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Abstract. Web crawling is an important way to collect a massive train-
ing corpus for building a high-quality machine translation system. How-
ever, a large amount of data collected comes from machine-translated
texts rather than native speakers or professional translators, severely
reducing the benefit of data scale. Traditional machine translation detec-
tion methods generally require human-crafted feature engineering and
are difficult to distinguish the fine-grained semantic difference between
real text and pseudo text from a modern neural machine translation
system. To address this problem, we propose two semantic-aware mod-
els based on the deep neural network to automatically learn seman-
tic features of text for monolingual scenarios and bilingual scenarios,
respectively. Specifically, our models incorporate the global semantic
from BERT and the local semantic from convolutional neural network
together for monolingual detection and further explores the semantic con-
sistency relationship for bilingual detection. The experimental results on
the Chinese-English machine translation detection task show that our
models achieve 83.12% F1 in the monolingual detection and 85.53% F1

in the bilingual detection respectively, which is better than the strong
BERT baselines by 2.2–3.2%.

Keywords: Machine translation detection · Local & global semantic
representation

1 Introduction

As we all know, data-driven machine translation, including statistical machine
translation (SMT) [25] and neural machine translation (NMT) [4,23], strongly
depends on the quality and quantity of the training corpora. For example, bilin-
gual parallel pairs are used for supervision learning, and monolingual target data
is available for language model[14] or data augmentation [20]. In practice, due
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to its low cost, data mining from subtitles and web crawling is one of the most
popular ways to collect massive data for machine translation [12,19]. However,
there are many noises in the collected data, which may mislead the model train-
ing and damage the performance of machine translation systems. In this work,
we focus on the issue of machine translation detection (MTD) [1], which is a
typical noise sourcing caused by the fact that a large amount of crawling data
comes from machine-translated texts rather than native speakers or professional
translators.

Most previous MTD work aims at SMT [1–3]. They design many human-
crafted features and train binary statistical classifiers to identify whether a sen-
tence comes from a SMT system. As SMT is notorious for long-distance reorder
and is prone to generate the disfluent translation, these simple statistical classi-
fiers can achieve good performance by adding some explicit linguistic features.
However, the situation changes when turning to modern NMT systems. Specifi-
cally, NMT is modeled as a conditional language model, which is naturally good
at generating fluent and grammatical translation [13]. Therefore, we argue that
the previous coarse-grained MTD models cannot fit the NMT scenario, and it is
necessary to design a fine-grained MTD model to distinguish the semantic bias
between real text and machine-translated text.

To address this issue, we propose to model the deep semantic representa-
tion by neural network for both monolingual and bilingual scenarios. Specifi-
cally, aimed at monolingual sentence, we propose the Semantic-aware Influencing
Attention Network (SIAN) to capture the global and local semantic information
of a sentence by combining BERT model[8] and Convolutional Neural Network
(CNN) [11] together. SIAN integrates the important local semantic informa-
tion into the global semantic information by adopting an influencing attention
mechanism for obtaining the sufficient semantic representation of a sentence. In
contrast, for the bilingual scenario, we further propose a Semantic Consistency-
aware Interactive Attention network (SCIA), which match the semantics of a
target sentence with its corresponding source sentence to obtain the semantic
consistency. In addition, the Part-of-Speech (POS) is used as the input to make
the model better aware of the shallow syntactic information.

We compare our models with several baseline models (i.e., statistical classifier
model and neural network-based models) on the outputs of four online NMT
systems. Experimental results show that our proposed models outperform all
of the baseline models by achieving an 83.12% F1 in the monolingual scenario
and an 85.53% F1 in the bilingual scenario, respectively. To the best of our
knowledge, we are the first to explore neural network-based techniques to tackle
the machine translation detection task.

