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Preface

The China Conference on Machine Translation (CCMT) is a national annual academic
conference held by the Machine Translation Committee of the Chinese Information
Processing Society of China (CIPSC), which brings together researchers and practi-
tioners in the area of machine translation, providing a forum for those in academia and
industry to exchange and promote the latest developments in methodologies, resources,
projects, and products, with a special emphasis on the languages in China. Since the
first session of CCMT in 2005, 16 sessions have been successfully organized (the
previous 14 sessions were called CWMT), and a total of 10 machine translation
evaluations (2007, 2008, 2009, 2011, 2013, 2015, 2017, 2018, 2019, 2020) have been
organized, as well as one open source system module development (2006) and two
strategic seminars (2010, 2012). These activities have made a substantial impact on
advancing the research and development of machine translation in China. The con-
ference has been a highly productive forum for the progress of this area and is con-
sidered a leading and important academic event in the natural language processing field
in China.

This year, the 17th CCMT took place in Haidong, Qinghai. This conference con-
tinued the tradition of being the most important academic event dedicated to advancing
machine translation research in China. It hosted the 11th Machine Translation Evalu-
ation Campaign, featured two keynote speeches delivered by Minlie Huang (Tsinghua
University) and Lei Li (University of California), and included two tutorials delivered
by Zhongjun He (Baidu) and Liangyou Li (Huawei). The conference also organized
five panel discussions, bringing attention to pre-training and machine translation,
end-to-end speech translation, the industry of machine translation, the frontier of
machine translation, and the forum for PhD students. A total of 85 submissions
(including 25 English papers and 60 Chinese papers) were received for the conference.
All papers were carefully reviewed in a double-blind manner and each paper was
evaluated by at least three members of an international Program Committee. From the
submissions, 10 English papers were accepted. These papers address all aspects of
machine translation, including improvement of translation models and systems,
translation quality estimation, document-level machine translation, low-resource
machine translation, etc. We would like to express our thanks to every person and
institution involved in the organization of this conference, especially the members
of the Program Committee, the machine translation evaluation campaign, the invited
speakers, the local organization team, our generous sponsors, and the organizations that
supported and promoted the event. Last but not least, we greatly appreciate Springer for
publishing the proceedings.

August 2021 Jinsong Su
Rico Sennrich
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A Document-Level Machine Translation
Quality Estimation Model Based on

Centering Theory

Yidong Chen1,2(B), Enjun Zhong1,2, Yiqi Tong1,2,3, Yanru Qiu1,2,
and Xiaodong Shi1,2

1 Department of Artificial Intelligence, School of Informatics,
Xiamen University, Xiamen, China

2 Key Laboratory of Digital Protection and Intelligent Processing
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Ministry of Culture and Tourism, Xiamen, China
3 Institute of Artificial Intelligence, Beihang University, Beijing, China

{ydchen,mandel}@xmu.edu.cn, {ejzhong,yqtong,yrqiu}@stu.xmu.edu.cn

Abstract. Machine translation Quality Estimation (QE) aims to esti-
mate the quality of machine translations without relying on golden refer-
ences. Current QE researches mainly focus on sentence-level QE models,
which could not capture discourse-related translation errors. To tackle
this problem, this paper presents a novel document-level QE model based
on Centering Theory (CT), which is a linguistics theory for assessing dis-
course coherence. Furthermore, we construct and release an open-source
Chinese-English corpus at https://github.com/ydc/cpqe for document-
level machine translation QE, which could be used to support further
studies. Finally, experimental results show that the proposed model sig-
nificantly outperformed the baseline model.

Keywords: Machine translation · Document-level quality estimation ·
Centering theory

1 Introduction

Machine translation quality estimation (QE) is a task that aims at automatically
estimating the quality of machine translations. Unlike the standard evaluation
metrics such as BLEU [15], NIST [4] and METEOR [1], QE models estimate
translations without relying on golden references. In the past decade, researches
on QE have attracted more and more attentions [7], since QE can be utilized to
ensure the diversity and robustness of the NMT systems [25].

Currently, mainstream QE-related researches [2,13,26] mainly focus on
sentence-level QE models, which normally ignore the document-level informa-
tion. While, previous studies [21,23] have shown that document-level information
is important for estimating the translation qualities. As shown in Fig. 1, the word

c© Springer Nature Singapore Pte Ltd. 2021
J. Su and R. Sennrich (Eds.): CCMT 2021, CCIS 1464, pp. 1–15, 2021.
https://doi.org/10.1007/978-981-16-7512-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-7512-6_1&domain=pdf
https://github.com/ydc/cpqe
https://doi.org/10.1007/978-981-16-7512-6_1
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Fig. 1. An example of a translation that is correct in sentence-level but incorrectly in
document-level. We use THUMT [20] and 2M Chinese-English parallel data to training
the NMT model.

“predicts” in current translation should be “predicted” according to the context,
but is wrongly translated into present tense. Obviously, a QE model that does
not consider the document-level information could not tell the above-mentioned
error.

To alleviate this problem, we propose a document-level QE model called
CpQE by introducing Centering Theory (CT) [24] to formulate the sentence
relations. Concretely, our CpQE model uses the Preferred Center (Cp), whose
meaning could be found in Subsect. 3.1, to represent the context features. More-
over, we adapt a BERT-based [3] sequence labeling model to extract the Cps. In
addition, a semi-supervised pseudo-label learning method is adopted to alleviate
the low resource problem of Cp extraction.

2 Related Work

Traditional QE works [6,17] used feature engineering to extract features, e.g.
QuEst++ [19] design word-, sentence- and document-level features for multi-
level QE. Recently, neural QE methods outperformed these hand-craft methods.
[16] treated QE as a slot filling problem and proposed a language independent
word-level QE system using Recurrent Neural Network (RNN). [14] proposed a
stacked model by introducing multi-task learning, which achieved the best result
for word-level and sentence-level QE at that time.

More recently, Predictor-Estimator framework [10] was reported superior
performance and become a mainstream approach for neural QE. To combine
Predictor and Estimator into the architecture, [13] proposed a unified neural
network, which were trained jointly to minimize the mean absolute error over
the QE training samples. Furthermore, [5] proposed a neural bilingual expert
model, which replaced the RNN layers with a novel bidirectional transformer
[22] for feature extraction. And [11] apply the pre-trained model, BERT [3], as
feature extractor. However, these methods evaluate each translation indepen-
dently, leading to an inconsistent problem for the evaluation of document-level
machine translation.
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Fig. 2. The overview of Preferred Centering extraction model

3 Centering Theory and Extraction of the Preferred
Centers

3.1 Centering Theory and Preferred Centers

Centering Theory (CT) [8,9,24] is a theoretical model about the local coherence
of discourses. CT, which can be parameterized and calculated easily compared
with other related theories, provides a quantitative standard for evaluating the
context consistency of translations. Therefore, in this work, we apply CT to
capture the discourse coherence information for document-level QE.

In CT, any entity in a sentence may relate to entities in the following sen-
tences. So an entity is called Forward-looking Center (Cf). And an entity related
to entities in the previous sentences is called Backward-looking Center (Cb). Pre-
ferred Center (Cp) is the entity that is the most likely one to be associated with a
Cb. For example, given a current sentence “Xiao Hong likes to wear a red skirt”
and the following sentence “She went shopping today and met Xiao Fang”. The
entities in the current sentence include “Xiao Hong” and “skirt”, so we have
Cf = [“Xiao Hong”, “skirt”]; and the Cb in following sentence is “she”, i.e. Cb
= [“she”]. In Cf, the word “Xiao Hong” is the most closely related to the Cb,
so “Xiao Hong” is defined as the preferred center. It should be noted that a
sentence may contains more than one Cps.

3.2 The Preferred Centers Extraction Model

The conventional methods for extracting Cp are mainly rule-based. While, in
this paper, we take this problem as a sequence labeling problem and construct
a BERT-BiLSTM-CRF based model to settle it.

Figure 2 presents the overview of our extraction model. The input sentences
are encoded by BERT first. Then, the output of BERT are fed to a BiLSTM
layer, in which the operations of the LSTM are shown as follows:
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Table 1. The format of preferred center annotation.

Fig. 3. The pipeline of our semi-supervised training method

it = σ(Wi[ht−1, xt] + bi), (1)
ft = σ(Wf [ht−1, xt] + bf ), (2)
ct = ftct−1 + it tanh(Wc[ht−1, xt] + bc), (3)
ot = σ(Wo[ht−1, xt] + bo), (4)
ht = ot tanh(ct), (5)

where xt represents the output of BERT. it, ft and ct are the input gate, forget
gate and cell vectors, respectively. ot is the output gate and ht is the hidden
vector. t represents the t-th cell state of LSTM.

After that, the output of the forward and the backward LSTM are concate-
nated using (6), as follows:

ht = [
−→
ht ,

←−
ht ] (6)

Finally, the outputs of BiLSTM are provided to Conditional Random Field
(CRF) [12] to decode the Cp labels.
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3.3 The Semi-supervised Preferred Center Extraction Method

Since there are no public datasets for Cp extraction, we manually annotated a
small-scale Cp extraction dataset. Concretely, the English corpus is annotated
in word-level while the Chinese corpus is annotated in character-level. Table 1
shows the format of annotation. Considering that such a small annotated dataset
is not enough for training a automatic annotation model, we proposed a semi-
supervised method to do so. The training pipeline is shown in Fig. 3.

First, we divided the annotated dataset into training set and development
set. Then we trained the BERT-BiLSTM-CRF model with these two sets to get
Model 1. After that, we predict the unlabeled parallel corpus with Model 1 to
get a labeled dataset. Next, we filtered the labeled data by rules to alleviate the
effect of noise. Here are the rules we define:

– Remove the sentences whose ratio of the total length of preferred centers to
the total length of sentence is more than 1/4.

