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Abstract To design reliable systems, the optimization of system reliability (SR)
is a highly concerned topic in the engineering design and industry. The reliability
optimization aims to develop a reliable systemwith higher reliability to perform satis-
factorily under certain conditions and up to a specified period. This chapter considers
the redundancy allocation problem as a highly non-linear and integer programming
constrained optimization problem. To cope up with reality with unpredictability, we
desire to consider the reliabilities of the time-dependent components that lead to a
reliable time-dependent system. Further, to incorporate the fluctuating behaviour of
the system’s controlling parameters and uncertainty of the situations of the envi-
ronment in which the system is operated, we developed the fuzzy model. As the
problem is combinatorial and highly non-linear, we developed and implemented the
hybridizedmetaheuristic technique derived by combiningQPSO, a variant of particle
swarm optimization, and the Big-M penalty technique to find the solution. The crisp
and fuzzy (triangular and pentagonal) models are solved, and the comparative studies
are presented. The statistical computations and the sensitivity studies of the HQPSO
parameters are also presented corresponding to the numerical experiments.
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1 Introduction

During the last few decades, many researchers have shown their keen interest in the
study of reliability optimization. A wide area of applications of reliability design
is observed such as engineering and industry, machine design and productions,
including networking communications and transportations, etc. Also, industrialists
andmachine designers have been showing their interest in reliability theory and prac-
tice as it has many practical applications. Reliability analysis is an important part of
many developmental works in systemdesigning, communication systems, infrastruc-
ture development, etc. System reliability is practically the probability of successful
performance of a system up to a given period under some predetermined conditions.
The reliability components are taken with fixed values in most of the works reported
in the literature. However, it is more realistic to consider the reliability of a system
as a function of time since it undoubtedly decreases with time. In this research area,
some researchers have presented such a genuine attempt in the literature review of
reliability optimization. The reliability practitioners always desire to maximize the
system reliability and the considered system’s lifetime under certain constraints.

Several types of reliability optimization problems have been designed and solved
in the literature such as Redundancy Allocation Problem (RAP), Reliability Redun-
dancy Allocation Problem (RRAP), etc. Most attempts are found in redundancy allo-
cation problems. In this work, our main target is to consider the RAP type of problem
in which redundant components are allocated with regard to some constraints to opti-
mize the system reliability. The renowned researchers like, Tillman et al. (1980), Sun
and Li (2002), Mahapatra and Roy (2011), Mahato et al. (2020), Garg et al. (2014),
Gupta et al. (2009), Mahato et al. (2013), Sahoo et al. (2013), etc. have reported
important contributions in the literature. The heuristic technique in optimal reliability
allocation reported by Nakagawa and Nakashima (1977), the fuzzy environment is
used reliability optimization by Chen (1977), the reduced gradient method utilized
by Hwang et al. (1979), a detailed study of the optimization of the reliability of a
system is done by Tillman et al. (1980), the surrogate constrained algorithm is used
by Nakagawa and Miyazaki (1981). The remarkable researchers such as Chern and
Jan (1986), Misra (1986), Park (1987), Misra and Sharma (1991), Huang (1996),
Sung and Cho (2000), Kuo et al. (2001) Sun and Li (2002), Mahapatra and Roy
(2006, 2009, 2011), Gupta et al. (2009), Bhunia et al. (2010), Sahoo et al. (2010),
Bhattacharyee et al. (2021), etc. are notable in the field of reliability optimization.

The uncertainty concepts such as interval, fuzzy, and intuitionistic fuzzy are intro-
duced and studied by many researchers in the reliability analysis. These studies gave
a new direction in the study of reliabilitymodels. Thesemodels are proved to bemore
realistic in terms of real-life phenomena. The concepts of generalized fuzzy number
(Mahapatra and Roy 2011, 2012; Garg 2013; Mahato et al. 2013; Sahoo et al. 2013,
2014; Mahato et al. 2020), interval number (Bhunia and Sahoo 2011; Mahapatra and
Roy 2012; Sahoo et al. 2012; Mahato et al. 2012), intuitionistic fuzzy (Garg 2013;
Garg and Rani 2013; Garg et al. 2014; Garg 2015; Jamkhaneh 2017, Bhattacharyee
et al. 2021) are introduced and studied in reliability theory.
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The use of soft computing techniques is observed to have a great impact on reli-
abity optimization. Usually, the designed problems are found to be highly non-linear
combinatorial problems and the analytical solutions are very difficult. So to handle
such problems several soft computing algorithms are designed and implemented to
solve reliability optimization problems. Soft computing techniques like, GA, PSO,
and ABC, etc. are proved to be highly effective in finding the optimal reliability
for any type of reliability optimization problems. The works of several researchers
like, Garg (2013), Garg and Rani (2013), Khalili-Damghani et al. (2013), Garg et al.
(2014a, b), Sahoo et al. (2012, 2013, 2014), Garg (2015, 2016, 2017), Gupta et al.
(2009),Mahato et al. (2013, 2020), Bhattacharyee et al. (2021) areworthmentioning.
The list is not exhaustive but there are lots of researchers who have developed and
utilized several algorithms to solve the problems of reliability maximization.

The time-dependent reliability models are also very much relevant in reliability
theory and practice. Tomake themodels more realistic, the reliabilities of the compo-
nents should be considered to be a function of time. Only a few researchers have
designed the reliability models with time-dependent reliability. The works, in this
regard, of Mori and Ellingwood (1993), Hamadani and Khorshidi (2013), Ganza-
lezet al. (2015), Hu and Mahadevan (2015), Mourelatos et al. (2015), Wang et al.
(2015), Zhu and Zhifu (2016), Mostafa (2017), Ahmadivala et al. (2019), Zafar and
Wang (2020), Bhattacharyee et al. (2021), etc. are noteworthy.

