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illustrated by some numerical examples.
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1 Introduction

Due to the uncertainty and inexactness, the parameters of most real-life problems,
especially optimization problems, are not precise. So, the study of optimality condi-
tions of an imprecise optimization problem is an important research area. To tackle
the imprecise optimization problems, several researchers used various approaches,
viz. fuzzy, stochastic, fuzzy-stochastic and interval approaches, etc.

In the stochastic approach, the flexible parameters of an imprecise optimization
problem are presented in the shape of randomvariableswith proper probability distri-
bution function.Whereas in the fuzzy approach, the flexible parameters are presented
in fuzzy sets or fuzzy numbers with appropriate membership function. In the fuzzy-
stochasticapproach,someoftheflexibleparametersareconsideredintheformoffuzzy
setsor fuzzynumbers, andothers considered random.On theotherhand, in the interval
approach, the optimization problem’s imprecise parameters are presented in the form
of intervals. In the existing literature, a lot of research works on these approaches are
available. Among those, some interesting works are reported here:

With some theoretical developments, Catoni (2004), Schneider and Kirkpatrick
(2007), and Powell (2019) accomplished their works on stochastic optimization. On
the other side, Heyman and Sobel (2004), Ziemba andVickson (2014), and Tang et al.
(2020) used the theory of stochastic optimization to analyse themathematical models
in operations research. In the area of fuzzy optimization, Tang et al. (2004), Wu
(2004), Lodwick andKacprzyk (2010),Heidari et al. (2016), andAnter andAli (2020)
established some applicable theories to enrich this area.Wang andWatada (2012) and
Farrokh et al. (2018) used fuzzy and stochastic optimization theories to analyse some
supply chain/inventory models. In the area of interval optimization, Chen and Wu
(2004), Bhurjee and Panda (2016), Ghosh et al. (2019), and Rahman et al. (2020c)
derived several helpful techniques to solve interval optimization problems. Rahman
et al. (2020a, 2020b) solved some inventory problems in an interval environment
with these concepts.

Recently, generalizing the interval approach by taking the flexibility rather than
fixing the interval’s bounds, Rahman et al. (2020a) introduced a new representation
of intervals named Type-2 interval. In this representation, both the bounds belong
to two different intervals. In this approach, a flexible parameter can be presented
in the form A = [aL , aU ], where aL ∈ [aL , aL

]
and aU ∈ [aU , aU

]
. Thus, in this

approach, the imprecise parameter can be expressed as A = [(aL , aL
)
,
(
aU , aU

)]
.

In this area, till now, no theoretical development had been done.
This chapter’s main objective is to introduce the concepts of parametrization

of Type-2 interval and its order relation. Then using these concepts, the defini-
tion of the optimizer and Type-2 interval-valued support function is proposed. After
that, the optimality conditions of an unconstrained Type-2 interval-valued optimiza-
tion problem are derived. Finally, these theoretical results are illustrated with some
numerical examples.
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2 The Concept of Type-2 Interval

2.1 Type-2 Interval in Parametric Form:

The concept of Type-2 interval introduced by Rahman et al. (2020) is denoted by[(
aL , aL

)
,
(
aU , aU

)]
and is defined by employing Type-1 intervals as follows:

[(
aL , aL

)
,
(
aU , aU

)] = {[aL , aU ] : aL ∈ [aL , aL
]
and aU ∈ [aU , aU

]}
.

Now, we have defined the parametric representation of the Type-2 interval in
the following definitions. This representation is defined in two steps: first step
parametrization and second step parametrization of Type-2 interval.

Definition 1: Let A2 = [(aL , aL
)
,
(
aU , aU

)]
be a Type-2 interval. Then

(i) the first step parametrization of A2 is defined by the set of Type-1 intervals as
follows:

A1
2 =
{
[aL(r1), aU (r2)] : aL(r1) = aL + r1

(
āL − aL

)
,

aU (r2) = aU + r2
(
āU − aU

)
and r1, r2 ∈ [0, 1]

}

(ii) the second step, parametrization of A2 is defined as

A2
2 =
{
a(r1, r2, r3) : a(r1, r2, r3) = aL(r1) + r2(aU (r3) − aL(r1))

and r1, r2, r3 ∈ [0, 1]

}

Definition 2: Let A2=
[(
aL , aL

)
,
(
aU , aU

)]
and B2=

[(
bL , bL

)
,
(
bU , bU

)]
be two

Type-2 intervals with their second step parametrization
A2
2=
{
a
(
r1, r2, r3

) : r1, r2, r3 ∈ [0, 1] } and B2
2=
{
b
(
r1, r2, r3

) : r1, r2, r3 ∈ [0, 1] },
respectively. Then A2 = B2 iff a(r1, r2, r3) = b(r1, r2, r3), ∀r1, r2, r3 ∈ [0, 1].