– Calculate the maximum similarity between each preferred center and the
words in the following sentence. If the similarity is less than 0.5 and such
preferred center do not belong to any component of subject, direct object or
indirect object, record this preferred center. If the number of such kind of
preferred center is greater than or equal to 50% of the number of preferred
centers extracted from the sentence, the sentence will be removed.

Roughly, Rule 1 limits the number of preferred centers to avoid selecting exces-
sive entities as the preferred centers for higher recall, and Rule 2 remove the
samples which contain ambiguous Cp. For measuring the similarity between
words, we use a word2vec model1 to encode the words into vectors and calculate
their cosine similarity:

similarity(wi, wj) =
embi ∗ embj

||embi|| ∗ ||embj || (7)

where embi is the vectorized representation of wi. If the out-of-vocabulary word
can not be found in the following sentence, the similarity is set to be 0, other-
wise 1.

After filtering the labeled dataset, the dataset will be randomly sampled to
get three sampling datasets. These three datasets will be combined with the
initial training set respectively for training three new models. Then we choose
the highest recall model on development set as Model 2. Our goal is to obtain
comprehensive preferred centers as far as possible so we choose the recall to
select the optimal model. So far, we have completed one iteration. The next step
is to repeat the previous steps.

4 The Quality Estimation Model

In this section, we present our CT-based document-level QE model. As shown
in Fig. 4, we extract the features of preferred centers from two aspects by outer-
extractor. First, we get the embeddings of preferred centers in both source and
1 https://radimrehurek.com/gensim/models/word2vec.html.

https://radimrehurek.com/gensim/models/word2vec.html
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Fig. 4. The overview framework of our CpQE model

target side. Second, compute the consistency between current sentence and con-
text in both source and target side. Finally, the two types of features and the
inner sentence features extracted by inner-extractor are passed to the quality
evaluator for scoring.

4.1 The Inner-Extractor

As shown in Fig. 5, the encoder of inner-extractor is a standard encoder of trans-
former [22] and the decoder is bidirectional. The forward self-attention network
decodes the target words from left to right, while the backward self-attention
network decodes the target words from right to left. The combination of the two
self-attention can make the model focus on the whole sentence.

4.2 The Outer-Extractor

Outer-Extractor extract Cp features from two aspects: sentences relation features
and embeddings of preferred centers. Sentences relation features can evaluate
the coherence between source text and translations. Here we define four rules
for designing features:

– The number of preferred centers of current sentence in source and target side
and the difference between the numbers.

– The number of preferred centers of previous sentence in source and target
side and the difference between the numbers.
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Fig. 5. The architecture of inner-extractor

– The similarity between preferred centers of previous sentence and current
sentence in source and target side and the difference between the similarities.

– The similarity between preferred centers of previous sentence and preferred
centers of current sentence in source and target side and the difference
between the similarities.

Rule 1 and rule 2 focus on the number of preferred centers which can reflect the
consistency between source text and translation at some extent. Rule 3 use a
quantitative measurement to evaluate the consistency between previous sentence
and current sentence. Rule 4 measure the change of entities which reflects the
change of topic. If a sentence at the beginning of document, the preferred center
of the previous is empty set. The preferred center of the last sentence in document
is empty set too. The similarity between the sequence is computed as follow:

similarity(l1, l2) =
lv1 + lv2
L1 + L2

cosine(embwv1 , embwv2)

+
2

L1 + L2

∑

winwo1

f(w, l2)
(8)

f(w, l2) =

{
1, w in l2,

−1, w not inl2.
(9)

where wv1 is the word in the sequence 1 which can be found in vocabulary while
wo1 is the word in the sequence 1 which out of the vocabulary. lv1 is the length
of wv1 and L1 is the length of the sequence 1. wv1 and wv2 are calculated by
Word2Vec model. According to the four rules, we design 12 features to represent
sentence relation information. We provide the running process of outer-extractor
on AppendixA.
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4.3 The Evaluator

Finally, we provide the features to evaluator. Since the preferred center embed-
ding is a word-level feature, and the local sentence relation feature is for both
sentence and context, we integrate the preferred center embedding before BiL-
STM. And the sentence relation feature is concatenated with the whole sentence
feature output by BiLSTM:

−→
h1:T+n,

←−
h1:T+n= BiLSTM(f) (10)

f = [finner;CpEmb] (11)

where T is the length of translation, n is the number of preferred centers. finner
represents the features extracted by inner-extractor. The sentence relation fea-
ture can make the evaluator focus on consistency between source text and trans-
lation. Finally, sigmoid function is used σ to score the translations:

Score = σ(wT [
−→

h1:T+n;
←−

h1:T+n; fouter]) (12)

where w is a trainable parameters, fouter is the features extracted by outer-
extractor. The optimization object is calculate as follows:

argmin||HTER − Score||22 (13)

HTER =
Nedit

Nreference
(14)

where Nedit is the number of edits from translation to reference, Nreference is the
number of words in reference. Human-targeted Translation Edit Rate (HTER)
[18] is the widest used metric of QE. Calculation of HTER need to find out the
closest reference of the translation, then calculate the edit rate from translation
to reference.

5 Experiments

5.1 Metrics

For preferred centers extraction, our goal is to maximize the total number of
preferred centers that are correctly tagged by our method, so we use standard
Accuracy and Recall score2 to measure the performance of our BERT-based
extraction model.

For quality estimation model, following with previous works such as [5,14],
we use Pearson correlation coefficient, which is calculated as follows.

ρX,Y =
∑n

i=1(xi − μX)(yi − μY )√∑n
i=1(xi − μX)2

∑n
i=1(yi − μY )2

(15)

Where n is the number of samples, μX and μY denote means of the samples. A
larger coefficient represents that X and Y are more correlated.
2 https://github.com/chakki-works/seqeval.

https://github.com/chakki-works/seqeval
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Table 2. Preferred center extraction performance

Chinese model Recall Accuracy Training set

Rule base model 38.26% 34.53% –

Model 1 51.74% 47.18% 1000 labeled data

Model 2 57.01% 53.83% 1000 labeled data + 1000 pseudo labeled
data

Model 3 60.70% 59.44% 1000 labeled data + 1500 pseudo labeled
data

English model Recall Accuracy Training set

Rule based model 40.43% 39.17% –

Model 1 53.09% 49.32% 1000 labeled data

Model 2 56.84% 56.28% 1000 labeled data + 1000 pseudo labeled
data

Model 3 63.61% 61.08% 1000 labeled data + 1500 pseudo labeled
data

Table 3. Pearson correlation coefficient of models. CpQE+CpRuled represents the
preferred centers are extracted by rule. CpQE+CpSeq represents the preferred centers
are extracted by our sequence labeling model.

Model Sentence testset Document testset

Baseline 0.6392 0.5536

CpQE+CpRuled 0.6218 0.5911(+0.0375)

CpQE+CpSeq 0.6326 0.6035(+0.0499)

5.2 Dataset Description

Since the lack of document-level QE corpus, we manually annotated an open
source Chinese-English document-level dataset3. Concretely, our document-level
QE corpus is built from the test set of WMT2019 MT automatic evaluation task.
We select 996 Chinese source sentences from the corpus, including 112 articles
with a text length less than 14 sentences, and the corresponding 1992 sentences
of English translations. The 1992 translations are calculated the HTER value to
construct our corpus.

For the preferred center extraction experiment, we use our annotated pre-
ferred center extraction dataset including 1,432 Chinese sentences and 1,432
English sentences. The Chinese-English parallel corpus comes from FBIS cor-
pus including 10,355 documents and 228,611 sentence pairs are used to generate
pseudo labeled data.

For the quality estimation experiment, we use CCMT19 Chinese-English
sentence-level translation quality estimation dataset with 11,213 sentences and

3 Available at https://github.com/ydc/cpqe.

https://github.com/ydc/cpqe
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Table 4. Case study results.

our document-level QE corpus with 1992 sentences. We randomly select 50%
sentences to delete or replace 20%–70% of the words and enhance the corpus
up to 2,565 sentences. Word2Vec model are trained on 23GB Chinese-English
monolingual corpus from Wikipedia and Sohu News. CCMT19 Chinese-English
parallel corpus and FBIS Chinese-English corpus are used to train the inner-
extractor.

5.3 Preferred Centers Extraction

In this experiment, we use a rule-based method as the baseline. In the rule-
based method, Stanfordnlp is used for syntactic analysis. Noun subject, clausal
subject, direct object, indirect object are chosen to be preferred centers. The
setup of our model is presented in AppendixB.

The experiments results are shown in Table 2. Our semi-supervised train-
ing method train model for two iterations on both Chinese and English data.
The recall and accuracy of Chinese Model 3 achieve 60.70% and 59.44% respec-
tively. And English Model 3 achieve 63.61% recall and 61.08% accuracy. Both
semi-supervised model significantly outperform the rule based model. The per-
formance of each iteration is better than that of last iteration indicating that
our proposed semi-supervised method can improve the performance of model.
We choose the recall as metrics for the reason that we want to obtain compre-
hensive preferred centers as far as possible.

5.4 QE Results

In this experiment, we use Transformer-based feature extractor-evaluator as
baseline model. Compared with the baseline, our model introduce an inner-
extractor. The setup of CpQE model is shown in AppendixC. The result of
quality estimation model is shown in Table 3. The Pearson correlation coeffi-
cients measure the correlation between model score and HTER. In the sentence-
level QE, the difference among the three models is about 0.01. In document-level
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QE, our CpQE+CpSeq model achieve the best performance with 0.6035, out-
perform the baseline by 0.0499. The rule-based Cp extractor with only 40.43%
recall but still improve the QE model, indicating that not only preferred centers
can improve the documen-level QE, other information also plays a role in the
QE model. When the recall of Cp extraction increase, the performance of QE
model further improve, which show the effectiveness of preferred centers. In the
sentence-level QE, according to the setting of text boundary feature acquisition,
the proposed model can not get any hint of the preferred center, which is equiva-
lent to no additional information, so the performance of the model is comparable
to that of the baseline model.

