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Abstract In this paper, a class of singularly perturbed coupled linear systems of
second-order ordinary differential equations of convection–diffusion type is consid-
ered on the interval [0, 1]. Due to the presence of different perturbation parameters
multiplying the diffusion terms of the coupled system, each of the solution compo-
nents exhibits multiple layers in the neighbourhood of the origin. This fact is proved
in the estimates of the derivatives of the solution.Anumericalmethod composed of an
upwind finite difference scheme applied on a piecewise uniform Shishkin mesh that
resolves all the layers is suggested to solve the problem. The method is proved to be
almost first-order convergent in the maximum norm uniformly in all the perturbation
parameters. Numerical examples are provided to support the theory.

Keywords Singular perturbation problems · System of convection-diffusion
equations · Finite difference method · Shishkin Mesh · Parameter uniform method

1 Introduction

Singularly perturbed differential equations of convection–diffusion type appear in
several branches of applied mathematics. Roos et al. [1] describes linear convection–
diffusion equations and related non-linear flow problems. Modelling real-life prob-
lems such as fluid flow problems, control problems, heat transport problems, river
networks results in singularly perturbed convection–diffusion equations. Some of
those models were discussed in [2]. A form of linearized Navier Stokes equations
called Oseen system of equations, which models many of the physical problems,
is a system of singularly perturbed convection–diffusion equations. Also systems
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of singularly perturbed convection–diffusion equations have applications in control
problems [3].

For a broad introduction to singularly perturbed boundary value problems of
convection–diffusion type and robust computational techniques to solve them, one
can refer to [4–6]. In [7], a coupled system of two singularly perturbed convection–
diffusion equations is analysed and a parameter uniform numerical method is sug-
gested to solve the same. Here, in this paper, the following weakly coupled system
of n-singularly perturbed convection–diffusion equations is considered.

Lu(x) ≡ Eu′′(x) + A(x)u′(x) − B(x)u(x) = f(x), x ∈ Ω = (0, 1) (1)

u(0) = l, u(1) = r, (2)

where u(x) = (u1(x), u2(x), . . . , un(x)
)T
, f(x) = ( f1(x), f2(x), . . . , fn(x)

)T
,

E =

⎡

⎢⎢⎢
⎣

ε1 0 . . . 0
0 ε2 . . . 0
...

...
...

0 0 . . . εn

⎤

⎥⎥⎥
⎦

, A =

⎡

⎢⎢⎢
⎣

a1 0 . . . 0
0 a2 . . . 0
...

...
...

0 0 . . . an

⎤

⎥⎥⎥
⎦

, B =

⎡

⎢⎢⎢
⎣

b11 b12 . . . b1n

b21 b22 . . . b2n
...

...
...

bn1 bn2 . . . bnn

⎤

⎥⎥⎥
⎦

.

Here, ε1, ε2, ..., εn are distinct small positive parameters and for convenience, it is
assumed that εi < ε j , for i < j . The functions ai , bi j and fi , for all i and j , are taken
to be sufficiently smooth on Ω . It is further assumed that, ai (x) ≥ α > 0, bi j (x) <

0, i �= j and
n∑

j=1

bi j (x) ≥ β > 0, for all i = 1, 2, . . . , n. The case ai (x) < 0 can be

treated in a similar way with a transformation of x to 1 − x .

In [9], Linss has analysed a broader class of weakly coupled system of singularly
perturbed convection–diffusion equations andpresented an estimate of the derivatives
of ui depending only on εi , for i = 1, 2, . . . , n. He has claimed first order and almost
first-order convergence if solved on Bakhvalov and Shishkin meshes, respectively,
with the classical finite difference scheme.

The reduced problem corresponding to (1)–(2) is

L0u0(x) ≡ A(x)u′
0(x) − B(x)u0(x) = f(x), x ∈ Ω

u0(1) = r,
(3)

where u0(x) = (u01(x), u02(x), ..., u0n(x))T .

If uk(0) �= u0k(0) for any k such that 0 ≤ k ≤ n, then a boundary layer of width
O(εk) is expected near x = 0 in each of the solution component ui , 1 ≤ i ≤ k.

Notations. For any real valued function y on D, the norm of y is defined as ‖y‖D =
sup
x∈D

|y(x)|. For any vector valued function z(x) = (z1(x), z2(x), . . . ,
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zn(x))T , ‖z‖D = max
{‖z1‖D, ‖z2‖D, . . . , ‖zn‖D

}
. For any mesh function Y on a

mesh DN = {x j
}N

j=0, ‖Y‖DN = max
0≤ j≤N

|Y (x j )| and for any vector valued mesh func-

tion Z = (Z1, Z2, . . . , Zn)
T , ‖Z‖DN = max

{‖Z1‖DN , ‖Z2‖DN , . . . , ‖Zn‖DN

}
.

Throughout this paper, C denotes a generic positive constant which is independent
of the singular perturbation and discretization parameters.

2 Analytical Results

In this section, amaximumprinciple, a stability result and estimates of the derivatives
of the solution of the system of Eqs. (1)–(2) are presented.

Lemma 1 (Maximum Principle) Let ψ = (ψ1, ψ2, ..., ψn)
T be in the domain of L

with ψ(0) ≥ 0 and ψ(1) ≥ 0. Then Lψ ≤ 0 on Ω implies that ψ ≥ 0 on Ω.

Lemma 2 (Stability Result) Let ψ be in the domain of L, then for x ∈ Ω and
1 ≤ i ≤ n

|ψi (x)| ≤ max
{
‖ψ(0)‖, ‖ψ(1)‖, 1

β
‖Lψ‖

}
.

Theorem 1 Let u be the solution of (1)–(2), then for x ∈ Ω and 1 ≤ i ≤ n, the
following estimates hold.

|ui (x)| ≤ C max
{
‖l‖, ‖r‖, 1

β
‖f‖
}
, (4)

|u(k)
i (x)| ≤ Cε−k

i

(
‖u‖ + εi‖f‖

)
f or k = 1, 2, (5)

|u(3)
i (x)| ≤ Cε−2

i ε−1
1

(
‖u‖ + εi‖f‖

)
+ ε−1

i | f ′
i (x)|. (6)

Proof The estimate (4) follows immediately from Lemma 2 and Eq. (1). Let x ∈
[0, 1], then for each i, 1 ≤ i ≤ n, there exists a ∈ [0, 1 − εi ] such that x ∈ Na =
[a, a + εi ]. By the mean value theorem, there exists yi ∈ (a, a + εi ) such that

u′
i (yi ) = ui (a + εi ) − ui (a)

εi

and hence
|u′

i (yi )| ≤ Cε−1
i ‖u‖.