This chapter’s main goal is to consider the reliable system having time-varying
component reliabilities and the impreciseness of the environments. We have consid-
ered here the component’s reliabilities to follow exponentially decreasing function of
time. So, the reliability model developed here becomes time-dependent. This work
has included the impreciseness in terms of triangular fuzzy and pentagonal fuzzy
numbers to handle the fluctuating situations, which certainly looks to be more real-
istic. Hence, we have threemodels including the two imprecisemodels, viz., the crisp
model, the triangular fuzzy model, and the pentagonal fuzzy model. We developed a
new soft computing algorithm to solve the problems. The newly proposed algorithm
is named Hybridized Quantum-behaved PSO (HQPSO) which is a variant of PSO
involving the Big-M penalty technique.

Organization of the Chapter

Section 1 Introduction

Section 2 Research Gaps

Section 3 Notation and Assumptions

Section 4 Mathematical Foundations

Subsection 4.1 Relevent Definitions

Subsection 4.2 Method of Defuzzification of Fuzzy Numbers

Section 5 Problem Formulation

Subsection 5.1 The Crisp Model

Subsection 5.2 The Fuzzy Models

(continued)
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(continued)

Section 6 Solution Procedure

Subsection 6.2 Particle Swarm Optimization

Subsection 6.3 Quantum behaved Particle Swarm Optimization (QPSO)

Subsection 6.4 Proposed Hybridized QPSO

Section 7 Numerical Experiments

Section 8 Result Discussions

Section 9 Acknowledgements

2 Research Gaps

It is clearly to be noted from the existing literature that most of the reliability opti-
mization problems focused on precise environments. Some researchers have recently
presented their research on imprecise environments that include interval, fuzzy, intu-
itionistic fuzzy, stochastic, and a mixture of these. Few works in this area are found
to attempt the problems on reliability optimization using GA, PSO, hybridized PSO,
ABCalgorithms,Cuckoo search algorithm, andother heuristic algorithms.Moreover,
in most of the works related to our paper, the reliability components are of constant
values and only a few are observed to consider these as time-varying functions. A
few works are also found to consider the machine design life as the objective func-
tion, and the others have taken system reliability or the cost function as the objective
function.

Again, the problem’s constraints are handled in several ways; only our research
group in this field has incorporated the Big-M penalty method. Thus, we have
been motivated eagerly to formulate a problem in reliability studies which has
the machine design life as the objective function, the reliability component as
exponentially decreasing functions of time, utilize the Big-M penalty technique to
tackle the constraints. We use Simpson’s 1/3 rule to handle the integration to get
the machine design life from system reliability function and develop a hybridized
Quantum-behaved Particle Swarm Optimization due to Big-M penalty method.

3 Notation and Assumptions

Throughout the chapter, we use the symbols described below. Also, the necessary
assumptions to formulate the problem under consideration are given below.
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3.1 Notation

Symbols Meanings
∼
P, P

∧

Triangular and Pentagonal fuzzy number
respectively

μP̃ (x), μ
P
∧(x) Membership function of x ∈ X w.r.t. P̃, P

∧

respectively

Cr1
(
P̃

)
,Cr2(P

∧

) Defuzzified value of the fuzzy number P̃, P
∧

respectively

u = (u1, u2, . . . , u) Redundancy vector (decision variable)

R1(u, λ, t),R̃2

(
u,

∼
λ, t

)
,

R
∧

3

(
u, λ

∧

, t
)

System reliability in crisp, triangular fuzzy
and pentagonal fuzzy forms respectively

M1(u, λ, MT ), M̃2

(
u,

∼
λ, MT

)
, M
∧

3(u, λ
∧

, MT ) MDL in crisp, triangular fuzzy and
pentagonal fuzzy forms respectively

g1 j (u), g̃2 j (u), g
∧

3 j (u) Constraints usability functions in crisp,
triangular fuzzy and pentagonal fuzzy
environments

b1 j ,b̃2 j , b
∧

3 j Availability of resources of j-th constraint in
crisp, triangular fuzzy and pentagonal fuzzy
environments

l1i , l2i Lower bound and upper bound of ui

Ssi ze Swarm size in QPSO

f (pi ) Value of fitness function of i-th particle in its
best position

m(z)
i Mean best position of j-thcomponent at z-th

iteration

m(z) Mean best position vector at z-th iteration

x (z)
i j
:

The position of i-thparticle in the j-th swarm
at z-th iteration

A(z)
i j Local attractor of the j-th component of the

i-th particle at z-th iteration

Mg Maximum number of generations

n Dimension of the variables

FR Feasible region
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3.2 Assumptions

To develop our proposed model, we have careful into consideration of the assump-
tions given here:

(i) The proposed system is a series–parallel system.
(ii) At a particular stage, the subsystem contains identical components.
(iii) Without any repair, the redundancies are always active.
(iv) Reliability of each component is an exponentially decreasing function of

time.
(v) The MDL function is defined as the integral of system reliability.
(vi) Component failure in each subsystemmight not be tantamount to the system

to its failure.
(vii) Throughout all environments, the control parameters are well known, viz.

crisp and fuzzy (triangular and pentagonal).
(viii) Fuzzy numbers (triangular and pentagonal) are of linear type.

4 Mathematical Foundations

4.1 Relevant Definitions

Definition 4.1: The fuzzy set is the pair (x,μP̃(x)), where x ∈ X and μP̃(x):X →
[0, 1], X being the universe of discourse and it is represented as P̃={(x,μP̃(x)): x ∈
X}, where μP̃(x) denotes the membership function of x ∈ X w.r.t. P̃ .

Definition 4.2: The fuzzy set P̃ becomes convex iff μP̃(λx1 + (1 − λ)x2) ≥
min{μP̃(x1), μP̃(x2)}, for all x1, x2 ∈ X , where λ ∈ [0, 1].
Definition 4.3: The fuzzy set P̃ becomes normal if μP̃(x) = 1, for some x ∈ X .