5.5 Case Study

As shown in Table 4, we provide the example of CpQE model and baseline model
on scoring translation in document-level QE.

In the given example, the word “ (china-europe train)” has two
meanings. The first one is “the train from China to Europe” and the other
one is “the train in central Europe”. Since the previous sentences of the same
document have mentioned “the train tack from Chengdu, China to Europe”,
the word in this sentence should be translated into “the train from China to
Europe”. Unfortunately, the translation output to be evaluated, i.e. mt1, pro-
vides an incorrect translation where the word “China” is missed. To test whether
our proposed document-level QE system is sensitive to such errors, we simply
recover the missing word “China” while ignore other mistakes in mt1 and pro-
duce another output, namely mt2. Then we evaluated these two outputs using
the baseline model and our model, respectively. Clearly, the evaluation results
show that both models indicate the decline of the edition rate. The proportion
of the reduction of our model is higher than that of the baseline model, which
is consistent with the HTER value, as listed in the fourth column. This results
imply that our proposed model is more sensitive to such problems.

6 Conclusion

This research focus on the document-level machine translation quality estima-
tion. Concretely, based on the concept of Preferred Center in the Centering
Theory and the evaluation method of local text fluency, we manually anno-
tated a small-scale dataset for Preferred Center extraction. Then, we trained a
model to extract Preferred Centers for given texts and combine the extracted
Preferred Centers as context information into the Predictor-Estimator model to
improve the performance of QE. Furthermore, we construct a document-level
Chinese-English QE dataset to measure the performance of our document-level
QE models.
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A Appendix

Algorithm 1. Running process of outer-extractor
Input: mt mCp src sCp

Output: Emb fouter

1: do

2: for i in range(T) do

3: [f1, f2, f3] =
2

len(mt)+len(src) [len(sCp[i]), len(mCp[i]), len(mCp[i]) - len(sCp[i])]

4: if mt[i] is the begining of the document do

5: Emb[i] = 0

6: fouter = [f1, f2, f3, 0, 0, 0, 1, 1, 0, 1, 1, 0]

7: continue

8: Emb[i] = [Word2Vec(sCp[i-1], Word2Vec(mCp[i-1])]

9: [f4, f5, f6] =
2

len(mt)+len(src) [len(sCp[i-1]), len(mCp[i-1]), len(mCp[i-1]) - len(sCp[i-1])]

10: [f7, f8, f9] = [similarity(sCp[i-1], src[i]), similarity(mCp[i-1], mt[i]), similarity(sCp[i-1],

src[i])- similarity(mCp[i-1], mt[i])]

11: if mt[i] is the end of the document do

12: fouter = [f1, f2, f3, f4, f5, f6, f7, f8, f9, 1, 1, 0]

13: continue

14: else do

15: [f10, f11, f12] = [similarity(sCp[i-1], sCp[i]), similarity(mCp[i-1], mCp[i]), similarity

(sCp[i-1], sCp[i]) - similarity(mCp[i-1], mCp[i])

16: fouter = [f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12]

17: return Emb, fouter

The input of the outer-extractor is translation sentences mt, the preferred
centers of translation sentences mCp, source sentences src and the preferred
centers of source sentences sCp. The output of the extractor are embeddings of
preferred centers Emb and the sentence relation features fouter. T is the number
of sentences in the corpus.
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B Appendix

Table 5. Parameter of Bert-BiLSTM-CRF model

Parameter Value Describe

batch size 8 Total batch size for training

lr 0.01 The initial learning rate

epoch 10 Total number of training epochs to perform

lstm size 128 LSTM hidden size

lstm layers 1 Total number of LSTM layers

optim Adam Optimizer type

For preferred center extraction model, we use BERT-Base-Chinese as Chinese
pre-trained model and BERT-Base as English pre-trained model. Some hyper-
parameters are fixed: decoder layers are 12, hidden size of Bert is 768, the number
of heads in multi-head attention is 12. Other parameters are shown in Table 5.

C Appendix

Table 6. Hyper-parameters of baseline predictor

Name Value Describe

src vocab size 120000 Size of vocabulary in source language

trg vocab size 120000 Size of vocabulary in target language

hidden size 512 Hidden size of Transformer

layers 2 Numbers of encoders and decoders in Transformer

head nums 8 Number of heads in multi-head attention

dropout 0.1 –

epoch 7 –

batch size 128 –

learning rate 2.0 –

optim Lazyadam Optimizer
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Table 7. Hyper-parameters of baseline estimator

Name Value Describe

src vocab size 120000 Size of vocabulary in source language

trg vocab size 120000 Size of vocabulary in target language

unit nums 128 Unit numbers of BiLSTM

layers 1 Layers of BiLSTM

dropout 0.1 –

epoch 7 –

batch size 128 –

learning rate 2.0 –

optim Lazyadam Optimizer

Our CpQE model integrate an outer-extractor compared with baseline model.
Other parameters is same as the baseline model. The parameters of baseline is
shown in Table 6 and Table 7. The dimension of Word2Vec in outer-extractor is
512.
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Abstract. This paper describes our submissions to CCMT 2021 quality estima-
tion sentence-level task for both Chinese-to-English (ZH-EN) and English-to-
Chinese (EN-ZH). In this task. We follow TransQuest framework which is based
on cross-lingual transformers (XLM-R). In order to make the model pay more
attention to key words, we use the attention mechanism and gate module to fuse
the last hidden state and pooler output of XLM-R model to generate more accu-
rate prediction. In addition, we use the Predictor-Estimator architecture model to
integrate with our model to improve the results. Experiments show that this is a
simple and effective ensemble method.

Keywords: Quality estimation · XLM-R · Ensemble

1 Introduction

In recent years, with the development of neural network, the quality of machine transla-
tion has been greatly improved. However, it is still a problem whether the translated text
needs further post-editing, which needs to be solved by translation quality estimation.
Quality Estimation (QE) aims to evaluate the quality of machine translation without
reference translation, which saves a lot of manpower and time and is more in line with
the actual requirements.

This paper introduces in detail our submission of sentence-level quality estimation
task. The sentence-level task aims to predict the Human-targeted Translation Edit Rate
(HTER) [1] of the machine translation output, which reflects the editing distance from
the translation to the correct reference translation. QE system needs to predict the HTER
value, that is, the editing error rate of the translation, which is a regression problem.

Traditional quality estimation methods use time-consuming and expensive artificial
features to represent source sentences andmachine translations. QuEst++ [2] is amethod
based on machine learning. Later, researchers began to apply neural networks to gener-
ated neural features automatically to quality estimation tasks.However, the scarce quality
estimation data can not give full play to the role of neural network. In order to solve this
problem, researchers try to transfer bilingual knowledge extracted from parallel corpora
to quality estimation tasks. This kind of work usually adopts the Predictor-Estimator
model proposed by Kim et al. [3]. Fan et al. [4] introduced a bidirectional Transformer
for predictor to extract features, and used 4-dimensional mis-matching features. Besides,

© Springer Nature Singapore Pte Ltd. 2021
J. Su and R. Sennrich (Eds.): CCMT 2021, CCIS 1464, pp. 16–24, 2021.
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Wang et al. [5] used Transformer-DLCL in predictor. Recently, the emergence of pre-
training model has swept the whole field of natural language processing, and more
and more researchers have begun to use pre-training model in quality estimation tasks.
Pre-training model has been widely used in predictor and combined with appropriate
estimator [6, 7]. At the same time, the ensemble method has been proved to be very
effective to improve the results [8, 9].

TransQuest [10] is shown to achieve state-of-the-art results outperforming current
open-source quality estimation frameworks when trained on datasets fromWMT, so we
use it as baseline and improve it. In order to make a better prediction, we have improved
the output of this model to predict the translation quality more effectively. In addition,
we use the ensemble method to integrate the above two models, which is simple but
effective.

2 Methods

In this section, we describe themethods used by our submitted system.We first introduce
the basic model we use, and then introduce our improvement methods based on this
model.

2.1 Basic Model

We chose TransQuest as our basic model. TransQuest uses cross-language transformers
model XLM-R [11], which is different from the previous predictor-estimator framework,
because it does not use parallel corpus. Therefore, this model reduces the burden of
complex neural networks and the demand for computing resources. TransQuest won the
first place in WMT 2020 DA task, and achieved state-of-the-art results in the current
open-source quality estimation frameworks in WMT datasets. The authors implement
two different architectures, and we chose the MonoTransQuest architecture. The input
of this model is to separate the original text and the translated text by [SEP] token and
input them into XLM-Rmodel together. Besides, they used the output of the [CLS] token
as the input of a softmax layer. XLM-R is a multi-language pre-training model proposed
by Facebook, which uses 2.5TB CommonCrawl to filter data, and masked language
model pre-trained on text in 100 languages, which obtains state-of-the-art performance
on cross-lingual classification, sequence labeling and question answering.

Another basic model is QE Brain [12] which follows the predictor-estimator archi-
tectures. They use a bidirectional Transformer [13] for predictor and bidirectional LSTM
[14] for estimator. QE Brain constructed mis-matching features, and only using this fea-
ture to make predictions can get good results. The model can be directly understood as
that if the quality of the translated text is very high, the word prediction model based on
conditional language model can accurately predict the current word based on the context
of the original sentence and the target sentence. On the contrary, if the translation quality
is not high, it is difficult for the model to accurately predict the current words based on
the context.
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2.2 Proposed Method

TransQuest model follows the standard method of XLM-R classification, and uses the
tensor corresponding to the first token [CLS] of the last layer for classification. We want
to make full use of the output of XLM-R. Therefore, we adopt the method of fully fusing
the information of pooler_output and last_hidden_state, using the attention mechanism
[15] and gate module [16].