Example 1: Let us consider a Type-2 interval A2 = [(2, 4), (5, 7)].
Then its first step, parametrization, is A1

2 = {[2 + 2r1, 5 + 2r2] : r1, r2 ∈ [0, 1]}.
Therefore, its second step, parametrization, is A2

2 = {2+2r1 +r2
(
3 + 2r3 − 2r1

)

: r1, r2, r3 ∈ [0, 1]}.

2.2 Order Relation of Type-2 Intervals:

Here, a new type of order relation has been introduced on the set of all Type-2
intervals by using the four different centres of a Type-2 interval which is defined in
the Definition 3.
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Definition 3: Let A2=
[(
aL , aL

)
,
(
aU , aU

)]
be a Type-2 interval with second step

parametrization A2
2=
{
a
(
r1, r2, r3

) : a
(
r1, r2, r3

)=aL
(
r1
)+r2

(
aU
(
r3
)− aL

(
r1
))
and

r1, r2, r3 ∈ [0, 1]}. Then a set of support of A2 be defined by the set of four elements
{AS1, AS2, AS3, AS4 },

where

AS1 = a(1, 1, 1) + a(1, 1, 0) + a(1, 0, 0) + a(0, 0, 0)

4

AS2 = a(1, 1, 1) + a(1, 1, 0) + a(1, 0, 0)

3

AS3 = a(1, 1, 1) + a(1, 1, 0)

2
AS4 = a(1, 1, 1)

Definition 4: Let A=[(aL , aL
)
,
(
aU , aU

)]
and B=[(bL , bL

)
,
(
bU , bU

)]

be two Type-2 intervals with second step parametrization{
a
(
r1, r2, r3

) : r1, r2, r3 ∈ [0, 1] } and {b(r1, r2, r3
) : r1, r2, r3 ∈ [0, 1] }. Then A

is said to be less or equal to B denoted by A ≤2 B if the following conditions hold:

A ≤2 B ⇔

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

AS1 < BS1, when AS1 �= BS1

AS2 < BS2, when AS1 = BS1 and AS2 �= BS2

AS3 < BS3, when AS2 = BS2 and AS3 �= BS3

AS4 ≤ BS4, when AS3 = BS3

where AS1, AS2, AS3, AS4 are defined in Definition 3

Definition 5: Let us consider two Type-2 intervals A = [(aL , aL
)
,
(
aU , aU

)]
and

B = [(bL , bL
)
,
(
bU , bU

)]
. Then A ≥2 B iff B ≤2 A.

Remark-1: The order relations ≤2 and ≥2 on the set of Type-2 intervals satisfy
the reflexive, anti-symmetric, and transitive properties. Thus ≤2 and ≥2 are the
partial order relations.

Example 2: Compare the following pair of Type-2 intervals using the above
definitions.

(i) A = [(−3,−1), (2, 5)], B = [(−1, 3), (6, 7)]

(ii) A = [(−1, 3), (5, 9)], B = [(1, 2), (6, 7)]

Solution:

(i) The second step parametrization of A and B are

{a(r1, r2, r3) = −3 + 2r1 + r2(5 − 2r1 + 3r3) : r1, r2, r3 ∈ [0, 1]},
{b(r1, r2, r3) = −1 + 4r1 + r2(2 − 4r1 + r3) : r1, r2, r3 ∈ [0, 1]}
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Here, AS1 = a(1,1,1)+a(1,1,0)+a(1,0,0)+a(0,0,0)
4 = 3

4

BS1 = b(1, 1, 1) + b(1, 1, 0) + b(1, 0, 0) + b(0, 0, 0)

4
= 15

4

Since AS1 < BS1, thus, A ≤2 B.

