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Abstract This paper suggests a computationally effective homotopy perturba-
tion Sumudu transform technique (HPSTT) to investigate various time-fractional
nonlinear models in Liouville-Caputo sense arising in mathematical physics. The
nonlinear terms are presented in terms of He’s polynomials. The error analysis of
HPSTT is discussed. The numerical simulation results are illustrated graphically to
study effects of the arbitrary order of fractional derivative on the behavior of obtained
solution.

Keywords Time-fractional Belousov-Zhabotinsky (BZ) equation · Homotopy
perturbation Sumudu transform technique (HPSTT) · He’s polynomials ·
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1 Introduction

Fractional derivatives are used in modeling of numerous important models in
significant areas such as signal and systems, control theory, mechanics, chemical
engineering, biological sciences, fluid dynamic traffic, acoustics, neurophysiology,
plasma physics, and many engineering sciences. The universe is full of nonlinear
fractional-order models, and it is not possible to find their exact solution due to their
nonlinearity in nature. So, we have to choose some numerical methods for their
convergent solution. In literature, there are few techniques for finding approximate
solution to these models, e.g., homotopy perturbation [1–4] scheme, q-homotopy
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analysis [5] via the Laplace transform, iterative method via the Sumudu transform
[6], variational iteration [7] scheme. For more methods, (see, for details, [8–53]).

This paper studies the merit of scheme HPSTT to get the numerical solution of
nonlinear time-fractional Belousov-Zhabotinsky (BZ) equation. HPSTT is a smooth
combination of homotopy perturbation scheme and Sumudu transform. This tech-
nique offers the numerical solution simply in a convergent series. It is evident that
some semi-analytical methods, when combinedwith the Sumudu transform, take less
CPU runtime in calculation than other techniques. Sumudu transform [54, 55] has an
advantage of the “unity” feature over other transforms. Watugala [56] proposed the
Sumudu transform, and Asiru [57] proved its properties. Weerakoon [58, 59] applied
it in finding solution to wave equation.

Singh et al. [60] presented homotopy perturbation method via the Sumudu trans-
form (HPSTM). It is largely due to the works of Ghorbani and Saberi-Nadjafi [61].
Ghorbani [62] used He’s polynomials in nonlinear term. The benefit of HPSTT is
its power of embracing two robust computational schemes for tackling a fractional
differential equation. These approaches can reduce the time and computation work
more in comparison with other existing schemes, preserving efficiency of the results.

We examine the time-dependent nonlinear Belousov-Zhabotinsky (BZ) equation
with fractional derivative in Liouville-Caputo sense in this paper. The Belousov-
Zhabotinsky reaction is an experimental model for pattern formation and chemical
oscillatory reaction. It is a famous example of the self-organizing chemical system.
It is given as

Dα
t u(x, t) = u(x, t)(1 − u(x, t) − rv(x, t)) + uxx (x, t),

Dα
t v(x, t) = −au(x, t)v(x, t) + vxx (x, t), (1)

where 0 ≤ α ≤ 1, 0 < t < R < 1.
The fractional model given by Eq. (1) is studied for the first time by Ali Jaradat

et al. [63] with generalized Taylor series and discussed the effects of arbitrary order
on its solution. Our paper is prepared as follows.

After introduction in Sect. 1, we give few definitions and some properties
of Liouville-Caputo arbitrary-order derivative and the Sumudu transform in next
section. In Sect. 3, analysis of HPSTT is presented. Next section has the error anal-
ysis, and in Sect. 5, HPSTT is implemented on the time-fractional nonlinear BZ
equation. In Sect. 6, we discuss the results and their importance using figures. Also,
in last Sect. 7, we recap outcomes and find a conclusion.

2 Preliminaries

We write some definitions of fractional-order derivatives and integrals in Liouville-
Caputo sense along with few properties of the Sumudu transform (see, for details,
[64, 65]).
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Definition 2.1 A real function g(μ), μ > 0, lies in spaces:

(a) Cζ , ζ ∈ R if there exists a real number p > ζ in such a manner that

g(μ) = μpg1(μ), while g1(μ) ∈ C[0,∞).