When dealing with pooler_output, we use the same operation as CLS token of
last_hidden_state. We use dropout layer, linear layer and tanh nonlinear function to
deal with it. The model structure is shown in Fig. 1.

Fig. 1. Fusing pooler_output and last_hidden_state

2.2.1 Attention Mechanism

Considering that the method based on attention and weight has proved to be an effec-
tive way to selectively use additional information in many tasks, we add an attention
layer. According to the contribution of words to tasks in different sentences, words
are weighted to further enhance semantic information, and then pay attention to some
keyword information. Different from the sequence-to-sequence task, the output of the
translation quality estimation task is not a serialization process, so the attention weight
of sentence vectors to word vectors in the current batch can be obtained only by one
calculation, which is easy to implement.
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We can simply regard the output of last_hidden_state as the word vector of the
sequence, and the output of pooler_output as the sentence vector of the whole sequence.
The formula for calculating attention is as follows:

αi,j = exp
(
hi · ei,j

)

∑m
j=i exp

(
hi · ei,j

) (1)

vi =
m∑

j=1

αi,j ei,j (2)

Where hi denote the output of pooler_output, ei,j denote word embeddings in the
output of last_hidden_state, and vi is the output of the final attention layer.

2.2.2 Gate Module

Considering that the contribution of CLS token and attention vector in quality estimation
task changes in different contexts, we hope to weight this information in the changing
context through the gate module. We use a gate to control the information flow by

g = σ
(
W1 · hcls +W2 · vi + bg

)
(3)

ui = [
g ◦ hcls

] + [
(1 − g) ◦ vi

]
(4)

where W1 andW2 are trainable matrices and bg the corresponding bias term. Then g
is used to balance the information of CLS token and attention output, where hcls denotes
the CLS token, ui denotes the output of the gate module and ◦ represents the element-
wise multiplication operation. In the fusion mode of gate module, we try the addition
and concatenation methods.

2.3 Ensemble

In order to further boost performance, we use the ensemble method. It is worth mention-
ing that we only use two models. One is the TransQuest model after our improvement,
and the other is the QE Brain model. We chose QE Brain model because it works well
on WMT data.

For the ensemblemethods, due to time constraints,weonly used theweighted average
ensemble. According to the performance of the two models under CCMT data, we
designed different weight ratios for ensemble, and finally chose the weight of the best
result on the validation set for the ensemble experiment.

3 Experiment

3.1 Dataset

All the data we used came from CCMT2021, and no other extra data was used. The QE
datasets have two language directions of both English-Chinese (EN-ZH) and Chinese-
English (ZH-EN). The statistics of QE datasets are shown in Table 1. We don’t use extra
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parallel data when using TransQuest framework, but we use QE Brain framework when
we use ensemble methods, and the parallel corpus for training predictor comes from the
machine translation task of CCMT2021. The statistics of parallel corpus are shown in
Table 2.

Table 1. The statistics of QE datasets.

Direction Aspect Train Dev Test

EN-ZH Sent 14,789 1,381 2,528

ZH-EN Sent 10,070 1,143 2,412

Table 2. The statistics of parallel corpus.

Dataset Data Sentences

Datum2017 Train 999,985

Casict2015 Train 2,036,833

Casia2015 Train 1,050,000

Neu2017 Train 2,000,000

CCMT2019-en2zh Dev 1,000

3.2 Settings

For sentence-level task, Pearson correlation coefficient is the main evaluation measure,
In addition, we have set other measure: RMSE, MAE and Spearman Correlation.

We use the same settings for the two language directions pairs evaluated in this paper.
We follow the default configuration of TransQuest framework, but adjust the learning
rate to 2e−6, and other settings remain unchanged.We useAdam optimizer with a batch-
size of eight. In the training process, the parameters of xlm-roberta-large model and the
parameters of subsequent layers are updated. In the experiment, we used an NVIDIA
Tesla T4 GPU.

We use different dropout rates for different language pairs. The final dropout rate is
0.4 in EN-ZH experiment and 0.3 in ZH-EN experiment.

3.3 Results of the Single Model

The results of CCMT2021 dev2019 are shown in Table 3 and Table 4. In order to
get comparative experiments, the effectiveness of attention layer and gate module in
translation quality estimation is demonstrated.

It can be seen from the results that after adding the attention output of pool and
last, the use of add mode under the gate module has been improved by 3.67% in EN-
ZH experiment and 2.76% in ZH-EN experiment, and the effect of using cat mode is
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not obvious. In addition, if the gate module is not used, the effect of direct addition
will decrease, which may be because the attention output affects the semantic vector
representation of the whole [CLS]. Therefore, there must be a gate module to control
the attention output. If attention layer is not used, the promotion is not obvious, which
fully proves that attention layer and gate model are indispensable.

Table 3. Results of the CCMT 2021 EN-ZH dev2019.

Model Pearson RMSE MAE Spearman

Baseline 0.5063 0.1552 0.1083 0.4439

+attention+cat 0.5069 0.1633 0.1104 0.4146

+attention+add 0.4835 0.1667 0.1152 0.3984

no_attention+gate_cat 0.5046 0.1628 0.1139 0.4328

no_attention+gate_add 0.5099 0.1620 0.1143 0.4409

+attention+gate_cat 0.5097 0.1633 0.1145 0.4355

+attention+gate_add 0.5249 0.1526 0.1081 0.4499

Table 4. Results of the CCMT 2021 ZH-EN dev2019.

Model Pearson RMSE MAE Spearman

Baseline 0.5204 0.1526 0.1070 0.4506

+attention+cat 0.5131 0.1513 0.1141 0.4527

+attention+add 0.4989 0.1654 0.1149 0.4376

no_attention+gate_cat 0.5211 0.1611 0.1130 0.4628

no_attention+gate_add 0.5215 0.1609 0.1124 0.4633

+attention+gate_cat 0.5228 0.1615 0.1104 0.4614

+attention+gate_add 0.5348 0.1501 0.1012 0.4927

3.4 Results of the Ensemble Methods

Through the experiment of different proportions of fusion, we obtained best results when
we used the weights 0.7:0.3 in EN-ZH task and the weights 0.6:0.4 in ZH-EN task. The
results of ensemble model are shown in Table 5.

According to the ensemble results, our improved TransQuest model has been
improved by 6.4% in EN-ZH experiment and 7.8% in ZH-EN experiment, which fully
reflects the effectiveness of the ensemble models. It can be concluded that integration is
indeed a good way to improve the prediction accuracy in translation quality estimation.

A good model and a relatively bad model will produce better results. This is an
interesting phenomenon, and perhaps it is also a question worth considering. QE Brain
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Table 5. The results of ensemble model.

Model EN-ZH ZH-EN

Our improved best TransQuest 0.5249 0.5348

QE brain 0.3995 0.4639

ensemble 0.5587 0.5765

has been performing well under our previous WMT QE datasets, but its effect is not
good under CCMT QE datasets, probably because the quality of CCMT translation is
relatively good and involves a wide range of fields. The strength of the pre-training
model is unexplainable to some extent, and the mis-matching feature is a feature that we
think is very reasonable, so we will design some features more deeply in the future.

Although the prediction effect ofQEBrainwas not goodonCCMT, after our analysis,
we found that it could complement the prediction of TransQuest. We selected the first
400 examples of CCMT validation set to draw a line chart. As shown in the Fig. 2, we
can see, the predictions of TransQuest are mostly distributed above the golden HTER
value, while the predictions of QE Brain are mostly distributed below the golden HTER
value. Therefore, the fusion of the two models can improve the prediction results of the
ensemble methods.

Fig. 2. The yellow line represents dev golden HTER, the blue line represents the predicted value
of QEBrain and the green line represents the predicted value of our improved TransQuest. The left
picture shows EN-ZH experiment, and the right picture shows ZH-EN experiment (Color figure
online).

4 Conclusion

We describe our submissions to CCMT2021 QE sentence-level task. Our systems are
based on TransQuest architecture and use QE Brain to make ensemble experiments. In
order to make full use of the output of XLM-R and pay more attention to some key
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words, we use attention mechanism and gate module to fuse the output of XLM-R about
last_hidden_state and pooler_output. Experiments show that this is effective. In addition,
we also try to split last_hidden_state and add some external knowledge, but the effect
is not good. On the other hand, the ensemble method is very effective in the task of
translation quality estimation.

In the future work, although the pre-trainingmodel represents the source information
and the target information in the same feature space, the source information is completely
correct, while the target information contains wrong information. How to link the two
more effectively is our next work.We want to introduce some external features to further
enhance the performance. And we will also try some other ensemble methods in later
experiments.
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Abstract. This paper presents the systems developed by Beijing Jiao-
tong University and Toshiba (China) Co., Ltd. for the CCMT 2021 qual-
ity estimation (QE) and automatic-post editing (APE) task. For QE task,
we mainly rely on multiple pretrained language models, and propose a
multi-phase pre-finetuning scheme, to adapt the pretrained models to the
target domain and task. The pre-finetuning scheme consists of language-
adaptative finetuning, domain-adaptative finetuning and task-adaptative
finetuning. For APE task, we use BERT-initialized Transformer as the
backbone model, and create different groups of synthetic data by dif-
ferent data augmentation methods, i.e. forward translation, round-trip
translation and multi-source denoising autoencoder. Multi-model ensem-
ble is adopted in both tasks. Experiment results on the development set
show high accuracy on both QE and APE tasks, demonstrating the effec-
tiveness of our proposed methods.

