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Descriptions of Dislocation via First e
Principles Calculations

Tomohito Tsuru

5.1 Introduction

Dislocation, a line defect in which atoms are out of the lattice position in the crystal
structure, is one of the most representative “plastons”. A mathematical description
of the elastic field of the singularity created by cutting and shifting a continuous
body was first developed by Volterra in 1907 (Volterra 1907). Since Taylor, Orowan,
and Polanyi predicted the existence of dislocation to explain plastic deformation
(Taylor 1934; Orowan 1934; Polanyi 1934), dislocations have been regarded as the
most important lattice defects in plastic deformation, especially in metallic materials.
The fundamental properties of the dislocation core have a dominant influence on the
intrinsic ductility or brittleness of materials. The interaction between dislocations and
other crystal defects plays a critical role in determining the mechanical properties of
metals. The classical strengthening mechanism was developed by this major premise,
and the mechanical properties of metals have been developed by understanding and
controlling the dislocation behavior.

While continuum theory expresses an excellently long-ranged elastic field of a
dislocation, it breaks down owing to the singularity near the dislocation core. With
improvements in computer technology, atomic scale simulations such as molec-
ular dynamics have been implemented to explore the relation between the dynamic

In this Chapter, DFT calculations were carried out using the Vienna ab initio simulation package
(VASP) (Kresse and Hafner 1993; Kresse and Furthmuller 1996) with the Perdew—Burke-Ernz-
erhof generalized gradient approximation exchange—correlation density functional (Perdew et al.
1992). The Brillouin-zone k-point samplings were chosen using the Monkhorst—Pack algorithm
(Monkhorst and Pack 1976). The planewave energy cutoff was set at 400 eV. The fully relaxed
configurations were obtained by the conjugate gradient method when the energy norm of all the
atoms converged to better than 0.005 eV/A. Simulations were performed on the large-scale parallel
computer system with SGI ICE X at JAEA.
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behavior of defects and the mechanical response. Some examples of atomistic
simulations for collective defect behavior were mentioned in the previous section.
Recently, a dislocation core structure can be captured directly by first principles
calculations. Several approaches for first principles calculations of dislocations and
dislocation-related properties are described in detail in this section.

5.2 Stacking Fault Energy

The atomic image of a dislocation core is described by local disregistry, where misfit
energy is introduced by the local interfacial misfit energy as well as the elastic
strain energy. The misfit energy y (u) is described by periodic potential in terms
of relative slip displacement, which is expressed by its sinusoidal shape potential
in the classical model. Atomistic simulation, such as molecular dynamics and first
principles, allows calculation of the misfit potential directly. Precise calculations of
stacking fault (SF) energy can help to better understanding slip behavior in actual
materials. The generalized SF energy (y surface), which was first introduced by
Vitek (Vitek 1966, 1968), is the energy difference in misfit energy in terms of two-
dimensional displacement along the slip plane. Atomic models for SF energy in
FCC metals are simply prepared as in Fig. 5.1, where parallel translation is applied
to the upper half region. The energy of the transition during slip motion is evaluated
using first principles calculations. The atomic relaxation is considered only in the
normal direction to the slip plane and the other degree of freedom corresponding
to the direction of the applied displacement is constrained. The difference in terms
of displacement corresponds to the generalized SF energy according to following
relation, where A is the area of the slip plane.
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In FCC metals, the displacement is generally applied along the [1T0]and [112] the
directions defined as x and y. The Burgers vector of perfect dislocation corresponds
to a/2[110], along which the SF energy is not minimum. Instead, the SF energy
along the Burgers vector of partial dislocations is equivalent to the minimum energy
path for parallel shift in the slip plane, which is important for actual slip behavior in
FCC metals.

The SF energy curves for typical FCC and BCC metals calculated by first princi-
ples calculations are summarized in Fig. 5.2. The other results obtained by several
empirical potential and experiments are shown as a comparison. ysg corresponds to
the energy when the displacement is equivalent to the partial dislocation, shown in
the right image in Fig. 5.1. The value is important in determining the stable dislo-
cation core structure and the width between leading and trailing partial dislocations
in FCC metals. Unstable SF energy j4s and the maximum gradient of the general-
ized SF energy are also important because the local atomic array needs to overcome
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Fig. 5.1 Atomic models for Perfect FCC Stacking fault
SF energy calculation in

FCC metals
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the energy barrier. First principles calculations satisfactorily reproduce the experi-
mental values. Moreover, first principles calculations are superior in predicting the SF
energy of transition states during the whole slip motion. Even though it is generally
difficult for an empirical potential composed of a two-body functional to reproduce
high SF energy, some EAM potentials have been found to demonstrate excellent
characteristics to describe the dislocation core in FCC metals.

