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State of Energy Estimation of Li-Ion
Batteries Using Deep Neural Network
and Support Vector Regression
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Abstract Efficient management of the power and energy output of a high voltage
battery pack requires a precise estimation of the State of Energy (SOE). For the accu-
rate estimation of SOE, this work presents two data-driven methods as Deep Neural
Network (DNN) and a regression model, i.e. Support Vector Regression (SVR). The
effectiveness of the SOE estimation was compared, analysed, and studied through
these models under similar conditions. For performance enhancement of estimation,
a modified algorithm based on the grid search of optimized hyperparameters was
proposed and evaluated in both the models. For training of the model at subsequent
thermal ranges, two case studies were performed using US06, UDDS, LA92, and
HWFET drive cycles and at four different temperature levels (−10, 0, 10, and 25
°C), for each cycle. The results indicate that the DNNmethod has provided enhanced
performance for State of Energy Estimation as compared to the regression models
of ML, i.e. SVR. This work highlights the prevailing challenges in the industry
and proposes the potential recommendation for Battery Management System (BMS)
development and SOE estimation in next-generation EV applications.
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1 Introduction

With the growing problems such as the depletion of energy resources and the problem
of global warming caused by use of internal conventional engines-based vehicles,
electrical vehicles (EVs) have attracted the very high attention of people (Tie and
Tan 2013; Xia et al. 2017). In recent years, a lot of development has taken place in
the electrochemical energy storage system. Different energy storage systems have
been proposed for the use in EVs such as Nickel/Metal Hydride (NiMH) battery,
Lithium ion (Li-ion) battery, Fuel cells, ultra-capacitors, etc. (Iclodean et al. 2017).
With the advancement and improvement in the properties of Li-ion batteries such
as energy density, low self-discharge rate, long cycle life, and safety performance,
they become widely applicable in EVs, electronics, mobile devices, etc. (Lu et al.
2013). A Li-ion battery module consists of an array of Li-ion cells. Temperature
management is one of the issues of the Li-ion batteries which affect performance
and safety (Gandoman et al. 2019; Kumar et al. 2020). The literature shows several
solutions to improve the cooling effects by optimized battery layout (Qian et al. 2019),
Heat Pipe (Lu et al. 2020), Phase ChangeMaterials (Jaguemont et al. 2018), modular
and mixed solutions (Cicconi et al. 2020). This paper aims to estimate the level of
State of Energy (SOE) considering the achieved cell temperature with the operation
parameters, i.e. voltage and current. The estimation of the cell state parameters such
as State of Charge (SOC), Open Circuit Voltage (OCV), State of Energy (SOE), etc.,
is very important for the accurate functioning of the system and for the long life
of batteries. These state parameters are also important in the estimation of driving
range of electric vehicles which is also one of the complex issues as studied by Ronan
German et al. (2020). However, the correct estimation of these state parameters is
quite complex and difficult due to the non-linear behaviour of the electrochemical
processes in Li-ion cells (Hafsaoui and Sellier 2010).

Traditionally, SOCestimation is performed for the identificationof residual energy
and the protection of batteries from being overcharged and discharged. From the
recent literature review, it is well shown that different researchers had used a wide
variety of techniques for the accurate estimation of SOC such as current integral
method (Ng et al. 2009), proportional-integral (PI) method (Xu et al. 2014), electrical
model-basedmethod (Plett 2004b, c;He et al. 2013; Zhong et al. 2014), Sliding-mode
observer based (Kim 2006, 2010), Kalman filter-based algorithms (Plett 2004a, b,
c; Xu et al. 2012; Xiong et al. 2014), and neural network model (Kang et al. 2014)
methods. With the increasing demand of Li-ion batteries for different applications,
there is increased demand of use of Battery Management System (BMS) as well.
Therefore, it is more and more important to accurately analyse the battery states
for the proper functioning of batteries. But Liu et al. (2014) reviewed several disad-
vantages in the use of SOC for the estimation of residual energy. Because SOC
is defined as the ratio of available capacity to the maximum stored charge in the
battery, i.e. nominal capacity, from which it can be seen that there is no representa-
tion of the State of Energy. SOC clearly gives the information only about the residual
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capacity, not about the energy. That’s why there is the need to estimate SOE inde-
pendently. SOE is defined as the available energy to the maximum stored energy in
Li-ion battery. Some researchers (Shen 2007; Hausmann and Depcik 2013; Waag
and Sauer 2013; Zheng et al. 2013) used residual available capacity instead of SOC
for the estimation of SOE. Waag and Sauer (2013) used the estimation of battery
electromotive force for the identification of the battery capacity and SOC. While
Shen et al. (2007) defined state of available capacity of battery, instead of SOC for
the estimation of battery residual capacity. These are some of the few works which
used the capacity instead of SOC in the study. It is also important to study the effect
of discharge current and temperature, since at the same SOC; SOE can be different
because discharge efficiency is dependent on discharge current and temperature (Liu
et al. 2014). Few researchers worked in this direction to understand the working
of Li-ion batteries, as Wang et al. (2014a, b) show the study on the estimation of
electronic conductivity of LiFePO4 cells at different temperatures to understand the
low-temperature electrochemical performance at carbon-coated and uncoated cath-
odes. Yi et al. (2013) developed a model for the study of behaviour of Li-ion battery
of temperature dependence on discharge in low ambient temperature. These studies
prove that for the accurate estimation of SOE, it is necessary to consider the effect
of discharge current and temperature.