Keywords: Machine translation · Quality estimation · Automatic
post-editing

1 Introduction

This paper presents the systems developed by Beijing Jiaotong University and
Toshiba (China) Co., Ltd. for the CCMT 2021 quality estimation (QE) and
automatic-post editing (APE) task. For QE, we participate in the sentence-
level task of Chinese-English direction. For APE, we participate in the task of
Chinese-English direction.

Machine translation quality estimation aims to evaluate the quality of
machine translation automatically without golden reference [2]. The quality can
be measured with different metrics, such as HTER (Human-targeted Edit Error)
[18]. Machine translation automatic post-editing aims to fix recurrent errors

c© Springer Nature Singapore Pte Ltd. 2021
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made by a certain decoder given the source sentence, by learning from correc-
tion examples [4]. Both the two tasks serve as a post-processing procedure for
machine translation (MT) and are inner-related.

Both tasks rely on human-annotated triplets. QE is trained with triplets of src
(source sentence), mt (machine translated sentence) and score (human-assessed
score), and APE is trained with triplets of src, mt and pe (post-edited sentence).
Since both human-assessment and post-editing require professional translators
to manually annotate src-mt pairs, both tasks are highly data-scarce with only
10k-20k training examples. How to train a accurate estimator or post-editor with
limited data remains a challenge.

For QE task, our system mainly relies on multiple pretrained models, includ-
ing four multilingual pretrained models, i.e. multilingual BERT [8], XLM [6],
XLM-RoBERTa-base and XLM-RoBERTa-large [5], and one monolingual model,
i.e. RoBERTa [16]. We propose a multi-phase pre-finetuning scheme, to adapt
the pretrained model to the target domain and task. The pre-finetuning pro-
cedure includes language-adaptative finetuning (LAF), domain-adaptative fine-
tuning (DAF) and task-adaptative finetuning (TAF). We also jointly train the
sentence-level estimator with word-level QE task. Different models are ensembled
to achieve further improvement.

For APE task, we choose BERT-initialized Transformer [7] as the back-bone
model, which uses the pretrained BERT to initialize the parameters of both
encoder and decoder. We create synthetic triplets from openly-available parallel
data using different methods, i.e. forward translation [17], round-trip translation
[12] and multi-source denoising autoencoder. We build the multi-source denoising
autoencoder to restore the corrupted reference given the source text, and the
restored reference is deemed as the synthetic mt. We apply domain-selection to
the parallel data for creating synthetic data, and different models trained with
different data are ensembled to achieve further improvement.

Experiments on the development set shows we obtain competitive results in
both directions, verifying the effectiveness of our proposed method.

2 Chinese-English Sentence-Level Quality Estimation

2.1 Model Description

Given the data-scarcity nature of QE, we build our system based on multiple
pretrained models. We mainly rely on four multilingual pretrained models, i.e.
multilingual BERT (abbreviated as mBERT) [8], XLM [6], XLM-RoBERTa-
base (abbreviated as XLM-R-base) and XLM-RoBERTa-large (abbreviated as
XLM-R-large) [5]. All of these four models are based on multi-layer Transformer
[22] architecture, and are pretrained on massive multilingual text with shared
multilingual vocabulary, enabling them to transfer to downstream tasks with
limited training data.

We concatenate src (source sentence) and mt (machine translated sentence)
following the way pre-trained models treat sentence pairs, and then feed the
sentence pair to the model. We try two different strategies to aggregate the
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sentence-level representation, the first one is to directly use the first hidden
representation of the pretrained model, and the second one is to add a layer of
RNN on the top of the model, to better leverage the global context information,
as shown in Fig. 1.

Fig. 1. Pretrained model for quality estimation with joint training. [CLS], [SEP]
are predefined segment separators, and could be different in different models. The
component circled with dashed line is alternative.

Although we mainly focus on sentence-level QE, the sentence and word-level
QE are highly related, since their quality annotations are commonly based on
the HTER measure [14]. During the calculation of sentence-level HTER score,
the word-level QE tag for each word in mt could also be derived, and can serve
as a supplementary information for training. Therefore, we implement multi-
task learning, jointly train the sentence and word-level estimator together. The
word-level estimation is based on the output logit according to each word, and
we only use the logit of the first sub-token if one word is segmented into multiple
sub-tokens. The loss function of both levels are defined as follow:

Lword =
∑

s∈D

∑

x∈s

−(pok log pok + λpbad log pbad),

Lsent =
∑

s∈D

‖ sigmoid(h(s)) − hters ‖,

where s and x denote each sentence and word in the dataset D, and h(s)
is the hidden representation, and λ is a hyper parameter. Notice the quality
of mt is very high [19], which means most of word-level tags are OK. To force
the model to pay more attention to the erroneously translated words, we assign
a weight λ for BAD words when calculating word-level loss. The loss of both
sentence and word level are combined and back-propagated together, defined as
follow:
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Ljoint =
∑

s∈D

(Lsent + η
∑

x∈s

Lword),

where η is a coefficient to balance the word-level and sentence-level loss.
Since the linear transformation for different levels are implemented on different
positions, we can perform multi-task training and inference naturally without
any structure adjustment. During the joint-training procedure, the word-level
tags can provide fine-grained information for sentence-level QE.

Table 1. Results on the development and test sets of CCMT 2021 Chinese-English
sentence-level QE with different pretrained models. We do not apply joint training for
XLM-R-large due to time limitation, and the result on dev set for XLM-R-large is very
low because we set the max length very short in training.

Model Method Dev Set Test set

Pearson Spearman Pearson Spearman

mBERT w/o joint train 0.5783 0.4768 0.5460 0.4748

w/ joint train 0.5403↓ 0.4339 0.5353↓ 0.4254

XLM w/o joint train 0.5464 0.4627 0.5368 0.4668

w/ joint train 0.5388↓ 0.4647 0.5335↓ 0.4601

XLM-R-base w/o joint train 0.5445 0.5077 0.4887 0.4443

w/ joint train 0.5371↓ 0.5143 0.4816↓ 0.4388

XLM-R-large w/o joint train 0.3643 0.3312 0.4736 0.4510

However, as shown in Table 1, joint training leads to degradation in all direc-
tions. This is not consistent with previous works which also apply joint training
[11,15]. In the end, we decide to keep all the models for ensemble.

2.2 Multi-phase Pre-finetuning

Fine-tuning pre-trained language models on domain-relevant unlabeled data
have become a common strategy to adapt the pretrained parameters to down-
stream tasks [9]. Previous works also demonstrate the necessity of pre-finetuning
when performing QE on pretrained models [10,15]. In our system, we propose
a multi-phase pre-finetuning scheme, consisting of language-adaptative finetun-
ing (LAF), domain-adaptative finetuning (DAF), and task-adaptative finetuning
(TAF). We pre-finetune the pretrained model on unsupervised parallel data with
no quality annotations, by continuing performing mask language modeling.

LAF aims to adapt the pretrained model to bilingual concatenated pairs.
Despite the shared multilingual vocabulary and training data, mBERT and
XLM-R are originally monolingually trained, treating the input as either being
from one language or another. But in our scenario, the input sentence pair is the
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Table 2. Results on the development and test sets of CCMT 2021 Chinese-English
sentense-leve QE. We do not apply LAF to XLM-R-large due to limited computation
resource, and the result on dev set for XLM-R-large is very low because we set the max
length very short in training.

Model Method Dev set Test set

Pearson Spearman Pearson Spearman

mBERT Original 0.5783 0.4768 0.5460 0.4748

+LAF 0.5875 0.4851 0.5547 0.4824

+DAF 0.5933 0.4924 0.5589 0.4859

+TAF 0.5995 0.5028 0.5647 0.4910

XLM Original 0.5464 0.4627 0.5368 0.4668

+DAF 0.5915 0.5065 0.5811 0.5053

+TAF 0.5942 0.5304 0.5838 0.5077

XLM-R-base Original 0.5445 0.5077 0.4887 0.4443

+LAF 0.5699 0.5164 0.5110 0.4555

+DAF 0.5754 0.5170 0.5159 0.4599

+TAF 0.5716 0.5265 0.5103 0.4639

XLM-R-large Original 0.3643 0.3312 0.4736 0.4510

+DAF 0.3296 0.2996 0.5237 0.4961

+TAF 0.2941 0.2674 0.5379 0.5090

concatenation of a bilingual parallel pair from two different languages. There-
fore, we continue the mask language model on massive parallel sentence pairs
(Table 2).

We use the parallel data from CCMT 2021 Chinese-English translation task,
which contains roughly 9 million sentence pairs. We filter the data according to
length and length ratio, and only keep sentence pairs with length shorter than
60, since we are unable to pre-finetune the pretrained model with max len too
big. The remaining 6 million pairs are used for LAF, which takes us roughly 10
days on two GPUs.

On the contrary, XLM is pretrained with the task of Translation Language
Modeling, therefore we believe it is already adapted to bilingual concatenated
sentence pair. Since LAF is performed on massive data with high computation
overhead, we decide not to perform LAF on XLM.

DAF aims to adapt the pretrained model to the target domain. The represen-
tation of pretrained model is learned from the combination of various domains,
and can be adapted to a certain domain if continued finetuning on unlabeled
data from the domain. To this end, we select a domain-similar subset of the
parallel data, and perform DAF for all the four pretrained models.

To be more specific, we finetune BERT as the domain classifier. The sentence
pairs in the training and development set are deemed as in-domain data, and
we randomly sample the same size of data as the general-domain data, for the
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training of classifier. We keep roughly 100k domain-similar sentence pairs for
DAF, which takes us up to 3–4 hours on a single GPU.