(ii) The second step parametrization of A and B are

{a(r1, r2, r3) = −1 + 4r1 + r2(6 − 4r1 + 4r3) : r1, r2, r3 ∈ [0, 1]},
{b(r1, r2, r3) = 1 + r1 + r2(5 − r1 + r3) : r1, r2, r3 ∈ [0, 1]}

Here,

AS1 = a(1, 1, 1) + a(1, 1, 0) + a(1, 0, 0) + a(0, 0, 0)

4
= 4

=
b(1, 1, 1) + b(1, 1, 0)

+b(1, 0, 0) + b(0, 0, 0)

4
= BS1

and

AS2 = a(1, 1, 1) + a(1, 1, 0) + a(1, 0, 0)

3
= 17

3
> 5

= b(1, 1, 1) + b(1, 1, 0) + b(1, 0, 0)

3
= BS2.

Hence, A ≥2 B.

3 Optimality of Unconstrained Type-2 Interval-Valued
Optimization Problem

3.1 Type-2 Interval-Valued Function and Its Parametrized
Form

Let the set of all Type-2 intervals be denoted by I2(R),

i.e., I2
(
R
)={[(aL , aL

)
,
(
aU , aU

)] : aL , aL , aU , aU ∈ R
}
.

Now a Type-2 interval-valued function of several variables (say n vari-
ables) is a function H2:S⊆R

n→I2
(
R
)
given by H2

(
x
)=[(hL

(
x
)
, hL
(
x
))
S
]
, x ∈(

hU
(
x
)
, hU
(
x
))
.



286 S. Das et al.

Definition 6: The first parametrized representation of H2 is defined as
H2(x) = {[hL(x, r1), hU (x, r2)] : r1, r2 ∈ [0, 1]} where hL(x, r1) = hL(x) +
r1
(
hL(x) − hL(x)

)
and hU (x, r1) = hU (x) + r2

(
hU (x) − hU (x)

)
.

Definition 7: The second parameterized representation of the
Type-2 interval-valued function H2 is defined as H2(x) ={
h(x, r1, r2, r3) : h(x, r1, r2, r3) = hL(x, r1)

+r2(hU (x, r3) − hL(x, r1)) and r1, r2, r3 ∈ [0, 1]

}

.

where hL(x, r1) = hL(x) + r1
(
hL(x) − hL(x)

)
and hU (x, r1) = hU (x) +

r2
(
hU (x) − hU (x)

)
.

A special type of Type-2 interval-valued function is defined as follows:

H2 : S ⊆ R
n → I2(R) given by H2(x) =

k∑

i=1

[(
aiL , aiL

)
,
(
aiU , aiU

)]
hi (x), x ∈ S.

(1)

where hi : S → R, i = 1, 2, ..., k

Definition 8: The first parametrized representation of the function H2 given in (1)
is defined by H2(x) =∑k

i=1 {[aiL(r1i ), aiU (r2i )] : r1i , r2i ∈ [0, 1]} hi (x), aiL(r1) =
aiL + r1

(
aiL − aiL

)
and aiU (r2) = aiU + r2

(
aiU − aiU

)

Definition 9: The second parameterized representation of the function H2 given
in (1) is defined by H2

(
x
)=∑k

i=1

{
ai
(
r1i , r2i , r3i

) : r1i , r2i , r3i ∈ [0, 1]} hi
(
x
)
,

ai
(
r1i , r2i , r3i

)=aiL
(
r1i
)+ r2i

(
aiU
(
r3i
)− aiL

(
r1i
))

3.2 Standard Form Type-2 Interval-Valued Optimization
Problem

The standard form of unconstrained Type-2 interval maximization problem is as
follows:

Maximize /Minimize H2(x) (2)
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subject to x ∈ S ⊆ R
n

where H2(x) may be represented by either

H2(x) = [(hL(x), h̄L(x)
)
,
(
hU (x), h̄U (x)

)]
or

H2(x) =
n∑

i=1

[(
aiL , āi L

)
,
(
aiU , āiU

)]
gi (x)

and hL , h̄L , hU , h̄U , gi : S → R, i = 1, ..., n.