In recent years, different researchers developed different techniques for the esti-
mation of SOC and also proved well with the results. But SOC is different from
SOE because SOE is the product of the residual battery capacity per OCV. The
trend of variation of SOE is different from SOC. Similar to the estimation of SOC,
few researchers developed systematic methods for the SOEmeasurement (Mamadou
et al. 2012, 2019; Liu et al. 2014). In these studies, direct evaluation techniques were
shown for the residual energy of battery with the consideration of battery discharge
states. Some other researchers such as Stockar et al. (2011) and Kermani et al. (2011)
presented the method of power integral for the estimation of SOE. But these studies
were not found very accurate for the SOE measurement due to the measurement
noises in the current and voltages of battery. Wang et al. (2014a, b) proposed the
joint estimation technique of SOC and SOE to minimize the negative effect of power
integral method. But in this method SOE estimation accuracy depends on the SOC
estimation accuracy. To overcome this issue, Zhang et al. (2015) proposed themethod
of model-based joint estimation of SOC and SOE.

From the literature reviews, it can be seen that there is still a lot of possibility of
research for the estimation of SOE. Since in this area, research has not been done as
far as compared to the SOC estimation. Also, it was found out that SOE estimation
is somewhat hard to estimate using mathematical relations and equations. So, there
is a need to develop a method which is less complex and computationally efficient
to be employed in real BMS condition. Therefore, this paper presents the two data-
driven approaches for the estimation of SOE such as a regression model, i.e. SVR
and DNN. A modified DNN-based method is shown for the accurate estimation of
SOE. The modified method consists of the two simultaneous processes, i.e. first the
optimization of hyperparameters and then the DNN model development which will
be used for the prediction. In the neural networks, the critical task is the optimization
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of hyperparameters which is accurately done using a grid-based approach. In the
proposed grid-based approach, grids were developed based on the RootMean Square
Error (RMSE), training time, and hyperparameters such as the number of neurons and
number of layers. Optimized values of the number of neurons and number of hidden
layers were chosen when minimum RMSE with suitable training time was recorded.
The same process was used in the development of regression model using SVR for
the estimation of SOE. Grid-based approach was used in the modified algorithm of
SVR model for the searching of optimized hyperparameters such as regularization
parameter (C) and gamma (γ).

The main aim of this study is to develop an efficient model for the estimation of
SOE and to overcome the shortcomings of regression model. For the implementation
of such task, in this study two data-driven methods were used for the development of
SOE estimation model, DNN and SVR. The results obtained from the DNN model
supports that it is more efficient in the estimation as compared to the SVR. The results
shown in Sect. 4 clearly state that the DNN model is fully efficient in overcoming
the shortcoming of regression model. DNN model shows significant results in the
prediction of SOE at different drive cycles and at different temperatures as well.

2 Proposed Methodology for SOE Estimation

The SOE of battery can be defined by Eq. (1) as the ratio of residual energy to the
maximum available energy, where residual energy is denoted by Eres,k , maximum
energy by EM , battery energy efficiency as ηe, battery terminal voltage and current
at kth time instant as Vt,kand Ik , Ts is the time sampling period. The methodolog-
ical approach for the estimation of SOE is described in Fig. 1. The approach is
focused on the accurate estimation of SOE followed by the selection of optimized
hyperparameters for the respective estimation learning models. As shown in Fig. 1,
raw data was collected from the publicly available dataset (Kollmeyer et al. 2020).
The data for SOE was processed from this dataset using the Eq. (1). Data cleansing
was performed in the next step such as resampling of the dataset to 1 Hz frequency
and the removal of errors in data (such as Voltage, Current spikes). After the data
cleansing, the further dataset was developed according to the respective case studies
of this research. In this study, two estimation learning model was selected, i.e. DNN
and SVR. Optimization of hyperparameters was the main step after the choosing of
the training dataset, validation dataset, and the selection of model. Hyperparame-
ters are responsible for estimation accuracy, computation time, and computational
speed. The processes of estimation in both models are shown in detail in Sect. 2.1
and 2.2. The performance evaluation was done on the basis of RMSE andMAE. The
evaluation accuracy is discussed in the result section, i.e. Sect. 4.

