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Abstract

This chapter discusses about late blight, caused by the oomycete Phytophthora
infestans, the main biotic threat to potato production. The pathogen evolves
continuously, mainly through recombination and migration; hence, monitoring
of P. infestans populations is critical for the development of effective manage-
ment strategies. The population structure and its monitoring, symptomatology,
and pathogenesis are discussed in the present chapter. No single approach is
effective; hence, combination of approaches in an integrated manner is essential
to combat this disease and is discussed here.
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7.1 Introduction

Late blight, caused by the oomycete Phytophthora infestans (Mont.) de Bary, has
historically been an important disease of potatoes and tomatoes worldwide. It
continues to be the main biotic constraint of potato production and has been
considered a threat to global food security (Cooke et al. 2012). Losses due to
P. infestans have been estimated to € 12 billion per annum of which the losses in
developing countries have been estimated around € 10 billion per annum (Haverkort
et al. 2009). Studies conducted in the United States to estimate the impact of late
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blight on potato yield and fungicide use revealed that use of the fungicides alone cost
$ 77.1 million at an average cost of around $507 per ha which do not include
non-fungicide control practices (Guenthner et al. 2001). Region-wise, economic
importance of late blight shows that the disease takes highest toll of potato in
sub-Saharan Africa (44% crop losses) followed by Latin America (36%), Caribbean
(36%), South-East Asia (35%), South-West Asia (19%), and Middle East and North
Africa (9%) (CIP 1997). Phytophthora infestans is considered as re-emerging
pathogen due to regular emergence of its novel strains with increased virulence
and its appearance in new locations with surprising intensity (Fry et al. 2015).
Management of this devastating pathogen is challenged by its remarkable speed of
adaptation to control strategies such as genetically resistant cultivars and fungicides.
In the present communication, efforts have been made to discuss about the pathogen,
its population structure, symptoms, pathogenesis, and recent advances in the man-
agement of the pathogen/disease.

7.2 The Causal Organism

Oomycetes are a diverse group of organisms that morphologically resemble fungi, yet
are members of the Straminipile (¼ Stramenopile), and are more closely related to
organisms in aquatic environments such as brown algae and diatoms. These are the
members of the Kingdom Chromista (Dick 2001; Cavalier-Smith and Chao 2006;
Beakes et al. 2012) under Super Kingdom Chromalveolata (Baldauf et al. 2000; Yoon
et al. 2002). P. infestans is a heterothallic oomycete with both sexual and asexual
reproductive cycles. With few exceptions, for example, Toluca Valley, Mexico,
Scandinavia, and the Netherlands (Bruberg et al. 2011; Drenth et al. 1993a, b; Fry
et al. 2015; Yuen and Andersson 2013), the asexual reproductive cycle dominates
resulting in the development of distinct clonal lineages. The vegetative stage of the
mycelium in P. infestans is diploid, while in true fungi, it is haploid. However, recent
studies have shown that progenies from sexual P. infestans populations in the modern-
day lineages are diploid, but the most important pandemic clonal lineages are triploid
(Li et al. 2017). The size of the P. infestans genome is considerably larger (240Mb) and
by far the largest and most complex genome sequenced so far in the chromalveolates
and even in true fungi. A total of 17,797 protein-coding genes have been detected
within the P. infestans genome. Overall, the genome is having an extremely high repeat
content (~74%) and to have an unusual gene distribution, which is thought to contribute
to P. infestans evolutionary potential by promoting genome plasticity, thus enhancing
genetic variation of effector genes leading to host adaptation (Haas et al. 2009).

Virulence of oomycetes depends on rapidly evolving protein families including
extracellular toxins, hydrolytic enzymes, and cell entering effectors that help the
pathogen suppress the host plant defenses and gain nutrition from the host (Jiang and
Tyler 2012). P. infestans secretes large numbers of effectors: apoplastic effectors
that accumulate in the plant intercellular space (apoplast) and cytoplasmic effectors
that are translocated directly into the plant cell by a specialized infection structure
called the haustorium (Whisson et al. 2007). Apoplastic effectors include secreted
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hydrolytic enzymes such as proteases, lipases, and glycosylases that probably
degrade plant tissue, enzyme inhibitors to protect against host defense enzymes,
and necrotizing toxins such as the Nep1-like proteins (NLPs) and PcF-like small
cysteine-rich proteins (SCRs). At least 563 RxLR genes have been predicted in the
P. infestans genome. RxLR effectors act as activators of plant immunity, resulting in
effector triggered immunity (ETI) (Oh et al. 2009; Wang et al. 2017), while the
apoplastic effectors act as activators of the PAMP-triggered immunity (PTI)
(Domazakis et al. 2017). All oomycete avirulence genes (encoding products
recognized by plant hosts and resulting in host immunity) discovered so far encode
RxLR effectors that define a domain required for delivery inside plant cells, followed
by diverse, rapidly evolving carboxy-terminal effector domains (Jiang et al. 2008).
CRN cytoplasmic effectors were originally identified from P. infestans transcripts
encoding putative secreted peptides that elicit necrosis in planta, a characteristic of
plant innate immunity (Torto et al. 2003). Analysis of the P. infestans genome
sequence revealed an enormous family of 196 CRN genes of unexpected complexity
and diversity. Like RXLRs, CRNs are modular proteins and are defined by a highly
conserved N-terminal ~50-amino-acid LFLAK domain and an adjacent diversified
DWL domain. The effector genes locate mostly in the gene sparse regions of the
genome that are rich in repetitive sequences and are rapidly evolving, probably
enabling the evolutionary arms race between P. infestans and the host plant (Haas
et al. 2009; Dong et al. 2015).