TAF refers to pre-finetuning on the unlabeled training set for the given task.
It uses a far smaller corpus (10k pairs) compared to DAF, but the data is much
more task-relevant. We apply TAF for all the four models, and it is very fast
with no more than 1 h on a single GPU.

The three-phase finetuninig scheme is performed in a pipelined manner,
namely the latter phase is performed based on the parameters of the former
phase. The representation of the pretrained model is adapted to our target lan-
guage, domain and task, and can serve as a better start point to be finetuned
on downstream task. Despite the limited training data, parallel data is readily
accessible, therefore multi-phase finetuning is a convenient yet effective method
to improve the performance without extra annotation.

2.3 Partial-Input Estimation

As denoted by Sun [20], QE systems trained on partial inputs perform as well as
systems trained on the full input. Although the alignment information is absent,
estimation can still be performed solely on the source text (to estimate the
complexity) or solely on the target text (to estimate the fluency). This enables
the incorporation of powerful monolingual models.

In our system, we perform partial-input estimation on the target side. We
utilize the monolingual models of BERT and RoBERTa [16] to estimate the flu-
ency. Only the target side of the bilingual pair is fed for training and evaluation.
Despite the absence of the source text, the partial-input estimation still achieve
high correlation because of the introduction of powerful monolingual model.

We also perform DAF and TAF to the monolingual model to adapt it to our
scenario, as shown in Table 3.

Table 3. Results on the development and test sets of CCMT 2021 Chinese-English
sentense-leve QE with partial-input.

Model Method Dev set Test set

Pearson Spearman Pearson Spearman

BERT-base Original 0.5127 0.4652 0.4595 0.4177

RoBERTa-base Original 0.5471 0.4656 0.4707 0.4279

RoBERTa-large Original 0.5684 0.5133 0.4785 0.4350

+DAF 0.5715 0.5407 0.4903 0.4457

+TAF 0.5712 0.5063 0.4834 0.4395
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2.4 Model Ensemble

After exhaustive hyper-parameter searching, we obtain more than ten strong
models with different architectures and training procedures. To combine differ-
ent predictions and achieve further improvement, we try two model ensemble
techniques, namely averaging and linear regression. Averaging simply averages
the predicted logits of different models. Linear regression learns a linear combi-
nation of different predictions using l2-regularized regression over the dev set.

Table 4. Results on the development and test sets of CCMT 2021 Chinese-English
sentense-leve QE. The results of single models are inconsistent with previous sections
due to our final hyper-parameter searching.

Model Dev set Test set

Pearson Pearson

mBERT 0.6125 0.5581

XLM 0.6055 0.5800

XLM-R-base 0.5974 0.5454

XLM-R-large 0.2941 0.5379

RoBERTa 0.5681 0.4903

Averaging 0.6291 0.6043

Linear regression 0.6376 0.6034

As shown in Table 4, both two ensemble techniques achieve considerable
improvement. Although the result of partial-input is comparatively low, it
can provide complimentary information for other bilingual models when doing
ensemble. Therefore, the incorporation of partial-input estimation is necessary.

3 Chinese-English Automatic Post-Editing

3.1 BERT-initialized Transformer

The current state of the art in APE is based on encoder-decoder structure with
Transformer [22] as the backbone network. To alleviate the data-scarcity prob-
lem, we follow [7] and use multilingual BERT to initialize the parameters of
Transformers, as shown in Fig. 2, which we call BERT-initialized Transformer.
We follow their default setting, namely use the self-attention in BERT to initial-
ize both the encoder and the decoder.

Specifically, instead of using multiple encoders to separately encode src and
mt, we use BERT pre-training scheme, where the two strings after being con-
catenated by the [SEP] special symbol are fed to the single encoder, and assign
different segment embeddings to each of them. Both the self-attention and con-
text attention of the decoder are initialized with BERT. The self-attention and
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Fig. 2. BERT-initialized Transformer. Dashed lines show shared parameters.

Table 5. Results on the development set of CCMT 2021 Chinese-English APE with
different architectures.

Model Data Dev set

TER BLEU

Dual-source Transformer [13] 2 million 0.4585 41.74

Multi-source Transformer [21] 2 million 0.4344 46.39

BERT-based Transformer [7] 2 million 0.4140 46.58

embedding between encoder and decoder are shared, to reduce parameter size
and improve training efficiency (Table 5).

We also compare with the dual-source transformer architecture of [13] and
multi-source Transformer architecture of [21]. With 10k training triplets com-
bined with 2 million synthetic triplets, the BERT-based Transformer outper-
forms the previous methods by a large margin, showing the effectiveness of pre-
trained parameters in APE task.
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3.2 Domain Selection

Firstly we believe generative task is data-hungry, and therefore we use all the
available parallel data to create synthetic triplets. We use the parallel data pro-
vided by CCMT 2021 Chinese-English translation, which consists of 23 million
sentence pairs after filtering. However, during training we find that the model
converges very soon and can not be improved afterwards. Therefore, we decide
to apply domain selection for the synthetic data.

Table 6. Results on the development set of CCMT 2021 Chinese-English APE with
different size of synthetic data. 10k refers to the model trained only with real data.

Model Data Dev Set

TER BLEU

BERT-based Transformer 10k 0.4234 45.92

BERT-based Transformer 23 million 0.4679 39.57

BERT-based Transformer 5 million 0.4276 44.62

BERT-based Transformer 1 million 0.4089 47.80

BERT-based Transformer 200k 0.4011 48.86

To perform domain classification, we use the 10k training triplets as in-
domain data, and randomly sample the same size of general domain data. We
try two domain classification methods, [1] finetune BERT as a binary classifier,
[2] use bilingual cross-entropy filtering method [1], and we use kenlm1 to train
4-gram language models for filtering. Then synthetic triplets are combined with
real triplets (which is oversampled 20 times) for training.

However, we do not see a clear difference between the two domain selection
methods. On the contrary, we find that data size matters a lot. As shown in
Table 6, we get the best result when incorporating 200k data. More data leads to
domain irrelevance while only using the 10k real data is not enough for training.
Therefore, we adopt the same data size in the following experiments.

3.3 Data Augmentation Techniques

Data augmentation is a de-factor paradigm for APE task [3]. The creation of
synthetic data requires to generate synthetic mt given the parallel data (which
are deemed as synthetic src and pe). Previous works rely on translation model to
generate synthetic mt [12,17], but the connection between synthetic mt-pe is not
consistent with real mt-pe. Actually, most synthetic mts generated by machine
translation are a correct translation of src but with different syntactic structure
from pe. Forcing the APE model to transform the syntax of a correct translation
is of little help to the training objective.
1 https://kheafield.com/code/kenlm/.

https://kheafield.com/code/kenlm/
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In this work, we propose to generate synthetic mt via Multi-source Denoising
Autoencoder (MDA), to better simulate the real error distribution. Denoising
autoencoder is trained with two steps: (1) corrupt the text with an arbitrary
noising function, and (2) learn a sequence-to-sequence model to reconstruct the
original text. Specifically, in our scenario, we provide both the corrupted text and
its corresponding translation to the encoder, leading to a multi-source denois-
ing autoencoder structure, as shown in Fig. 3. The MDA learns to reconstruct
the text based on its corruption and corresponding translation. This procedure
is performed on massive publicly-available parallel sentence pairs (which are
denoted as src and ref ), without the need of extra annotations.

Fig. 3. Multi-source denoising autoencoder for generating synthetic triplets.

After that, the MDA can be used to generate synthetic triplets following
the same formula. To be concrete, given parallel src-ref pairs, we would corrupt
the ref by the same noising function, which is combined with src to generate
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reconstruction via MDA. Then the original and reconstructed ref s are deemed
as pe and mt, respectively. The generated mt would inevitably differ pe (due to
the corruption-reconstruction procedure), but their connection would be close
since mt is inferred directly from pe. An also because the existence of source
text, the restored mt would be not semantically far from the src. This is a better
simulation of the MT error distribution.

Specifically, we try the combination of three noising transformations, i.e. word
omission, word replacement and word permutation. Word omission randomly
omits words in a sequence, and word replacement randomly replaces words, and
word permutation randomly permutes words with a maximum distance. We use
the 23 million CCMT 2021 Chinese-English data, and adopt two-fold jackknifing,
namely split the data into two folds, one for training and another for decoding.

However, during the experiment, we find that if the corruption on the target
side is too heavy, then the model would ignore the corrupted pe and only attend
to the src. In that case, our multi-source denoising autoencoder would degrade
to a normal machine translation model. Therefore, we try two strategies to force
the model to attend to the corrupted target text.

[1] Corrupt the source text with similar flavor;
[2] Disturbing the embedding of the source text with Gaussian noise.
Both strategies make it difficult for the autoencoder to generate reference

only relying on src, since the information of source side is also corrupted now.
Therefore, it will try to restore the target sentence by both reorganising the
corrupted pe and translating the disturbed src, leading to semantically deviated
(but not unrelated), and syntactically consistent mt.

We also follow previous works and adopt forward translation and round-trip
translation to create synthetic data. Forward translation [17] uses a forward-
translation model to translate src to the target language as mt. Round-trip
translation [12] uses two translation models, to translate pe firstly to the source
language then to the target language, to generate synthetic mt. All the transla-
tion models are trained with the 23 million data with two-fold jackknifing.

Table 7. Results on the development set of CCMT 2021 Chinese-English APE with
different augmentation methods. 200k synthetic triplets is combined with 10k real
triplets oversampled 20 times.

Method Noising Dev set

Source Reference TER BLEU

MDA Gaussian Corruption 0.4016 48.44

Corruption Corruption 0.4023 48.41

None Corruption 0.4035 48.39

Forward translation – – 0.4039 48.41

Round-trip translation – – 0.4011 48.86

Ensemble – – 0.3953 49.20
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Although the MDA-based method does not outperform the round-trip trans-
lation based method, different methods lead to different data distributions and
can provide complimentary information for each other. Therefore, we use all the
models for ensemble, and achieve further improvement, as shown in Table 7.