In HCP metals, it is more effective to understand the SF energy because the slip
behavior is more complicated than that of cubic crystals. In general, plastic defor-
mation in HCP metals is caused by dislocation of the slip and twinning deformation
modes. Focusing on the slip mode, <a> and <c + a> dislocations can glide in basal,
prismatic, and pyramidal planes. All possible slip systems are given in Fig. 5.3, where
<a> dislocation can glide in basal, prismatic and first-order pyramidal planes, and
<c + a> dislocation in first- and second-order pyramidal planes. An overview of the
generalized SF energy on each plane is given in Fig. 5.4, where Mg was chosen as
a typical example of HCP metals. Several tens of node points on each slip plane are
chosen for the sampling data and the energy was evaluated by first principles calcu-
lations. The direction and SF energy along the minimum energy path (shown by the
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Fig. 5.2 Generalized SF energy curves along the Burgers vector in Al, Cu and Fe, calculated by
first principles calculations and some empirical potentials. MF, EA, mEA, FS, and ADP correspond
to the empirical potentials proposed by Mishin—Farkas (Mishin et al. 1999, 2001), Ercolessi—-Adams
(Ercolessi and Adams 1994), modified EA (Liu et al. 1996), Finnis—Sinclair (Finnis and Sinclair
1984), Angular dependent potential (Mishin et al. 2005). *, ** and *** are experimental values
cited by the literature (Dobson et al. 1967; Murr 1975; Hirth and Lothe 1982)

red arrows) on the slip plane is the most important for determining the dislocation
motion because the direction corresponds to the Burgers vector of each slip plane. In
case of the basal slip, the <a> dislocation tends to dissociate into a partial dislocation
and the Burgers vectors are given as those of two partial dislocations according to
the minimum energy path. However, <a> dislocation in the prismatic plane does not
dissociate into partials.

The basal <a> , prismatic <a> , pyramidal I <a> , pyramidal I <c + a>, and
pyramidal II <c 4 a> slip systems can be considered as the only possible slip systems
except for twin modes. Figure 5.5 shows the energy difference along the minimum
energy path of all slip systems in Mg, Zn, Ti, and Zr as typical HCP metals. The c/a
ratio of these HCP metals, calculated by first principles, are 1.613, 1.886, 1.582, and
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Fig. 5.3 Possible slip
systems of <a> and <c + a>
dislocations in basal,
prismatic, first- and
second-order pyramidal
planes. The red arrow
indicates the direction of
each Burgers vector
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1.598 for Mg, Zn, Ti, and Zr, respectively. In the case of Mg and Zn, the SF energy
of the <a> slip in the basal plane is much lower than those of any other non-basal slip
planes, and the basal <a> slip is a primary slip system in these metals. In contrast, the
SF energy of the <a> slip in the prismatic plane is the lowest and the prismatic <a>
slip is the primary slip system. These tendencies can be understood using structural
information, that is, c/a is among the simplest indicators that provides a favorable slip
plane and direction. The SF energy in the basal plane tends to decrease when the c/a
ratio is larger than the ideal c/a ratio. On the contrary, the prismatic <a> becomes the
primary slip system when the ratio is smaller than the ideal. However, the SF energy
is more important for understanding the detailed information of the slip system in
HCP metals.

5.3 Analytical Description of Dislocations: Peierls—Nabarro
Model

As discussed above, the SF energy calculation provides useful information for the
dislocation core and motion. However, the SF energy can only give an interfacial
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Fig. 5.4 Generalized stacking fault energies on a possible slip plane in Mg. All data were evaluated
by first principles calculation. The minimum energy path is indicated by the red arrow, which
corresponds to the direction of each Burgers vector
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Fig. 5.5 Generalized stacking fault energies along the minimum energy path in all possible slip
planes in Mg, Zn, Ti, and Zr. Here, the basal <a>, prismatic <a> , pyramidal I <a>, pyramidal I <c
+ a>, and pyramidal II <c + a> slip systems are considered as the possible slip systems

misfit energy of the dislocation core, which is not enough to capture a comprehensive
picture of the dislocation because the elastic strain energy around the dislocation core
should be considered. The self-energy of the dislocation should be described by a
combination of the contributions of both the elastic energy generated by the local
disconnection of the core region and the interfacial misfit energy. Peierls (Peierls
1940) and Nabarro (Nabarro 1947) first considered a simplified description of the
dislocation core in a two-dimensional lattice as shown in Fig. 5.6 and proposed the
Peierls—Nabarro (PN) model. Here, the dislocation core can be expressed by the two
elastic semi-infinite bodies and the non-linear interplanar misfit at the interface of
two bodies.