7.3 Population Structure of P. Infestans

It is imperative to understand the diversity of the pathogen to devise efficient
management strategies. Knowledge on the pathogen population structure and its
relation to phenotypic characteristics, such as fungicide sensitivity or
aggressiveness, is important to develop effective management strategies for the
disease (Saville et al. 2015). Phytophthora infestans is highly variable and has
undergone a drastic change in structure over the period of time. Pathological
specializations (races) within potato isolates were reported by Schick (1932) after
almost 7 years of introduction of resistant hybrids/cultivars having R genes. How-
ever, universal appearance of races did not occur until resistance genes from
Solanum demissum were transferred to commercial potato, S. tuberosum. Since
then, the racial complexity has reached its zenith in different countries/regions
(Guo et al. 2009; Li et al. 2009; Runno-Paurson et al. 2009; Arora et al. 2014). Up
to 1984, only one mating type (A1) was known to occur throughout the world,
except Mexico (Tooley et al. 1985). However, there had been worldwide migration
as a result of which A2 mating type was introduced other parts of the world. First
report of A2 mating type outside Mexico was from Switzerland (Hohl and Iselin
1984). Subsequently, A2 mating type was detected in USSR during the 1990s
(Vorobev et al. 1991); the United States (Deahl et al. 1991); Belarus (Ivanyuk and
Konstantinovich 1992); the Netherlands (Drenth et al. 1993a, b); India (Singh et al.
1994); Pakistan (Ahmed and Mirza 1995); Northern Ireland (Cooke et al. 1995);

7 Advances in Management of Late Blight of Potato 165



Canada (Chycoski and Punja 1996); France (Gilet 1996); China (Zhiming et al.
1996); Hungary (Bakonyi and Ersek 1997); Italy (Cristinzio and Testa 1997);
Ecuador (Oyarzun et al. 1997); Indonesia (Nishimura et al. 1999); Myanmar
(Myint 2002); Colombia (Vargas et al. 2009); Sri Lanka (Kelaniyangoda 2011);
Tunisia (Harbaoui et al. 2014); Scandinavia and Estonia in 1987 (Vorobyeva et al.
1991); Bolivia, Argentina, Uruguay, and Brazil (Plata 1998; Deahl et al. 2003;
Forbes et al. 1998; Casa-Coila et al. 2017); and Algeria (Rekad et al. 2017). Though
existence of both mating types has opened up the possibility of sexual reproduction,
no evidence of frequent sexual reproduction has been found, suggesting that the
sexual populations are ephemeral (Fry et al. 2015). Nevertheless, there are reports
(e.g., the Nordic countries) which indicated the frequent occurrence of sexual
reproduction in the field and survival of oospores that led to earlier onset of
epidemics (Widmark et al. 2007; Schepers 2019). P. infestans is generally hetero-
thallic requiring two different mating types for sexual reproduction. The presence of
both mating types in central Mexico and in the Nordic countries of Europe and the
Netherlands has led to sexual reproduction and high genetic diversity (Drenth et al.
1993a, b; Sjoholm et al. 2013; Wang et al. 2017). However, there are reports of
occurrence of homothallic isolates which are self-fertile and constitute a new threat
to potato and tomato crops because of their increased genotypic variability, better
fitness, and greater aggressiveness (Zhu et al. 2016; Tian et al. 2016; Casa-Coila
et al. 2017).

There are platforms. Viz., EuroBlight (http://euroblight.net/), USABlight (http://
www.usablight.org/), Tizon Latino (https://tizonlatino.github.io/), AsiaBlight
(https://www.asiablight.org), and AfricaBlight, which are carrying out monitoring
of P. infestans populations across the globe. The findings have revealed that
P. infestans populations are constantly evolving, and novel, usually more aggres-
sive, genotypes appear periodically replacing the previously dominating genotypes
(Schepers 2017). New genotypes can emerge through divergence from other
genotypes, through recombination, or migration from other areas (Knaus et al.
2016). The main mode of reproduction of P. infestans is asexual, and variable
numbers of clonal lineages exist in different countries and regions. Several studies
have confirmed that appearance of new genotypes can often be attributed to migra-
tion (Fry et al. 2015; Knaus et al. 2016; Saville et al. 2016).