4 Conclusion

In this paper, we described our submission in CCMT 2021 quality estimation
and automatic post-editing task. For QE task, we verify that the pretrained
models can be further improved on target language and target domain via pre-
finetuning, and incorporate powerful monolingual model to perform partial-input
estimation. For APE task, we find that data-scarcity is alleviated to a large
extent if use pretrained model to initialize the encoder-decoder, and propose to
use multi-source denoising autoencoder to generate synthetic triplets.

Due to time limitation, we only participate in the Chinese-English direction.
In the future, we will extend our system to QE and APE tasks on other lan-
guages, to verify the effectiveness of our proposed methods. Besides, we will also
investigate how to combine these two inner-related tasks together to achieve
further improvement.
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Abstract. Multilingual transfer learning has been proved an effective
method to solve the problem of low-resource neural machine transla-
tion (NMT). However, the global optimal parameters obtained through
transfer learning can not effectively adapt to new tasks, which means
the problem of local optimum will be caused when training the new
task model. Although this problem can be alleviated by optimization-
based meta-learning methods, but meta-parameters are determined by
the second-order gradient term corresponding to the model parameters of
a specific task, which consumes a lot of computing resources. Therefore,
we proposed improved reptile meta-learning method. First, a multilin-
gual unified word embedding method is proposed to represent multilin-
gual knowledge. Secondly, the direction of meta-gradient is guided by
calculating cumulative gradients on multiple specific tasks. In addition,
the midpoint is taken as the meta-parameter in the space of the initial
meta-parameter and the final task-specific model parameter to ensure
that the meta-model has better multi-feature generalization ability. We
conducted experiments in the CCMT2019 Mongolian-Chinese (Mo-Zh),
Uyghur-Chinese (Uy-Zh) and Tibetan-Chinese (Ti-Zh), and the results
show that our method has significantly improved the translation quality
compared with the traditional methods.

Keywords: Meta-learning · Low-resource · Machine translation

1 Introduction

Low-resource NMT model is easy to produce over-fitting during model training
due to the sparse data. In order to solve the problem of insufficient training
sets for low-resource machine translation, there are two common methods: one
is unsupervised learning [1], which uses large-scale monolingual corpus as an aid,
expands pseudo-corpus by back translation or denoising self-encoding, and trains
the model through self-learning or adversarial learning. However, the common
pseudo-corpus noise reduction methods (deletion, replacement, addition) and
shared word embedding mapping methods cannot fundamentally improve the
c© Springer Nature Singapore Pte Ltd. 2021
J. Su and R. Sennrich (Eds.): CCMT 2021, CCIS 1464, pp. 39–50, 2021.
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noise and word alignment problem, so the current unsupervised machine trans-
lation effect is still lower than that of supervised model. Another method is
transfer learning [2], which applies the model parameters learned from the high-
resource language pair to the translation model of the low-resource language,
and adapts the model to the low-resource task via fine-tuning. It mainly uses
the prior knowledge of the high-resource language to assist the generation of the
low-resource translation model [3].

Meta-learning is similar to transfer learning, which is essentially learning to
learn. The meta-learning method is a model-independent method, which has
better generalization ability and can quickly adapt to new tasks through a few
training examples. Recently, there are mainly two methods for machine transla-
tion research using meta-learning: optimization-based method and model-based
method. [4] proposed an optimization-based machine translation method for low-
resource domains. Meta-parameters are iteratively learned through the proposed
training strategies on translation tasks in different domains to adapt to trans-
lation tasks in new low-resource domains. [5] proposed an optimization-based
meta-learning neural machine translation model training method. They used
model-agnostic meta-learning (MAML) algorithm [6] to obtain shared initial
parameters in multilingual large-scale language pairs, and the model can real-
ize rapid convergence on low-resource translation tasks using initialized meta-
parameters. Meanwhile, in order to solve the problem of inconsistency in word
embedding space in multilingual translation tasks, the above studies all adopt
a similar general word representation method [7] to adapt it to various meta-
learning episodic.

Although the optimization-based meta-learning method shows potential in
low-resource translation tasks, in the model training stage, the second-order gra-
dient corresponding to the model parameters of a specific task will be repeatedly
calculated, while consumes too much computing resources, and the performance
of multi-task fitting is not ideal. Therefore, in order to avoid the above problems,
we proposed an improved reptile meta-learning method. Specifically, it includes
the following aspects.

– We proposed an unified word embedding representation method, which maps
multiple languages including the target language into a new word embedding
space instead of mapping to the word embedding space of the target language.
This method improves the alignment accuracy between arbitrary languages
without passing through the “pivot” language.

– We proposed an improved reptile meta-learning method, which can replace
the original second-order gradient term to guide the direction of the meta-
gradient, so that it has better multilingual knowledge transfer ability, and
improves generalization performance while saving computing resources.

2 Background

Neural Machine Translation. Given the source language X, the neural
machine translation model encodes X into a set of continuous intermediate rep-
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resentations, and the decoder decodes the target language Y from left-to-right
according to the set of intermediate representations, as shown in Eq. 1.

p(Y |X; θ) =
T+1∏

t=1

p(yt|y0:t−1, x1:T ′ ; θ) (1)

In general, recurrent neural network (RNN) is used to build the model. Recently,
a decoder model with self-attention model and convolution structure has been
proposed. Compared with the traditional model based on RNN method, the
structure shows remarkable performance.

Low-Resource Machine Translation. Generally, unsupervised methods
mainly include back translation [8] and dual learning [9]. While knowledge shar-
ing methods mainly include transfer learning [10] and multi-task learning.

Meta-learning based NMT mainly draws lessons from MAML method, which
includes two steps: meta-training and meta-testing. For meta-training, given a
set of high-resource meta-translation tasks (T1, ..., Tk), a set of tasks are sampled
from the translation task generator each step, and the parameters are updated by
MAML method to obtain the corresponding prior knowledge. For meta-testing,
the low-resource translation model is initialized by using the learned parameters,
so that the low-resource machine translation model can use prior knowledge and
train a new translation model with a few number of samples. The learning process
is shown in Eq. 2.

θ∗ = Learn(T 0;MetaLearn(T 1, ..., TK)) (2)

For a specific low-resource language learning task T 0, the initial parameters
are obtained from meta-model. It is assumed that the prior parameter distribu-
tion of the expected model satisfies isotropic gaussian distribution N(θ0i , 1/β).
Meanwhile, to prevent the updated parameters from being far away from meta-
parameters, the learning process of a specific language can be understood as
maximizing logarithmic posteriori of model parameters for a given data set DT ,
as shown in Eq. 3.

Learn(DT , θ0) = argmax
θ

∑

(X,Y )∈DT

logp(Y |X; θ) − β
∥∥θ − θ0

∥∥2
(3)

where X and Y represents the source language and target language of the data
set, β is model parameter,

∥∥θ − θ0
∥∥2 indicate modulo. In order to use high-

resource language to repeatedly simulate low-resource translation episodic to
obtain initialization parameters, the loss function of meta-learning is defined as
Eq. 4.

Loss(θ) = EkED
T k ,D

′
T k

⎡

⎣
∑

(X,Y )∈D
T k

logp(Y |X;Learn(DT k , θ))

⎤

⎦ (4)
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3 Our Approach

We proposed a unified word embedding representation method, and an improved
reptile meta-learning NMT method. As shown in Fig. 2.

3.1 Unified Word Embedding Representation

Fig. 1. Multi-aligned multilingual word
embedding representation (MWE).

The vocabulary of each language
only subject to an independent dis-
tribution space. To integrate mul-
tilingual knowledge, it is necessary
to make universal representation of
words in different languages. The
common method is to map gram-
matically and semantically equiva-
lent words from different languages
to the same position in the vec-
tor space of the target language.
Therefore, the mapping between
other languages can be realized
through the target language as a
“pivot”.

General methods such as cross-
domain similarity local scaling
(CSLS) optimize this mapping by
minimizing the difference of word
embedding of the same word in dif-
ferent languages. The optimal map-
ping matrix Q is constructed based on the loss of two norms, such as Eq. 5.

min
Q∈Rd×d

‖XQ − PY ‖22 (5)

where X is the mapped language, Y is the target language, and P represents the
allocation matrix. However, this method needs bilingual dictionaries to assist
and can only embed words in two languages. If multi-language embedding is
done, only one language needs to be used as the transmission language. When
there is no bilingual dictionary, Wasserstein − Procrustes constraint is used
on the allocation matrix P , so that the sum of each row and column of the
allocation matrix is 1, and the matrix elements represent the degree of association
of different words. Therefore, the allocation matrix P and the mapping matrix
Q are optimized, and the 2-norm objective function embedded in multilingual
words is obtained, such as Eq. 6.

min
Q∈Qd,P∈Pn

∑

i

l(XiQi, PiX0) (6)
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Fig. 2. In batch 0, the parameters of a specific task are learned and used it as initial-
ization parameters for the next task. In batch 1, when the meta parameter is ready
to be updated, there are two steps: 1. Utilize the cumulative gradient obtained by K-
sampling as the direction of the meta-gradient. 2. The initial meta-parameters advance
after K/2 steps and update (about half the distance between the final task-specific
model parameter and the meta-parameters).