2 Related Work

Previous techniques for detecting machine-translated sentences are designed for
SMT [1–3]. In the monolingual scenario, Arase et al. [3] designed a sentence-
level classifier to distinguish the machine-translated sentences from a mixture
of machine-translated and human-translated sentences. They utilized the phrase
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salad phenomenon and gappy-phrase features to detect if a sentence is fluent
and grammatical. Aharoni et al. [1] utilized the common content-independent
linguistic features for this detecting task. The features in their work were binary,
denoting the presence or absence of each of a set of part-of-speech n-grams, as
well as the function words. Both of their work adopted a binary statistical super-
vised classifier, i.e., SVM, to determine the likelihoods of machine-translated or
human-translated sentences.

In the bilingual scenario, Antonova et al. [2] designed a phrase-based decoder
for detecting machine-translated content in a Web-scraped parallel Russian-
English corpus. By evaluating the BLEU score of translated content (by their
decoder) against the target-side content, machine-translated content can be
detected. Rarrick et al. [18] extract a variety of features, such as the number
of tokens and character types, from sentences in both the source and target
languages to capture words that are mistranslated by MT systems. With these
features, the likelihood of a bilingual sentence pair being machine-translated can
be determined.

The above work is designed for detecting the outputs of SMT by utilizing
some explicit linguistic features and statistical supervised classifiers. We also
address the problem as a binary classification task. In contrast, since the NMT
has achieved significant success, we pay more attention to the implicit semantic
features rather than such explicit linguistic features.

Data selection for machine translation system is a related area. These studies
[5,7,14] aim to properly select data for training a subset sentence pairs from a
large corpus, so that improve the performance of the MT system in the specific
domain. Chen et al. [7] proposed a semi-supervised CNN based on bi-tokens
(Bi-SSCNNs) for training machine translation systems from a large bilingual
corpus. Moore et al. [14] use the language model to select domain-relate corpus.
However, these methods are designed to select specific domain data. Our work
utilizes the similar idea that detects the machine-translated sentences by relying
on the neural networks for capturing more implicit information instead.

Another related area is the cross-lingual semantic textual similarity mod-
eling, to which assesses the degree of two sentences in a different language is
semantically equivalent to each other [6]. Shao et al. [21] use CNN to capture
the semantic representation of the source and target sentences. Then a seman-
tic difference vector between these two paired sentences is generated. While the
aims of the tasks mentioned above are different from ours, we take the advantage
of neural networks to obtain the semantic consistency information. We regard
semantic consistency as an implicit feature for detecting the sentences with the
semantic bias that were translated by the NMT system in the bilingual scenario.

3 Model Overview

This section,introduces our neural network-based methods for MTD task, includ-
ing semantic-aware influencing attention network in monolingual scenario and
semantic consistency-aware interactive attention network in bilingual scenario.
The model architectures are shown in Fig. 1 and Fig. 2, respectively.
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Fig. 1. Architecture of semantic-aware influencing attention network based on BERT
and CNN (SIAN).

3.1 Semantic-Aware Influencing Attention Network (SIAN) in
Monolingual Scenario

Our problem can be formulated as follows. Given a sentence with M words, we
need to judge whether the sentence is machine-translated or human-translated.
We propose a semantic-aware influencing attention network (SIAN) based on
BERT and CNN for this task and the model architecture is shown in Fig. 1.

Global Semantic Feature Extraction by BERT. Specifically, the [CLS]
token’s hidden state is used as the hidden contextual representation of a sentence.

Local Semantic Feature Extraction by CNN. In order to capture the local
semantic information of the sentence sufficiently, we use convolution blocks with
different sizes of filters to encode the input sentence.

Let wi ∈ R
d be the d-dimensional word vector corresponding to the i-th

word in the sentence. Let X ∈ R
M×d denotes the input sentence where M is the

length of the sentence with padding. A convolutional filter Wc ∈ R
d×k maps k

words in the respective filed to a single feature c. As we slide the filter across
the whole sentence, we obtain a sequence of new features c = [c1, c2, ..., cM ].

ci = f(Xi:i+k ∗ Wc + bc), (1)

where bc ∈ R is a bias term and f is a nonlinear transformation function such
as ReLU, ∗ denotes convolution operation.