Definition 4.4: A fuzzy set becomes a fuzzy number provided it is (Fig. 1).

(i) Normal
(ii) convex

The membership function of a fuzzy number P̃ can be described as

μP̃(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

l(x),p1 ≤ x < p2
1, p2 ≤ x ≤ p3
u(x),p3 < x ≤ p4
0, otherwise.
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Fig. 1 General fuzzy number

l(x) and u(x) being the left and right shape functions, respectively.

Definition 4.5: Linear Triangular Fuzzy Number (LTFN)
An LTFN P̃ is represented by the triplet (p1, p2, p3) and can be defined by the
continuous membership function μP̃(x) : X → [0, 1] as follows:

μP̃(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x − p1
p2 − p1

if p1 ≤ x ≤ p2

1 if x = p2
p3 − x

p3 − p2
if p2 ≤ x ≤ p3

0 otherwise.

Definition 4.6: Linear Pentagonal Fuzzy Numbe (LPtFN)
A fuzzy pentagonal number P

∧

= (p1,p2,p3,p4,p5) satisfies the conditions given
below:

(1) it has the continuous membership function μ
P
∧(x) in [0,1]

(2) the membership function μ
P
∧(x) is strictly non-decreasing in [p1,p2] and [p2,

p3]
(3) the membership function μ

P
∧(x) is strictly non-increasing in [p3, p4] and [p4,

p5] (Figs. 2 and 3)

4.2 Method of Defuzzification of Fuzzy Number

There are several methods of defuzzification available in the literature. The most
commonly used technique for defuzzification of a fuzzy number is the centre of area
(COA) method.
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Fig. 2 Linear triangular fuzzy number

Fig. 3 Linear pentagonal fuzzy number

Let the fuzzy number P̃ has a continuous membership function μP̃(x) then the
COA formula for crispification is defined as follows (Mahato and Bhunia 2016).

Cr1
(
P̃

)
=

∫
μP̃ (x)xdx∫
μP̃ (x)dx

.

4.2.1 Crispification Formula for Linear Triangular Fuzzy Number

The crispification formula for Linear Triangular Fuzzy Number P̃ = (p1, p2, p3)
can be defined as (Mahato and Bhunia 2016)

Cr1(P̃) = (p1 + p2 + p3)/3.

Example 4.1: For P̃ = (2, 3, 4), p1 = 2, p2 = 3, p3 = 4, so

Cr1(P̃) = 1
3 (p1 + p2 + p3)

= 1
3 (2 + 3 + 4)

= 3
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Example 4.2: For P̃ = (1.6, 2.9, 3.8)p1 = 1.6, p2 = 2.9, p3 = 3.8 and so

Cr1(P̃) = 1
3 (p1 + p2 + p3)

= 1
3 (1.6 + 2.9 + 3.8)

= 2.7666666667

4.2.2 Crispification Formula for Linear Pentagonal Fuzzy Number

The crispification formula for Linear Pentagonal Fuzzy Number P
∧

=
(p1,p2,p3,p4,p5) is defined as (Mahato and Bhunia 2016)

Cr2(P
∧

) = p25+p24+p5 p4−p1 p2−p22−p21
3(p5+p4−p2−p1)

Example 4.3: For P
∧

= (1, 2, 3, 4, 6), p1 = 1, p2 = 2, p3 = 3, p4 = 4, p5 = 6 and
so

Cr2(P
∧

) = p25+p24+p5 p4−p1 p2−p22−p21
3(p5+p4−p2−p1)= 3.2857142857

Example 4.4: For P
∧

= (2.5, 3.3, 4.4, 5.8, 6.4), p1 = 2.5, p2 = 3.3, p3 = 4.4, p4
= 5.8, p5 = 6.4 and so

Cr2(P
∧

) = p25+p24+p5 p4−p1 p2−p22−p21
3(p5+p4−p2−p1)

= 4.496354

5 Problem Formulation

This section covers the formulation of a series–parallel reliability redundancy
allocation problem using the fact that the components have time-dependent reli-
abilities (Bhattacharyee et al. 2021). It is supposed that the reliability compo-
nents obey exponential distributions, leading to the reliability of the system being
time-dependent.

Moreover, we are inspired for considering the mission design life and desire to get
the maximum value of the system reliability with a proper choice of the redundancy
allocation vector. Evidently, it is better not to take the controlling parameters as fixed
numbers by some deterministic rule but to consider these as imprecise numbers to
retain the reliable system’s unpredictable nature. The parameters’ estimated values
cannot be predicted precisely due to the reliability system’s fluctuating character. This
unpredictable situation can be handled by considering the impreciseness in terms of
fuzzy, intuitionistic fuzzy, interval, stochastic, or combination. In the fuzzy approach,
we need to know the membership function for a given fuzzy number, while for an
intuitionistic fuzzy approach, we should know both the membership function and the
non-membership function. For the intervalmethod, the parameters are taken as closed
intervals. Some known probability distributions are taken in the stochastic approach.
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Fig. 4 Series–parallel system with n-stages

In this work, we assume the impreciseness/vagueness in the form of fuzzy numbers
(TFN and PtFN). Thus, depending upon the nature of the controlling parameters, we
develop three models corresponding to the series-parallelsystem (Fig. 4).

5.1 The Crisp Model

To solve the redundancy allocation problem (RAP) with time-varying reliability,
we considered the reliability component following the exponential failure rate and
time-dependent component reliability function. We have considered a system with n
subsystems connected in series, and each subsystem consists of ui (i = 1, 2, . . . , n)
the number of active redundant components which are identical.

Let the failure density function be fi (t) = λi e−λi t and the reliability function
of each component of the i-th subsystem be ri (t) = e−λi t , t > 0, λi is constant,
i = 1, 2, . . . , n.