Multiple clonal lineages have been found in the United States since the 1990s,
revealing the history of the displacement of lineages over time (Fry and Goodwin
1997; Hu et al. 2012a, b). Genetic analysis using simple sequence repeats (SSRs) of
P. infestans from herbarium samples from the nineteenth century historic outbreaks
revealed the presence of a single dominant clonal lineages FAM-1 that caused
disease in both the continents, i.e., the United States and Europe (Saville et al.
2016), suggesting the migration of the pathogen from a similar point of origin
(Yoshida et al. 2013). With the emergence of the US-1 lineage during the 1930s in
the United States, the historic FAM-1 lineage subsequently declined (Saville et al.
2016). The dominance of US-1 clonal lineage lasted in the United States until the
1980s, when new lineages of the pathogen emerged that were insensitive to
mefenoxam (Goodwin et al. 1996). The new genotypes were US-6 (A1 mating
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type), US-7 (A2 mating type), US-8 (A2 mating type), and US-11, emerged out of
Mexico, majority as a result of sexual recombination and some as clonal derivatives
of earlier lineages (Goodwin et al. 1998). US-11, which is thought to be the progeny
of US-6 and US-7 lineages (Gavino et al. 2000), still occurs in the fields of the
Pacific Northwest and Florida.

Although US-1 was a dominant lineage in the United States for 60 years, it
declined in the mid-1990s, probably because of its sensitivity to the fungicide
mefenoxam. Majority of US lineages, with the exception of US-6, were detected
in the 1990s in the United States, and many were resistant to mefenoxam (Saville
and Ristaino 2019). The US-8 clonal lineage was responsible for the first pandemic
during the 1990s in the United States (Fry and Goodwin 1997; Johnson et al. 1997).
The second pandemic was in 2009 due to wide spread of US-22 clonal lineage with
infected tomato seedlings throughout northeastern USA (Fry et al. 2013). The
population of P. infestans in the United States continues to be dominated by
relatively few clonal lineages (Hu et al. 2012a, b; Fry et al. 2013). The most recent
dominant strains are US-8, US-11, US-22, US-23, and US-24 (Fry et al. 2015).
Generally, lineages differ in terms of their response to mefenoxam, and pathogenic-
ity and common lineages in the United States during 1990 to 2009 were largely
resistant to mefenoxam (Fry et al. 2015), and growers were not using this molecule
to manage late blight. However, the dominant lineage (US-22) in 2009 was sensitive
to mefenoxam, and some dominant lineages since 2009 have also been sensitive to
mefenoxam (Hu et al. 2012a, b; Saville et al. 2015). Further, lineages in the United
States differ in terms of their pathogenicity. US-11 and US-23 are very good
pathogens of both tomatoes and potatoes, whereas US-8 and US-24 are not good
pathogens of tomatoes. The US-23 lineage has dominated the P. infestans population
in the United States since 2012 by replacing the previously dominant lineages,
including US-8 and US-22. The possible reasons for dominance could be its
aggressiveness on both foliage and tubers (Danies et al. 2013) and its pathogenicity
on both potatoes and tomatoes (Danies et al. 2013). Studies on genetic structure and
sub-clonal variation of extant and recent US lineages revealed that many clonal
lineages in the United States have come from Mexico via introduction, but US-23
(from Bolivia and Brazil) and US-1 (from Peru) lineages were introduced from other
sources (Saville and Ristaino 2019). However, a survey for the presence of RXLR
effector PiAVR2 revealed the presence of lineages that carried either PiAVR2, its
resistance-breaking variant PiAVR2-like, or both, suggesting lineages have experi-
enced different levels of selection to the R2 gene in potato, thereby indicating that
populations of P. infestans in the US are the result of introductions from both South
America and Mexico (Saville and Ristaino 2019).

The South and Central America can harbor divergent genotypes as these regions
are rich in solanaceous species biodiversity and are centers of origin of the economi-
cally important crops that are potential alternative hosts of P. infestans. No sexual
reproduction of P. infestans has been reported in South America; hence populations
maintain strictly clonal structures, and A1 mating type is mostly dominant (Acuna
et al. 2012; Cardenas et al. 2011). In Mexico, recombination is frequent and the
population is extremely divergent (Wang et al. 2017), and it is also considered the
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origin of the newly emerged genotypes in the United States (Goss et al. 2014; Saville
et al. 2016).