Also,

u′
i (x) = u′

i (yi ) +
∫ x

yi

u′′
i (s)ds.
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Substituting for u′′
i (s) from (1), |u′

i (x)| ≤ Cε−1
i

(
‖u‖ + εi‖f‖

)
. Again from (1),

|u′′
i (x)| ≤ Cε−2

i

(
‖u‖ + εi‖f‖

)
. Differentiating (1) once and substituting the above

bounds lead to

|u(3)
i (x)| ≤ Cε−2

i ε−1
1

(
‖u‖ + εi‖f‖

)
+ ε−1

i | f ′
i (x)|.

2.1 Shishkin Decomposition of the Solution

The solution u of the problem (1)–(2) can be decomposed into smooth v = (v1, ...,

vn)
T and singular w = (w1, ..., wn)

T components given by u = v + w, where

Lv = f, v(0) = γ , v(1) = r, (7)

Lw = 0, w(0) = l − v(0), w(1) = 0, (8)

where γ = (γ1, γ2, . . . , γn)
T is to be chosen.

2.1.1 Estimates for the Bounds on the Smooth Components and Their
Derivatives

Theorem 2 For a proper choice of γ , the solution of the problem (7) satisfies for
1 ≤ i ≤ n and 0 ≤ k ≤ 3,

|v(k)
i (x)| ≤ C(1 + ε2−k

i ), x ∈ Ω.

Proof Considering the layer pattern of the solution, first, the decomposition is done
with εn , for all the components of v. The second level decomposition with εn−1 is
for the first n − 1 components of v. Then, the decomposition continues with εn−2 for
the first n − 2 components of v and so on. It is carried out in the following way.
First, the smooth component v is decomposed into

v = yn + εnzn + ε2nqn (9)

where yn = (yn1, yn2, . . . , ynn)
T is the solution of

A(x)y ′
n(x) − B(x)yn(x) = f(x), yn(1) = r, (10)

zn = (zn1, zn2, . . . , znn)
T is the solution of

A(x)z ′
n(x) − B(x)zn(x) = −ε−1

n Ey ′′
n (x), zn(1) = 0 (11)
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and qn = (qn1, qn2, . . . , qnn)
T is the solution of

Lqn(x) = −ε−1
n Ez ′′

n (x), qn(1) = 0 and qn(0) remains to be chosen. (12)

Using the fact that ε−1
n E is a matrix of bounded entries, and from the results in [10]

for (10) and (11), it is not hard to see that

‖y (k)
n ‖ ≤ C and ‖z (k)

n ‖ ≤ C, 0 ≤ k ≤ 3. (13)

Now, using Theorem 1 and (13), with the choice that qnn(0) = 0,

|q (k)
nn (x)| ≤ Cε−k

n , 0 ≤ k ≤ 3. (14)

Then from (9), it is clear that vn(0) = γn = ynn(0) + εnznn(0). Also from (13) and
(14),

|v(k)
n (x)| ≤ C(1 + ε2−k

n ), 0 ≤ k ≤ 3. (15)

Now, having found the estimates of v(k)
n , to estimate the bounds v

(k)
i , for 1 ≤ i ≤

n − 1, the following notations are introduced, for 1 ≤ l ≤ n,

El =

⎡

⎢⎢⎢
⎣

ε1 0 . . . 0
0 ε2 . . . 0
...

...
...

0 0 . . . εl

⎤

⎥⎥⎥
⎦

, Al =

⎡

⎢⎢⎢
⎣

a1 0 . . . 0
0 a2 . . . 0
...

...
...

0 0 . . . al

⎤

⎥⎥⎥
⎦

, Bl =

⎡

⎢⎢⎢
⎣

b11 b12 . . . b1l

b21 b22 . . . b2l
...

...
...

bl1 bl2 . . . bll

⎤

⎥⎥⎥
⎦

,

q̃l = (ql1, ql2, . . . , ql(l−1)
)T
, g(l−1) = (g(l−1)1, g(l−1)2, . . . , g(l−1)(l−1)

)T
, with g(l−1) j

= −ε j

εl
z′′

l j + b jlqll .

Now, considering the first (n − 1) equations of the system (12), it follows that

L̃nq̃n ≡ En−1q̃
′′

n (x) + An−1(x)q̃ ′
n(x) − Bn−1(x)q̃n(x) = gn−1(x), (16)

where q̃n(1) = 0 and q̃n(0) remains to be chosen.
Furthermore, decomposing q̃n in a similar way to (9), we obtain

q̃n = yn−1 + εn−1zn−1 + ε2n−1qn−1 (17)

where yn−1 = (y(n−1)1, y(n−1)2, . . . , y(n−1)(n−1)
)T

is the solution of the problem

An−1(x)y ′
n−1(x) − Bn−1(x)yn−1(x) = gn−1(x), yn−1(1) = 0, (18)

zn−1 = (z(n−1)1, z(n−1)2, . . . , z(n−1)(n−1)
)T

is the solution of the problem



168 S. Kalaiselvan et al.

An−1(x)z ′
n−1(x) − Bn−1(x)zn−1(x) = −ε−1

n−1En−1y ′′
n−1(x), zn−1(1) = 0 (19)

and qn−1 = (q(n−1)1, q(n−1)2, . . . , q(n−1)(n−1)
)T

is the solution of the problem

L̃nqn−1(x) = −ε−1
n−1En−1z ′′

n−1(x), qn−1(1) = 0 and qn−1(0) remains to be chosen.
(20)

Now choose qn−1(0) so that its (n − 1)th component is zero (i.e. q(n−1)(n−1)(0) = 0).
Problem (18) is similar to the problem (11). Using the estimates (13)–(14), the
solution of the problem (18) satisfies the following bound for 0 ≤ k ≤ 3.

‖y(k)
n−1‖ ≤ C

(
1 + ε1−k

n

)
. (21)

Using (21) and Lemma 2.2 in [10], the solution of the problem (19) satisfies

‖zn−1‖ ≤ Cε−1
n . (22)

and from (19), for 1 ≤ k ≤ 3,

‖z (k)
n−1‖ ≤ Cε−k

n . (23)

Now, using Theorem 1 and (23), the following estimate holds:

|q (k)

(n−1)(n−1)(x)| ≤ Cε−2
n ε−k

n−1, 0 ≤ k ≤ 3. (24)

By the choice of q(n−1)(n−1)(0), from (9) and (17), it is clear that vn−1(0) = γn−1 =
yn(n−1)(0) + εnzn(n−1)(0) + ε2n y(n−1)(n−1)(0) + ε2nεn−1z(n−1)(n−1)(0). Also, the esti-
mates (21)–(24) imply that

|v(k)
n−1(x)| ≤ C(1 + ε2−k

n−1). (25)

Proceeding in a similar way, one can derive singularly perturbed systems of l equa-
tions, l = n − 2, n − 3, . . . , 2, 1,

