
Chapter 4
Collective Motion of Atoms in Metals
by First Principles Calculations

Isao Tanaka and Atsushi Togo

4.1 Introduction

The plaston concept has been proposed recently in order to explain interesting plastic
deformation behaviors that appear in some ultrafine grained metals or bulk nanos-
tructured metals (BNM). They show both high strength and large tensile ductility
contrary to the general trade-off relationship between strength and ductility in metals
(Tsuji and Ogata et al. 2020). Normal dislocation mode is predominant in the early
stage of plastic deformation of ordinary metals. Sequential nucleation of different
deformation modes, such as unusual dislocation modes, deformation twinning, and
martensitic transformation, would induce strain-hardening ability of such BNMs,
leading to high strength and large ductility.

Collective motion of atoms occurs under a stress field in materials leading to
nucleate various plastic deformation modes that are not only dislocation glide but
also deformation twinning and martensitic transformation. The atomic process of
plastic deformation is called plaston. A logicalway to scrutinize the collectivemotion
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of atoms is given by systematic calculations tracing imaginary phonon modes in
deformed crystals. Although nucleation of plastic deformation modes in polycrys-
talline materials predominantly takes place at grain boundaries and other crystalline
imperfections where atomic arrangements are irregular and stress field is compli-
cated, we have started our calculations on perfect crystals in order to study the
collective motion of atoms in a simple way. Firstly, we will show the collective
motion of atoms associated with the phase transition in metallic elements (Togo and
Tanaka 2015a). A simple algorithm for automated searching of the phase-transition
pathway following the imaginary phononmodes is presented. Secondly, the collective
motion of atoms in HCP-Ti under homogeneous shear deformation corresponding
to the {1012} twinning mode (Togo et al. 2020) will be shown.

4.2 Phase-Transition Pathway in Metallic Elements

The phase-transition pathway (PTP) connects structures before and after the phase
transition by continuous atomic displacements and lattice deformation. In the past,
PTP was searched via group-subgroup relationships of crystal structures choosing a
limited number of pathways. The energy change along the PTP was not examined.
Consequently, the resulted pathways were not necessarily realistic.

The PTPs can be unambiguously examined by a combination of the first principles
calculations and the symmetry analysis. Although the PTP can be started from an
arbitrarily chosen crystal structure, the starting crystal is better to have high symmetry
and high energy. In the study described in Togo and Tanaka (2015a), we took a simple
cubic (SC) structure as the start. For the first principles calculations, the plane-wave
basis projector augmented wave method (Blöchl 1994) within the framework of
density functional theory (DFT) as implemented in the VASP code (Kresse Non-
Cryst 1995; Kresse and Furthmüller 1996; Kresse and Joubert 1999) was employed.
Dynamical matrices of a given crystal were firstly obtained by the first principles
phonon calculation using the phonopy code (Togo andTanaka 2015b). The dynamical
stability of the crystal was investigated by the eigenvalues of the dynamical matrices.
The square root of the eigenvalue is the phonon frequency. The negative eigenvalue,
i.e., the imaginary phonon frequency indicates the dynamical instability. If the sign of
the instability was found, the structure was deformed along the direction indicated by
the eigenvector of the unstable eigensolution that provides information of collective
displacement of atoms to break the crystal symmetry minimally. In this manner,
the symmetry constraint was removed, and the geometry of the structure could be
further relaxed. Since it is difficult to relax the structure strictly to the local minimum
of the potential energy surface at which high crystal symmetry may recover, the
relaxed structure was cast in one of space group types accepting a predetermined tiny
tolerance. The procedure was repeated by returning to the phonon calculations of
the relaxed structure. When there were multiple instabilities, the procedure was split
into multiple branches. Finally, the set of the connections produced a line diagram
as shown in Fig. 4.1 for Cu and Mg.
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Fig. 4.1 Structure evolution diagrams showing phase-transition pathway (PTP) of a Cu and bMg.
Phonon band structure of simple cubic (SC) Cu is shown in the inset. Open and filled symbols,
respectively, represent dynamically unstable and stable crystal structures. Adapted from Togo and
Tanaka (2015a) with small modification (CC BY 3.0)
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Instabilities of phonon were found at the wave vectors of M and X points for
SC-Cu as shown in the inset (phonon band structure) of Fig. 4.1. The deformation at
theM point broke the symmetry of the SC structure (Pm3m) to P4/nmm. The twofold
degenerated instability at the X point led to Pmma andCmcm. A calculation unit was
defined as a set of procedures from one phonon calculation including relaxation of
the input crystal structure to the creation of deformed crystal structures following
the dynamical instabilities. The deformed crystal structures were used as the input of
the next units. The next units were processed in the same way. The deformed crystal
structure of P4/nmm was relaxed to the body-centered tetragonal (BCT) structure.
Pmma and Cmcm were relaxed to simple hexagonal (SH) and face-centered cubic
(FCC) structures, respectively. If no instability was found in a unit, this unit ended.
The unit ofCmcm formed no next unit since FCCwas dynamically stable for Cu. The
whole procedure finished when all crystal structures of the end-point units became
dynamically stable.