EuroBlight is continuously investigating the evolution of potato late blight
pathogen in the Europe. A complex population structure is observed in Europe
with population dominance (70%) by a few widely disseminated clonal lineages.
The clonal lineage 13_A2 was first detected in 2004 in the Netherlands and Germany
which has now emerged in regions beyond Europe (Cooke et al. 2012). Some clones
are widespread and have been present for more than a decade, but recently the
frequency occurrence of three clones (EU_37_A2, EU_36_A2, and EU_41_A2)
have increased from 10% (2016) to 40% (2019) by displacing the established clones
(EU_13_A2, EU_6_A1, and EU_1_A1) from 60 to 40% of the population. Besides,
20–30% of the sampled European population is genetically diverse and consistent
with local, ephemeral oospore-derived sexual populations. The frequency occur-
rence of the clonal lineage EU_13_A2 (blue-13) and EU_1_A1 has dropped to 9.3%
and 0.4%, respectively, whereas the frequency of EU_6_A1 increased to 20.4% due
to severe outbreaks in parts of Britain. A progressive displacement of these three
lineages is occurring (Cooke et al. 2019). Clone EU_36_A2, which was first sampled
at a low frequency in Germany and the Netherlands in 2014, has spread rapidly in
Europe to the frequency of 26% in 2019. Clone EU_41_A2, first recorded in
Denmark in 2013, has now spread to neighboring states, and its frequency has also
increased from 4.6 to 5.7% of the European population in 2019 (Schepers 2019).

In eastern Africa, the first late blight epidemic occurred in Kenya in 1941 and the
pathogen was thought to be introduced via potato seed tubers from the United
Kingdom. After 1 year of the epidemic, the disease was also noticed in Uganda,
Democratic Republic of Congo, and Tanzania (Natraas 1944). The US-1 was
probably dominant in Europe at the time of the introduction of P. infestans in eastern
Africa and is assumed to be the only lineage introduced into the region. In eastern
Africa, only the A1 mating type has been detected so far, thereby signifying the
persistence of a clonal population (Njorog et al. 2016). The US-1 had been the only
lineage reported in the eastern African region, apart from RW-1 and RW-2
genotypes in Rwanda in the mid-1980s (Forbes et al. 1998; Goodwin et al. 1994).
However, these two genotypes (RW-1 and RW-2) were not detected in a later study
in 2007 that reported all isolates from Rwanda to be US-1 (Pule et al. 2013). They
further reported that US-1 was still the only lineage in central and eastern Africa
apart from Kenya, where US-1 and a new lineage KE-1 were found. The new
genotype KE-1 was first reported from Kenya in 2007 and later from Uganda in
2011 and found to be the only lineage on potato in Kenya (Njoroge et al. 2016). The
recent population of P. infestans infecting potato in the eastern African region is
dominated by KE-1 lineage, which had similar SSR fingerprints to that of EU_2_A1
(Njoroge et al. 2019). They further found decline in US-1 lineage but still present on
potato in Uganda, Rwanda, Burundi, and Tanzania. Besides, a tomato-adapted US-1
sub-population is also still present in all the countries. Two new European lineages
(EU_33_A2 and EU_13_A2) have been emerged recently in Nigeria and Senegal on
potato and are a cause for concern for potato production in sub-Saharan Africa
(Schepers 2019).
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Although there have been a number of publications on the late blight population
structure of P. infestans in Asian countries, a very few have used markers for
comparative analysis (Forbes 2015). The Indian population of P. infestans has
been characterized for phenotypic and genotypic characters (Chimote et al. 2010;
Sharma et al. 2016, 2017) and ploidy status (Sharma et al. 2018). The findings of
these studies have shown that population is possessing complex virulence genes,
resistance to metalaxyl, Ia mtDNA haplotype, and varied allele size for SSR
markers. There are records of at least four migrations of P. infestans into India
over the past 100 years. The oldest samples of P. infestans collected from Bagalpur
(Bihar) in 1913 by J.F. Dastur were the Ia mtDNA haplotype (Ristaino and Hu
2009), and the US-1 clonal lineage (Ib mt DNA haplotype) was present in India by
the 1960s (Ristaino and Hu 2009). The occurrence of the A2 mating type in the
1990s in the northern hills provided the additional evidence of migration from an
outside source (Singh et al. 1994), and more recently, the European 13_A2 genotype
was intercepted in southern India (Chowdappa et al. 2013, 2015). Dey et al. (2018)
found that mutations have generated substantial sub-clonal variation in EU_13_A2
genotype, having 19 out of 24 unique variants not yet reported elsewhere globally.
Nevertheless, the Asian population of P. infestans has also been genotyped using
markers, and findings revealed the widespread occurrence of aggressive genotype
13_A2 in many parts of Asia as reported from China (Li et al. 2013), India
(Chowdappa et al. 2013, 2015; Dey et al. 2018), Bangladesh (Kessel et al. 2017),
and Pakistan (Raza et al. 2020). In Vietnam, the P. infestans population is still the
“old” US-1 (Le et al. 2008). The P. infestans population in northwestern China is
genetically distant from European lineages, including the recently identified 13_A2
lineage (Tian et al. 2016), though its presence (13_A2) was reported in Sichuan and
Yunnan provinces, south western China (Li et al. 2013). Four clonal lineages, viz.,
KR_1_A1, KR_2_A2, SIB-1, and US-11, have been reported from South Korea.
KR_2_A2 was confined to Gyeongnam Province, whereas SIB-1 was dominant until
2013 and thereafter its frequency declined gradually. US-11 was first found in 2014,
and its frequency has increased to become co-dominant with KR_1_A1. The
EU_13_A2 genotype was not found in South Korea (Choi et al. 2020). The Indone-
sian population is dominated by EU_2_A1 (60%), EU_4_A1, and EU_13_A2
(1.5%) (Dangi et al. 2021).