The corresponding second step parametric form of (2) is as follows:

Maximize/Minimize h(r1, r2, r3, x) (3)

subject to x ∈ S ⊆ R
n, ri ∈ [0, 1]

where

either, h(r1, r2, r3, x) = hL(x) + p(hU (x) − hL(x))

or h(r1, r2, r3, x) =
n∑

i=1

ai (r1, r2, r3)gi (x) and

and ai (r1, r2, r3) = aiL(r1) + r2(aiU (r3) − aiL(r1)) ,

aiL(r1) = aiL + r1
(
aiL − aiL

)
, aiU (r2) = aiU + r2

(
aiU − aiU

)

Definition 10: The support of the optimization problem (3) is the set of four real-
valued functions {HS1, HS2, HS3, HS4} such that.

HS1(x) = h(0, 0, 0, x) + h(0, 0, 1, x) + h(0, 1, 1, x) + h(1, 1, 1, x)

4

HS2(x) = h(0, 0, 1, x) + h(0, 1, 1, x) + h(1, 1, 1, x)

3

HS3(x) = h(0, 1, 1, x) + h(1, 1, 1, x)

2
HS4(x) = h(1, 1, 1, x)

Definition 11: The point x∗ ∈ Swill be a local maximizer ofmaximization problem
(2) if ∃ a δ > 0 such that H2(x∗) ≥2 H2(x), ∀x ∈ N (x∗, d) ∩ S,

where N (x∗, d) is a neighbourhood with a centre at x∗ and radius d.

Definition 12: The point x∗ ∈ S will be a global maximizer of the maximization
problem (3) if H2(x∗) ≥2 H2(x), ∀x ∈ S.

Note 1: Similarly, the local and global minimizer of the problem (3) can be defined.

Note 2: The inequality ≥2 used in Definition 11 and 12 can be written explicitly as
follows:
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H2
(
x∗) ≥2 H2(x) ⇔

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

HS1
(
x∗) > HS1(x)when HS1

(
x∗) �= HS1(x)

HS2
(
x∗) > HS2(x)when HS1

(
x∗) = HS1(x)

andwhen HS2
(
x∗) �= HS2(x)

HS3
(
x∗) > HS3(x)when HS2

(
x∗) = HS2(x)

andwhen HS3
(
x∗) �= HS3(x)

HS4
(
x∗) ≥ HS4(x)when HS3

(
x∗) = HS3(x)

4 Optimality Conditions of Unconstrained Type-2
Interval-Valued Optimization Problem

4.1 Necessary Condition

Theorem 1: If x∗ ∈ S be a local optimizer (maximizer or minimizer) of the uncon-
strained Type-2 interval-valued optimization problem (2) or (3), then the following
conditions are satisfied:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∇HS1
(
x∗) = 0 when HS1(x) is nonconstant

∇HS2
(
x∗) = 0 when HS1(x) is constant and HS2(x)is nonconstant

∇HS3
(
x∗) = 0 when HS2(x) is constant and HS3(x) is nonconstant

∇HS4
(
x∗) = 0 when HS3(x) is constant

Proof: Here, this theorem has been proved for theminimization case only. The proof
is also similar to the maximization case.

Let x∗ ∈ T be a local minimizer of H2(x).
From the definition of the local minimizer, H2(x∗) ≤2 H2(x),∀x ∈ S∩N (x∗, d).
Then by Definition 4, it follows that ∀x ∈ S ∩ N (x∗, d),

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

HS1
(
x∗) < HS1(x), when HS1

(
x∗) �= HS1(x)

HS2
(
x∗) < HS2(x), when HS1

(
x∗) = HS1(x)

HS3
(
x∗) < HS3(x), when HS1

(
x∗) = HS1(x) and HS2

(
x∗) = HS2(x)

HS4
(
x∗) < HS4(x), when HS2

(
x∗) = HS2(x) and HS3

(
x∗) = HS3(x)

It follows that, ∀x ∈ S ∩ N (x∗, d)
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

HS1
(
x∗) ≤ HS1(x), when HS1(x) is non - constant

HS2
(
x∗) ≤ HS2(x), when HS1(x) is constant and HS2(x) is non - constant

HS3
(
x∗) ≤ HS3(x), when HS2(x) is constant and HS3(x) is constant

HS4
(
x∗) ≤ HS4(x), when HS3(x) is constant

Then by the necessary conditions of optimality HS1(x),HS2(x), HS3(x), and
HS4(x), we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∇HS1
(
x∗) = 0 when HS1(x) is nonconstant

∇HS2
(
x∗) = 0 when HS1(x)is constant and HS2(x)is nonconstant

∇HS3
(
x∗) = 0 when HS2(x)is constant and HS3(x) is nonconstant

∇HS4
(
x∗) = 0 when HS3(x) is constant.