SOEk+1 =
{

SOEk − Eres,k

EM

SOEk − ηeVt,k Ik Ts
EM

(1)
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Fig. 1 The proposed methodological approach for SOE estimation

2.1 DNN Architecture

DNN is part of the family of machine learning methods based on artificial neural
networks (ANN). In the present time, DNN has wide applications, there are many
examples available where DNN architecture shows good response over the conven-
tional algorithms such as DNN showed the level of accuracy more the human level
such as in 2015 Microsoft Research’s deep neural algorithm won the ImageNet
challenge with the error of about 3.57% (He et al. 2016).

DNN is considered fast and efficient in comparison to the conventional methods
for the estimation of SOE, since in conventional method expertise is required in
battery chemistry and to mathematical model the battery behaviours. On the other
hand, DNN doesn’t involve such complexity for the SOE estimation. DNN consists
of three layers, i.e. input layer, hidden layer, and output layer. The input and output
layer remains fixedwhile the hidden layer can be varied to find out the optimum value
where minimum error can obtain. Along with the layers, nodes or it can be said as
neurons are also present in the respective layers to capture the non-linearity between
the system input and output. The optimum value of nodes is also required to be found
with the hidden layers for the development of the efficient and computational fast
model.

DNN learns the battery functioning by mapping the input parameters with the
output parameters. In this study for the creation and validation of DNN model a



304 P. Kumar et al.

publicly available dataset was used (Kollmeyer et al. 2020). The dataset consists of
battery parameters of LG 18650HG2Li-ion battery at four different drive cycles such
as US06, UDDS, HWFET, LA92, and all the data of drive cycles are available at
four different temperature set, i.e. 10, 0, 10, and 25 °C. Battery parameters available
in the dataset are current, voltage, temperature, and SOE with time step of 1 s. For
the development of the DNN model, vector of battery parameters was provided to
the input layer where parameters were current, voltage, temperature, average current,
and average voltage, while the output layer was having the single parameter, i.e. SOE.
The model was created in such a way that it can effectively map the variation in input
parameters with the variation in output, i.e. SOE and by using this learning method,
it will be able to predict the SOE for any new input parameters value.Mathematically
the input vector can be represented as—X(t)= [I(t), V(t), T(t), Iavg(t), Vavg(t)] and the
output can be represented as—Y(t) = SOE(t) , where I(t), V(t), T(t), Iavg(t), Vavg(t),
andSOE(t) denote the current, voltage, temperature, average current, average voltage,
and estimated SOE at time step t. The input vector X(t) fed to the input layer to map
with the SOE(t) values at the output layer. Figure 2 illustrates the architecture of deep
neural network with input, output, and hidden layers along with the neurons in each
layer. It is showing the process of mapping of observables with the desired output.
The computational speed of offline training of DNN is fast because to capitulate the
output Y(t), input vector X(t) perform certain matrix multiplication whereas other
strategies are not so computational fast since it involves partial differential equations.
The hidden layer activation is represented by Eq. (2). Since DNN is matrix-based,

Fig. 2 Architecture of 2-layer DNN with representation of input, hidden and output layer
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there are certain variables which need to be defined such as wL
j,k (which denotes the

weights connection between neuron j in layer L-1 and neuron k in layer l), bLk (which
denotes the bias), and hLk (which denotes the activation, respectively, of neuron k in
layer L).

hL
k = σ

(∑
k

(
wL

j,kh
L−1
k (t) + bLk

))
(2)

Reading Eq. (2), σ is the activation function. Due to simplicity in training and
testing, the non-linearity or activation function used for hidden layer is Rectified
Linear Unit (ReLU) which can be given by Eq. (3).

σ(x) =
{
0 f or x < 0
x f or x ≥ 0

(3)

Similarly, at the output layer, SOE can be calculated using Eq. (4).

SOE(t) = η

(∑
k

(
wL

j,kh
L−1
k (t) + bLk

))
(4)

where L is the last hidden layer of network and η is the activation function for output
layer which was chosen as Sigmoid function and can be represented by Eq. (5).

η(x) = 1

(1 + exp(−x))
(5)

2.1.1 DNN Hyperparameters and Its Optimization

Effective modelling of DNN requires selection of optimum values of hyperparame-
ters because the computational speed and performance of model depends upon these
hyperparameters. There are number of hyperparameters available such as hidden
layers, neurons, learning rate, optimization algorithm, activation functions, etc. But
the optimization of all the hyperparameters at the same time will not be a time-
effective approach; therefore the most important hyperparameters were optimized
in this study which was number of hidden layers and number of neurons in hidden
layer. Rest of the hyperparameters were selected based on the literature survey such
as learning rate was kept 0.001, optimization algorithm was chosen as Adam due
to its good performance, ReLU activation function was used for hidden layers and
Sigmoid function for output layer. Optimization algorithm developed in this study for
the hidden layers and neurons selection is shown in Sect. 2.1.2. Grid-based approach
was used for developing the optimization algorithm and US06 drive cycle at 25