SIAN Model for Machine Translation Detection. We have introduced
the process about one feature is extracted from one filter. Since our SIAN model
utilizes multiple filters with different filter sizes to generate multiple feature maps
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Fig. 2. Architecture of semantic consistency-aware interactive attention network
(SCIA)

Table 1. An example of paired sentence.

Source
Human Freedom must be a purposeful freedom, otherwise, we can easily get

tired of it.
MT Freedom must be freedom of purpose, otherwise we will easily get bored.

for capturing more local n-grams semantic information of a sentence. Therefore,
we obtain the final local n-grams semantic representation by concatenating the
different feature maps, C = [c1; c2; ...; cn], where n is the number of filters.

Moreover, we capture the global semantic representation by using the [CLS]
token’s hidden state, hcls.

Next, we utilize the global semantic vector hcls and the convolutional features
vector C to calculate the attention weights, which attempts to capture some
important local n-grams features to supplement the global semantic information:

αi =
exp(s(ci,hcls))

∑M
j=1 exp(s(cj ,hcls))

(2)

where s is a score function that calculates the importance of ci in the whole
n-grams semantic features. The score function is defined as:

s(ci,hcls) = tanh(ci · Wa · hT
cls + ba) (3)

where Wa and ba are weight matrix and bias respectively, tanh is a non-linear
function and hT

cls is the transpose of the hcls. Then we can get the sufficient global
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semantic representation H by integrating the import local n-grams features to
global semantic vector,

H = hcls +
M∑

i=1

αci (4)

We obtain the final semantic representation HR by concatenating H and Cmax

for the completeness of semantic information,

Cmax = max(C),HR = [H;Cmax] (5)

where Cmax is generated by the max-over-time pooling operation.
Later, the sequence representation S is obtained by using a non-linear layer:

S = tanh(WRHR + bR), (6)

where WR and bR are weight matrix and bias, respectively.
We feed S into a linear layer, the length of whose output equals the num-

ber of class labels. Finally, we add a softmax layer to calculate the probability
distribution for judging a sentence is machine-translated or human-translated:

y = softmax(WfS + bf ), (7)

where Wf and bf are the weight matrix and bias of softmax layer, respectively.

3.2 Semantic Consistency-Aware Interactive Attention Network
(SCIA) in Bilingual Scenario

We further tackle this detecting task from the perspective of semantic consistency
in the bilingual scenario. For instance, given a source sentence, the standard
human-translated sentence and machine-translated sentence of the target side
are shown in Table 1.

In this example, due to the high performance of the NMT, we find that a
machine-translated sentence is as fluent and grammatical as a sentence generated
by human. When we focus on its semantics, we will find that its semantic infor-
mation is a little different from its source sentence. Therefore, in order to better
distinguish whether a sentence is machine-translated, we should further focus on
whether its semantics is consistent with its corresponding source sentence.

Here, the BERT and CNN are also used to encode the global and local seman-
tic representations in this scenario. We directly concatenate the representations
of the BERT and CNN without pooling for source sentence S (similar to the
target sentence T ), generating the semantic vector hS (semantic representation
hT for the target sentence). The architecture is shown in Fig. 2.

SCIA Model for Machine Translation Detection. In the bilingual sce-
nario, we should pay more attention to the mutual semantic relation between
the source and target sentence. Thus, an interactive attention network is pro-
posed to capture semantic consistency.
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Interactive attention is an approach that enables the semantic matching layer
to be aware of the current input pair, in a way that the hS is able to directly
influence the hT , and vice versa. The main idea of the interactive attention is to
encourage the hidden contextual representations interactively learning semantic
matching information for the source and target sentences. Then the attention
weights can be calculated by applying the column-wise and row-wise max pooling
over A matrix.