Then using the combinatorial theory of probability, the reliability of the series–
parallel system (Fig. 4) becomes R1(u, t; λ) = ∏n

i=1

[
1 − (1 − e−λi t )ui

]
.

To fulfil the aims like mission time, i.e. the system’s non-stop successful func-
tioning, cost-effectiveness, etc. the design is to be done suitably. TheMission Design
Life (MDL) function is defined as (Mostafa et al. 2017; Bhattacharyee et al. 2021)

M1(u, λ, MT ) = ∫ MT

0 R1(u, λ, t)dt .
It is easily understood that the optimization problem of maximizing the system

reliability R1(u, λ, t) is equivalent to maximizing M1(u, λ, MT ). For the known
parameters λ and MT , the optimization problem can be stated as,

Maximize M1(u, λ, MT ) =
∫ MT

0
R1(u, λ, t)dt
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=
∫ MT

0

(
n∏

i=1

[
1 − (1 − e−λi t )ui

]
)

dt

subject to (1)

g1 j (u1, u2, . . . , un) ≤ b1 j , j = 1, 2, . . . ,m

l1i ≤ yi ≤ l2i , i = 1, 2, . . . , n

u = (u1, u2, . . . , un) being the redundancy vector, ui is a non-negative integer
representing the redundancy level of the i-th component.

5.2 The Fuzzy Models

The two fuzzy models in a fuzzy environment are developed in which the control
parameters are taken as linear triangular fuzzy numbers (LTFN) and linear pentagonal
fuzzy numbers (LPtFN) with linear membership functions. Thus, the fuzzy models
can be stated as:

5.2.1 Triangular Fuzzy Model

Maximize
∼
M
2

(u,
∼
λ, MT ) =

∫ MT

0
R2(u,

∼
λ, t)dt

=
∫ MT

0

(
n∏

i=1

[

1 − (1 − e
− ∼

λ
i
t
)ui

])

dt

subject to (2)

g̃2 j (u1, u2, . . . , un) ≤ b̃2 j , j = 1, 2, . . . ,m

l1i ≤ ui ≤ l2i , i = 1, 2, . . . , n

u = (u1, u2, . . . , un) being the redundancy vector, ui is a nonnegative integer
representing the redundancy level of the i-th component.
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5.2.2 Pentagonal Fuzzy Model

Maximize M̂2(u, λ̂, MT ) =
∫ MT

0
R̂3(u, λ̂, t)dt

=
∫ MT

0

(
n∏

i=1

[
1 − (1 − e−λ̂i t )ui

]
)

dt

subject to (3)

g
∧

3 j (u1, u2, . . . , un) ≤ b
∧

3 j , j = 1, 2, . . . ,m

l1i ≤ ui ≤ l2i , i = 1, 2, . . . , n

u = (u1, u2, . . . , un) being the redundancy vector, ui is a non-negative integer
representing the redundancy level of the i-th component.

6 Solution Procedure

The objective functions in problems (1), (2) and (3) all are highly non-linear and the
problems are combinatorial optimization problems. The objective functions are to be
maximized that involve the integration of the system reliability of a series–parallel
system. The integration is quite difficult to evaluate analytically so the Simpson’s
1/3 rule is utilized to evaluate the approximate integral value.

6.1 Particle Swarm Optimization (PSO)

Kennedy and Eberhart (1995) reported the new algorithm as being inspired by the
social behaviours of fish schooling and birds flocking. This is known as the PSO
algorithms and proved to be efficient enough in solving global optimization problems.
In this algorithm, every solution of the swarm is represented as bird/fish like particles
and they have the liberty to fly throughout the solution space with the common goal
to land on or near of the optimal position. The position of each particle is updated by
the combined knowledge of the individual and the group of the swarm. Each particle
remembers its personal best (pbest) along with the group best position or global best
(gbest).

Let us take,
x (z)
i =

(
x (z)
i1 , x (z)

i2 , ..., x (z)
in

)
, as the current position

vz
i =

(
v

(z)
i1 , v

(z)
i2 , ..., v

(z)
in

)
, as the current velocity
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pzi =
(
p(z)
i1 , p(z)

i2 , ..., p(z)
in

)
, as the pbest position

p(z)
g =

(
p(z)
g1 , p(z)

g2 , ..., p(z)
gn

)
, as the gbest position respectively at the z-th iteration

of the i-th swarm.

Then the updation formulae for the velocity and position of the i-th particle in the
j-th direction at the z-th iteration are given by

v
(z+1)
i j = v

(z)
i j + c1r

(z)
1 j

(
p(z)
i j − x (z)

i j

)
+ c2r

(z)
2 j

(
p(z)
g j − x (z)

i j

)
(5)

x (z+1)
i j = x (z)

i j + v
(z+1)
i j (6)

where i = 1, 2, . . . , Ssize; j = 1, 2, . . . , n;z = 1, 2, . . . , Mg;c1(> 0), c2(> 0) are
the acceleration coefficients and r (z)

1 j , r (z)
2 j ∼ U (0, 1).

6.2 Quantum Behaved Particle Swarm Optimization (QPSO)

The strategies done by traditional PSO completely fail in quantum space because the
velocity and position cannot be specified concurrently according to ‘Heisenberg’s
Uncertainty Principle’. So it needs to describe the particles in terms of the wave
function.Whilemoving in the quantum space, the wave functionψ(x, t)must satisfy
the Schrödinger wave equation and by solving the equation, we get the density
function | ψ |2. Utilizing theMonte Carlo technique, the updating formula is obtained
as stated below

x (z+1)
i j = A(z)

i j + β

∣
∣
∣x (z)

i j − m(z)
j

∣
∣
∣ log

(
1

u(z)
i j

)

i f r ≥ 0.5 (7)

x (z+1)
i j = A(z)

i j − β

∣
∣
∣x (z)

i j − m(z)
j

∣
∣
∣ log

(
1

u(z)
i j

)

i f r < 0.5 (8)

where A(z)
i j = φ j p

(z)
i j + (1 − φ j )p

(z)
g j ,

m(z) = averages of all pbest positions

=
(
m(z)

1 ,m(z)
2 , ... ,m(z)

n

)

=
(

1
Ssize

Ssize∑

i=1

p(z)
i1 , 1

Ssize

Ssize∑

i=1

p(z)
i2 , ..., 1

Ssize

Ssize∑

i=1

p(z)
in

)

(9)

β = expansion contraction parameter
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u(z)
i j , r are random numbers in (0,1).