306 P. Kumar et al.

°C was used for the validation in this optimization technique. Range of values was
chosen both for hidden layers and neurons, to search the combination where root
mean square error (RMSE) minima will occur. The range of values checked for
hidden layers was from 2 to 8, while the neurons set of values were (2, 4, 8, 16, and
32). Table 1 shows the values of RMSE and training time for the different combina-
tions of hidden layer and neurons. From Table 1, it can be seen that the minimum
RMSE occur at the combination of 3 hidden layers and 16 neurons with training time
as 775.7467 s. Therefore, keeping in mind about the computational efficient concept,
combination of 3 hidden layers and 16 neurons in each hidden layer was chosen for
the further study. Table 2 shows the list of all the optimized hyperparameters used in
this study.

Table 1 Grids showing the values of RMSE and training time for different combinations of hidden
layers and neurons

Layers
Neurons

2 3 4 5 6 7 8

Root mean Square Error (RMSE)

2 0.173742 0.161347 0.286389 0.143908 0.145942 0.286164 0.287129

4 0.098428 0.110402 0.285939 0.027262 0.08073 0.170202 0.051682

8 0.089132 0.038056 0.030829 0.022372 0.017867 0.016731 0.015806

16 0.083765 0.014997 0.019165 0.017265 0.018367 0.016447 0.015747

32 0.040811 0.036811 0.031811 0.028821 0.021734 0.0199 0.017876

Training Time (seconds)

2 640.9791 694.9241 719.4053 841.239 895.1712 939.1342 951.2096

4 568.7269 751.9329 582.862 770.4256 831.8109 864.1268 831.5526

8 582.5267 774.7212 592.3911 769.8025 893.7469 890.4075 913.9425

16 586.9675 775.7467 583.1441 657.4654 815.7815 871.2201 855.9458

32 590.2175 800.4176 608.9079 686.7024 976.5569 1007.908 852.5247

Table 2 Optimized values
selected for the
hyperparameters of DNN

Hyperparameters Optimized values

Number of hidden layers 3

Number of neurons 16

Optimization algorithm Adam

Activation function for hidden layers ReLU

Activation function for output layer Linear

Learning rate 0.001
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2.1.2 DNN Training Strategy

This section gives the information regarding the strategy used for the training ofDNN,
with the insight about incorporation of optimization technique used for hidden layer
and neurons along with the training. In this study, before starting the training of the
model optimized value for number of hidden layers and neurons were found and the
selection procedure is shown in Sect. 2.1.1. Appendix A.1 shows the modified algo-
rithmused in this study for the development of effectiveDNNmodel.Algorithm starts
with the importing of dataset used for the training. Dataset used in this study were
at the different drive cycles such as US06, UDDS, HWFET and LA92. These drive
cycles have the values for different parameters such as Current, Voltage, Tempera-
ture, Average Current, Average Voltage, and SOE at four different temperature set,
i.e.−10, 0, 10, and 25 °C. Input parameters that will be fed into the input layers were
put in a vector X and output parameter, i.e. SOE in Y. Since neural network have
3 layers, input, output, and hidden layers, input and output layers were ready as X
and Y but number of hidden layers and number of neurons in each layers were still
needed to be found and optimized. Therefore for finding the optimized values, range
of values for hidden layer and neurons too were decided. RMSE was calculated for
the different combinations of these values using the grid-based approach. Table 1
shows the RMSE and training time values for the different combinations. Finally,
after the selection of optimized values of number of hidden layers and neurons the
modelling of DNN begins. Optimization of these hyperparameters are utmost impor-
tant because performance and efficiency of model depends on these parameters. In
this study, the activation function of hidden layer was chosen to be ReLU, since from
the literature study it was found to bemost efficient among the other alternatives. The
model used in this study updates the weights with the Adam optimization technique
with learning rate 0.001. Mean Squared Error (MSE) loss function and Mean Abso-
lute Error (MAE) metrics was chosen during the training of model. Performance
analysis was done using the RMSE, as it can evaluate the percentage deviation of
predicted values from original values. Training was done using the computer system
with specifications of 4th generation core i5 processor and intel HD graphics. In all
the cases of this study, model was trained for 1000 epochs to minimize error and
to improve the model efficiency. Models were developed for 2 different cases, as in
Case 1 model was trained with 3 drive cycles, i.e. UDDS, HWFET, and LA92 at all
temperatures set and then performance evaluation was done using US06 drive cycle
at different temperatures. In Case 2, the accuracy of model was analysed in mapping
the temperature effect. All drive cycles were used for training but considering only
three temperature set, i.e. −10, 0, and 25 °C. In this case evaluation was done using
three drive cycles as UDDS, LA92, and HWFET at 10°C. The main purpose of
considering these case studies were to evaluate the performance of model at some
new temperature and new drive cycle which was not considered during the training.
Results and comparison of these 2 cases are shown in Sect. 3. The performance of
all the models was evaluated on the basis of MAE and RMSE error metrics.
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2.2 SVR Architecture