L̃l+1q̃l+1 ≡ El q̃
′′

l+1(x) + Al(x)q̃ ′
l+1(x) − Bl(x)q̃l+1(x) = gl(x), (26)

with q̃l+1(1) = 0 and q̃l+1(0), to be chosen.
Now, decomposing q̃l+1 in a similar way to (9), we obtain

q̃l+1 = yl + εlzl + ε2l ql (27)

where yl = (yl1, yl2, . . . , yll)
T and zl = (zl1, zl2, . . . , zll)

T satisfy

Al(x)y ′
l (x) − Bl(x)yl(x) = gl(x), yl(1) = 0, (28)

Al(x)z ′
l (x) − Bl(x)zl(x) = −ε−1

l Ely ′′
l (x), zl(1) = 0 (29)
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respectively and ql = (ql1, ql2, . . . , qll)
T is the solution of the problem

L̃l+1ql(x) = −ε−1
l Elz ′′

l (x), ql(1) = 0 where ql(0) remains to be chosen. (30)

We choose ql(0) so that its lth component is zero (i.e. qll(0) = 0).
From (28) it is clear that, for 0 ≤ k ≤ 3,

‖y (k)
l ‖ ≤ C

(
1 + ε1−k

l+1

) n∏

i=l+2

ε−2
i . (31)

Using (31) in (29), ‖zl‖ ≤ C
(
1 + ε−1

l+1

)∏n
i=l+2 ε−2

i and for 1 ≤ k ≤ 3,

‖z(k)
l ‖ ≤ C

(
1 + ε−k

l+1

) n∏

i=l+2

ε−2
i . (32)

Now, using Theorem 1 for ql , we obtain

|q (k)
ll (x)| ≤ Cε−k

l

n∏

i=l+1

ε−2
i , 0 ≤ k ≤ 3. (33)

Since qll(0) = 0, it is clear that

vl(0) = γl = ynl(0) + εnznl(0) + ε2n y(n−1)l(0) + . . . +
⎛

⎝
n∏

j=l+1

ε2j

⎞

⎠ εl zll(0).

Also, the estimates (31)–(33) imply that

|v(k)
l (x)| ≤ C(1 + ε2−k

l ), 0 ≤ k ≤ 3. (34)

Thus, by the choice made for γn, γn−1, . . . , γ2, γ1, the solution v of the problem (7)
satisfies the following bound for 1 ≤ i ≤ n and 0 ≤ k ≤ 3

|v(k)
i (x)| ≤ C(1 + ε2−k

i ), x ∈ Ω. (35)

2.1.2 Estimates for the Bounds on the Singular Components and Their
Derivatives

Let Bi (x), 1 ≤ i ≤ n, be the layer functions defined on [0, 1] as

Bi (x) = exp(−αx/εi ). (36)
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Theorem 3 Let w(x) be the solution of (8), then for x ∈ Ω and 1 ≤ i ≤ n the
following estimates hold.

|wi (x)| ≤ CBn(x), (37)

|w′
i (x)| ≤ C

(
ε−1

i Bi (x) + ε−1
n Bn(x)

)
, (38)

|w(2)
i (x)| ≤ C

n∑

k=i

ε−2
k Bk(x), (39)

|w(3)
i (x)| ≤ Cε−1

i

( i−1∑

k=1

ε−1
k Bk(x) +

n∑

k=i

ε−2
k Bk(x)

)
. (40)

Proof Consider the barrier function φ = (φ1, φ2, . . . , φn)
T defined by φi (x) =

CBn(x), 1 ≤ i ≤ n. Put ψ±(x) = φ(x) ± w(x), then for sufficiently large C,
ψ±(0) ≥ 0, ψ±(1) ≥ 0 and Lψ±(x) ≤ 0. Using Lemma 1, it follows that,ψ±(x) ≥
0. Hence, estimate (37) holds. From (8), for 1 ≤ i ≤ n

εi (w
′
i )

′
(x) + ai (x)(w′

i )(x) = gi (x) (41)

where gi (x) =
n∑

j=1

bi j (x)w j (x). Let Ai (x) =
∫ x

0
ai (s)ds, then solving (41) leads

to

w′
i (x) = w′

i (0) exp
(− Ai (x)/εi

)+ ε−1
i

∫ x

0
gi (t) exp

(− (Ai (x) − Ai (t))/εi
)
dt.

Using Theorem 1 for w, |w′
i (0)| ≤ Cε−1

i . Further from the inequalities, exp
(−

(Ai (x) −Ai (t))/εi
)≤ exp

(− α(x − t)/εi
)
for t ≤ x and |gi (t)| ≤ CBn(t), it is

clear that

|w′
i (x)| ≤ Cε−1

i exp
(− αx/εi

)+ Cε−1
i

∫ x

0
exp
(− αt/εn

)
exp
(− α(x − t)/εi

)
dt.

Using integration by parts, it is not hard to see that

|w′
i (x)| ≤ Cε−1

i exp
(− αx/εi

)+ Cε−1
n exp

(− αx/εn
)
. (42)

Differentiating (41) once leads to

εi (w
′′
i )

′
(x) + ai (x)(w′′

i )(x) = hi (x) ≡ g′
i (x) − a′

i (x)w′
i (x). (43)

Then,
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w′′
i (x) = w′′

i (0) exp
(− Ai (x)/εi

)+ ε−1
i

∫ x

0
hi (t) exp

(− (Ai (x) − Ai (t))/εi
)
dt.

Using |w′′
i (0)| ≤ Cε−2

i , |hi (t)| ≤ C
n∑

k=1

ε−1
k Bk(t) and hence

|w′′
i (x)| ≤ C

n∑

k=i

ε−2
k Bk(x). (44)

Using the bounds given in (42) and (44) in (43), (40) can be derived.

As the estimates of the derivatives are to be used in the different segments of the
piecewise uniform Shishkin meshes, the estimates are improved using the layer
interaction points as given below.

2.1.3 Improved Estimates for the Bounds on the Singular Components
and Their Derivatives

For Bi ,B j , each i, j, 1 ≤ i < j ≤ n and each s = 1, 2 the point x (s)
i, j is defined

by
Bi (x (s)

i, j )

εs
i

= B j (x (s)
i, j )

εs
j

. (45)

Lemma 3 For all i, j such that 1 ≤ i < j ≤ n and s = 1, 2 the points x (s)
i, j exist,

are uniquely defined and satisfy the following inequalities

Bi (x)

εs
i

>
B j (x)

εs
j

, x ∈ [0, x (s)
i, j ),

Bi (x)

εs
i

<
B j (x)

εs
j

, x ∈ (x (s)
i, j , 1]. (46)

In addition, the following ordering holds

x (s)
i, j < x (s)

i+1, j , if i + 1 < j and x (s)
i, j < x (s)

i, j+1, if i < j. (47)

Proof Proof is similar to the Lemma 2.3.1 of [8].

