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1 Introduction

Copper nanoparticles (NPs) are of great importance due to their wide application in
anti-viral/antibacterial coatings [1–3], CO2 adsorption [4–6],methanol oxidation [7],
electronics [8], and sensor [9]. Copper is a good alternative to more costly metallic
silver and gold nanoparticles and can be used for antibacterial, photocatalytic, and
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biomedical applications. Also, copper nanoparticles have higher catalytic efficiency
than other nanoparticles [10, 11]. The properties of copper nanoparticles can be
controlled easily by changing the synthesis pathway. Copper nanoparticles have
been synthesized using various routes like chemical reduction, biological and non-
biological methods, chemical wet method (solvents thermal decomposition), green
synthesis (surfactant-less), and other modified methods [12–16]. They can easily
oxidize to form copper oxides. To avoid oxidation, these syntheses are performed in
non-aqueousmedia at a low concentration of precursor and under an inert atmosphere
either in nitrogen or in argon atmosphere.

Template-assisted electrochemical synthesis of semiconductor nanowires has
been reported by Sisman et al. [17]. Lithographically patterned metallic nanowire
electrodeposition (LPNE) has been reported by Menke et al. [18], which is an
example of bottom-up electrochemical synthesis. Template-based electrochemical
synthesis of copper (Cu) nanowires has been reported by Gupta et al. [19] and could
sense CH2Cl2. Synthesis of copper oxide nanoparticles using carbon nanotubes as
templates has been reported byWuet al. [20]. Template-free synthesis of copper oxide
has been carried out by using the precipitation method [22]. Simple template-free
synthesis of Cu(OH)2 and CuO nanostructures in a solution phase has been demon-
strated by Mehdizadeh et al. [22]. Nanostructure and microstructures of polypyrrole
have been synthesized by an electrochemical template-free process on a nickel (Ni)
electrode [23].

In recent years, copper oxide nanostructured materials like nanorods [24],
nanowires [25, 26], nanoribbons [27], nanobelts [28], and micro-sheets [29] are
attracting the attention of researchers due to their potential biomedical applications.
The clusters of metallic Cu have been prepared using reverse micelles as microre-
actors [30]. Heterostructures of CuO/polypyrrole (CuO/PPy) and CeO2 polypyr-
role (CeO2/PPy) have been reported using the metal–organic decomposition (MOD)
technique [31]. A variety of CuO nanostructures have been synthesized using high-
temperature (at 393 K and 423 K) approaches like the hydrothermal method. The
flower-like nanostructures of CuO have been synthesized using a hydrothermal
method in a domestic microwave oven [32]. Electrochemical methods of prepa-
ration of Cu NPs have a low environmental impact and are cost-effective as reported
by Saini et al. [33, 34]. Cu2S nanoparticles have been electrochemically synthesized
using cyclic voltammetry [35]. Potentiostatic electrochemical deposition (ECD) of
copper sulfate solution within the nanochannels of porous anodic alumina templates
has been used to fabricate copper nanowires [36]. Nanocomposites of CuO with
multi-walled carbon nanotubes (MWCNT) and metallic Cu have been synthesized
via electrochemical route [37, 38]. The synthesis of Cu8O has been reported by Guan
et al. [39]. The single-crystal X-ray structure of CuO has been determined at 196 K
and room temperature by Asbrink et al. [40]. Electrochemical synthesis of copper
oxide nanoparticles and nanorods has been reported in the literature [41, 42]. The
synthesized nanorods have been studied for photocatalytic activity. Copper oxide
(CuO) has been used for antibacterial application by Ren et al. [43]. Cu NPs have
been studied for antibacterial activities against E. Coli by Raffi and coworkers [44].
Copper nanoparticles have also been reported as antibacterial agents by Mahmoodi
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et al. [45]. The antibacterial activity of copper/C nanocomposites synthesized via the
green route has been reported by Bhavyasree et al. [46].