In the PN model, the relative displacement between two lattice planes at the inter-
face is defined by the lattice mismatch (disregistry), and the disregistry is allowed to
have a distribution of displacement along the direction of Burgers vector. The total
displacement of the disregistry can be considered using a set of local components of
displacement & (x), which corresponds to the dislocation segment with an infinites-
imal Burgers vector. The local gradient generated by the disregistry is defined by
dislocation core density p(x) as follows:
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Fig. 5.6 Schematic image of
a pure edge dislocation core
in a two-dimensional lattice
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(5.2)

ds
db(x) = p(x)dx, p(x) = ( d(;))

Here, the integral along the x direction within the infinite region is equal to the
Burgers vector. The following PN equations hold when the stress generated by the
disregistry is balanced against the interfacial restoring force F.

K [ p(x)

/
20 J_o X — X

dx' = F(8(x)), (5.3)

where K is the energy factor corresponding to the elastic coefficient and given for
isotropic media (Foreman 1955).

2
= i(M +00529>, (5.4)
2 \1—v
where p and v are the shear modulus and Poisson’s ratio, respectively. 6 is the
angle between the dislocation line and Burgers vector. This PN equation is solved
analytically on the assumption that the restoring force can be described by an analytic
function such as the sinusoidal function. Similarly, the total energy of dislocation can
be expressed by the local elastic interaction generated by the infinitesimal dislocation
segments, long-range elastic interaction, and misfit potential at the interface of two
bodies.
Uiotlp (x)] = Uklastic + Unisti + Ulonga- (5.9

K > * / / /
Uelastic = i p(x)p(x )ln|x —x Idxdx . (5.6)
—00 J =00
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+o0
Unistic = / y (8(x))dx. (5.7
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The long-range interaction is given analytically by the classical theory of disloca-
tions. Accordingly, the total energy of the dislocation can be expressed by a functional
of the disregistry and its derivative, that is, dislocation core density. Therefore, a stable
configuration of a dislocation is obtained using the variational of this energy func-
tional. Jo6s and Duesbery developed an analytical model based on the PN model to
estimate the Peierls stress for wide and narrow dislocations by introducing the gener-
alized SF energy, its maximum gradient, and the dislocation half-width (Jods and
Duesbery 1997). It should be noted that the Peierls stress evaluated by the analytical
function based on the PN model is solved on the assumption that the dislocation is
dissociated along the one-dimensional direction only and that the estimation depends
on the accuracy of the maximum restoring force.

Recently, a sophisticated model of the semi-discrete variational (SV) PN model
(Bulatov 1997; Lu et al. 2000) was developed, which provides information on
the three-dimensional local structure of a dislocation core and the Peierls stress
through discretized atomic rows and the reliable GSF energy surface (so-called y
surface) determined by DFT. In the SVPN framework, the total fault energy of a
dislocation under external stress can be described similarly by U,y = Uelasiic +
Uniseit + Usiress; Where long-range interaction is excluded. The first term is the
configuration-dependent elastic energy is as follows:

1
Uelastic = Z EXij [Ke(P,-(l)P;D + /05(2)9,('2)) + KS,OI.G),O;?)], (58)
ij

where, ,oi(l) and ,oi(z) are related to the edge component and pi(l) is related to the screw
component, K. and K are associated with the energy factor evaluated by Eq. (5.3),
and y;; is defined in the literature (Bulatov 1997; Lu et al. 2000). The second term
is the interfacial energy described by the total sum of nodes:

Unisic = Y Axy (8). (5.9)

The third term represents the work done by the plastic deformation through the
dislocation glide. Here, all terms can be expressed as the discretized the functions of
disregistry vector and the core density of dislocation. According to the displacement
of each atomic row x;, the disregistry and core density are related to p; = (§; —
8i—1)/(x; —x;_1), which is associated with the local gradient of relative displacement.
In accordance with the classical PN model, the stable configuration of the dislocation
core can be evaluated numerically by minimizing the variational function to find the
stable configuration of the disregistry (or the dislocation core density).

The basal and prismatic <a> dislocations in HCP Mg alloys are taken as an
example of good application of the SVPN framework. First, atomic configurations



100 T. Tsuru

Fig. 5.7 Unit cell of c
hexagonal crystal and the
core structures of the basal
and prismatic <a>
dislocations from molecular
statics simulations (Tsuru
et al. 2013). Reprinted from
J. Phys: Condens. Matter.,

vol. 25, Tsuru et al., Fig. 1a, (0001)
Copyright (2020), with
permission from IOP
a
<1120>

of both dislocations were investigated by atomistic simulations. The crystallographic
orientation and corresponding atomic configurations are shown in Fig. 5.7. A fully-
atomistic molecular statics simulation was performed using the EAM potential
proposed for Mg (Sun et al. 2006). The atoms were visualized using the ATOMEYE
visualization software (Li 2003). The fully-atomistic simulations confirmed that a
basal dislocation tends to dissociate into two partial dislocations with wide stacking
fault while the core width of a prismatic dislocation is narrow. The energy differ-
ences with respect to the in-plane displacement along the minimum energy path (slip
direction) in the basal and prismatic planes evaluated by the density functional theory
(DFT) calculation and EAM potential are shown in Fig. 5.8. The DFT data were the
same as shown in Fig. 5.5 while the energy landscape along the slip direction of both
the basal and prismatic planes had similar characteristics. It is noted that the direction
of minimum energy path in the prismatic plane varied slightly (Tsuru et al. 2013),
and the differences of the generalized SF energy as well as the elastic properties
reflected the dislocation core structure.