6.3 Proposed Hybridized QPSO (HQPSO)

In order to use the QPSO after combing with the Big-M penalty, we have modified
the QPSO algorithm and developed the hybrid form of it. This hybrid algorithm
combines the features of the QPSO and the Big-M penalty technique. The Big-M
penalty function techniques has the capability to wipe out the infeasible solutions
from the search region reducing the constrained optimization into unconstrained one.
This is similar to the notion that the particles will never search for food in the points
once observed not to contain any food. We have developed the HQPSO especially
to solve the pure integer programming problems of combinatorial type involving
the integration of highly non-linear integrand. The constrained optimization prob-
lems can easily be solved by implementing this new HQPSO. In the Big-M penalty
method, a very big/small value is assigned as the fitness value corresponding to the
infeasible points/positions according to the problem (minimization/maximization).
In thismethod, the infeasible points/positions are never revisited and so the efficiency
of the algorithm increases with quick convergence in the feasible region

FR = {
u = (u1, u2, ..., un) : g1 j (u1, u2, ..., un) ≤ b1 j ; j = 1, 2, ..., n

}
.

The iterative steps of HQPSO are given.

Step 1: Start
Step 2: Initialize QPSO parameters and also the bounds of the variables
Step 3: Create a random particles’ swarm, i.e. randomly generate
Xi j ( i = 1(1)Ssize; j = 1(1)n)

Step 4: Set this initial positions as pbest position i.e. pi = xi for i = 1,2,…, Ssize
Step 5: Determine gbest position, g = arg(max ( f (pi ))) for i = 1(1) Ssize
Step 6: Set z = 1
Step 7: Calculate mean best position m using Eq. (9)
Step 8: Generate φ = rand(0, 1)
Step 9: Compute local attractor Ai j = φpi j + (1 − φ)pgj
Step 10: Generate r = rand(0, 1)

Step 11: If r > 0.5, xi j = Ai j + β
∣
∣m j − xi j

∣
∣ln( 1

ui j
)

Step 12: Otherwise, xi j = Ai j − β
∣
∣m j − xi j

∣
∣ln( 1

ui j
)

Step 13: If f (xi ) ∈ FR assign f (xi ) = −M
Step 14: If f (pi ) < f (xi ), set pi = xi
Step 15: Otherwise, g = arg(max( f (pi )))
Step 16: if z <Mg, z = z + 1 and follow Step 7
Step 17: Otherwise, print the result
Step 18: Stop.
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7 Numerical Experiments

For the illustration of themethodology,we have considered three numerical examples
given below (Bhattacharyee et al. 2021). These examples are provided with crisp
data. The input data for the triangular and pentagonal fuzzy models can be found
in Tables 1, 2, 3, 4, 5 and 6, respectively. The defuzzified data are computed by the
formulae described in Sect. 4.2 (Tables 7, 8, 9, 10, 11 and 12).

Example 1: Crisp Form

MaximizeM1(u, λ, MT ) =
∫ MT

0
R1(u, λ, t)dt

where R1(u, λ t) =
(

4∏

i=1

[
1 − (1 − e−λi t )ui

]
)

subject to

Cs =
4∑

i=1

ciui ≤ C

Ws =
4∑

i=1

wi ui ≤ W

Table 1 Data for Example 1 (LTFN)

i
∼
λi (×10−4)

∼
ci

∼
wi

1 (9.415,9.431,9.446) (0.2,1.2,2.4) (3,5,6)

2 (5.118,5.129,5.138) (2.0,2.3,2.8) (2,4,5)

3 (8.323,8.338,8.349) (3.0,3.4,3.9) (6,8,9)

4 (16.151,16.252,16.354) (4.0,4.5,4.8) (5,7,8)

C̃= (50,56,60); W̃= (113,120,125)

Table 2 Data for Example 1 (LPtFN)

i λ
∧

i (×10−4) c
∧

i w
∧

i

1 (9.102,9.415,9.431,9.446,9.521) (0.1,0.2,1.2,2.4,2.6) (2,3,5,6,8)

2 (5.108,5.118,5.129,5.138,5.141) (1.8,2.0,2.3,2.8,2.9) (1,2,4,5,6)

3 (8.320,8.323,8.338,8.349,8.356) (2.7,3.0,3.4,3.9,4.1) (4,6,8,9,10)

4 (16.143,16.151,16.252,16.354,16.361) (3.7,4.0,4.5,4.8,4.9) (3,5,7,8,10)

C
∧

= (48,50,56,60,63); W
∧

= (111,113,120,125,129)
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Table 3 Data for Example 2 (LTFN)

i
∼
λi (×10−4)

∼
vi

∼
ci

∼
wi

1 (9.415,9.431,9.446) (0.15,1.0,1.48) (6.4,7.0,7.7) (6.7,7.0,7.6)

2 (5.118,5.129,5.138) (1.4,2.0,2.7) (6.5,7.0,7.8) (7.8,8.0,8.4)

3 (8.323,8.338,8.349) (2.4,3.0,3.8) (4.8,5.0,5.6) (7.5,8.0,8.3)

4 (16.151,16.252,16.354) (3.6,4.0,4.8) (8.3,9.0,9.5) (5.1,6.0,6.7)

5 (7.147,7.257,7.361) (1.6,2.0,2.7) (3.4,4.0,4.7) (8.7,9.0,9.7)

Ṽ= (103,110,123); C̃ = (167, 175, 188); W̃= (178,200,227)

ui ∈ Z+, ri (t) = e−λi t , i = 1, 2, 3, 4; MT = 100hrs,

C = 56, c = (c1, c2, c3, c4) = (1.2, 2.3, 3.4, 4.5),

W = 120, w = (w1, w2, w3, w4) = (5, 4, 8, 7)

λ = (λ1, λ2, λ3, λ4) = (0.0009431, 0.0005129, 0.0008338, 0.0016252).