Definition13: Let us consider a twice differentiable real-valued function f : S → R

on a nonempty open set S ⊆ R
n . Then the Hessian matrix of f is denoted by

∇2 f (x) and is defined by the n × n matrix of second-order partial derivatives of f,

i.e.∇2 f (x) =
(

∂2 f
∂xi ∂x j

)

n×n
.

4.2 Sufficient Conditions

Theorem 2: Suppose each member of the support of the unconstrained Type-2
interval-valued optimization problem (2) is continuously differentiable up to second-
order, i.e. ∇2HS1(x),∇2HS2(x),∇2HS3(x) and ∇2HS4(x) exist. Further, assume
that x∗ ∈ S satisfies the conditions of Theorem 1.

Then (i) x∗ ∈ S be a local minimizer of the optimization problem (2), if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇2HS1
(
x∗) is positive definite when HS1(x) is nonconstant

∇2HS2
(
x∗) is positive definite when HS1(x) is constant

and HS2(x) is nonconstant

∇2HS3
(
x∗) is positive definite when HS2(x) is constant

and HS3(x) is nonconstant

∇2HS4
(
x∗) is positive definite when HS3(x) is constant

(ii) x∗ ∈ S be a local maximizer of the optimization problem (2), if
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇2HS1
(
x∗) is negetive definite when HS1(x) is nonconstant

∇2HS2
(
x∗) is negetive definite when HS1(x) is constant

and HS2(x) is nonconstant

∇2HS3
(
x∗) is negetive definite when HS2(x) is constant

and HS3(x) is nonconstant

∇2HS4
(
x∗) is negetive definite when HS3(x) is constant

Proof: (i) When HS1(x) �= constant,.

∇HS1(x∗) = 0 and ∇2HS1(x∗) is positive definite, then x∗ ∈ S will be a local
minimizer of HS1(x).

Then ∃ d1> 0, such that HS1(x∗) ≤ HS1(x) , ∀x ∈ S ∩ N (x∗, d).
where N (x∗, d1) is an open ball with centre at x∗ and radius d1.
when HS1(x) = constant and HS2(x) �= constant.
∇HS2(x∗) = 0 and ∇2HS2(x∗) is positive definite, then x∗ ∈ S will be a local

minimizer of HS2(x).

Then ∃ d2> 0, such that HS2
(
x∗) ≤ HS2(x) , ∀x ∈ S ∩ N

(
x∗, d2

)

where N (x∗, d2) is an open ball with centre at x∗ and radius d2.
when HS1(x) = constant,HS2(x) = constant and HS3(x) �= constant,.
∇HS3(x∗) = 0 and ∇2HS3(x∗) is positive definite, then x∗ ∈ S will be a local

minimizer of HS3(x).

Then ∃ d3> 0, such that HS3
(
x∗) ≤ HS3(x) , ∀x ∈ S ∩ N

(
x∗, d3

)

where B(x∗, d3) is an open ball with centre at x∗ and radius d3.
When HS1(x) = constant,HS2(x) = constant and HS3(x) = constant,.
∇HS4(x∗) = 0 and ∇2HS4(x∗) is positive definite, then x∗ ∈ S will be a local

minimizer of HS4(x).

Then ∃ d4> 0, such that HS4
(
x∗) ≤ HS4(x) , ∀x ∈ S ∩ N

(
x∗, d4

)

where N (x∗, d4) is an open ball with centre at x∗ and radius d4.

Let us take d = min{d1, d2, d3, d4}

Then combining the above conditions, we obtain

∀x ∈ S ∩ N
(
x∗, d

)
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

HS1
(
x∗) ≤ HS1(x), when HS1(x) is nonconstant

HS2
(
x∗) ≤ HS2(x), when HS1(x) is constant HS2(x) is nonconstant

HS3
(
x∗) ≤ HS3(x), when HS2(x) is constant and HS3(x) is nonconstant

HS4
(
x∗) ≤ HS4(x), when HS3(x) is constant.

So, by Definition 4, we get

H2
(
x∗) ≤2 H2(x), ∀x ∈ S ∩ N

(
x∗, d

)
.