Consider the following decomposition of wi (x)

wi =
n∑

q=1

wi,q , (48)

where the components wi,q are defined as follows.
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wi,n =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3∑

k=0

(x − x (2)
n−1,n)

k

k! w
(k)
i (x (2)

n−1,n) on [0, x (2)
n−1,n)

wi otherwise

(49)

and, for each q, n − 1 ≥ q ≥ i ,

wi,q =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3∑

k=0

(x − x (2)
q−1,q)

k

k! p(k)
i,q (x (2)

q−1,q) on [0, x (2)
q−1,q)

pi,q otherwise

(50)

and, for each q, i − 1 ≥ q ≥ 2,

wi,q =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3∑

k=0

(x − x (1)
q−1,q)

k

k! p(k)
i,q (x (1)

q−1,q) on [0, x (1)
q−1,q)

pi,q otherwise

(51)

with pi,q = wi −
n∑

k=q+1

wi,k

and

wi,1 = wi −
n∑

k=2

wi,k on [0, 1]. (52)

Theorem 4 For each q and i, 1 ≤ q ≤ n, 1 ≤ i ≤ n and all x ∈ Ω, the com-
ponents in the decomposition (48) satisfy the following estimates.

|w ′′′
i,q(x)| ≤ C ε−1

i ε−2
q Bq(x), if i ≤ q, |w ′′′

i,q(x)| ≤ C ε−2
i ε−1

q Bq(x), if i > q,

|w ′′
i,q(x)| ≤ C ε−1

i ε−1
q Bq(x), if i ≤ q < n, |w ′′

i,q(x)| ≤ C ε−2
i Bq(x), if i > q,

|w ′
i,q(x)| ≤ C ε−1

i Bq(x), if q < n.

Proof Differentiating (49) thrice,

|w′′′
i,n(x)| =

⎧
⎨

⎩

|w′′′
i (x (2)

n−1,n)| on [0, x (2)
n−1,n)

|w′′′
i (x)| otherwise

.

Then for x ∈ [0, x (2)
n−1,n), using Theorem 3,
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|w′′′
i,n(x)| ≤ Cε−1

i

( i−1∑

k=1

ε−1
k Bk(x (2)

n−1,n) +
n∑

k=i

ε−2
k Bk(x (2)

n−1,n)
)
.

Since x (2)
k,n ≤ x (2)

n−1,n for k < n, using (46) ε−2
k Bk(x (2)

n−1,n) ≤ ε−2
n Bn(x (2)

n−1,n) and hence

|w′′′
i,n(x)| ≤ Cε−1

i ε−2
n Bn(x (2)

n−1,n) ≤ Cε−1
i ε−2

n Bn(x). (53)

For x ∈ [x (2)
n−1,n, 1],

|w′′′
i,n(x)| = |w′′′

i (x)| ≤ Cε−1
i

( i−1∑

k=1

ε−1
k Bk(x) +

n∑

k=i

ε−2
k Bk(x)

)
.

As x ≥ x (2)
n−1,n , using (46) ε−2

k Bk(x) ≤ ε−2
n Bn(x) and hence for x ∈ [x (2)

n−1,n, 1]

|w′′′
i,n(x)| ≤ Cε−1

i ε−2
n Bn(x). (54)

From (49) and (50), it is not hard to see that for each q, n − 1 ≥ q ≥ i and x ∈
[x (2)

q,q+1, 1], wi,q(x) = pi,q(x) = wi (x) −
n∑

k=q+1

wi,k(x) = wi (x) − wi (x) = 0. Dif-

ferentiating (50) thrice, on x ∈ [0, x (2)
q−1,q)

|w′′′
i,q(x)| = |p′′′

i,q(x (2)
q−1,q)| ≤ Cε−1

i ε−2
q Bq(x).

For x ∈ [x (2)
q−1,q , x (2)

q,q+1), using Lemma 3,

|w′′′
i,q(x)| ≤ C ε−1

i ε−2
q Bq(x). (55)

From (50) and (51), it is not hard to see that for each q, i − 1 ≥ q ≥ 2 and x ∈
[x (1)

q,q+1, 1], wi,q(x) = 0. Differentiating (51) thrice on x ∈ [0, x (1)
q−1,q)

|w′′′
i,q(x)| = |p′′′

i,q(x (1)
q−1,q)| ≤ Cε−2

i ε−1
q Bq(x).

For x ∈ [x (1)
q−1,q , x (1)

q,q+1), using Lemma 3,

|w′′′
i,q(x)| ≤ Cε−2

i ε−1
q Bq(x). (56)

From (51) and (52), it is not hard to see that wi,1(x) = 0 for x ∈ [x (1)
1,2, 1] and for

x ∈ [0, x (1)
1,2), |w′′′

i,1(x)| ≤ |w′′′
i (x)| ≤ Cε−2

i ε−1
1 B1(x). Since w′′

i,q(1) = 0, for q < n,
it follows that for any x ∈ [0, 1] and i > q,
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|w′′
i,q(x)| =

∣∣∣
∫ 1

x
w

(3)
i,q (t)dt

∣∣∣ ≤ C
∫ 1

x
ε−2

i ε−1
q Bq(t)dt ≤ Cε−2

i Bq(x).

Hence,
|w′′

i,q(x)| ≤ C ε−2
i Bq(x), for i > q. (57)

Similar arguments lead to

|w′′
i,q(x)| ≤ C ε−1

i ε−1
q Bq(x), for i ≤ q, (58)

and
|w′

i,q(x)| ≤ C ε−1
i Bq(x), 1 ≤ i ≤ n, 1 ≤ q ≤ n. (59)

3 Numerical Method

To solve the BVP (1)–(2), a numerical method comprising of a Classical Finite Dif-
ference(CFD) Scheme and a piecewise uniform Shishkin mesh fitted on the domain
[0, 1] is suggested.

3.1 Shishkin Mesh

A piecewise uniform Shishkin mesh with N mesh-intervals is now constructed.

The mesh Ω
N

is a piecewise uniform mesh on [0, 1] obtained by dividing [0, 1]
into n + 1 mesh-intervals as [0, τ1] ∪ [τ1, τ2] ∪ · · · ∪ [τn−1, τn] ∪ [τn, 1]. Transition
parameters τr , 1 ≤ r ≤ n, are defined as τn = min

{
1

2
, 2

εn

α
ln N

}
and, for r =

n − 1, . . . 1, τr = min

{
rτr+1

r + 1
, 2

εr

α
ln N

}
. On the sub-interval [τn, 1], N

2 + 1

mesh-points are placed uniformly and on each of the subintervals [τr , τr+1), r =
n − 1, . . . 1, a uniform mesh of N

2n mesh-points is placed. A uniform mesh of N
2n

mesh-points is placed on the sub-interval [0, τ1).