7.4 Symptoms

P. infestans adopts a two-step infection style typical of hemibiotrophs. Infection
generally starts when sporangia lands on a plant surface and release zoospores that
encyst, germinate, and penetrate the host tissue or sporangia directly germinate and
initiate the infection. Germ tubes form an appressorium and then a penetration peg,
which pierces the cuticle and penetrates an epidermal cell to form an infection
vesicle. Branching hyphae with narrow, digit-like haustoria expand from the site
of penetration to neighboring cells through the intercellular space. At this biotrophic
stage, P. infestans requires living cells to obtain nutrients. However, this stage of
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infection remains unnoticed to the naked eye, but at cellular level a repertoire of
molecular interactions takes place. The first visible symptoms appear within
2–3 days when the pathogen switches to the necrotrophic stage. Later on, the
mycelium develops sporangiophores that emerge through the stomata to produce
numerous asexual spores that initiate new infections (Judelson and Blanco 2005). In
leaves, water-soaked irregular pale green lesions mostly near tip and margins that
enlarge into brown to purplish black necrotic spots appear. A white mildew, which
consists of sporangiophores and spores of the pathogen, can be seen on the lower
surface of the infected leaves especially around the edges of the necrotic lesions
under high humidity (Nowicki et al. 2012). On stems and petioles, light to dark
brown lesions encircle the stems; as a result, the affected stems and petioles become
weak at such points and may collapse. Affected tubers show irregular reddish brown
to purplish areas which extend into internal tissues of the tubers (Fig. 7.1).

Pathogenesis involves the secretion of proteins and other molecules by
P. infestans that participate in helping the pathogen attach to plant surface, breaking

Fig. 7.1 Late blight symptoms (a) Foliar blight on upper surface (b) On lower surface (c) On stem
(d) On tubers
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down physical barriers to infection and influence the host physiology by suppressing
or inducing host-defense responses (Huitema et al. 2004). Gene expression profiling
during asexual development of P. infestans revealed highly dynamic transcriptome.
Differentially expressed genes encode potential cellular regulators, especially pro-
tein kinases; metabolic enzymes involved in glycolysis, gluconeogenesis, or the
biosynthesis of amino acids or lipids; regulators of DNA synthesis; structural
proteins; and pathogenicity factors like cell-wall degrading enzymes, RXLR
effectors and enzymes protecting against plant defense responses (Tani et al. 2004;
Judelson et al. 2008). A MADS-box protein (PiMADS) is required for sporulation of
P. infestans but not for hyphal growth or host colonization as both mRNA and
protein levels decline upon spore germination (Leesutthiphonchal and Judelson
2018). P. infestans possesses a large repertoire of phospholipase D (PLD) proteins
which are essentially required for the promotion of virulence, possibly by executing
membrane modifications to support the growth of P. infestans in the host (Meijer
et al. 2019). Identification of these factors involved in pathogen growth and devel-
opment and in pathogenesis would be of help in designing management strategies.

7.5 Management of the Disease

Management of this devastating pathogen is challenged by its remarkable speed of
adaptation, with respect to emergence of virulence towards resistant cultivars and to
fungicide resistance (Haas et al. 2009). One of the prerequisites for durable manage-
ment of late blight is up-to-date knowledge on characteristics of local P. infestans
population and its dynamics. Since the pathogen population is continually evolving,
the emerging clonal lineages with new traits highlights the need to tailor manage-
ment to the local pathogen population. No single approach is effective; hence,
combination of approaches in an integrated manner is essential to combat this
devastating disease.