In the electrochemical synthesis route, copper salt is not used; hence, pure mate-
rials can be synthesized without using any reducing agent. Also, one can synthesize
crystalline materials using the direct electrochemical method. The advantages of
this method are: (i) no need of washing synthesized material with alcohol and (ii)
no need of annealing of sample for a long time. Thus, electrochemical synthesis
follows the principle of green chemistry and is very promising for the synthesis
of materials. The template-free electrochemical method is cost-effective, industri-
ally feasible, and eco-sustainable process. In this paper, the synthesis of Cu/copper
oxide nanoparticles (NPs) by electrochemical reduction using trisodium citrate as a
capping agent is reported. The process is devoid of chemical reducing agents such as
hydrazine hydrochloride, sodium borohydride, amino acids, cetyl trimethyl ammo-
nium bromide, and N-benzyl-N-dodecyl-N-bis(2-hydroxyethyl) ammonium chlo-
ride. The NPs have been characterized using powder X-ray diffractometry (PXRD),
scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), trans-
mission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS).
To the best of the authors’ knowledge, the developed protocol (electrochemical
method at constant applied potential) for the synthesis of copper, cuprous oxide,
and cupric oxide NPs is not reported in the literature. These nanoparticles can be
used for photocatalytic and antibacterial activities. Herein the antimicrobial activities
of the synthesized copper/copper oxide NPs against gram positive as well as gram
negative bacteria are discussed.

2 Experimental

2.1 Chemicals and Reagents

All chemicals used for the synthesis were of analytical reagent grade. Trisodium
citrate (TSC, 99%)was purchased fromMerck Limited, India. The coppermetal strip
(99.9%pure, metal basis) was procured fromAlfaAesar, and a Pt strip (99.99%) used
as a reference electrode was purchased from Sinsil International. All other chemicals
were used as such without any further purification. AR grade NaOH was used to
maintain the basic pH of the solution. A DC power supply (Keithley 2231A-30–3
triple channel) was used to synthesize the NPs.

2.2 Preparation of Copper/Copper Oxide Nanostructures

Nanoparticles of copper/copper oxide nanomaterials were prepared with various
concentrations of TSC (50,100, 150, 200, 250 mM) and at various pH values of
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reaction solutions 2.11, 4.22, 6.5, 7.8, 8.5, 13.11 with 2.55 mM of TSC to study the
effect of pH and concentration of capping agent on the morphology of nanoparticles.
The samples prepared at various pH values 2.1, 4.22, 7.8, and 8.5 with 2.55 mM
of TSC and also with the above-mentioned other concentrations of TSC have been
already reported in the literature [33]. So, herein the synthesis of copper/copper oxide
nanostructures using 2.55 mM of TSC and at pH 13.11 is reported. The trisodium
citrate (TSC) capped copper nanostructures (Cu and Cu2O NPs) were synthesized
via electrochemical route at pH 13.11, temperature of 373 K, and applied potential of
6.7 V. The concentration of TSC used was 2.55 mM. The pH 13.11 was maintained
by the addition of 0.1 M of NaOH solution.

The electrochemical cell was formed by immersing the copper strip (anode,
working electrode) and platinum strip (cathode, reference electrode) in 100 mL
solutions of TSC. The TSC was used as the capping agent. Both electrodes were
connected with a DC power supply, and the desired potential (6.7 V) was applied for
a fixed time interval of two hours. The electrolysis of copper was carried out in the
air for copper and copper oxide NPs using an electrochemical cell equipped with a
magnetic stirrer at 450 rpm.The solution turned brownish red in 30min after applying
the set potential in the reaction setup which indicates the formation of Cu/Cu2O NPs
in the electrolyte solution. Then it turned blackish-red indicating the formation of all
three types of NPs (Cu, Cu2O, and CuO) in the electrolytic solution. The particles
started accumulating or depositing at the Pt cathode when the potential was being
applied. As soon as the power supply was stopped, the deposited Cu/Cu2O/CuONPs
got stripped off from the cathode in the form of precipitate and settled down at the
bottom of the electrochemical cell. The precipitate was then filtered with Whatman
filter paper number 42 and was washed several times with deionized water and then
dried under vacuum. The powder was collected and used for further characterization.