The Shishkin mesh is coarse in the outer region and becomes finer and finer in
the inner (layer) regions. From the above construction, it is clear that the transition
points τr , r = 1, . . . , n, are the only points at which the mesh-size can change and
that it does not necessarily change at each of these points.

If each of the transition parameters τr , r = 1, . . . , n, are with the left choice,

the Shishkin mesh Ω
N

becomes the classical uniform mesh with τr = r
2n , r =

1, . . . , n, and hence the step size is N−1 .
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The following notations are introduced: h j = x j − x j−1 and if x j = τr , then
h−

r = x j − x j−1, h+
r = x j+1 − x j , J = {τr : h+

r �= h−
r }. Let Hr = 2n N−1(τr −

τr−1), 2 ≤ r ≤ n denote the step size in the mesh interval (τr−1, τr ]. Also, H1 =
2 nN−1τ1 and Hn+1 = 2 N−1(1 − τn). Thus, for 1 ≤ r ≤ n − 1, the change in the
step size at the point x j = τr is

h+
r − h−

r = 2 nN−1
( (r + 1)

r
dr − dr−1

)
, (60)

where dr = rτr+1

r+1 − τr with the convention dn = 0,when τn = 1/2. Themesh Ω
N

becomes a classical uniform mesh when dr = 0 for all r = 1, . . . , n and τr ≤
C εr ln N , 1 ≤ r ≤ n. Also τr = r

s τs when dr = · · · = ds = 0, 1 ≤ r ≤ s ≤ n.

3.2 Discrete Problem

To solve the BVP (1)–(2) numerically the following upwind classical finite difference

scheme is applied on the mesh Ω
N
.

L NU(x j ) ≡ Eδ2U(x j ) + A(x j )D+U(x j ) − B(x j )U(x j ) = f(x j ), (61)

U(x0) = l, U(xN ) = r, (62)

where U(x j ) = (U1(x j ), U2(x j ), . . . , Un(x j ))
T and for 1 ≤ j ≤ N − 1,

D+U (x j ) = U (x j+1) − U (x j )

h j+1
, D−U (x j ) = U (x j ) − U (x j−1)

h j
,

δ2U (x j ) = 1

h j

(
D+U (x j ) − D−U (x j )

)
,

with

h j = (h j + h j+1)

2
.

4 Numerical Results

In this section a discrete maximum principle, a discrete stability result and the first-
order convergence of the proposed numerical method are established.

Lemma 4 (Discrete Maximum Principle) Assume that the vector valued mesh func-
tion ψ(x j ) = (ψ1(x j ), ψ2(x j ), . . . , ψn(x j ))

T satisfies ψ(x0) ≥ 0 and ψ(xN ) ≥ 0.
Then L N ψ(x j ) ≤ 0 for 1 ≤ j ≤ N − 1 implies that ψ(x j ) ≥ 0 for 0 ≤ j ≤ N .
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Lemma 5 (Discrete Stability Result) If ψ(x j ) = (ψ1(x j ), ψ2(x j ), . . . , ψn(x j ))
T is

any vector valued mesh function defined on Ω
N
, then for 1 ≤ i ≤ n and 0 ≤ j ≤ N,

|ψi (x j )| ≤ max
{
‖ψ(x0)‖, ‖ψ(xN )‖, 1

β
‖L N ψ‖Ω N

}
.

4.1 Error Estimate

Analogous to the continuous case, the discrete solution U can be decomposed into
V and W as defined below.

L NV(x j ) = f(x j ), for 0 < j < N , V(x0) = v(x0), V(xN ) = v(xN ) (63)

L NW(x j ) = 0, for 0 < j < N , W(x0) = w(x0), W(xN ) = w(xN ) (64)

Lemma 6 Let v be the solution of (7) and V be the solution of (63), then

‖V − v‖
Ω

N ≤ C N−1.

Proof For 1 ≤ j ≤ N − 1,

L N (V − v)(x j ) =

⎛

⎜⎜⎜⎜
⎝

ε1(
d2

dx2 − δ2)v1(x j ) + a1(x j )(
d

dx − D+)v1(x j )

ε2(
d2

dx2 − δ2)v2(x j ) + a2(x j )(
d

dx − D+)v2(x j )
...

εn(
d2

dx2 − δ2)vn(x j ) + an(x j )(
d

dx − D+)vn(x j )

⎞

⎟⎟⎟⎟
⎠

.

By the standard local truncation used in the Taylor expansions,

|εi

(
d2

dx2
− δ2

)
vi (x j ) + ai (x j )

(
d

dx
− D+

)
vi (x j )| ≤ C(x j+1 − x j−1)(εi ‖v(3)

i ‖ + ‖v(2)
i ‖).

Since (x j+1 − x j−1) ≤ C N−1, by using (35),

‖L N (V − v)‖Ω N ≤ C N−1.

As v and V agree at the boundary points, using Lemma 5,

‖V − v‖
Ω

N ≤ C N−1. (65)

To estimate the error in the singular component (W − w), themesh functions B N
i (x j )

for 1 ≤ i ≤ n on Ω
N
are defined by
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B N
i (x j ) =

j∏

k=1

(
1 + αhk

2εi

)−1

with B N
i (x0) = 1. It is to be observed that B N

i are monotonically decreasing.

Lemma 7 The singular components Wi , 1 ≤ i ≤ n satisfy the following bound on

Ω
N

;
|Wi (x j )| ≤ C B N

n (x j ).

Proof Consider the following vector valued mesh functions on Ω
N
,

ψ±(x j ) = C B N
n (x j )e ± W(x j )

where e is the n- vector e = (1, 1, . . . , 1)T .
Then for sufficiently large C, ψ±(x0) ≥ 0, ψ±(xN ) ≥ 0 and L N ψ±(x j ) ≤ 0, for

1 ≤ j ≤ N − 1. Using Lemma 4, ψ±(x j ) ≥ 0 on Ω
N
, which implies that

|Wi (x j )| ≤ C B N
n (x j ).

Lemma 8 Assume that dr = 0, for r = 1, 2, . . . , n. Letw be the solution of (8) and
W be the solution of (64). Then

‖W − w‖
Ω

N ≤ C N−1 ln N .

