 0.5, αmax is 1, βmin is 0.05 and βmax is 0.10. The active
power loss obtained in the base case condition is 224.96 kW, and all the tie-line
switches, i.e., 69, 70, 71, 72, and 73. The minimum voltage obtained in this base
case is 0.9066 p.u. at bus 54.

6.1 Case 1: Tie-Line Switch Operation 1

In this case, the voltage difference across each tie-line switch is determined. The
voltage differences across tie-line switches 69, 70, 71, 72 and 73 are 0.0031 p.u.,
0.0008 p.u., 0.0416 p.u., 0.0742 p.u. and 0.0471 p.u., respectively. From these volt-
ages, it can be observed that voltage difference across line number 72 is maximum,
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Fig. 5 SLD of IEEE 69 bus RDS before ONR

i.e., 0.0742 p.u. Table 1 presents the membership values of power loss and voltage
deviation, and the overall satisfaction for tie-line switch operation 1. In this case,
line number 72 is closed and the membership values for opened lines are presented
in Table 1. The overall satisfaction has been determined by using Eq. (23), and they
are presented in the table. From the results obtained, it is observed that by using the
fuzzy set intersection, the fuzzy decision for overall satisfaction is obtained when
line 46 is open and line 72 is closed. The obtained value of overall satisfaction is
0.7362, which is the maximum of Dk,i .

6.2 Case 2: Tie-Line Switch Operation 2

The voltage differences across tie-line switches 69, 70, 71, 72 and 73 are 0.00312 p.u.,
0.0008 p.u., 0.0416 p.u., 0.0742 p.u. and 0.0471 p.u., respectively. From these volt-
ages, after the tie-line switch operation 1, it can be observed that voltage difference
across line number 73 is maximum, i.e., 0.0471 p.u. Table 2 presents the membership
values of power loss and voltage deviation, and the overall satisfaction for tie-line
switch operation 2. In this case, line number 73 is closed and the membership values
for opened lines are presented inTable 2. The overall satisfaction has been determined
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Table 1 Membership values for tie-line switch operation 1

Closed line Opened line Membership values of
power loss and voltage
deviation

Dk,i = min(μLi ,μVi )

μLi μVi

Base case 1 0.5654 0.5654

72 38 0 0.4378 0

72 37 0 0.3937 0

72 36 0 0.3515 0

72 35 0 0.3518 0

72 47 0.7353 0.8742 0.7353

72 46 0.7362 0.8745 0.7362

72 45 0.7352 0.8734 0.7352

72 44 0.7350 0.8734 0.7350

72 43 0.7224 0.8642 0.7224

72 42 0.7082 0.8540 0.7082

72 41 0.7052 0.8540 0.7052

72 8 0 0.1457 0

72 7 0 0 0

72 6 0 0 0

72 5 0 0 0

72 4 0 0 0

by using Eq. (23), and they are presented in the table. From the results obtained, it
is observed that by using the fuzzy set intersection, the fuzzy decision for overall
satisfaction is obtained when line 53 is open and line 73 is closed. The obtained value
of overall satisfaction is 0.7575 which is the maximum of Dk,i .

6.3 Case 3: Tie-Line Switch Operation 3

The voltage differences across tie-line switches 69, 70, 71, 72 and 73 are 0.00312
p.u., 0.0008 p.u., 0.0416 p.u., 0.0742 p.u. and 0.0471 p.u., respectively. From these
voltages, after the tie-line switch operations 1 and 2, it can be observed that voltage
difference across line number 71 is maximum, i.e., 0.0416 p.u. Table 3 presents the
membership values of power loss and voltage deviation, and the overall satisfaction
for tie-line switch operation 3. In this case, line number 71 is closed and the member-
ship values for opened lines are presented in Table 3. The overall satisfaction has been
determined by using Eq. (23), and they are presented in the table. From the results
obtained, it is observed that by using the fuzzy set intersection, the fuzzy decision
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Table 2 Membership values for tie-line switch operation 2

Closed line Opened line Membership values of
power loss and voltage
deviation

Dk,i = min(μLi ,μVi )

μLi μVi

After tie-line switch operation 1 0.7386 0.8632 0.7386

73 26 0.7203 0.8621 0.7203

73 25 0.7225 0.8520 0.7225

73 24 0.7265 0.8505 0.7265

73 23 0.7071 0.8248 0.7071

73 22 0.7078 0.8246 0.7078

73 21 0.7046 0.7051 0.7046

73 20 0.6199 0.7056 0.6199

73 19 0.6175 0.7062 0.6175

73 18 0.6163 0.7120 0.6163

73 17 0.5656 0.6485 0.5656

73 16 0.5152 0.5836 0.5152

73 15 0.4420 0.5352 0.4420

73 14 0.4447 0.5360 0.4447

73 13 0.4338 0.5225 0.4338

73 12 0.4232 0.5122 0.4232

73 11 0.0774 0.1995 0.0774

73 10 0 0 0

73 9 0 0 0

73 8 0 0 0

73 7 0 0 0

73 6 0 0 0

73 5 0 0 0

73 4 0 0 0

73 53 0.7575 0.9129 0.7575

73 52 0.7548 1 0.7548

73 51 0.7542 1 0.7542

73 50 0.7435 0.9792 0.7435

73 49 0 0 0

73 48 0 0 0

73 72 0 0 0

73 38 0 0 0

73 37 0 0 0

73 36 0 0 0

(continued)
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Table 2 (continued)