2.3 Materials Characterization

Powder X-ray diffraction (PXRD) pattern of the dried powder was recorded using
Bruker D8 Advance diffractometer equipped with Ni-filter and Cu Kα radiation. The
data was collected in the 2θ range of 10–70° with a step size of 0.02° and a step time
of 1 s. The surface morphology was studied by transmission electron microscopy
(TEM) by using Tecnai G2 F 20 TWIN TMPSeries microscope, Model FEG 200 kV.
A carbon-coated copper grid was used for getting the TEM images of NPs. A freshly
sonicated solution of 5μLwas spread with a 10μL pipette on the carbon-coated side
of the copper grid and dried under a bulb. Scanning electron microscopy (SEM) with
energy dispersive spectroscopy (EDS) (JEOL JSM 6610 model no. at 20 kV) was
used to obtain the morphology and composition of the synthesized powder. X-ray
photoelectron spectroscopy (XPS, Omicron Nanotechnology, monochromatized Al,
1486.6 eV) was performed with XPS instrument having several features (ESCA +
Omicron Nano Technology: Small spot XPS for high-speed depth profiling, Dual
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Beam Charge Neutralization + Fully integrated Software Control and Automation,
Rapid Quantification within Multipak or CASAXPS).

2.4 Antibacterial Activities

The antibacterial potential of Cu/Cu2O/CuO nanoparticles against the pathogens,
viz. Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Strepto-
coccus pneumoniae, was evaluated by broth dilution method [47]. A stock solution
of 2mg/mL of nanoparticles was prepared by dispersing them in pre-sterilized deion-
ized water by ultra-sonication. The varying concentrations ranging from 0.2 μg/mL
to 200 μg/mL were prepared from stock solution and were added to the test tubes
containing varying amounts of sterile Luria Bertani broth [48]. 50 μL of overnight
culture (0.5 McFarland turbidity standards) of test pathogens was added to these
tubes aseptically. The tubes were incubated at 37 °C for 24 h. The bacterial cultures
without any test solution and the tubes with only sterile media were kept as posi-
tive and negative controls, respectively. The results were recorded by measuring the
optical density of the inoculated broth at 600 nm. Minimum inhibitory concentration
(MIC) was recorded as the lowest concentration of the test sample inhibiting the
growth of the inoculated test pathogen.

3 Results and Discussion

During the electrochemical reduction, Cu/Cu2O/CuO is formed following the nucle-
ation of the NPs by electrochemical reaction followed by the growth process. When
the potential is applied, copper anode first gets oxidized into + 2 oxidation state.

Cu → Cu2+ + 2e− (1)

This Cu2+ species in the presence of citrate capping agent and applied potential
reduces back to Cuo oxidation state (i.e., nucleation). The formation of copper oxides
depends upon the applied potential, temperature, pH, and type of atmosphere (inert
N2/Ar/air). The formed nuclei are of different shapes of the NPs. The Cuo nuclei
then undergo a growth process to generate NPs. The growth process is controlled
by the diffusion of growth species which in turn depends upon the concentration of
trisodium citrate.
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3.1 Powder X-ray Diffraction (PXRD) Analysis

The XRD pattern of the synthesized Cu/Cu2O/CuO nanoparticles is shown in Fig. 1.
The 2θ values at 43.65° and 50.43° correspond to (111) and (200) planes of cubic
(face-centered) Cu (JCPDS, PDF, File No. 04–0836) phase. The other peaks at 2θ
values of 32.49, 38.97, 47.29, 49.55, 51.40, 53.81, 58.39, 63.41, and 66.53° corre-
spond to planes (110), (111), (-112), (-202), (112), (020), (202), (-113), and (022),
respectively, match the monoclinic CuO (JCPDS, PDF, File No. 41–0254, 45–0937
and 80–1917) as reported in the literature [34, 35]. Herein, all three JCPDS file
numbers are given for CuO nanoparticles. The other peaks at 2θ values of 33.08,
38.52,41.45, 44.74, 49.31, 51.67, 53.78, and 58.63° corresponding to planes (103),
(004), (014), (220), (024), (105), (214), and (303) belong to copper oxide as reported
by R. Guan [39] [(JCPDS, PDF, File No.78–1588)]. No impurity diffraction peaks
have been detected which confirms the high purity of the product obtained by this
method. The observation of diffraction peaks intensity for all the CuO nanoparticles
indicates their high crystallinity. The intensity of peaks for primitive Cu2O NPs at 2θ
values 29.7°(110), 36.6°(111), 42.4°(200), and 61.4°(220) is found to be extremely
low which shows that these NPs are less crystalline than the CuO NPs. It means
PXRD analysis of the reaction products obtained at basic pH conditions does not
contain pure CuO phase as reported by Nikam [49]. Based on XRD, it is clear that
the peak intensity of CuO is found to be more as compared to Cu2O and Cu NPs,
respectively.