Proof By the standard local truncation used in the Taylor expansions,

∣∣
∣εi (

d2

dx2
− δ2)wi (x j ) + ai (x j )(

d

dx
− D+)wi (x j )

∣∣
∣ ≤ C(x j+1 − x j−1)(εi ‖w(3)

i ‖ + ‖w(2)
i ‖)

where the norm is taken over the interval [x j−1, x j+1].
Since dr = 0, the mesh is uniform, h = N−1 and ε−1

k ≤ C ln N . Then,

|(LN (W − w))i (x j )| ≤ C N−1
( i−1∑

k=1

ε−1
k Bk(x j−1) +

n∑

k=i

ε−2
k Bk(x j−1)

)
(66)

≤ C N−1 ln N + C N−1 ln N
n∑

k=i

ε−1
k Bk(x j−1). (67)

Consider the barrier function φ = (φ1(x j ), φ2(x j ), . . . , φn(x j ))
T given by

φi (x j ) = C N−1 ln N + C N−1 ln N

γ (α − γ )

( n∑

k=i

exp(2γ h/εk)Yk(x j )
)
, on Ω

N
,
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where γ is a constant such that 0 < γ < α,

Yk(x j ) = λ
N− j
k − 1

λN
k − 1

with λk = 1 + γ h

εk
.

It is not hard to see that, 0 ≤ Yk(x j ) ≤ 1, D+Yk(x j ) ≤ − γ

εk
exp(−γ x j+1/εk) and

(εkδ
2 + γ D+)Yk(x j ) = 0. Hence,

(L N φ)i (x j ) ≤ −C N−1 ln N − C N−1 ln N
n∑

k=i

ε−1
k Bk(x j−1).

Consider the discrete functions

ψ±(x j ) = φ(x j ) ± (W − w)(x j ), x j ∈ Ω
N
.

Then for sufficiently large C,ψ±(x0) > 0,ψ±(xN ) ≥ 0 and L N ψ±(x j ) ≤ 0 onΩ N .

Using Lemma 4,ψ±(x j ) ≥ 0 onΩ
N
. Hence, |(W − w)i (x j )| ≤ C N−1 ln N for 1 ≤

i ≤ n, implies that
‖(W − w)‖

Ω
N ≤ C N−1 ln N . (68)

Lemma 9 Let w be the solution of (8) and W be the solution of (64); then

‖W − w‖
Ω

N ≤ C N−1 ln N .

Proof This is proved for each mesh point x j ∈ (0, 1) by dividing (0, 1) into n + 1
subintervals (a) (0, τ1), (b) [τ1, τ2), (c) [τm, τm+1) for some m, 2 ≤ m ≤ n − 1 and
(d) [τn, 1).

For each of these cases, an estimate for the local truncation error is derived and
a barrier function is defined. Lastly, using these barrier functions, the required esti-
mate is established.

Case (a): x j ∈ (0, τ1).
Clearly x j+1 − x j−1 ≤ Cε1N−1 ln N . Then, by standard local truncation used in
Taylor expansions, the following estimates hold for x j ∈ (0, τ1) and 1 ≤ i ≤ n.

|(LN (W − w))i (x j )| ≤ C (x j+1 − x j−1)(εi‖w(3)
i ‖ + ‖w(2)

i ‖)
≤ C N−1 ln N

n∑

k=i

ε−1
k Bk(x j−1).

Consider the following barrier functions for x j ∈ (0, τ1) and 1 ≤ i ≤ n.
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φi (x j ) = C N−1 ln N
n∑

k=i

exp(2αH1/εk)B N
k (x j ) +

n∑

k=1

B N
k (τk). (69)

Case (b): x j ∈ [τ1, τ2).
There are 2 possibilities: Case (b1): d1 = 0 and Case (b2): d1 > 0.
Case (b1): d1 = 0
Since the mesh is uniform in (0, τ2), it follows that x j+1 − x j−1 ≤ C ε1N−1 ln N ,

for x j ∈ [τ1, τ2) . Then,

|(LN (W − w))i (x j )| ≤ C N−1 ln N
n∑

k=i

ε−1
k Bk(x j−1). (70)

Now for x j ∈ [τ1, τ2) and 1 ≤ i ≤ n, define,

φi (x j ) = C N−1 ln N
n∑

k=i

exp(2αH2/εk)B N
k (x j ) +

n∑

k=2

B N
k (τk). (71)

Case (b2): d1 > 0.
For this case, x j+1 − x j−1 ≤ C ε2N−1 ln N , and hence for x j ∈ [τ1, τ2)
∣∣∣(LN (W − w))i (x j )

∣∣∣ ≤
∣∣∣εi (

d2

dx2
− δ2)wi (x j )

∣∣∣+ C
∣∣∣(

d

dx
− D+)wi (x j )

∣∣∣

≤
∣∣
∣εi (

d2

dx2
− δ2)

n∑

k=1

wi,k

∣∣
∣+ C

∣∣
∣(

d

dx
− D+)

n∑

k=1

wi,k

∣∣
∣.

By the standard local truncation used in Taylor expansions

|(LN (W − w))i (x j )| ≤ C εi |w(2)
i,1 (x j−1)| + C (x j+1 − x j−1)εi

n∑

k=2

|w(3)
i,k (x j−1)|

+C |w(1)
i,1 (x j−1)| + C (x j+1 − x j−1)

n∑

k=2

|w(2)
i,k (x j−1)|.

(72)

Now using Theorem 4, it is not hard to derive that

|(LN (W − w))1(x j )| ≤ C N−1 ln N
n∑

k=2

ε−1
k Bk(x j−1) + C ε−1

1 B1(x j−1) (73)

and for 2 ≤ i ≤ n,
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|(LN (W − w))i (x j )| ≤ C N−1 ln N
n∑

k=i

ε−1
k Bk(x j−1) + C ε−1

i B1(x j−1). (74)

Define

φ1(x j ) = C N−1 ln N
n∑

k=2

exp(2αH2/εk)B N
k (x j ) + C B N

1 (x j ) + C
n∑

k=2

B N
k (τk)

and for 2 ≤ i ≤ n,

φi (x j ) = C N−1 ln N
n∑

k=i

exp(2αH2/εk)B N
k (x j ) + C B N

1 (x j ) + C
n∑

k=2

B N
k (τk).

Case (c): x j ∈ (τm, τm+1]. There are 3 possibilities:

Case (c1): d1 = d2 = · · · = dm = 0,
Case (c2): dr > 0 and dr+1 = . . . = dm = 0 for some r, 1 ≤ r ≤ m − 1 and
Case (c3): dm > 0.