Consider the input pair (S, T ) where the length of the source sentence S is
N , and the length of the target sentence T is M . The matrix A ∈ R

N×M can
be calculated as follows:

A = tanh((hS)TUhT + bA), (8)

where U is a weight matrix, bA is the bias, and (hS)T denotes the transpose of
the hS .

Later, we apply the column-wise and row-wise max pooling over the A matrix
to generate the vectors as ∈ R

N and at ∈ R
M , respectively.

[as]i = max
1<n<N

[Ai,n] (9)

[at]i = max
1<m<M

[Am,i] (10)

Each element i of the vector at can be interpreted as an importance for the local
n-grams semantic information around the i-th word in the representation of tar-
get sentence hT according to the representation of source sentence hS . In the
same way, each element i of the vector as can be interpreted as an importance
for the local n-grams semantic information around the i-th word in the repre-
sentation of source sentence hS according to the representation of the target
sentence hT .

Sequentially, we adopt the softmax function to the vectors as and at to
generate the attention weight α and β

[αs]i =
exp([as]i)∑

1<b<M exp([as]b)
(11)

[βt]i =
exp([at]i)∑

1<b<N exp([at]b)
(12)

Next, we can get the final representations of the source and target sentences,
respectively:

HS = hS ∗ α (13)

HT = hT ∗ β (14)

In addition, we apply element-wise absolute difference and element-wise dot
product, which model the semantic bias information and consistency information
between two semantic vectors (HS and HT ), respectively.

H(1)
i = |HS

i − HT
i | (15)
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Table 2. Chinese-English data-sets

ZH-EN Train-set Development-set Test-set

Human-trans 3.7 ∗ 106 5000 5000

Machine-trans 3.7 ∗ 106 5000 5000

H(2)
i = HS

i � HT
i (16)

The final semantic consistent vector is got by concatenating H(1) and H(2), HF =
[H(1);H(2)], and then feed it to a fully connected layer to get the probability
distribution for judging a sentence is machine-translated or human-translated.

4 Experiments

4.1 Data Preparation

For the purpose of evaluation, we use human-translated and machine-translated
sentences to train our proposed models. For the human-translated sentences,
we use the WMT18 Chinese-English (ZH-EN ) parallel sentence pairs1. A few
methods [9] are used to filter the lower-quality sentence pairs. For the machine-
translated sentences, we randomly feed the source sentences (i.e., the Chinese
sentences) of the above high-quality parallel corpus to four online commercial
machine translators2 for obtaining target sentences (i.e., English sentence). In
this way, we can obtain large amounts of positive and negative (i.e., human-
and machine-translated sentence pairs) data instances. Moreover, the source
sentences are segmented and POS tagged by using an NLP toolset we developed.
The target sentences are tokenized and POS tagged by using NLTK toolset3. The
whole data-set is divided into three parts: train-set, development-set and test-set.
Table 2 shows the details of the data-sets used in our experiments.

4.2 Model Parameters Settings

In our experiments, including monolingual and bilingual scenarios, the POS tags
are converted to the corresponding tag embeddings, and the dimension of the
word embedding and the POS tag embedding are both set to 300, all of them
are randomly initialized and updated during the training process. In addition,
four convolution blocks are used with kernel windows of 1, 2, 3, 4, each with 200
feature maps. And in order to have a similar number of parameters in the CNN,
the BERT model is set to be 512 hidden size and 12 layers. We use PyTorch4 to
implement our proposed models and employ the Adadelta [24] as the training
algorithm, whose decay rate is set to 0.95. The regularization parameter λ is set
to 10−4 and the initial learning rate is set to 1.0.
1 http://www.statmt.org/wmt18/translation-task.html.
2 To our knowledge, all the four machine translators are NMT systems.
3 https://www.nltk.org/.
4 https://pytorch.org/.

http://www.statmt.org/wmt18/translation-task.html
https://www.nltk.org/
https://pytorch.org/
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Table 3. Performance of models in the monolingual scenario.