Fig. 5.8 Generalized SF y L ) X
energy along the minimum —o— Basal (DFT) —o— Prismatic (DFT)

energy path evaluated by ——- Basal (EAM) ——- Prismatic (EAM)
DFT and the EAM potential
(Tsuru et al. 2013).
Reprinted from J. Phys:
Condens. Matter., vol. 25,
Tsuru et al., Fig. 1 (c),
Copyright (2020), with
permission from IOP
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The energy factors for the pure edge and screw dislocations in the basal and pris-
matic planes of magnesium were evaluated directly by DFT and the EAM potential,
as summarized in Table 5.1. The anisotropic shear modulus is the value of the slip
direction, i.e., C44 and Cgc. Poisson’s ratio is assumed to be evaluated by orthogo-
nally transformed anisotropic elastic constants through the direction cosine and the
Voigt average.

All material properties of Mg are applied to SVPN analysis. The core densities of
the basal and prismatic <a> dislocation, calculated by SVPN analysis combined with
DFT calculations and the EAM potential, are summarized in Fig. 5.9. Two peaks

Table 5.1 Energy factors calculated by first principles and the EAM potential for the evaluation
of the elastic energy of the dislocation core (Tsuru et al. 2013). Reprinted from J. Phys: Condens.
Matter., vol. 25, Tsuru et al., Table 1 (c), Copyright (2020), with permission from IOP

Basal <a> Prismatic <a>
K. (GPa) K, (GPa) K. (GPa) K, (GPa)
DFT 3.88 2.93 4.10 2.98
EAM 2.49 2.03 4.55 3.52
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Fig. 5.9 Dislocation core densities in the basal and prismatic planes, evaluated by the SVPN model
with (a, b) using DFT, and (c, d) using the EAM potential (Tsuru et al. 2013). Reprinted from J.
Phys: Condens. Matter., vol. 25, Tsuru et al., Fig. 2, Copyright (2020), with permission from IOP
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of the core density of the basal dislocation represent the dissociated two partial
dislocations associated with the low stacking fault energy of Mg. The difference
in the width of extended dislocation between DFT and EAM are affected by the
meaningful difference of the energy factor, as shown in Table 5.1. The core density
of dislocation in the prismatic plane evaluated by DFT distributes sharply while
that of EAM slightly dissociates into two peaks, which is definitely reflected by the
difference of generalized SF energy. The Peierls stresses were 1 MPa and 49 MPa for
the basal and prismatic <a> dislocations, respectively. Additionally, as an example,
SVPN analysis is applied to the prismatic <c> dislocation, which is not a slip system
of HCP metals. SVPN analysis confirmed that the Peierls stress of the prismatic <c>
dislocation was extremely high (1.49 GPa).

The non-basal slip is thought to be key to improving the ductility in Mg alloys.
Thus, the effect of the alloying element is the subject of research and interest. The
SVPN model has the potential to capture how alloying elements influence the dislo-
cation core structure and the Peierls stress. As a typical example, the effect of yttrium
solution on the dislocation core structure and the critical stress of the motion of pris-
matic <a> dislocation (i.e., Peierls stress) were discussed here. When an isolated
solute atom was substituted for a magnesium atom on the slip plane, the influence of
the solution element on the generalized SF energy and the restoring force are shown
in Fig. 5.10. The effect of yttrium solution at different concentrations was investi-
gated, and aluminum was chosen for comparison, which is a typical solute element
of magnesium alloys such as the AZ31 alloy. The restoring force was defined as the
gradient of the GSF energy along the minimum energy path, and its maximum value,
denoted by tyax, is related to the dislocation half-width through the analytical PN
model (Jo6s and Duesbery 1997). The energy difference was remarkably reduced by
yttrium solution, and in this regard the maximum restring force fell to one-half that
of pure magnesium. However, aluminum solution raises the energy gradient and the
restoring force, and zinc solution was found to show a tendency similar to that of
aluminum. The dislocation core structures in case that yttrium is substituted in the
slip plane, was calculated by the SVPN analysis as shown in Fig. 5.11. The disloca-
tion tends to spread as the solute concentration increased because the contribution of
the elastic interaction became relatively large owing to the reduction of the gradient
of the GSF energy. The resultant Peierls stresses were reduced to 14 MPa and 8§ MPa
for 11 at.% and 25at.% yttrium solution concentration, respectively. Thus, yttrium
solute results in the alteration of the dislocation core structure and lubrication of the
dislocation motion (Tsuru et al. 2013).
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Fig. 5.10 Stacking fault energies and restoring forces in the case where a solution element is placed
on the slip plane compared with those of pure magnesium. a and ¢ correspond to yttrium solution.
b and d correspond to aluminum solution (Tsuru et al. 2013). Reprinted from J. Phys: Condens.
Matter., vol. 25, Tsuru et al., Fig. 3, Copyright (2020), with permission from IOP