7.5.1 Cultural Practices

These are an important part of an integrated disease management program as they
reduce the incidence and severity of the disease epidemic thereby reducing yield
losses and lowering the requirements of fungicides (Mizubuti and Forbes 2002).
Reduction of primary source of inoculum is the first step, and this can be achieved by
eliminating volunteers and cull piles, waste heaps, infected tubers, use of certified
seed and resistant varieties, balanced fertilization, adequate space between rows and
plants, rotation with non-host crops, adequate hilling, harvest in dry conditions, and
when the tubers are mature (Garrett and Dendy 2001; Perez and Forbes 2010). Onset
of epidemic can be delayed by 3–6 weeks if all primary infection from early potato is
eliminated (Forrer et al. 2000). Covering of dumps with black plastic sheet through-
out the season is an important step in reducing the primary inoculum as it prevents
re-growth and the proliferation of spores on the piles thereby reducing the risk to
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nearby crops (Cooke et al. 2012). Infection usually starts early in fields which are not
subjected to crop rotations. A sound crop rotation for 3–4 years is an effective way of
reducing the risk of soil-borne inoculum as oospores can remain infectious up to
48 months in soil (Turkensteen et al. 2000; Bodker et al. 2006; Hannukkala et al.
2007). Choice of suitable cultivars, well-aerated fields, pre-sprouting of tubers, early
planting, use of resistant varieties, and mixtures of potato varieties (resistant and
susceptible) are some of the measures against foliar blight (Meinck and Kolbe 1999;
Garrett and Mundt 2000; Pilet et al. 2006). Strip cropping of potatoes significantly
reduced late blight severity in organic production when planted perpendicular to the
wind neighbored by grass clover (Bounes and Finckh 2008). Avoiding excess
nitrogen and use of moderate nitrogen fertilization is often recommended as a
cultural practice to delay the development of late blight, whereas higher dose of
phosphorus and potassium has been found to give a higher yield in a late blight year
(Roy et al. 2001). High ridging is often used to reduce tuber contamination by blight.
Another approach to reduce tuber blight is to destroy the canopy when blight reaches
to 75% severity. Elimination of infected foliage reduces the likelihood of tuber
infection. Intercropping with garlic has been found effective against potato late
blight under Ethiopian condition (Kassa and Sommartya 2006).

7.5.2 Host Resistance

Host resistance is the most preferred environment and economic option globally for
the management of late blight. With the use of host resistance, fungicide load can be
reduced either by lowering the fungicide dose or increasing the application intervals
(Kirk et al. 2005; Cooke et al. 2012; Haverkort et al. 2016). Durable resistant
cultivars with multiple resistant genes are needed today, which can be developed
by a blend of conventional and molecular approaches. So far resistant genes from the
wild species Solanum demissum and S. stoloniferum and the cultivated S. tuberosum
subsp. andigena and S. phureja have been utilized into common potato in different
parts of the world (Bradshaw et al. 2006). Thus, it warrants the breeders to search for
new sources of resistance in wild gene pools and their faster deployment into
cultivars through modern techniques. Late blight resistance genes/QTLs and molec-
ular markers for late blight resistance genes/QTLs in potato have been reviewed by
Tiwari et al. (2013). Genetic engineering may also provide options for generating
resistant cultivars. A resistance gene effective against most known strains of blight
has been identified from a wild relative of the potato, Solanum bulbocastanum, and
introduced by genetic engineering into cultivated varieties of potato (Song et al.
2003; Van der Vossen et al. 2003). Introgression of RB gene in Indian popular potato
cultivars has demonstrated variable level of late blight resistance and generation of
valuable genetic material for resistance breeding (Shandil et al. 2017).
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7.5.3 Use of Fungicides

The chemical-based management still continues to be the most common method to
supplement host resistance and to manage the late blight. Recent changes in the
population structure of the pathogen have led to the advent of new genotypes that are
more aggressive and resistant to previously effective fungicides (Fry et al. 2015).
Sixteen classes of fungicides with different modes of action are available for the
control of oomycete plant pathogens (FRAC n.d.). The three most important single-
site compounds are phenylamides, quinone outside inhibitors, and carboxylic acid
amides (Gisi and Sierotzki 2014). Products containing mefenoxam or metalaxyl
(a.i. mefenoxam) have been the most widely used fungicides for control of
P. infestans. However, more recent dominant lineages are largely sensitive to
mefenoxam (Matson et al. 2015; Saville et al. 2015). The build-up of resistance to
single-site oomycides has accelerated the research for anti-oomycete compounds
with new modes of action. The development strategy for creating new fungicides
consists of fungicides that are (1) effective at an extremely low dosages, (2) readily
degradable and less residual in the environment, and (3) selective toxic
agrochemicals (Umetsu and Shirai 2020). Many fungicides possessing various
novel modes of action have been launched or are under development. Two such
novel compounds are ametoctradin (Quinone QoSI inhibition of the respiratory
chain) binding to the mitochondrial bc1 Complex III (Fehr et al. 2015) and
oxathiapiprolin (inhibitor of oxysterol-binding protein) (Sweigard et al. 2014).
Oxathiapiprolin binds in the oxysterol-binding protein (OSBP) domain of
oomycetes and inhibits zoospore and sporangial germination, stops mycelia growth
in the host plants before visible symptoms occur, and inhibits further lesion growth
and spore production and viability. It belongs to the FRAC U49 group of fungicides
(Cohen 2015).