In machine learning, Support Vector Machines (SVM) is the supervised learning
models which analyse data for the classification and regression analysis. This study
focuses on the SVR analysis technique. The functioning of SVR is in the way that it
makes a complex relationship between input parameters and single output by opti-
mizing the objective function, whose values get minimized when the predicted value
from model approaches the target or original output value. For this case also the
input parameters remain same as it was used for DNN, i.e. current, voltage, tempera-
ture, average current and average voltage. The major task of SVR is to correctly and
precisely map the input parameters with the output value, i.e. SOE. For this study,
it is not possible to have a linear relationship between the input and target values.
Therefore, for this type of circumstance input values get linearly mapped with the
output values in higher dimensional plane and the functions used for these transfor-
mations are known as Kernels (Müller et al. 2001). The available kernels functions
in the SVR technique are sigmoid function, polynomial function, Radial Basis func-
tion (RBF), etc. Among the other available kernel function and based on the nature
of the relationship between input and output parameters, RBF kernel was the most
suitable for this study (Schölkopf et al. 1997). The architecture of the SVR is shown
in Fig. 3, where an insight about the mapping of input and output parameters can
be understood easily. From Fig. 3, it is shown that K(x, xn) is the output of the nth
hidden node for the input X, also it is the mapping of input vector x and support
vectors by precisely choosing kernel function (Chen and Yu 2007).

In the SVM technique, the two regression methods are available, i.e. ε—SVR and
υ—SVR. Both methods differ from each other in a way that in ε – SVR methods

Fig. 3 υ—SVR architecture
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there is no control on the number of data vectors from input dataset that become
support vectors. While in υ—SVR method, there is the control on the limit of error
tolerance where υ represents the upper bound on the fraction of error from training
dataset and the lower bound on the fraction of support vectors. This control on limit of
error tolerance can regulate by the use of regularization parameter C. For this study,
authors find υ-SVR method more suitable since error tolerance in the prediction can
be controlled.

2.2.1 SVR Hyperparameters and its Optimization

Similar to DNN modelling, the SVR modelling also involves hyperparameters
handling and its optimization. In the SVR analysis the main hyperparameters which
affect the performance and efficiency of model are gamma (γ), C, kernel function,
and υ. The γ parameter shows the range of influence of input training data samples.
Simply, it can be defined as the inverse of radius of influence of support vectors
selected by model from the dataset. C is the regularization parameter which controls
the trade-off between achieving the low training and low testing error. Kernel func-
tion is responsible for making the required relationship between input and output
parameters. Due to the nonlinear relationship between the input and target parame-
ters of this study, RBF was chosen as the kernel function. The use and functioning
of υ is already explained in Sect. 2.2, it should be in the interval of (0, 1]. As the
optimization of all the hyperparameters at the same time cannot be the efficient way
to do the required study, therefore the default value of υ was chosen as 0.5, RBF
kept as the kernel function, and then the optimum value was selected for the γ and C
using the optimization technique similar to the DNN case. The grid-based approach
similar to the one shown in Sect. 2.1.1 for the optimization of DNN hyperparameters
was used for the optimization of C and γ. The range of values decided for the regular-
ization parameter, C was –0.01, 0.1, 1, 10 and 100. While three values were chosen
for gamma parameter for iterating with the combination in C, i.e. 0.1, 1, and 10.
Table 3 shows the values of RMSE and training time for the different combinations
of C and γ, validation drive cycle, i.e. US06 at 25°C was used for the testing. From
these grids one combination of C and γ was chosen at which RMSE was found to be
minimum and the training time was very optimum. The combination which satisfied
these criteria was C as 0.1 and γ as 10. The RMSE obtained at this combination
was 0.016497, which was minimum among rest of the grid combination and training
time was 698.3137 s. All the parameters which were used in this modelling and their
respective selected optimum values are shown in Table 4.

2.2.2 SVR Training Strategy

One of the most important parts of modelling in machine learning is the training
strategy. This section will give the detail insight to the reader about the modified
υ – SVR algorithm with the simultaneous optimization of hyperparameters. The
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Table 3 Grids showing the values of RMSE and training time for different combinations of C and
γ

C
Gamma (γ)

0.01 0.1 1 10 100

Root Mean Squared Error (RMSE)

0.1 0.099553 0.07286 0.065908 0.049061 0.040832

1 0.049851 0.03734 0.024061 0.017731 0.018968

10 0.031577 0.016497 0.017534 0.017223 0.007121

Training Time (seconds)