Fig. 5.11 Effect of yttrium ¥ y
solution at several solution
concentrations on the 0.3F
dislocation core density
(Tsuru et al. 2013).
Reprinted from J. Phys:
Condens. Matter., vol. 25,
Tsuru et al., Fig. 4,
Copyright (2020), with
permission from IOP
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5.4 First Principles Calculations of a Dislocation Core

5.4.1 Atomic Modeling of a Dislocation Core

The effect of solute atoms on the dislocation motion is characterized by not only the
SF energy but also by the elastic and chemical interactions around the dislocation
core. Recently, various defect structures, such as the vacancy impurity cluster and
grain boundary, can be treated directly by first principles calculations, and many
fundamental properties have been extracted. However, band structure calculations,
i.e., the DFT calculations based on plane-wave basis sets for the wave function of
electrons, are generally solved under the period boundary condition, in which special
attention is required in handling defect structures in a small supercell (up to several
hundreds of atoms) because the elastic field of defects is generally long-ranged.
According to the linear elasticity theory, the elastic field of a vacancy and volumetric
defect, such as an impurity cluster, decays with 1/7 (the factor of distance). The stress
field of the coincidence site lattice (CSL) grain boundary is also short-ranged. As a
result, these defect structures can be modeled successfully by small supercell models.
However, according to elasticity theory, the stress field of an isolated dislocation
decays according to the factor of 1/r (Hirth and Lothe 1982) and, therefore, it is
not possible to treat such an isolated dislocation within first principles calculations.
Two approaches have been developed to evaluate the dislocation within the first
principles framework. One is the flexible boundary condition method, which can
capture the long-range strain field of a dislocation by coupling the dislocation core to
an infinite harmonic bulk through the lattice Green function. The other is to consider
the dislocation dipoles in a periodic cell. The elastic field of the dislocation dipole in
a periodic cell can be treated by the superposition of an image dislocation (Cai et al.
2003, 2001) or by considering the elastic field in the reciprocal space (Mura 1964;
Daw 2006). The latter is explained as follows.

The dislocation core in a periodic cell is introduced based on the solution of
continuum linear elastic theory of the periodic dislocation dipole array (Daw 2006).
The displacement gradient caused by the periodic distribution of dislocations is
expressed as a Fourier series:

A@) =) A(G)exp(iG - 1), (5.10)
G

where A(r) is the displacement gradient tensor at point r, G is the reciprocal lattice

vectors, and é (G) is the Fourier coefficients describing the displacement gradient
tensor. The elastic energy per unit length of the supercell can be expressed in terms
the A (G) s:

1 ~ ~
Eesic = 5 Accijun ) Aij(G) A (G), (5.11)
G
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Dipole Quadrupole

Fig. 5.12 Atomic model of dislocation dipole and quadrupole configurations in a periodic cell

Table 5.2 Lattice parameters and elastic constants in hexagonal Mg

a(A) c/a cl1 c33 Ci2 c13 C44
DFT 3.203 1.614 62.4 70.9 22.0 21.9 11.7
Exp. (Hearmon 1979) 3.209 1.623 59.3 61.5 25.7 214 164

where A, is the area of the supercell perpendicular to the dislocation line and c;; are
the anisotropic elastic constants. The distortion field can be solved by minimizing the
total elastic energy subject to the topological constraints imposed by the dislocation
dipole. This theory is found in the literature, and the procedure is solved numerically
by a sequence of linear algebra in the reciprocal space (Daw 2006). Subsequently, the
displacement can be evaluated by a line integral starting from a reference coordinate
in real space, and the local displacement at the atomic positions is provided. In
practice, core radius, r. is introduced to insure convergence of the summation for the
elastic energy.