Therefore x∗ ∈ S is the local minimizer of the Type-2 interval-valued function
H2.

(ii) The proof of maximization case can be derived similarly.

Example 3: Let us consider the following function for optimization.

H2(x1, x2) = [(−6
(
x21 + x22

)− 2,
(
x21 + x22

))
,
((
x21 + x22

)+ 3, 6
(
x21 + x22

)+ 6
)]

(4)

Solution: Here HS1(x1, x2) = x21+x22
2 + 7

4 �= constant.

So, if
(
x∗
1 , x

∗
2

)
be an optimizer of H2, then from the necessary condition 4.1, it

follows that ∇HS1
(
x∗
1 , x

∗
2

) = 0 which gives
(
x∗
1 , x

∗
2

) ≡ (0, 0).

Now, ∇2HS1(0, 0) =
(
1 0
0 1

)
which is a positive definite matrix.

Therefore, from sufficient condition 4.2, it follows that
(
x∗
1 , x

∗
2

) ≡ (0, 0) is a
minimizer of (4).

Example 4: Let us take the following interval optimization problem.

Minimize H2(x1, x2) =[(1, 2), (4, 5)]x21 − [(1, 3), (5, 6)]x1x2

+ [(2, 3), (6, 7)]x22 + [(−1, 1), (3, 4)]

subject to (x1, x2) ∈ R
2 (5)

Solution: The corresponding second step parametrization of the objective function
is given by
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h(p1, p2, p3, x1, x2) = A(p1, p2, p3)x
2
1 − B(p1, p2, p3)x1x2 + C(p1, p2, p3)x

2
2 + D(p1, p2, p3)

where

A(p1, p2, p3) = (1 + p1 + 3p2 + p2 p3 − p1 p2)

B(p1, p2, p3) = (1 + 2p1 + 4p2 + p2 p3 − 2p1 p2)

C(p1, p2, p3) = (2 + p1 + 4p2 + p2 p3 − p1 p2)

D(p1, p2, p3) = (−1 + 2p1 + 4p2 + p2 p3 − 2p1 p2)

p1, p2, p3 ∈ [0, 1]

Now,

HS1(x1, x2) = h(1, 1, 1, x1, x2) + h(1, 1, 0, x1, x2) + h(1, 0, 0, x1, x2) + h(0, 00, x1, x2)

4

= (13x21 − 15x1x2 + 15x22 + 7)

4
�= constant,

Thus, from the optimality conditions of HS1(x1, x2) we get

∇HS1(x1, x2) = (0, 0)

which implies (x1, x2) = (0, 0).

And ∇2HS1(0, 0)=
(

26 −15
−15 30

)
which is positive definite.

Hence, the optimization problem (5) has a minimum value at (x1, x2) = (0, 0),
and the minimum value is H2(0, 0) = [(−1, 1), (3, 4)].

5 Application

In this section, the optimal policy of the classical EOQ model with Type-2 interval-
valued inventory costs are derived as an application of the optimality theory of Type-2
interval-valued function that are derived in this chapter. To formulate themodel, some
essential notations and assumptions are given below:

5.1 Notations

Notation Description

q(t) Inventory level at time t

Q Initial inventory level

D Demand rate

(continued)
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Fig. 1 Inventory level

(continued)

Notation Description

T Cycle length

O2 = [(OL , OL
)
,
(
OU , OU

)]
Type-2 interval-valued ordering cost

H2 = [(hL , hL
)
,
(
hU , hU

)]
Type-2 interval-valued holding cost

5.2 Assumptions

(i). Single item is being delivered during per order.
(ii). A known constant demand rate of D units per unit time.
(iii). The order quantity (Q) to replenish inventory arrives all at once just when

desired, namely, when the inventory level drops to 0.
(iv). Taking uncertainty under consideration, all the cost components (namely,

ordering cost, holding cost) are taken Type-2 interval-valued.
(v). System deals with a constant lead timewith planned shortages are not allowed

(Fig. 1).

5.3 Model Formulation

The Rate of Change of Inventory Level is Governed by the Differential Equation

dq(t)

dt
= −D (6)

With the conditions
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q(0) = Q and q(T ) = 0. (7)

Solving (6) and using (7), we get

q(t) = D(T − t), 0 ≤ t ≤ T (8)

Type-2 interval-valued ordering cost: O2 = [(OL , OL
)
,
(
OU , OU

)]
.