Model Acc F1

SVM 70.93 70.84

CNN 73.31 73.79

BERT 80.01 79.89

CNN+POS 74.78 74.31

SN 81.76 81.54

SIAN 82.45 82.56

SIAN+POS 83.01 83.12

4.3 Evaluation Metric

To evaluate our models, we adopt the Accuracy (Acc) and F1 score as metrics,
where Acc = number of correct predictions

Total number of predictions and F1 = 2∗precision∗Recall
precision+Recall .

4.4 Model Comparison and Analysis in Monolingual Scenario

In order to evaluate the performance of our SIAN model, we compare it with the
statistic classifier, i.e., SVM, and the CNN/BERT models used in data selection.

SVM: Using the common content-independent linguistic features, such as N-
grams, function words and POS tags, and adopt the SVM-SMO as a classifier
for this detecting task [1].

CNN/BERT: Using CNN or BERT as a sentence encoder, and then stack two
fully connected layers.

SN: Semantic-aware network (SN) model is designed by us in this work, which
also adopts CNN and BERT to encode the local and global semantic information
of a sentence. The only difference between SN and SIAN is that SN does not
utilize the influencing attention mechanism.

Table 3 shows the performance of our SIAN model and other methods. It
is obvious that our SIAN model with POS tags achieves the best performance
among all methods. We can find that SVM gets the worst performance because
this method mainly depends on some linguistic features or rules to judge the
fluency degree of a sentence for detecting the outputs of the SMT. The quality of
translations in NMT has been improved significantly over SMT, and the fluency
of NMT generated sentences are close to the human-translated sentences. Thus
machine-translated sentences cannot be effectively identified if only rely on such
features and classifiers.

Furthermore, when we compare the SN model with CNN and BERT models,
we find that SN model achieves better performance. Because if only adopt CNN
or BERT as a sentence encoder, which may neglect the global semantics or local
semantics of a sentence, while SN model simultaneously takes into account this
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Table 4. Performance of models in the bilingual scenario.

Model Acc F1

CNN 78.59 76.32

BERT 83.24 83.31

CNN-Pair 80.19 78.90

CNN-Pair+POS 80.62 79.36

SCN 84.12 84.32

SCIA 84.98 84.87

SCIA+POS 85.35 85.53

semantic information instead. Therefore, according to these three experimental
results, we can demonstrate that it is important to combine the local and global
semantic features in this task.

As for the SIAN model, it outperforms the SN model. Since it pays more
attention to some important local n-grams semantic information that is achieved
by the influencing attention mechanism. Besides, SIAN integrates the local
semantic information into the global semantic information to obtain the suf-
ficient semantic representation of a sentence.

Here, we further employ the shallow syntactic information (i.e., POS) of the
sentences as an auxiliary feature to improve the performance of this task. From
Table 3, we can find that models with the POS tags perform better than their
corresponding models without POS tags.

4.5 Model Comparison and Analysis in the Bilingual Scenario

In this subsection, we compare the SCIA model with the following models.

CNN/BERT: CNN or BERT are used to encode source and target sentences.
Then the encoding vectors of the sentence pair are concatenated to generate the
final representation. Finally, we apply two fully connected layers to compute a
unique score for a bilingual sentence pair [16].

CNN-Pair: Using CNN to capture the semantic vectors of the source and target
sentences, respectively. Then generates a semantic difference vector between a
sentence pair by concatenating their element-wise absolute difference and the
element-wise multiplication of their semantic vectors. Finally, the feed-forward
layer is used to obtain a similarity score [21].

SCN: Semantic consistency-aware network (SCN) model is designed by us in this
scenario, whose architecture is similar to the SCIA model. The only difference
between these two models is that the SCN model does not utilize the interactive
attention mechanism.

From Table 4, it is obvious that our SCIA model with POS tags achieves the
best performance. We can find that the CNN-Pair model performs better than
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Fig. 3. A real case from our test set.