Example 2: Crisp Form

MaximizeM1(u, λ, MT ) =
∫ MT

0
R1(u, λ, t)dt

where R1(u, λ t) =
(

5∏

i=1

[
1 − (1 − e−λi t )ui

]
)

subject to

Vs =
5∑

i=1

vi u
2
i ≤ V

Cs =
5∑

i=1

ci [ui + e
ui
4 ] ≤ C

Ws =
5∑

i=1

wi [uie
ui
4 ] ≤ W

ui ∈ Z+, ri (t) = e−λi t , i = 1, 2, 3, 4, 5; MT = 100hrs,
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Table 5 Data for Example 3 (LTFN)

i
∼
λi (×10−4)

∼
ci

∼
wi

1 (9.415,9.431,9.446) (3,5,6) (2,5,6)

2 (5.118,5.129,5.138) (2,4,7) (3,4,7)

3 (8.323,8.338,8.349) (8,9,11) (7,9,10)

4 (16.151,16.252,16.354) (5,7,8) (6,7,8)

5 (7.147,7.257,7.361) (4,7,9) (5,7,10)

6 (2.015,2.020,2.027) (4,5,8) (4,5,7)

7 (9.422,9.431,9.448) (5,6,9) (3,6,8)

8 (21.054,21.072,21.083) (7,9,10) (6,9,11)

9 (4.071,4.082,4.093) (2,4,5) (2,4,5)

10 (16.241,16.252,16.354) (4,5,7) (4,5,7)

11 (6.173,6.188,6.197) (5,6,8) (5,6,8)

12 (23.562,23.572,23.579) (4,7,8) (5,7,8)

13 (1.001,1.005,1.016) (7,9,10) (6,9,10)

14 (5.109,5.129,5.137) (6,8,11) (7,8,11)

15 (23.561,23.572,23.583) (3,6,8) (4,5,7)

C̃= (376,400,460); W̃= (375,414,475)

Table 6 Data for Example 3 (LPtFN)

i λ
∧

i (×10−4) c
∧

i w
∧

i

1 (9.414,9.415,9.431,9.446,9.449) (1,3,5,6,7) (1,2,5,6,7)

2 (5.108,5.118,5.129,5.138,5.140) (1,2,4,7,8) (2,3,4,7,8)

3 (8.320,8.323,8.338,8.349,8.354) (7,8,9,11,12) (5,7,9,10,12)

4 (16.142,16.151,16.252,16.354,16.359) (3,5,7,8,9) (4,6,7,9,10)

5 (7.144,7.147,7.257,7.361,7.363) (3,4,7,9,11) (4,5,7,10,12)

6 (2.008,2.015,2.020,2.027,2.029) (2,4,5,8,11) (3,4,5,7,9)

7 (9.415,9.422,9.431,9.448,9.451) (1,5,6,9,10) (1,3,6,8,10)

8 (21.049,21.054,21.072,21.083,21.085) (5,7,9,10,12) (4,6,9,11,12)

9 (4.068,4.071,4.082,4.093,4.095) (1,2,4,5,7) (1,2,4,5,7)

10 (16.235,16.241,16.252,16.354,16.359) (1,4,5,7,9) (3,4,5,7,8)

11 (6.171,6.173,6.188,6.197,6.199) (4,5,6,8,9) (3,5,6,8,9)

12 (23.555,23.562,23.572,23.579,23.582) (3,4,7,8,10) (4,5,7,8,9)

13 (1.000,1.001,1.005,1.016,1.018) (5,7,9,10,11) (4,6,9,10,11)

14 (5.107,5.109,5.129,5.137,5.139) (4,6,8,11,12) (4,7,8,11,13)

15 (23.559,23.561,23.572,23.583, 23.585) (1,3,6,8,11) (3,4,5,7,9)

C
∧

= (371,376,400,460,465); W
∧

= (368,375,414,475,482)
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Table 7 Crispified data for Example 1 (LTFN)

i
∼
λi (×10−4)

∼
ci

∼
wi

1 9.430667 1.266667 4.666667

2 5.128333 2.366667 3.666667

3 8.336667 3.433333 7.666667

4 16.25233 4.433333 6.666667

C̃= 55.33333; W̃= 119.3333

Table 8 Crispified data for Example 1 (LPtFN)

i λ
∧

i (×10−4) c
∧

i w
∧

i

1 9.353899 1.325532 4.777778

2 5.126107 2.373684 3.50000

3 8.337054 3.423188 7.222222

4 16.25225 4.346667 6.50000

C
∧

= 55.26667; W
∧

= 119.533

Table 9 Crispified data for Example 2 (LTFN)

i
∼
λi (×10−4)

∼
vi

∼
ci

∼
wi

1 9.430667 0.876667 7.033333 7.10000

2 5.128333 2.033333 7.10000 8.066667

3 8.336667 3.066667 5.133333 7.933333

4 16.25233 4.133333 8.933333 5.933333

5 7.25500 2.10000 4.033333 9.133333

Ṽ= 112; C̃ = 176.6667; W̃= 201.6667

Table 10 Crispified data for Example 2 (LPtFN)

i λ
∧

i (×10−4) v
∧

i c
∧

i w
∧

i

1 9.429454 0.81500 7.075862 7.176812

2 5.126124 2.05000 7.124138 8.126667

3 8.335745 3.074194 5.173016 7.926984

4 16.25275 4.2 8.926437 5.925714

5 7.253245 2.123457 4.023656 9.173333

V
∧

=113; C
∧

= 177.2303;W
∧

= 202.5
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Table 11 Crispified data for
Example 3 (LTFN) i