0.1 667.7578 655.6799 671.5883 432.3391 1165.202

1 631.336 651.5541 407.5546 1106.363 7541.776

10 616.2116 698.3137 1557.31 11363.25 39771.38

Table 4 Optimized values
selected for the
hyperparameters of SVR

Hyperparameters Optimized values

C 0.1

γ 10

υ 0.5

Kernel function RBF

modified algorithm used for this method is shown in Appendix A.2. The details of
the optimization of C and γ are already shown in Sect. 2.2.1. The datasets used for
the training in this case are also similar with the DNN training. In this technique
also 2 cases were studied such as in first case, three drive cycles, i.e. UDDS, LA92,
and HWFET at temperature set of −10, 0, 10, and 25 °C was used for training. In
this case the performance was evaluated by using the US06 drive cycle at all the
same temperatures from −10 to 25 °C. In case study 2 as that of DNN training
explained in Sect. 2.1.2, such that all the four cycles were fed for the training at
three temperatures, i.e. −10, 0, and 25 °C. The validation was done using the three
drive cycles as UDDS, LA92, and HWFET at 10°C. All these trainings were done
using the same kernel function as RBF and nu (υ) as 0.5. Since in the SVR technique
there is no involvement of epochs, therefore its computation time fully depends on
the selection of these hyperparameters. Training was done using the same computer
systemwith specifications of 4th generation core i5 processor and intel HD graphics.
The performance of all the cases was studied on the basis of MAE and RMSE error
metrics. The detailed comparison among the results of these cases is shown in Sect. 3.



16 State of Energy Estimation of Li-Ion Batteries Using Deep Neural … 311

Table 5 LG 18650HG2 cell
parameters

Cell parameter Specification

Chemistry Li[NiMnCo]O2 (H-NMC) / Graphite +
SiO

Nominal Voltage 3.6 V

Charge 1.5A,4.2,50 mA End-Current (CC-CV)
Normal

4A, 4.2 V,100 mA End-Current (CC-CV)
Fast

Discharge 2 V End Voltage, 20A Max Continuous
Current

Nominal capacity 3.0 Ah

Energy density 240 Wh/Kg

3 Processing of Data for Training and Validation

3.1 Data Collection

In this study for the development of data-driven models and for the evaluation,
the open source data was used available from Macmaster University (Kollmeyer
et al. 2020). LG 18650HG2 battery was used in the testing for the gathering of this
data as mentioned in the technical instruction of the open source data. The detailed
information of battery used for the testing is shown in Table 5. The data are available
for four different drive cycles, i.e. US06, UDDS, LA92, and HWFET tested at four
different ambient temperature conditions as −10, 0, 10, and 25 °C. For this study all
the required data for these drive cycles were gathered from this source (Kollmeyer
et al. 2020) and then further datawereprepared according to the cases of this particular
study. The training and validation dataset prepared according to the cases as shown
in Sect. 3.2.

3.2 Training and Validation Dataset

In this study, four drive cycles were used for the training in different combination
as shown in Table 6. Simulation of battery cells by the use of these driving cycles
is very time efficient as well as cost efficient. Use of these drive cycles in battery
simulation makes it easier to monitor the behaviour of battery cells during real-world
driving patterns without doing any extra experimentation on real physical driving
vehicle. Driving cycles used in this study were Supplemental Federal Test Procedure
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Table 6 Training and Validation dataset used in the study

Cases Testing dataset Validation dataset

Case 1 UDDS, LA92, and HWFET drive cycle at
-10, 0, 10, and 25 °C

US06 drive cycle at -10, 0, 10, and 25 °C

Case 2 US06, UDDS, LA92, and HWFET drive
cycle at -10, 0, and 25°C

UDDS, LA92, and HWFET drive cycle at
10 °C

(US06), Urban Dynamometer Driving Schedule (UDDS), Unified Driving Schedule
(LA92), and the Highway Fuel Economy Driving Schedule (HWFET). These cycles
are described in Appendix B. As an example, Fig. 4 shows the behaviour of the
battery parameters, i.e. current, voltage, and temperature of US06 drive cycle at all
ranges of temperature from −10 to 25 °C. Training and validation dataset used in

Fig. 4 The report of the US06 drive cycle in terms of: a Current, b Voltage, c Cell Temperature.
This test was done at four conditions of room temperature: (i) −10 °C, (ii) 0 °C, (iii) 10 °C, (iv) 25
°C
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different cases for the study in this research are shown in Table 6. Two cases were
studied using DNN and then results of DNN were compared by another Machine
Learning technique, i.e. SVR. These two cases are already explained in Sect. 2.1.2
and 2.2.2 according to the respective DNN and SVR training.

All the input vectors in each case were normalized before feeding for the training.
Normalization technique was used to improve the convergence rate and to remove
the negative influence. In this study min–max normalization was used since it retains
the original data distribution pattern, only scaled the dataset in the range of [0, 1] as
shown in Eq. (6) (Jain et al. 2005).

zki = xki − min(x)

max(x) − min(x)
i ∈ {1, 2, . . . . . . , n} (6)

where x is the input vectors such as I(t), V(t), T(t), Iavg(t), Vavg(t), and n represents
the total number of samples of data in the different drive cycles.