(b) Cl
ζ if gl ∈ Cζ , l ∈ N .

Definition 2.2 Liouville-Caputo arbitrary-order derivative of g(μ), g ∈ Cm
−1,m ∈

N,m > 0, is stated as

Dβg(μ) = I m−βDmg(μ) = 1

r(m − β)

μ∫

0

(μ − η)m−β−1g(m)(η)dη,

where m − 1 < β ≤ m.

The operator Dβ has following basic properties:

1. Dβ I βg(μ) = g(μ),

2. I βDβg(μ) = g(μ) −
m−1∑
k=0

g(k)
(
0+) μ

r(k+1) ,m > 0.

Definition 2.3 Sumudu transform [66, 67] is stated over a set of function.

A = { f (t)|∃M, t1, t2 >0, | f (t)| <Me
|t |
t j if t ∈ (−1) j × [0,∞)

by the following formula,

S[ f (t)] =
∞∫

0

f (ut)e−tdt, u ∈ (−t1, t2).

Definition 2.4 Sumudu transform [66, 67] of Liouville-Caputo derivative is

S
[
Dmα

x u(x, t)
] = s−mαS[u(x, t)] −

m−1∑
k=0

s(−mα+k)uk(0, t),m − 1 < mα ≤ m.

3 Analysis of Homotopy Perturbation Sumudu Transform
Technique (HPSTT)

Ponder over a nonlinear time-fractional differential equation of arbitrary order is
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Dβ
t u(x, t) + Ru(x, t) + Nu(x, t) = f (x, t), l − 1 < β ≤ l, (2)

with the condition

um(x, 0) = fm(x),m = 0, 1, 2, . . . , l − 1, (3)

where Dβ
t u(x, t) is β-order derivative of u(x, t) in Liouville-Caputo sense and R

and N are used for linear and nonlinear differential operators, respectively. f (x, t)
is actually the source term.

By Sumudu transform on Eq. (2),

u−αS[u(x, t)] −
m−1∑
k=0

u−(α−k)uk(x, 0)

= −S(Ru(x, t) + Nu(x, t) − f (x, t)).

On simplification,

S[u(x, t)] =
m−1∑
k=0

ukuk(x, 0)

− uα{S[Ru(x, t)] + S[Nu(x, t)] − S[ f (x, t)]} = 0. (4)

Taking inverse Sumudu transform

u(x, t) = S−1

[
m−1∑
k=0

ukuk(x, 0)

]

− S−1{uα[S(Ru(x, t) + Nu(x, t) − f (x, t))]} = 0 (5)

By homotopy perturbation method, we have

u(x, t) =
∞∑
i=0

piui (x, t). (6)

The nonlinear term is expressed in He’s polynomials as

Nu(x, t) =
∞∑
i=0

pi Hi (u), (7)

where He’s polynomial Hi (w) is given as:
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Hi (w) = 1

i !
∂ i

∂pi

⎡
⎣N

⎛
⎝ ∞∑

j=0

p jw j

⎞
⎠
⎤
⎦

p=0

, i = 0, 1, 2, 3, . . . (8)

Putting Eqs. (6) and (7) in Eq. (5), we write

∞∑
i=0

piui (x, t) = S−1

(
m−1∑
k=0

ukuk(x, 0) + S[ f (x, t)]

)

− p

[
S−1

{
uαS

{[
R

∞∑
i=0

piui (x, t)

]
+

∞∑
i=0

pi Hi (u)

}}]
(9)

Equating on each side the coefficients of identical powers of p, we find

p0 : u0(x, t) = S−1

(
m−1∑
k=0

ukuk(x, 0) + S[ f (x, t)]

)
,

p1 : u1(x, t) = −S−1{uαS{[Ru0(x, t)] + H0(u)}},
p2 : u2(x, t) = −S−1{uαS{[Ru1(x, t)] + H1(u)}},
p3 : u3(x, t) = −S−1{uαS{[Ru2(x, t)] + H2(u)}},

In the same way, the next iterates can be found.
Hence, the solution is

u(x, t) = lim
p→1

lim
N→∞

N∑
i=0

piui (x, t) = lim
N→∞

N∑
i=0

ui (x, t). (10)

4 Error Analysis

Now, we give the error analysis of presented approach found with HPSTT.