Closed line Opened line Membership values of
power loss and voltage
deviation

Dk,i = min(μLi ,μVi )

μLi μVi

73 35 0 0 0

The bold values in the table represent the fuzzy decision for overall satisfaction by using the fuzzy
set intersection

Table 3 Membership values for tie-line switch operation 3

Closed line Opened line Membership values of
power loss and voltage
deviation

Dk,i = min(μLi ,μVi )

μLi μVi

After tie-line switch operation 2 0.7252 0.8625 0.7252

71 14 0.8618 0.9321 0.8618

71 13 0.8712 0.9652 0.8712

71 12 0.8706 0.9025 0.8706

71 11 0.8568 0.9158 0.8568

71 10 0.7990 0.9198 0.7990

71 9 0.7887 0.9138 0.7887

71 8 0.7458 0.9166 0.7458

71 7 0.3452 0.8252 0.3452

71 6 0.2898 0.7879 0.2898

71 5 0.2898 0.7842 0.2898

71 4 0.2858 0.7840 0.2858

71 68 0.7365 0.9198 0.7365

71 67 0.7165 0.9174 0.7165

71 66 0.7138 0.9133 0.7138

71 65 0.7086 0.9165 0.7086

71 64 0.7152 0.9114 0.7152

71 63 0.7098 0.9144 0.7098

71 62 0.6954 0.9100 0.6954

71 61 0.6788 0.9152 0.6788

71 60 0.6763 0.9126 0.6763

71 59 0.6552 0.9126 0.6552

71 58 0.6466 0.9126 0.6466

The bold values in the table represent the fuzzy decision for overall satisfaction by using the fuzzy
set intersection
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Fig. 6 SLD of IEEE 69 bus RDS after ONR

for overall satisfaction is obtained when line 13 is open and line 71 is closed. The
obtained value of overall satisfaction is 0.8712 which is the maximum of Dk,i .

6.4 Case 4: Tie-Line Switch Operation 4

The voltage differences across tie-line switches 69, 70, 71, 72 and 73 are 0.0031
p.u., 0.0008 p.u., 0.0416 p.u., 0.0742 p.u. and 0.0471 p.u., respectively. From these
voltages, after the tie-line switch operations 1, 2, and 3, it can be observed that voltage
difference across line number 69 is maximum, i.e., 0.0031 p.u. However, this voltage
difference is less than ε (0.01). Therefore, there is no further network reconfiguration
is required. Figure 6 depicts the final topology of IEEE 69 bus RDS after ONR. Bus
voltages before and after the ONR are presented in Table 4. From this table, it can be
observed the voltage profile has been improved after the proposed ONR approach.

7 Conclusions

This paper proposes an optimal network/feeder reconfiguration (ONR/OFR) problem
of the radial distribution system (RDS), and it is solved by simultaneously allo-
cating the distributed generation (DG), shunt capacitors, and electric vehicle charging
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Table 4 Bus voltages before and after the ONR

Bus number Before ONR After ONR Bus Number Before ONR After ONR

1 1.0000 1.0000 36 0.9998 0.9997

2 1.0000 1.0000 37 0.9990 0.9965

3 0.9999 0.9999 38 0.9967 0.9855

4 0.9998 0.9998 39 0.9962 0.9828

5 0.9989 0.9996 40 0.9756 0.9921

6 0.9889 0.9968 41 0.9756 0.9932

7 0.9784 0.9941 42 0.9720 0.9921

8 0.9759 0.9934 43 0.9687 0.9920

9 0.9748 0.9932 44 0.9643 0.9919

10 0.9698 0.9896 45 0.9599 0.9920

11 0.9687 0.9890 46 0.9374 0.9922

12 0.9655 0.9879 47 0.9264 0.9919

13 0.9626 0.9874 48 0.9221 0.9458

14 0.9597 0.9875 49 0.9171 0.9411

15 0.9568 0.9872 50 0.9097 0.9342

16 0.9563 0.9871 51 0.9094 0.9339

17 0.9554 0.9856 52 0.9090 0.9336

18 0.9554 0.9856 53 0.9071 0.9327

19 0.9549 0.9850 54 0.9066 0.9820

20 0.9546 0.9846 55 0.9686 0.9889

21 0.9542 0.9840 56 0.9686 0.9889

22 0.9541 0.9844 57 0.9652 0.9876

23 0.9541 0.9838 58 0.9652 0.9876

24 0.9539 0.9835 59 0.9999 0.9999

25 0.9538 0.9837 60 0.9997 0.9993

26 0.9537 0.9828 61 0.9996 0.9986

27 0.9537 0.9827 62 0.9995 0.9984

28 0.9999 0.9999 63 0.9995 0.9984

29 0.9999 0.9999 64 0.9988 0.9947

30 0.9997 0.9997 65 0.9986 0.9925

31 0.9997 0.9997 66 0.9985 0.9924

32 0.9996 0.9996 67 0.9985 0.9923

33 0.9993 0.9993 68 0.9984 0.9916

34 0.9990 0.9990 69 0.9984 0.9919

35 0.9989 0.9989
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stations (EVCSs). In the proposed ONR problem, the objectives, i.e., active power
loss and voltage deviation minimizations are solved by using the fuzzy-based multi-
objective methodology. An iterative approach-based distribution load flow (DLF)
has been used in this work. The proposed algorithm identifies the ONR of feeders
with the minimum number of tie-line switch operations. Simulation studies have
been performed on 69 bus RDS.
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