Case (c1): d1 = d2 = · · · = dm = 0,
Since τ1 = Cτm+1 and the mesh is uniform in (0, τm+1), it follows that, for x j ∈
(τm, τm+1], x j+1 − x j−1 ≤ C ε1N−1 ln N and hence

|(LN (W − w))i (x j )| ≤ C N−1 ln N
n∑

k=i

ε−1
k Bk(x j−1). (75)

For 1 ≤ i ≤ n,

φi (x j ) = C N−1 ln N
n∑

k=i

exp(2αHm+1/εk)B N
k (x j ) + C

n∑

k=m+1

B N
k (τk). (76)

Case (c2): dr > 0 and dr+1 = . . . = dm = 0 for some r, 1 ≤ r ≤ m − 1
Since, τr+1 = Cτm+1, the mesh is uniform in (τr , τm+1), it follows that x j+1 −
x j−1 ≤ C εr+1N−1 ln N , for x j ∈ (τm, τm+1].
By the standard local truncation used in Taylor expansions

|(LN (W − w))i (x j )| ≤ C εi

r∑

k=1

|w(2)
i,k (x j−1)| + C (x j+1 − x j−1)εi

n∑

k=r+1

|w(3)
i,k (x j−1)|

+C
r∑

k=1

|w(1)
i,k (x j−1)| + C (x j+1 − x j−1)

n∑

k=r+1

|w(2)
i,k (x j−1)|.

(77)

Now using Theorem 4, it is not hard to derive that for i ≤ r
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|(LN (W − w))i (x j )| ≤ C N−1 ln N
n∑

k=r+1

ε−1
k Bk(x j−1) + C

r∑

k=i

ε−1
k Bk(x j−1)

and for i > r

|(LN (W − w))i (x j )| ≤ C N−1 ln N
n∑

k=i

ε−1
k Bk(x j−1) + Cε−1

i Br (x j−1).

Now define, for i ≤ r

φi (x j ) = C N−1 ln N
n∑

k=r+1

exp

(
2αHm+1

εk

)
B N

k (x j ) + C
r∑

k=i

B N
k (x j ) + C

n∑

k=m+1

B N
k (τk)

and for i > r

φi (x j ) = C N−1 ln N
n∑

k=i

exp

(
2αHm+1

εk

)
B N

k (x j ) + C B N
r (x j ) + C

n∑

k=m+1

B N
k (τk).

Case (c3): dm > 0
Replacing r by m in the arguments of the previous case Case(c2) and using x j+1 −
x j−1 ≤ Cεm+1N−1 ln N , the following estimates hold for x j ∈ (τm, τm+1].
For i ≤ m,

|(LN (W − w))i (x j )| ≤ C N−1 ln N
n∑

k=m+1

ε−1
k Bk(x j−1) + C

m∑

k=i

ε−1
k Bk(x j−1)

(78)
and for i > m

|(LN (W − w))i (x j )| ≤ C N−1 ln N
n∑

k=i

ε−1
k Bk(x j−1) + C ε−1

i Bm(x j−1). (79)

For i ≤ m, define,

φi (x j ) = C N−1 ln N
n∑

k=m+1

exp

(
2αHm+1

εk

)
B N

k (x j ) + C
m∑

k=i

Bk(x j ) + C
n∑

k=m+1

B N
k (τk)

and for i > m

φi (x j ) = C N−1 ln N
n∑

k=i

exp

(
2αHm+1

εk

)
B N

k (x j ) + C Bm(x j ) + C
n∑

k=m+1

B N
k (τk).

Case (d): There are 3 possibilities.
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Case (d1): d1 = . . . = dn = 0,
Case (d2): dr > 0 and dr+1 = . . . = dn = 0 for some r, 1 ≤ r ≤ n − 1 and
Case (d3): dn > 0.

Case (d1): d1 = . . . = dn = 0,
The mesh is uniform in [0, 1] and the result is established in the Lemma 8.
Case (d2): dr > 0 and dr+1 = . . . = dn = 0 for some r, 1 ≤ r ≤ n − 1
In this case from the definition of τn it follows that x j+1 − x j−1 ≤ C εr+1N−1 ln N
and arguments similar to theCase(c2) lead to the following estimates for x j ∈ (τn, 1].
For i ≤ r ,

|(LN (W − w))i (x j )| ≤ C N−1 ln N
n∑

k=r+1

ε−1
k Bk(x j−1) + C

r∑

k=i

ε−1
k Bk(x j−1)

(80)
and for i > r

|(LN (W − w))i (x j )| ≤ C N−1 ln N
n∑

k=i

ε−1
k Bk(x j−1) + C ε−1

i Br (x j−1). (81)

Define the barrier functions φi for i ≤ r by

φi (x j ) = C N−1 ln N
n∑

k=r+1

exp(2αHn+1/εk)B N
k (x j ) + C

r∑

k=i

B N
k (x j ) (82)

and for i > r

φi (x j ) = C N−1 ln N
n∑

k=i

exp(2αHn+1/εk)B N
k (x j ) + C B N

r (x j ). (83)

Case (d3): dn > 0

Now τn = 2
εn

α
ln N . Then on (τn, 1],

|(Wi − wi )(x j )| ≤ |Wi (x j )| + |wi (x j )|
≤ C B N

n (x j ) + CBn(x j ), using Lemma 7 and Theorem 3

Hence,
|(Wi − wi )(x j )| ≤ C N−1, on [τn, 1]. (84)

Now using the estimates derived and the barrier functions φi , 1 ≤ i ≤ n, defined
for all the four cases, the main proof is split into two cases

Case 1: dn > 0. Consider the following discrete functions for 0 ≤ j ≤ N/2,



Fitted Mesh Methods for a Class of Weakly Coupled System … 183

ψ±(x j ) = φ(x j ) ± (W − w)(x j ) (85)

where φ(x j ) = (φ1(x j ), φ2(x j ), . . . , φn(x j ))
T .

For sufficiently large C, it is not hard to see that

ψ±(x0) ≥ 0, ψ±(x N
2
) ≥ 0 and L N ψ±(x j ) ≤ 0, for 0 < j < N/2.

Then by Lemma 4, ψ±(x j ) ≥ 0 for 0 ≤ j ≤ N/2. Consequently,

|(Wi − wi )(x j )| ≤ C N−1, on [0, τn]. (86)

Hence, (84) and (86) imply that, for dn > 0

‖(W − w)‖
Ω

N ≤ C N−1 ln N . (87)

Case 2: dn = 0. Consider the following discrete functions for 0 ≤ j ≤ N ,

ψ±(x j ) = φ(x j ) ± (W − w)(x j ). (88)

For sufficiently large C , it is not hard to see that

ψ±(x0) ≥ 0, ψ±(xN ) ≥ 0 and L N ψ±(x j ) ≤ 0, for 0 < j < N .

Then by Lemma 4, ψ±(x j ) ≥ 0 for 0 ≤ j ≤ N . Hence, for dn = 0,

‖(W − w)‖
Ω

N ≤ C N−1 ln N .

Theorem 5 Let u be the solution of the problem (1)–(2) and U be the solution of the
problem (61)–(62), then,

‖(u − U)‖
Ω

N ≤ C N−1 ln N .