This approach is applied to HCP Mg alloys. The dipole of screw dislocation whose
Burgers vectors is type a/ 3(1 120) is treated here. The dislocation is inserted into a
288-atom supercell with 12 x 6 periodic units along [0001] and [1100], respectively,
where the dislocation is inserted as dipolar and quadrupolar configurations, as shown
in Fig. 5.12. The elastic constants and lattice parameters for Mg are obtained using
density functional theory (DFT). Our computed values are shown in Table 5.2. The
(2-D, for this problem) reciprocal lattice vectors can be expressed in terms of the
primitive reciprocal lattice vectors, defined to be a* and b*, as G, = ha* + kb*
with &, k € Integers. Seen in the predictions of one component of the displacement
gradient tensor as a function of the number of G vectors in the sum, the Fourier
series is completely converged when the core radius r. is equal to b, and both &
and k range from —20 to 20. In this way, the displacement gradient can be solved
numerically. The solution of the strain and displacement fields of the dislocation
dipolar and quadrupolar configurations evaluated by linear elasticity theory in a
periodic cell are shown in Fig. 5.13. The strain field is actually periodic and the
displacement field is depicted in the cumulative boundary condition along the y-
direction. The method also allows us to estimate the elastic strain energy of dipolar
and quadrupolar configurations in terms of the change in the relative displacement
of the dislocation pair. The introduction of dislocation dipoles within each supercell
results in a distortion of the supercell vectors, as noted by Lehto and Oberg (Lehto and
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Fig. 5.13 Solution of the strain and displacement fields of the dislocation dipolar and quadrupolar
configurations, evaluated by linear elasticity theory in a periodic cell

Oberg 1998). The relationship between strain energy and the relative displacement
in the case of the dipolar and quadrupolar configurations in Mg with the above
atomic model is given in Fig. 5.14. Here, the energy difference of the quadrupole
is less sensitive to the relative displacement than that of the dipole, and therefore
the quadrupolar configurations should be chosen for the first principles calculations
when a small supercell is used.

5.4.2 First Principles Calculations

The displacements corresponding to each lattice point, obtained using the continuum
linear elasticity theory outlined above, were applied to the atomic model for a dislo-
cation dipole in the quadrupolar stacking configuration. In addition, the periodic
supercell vectors were adjusted as discussed above. The dislocation core structure
so obtained is used as the initial configuration for the first principles calculations.
The supercell model of HCP metals is prepared as provided above, and the that
of BCC metals is similarly prepared: a 135 atom model with dimensions a = Sey,
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b = 2.5e;+4.5e,+0.5e3, and ¢ = e3, where unit vectors in the system are defined as
e = aO[JE, 0, o], e = ap [0, V2, 0], and e; = ag [0, 0, f3/2], with a coordinate

system corresponding to the x = [112], y = [110] and z = [111] directions.

First principles calculations were then implemented to determine the structural
relaxation. The stable configuration of the dislocation core structures in typical BCC
and HCP metals is shown in Fig. 5.15, where the left side of the dislocation is depicted
by the differential displacement (DD) vector (Vitek et al. 1970; Vitek 1974), and the
core structures in BCC Fe, Nb, Mo and HCP Mg, Ti, Zr are provided as the typical
examples. It is obvious from Fig. 5.15 that the dislocation core of BCC metals is
compact owing to the high SF energy, as shown in Fig. 5.2. In addition, there is little
difference in the dislocation core structures depending on the type of element in BCC
metals. However, the core structures of HCP metals differ completely depending on
type. As discussed in Sect. 5.2, dislocations of HCP metals tend to be dissociated
according to the SF energy. The dislocation of Mg is dissociated in the basal plane
due to the small SF energy in its plane while that of Zr dissociated in the prismatic
plane. On the contrary, the dislocation of Ti is dissociated in the first-order pyramidal
(1011) plane. Pyramidal <a> dislocations cannot be activated because the SF energy
along the <a> direction in the pyramidal (1011) plane is generally extremely high.
However, aunique core structure was recently discovered where the <a> dislocation is
more likely to dissociate in the dense (1011) plane than in prismatic plane because the
SF energy, when the displacement is half the Burgers vector along the <a> direction
in the dense (1011) plane, is slightly smaller than that of the prismatic plane (Clouet
et al. 2015). Thus, HCP metals have a wide variety of dislocation core structures,
including various <a> dislocations and <c + a> dislocations in the first and second-
order pyramidal planes, reflecting the SF energy, as shown in Fig. 5.5. As a result,
plastic deformation in HCP metals becomes more complicated, i.e., solute atoms
play a more significant role in the change in the slip mode through the electronic
interactions between matrix elements and solutes.
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Fig. 5.15 Stable configurations of the dislocation core in BCC Fe, Nb, Mo, and HCP Mg, Ti,
Zr, evaluated by first principles calculations. The relative displacement associated with the nearest
neighbor atom was visualized by a DD vector