Fig. 1 Powder XRD pattern
of Cu/Cu2O/CuO
nanoparticles with 2.55 mM
trisodium citrate at 6.7 V,
and at pH 13.11
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Fig. 2 EDS of the synthesized Cu/Cu2O/CuO nanoparticles

3.2 EDS and TEM Analyses

TheEDSof the synthesized nanoparticles is shown in Fig. 2. TheEDSdata confirmed
the formation of copper/copper oxides nanoparticles. The atomic ratios of oxygen
and copper were found to be 59.52 and 40.48%, respectively.

The sonicated aqueous solution of NPs was used for analyzing the morphology of
the synthesized sample. Figure 3a–f shows the TEM images of Cu/Cu2O/CuO NPs
obtained at pH 13.11. These micrographs show different shapes of the nanoparticles
such as leaf or feather, spherical, block-type, and rod-shaped. The leaf-shaped or
feather-shaped particles have a length in the range of 5.24μm and width in the range
of 323 nm as shown in Fig. 3a. The block-type particles having one dimension as
135 nm as shown in Fig. 3b, c demonstrate the presence of all types of NPs with
bigger sizes of rods having the dimension of 3.41 μm (length) and 125 nm (width).

The rod-shaped particles have a length of 205 nm and a width of 27.9 nm as
shown in Fig. 3d. The spherical particles are also deposited on the surface of rods
(Fig. 3d). The shape of spherical particles varies from 11.5 nm to 43.5 nm as shown
in Fig. 3d–f and shows that some particles are agglomerated in a specific manner.

3.3 X-ray Photoelectron Spectroscopy (XPS) Analysis

XPSwas used to determine the oxidation states and the surface chemical composition
of the synthesized nanoparticles. Figure 4 shows the XPS spectra of the electrochem-
ically synthesized Cu/Cu2O/CuO NPs at applied potential of 6.7 V and pH of 13.11.
The analysis of XPS peaks confirms the formation of a mixture of cuprous oxides
(Cu2O) and cupric oxides (CuO), respectively. Figure 4 demonstrates the decon-
voluted XPS spectra of the Cu 2p core level. Doublet peaks positioned at binding
energy of 932.43 eV and 952.72 eV in Cu2O corresponding to Cu 2p3/2 and Cu 2p1/2,
respectively. While the other doublet peaks are assigned corresponding to Cu 2p3/2
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Fig. 3 TEMofCu/Cu2O/CuO nanoparticles exhibiting variousmorphologies of the nanostructures

and Cu 2p1/2 in CuO at binding energy of 934.83 eV and 954.73 eV, respectively. The
satellite peaks at 940.01 and 944.25 eV correspond to Cu 2p3/2 and Cu 2p1/2 in CuO
and indicate the existence of an unfilled Cu 3d shell. The peak is assigned at a binding
energy of 531.66 eV corresponding to O 1 s, and the calibration peak is obtained
corresponding to C1s at binding energy of 288.50 eV and 284.97 eV, respectively.
The obtained XPS data match well with the reported data in the literature [50–52].
Copper in CuO exists in the + 2 state with 3d9 configuration, while Cu2O exists in
+ 1 state with 3d 10 configuration as reported in the literature [53].