Theorem 4.1 If there exists 0 < γ < 1, such that

‖ui+1(τ, ξ)‖ ≤ γ ‖ui (τ, ξ)‖,∀i ∈ N ,

then, the maximum value of absolute truncation error in HPSTT solution given by
Eq. (10) of time-dependent nonlinear Belousov-Zhabotinsky equation is estimated
as
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∣∣∣∣∣u(τ, ξ) −
j∑

i=0

ui (τ, ξ)

∣∣∣∣∣ ≤ γ j+1

(1 − γ )
u0(τ, ξ).

5 Applications

In this section, HPSTT is implemented on the fractional model of BZ equation.

Test Example. Consider the following fractional model of Belousov-Zhabotinsky
equation

Dα
t u(x, t) = u(x, t)(1 − u(x, t) − rv(x, t)) + uxx (x, t),

Dα
t v(x, t) = −au(x, t)v(x, t) + vxx (x, t), (11)

where 0 ≤ α ≤ 1, 0 < t < R < 1. The initial conditions are

u(x, 0) = −1

2

(
1 − tanh2

( x
2

))
,

v(x, 0) = −1

2
+ tanh

( x
2

)
+ 1

2
tanh2

( x
2

)
. (12)

The exact solution of Eq. (11) when α = 1, for r = 2, a = 3 is given as

u(x, t) = −1

2

(
1 − tanh2

( x
2

+ t
))

,

v(x, t) = −1

2
+ tanh

( x
2

+ t
)

+ 1

2
tanh2

( x
2

+ t
)

Firstly, exerting Sumudu transform operator on Eq. (11)

S
[
Dα

t u(x, t)
] = S[u(x, t)(1 − u(x, t) − rv(x, t)) + uxx (x, t)],

S
[
Dα

t v(x, t)
] = S[−au(x, t)v(x, t) + vxx (x, t)].

Applying the inverse Sumudu transform

u(x, t) = u(x, 0) − S−1
{
uαS

[−u + u2 + ruv − uxx
]}

,

v(x, t) = v(x, 0) − S−1{uαS[auv − vxx ]},

By applying the homotopy perturbation method, using

u(x, t) =
∞∑
i=0

piui (x, t) and v(x, t) =
∞∑
i=0

pivi (x, t),
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And, the nonlinear term is decomposed as

Nu(x, t) =
∞∑
i=0

pi Hi (u) and Nv(x, t) =
∞∑
i=0

pi Hi (v).

where Hi (u), Hi (v) are homotopy polynomials that are representing the nonlinear
terms. So, Eq. (11) becomes

∞∑
i=0

piui (x, t) = u(x, 0)

− pS−1

⎧⎪⎪⎨
⎪⎪⎩
uαS

⎡
⎢⎢⎣

−
∞∑
i=0

piui (x, t)

+
∞∑
i=0

pi Hi (u) −
( ∞∑
i=0

piui (x, t)

)
xx

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

,

∞∑
i=0

pivi (x, t) = v(x, 0) − pS−1

{
uαS

[ ∞∑
i=0

pi Hi (v) −
( ∞∑

i=0

pivi (x, t)

)

xx

]}
,

(13)

where

∞∑
i=0

pi Hi (u) = u2 + ruv and
∞∑
i=0

pi Hi (v) = auv.

H0(u) = u20 + ru0v0, H0(v) = au0v0,

H1(u) = 2u0u1 + 2u0v1 + 2v0u1, H1(v) = a(u0v1 + v0u1),

Solving above equations, we get

u0(x, t) = −1

2

(
1 − tanh2

( x
2

))
, v0(x, t) = −1

2
+ tanh

( x
2

)
+ 1

2
tanh2

( x
2

)
,

u1(x, t)

= − tα


(α + 1)

{
5

4
− 2 tanh2

( x
2

)
+ 3

4
tanh4

( x
2

)
− tanh

( x
2

)
sech2

( x
2

)