3.3 Evaluation Metrics

For the study of performance of trained models, some evaluation metrics were used
such as MAE and RMSE. These evaluation or error metrics made the way of the
comparison of different machine learning methods and different case study done
in these methods in this research paper. These evaluation or error metrics can be
represented by the Eqs. (7), (8), and (9).

MAE = 1

N

N∑
k=1

(∣∣SOEk − SOE∗
k

∣∣) (7)

MSE = 1

N

N∑
k=1

(∣∣SOEk − SOE∗
k

∣∣)2 (8)

RMSE =
√√√√ 1

N

N∑
k=1

(∣∣SOEk − SOE∗
k

∣∣)2 (9)

where SOEk is the predicted value bymodel, SOEk
* is the actual value obtained from

battery testing at time step k and N is the total number of training samples.
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4 Results and Discussion

As mentioned in earlier section, the input vector fed in to the DNN and SVR can be
represented as X = [I(t), V(t), T(t), Iavg(t), Vavg(t)] and the output can be represented
as Y = SOE(t) , where I(t), V(t), T(t), Iavg(t), Vavg(t) and SOE(t) denotes the current,
voltage, average current, average voltage and estimated SOE at time step t. The
drive cycles used for the training and validation are mentioned in Sect. 3.2 and were
recorded at sampling frequency of 1 Hz. The following subSects. 4.1 and 4.2 will
show the information about the results obtained after the training and validation
according to different cases used in this study. Comparative analysis is shown in
these sections for the DNN and SVR modelling for the prediction of SOE.

4.1 Case Study 1

In this case, as described earlier that three drive cycles namely UDDS, LA92, and
HWFETwere fed for training at all temperature sets as−10, 0, 10, and 25 °C. For the
evaluation of the trained model US06 drive was used at all the temperature ranges.
Comparative study is shown here between DNN and SVR technique of machine
learning. Estimation performance of DNN and SVR was compared on the basis of
errormetrics, i.e. RMSE andMAE. Figure 5 depicts the prediction of SOE using both
data-driven methods, i.e. DNN and SVR. It shows the comparative representation of
SOEbetween actual SOE, predicted SOEusingDNN, and predicted SOEusing SVR.
Figure 5a–d show the prediction of SOE using US06 drive cycle at four different
temperature ranges, i.e. −10 °C, 0 °C, 10 °C, and 25 °C, respectively. Table 7 shows
the values of RMSE and MAE for both the technique of machine learning, i.e. DNN
and SVR.

4.2 Case Study 2

In case 1 the performance of model was analysed on a new drive cycle which was
not fed for the training. In this case, model was evaluated using the drive cycles at
temperatures set other than which fed for training. In this case all the drive cycles
were used for the training but only at three temperature values, i.e.−10, 0, and 25 °C.
Drive cycles at 10 °C were kept for the testing of developed model accuracy. Three
drive cycles at 10 °C, i.e. UDDS, LA92, and HWFET was used for the validation
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Fig. 5 Prediction of SOE using DNN and SVR technique on US06 drive cycle at following temper-
ature range a at −10 °C temperature b at 0 °C temperature c at 10 °C temperature d at 25 °C
temperature

Table 7 Evaluation results on the individual drive cycles

DNN SVR

Testing Drive Cycle RMSE MAE RMSE MAE

US06 at −10°C 0.0148 0.0125 0.0602 0.0442

US06 at 0°C 0.0149 0.0118 0.0898 0.0672

US06 at 10°C 0.0178 0.0128 0.0287 0.0218

US06 at 25°C 0.012 0.010 0.0164 0.0122

Table 8 Evaluation results on the combination of drive cycles

DNN SVR

Training Drive Cycle RMSE MAE RMSE MAE

UDDS at 10 °C 0.0154 0.0120 0.0207 0.0156

LA92 at 10 °C 0.0189 0.0162 0.0257 0.0177

HWFET at 10 °C 0.0118 0.0093 0.0339 0.0235
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Fig. 6 Prediction of SOE using DNN and SVR technique on following drive cycle at 10 °C
temperature a UDDS drive cycle b LA92 drive cycle c HWFET drive cycle

purpose. This same procedure was followed in both ML techniques. Figure 6 shows
the predicted SOE behaviour for the different combinations of drive cycles in graph-
ical way. In this case also, it was seen that the error in the prediction of SOE was
high for SVR method in comparison to DNN. The RMSE and MAE error values are
shown in Table 8 for both methods and it can be easily seen that DNN performance
is significantly better as compared to SVR.
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5 Conclusion