7.5.4 Alternatives to Fungicides

Various chemicals other than fungicides have also been found effective against late
blight; for example, ammonium molybdate, cupric sulfate, and potassium
metabisulfite have been reported to partially inhibit the growth and spore germina-
tion of P. infestans, whereas ferric chloride, ferrous ammonium sulfate, and ZnSO4

completely inhibited growth and spore germination (Bhat et al. 2006). The foliar
application of ZnSO4 and CuSO4 (0.2%) micronutrients in combination with host
resistance delayed the onset of late blight by 12 days and subsequently reduced
disease severity with higher yield (Basu et al. 2003). Phosphites (Phi), derived from
phosphorous acid, are fungitoxic chemicals that can be combined with different
elements such as calcium, copper, manganese, magnesium, potassium, or zinc and
are classified by the US Environmental Protection Agency (US-EPA) as
biopesticides, specifically biochemical pesticides (http://www.epa.gov/pesticides/
biopesticides/). Thus, they have low environmental impact (Guest and Grant 1991).
Besides their fungistatic or fungicidal activity (Fenn and Coffey 1984; Lobato et al.
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2008), Phi stimulate defense mechanisms in plants against diseases (Daniel and
Guest 2006; Andreu et al. 2006; Lobato et al. 2011) and promote growth (Thao and
Yamakawa 2009). Because of these attributes, the horticultural industry widely uses
Phi for oomycete control (Pilbeam 2003). Cicore et al. (2012) evaluated the effect of
calcium phosphite (Phica) and potassium phosphite (PhiK) on late blight control and
found that PhiK had significantly lower damage and higher yields than PhiCa and
untreated control. Sub-phytotoxic dose of boron with reduced rate of propineb +
iprovalidicab has been found more effective than treated with fungicides alone
(Frenkel et al. 2010). Similarly, application of potassium phosphate in combination
with reduced doses of fungicides provided the same level of protection as full dose of
fungicides. Thus, combined treatments could help to reduce the quantity of tradi-
tional fungicides and may also decrease the selection pressure for fungicide resis-
tance development in the pathogen. β-aminobutyric acid (BABA) has been known as
an inducer of disease resistance. Plant activators, viz., BABA and phosphoric acid,
have been evaluated against late blight with combination of fungicides or alone (Tsai
et al. 2009). A 20–25% reduction of the fungicide dose in combination with BABA
gave the same result on late blight development as full dose of Shirlan alone in field
condition, while reduced dose of Shirlan alone sometimes resulted in less effective
protection. The partially resistant cultivars Ovatio and Superb reacted to lower
concentrations of BABA where no effect was found in susceptible cv. Bintje
(Liljeroth et al. 2010). The expression of the defense-related genes and
P. infestans effector proteins β-1,3 glucanase, PR-1 protein, phytophthora inhibitor,
protease inhibitor, xyloglucanase, thaumatin protein, steroid binding proteins, pro-
line, endochitinase, and cyclophilin genes was upregulated with the SAR activator
treatment compared to unsprayed (CPRI 2014). Better results than with copper were
achieved with Phosfik® (Ph), a phosphonate-based product. Two to three
applications with 2–3 L/ha of Ph would be feasible to not exceed a minimal risk
level (MLR) of 20 mg/kg of phosphorous acid as proposed by the European Food
Safety Authority (Forrer et al. 2017). Due to an excellent environmental profile and a
complex mode of action counteracting Phytophthora infestans resistance,
phosphonate-based products would be most suitable for sustainable late blight
management in integrated disease management programs.

7.5.5 Biocontrol

New strategies to manage plant diseases without harming the environment are
urgently needed. Biocontrol agents and bio-pesticides could be a safe option to the
use of synthetic fungicides. Some workers have reported the use of Trichoderma
isolates (Yao et al. 2016), Chaetomium globosum (Shanthiyaa et al. 2013),
Trichoderma viride, and Penicillium viridicatum (Gupta 2016) and species of
Bacillus, Pseudomonas, Rahnella, and Serratia (Daayf et al. 2003) as biocontrol
agents in the management of late blight disease in potato. The bio-based products,
viz., neem-based products and bio-agents (T. viride and P. fluorescens), have shown
some efficacy against late blight under field conditions (Lal et al. 2021). The
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biocontrol agents in general have been found to be very effective under laboratory
and glasshouse conditions but less effective under field conditions (Arora 2000).
However, an integrated use of biocontrol agents along with fungicides could help to
reduce the quantity of fungicides used in the management of late blight (Lal et al.
2017). Biosurfactants produced by microbes can be used as alternatives to chemical
surfactants because of their low toxicity, high specificity, and biodegradability (Lima
et al. 2011). Significant reduction in late blight development was observed when
plants were treated with biosurfactant—Pseudomonas koreensis 2.74—and also,
biosurfactants have the potential to induce resistance in potato to late blight
(Bengtsson et al. 2015). The biosurfactant produced by Pseudomonas aeruginosa
has shown high efficacy against P. infestans under in vitro and glass house
conditions (Tomar et al. 2013, 2014). The rhamnolipid-based formulation prepared
from P. aeruginosa biosurfactant was found effective against late blight when
evaluated through detached leaf (Tomar et al. 2019) and could be used in field
spray as green chemicals.