−1

4
sech4

( x
2

)
+ 1

2
tanh2

( x
2

)
sech2

( x
2

)}
,

v1(x, t) = − tα


(α + 1)

{
3

4
+ 3

2
tanh2

( x
2

)
+ 3

4
tanh4

( x
2

)
− 3

2
tanh

( x
2

)
sech2

( x
2

)
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−1

4
sech4

( x
2

)
+ 1

2
tanh2

( x
2

)
sech2

( x
2

)
+ 1

2
tanh

( x
2

)}
,

u2(x, t) = t2α


(2α + 1)

{
9

2
+ 43

4
tanh2 −34

4
tanh4

( x
2

)

+ 9

2
tanh

( x
2

)
sech2

( x
2

)

+ 2sech4
( x
2

)
− 6 tanh2

( x
2

)
sech2

( x
2

)
+ 9

4
tanh6

( x
2

)

− 3

2
tanh3

( x
2

)
sech2

( x
2

)
− 1

4
tanh2

( x
2

)
sech4

( x
2

)

+ 5

2
tanh4

( x
2

)
sech2

( x
2

)

+ 2 tanh
( x
2

)
− 7

2
tanh3

( x
2

)
+ 3

2
tanh5

( x
2

)
− 5

2
tanh

( x
2

)
sech4

( x
2

)

−1

2
sech6

( x
2

)}
,

v2(x, t) = t2α


(2α + 1)

{
−3

8
+ 43

4
tanh2

( x
2

)
− 3

8
tanh4

( x
2

)

+ 9

2
tanh

( x
2

)
sech2

( x
2

)
+ 1

4
sech4

( x
2

)

− 6 tanh2
( x
2

)
sech2

( x
2

)
+ 9

4
tanh6

( x
2

)

− 3

2
tanh3

( x
2

)
sech2

( x
2

)
− 9

4
tanh2

( x
2

)
sech4

( x
2

)

+ 5

2
tanh4

( x
2

)
sech2

( x
2

)

+ 2 tanh
( x
2

)
− 7

2
tanh3

( x
2

)
+ 3

2
tanh5

( x
2

)
− 5

2
tanh

( x
2

)
sech4

( x
2

)

− 1

4
sech6

( x
2

)}
+ · · · ,

Hence, the next iterates of series solution can be calculated.
The HPSTT solution is given as

u(x, t) = lim
N→∞

N∑
i=0

ui (x, t), v(x, t) = lim
N→∞

N∑
i=0

vi (x, t).
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6 Results and Discussion

Figures 1a–f represent the behavior of solution at α = 1, the estimated solution
for Eq. (11), and the absolute error. We can clearly see from the plots of solution

Fig. 1 a uexact(x, t)whenα = 1,b uapprox.(x, t)whenα = 1, c absolute error= ∣∣uexact − uapprox.
∣∣,

when α = 1, d vexact(x, t), when α = 1, e vapprox.(x, t), when α = 1, f absolute error =∣∣vexact − vapprox.
∣∣ when α = 1
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Fig. 2 For different values of α, the plots of a uapprox.(x, t) with x when t = 0.1, b uapprox.(x, t)
with t when x = 0.5, c vapprox.(x, t) with t when x = 0.5, and d vapprox.(x, t) with x , when t = 0.1

that the proposed numerical approach is accurate. Figures 2a–d give 2D graphical
representations of the numerical solution for varying fractional order, and we clearly
observe from Figs. 2a, d that the oscillatory behavior of u and v with x as the order
α increases. Figures 2b, c show decreasing behavior of numerical solution with time
for order.

7 Conclusion

In this work, we used a numerical scheme HPSTT to investigate the nonlinear time-
dependent Belousov-Zhabotinsky system and to check effects of the fractional order
on obtained solution. The simulation results are illustrated graphically. The results are
derived using the third-order iterates, and the accuracy of the proposed technique can
be enhanced by calculating further approximations. The supremacy of HPSTT is its
quality of joining two strong methods for the possible solution of nonlinear differen-
tial equations. We conclude that this effective scheme reduces time and computation
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compared to the standard scheme simultaneously conserving the high accuracy of
results.
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