At the end of this section, the influence of solute atoms on the dislocation core
structure and motion in Mg alloys is taken as an example. When the stable configu-
ration was obtained, the energy barrier for the dislocation motion (i.e., Peierls poten-
tial) by first principles calculations attracts interest. The nudged elastic band (NEB)
method (Henkelman et al. 2000) was employed to evaluate the electronic structure
of the dislocation core when it overcomes the Peierls barrier. Initial configurations
were prepared corresponding to the most stable structure position and the position
where a dislocation moves through the Peierls barrier. The energy difference during
dislocation glide of the left side of the dislocation on the basal, prismatic, and pyra-
midal planes, as well as the DD map at intermediated transition states, are shown
in Fig. 5.16. It is confirmed that the screw dislocation dissociates into partial dislo-
cations on the basal plane, which is caused by the nature of low SF energy of the
basal plane in Mg. It is easy for this type of basal dislocation to glide on the basal
plane—there is a negligibly small energy barrier between the symmetrically equiv-
alent structures during basal slip. However, the prismatic slip requires surmounting
high energy barrier by NEB calculation. The prismatic slip can be divided into three
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Fig. 5.16 Energy and core structure during the dislocation motion. a The minimum energy paths are
for the motion of the screw dislocation in the basal, prismatic and pyramidal planes. b Intermediate
transition states for prismatic slip visualized by the DD map (Tsuru and Chrzan 2015). Reprinted
from Sci. Rep., vol. 5, Tsuru et al., Fig. 2

steps which is consistent with the Friedel-Escaig mechanism proposed by Couret
and Caillard (Couret and Caillard 1985). At first, dissociated dislocation on the basal
plane constricts that yields the compact core screw dislocation capable of gliding
on the prismatic plane. Then, the dislocation with the compact core glides on the
prismatic plane. Afterward, a compact core redissociates into partial dislocations on
the basal plane. It is evident from Fig. 5.16 that a dominant part of the energy barrier
for the prismatic slip is the energy for the constriction of two partial dislocations
which enables to cross-slip.

This energy barrier is approximately 0.06 eV/b, with b being the Burgers vector
of <a> dislocation. In contrast, the energy barrier for the glide of the compact core
of screw dislocation is much lower, approximately 0.01 eV/b for both prismatic and
pyramidal glide.

The energy barrier computed in this way has two general contributions: (I) the
energy barrier for the motion of an isolated dislocation and (II) the changes to this
barrier arising from the interaction with the periodic images. The contribution (II)
needs to be considered rightly due to an artifact of the supercell geometry. As shown
in Fig. 5.14., Daw’s formulation of the periodic elasticity problem (Daw 2006) can
be applied to estimate the changes in elastic energy within a periodic supercell as the
dislocation moves between A and E. The linear elastic description of the periodic
supercell enables to discern the effects of the periodicity on the computed Peierls
barrier. According to elasticity theory, the contribution of the energy barrier as a
function of supercell size can be drawn by Daw’s formulation which found to be
eliminated by considering in the large supercell limit (~18,000 atoms) (Tsuru and
Chrzan 2015).
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Fig. 5.17 Electronic ( a)
structure of a the dissociated
and b the compact
dislocations in Mg. The
projected DOS around the
core is indicated by red and
blue lines and that of the
perfect crystal is indicated by
a black line. Dotted lines and
solid lines indicate s- and
p-states, respectively. Energy
states with respect to the
energy range from —4.0 to
2.0 eV are shown in the inset
(Tsuru and Chrzan 2015).
Reprinted from Sci. Rep.,
vol. 5, Tsuru et al., Fig. 3
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Returning to the quantum formulation of the problem, the changes in the electronic
structure associated with the dislocation motion along the prismatic plane. The elec-
tronic structures of the initial and the sixth intermediate configurations corresponding
to the partial and compact dislocations, are shown in Fig. 5.17. The site-projected
density of states (DOS) on the two atom positions around the dislocation core for
the dissociated and compact cores corresponding to states A and C in Fig. 5.16
was examined as well as the atom in the perfect crystal. Thus, the evolution of the
site-projected DOS as the dislocation passes over the Peierls barrier can be captured.

As presented in Fig. 5.17, analyzing the DOS establishes two points. First, the
states of the outermost s electrons of Mg do not change significantly in the dislocation
core. Second, the passage of a dislocation is influenced strongly by the p-states just
below the Fermi level. The DOS around a site of core region is reduced by the compact
dislocation while the projected DOS for the other site is increased, which means the
DOS changes slightly when the dislocation forms unstable compact core. Even if the
change of DOS is not so significant, the rearrangements are much more pronounced
in the case of the compact core. Furthermore, these p-states participate in the bonding
rearrangements that take place as the core transitions from partials to a compact core
to surmount its Peierls barrier. The changes of the electronic structure as it surmounts
its Peierls barrier constitute the electronic structure during the dislocation motion.
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It is thus interesting to identify substitutional elements which is expected to interact
significantly with the dislocations.

The principle underlying our analysis is not so complicated. Just see how the
electronic structure changes when a substitutional solute is introduced around a
dislocation core. It is expected that a strong chemical hybridization can exist between
electronic states of solute atom and Mg atoms around solute and dislocation core if
the changes occur in the same energy range associated with them. To explore this
idea, the electronic structures of Al, Zn, Y, Ca, Ti, and Zr substitutional atoms within
Mg were examined. Figure 5.18 shows the site-projected DOS of various solutes
around the core. Here, Al and Zn have small effect on the electronic states in the
energy range (—2-0 eV) which is important for the motion of the dislocation. In
contrast, Y, Ca, Ti, and Zr are found to have relatively large changes in this energy
range. Therefore, it is expected that substitutional Y, Ca, Ti, and Zr have strong
interaction with the dislocation motion while Al and Zn will not.