Plant-associated bacteria contribute to their host’s health in diverse ways, among
which the emission of disease inhibiting volatile organic compounds (VOCs) is one
option. Volatile organic compounds (VOCs) produced by the plant microbiota have
been demonstrated to elicit plant defenses and inhibit the growth and development of
numerous plant pathogens. The inhibitory impact of volatiles emitted by Pseudomo-
nas species against late blight has been shown by impeding mycelial growth and
sporangia germination of P. infestans (Bailly and Weisskopf 2017). The VOCs
containing sulfur compound S-methyl methane thiosulfonate (MMTS) had shown
high in planta protective potential against late blight without phytotoxic effects.
Short exposure times were sufficient to protect plants against infection. This protec-
tive activity of MMTS is not mediated by the plant immune system but is due to its
anti-oomycete activity (Chinchilla et al. 2019). This provides new perspectives for
plant protection by opening new research avenues on the role of VOCs in the
interaction between plants and their microbiome and thus could help select for
efficient biocontrol strategies and lead to a greener chemical disease management
in the field.

In organic potato production, the only synthetic direct control measure allowed is
the use of copper-based products despite its persistence in soil and toxicity to soil
organisms (Buenemann et al. 2006). Based on such reports about the toxicity of
copper, the EU proposed a ban of copper fungicides as early as 2002, though it was
not imposed as of now, but this would have threatened the feasibility of organic
potato production. This initiative led to intensified research for new approaches to
reduce the risk of late blight attacks and for natural products to replace or reduce the
use of copper (Leifert and Wilcockson 2005). Three promising botanicals, including
bark of buckthorn (Frangula alnus, FA), roots of medicinal rhubarb (Rheum
palmatum), and galls of the nutgall tree (Galla chinensis), have been reported
effective under field conditions and could replace copper reaching a level close to
that of 2–3 kg copper per hectare and year (Forrer et al. 2017).
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7.5.6 Late Blight Forecasting

Currently, late blight management has been heavily based on numerous fungicide
applications due to introduction of new, more aggressive genotypes of the pathogen
(Schepers 2017, 2019). However, this strategy faces increasing concerns due to
societal pressure for reducing pesticide use on crops and acreage of organically
grown food crops. Innovative and effective control measures are needed if fungicide
use is to be reduced or, as in the case of organic production, eliminated. One way of
achieving this goal is through the use of forecasting models and decision support
systems (DSSs). Forecasting allows a better control of a disease and a more efficient
use of fungicides by making informed disease management decisions. Various late
blight forecasting models and DSSs have been developed across the globe for the
management of late blight in different agro-ecologies (Table 7.1). The DSS-based
strategy can deliver general or site-specific information to the stakeholders via print
and electronic media (Cooke et al. 2012) enabling them to take firm decisions on the
management of late blight thereby resulting in economic gains and environment
protection (Sekhon et al. 2017; Liu et al. 2017; Sharma 2019).

Table 7.1 List of forecasting models and decision support systems used for forecasting and
management of late blight (Source: Singh and Sharma 2013; Schepers 2019)

Decision support system Country
Decision support
system Country

BliteCast, SimCast, BlightPro USA Guentz-Divoux Belgium,
France

Blight-watch, plant plus, BlightCAST England,
Wales,
Scotland

Estonian crop research
institute

Estonia

Plant plus Latvia Mileos France

Phytophthora model Weihenstephan,
ISIP, Phytoprog, SimPhyt, ProPlant,
ProGeb

Germany Prophy, plant plus,
Akkerwels (WUR
model)

Netherlands

Met. Service based on Irish rules
(Bourke)

Ireland VIPS (Naerstad
model)

Norway

Plant-plus, VNIIF blight, Agrodozor Russia Plant plus, blight
management (DK),
VIPS (no)

Sweden

Bio-PhytoPRE, PhyoPRE, PhytoPRE
+2000

Switzerland WISDOM,
web-blight, NegFry

Denmark

IPI, MIP Italy Blight watch UK

China-blight China Indo-Blightcast,
Jhulsacast

India
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7.6 Looking Forward

Phytophthora infestans is capable of overcoming host resistance and fungicides;
hence, late blight would continue to be the main constraint in potato cultivation
throughout the world. Nevertheless, the advances in molecular, sensor, computa-
tional, and electronics technologies would provide stable solutions for its manage-
ment. New high-throughput methods (remote sensing, image processing, UAV, etc.)
would be of significance in disease detection and surveillance. Robust, quick, and
onsite detection methods are needed for early diagnosis of the pathogen and moni-
toring of population structure. Research is warranted on development of new
oomycides having efficacy at very low dosages, highly degradable, and with novel
mode of action. Besides, there is need to identify new molecules of biological origin
that can be used under organic production. Smartphone-based systems can be of help
in monitoring, forecasting/DSSs, and dissemination of the disease information to the
stakeholders. Emerging research topics on P. infestans include genome editing for
genetic improvement of plant disease resistance and the role of the pathogen–
microbiota interaction in promotion or suppression of the disease.
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