This work offers a unique contribution to the accurate estimation of SOE. In this
studymodified algorithm for DNN and SVRwith optimization techniques are imple-
mented. The effectiveness of DNN and SVRmethods were compared for the predic-
tion of SOE. Instead of using any random hyperparameters, this study proposed
the approach to optimize the hyperparameters and then used the optimized values
of hyperparameters in the subsequent prediction. During the optimization, it was
noticed that the error in the prediction reduces as the hidden layers and number of
neurons increases in the case of DNN but higher values of them make the model
computationally less efficient. Similarly in the case of SVR technique, if the value of
regularization parameter (C) and gamma (γ) increases then the training time increases
significantly, this makes the model less time efficient. This work shows the unique
method for the optimization of hyperparameters of both techniques, i.e. DNN and
SVR. The prediction result of this work shows that the DNN model is more efficient
in the prediction of SOE as compared to SVR. The results obtained in the different
case studies show that the SOE prediction by DNN model at a drive cycle different
from the one used in training is quite good. In the same way, DNN model is able
to predict the SOE at different thermal ranges other than those used in training. The
results of the case studies evidently prove that the prediction from DNN is far better
than SVR. This work also suggests that the conventional regression model used for
the estimation of SOE can be upgraded using the DNN model in the future. This
work highlights the prevailing challenges in the industry and proposes the potential
recommendation for BMS development and SOE estimation in next-generation EV
applications.
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Appendix A

A.1 Modified DNN Algorithm With the Optimization
Technique

1 Import dataset  // Import the dataset required for the training

2 X = [‘Current’, ‘Voltage’, ‘Average Current’, ‘Average Voltage’] // Input parameters

3 Y = [‘SOE’]  // Output parameters

4 Define range of values of hidden layers // range of values, example- 2, 3, 4……

5 Define range of values of neurons // range of neurons values, example- 1, 2, 4 ……

6 // Initializing optimization loop for hidden layers and neurons 

7 For i in range of hidden layers values  // loop for the range of hidden layers values

8 For j in range of neurons values // loop for the range of neurons values

9 find RMSE  // rmse for the combination of hidden layer and neurons values

10 Hidden layers and neurons = (L, N) // Optimum values on the basis of minimum of rmse

11 Import model  // import the model of DNN

12 From layers import Dense  // import dense layer that will be add in model

13 model. add(Dense(units = N , input_dim = no. of input parameters,  activation = ‘relu’))

// add the dense layer, where N is optimum value of neuron, input_dim is the no, of input 

parameters and activation function is ReLU. More layers can be add in the similar manner

14 model.add(Dense(units = 1, activation = ‘linear’)) // Output layer with Linear activation

15 model.compile(optimizer = Adam(learning_rate = 0.01), loss = ‘MSE’, metrics = [‘mae’])

// Compile the model with Adam optimizer, learning rate fixed to be 0.01, loss function be 

MSE and metrics is MAE

16 model.fit(X, Y, epochs = 10000)  // fitting of model where epochs is the no. of iterations

17 Import testing dataset // import the dataset for the testing of performance of developed 

model 

18 Define X_test and Y_test  // define the X_test and Y_test in the similar manner as done for 

training X and Y 

19 Y_predict = model.predict(X_test)  // Calculate the predicted output

20 RMSE(Y_predict, Y_test)  // Finally calculate the rmse for predicted and actual output
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A.2 Modified υ—SVR Algorithm With the Optimization
Technique

1 Import dataset  // Import the dataset required for the training

2 X = [‘Current’, ‘Voltage’, ‘Average Current’, ‘Average Voltage’] // Input parameters

3 Y = [‘SOE’]  // Output parameters

4 Define range of values of C // range of values selected were 0.01, 0.1, 1, 10, 100

5 Define range of values of γ // range of γ values selected 0.1, 1, 10

6 // Initializing optimization loop for hidden layers and neurons 

7 For i in range of γ values  // loop for the range of γ values

8 For j in range of C values // loop for the range of C values

9 find RMSE  // rmse for the combination of C and γ values

10 C and γ = (c, gp) // Optimum values on the basis of minimum of rmse

11 Import model  // import the υ-SVR model of SVM

12 model = NuSVR(kernel = ‘rbf’, C = c, gamma = gp, nu = 0.5)  // fitting of model

13 Import testing dataset // import the dataset for the testing of performance of developed model

14 Define X_test and Y_test  // define the X_test and Y_test in the similar manner as done for 

training X and Y 

15 Y_predict = model.predict(X_test)  // Calculate the predicted output

16 RMSE(Y_predict, Y_test)  // Finally calculate the rmse for predicted and actual output



320 P. Kumar et al.

Appendix B

B.1 US06 Drive Cycle Velocity Profile

B.2 UDDS Drive Cycle Velocity Profile
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B.3 HWFET Drive Cycle Velocity Profile

B.4 LA92 Drive Cycle Velocity Profile
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