In Fig. 4.1, PTPs are shown by thick (blue) lines. The line was drawn only when
the final structures were made by continuous atomic displacements and lattice defor-
mation of the initial structure. The common subgroup of initial and final structures
was written vertically next to the line. The energy decreased monotonously with
the phase transition along the line, meaning that the transition can occur without an
energy barrier. The line ended when the final structure became dynamically stable.

In this study, the supercell size was limited in order to search for simple PTPs.
The explosion of the computational demands can then be avoided. Both of the 3
× 3 × 2 and 2 × 2 × 2 supercells were used to calculate force constants for the
hexagonal primitive cells, and the 2 × 2 × 2 supercells were used for the other
primitive cells. If the length of a supercell lattice vector exceeded 20 Å, the primitive
cell was no more expanded in this direction. The elastic instability was calculated by
introducing strains to the crystal structures. However, we did not find any different
crystal structures from those found without considering the elastic instability. The
freedom of elastic instabilities was not included for the simplicity of the algorithm.

We can find some similarities and differences between diagrams of Cu and Mg.
HCP is lower in energy than FCC in Mg, which is consistent with the fact that Mg
forms HCP under ordinary conditions. 9R structure (R3m), known as the samarium
structure, is one of the long-period-stacking (LPS) structures with ABABCBCACA
stacking of the close packed planes. The diagram shows that the 9R structure is
formed from the Cmmm structure via P2/c. The structural relationships of the FCC
and 9R structures to theCmmm are shown in Fig. 4.2. Another LPS structure, 18R, is
found in the diagram of Mg. Both 9R and 18R structures are experimentally known
to be formed in Mg alloys.

Diagrams for two HCP metals, Ti and Hf, are displayed in Fig. 4.3. As expected,
HCP shows lower energy than FCC. Two diagrams look similar. But, the path
connecting SH and ω is absent in Ti, which implies that there is an energy barrier in
the SH → ω path. The SH → ω path can be seen both in Cu and Mg (Fig. 4.1) and
also in Hf. We made a separate set of calculations for the ω structure of 27 transition
elements. (Ikeda and Tanaka 2016) ω-Ti is dynamically stable and the energy is
lower than HCP. ω-Ti was experimentally reported to be existent under the external
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Fig. 4.2 Crystal structures of FCC, Cmmm, and 9R structures. Thick lines show the edges of the
conventional unit cells. The conventional unit cell of the Cmmm structure is doubled along both of
a and b axes to show the correspondence between Cmmm and 9R structures. Adapted from Togo
and Tanaka (2015a) with small modification (CC BY 3.0)

Fig. 4.3 Structure evolution diagrams of a Ti and b Hf. Adapted from Togo and Tanaka (2015a)
with small modification (CC BY 3.0)
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Fig. 4.4 Structure evolution diagram of Cu at 30 GPa. Adapted from Togo and Tanaka (2015a)
with small modification (CC BY 3.0)

pressure of 2 GPa at 293 K (Sikka et al. 1982). The critical pressure decreases with
decreasing temperature by approximately dT /dp = 100 K/GPa (Sikka et al. 1982),
which suggests that ω is more stable than HCP at temperatures <90 K. However, a
large hysteresis was experimentally reported for the transition between HCP and ω

under pressure. The HCP → ω transition has not yet been reported experimentally
under the ordinary pressure. The presence of a large energy barrier between SH and
ω is implied by these experimental results. The absence of the SH → ω path in
Fig. 4.3a is consistent with the experimental reports.