Tpye-2 interval-valued holding cost: HC2 = ∫ T0
[(
hL , hL

)
,
(
hU , hU

)]
q(t) dt =

1
2

[(
hL , hL

)
,
(
hU , hU

)]
DT 2.

Therefore Type-2 interval-valued average cost is given by

AC2(T ) = 1

T

[(
TC(T ), TC(T )

)
,
(
TC(T ), TC(T )

)]

= 1

2T

[(
hL , hL

)
,
(
hU , hU

)]
DT 2 + [(OL , OL

)
,
(
OU , OU

)]

=
[(

hL DT

2
+ OL

T
,
hL DT

2
+ OL

T

)

,

(
hU DT

2
+ OU

T
,
hU DT

2
+ OU

T

)]

Hence, we obtain a Type-2 interval-valued unconstrained optimization problem

Minimize AC2(T )

Now, the second step parametric form of AC2(T ) is given by
AC2(T, r1, r2, r3)

=
(
hL DT

2
+ OL

T
+ r1

(
h̄L DT

2
+ ŌL

T
− hL DT

2
− OL

T

))

+ r2

⎛

⎜⎜
⎜
⎝

hU DT

2
+ OU

T
+ r3

(
h̄U DT

2
+ ŌU

T
− hU DT

2
− OU

T

)

−hL DT

2
− OL

T
− r1

(
h̄L DT

2
+ ŌL

T
− hL DT

2
− OL

T

)

⎞

⎟⎟
⎟
⎠

(AC2(T ))s1 = AC2(T, 0, 0, 0) + AC2(T, 1, 0, 0) + AC2(T, 1, 1, 0) + AC2(T, 1, 1, 1)

4

=
(
hL + hL + hU + hU

)
DT 2 + 2

(
OL + OL + OU + OU

)

8T

Now, using Theorem 1, we obtain

∇(AC2(T ))s1 = 0

⇒ T ∗ =
√√√√2
(
OL + OL + OU + OU

)

D
(
hL + hL + hU + hU

)
(9)
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Now, ∇2(AC2(T ))s1 = (OL+OL+OU+OU)
2T 3 > 0.

Therefore, using Theorem 2, we get the minimum value of average cost,

AC2
(
T ∗)

min = 1

T

[(
TC
(
T ∗), TC

(
T ∗)),

(
TC
(
T ∗), TC

(
T ∗))]

= 1

2T

[(
hL , hL

)
,
(
hU , hU

)]
DT 2 + [(OL , OL

)
,
(
OU , OU

)]

=
[(

hL DT ∗

2
+ OL

T ∗ ,
hL DT ∗

2
+ OL

T ∗

)

,

(
hU DT ∗

2
+ OU

T ∗ ,
hU DT ∗

2
+ OU

T ∗

)]

(10)

And the optimal initial inventory level is given by

Q∗ = DT ∗ =
√√√√2D

(
OL + OL + OU + OU

)

(
hL + hL + hU + hU

) (11)

5.4 Numerical Illustration

To illustrate the optimal policy of the proposed model, a numerical example is
considered as follows:

Example 5: The values of parameters for these examples are given below:

D = 350,
[(
OL , ŌL

)
,
(
OU , ŌU

)] =[(250, 260), (290, 300)],
[(
hL , h̄L

)
,
(
hU , h̄U

)] = [(3, 4), (7, 8)].

Solution:

The optimal cycle, lot-size, and average cost are obtained by using Eqs. (9)-(11).
The optimal values of these inventory parameters are

T ∗ = 0.142857, Q∗ = 17500.
[(

AC∗
L , AC

∗
L

)
,
(
AC∗

U , AC
∗
U

)]
= [(1825, 1920), (2205, 2300)]
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6 Conclusion

In this chapter, the idea of the parametric representation of the Type-2 interval has
been introduced. Then, using this concept, a new definition of Type-2 interval order
relation has been introduced. Then, optimality conditions (necessary and sufficient)
of an unconstrained Type-2 interval-valued optimization have been derived as an
application of Type-2 interval ranking.

Future research may derive the optimality conditions of non-linear constrained
optimization problems of Type-2 interval-valued functions. Besides one may apply
the concept of this work in the economical modelling, bio-economical modelling
under imprecise circumstances.
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