From the XPS results, we can estimate the ratio of Cu2O and CuO on the basis
of peak area. The fitting of high-resolution spectra of elements helps to quantify the
ratio of oxidation states. The area ratio of CuO and Cu2O is 7.3: 1. It is quite difficult
to distinguish only Cu metal because of the similar binding energy of Cu and Cu(I)
oxide. The peak position is in agreement with the reported literature [54, 55]. The %
ratio of Cu/Cu2O/CuO in the mixture of synthesized material with XPS study was
not possible.

Based on XPS peak-fit values of the Cu 2p core level measured on the surface
of the synthesized NPs, the predominant phase was found to be CuO NPs and
having adsorbed oxygen on the surface which can enhance its catalytic activity.
This adsorbed oxygen can be used to enhance the photocatalytic and antibacterial
activities.
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Fig. 4 Cu, O, and C XPS peaks of Cu/Cu2O/CuO nanoparticles synthesized from electrochemical
route using 2.55 mM trisodium citrate at pH 13.11, 6.7 V at 373 K

3.4 Antibacterial Activity

It is well known that the CuO NPs show significant antibacterial activity against
gram negative and gram positive bacteria. Herein, the antimicrobial activities of
Escherichia coli (E.Coli) and Pseudomonas Aeruginosa have been studied. These
are gram negative bacteria. The antimicrobial activities on Staphylococcus Aureus
and Streptococcus Pneumoniae which are gram positive bacteria have also been
studied. This study has been carried out using the broth dilution method. A higher
value of minimum inhibitory concentration (MIC) indicates that a higher concentra-
tion of NPs is required to inhibit bacterial growth. The synthesized Cu/Cu2O/CuO
nanoparticles do not affect the growth of Pseudomonas Aeruginosa. It means no
inhibition (NI) of bacterial growth, as evident from Table 1. The MIC values were
155μg/mL forE.Coli and 150µg/mL for Staphylococcus Aureus aswell as for Strep-
tococcus Pneumoniae. These synthesized NPs show no inhibition on the growth of
Pseudomonas Aeruginosa. These results are in good agreement with the reported
results in the literature [56].
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Table 1 Antibacterial
activities of Cu/Cu2O/CuO
nanoparticles with minimum
inhibitory concentration
(MIC, in μg/mL)

Isolates Cu/Cu2O/CuO (MIC in μg/mL)

Escherichia coli (E. Coli) 155

Pseudomonas aeruginosa No inhibition

Staphylococcus aureus 150

Streptococcus pneumoniae 150

4 Conclusions

The electrochemical reduction behavior of copper ions, as well as its nucleation and
growth on a platinum electrode, has been studied in the aqueous solution of TSC. The
copper electrode is the source of copper + 2 ions, and subsequently, it reduces to Cu
at the platinum electrode and in a solution of 2.55 mM TSC having pH 13.11 in the
electrochemical cell. In a basic medium, these Cu NPs again oxidize into Cu2O and
CuO, respectively. The PXRD and EDS analysis confirmed the formation of both
types of oxides. The XPS analysis showed the peak area ratio of CuO and Cu2O as
7.3: 1

Both electrode potential and temperature play an important role in tuning the
nucleation and growth kinetics and also in controlling the final morphologies of
copper nanoparticles. The obtained images from TEM reveal the exact shape and
size of synthesized NPs. This is a special and unique case of one-step template-free
synthesis, in which we have obtained four different morphologies of NPs. These
synthesized NPs show very good antimicrobial activities against E.Coli, Staphylo-
coccus Aureus, and Streptococcus Pneumoniae. The MIC values of Cu/Cu2O/CuO
nanoparticles have been found from 150 μg/mL to 155 μg/mL for inhibiting the
growth of the above-mentioned bacteria.

The electrochemical synthesis is a novel technique that is simple and environment-
friendly than the conventional chemical reduction methods. Thus, the electrochem-
ical synthesis is an ideal process as it consumes less energy and has a high output
(yield 80–90%) and easy to control the process parameters.
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