Pressure effects on the structure evolution diagram can also be examined in the
same way as described above. Figure 4.4 shows the result for Cu under 30 GPa of
hydrostatic pressure. Note that the vertical axis shows relative enthalpy here. As
compared to the zero-pressure case shown in Fig. 4.1a, the number of dynamically
stable phases increased under 30 GPa. BCC-Cu became dynamically stable. The
formation of BCC-Cu was experimentally reported in the initial process precipita-
tion in Fe-Cu alloys (Othen et al. 1994). Three LPS structures, i.e., 9R, 12R, and
18R appeared under 30GPa, similar to the case of Mg (0 GPa). The 9R-Cu was
experimentally reported as a thin layer of the �3 grain boundary in Cu (Wolf and
Ernst 1992) and in severely deformed Cu single crystals (Dymek and Wróbel 2003).
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4.3 HCP-Ti Under Shear Deformation Along Twinning
Mode

Figure 4.5a shows the conventional unit cell of HCP-Ti. In order to represent the
{1012} twinning mode, the unit cell is retaken by using η1 and η2 directions and
K1 and K2 planes as shown in Fig. 4.5b. P (green) is the shear plane. Symmetry
constraints are given to distinguish four structures, i.e., the parent, sheared-parent,
shuffling, sheared-twin, and twin structures. Three structures are shown in Fig. 4.5c–
e. The parent and twin structures have the space group type ofP63/mmc. The sheared-
parent structure has the space group ofC2/m in general. It becomesCmcm only when
the sheared lattice becomes the same lattice as the parent in a different orientation.
The shuffling structure appears during the transformation from the sheared-parent to
sheared-twin structures.

Fig. 4.5 a The conventional unit cell of HCP-Ti. b An extended unit cell to represent the {1012}
twinning mode of HCP-Ti. The twinning mode is characterized by K1 (red) and K2 (blue) planes
and η1 and η2 directions. Structures of an extended unit cell of c parent, d sheared-parent, and e
twin. The atoms with the same symbols (open or filled) are located on the same plane parallel to the
plane P. Two planes with the open and filled symbols are separated by 0.5b′ each other. Adapted
from Togo et al. (2020) with small modification (CC BY 3.0)
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Atomic positions of the sheared-parent structures were optimized under the
symmetry constraint. Shears were sampled to 21 points within 0 ≤ s/st ≤ 1, where
s/st denotes homogeneous shear, s, normalized by the twinning shear, st. In order to
introduce homogeneous shear, the positions of atoms have to be properly set since
there are degrees of freedom to relax atomic positions under symmetry constraints.
We defined atomic displacement u(s/st) as the difference between the atomic posi-
tions after and before the relaxation. The initial position before the relaxation was
given keeping the crystallographic coordinates of the HCP unit cell. The displace-
ment distances |u(s/st)| with respect to s/st are shown in Fig. 4.6. Since |u(s/st)| of all
atoms in the unit cell at given s/st are the same, only one value at each s/st is shown.
In the inset, the directions of the displacements are shown. In this figure, only two
directions that are directed in the opposite directions can be seen. The atoms having
the same displacement directions are symmetrically equivalent by the lattice transla-
tion. The displacement distance |u(s/st)| increases with s/st. Even at s/st = 1, |u(s/st)|
is only 4% of the nearest neighbor distance. Therefore, for the schematic analysis,
this optimization process is unimportant, although it is necessary to perform phonon
calculations accurately.

In Fig. 4.7, the electronic total energy of the sheared-parent structure is shown
as a function of the homogeneous shear s/st. With increasing the shear, the energy
increases harmonically. According to the definition of the deformation twinning, the
sheared-twin structures should have the same energy curve with respect to 1 − s/st,
which is drawn as the mirror image of the energy curve of the parent (dotted curve
in Fig. 4.7). The presence of the crossing of the energy curves at s/st = 0.5 means
that their energy surfaces are disjoined under the symmetry constraint of C2/m.

Fig. 4.6 Displacement distance, |u(s/st)|, for the {1012} twinning mode as a function of s/st. In the
inset, the sheared-parent structure at s/st = 1 before the optimization is shown. The arrows show
the approximate directions of the displacements. Adapted from Togo et al. (2020) (CC BY 3.0)
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Fig. 4.7 Energy increases per atom of the sheared-parent structures for the {1012} twinning mode.
The dotted curve is themirror image of the energy curve of the sheared-parent structure representing
the energy increases of the sheared-twin structures. The vertical dashed arrows indicate energies
released by the transformation from the sheared-parent to the sheared-twin structures. The inset
shows the sheared-parent structure at s/st = 1. The displacement directions indicated by the eigen-
vector of the imaginary phonon mode at M′(1/2, 0, 0) are shown by thick arrows. Adapted from
Togo et al. (2020) (CC BY 3.0)

The sheared-parent structure transforms to the sheared-twin structure sponta-
neously by breaking the symmetry constraint at s/st > 0.5. The phonon band struc-
tures at six s/st are shown in Fig. 4.8. One phononmode atM′(1/2, 0, 0) clearly shows
the imaginary frequency at large shears, which implies that spontaneous structural
transformation should occur by breaking the symmetry. By plotting the squared
frequencies at M′(1/2, 0, 0) with respect to the homogeneous shear s/st, the critical
shear to induce the spontaneous structural transformation can be estimated to be s/st
~ 0.68.