The interaction of the dislocation with substitutional solute atoms can be consid-
ered directly based on this analysis. Figure 5.19 provides a typical comparison
between solutes. Even if the Al solute is added around core region, the disloca-
tion remains dissociated partial dislocations as the Al solute does not influence the

Fig. 5.18 Electronic (a)

structure of Mg and a solute —06 0.6
in a defect-free crystal. a

Projected DOS for three

atoms around Al and Y
solutes. Curves for the
perfect region are shown
with black lines. b DOS for
solute elements (Al, Zn, Y,
Ca, Ti,and Zr) in a
defect-free crystal (Tsuru
and Chrzan 2015). Reprinted
from Sci. Rep., vol. 5, Tsuru
etal., Fig. 4

o
=
o
.

o
Y
o
L]

Local density of states (arb. unit)

Local density of states (arb. unit

o

-2

Local density of states (arb. unit)

0
Energy (eV)



112 T. Tsuru

)

o
a
o
(=]

o
'S

o
N

Local density of states (arb. unit)

=2 0 2 -3
Energy (eV)

e o o
L T A

o000 i‘.i‘! .

Fig. 5.19 Local electronic structure of the dislocation core around a solute. a Projected DOS for
atoms constituting the dislocation core. b DD map and partial charge density for the dislocation
core with a solution with respect to a specific energy range (—2.0-0 eV) (Tsuru and Chrzan 2015).
Reprinted from Sci. Rep., vol. 5, Tsuru et al., Fig. 5

electronic states near the dislocation core. In contrast, due to Y solute which have a
strong interaction make a dissociated dislocation in the basal plane shrink immedi-
ately. Of note, the partial charge density for a dislocation core with Al and Y shows a
similar distribution to those for a dissociated and compact dislocation cores, respec-
tively, in pure Mg. Figure 5.19a shows the DOS of Al and Y solutes, where the s- and
p-states of Mg and the d-states of each solute element are given in the same graph.
There is clear difference between two types of elements: Al and Zn have no or few
d-states in the energy range of interest. In contrast, Y, Ca, Ti, and Zr show prominent
d-states below the Fermi level. These d-states are possible for hybridization with the
p-states of the Mg, and ultimately lead to a strong interaction between these alloying
additions and the dislocation core structure. These calculations, therefore, confirm
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Fig. 5.20 Effect of a solid solution strengthening and softening. a Energy differences during the
dislocation motion in the prismatic plane in pure Mg and an Mg-Y. The energy curve when the
dislocation passes through the Y solution is indicated by the red line. b Core structure during the
dislocation overcoming and moving away from the Y solution (Tsuru and Chrzan 2015). Reprinted
from Sci. Rep., vol. 5, Tsuru et al., Fig. 6

that the electronic structure of the dislocation motion can be applied to identify
alloying elements that interact strongly with the dislocations in Mg.

In pure Mg, the glide of a screw dislocation in the prismatic plane is only
possible when the dislocation has the compact core configuration as described above.
According to the electronic structure calculations show, solutes with the strong inter-
action bind to, and thus stabilize the compact core. To confirm this scenario, the
NEB calculation was reemployed, in which a column of Mg atoms was replaced by
Y atoms and the results are shown in Fig. 5.20. Figure 5.20 provides two impor-
tant observations. First, Y solute results in the core transformation from dissociate
partials to compact core when Y is located around dislocation core region. Second,
the influence of Y solute is relatively wide-ranged, approximately 3/2 ¢ in all direc-
tions. Third, the interaction between Y and dislocation is quite significant, which
increase the energy barrier for the basal slip.

Again, plastic anisotropy is one origin of the poor ductility in Mg. In the absence
of solute atoms, screw dislocations glide frequently on the basal plane, whereas
the energy barrier for non-basal slip are quite high. This plastic anisotropy can be
improved if the strength of basal plane slip increases and non-basal slip becomes
more frequent. Some solutes found to have a great potential to increase the barrier
for basal slip as decreasing the barrier of non-basal slip. It becomes more important
to capture the chemical interaction between the dislocation and solutes from the
electronic structure basis (Tsuru 2017).

In summary, dislocation motion has been recognized as one of the most impor-
tant plastons to determine macroscopic plastic deformation. In this section, several
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approaches were introduced to capture the dislocation core structure and dislocation-
related properties through first principles calculations. These approaches have great
potential in the understanding of the fundamental role of dislocation in plastic
deformation grounded in electronic structure calculations.
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