Proof From the Eqs. (7), (8), (63) and (64), we have

‖(u − U)‖
Ω

N = ‖(v + w − V+W)‖
Ω

N

≤ ‖(v − V‖
Ω

N + ‖(w − W)‖
Ω

N

Then the result follows from Lemmas 6 and 9.
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5 Numerical Illustrations

Example 1 Consider the following boundary value problem for the system of
convection–diffusion equations on (0, 1)

ε1u′′
1(x) + (1 + x)u′

1(x) − 4u1(x) + 2u2(x) + u3(x) = −ex ,

ε2u′′
2(x) + (2 + x2)u′

2(x) + u1(x) − 6u2(x) + 2u3(x) = − sin x,

ε3u′′
3(x) + (ex )u′

3(x) + 3u1(x) + 2u2(x) − 8u3(x) = − cos x,

with u1(0) = 1, u2(0) = 1, u3(0) = 1 u1(1) = 0, u2(1) = 0 u3(1) = 0.

The above problem is solved using the suggested numerical method and plot of
the approximate solution for N = 1536, ε1 = 5−4, ε2 = 3−4, ε3 = 2−5 is shown in
Fig. 1.

Parameter uniform error constant and the order of convergence of the numerical
method for ε1 = η/625, ε2 = η/81 and ε3 = η/32 are computed using a variant of
the two mesh algorithm suggested in [6] and are shown in Table1.

It is found that the parameter εi for any i, influences the components u1, u2, . . . , ui

and causes multiple layers for these components, in the neighbourhood of the ori-
gin and has no significant influence on ui+1, ui+2, . . . , un . The following examples
illustrate this.

Example 2 Consider the following boundary value problem for the system of
convection–diffusion equations on (0, 1)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

u1
u2
u3

Fig. 1 Approximate solution of Example 1
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Table 1 Maximum errors and order of convergence

η Number of mesh elements N

96 192 384 768 1536

20 0.1604E − 01 0.9767E − 02 0.5495E − 02 0.2860E − 02 0.1430E − 02

2−1 0.1626E − 01 0.9895E − 02 0.5560E − 02 0.2893E − 02 0.1446E − 02

2−2 0.1637E − 01 0.9955E − 02 0.5587E − 02 0.2905E − 02 0.1451E − 02

2−3 0.1643E − 01 0.9983E − 02 0.5598E − 02 0.2910E − 02 0.1452E − 02

2−4 0.1645E − 01 0.9995E − 02 0.5603E − 02 0.2911E − 02 0.1453E − 02

2−5 0.1647E − 01 0.1000E − 01 0.5604E − 02 0.2911E − 02 0.1453E − 02

2−6 0.1647E − 01 0.1000E − 01 0.5604E − 02 0.2911E − 02 0.1453E − 02

2−7 0.1648E − 01 0.1000E − 01 0.5604E − 02 0.2911E − 02 0.1453E − 02

2−8 0.1648E − 01 0.1000E − 01 0.5604E − 02 0.2911E − 02 0.1453E − 02

DN 0.1648E − 01 0.1000E − 01 0.5604E − 02 0.2911E − 02 0.1453E − 02

P N 0.7203E + 00 0.8358E + 00 0.9447E + 00 0.1002E + 01

C N
p 0.1123E + 01 0.1123E + 01 0.1037E + 01 0.8877E + 00 0.7300E + 00

The computed order of εi -uniform convergence, p∗ = 0.7203.
The computed εi -uniform error constant, C N

p∗ = 1.1235.
From Table1, it is to be noted that the error decreases as the number of mesh elements N increases.
Also for each N, the error stabilises as η tends to zero

ε1u′′
1(x) + (1 + x)u′

1(x) − 4u1(x) + 2u2(x) + u3(x) = 1 − x,

ε2u′′
2(x) + (2 + x2)u′

2(x) + 2u1(x) − 6u2(x) + 3u3(x) = 3 − 3x,

ε3u′′
3(x) + u′

3(x) + 3u1(x) + 3u2(x) − 7u3(x) = 7x − 8,

with u1(0) = 0, u2(0) = 1, u3(0) = 1 u1(1) = 0, u2(1) = 0 u3(1) = 0

The above problem is solved using the suggested numerical method. As u2(0) �=
u02(0) and ui (0) = u0i (0), i = 1, 3 for this problem, a layer of width O(ε2) is
expected to occur in the neighbourhood of the origin for u1 and u2 but not for
u3. Further u1 cannot have ε1 layer or ε3 layer. The plot of an approximate solution
of this problem for N = 384, ε1 = 5−4, ε2 = 3−4, ε3 = 2−5 is shown in Fig. 2a–d.

Example 3 Consider the following boundary value problem for the system of
convection–diffusion equations on (0, 1)

ε1u′′
1(x) + (1 + x)u′

1(x) − 4u1(x) + 2u2(x) + u3(x) = x,

ε2u′′
2(x) + (2 + x2)u′

2(x) + 2u1(x) − 6u2(x) + 3u3(x) = 3x,

ε3u′′
3(x) + u′

3(x) + 3u1(x) + 3u2(x) − 7u3(x) = 1 − 7x,

with u1(0) = 0, u2(0) = 0, u3(0) = 1 u1(1) = 0, u2(1) = 0 u3(1) = 1.

The above problem is solved using the suggested numerical method. As u3(0) �=
u03(0) and ui (0) = u0i (0), i = 1, 2 for this problem, a layer of width O(ε3) is
expected to occur in the neighbourhood of the origin for u1, u2 and u3. Further
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 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

u1
u2
u3

(a) u

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0  0.2  0.4  0.6  0.8  1

u1

(b) u1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

u2

(c) u2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

u3

(d) u3

Fig. 2 Approximation of solution components of Example 2

u1 will not have ε1 layer or ε2 layer. Similarly u2 will not have ε2 layer. The plot of
an approximate solution of this problem for N = 384, ε1 = 5−4, ε2 = 3−4, ε3 = 2−5

is shown in Fig. 3a–d.

6 Conclusions

The method presented in this paper is the extension of the work done for the scalar
problem in [4]. The novel estimates of derivatives of the solution help us to establish
the desired error bound for the Classical Finite Difference Scheme when applied on
any of the 2n Shishkin meshes.

The examples given are to facilitate the reader to note the effect of coupling with
the assumed order of the perturbation parameters.
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 0
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 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

u1
u2
u3

(a) u

 0

 0.005

 0.01

 0.015

 0.02

 0  0.2  0.4  0.6  0.8  1

u1

(b) u1

 0

 0.005

 0.01

 0.015

 0.02

 0  0.2  0.4  0.6  0.8  1

u2

(c) u2

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

u3

(d) u3

Fig. 3 Approximation of solution components of Example 3
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