∼
λi (×10−4)

∼
ci

∼
wi

1 9.430667 4.666667 4.333333

2 5.128333 4.333333 4.666667

3 8.336667 9.333333 8.666667

4 16.25233 6.666667 7.333333

5 7.25500 6.666667 7.333333

6 2.020667 5.666667 5.333333

7 9.433667 6.666667 5.666667

8 21.06967 8.666667 8.666667

9 4.08200 3.666667 3.666667

10 16.28233 5.333333 5.333333

11 6.18600 6.333333 6.333333

12 23.5710 6.333333 6.666667

13 1.007333 8.666667 8.333333

14 5.12500 8.333333 8.666667

15 23.57200 5.666667 5.333333

C̃= 412; W̃= 421.3333

Table 12 Crispified data for
Example 3 (LPtFN) i λ

∧

i (×10−4) c
∧

i w
∧

i

1 9.43101 2.222222 4.000000

2 5.125846 4.500000 5.000000

3 8.336522 9.500000 8.500000

4 16.25149 6.222222 7.222222

5 7.253749 6.769231 7.769231

6 2.019636 6.282051 5.777778

7 9.433946 6.153846 5.500000

8 21.06772 8.500000 8.230769

9 4.081741 3.777778 3.777778

10 16.29725 4.666667 5.500000

11 6.185000 6.500000 6.222222

12 23.56942 6.272727 6.500000

13 1.008758 8.222222 7.727273

14 5.123000 8.230769 8.717949

15 23.57200 5.777778 5.777778

C
∧

= 418; W
∧

= 425
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V = 110, v = (v1, v2, v3, v4, v5) = (1, 2, 3, 4, 2),

C = 175, c = (c1, c2, c3, c4, c5) = (7, 7, 5, 9, 4),

W = 200, w = (w1, w2, w3, w4, w5) = (7, 8, 8, 6, 9)

λ = (λ1, λ2, λ3, λ4, λ5) = (0.0009431, 0.0005129, 0.0008338, 0.0016252, 0.0007257).

Example 3: Crisp Form

MaximizeM1(u, λ, MT ) =
∫ MT

0
R1(u, λ, t)dt

where R1(u, λ t) =
(

15∏

i=1

[
1 − (1 − e−λi t )ui

]
)

subject to

Cs =
15∑

i=1

ciui ≤ C

Ws =
15∑

i=1

wi ui ≤ W

ui ∈ Z+, ri (t) = e−λi t , i = 1, 2, . . . , 15, MT = 100hrs,C = 400,

c = (c1, c2, . . . , c15) = (5, 4, 9, 7, 7, 5, 6, 9, 4, 5, 6, 7, 9, 8, 6),

W = 414, w = (w1, w2, . . . , w15) = (5, 4, 9, 7, 7, 5, 6, 9, 4, 5, 6, 7, 9, 8, 5)

λ = (λ1, λ2, . . . , λ15) =
⎛

⎜
⎝

0.0009431, 0.0005129, 0.0008338, 0.0016252, 0.0007257,
0.0002020, 0.0009431, 0.0021072, 0.0004082, 0.0016252,
0.0006188, 0.0023572, 0.0001005, 0.0005129, 0.0023572

⎞

⎟
⎠.
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8 Result Discussions

Here, we have formulated and solved three numerical experiments for testing the
efficiency of our proposed method to maximize the MDL as well as to maximize
reliability of the system under optimal redundancies. In this work, we have executed
30 independent runs for each numerical problem with the help of HQPSO algorithm
coded in C+ + in a notebook with Intel i3 processor, 4 GB RAM in Linux operating
system. To study the robustness, we have procured the results to identify the best and
worst values of MDL, its average value, standard deviation and the execution time
along with the corresponding system reliability. In this HWQPSO, the population
size and the maximum number of generations for the three experiments are taken
respectively as 70, 100; 80, 150 and 300, 700.

From Tables 13, 14, and 15, we can see the results of problems 1, 2, and 3, respec-
tively. It is evident that the respective standard deviations are 0, 0, and 0.0023557.
Figures 5, 6 and 7, respectively, show convergence history of the objective func-
tions (MDL) in crisp form as stable w.r.t. the number of generations in wide range.
Table 16 presents the comparative results of Example 1 in crisp, triangular fuzzy,
and pentagonal fuzzy cases indicating that it achieved the best result in PtFN case.
From Table 17, the comparative results of Example 2 can be seen and it is noticed
that the best result corresponds to PtFN case. The comparative results of Example 3
are given in Table 18 indicating that the best output is obtained in PtFN case.

Table 13 Statistical results for a crisp form of Example 1 (Ssize-70, Maxgen-100)

Best Worst Average Standard deviation Average running
time

99.9987559819 99.9987559819 99.9987559819 0 0.068688

Table 14 Statistical results for a crisp form of Example 2 (Ssize-80, Maxgen-150)

Best Worst Average Standard deviation Average running
time

98.4880171489 98.4880171489 98.4880171489 0 0.0729564

Table 15 Statistical results for a crisp form of Example 3 (Ssize-100, Maxgen-200)

Best Worst Average Standard deviation Average running
time

99.9774303072 99.9684707239 99.97656270762 0.0023557 5.623954
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Fig. 5 Convergence history of MDL of Example 1 (crisp form) using HQPSO
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Fig. 6 Convergence history of MDL of Example 2 (crisp form) using HQPSO
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Fig. 7 Convergence history of MDL of Example 3(crisp form) using HQPSO
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Table 16 Comparative results for Example 1

i Ri ui MDL∗ SR∗ CPU Time (s)