The eigenvector of the soft phonon mode at M′(1/2, 0, 0) as illustrated in the
inset of Fig. 4.7 indicates the information on the collective atomic displacements
to properly break the symmetry of the crystal. The arrows indicate the direction
of displacement of the atoms with the same relative amplitude. The breaking of
symmetry expands the primitive cell twofold. The space group type then becomes
P21/c (No. 15). The sheared-parent structure models were generated by introducing
minimumfinite displacements along the directions as described above, so that the first
principles calculation code, VASP, can properly detect the broken symmetry. Then,
the first principles calculations weremade to optimize these structuremodels at given
homogeneous shears fixing their basis vectors. After the structure optimizations,
the sheared-twin structures at s/st = 0.7 to 0.95 and the twin structure at s/st =
1 were obtained. This is the shuffling that we consider. The atomic displacements
by this transformation at s/st = 1 are shown by short black arrows in Fig. 4.9.
The displacement distance is roughly constant by ~0.5 Å (17% of the interatomic
distance) at all s/st larger than the critical shear. Four atoms are involved in the
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Fig. 4.8 A series of phonon band structures corresponding to the {1012} twinning mode at s/st
= 0, 0.2, 0.4, 0.6, 0.8, and 1. Those at different s/st are drawn by the different line styles from
solid to shorter dashed lines. In vertical axis, phonon frequency lower than zero denotes imaginary
frequency. Wave vectors are labeled as A′(0, 0, 1/2), H′(1/3, 1/3, 1/2), K′(1/3, 1/3, 0), �(0, 0, 0),
M′(1/2, 0, 0), and L′(1/2, 0, 1/2). Although the homogeneous shear breaks the crystal symmetry,
we adopt the same labels for points in the Brillouin zones for easy comparison. Since the shapes
of the Brillouin zones are different for the different shears, the positions of the reciprocal points
in the Cartesian coordinates measured from the � points disagree slightly. The filled circles at the
M′ points indicate the soft phonon modes that have the eigenvector drawn in the inset of Fig. 4.7.
Adapted from Togo et al. (2020) (CC BY 3.0)

collective displacement as the minimum unit. Two types of parallelogram units by
alternately changing their rotation directions depicted by red circular arrows are
arranged to fill the crystal structure. The spaces surrounded by these rotating units
behave as if they were breathing. In this manner, the internal structural distortion is
considered to be minimized. This figure is similar to the one obtained by Crocker
and Bevis reported in 1970 (Crocker and Bevis 1970) for the shuffling of the {1012}
twinning mode from the crystallographic discussion. In this study, we found that the
shuffling necessarily occurs at a shear larger than the critical value based on the first
principles calculations.

The vertical dashed arrows in Fig. 4.7 correspond to the energy between the
sheared-parent and sheared-twin structures, which is released by the shuffling. The
presence of a potential energy barrier may prevent the initiation of the shuffling
between s/st = 0.5 and the critical shear s/st ~0.68. When crystalline imperfections
are present, as in a real material, the potential energy barrier may be lowered locally,
and the shuffling initiated from the imperfectionmay propagate over themacroscopic
range to result in the macroscopic twinning. Once the shuffling is locally initiated,
the sheared-parent may relax toward the twin instantaneously. Although it would be
difficult to observe the initiation of the twin at an atomic level, evidence of the shuf-
fling mechanism may be experimentally obtained by measurement of the frequency
change of the characteristic phonon mode at s/st < 0.5 by inelastic neutron or X-ray
scattering techniques.
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Fig. 4.9 Displacements of atoms induced by the structural relaxation from the sheared-parent
structure (Fig. 4.5d) to the twin structure (Fig. 4.5e) depicted as the short black arrows. The circular
red arrows depict how the displacements are arranged as units. Adapted from Togo et al. (2020)
(CC BY 3.0)
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