CNN model because both CNN encode the representations of the source and
target sentences without considering the semantic bias of the paired sentences.
Instead, the CNN-Pair model takes advantage of the element-wise absolute dif-
ference and the element-wise multiplication of the corresponding paired sentence
level embedding. It can model the relation of the source and target sentence and
is conducive to identify machine-translated sentences. Although CNN-Pair model
considers the relationship between the sentence pairs, it only captures the local
semantic information of the source and target sentences while without taking
the global semantic information into account. Thus CNN-Pair model performs
less competitively than our SCN model.

As for the SCIA model, it outperforms the SCN model since the SCIA realizes
the importance of the mutual relationship between a source and target sentence
pair by utilizing the interactive attention mechanism. It enables the semantic
matching layer to be aware of the current input pair in a way that the current
semantic representation of the source sentence can directly influence the semantic
representation of the target sentence and vice versa. Thus, the SCIA model can
learn more semantic consistency information than the SCN model. Similar to the
monolingual scenario, the POS tags bring further improvement to the CNN-Pair
or SCIA model.

4.6 Case Study

Particularly, to have an intuitive understanding of our proposed model, we give
a sample instance to illustrate the characteristics of the SCIA model better as
shown in Fig. 3. The same color corresponds to the word alignment translation.
From this case, we can find that although the machine-translated sentence can
be translated accurately in the word alignment level, its semantics of the whole
sentence is ambiguous according to its corresponding source sentence, i.e., there
is some semantic bias compared with the corresponding source sentence. Thus,
the statistical classifiers tend to identify these sentences as human-translated
while the SCIA model does not.

4.7 Evaluation on Neural Machine Translation Systems

We further test our SCIA model on an NMT system [4,22].
The experiments are carried out with an open-source system called Marian

[10], which is a transformer-based NMT training system[23]. We carry out exper-
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Table 5. BLEU scores of the WMT17 Chinese-English translation.

Data size Data description BLEU

0.4M Original dataset 16.3

0.4M Noisy dataset 15.4

0.34M Clean-up dataset 15.9

iments on the Chinese-English dataset of WMT2017 task5. We select 400000
sentence pairs from these datasets as the original training dataset; the develop-
ment set is WMT2017’s test set, which contains 2002 sentence pairs. The test
set comes from WMT2018 news translation task, which contains 3981 sentence
pairs. Then we randomly select 30% sentences from the training data and obtain
the corresponding machine-translated target sentences by four online machine
translators, obtaining noisy dataset. Next, we use our proposed SCIA model to
filter out the machine-translated sentence pairs from the noisy dataset, obtaining
the clean-up dataset.

Table 5 shows the BLEU[15] scores of the NMT systems based on different
training data. From this table, we can see that when we introduce the noise to the
original data, we lost 0.9 BLEU score. Then, if we apply our SCIA model to the
noisy data, the BLEU score improves the performance to 15.9 on the clean-up
data, which demonstrates that the SCIA model can screen out the machine-
translated sentences for improving the performance of the NMT system.

The Back-Translation method [17,20] has been widely used in building NMT
systems. Our models may improve the performance of Back-Translation further
by filtering low-quality back translated sentence pairs.

5 Conclusion

In this paper, we propose two neural network models for detecting the sentences
generated by NMT in monolingual and bilingual scenarios, including a semantic-
aware influencing attention network (SIAN), which is used to capture important
local semantic information; and a semantic consistency-aware interactive atten-
tion network (SCIA), which is used to capture semantic matching between a
source and target sentence pair. Results show that our models outperform all
of the baseline models by achieving an 83.12% F1 in the monolingual scenario
and an 85.53% F1 in the bilingual scenario respectively, which is better than the
strong BERT baselines by 2.2–3.2%. To the best of our knowledge, SIAN and
SCIA are the first neural network-based models that are proposed to apply on
the NMT output detection task.

5 http://www.statmt.org/wmt17/translation-task.html.

http://www.statmt.org/wmt17/translation-task.html
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