Crisp Case

1 0.999994 5 99.9987559819 0.9999355000 0.069200

2 0.999994 4

3 0.999959 4

4 0.999989 6

Triangular Fuzzy Case

1 0.999994 5 99.9987565642 0.9999355280 0.054976

2 0.999994 4

3 0.999959 4

4 0.999989 6

Pentagonal Fuzzy Case

1 0.999994 5 99.9987605507 0.999935757 0.051477

2 0.999994 4

3 0.999959 4

4 0.999989 6

Table 17 Comparative results for Example 2

i Ri ui MDL∗ SR∗ CPU Time (s)

Crisp Case

1 0.991900 2 98.4880171489 0.9562601906 0.068281

2 0.997500 2

3 0.993600 2

4 0.977500 2

5 0.995100 2

Triangular Fuzzy Case

1 0.991901 2 98.4881801367 0.9562648909 0.071150

2 0.997501 2

3 0.993602 2

4 0.977499 2

5 0.995103 2

Pentagonal Fuzzy Case

1 0.991903 2 98.4884012663 0.9562712705 0.072423

2 0.997503 2

3 0.993604 2

4 0.977498 2

5 0.995105 2



13 Optimization of System Reliability with Time-Dependent … 249

Table 18 Comparative results for Example 3

i Ri ui MDL∗ SR∗ CPU Time (s)

Crisp Case

1 0.999934 4 99.9774303072 0.9989171631 6.184960

2 0.999994 4

3 0.999959 4

4 0.999924 5

5 0.999976 4

6 0.999992 3

7 0.999934 4

8 0.999752 5

9 0.999936 3

10 0.999924 5

11 0.999987 4

12 0.999914 6

13 0.999900 2

14 0.999875 3

15 0.999914 6

Triangular Fuzzy Case

1 0.999934 4 99.9811300948 0.9991167640 4.947174

2 0.999994 4

3 0.999959 4

4 0.999924 5

5 0.999976 4

6 0.999992 3

7 0.999934 4

8 0.999753 6

9 0.999936 3

10 0.999923 5

11 0.999987 4

12 0.999914 6

13 0.999900 2

14 0.999875 3

15 0.999914 6

Pentagonal Fuzzy Case

1 0.999934 4 99.9890618878 0.9993957023 4.844208

2 0.999994 4

3 0.999959 4

(continued)
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Table 18 (continued)

i Ri ui MDL∗ SR∗ CPU Time (s)

4 0.999924 5

5 0.999976 4

6 0.999992 3

7 0.999934 4

8 0.999953 6

9 0.999997 4

10 0.999923 5

11 0.999987 4

12 0.999914 6

13 0.999999 3

14 0.999994 4

15 0.999914 6

9 Conclusions and Future Directions

This work explores a more realistic and practical form of redundancy allocation
problem where time-dependent reliabilities for the components in decreasing expo-
nential function are considered.Weuse themission design life (MDL) as the objective
function rather than the traditional system reliability. Integrating the system relia-
bility between zero (0) and mission time (MT ), the MDL is obtained. The objective
function, MDL is then maximized along with the system reliability under optimal
redundancy allocations (Fig. 8 and Tables 19, 20, 21).

Table 19 Best found solution of Example 1 (LPtFN case). [Popsize-70; Maximum generations-
100]

x1 x2 x3 x4 R1 R2 R3 R4 Mission Design
Life

System
Reliability

5 4 4 6 0.999994 0.999994 0.999959 0.999989 99.9987605507 0.999935757

Table 20 Worst found a solution of Example 1 (LPtFN case). [Popsize-70; Maximum generations-
100]

x1 x2 x3 x4 R1 R2 R3 R4 Mission Design
Life

System
Reliability

5 4 4 6 0.999994 0.999994 0.999959 0.999989 99.9987605507 0.999935757
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Table 21 Statistical data for Example 1 (LPtFN case)

Best Worst Average Standard deviation Average running
time

99.9987605507 99.9987605507 99.9987605507 0 0.064034
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Fig. 8 Convergence history of MDL of Example 1 (LPtFN case) using HQPSO

The two fuzzy models (triangular fuzzy and pentagonal fuzzy) are developed to
show the effects of uncertainty along with the crisp one of the reliability system.
To evaluate the MDL as an integral of the quite complex integral, Simpson’s 1/3
rule is utilized. A new PSO algorithm is developed by combining the characteristics
of QPSO and the Big-M penalty technique. This hybridized algorithm HQPSO is
implemented for solving the three numerical examples under consideration in three
different forms, namely crisp, triangular fuzzy, and pentagonal fuzzy. The perfor-
mance of the proposed algorithm is well established in these experiments (Fig. 9 and
Tables 22, 23, 24).
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Table 24 Statistical data for Example 2 (LPtFN case)

Best Worst Average Standard deviation Average running
time

98.4884012663 98.4884012663 98.4884012663 0 0.084681
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Fig. 9 Convergence history of MDL of Example 2 (LPtFN case) using HQPSO

The proposed methodology for maximizing MDL can be applied in the field of
reliability optimization, system design, engineering design, industrial problems, etc.
Soft computing techniques like GA, ABC algorithm, DE, Taboo search, Cuckoo
search, Neural Network, Tournament-based PSO, etc. can be employed to solve this
kind of problem. To consider the uncertainty, several other imprecise environments
can be considered (Fig. 10 and Tables 25, 26, 27).
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Table 27 Statistical data for Example 3 (LPtFN case)

Best Worst Average Standard deviation Average running
time

99.9890618878 99.9859984351 99.9885610794 0.000616189 5.91237
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Fig. 10 Convergence history of MDL of Example 3 (LPtFN case) using HQPSO
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