Among them, Xi, Qi and Pi respectively represent the word embedding, mapping
matrix and allocation matrix of the language mapping to the transfer language
X0. From Eq. 6, it can be seen that multilingual word embedding does not get
the mapping between any two languages, but the mapping between one language
and the target language (transfer language), which cannot guarantee the quality
of word embedding except the target language. We use different cross-lingual
word embedding methods to observed the quality of the translation. Therefore,
we propose a new general vocabulary representation method: multi-aligned mul-
tilingual word embedding representation (MWE) As shown in Fig. 1. This is
specifically shown in Eq. 7.

min
Q∈Qd,Pij∈Pn

∑

i,j

αij l(XiQi, PijXjQj) (7)

α represents weights, and i and j represent the number of languages. We take
advantage of the fact that all word embedding maps to a unified space to realize
better alignment.

3.2 NMT Method Based on Improved Reptile Meta-learning

Parameters of Task-Specific Model. Task-specific learning is similar to
transfer learning. It mainly learns the model parameters of a specific tasks θ′

from high-resource translation tasks. Assume that the model corresponding to
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the i-th task is nmtiθ, and model parameter θ is represented. Given the current
task ti and the corresponding data set (D(i)

train,D
(i)
test), then the model param-

eters are updated by using the stochastic gradient descent method (SGD), as
shown in Eq. 8.

Learn(D(i)
train; θ

′
) = θ − α �θ Loss

(0)
ti

(nmtiθ) (8)

α represents the learning rate, Loss
(0)
ti

is the loss calculated from batch data
numbered 0 in the task ti, and is usually expressed by the maximum likelihood
estimation (MLE).

Table 1. Improved reptile meta-parameter update algo-
rithm.

Algorithm

Require: p(τ): Distribution over tasks

Require: α,K:step hyper-parameters

Initialisation: Random θ

for i = 1, 2, ..., n do

sample tasks τi ∼ p(τ)

for all τi do

Evaluate the update θi = θ − α �θ Lossτi(θ)

k times

end for

update:θ = θ + 2α
K

∑n
i (θi − θ)

end for

Meta-parameter. To be
able to better extend to
a series of tasks. That
is, to find the most effi-
cient parameter θ∗ in the
fine-tuning process after
any given task, we need
to re-sample a batch of
data to update meta-
parameters. If the cor-
responding loss function
is set to Loss

(1)
ti

, the
most efficient parameter
θ∗ and meta-parameter
θ of the fine-tuning pro-
cess expressed as shown in
Eq. 9 and 10.

θ∗ = argmin
θ

∑

ti∼p(t)

Loss
(1)
ti

(nmti
θ′ ) (9)

θ ← θ − β �θ

∑

ti∼p(t)

Loss
(1)
ti

(nmt
θ−α�θLoss

(0)
ti

(nmti
θ)

) (10)

According to Eq. 10, after specific task parameters are learned in the inner loop,
new data will be sampled from the same data set in the outer loop, and calculate
a new gradient based on the same loss function, and meta parameters will be
updated according to the new gradients. When sampling a new task, the initial
meta-parameters are updated to the meta-parameters of the previous iteration,
and the meta parameters are iteratively updated by repeatedly executing the
previous steps. We proposed an improved reptile meta-learning method, when
calculating the gradients of K tasks, we will no longer divide them into K dif-
ferent parameters θ∗

i , as shown in Table 1.
As shown in Table 1, given the initial parameter θ, k-round stochastic gradi-

ent descent of SGD(Loss(nmtiθ), θ, k) is carried out according to Loss(nmtiθ),
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and then the parameter vector is returned. The version with batch samples mul-
tiple tasks at a single step. The gradient of our method is defined as (θ − W )/s,
where s is the step size used by SGD.

4 Experiments

4.1 Datasets

Table 2. The size of the training sample
during meta-training and meta-test.

Corpus sents. src-tokens trg-tokens

En-Zh 1.93M 3.22M 33.61

Fr-Zh 2.77M 51.39M 50.2M

De-Zh 1.92M 44.55M 47.81M

Es-Zh 1.96M 51.58M 49.09M

It-Zh 1.91M 47.4M 49.67M

Ko-Zh 0.54M 10.82M 11.11M

Vt-Zh 0.8M 15.95M 16.3M

Ja-Zh 0.68M 10.17M 11.23M

Mo-Zh 0.26M 8.85M 9.39M

Ti-Zh 0.4M 9.12M 8.68M

Ug-Zh 0.46M 10.12M 11.29M

We use transfer learning based NMT
(TF-NMT) and MetaNMT1 as base-
lines and use 5 European (English
(En), French (Fr), German (De), Spa-
nish (Es), Italian (It)) and 3 Asian
languages (Korean (Ko), Vietnamese
(Vt), Japanese (Ja)) for the meta-
training. All European language data-
sets from Europarl2, however, all
European languages use English as
the target language instead of Chi-
nese, so we adopt pivot-based method
to construct an NMT model based on
pivotal language (English) to obtain
parallel sentence pairs from European
languages to Chinese. Korean (Ko)
corpus obtained from Korean Paral-
lel Dataset,3. For Vietnamese (Vt), we use a crawler collect Vietnamese texts4

from the Internet and then feed the Google translator5 with the text, so that we
obtain a loose parallel corpus between Vietnamese and Chinese. For Japanese
(Ja), We conducted experiments with the ASPEC-JC corpus, which was con-
structed by manually translating Japanese scientific papers into Chinese. Dur-
ing meta-test period, we selected the following three different languages pairs
(Mongolian-Chinese (Mo-Zh), Tibetan-Chinese (Ti-Zh), Uyghur-Chinese (Ug-
Zh)) from CCMT2019: We use the officially provided train sets, valid sets, test
sets for these languages. The size of the training sample is shown in Table 2.

1 https://github.com/salesforce/nonauto-nmt.
2 http://www.statmt.org/europarl.
3 https://sites.google.com/site/koreanparalleldata.
4 The Vietnamese corpus has 0.8 million Vietnamese sentences and 10 million Viet-

namese monosyllables.
5 https://translate.google.cn/?sl=vi&tl=zh-CN&op=translate.

https://github.com/salesforce/nonauto-nmt
http://www.statmt.org/europarl
https://sites.google.com/site/koreanparalleldata
https://translate.google.cn/?sl=vi&tl=zh-CN&op=translate
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4.2 Setting and Baseline

Setting. Our model is implemented
using Pytorch6, a flexible framework

Table 3. Comparison of experimental
results. Our model shows potential advan-
tages in three different target tasks in a
fully supervised environment.

Model Mo-Zh Ug-Zh Ti-Zh

Transformer 28.15 23.42 24.35

TF-NMT 28.58 24.39 25.27

Meta-NMT 29.95 25.52 26.73

IR-Meta-NMT 30.83 26.29 27.18

for neural networks. We base our
model on the Transformer model
and the released Pytorch implemen-
tation7. Parameters are set as fol-
lows: word embedding size = 300, hid-
den size = 512, number of layers =
4, number of heads = 6, dropout =
0.25, batch size = 128, and beam size
= 5. Because our semantic space is
obtained by multiple alignment of different languages. Therefore, we need to
vectorize multilingual, here, two kinds of vectorization representation strate-
gies are proposed: Static representation and dynamic representation. For static
cross-lingual word embedding, we first employed FastText tools8 to generate
static monolingual word vector, and then use MUSE9 or VECMAP10 to gen-
erate cross-lingual representation. For dynamic cross-lingual word embedding,
we obtained contextual dynamic word embedding through the ElMo model11,
and then use our multiple alignment approach12 to get dynamic cross-lingual
word embedding. In test phase, we use beam search to find the best translated
sentences. Decoding ends when every beam gives an 〈EOS〉.

Baseline. We compared our approach against various baselines:

– Transformer13: The mainstream machine translation framework at this stage.
– TF-NMT14: A common method based on parameters transfer.
– Meta-NMT15: The method proposed by [5].
– IR-Meta-NMT: A model that improved reptile meta-learning methods that

we proposed.

4.3 Result and Analysis

To observe the results, we give different experimental choices: First is to compare
our model with a variety of experiments, mainly to observe the performance of

6 https://pytorch.org/.
7 https://github.com/pytorch/fairseq.
8 https://github.com/facebookresearch/fastText.
9 https://github.com/facebookresearch/MUSE.

10 https://github.com/artetxem/vecmap.
11 https://github.com/DancingSoul/ELMo.
12 https://github.com/PythonOT/POT.
13 https://github.com/tensorflow/tensor2tensor.
14 https://github.com/ashwanitanwar/nmt-transfer-learning-xlm-r.
15 https://github.com/MultiPath/MetaNMT.

https://pytorch.org/
https://github.com/pytorch/fairseq
https://github.com/facebookresearch/fastText
https://github.com/facebookresearch/MUSE
https://github.com/artetxem/vecmap
https://github.com/DancingSoul/ELMo
https://github.com/PythonOT/POT
https://github.com/tensorflow/tensor2tensor
https://github.com/ashwanitanwar/nmt-transfer-learning-xlm-r
https://github.com/MultiPath/MetaNMT
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Table 4. Low resource translation quality corresponding to various source datasets.

Meta-train Mo-Zh Ug-Zh Ti-Zh

None Finetune None Finetune None Finetune

Es It 9.98 14.61 ± .18 3.58 5.61 ± .18 4.41 4.51 ± .28

En Fr De 11.76 16.92 ± .3 4.05 7.25 ± .24 4.29 5.94 ± .15

European 14.53 19.08 ± .12 4.46 8.16 ± .08 5.17 6.91 ± .35

Ko 11.39 15.97 ± .25 6.39 10.38 ± .14 6.53 8.14 ± .16

Vt Ja 15.55 21.38 ± .11 7.11 9.57 ± .31 6.74 7.89 ± .15

Asia Languages 18.86 23.15 ± .29 10.76 11.41 ± .12 10.76 11.57 ± .10

All Languages 19.49 24.01 ± .27 11.12 12.56 ± .08 12.17 12.96 ± .19

Full Supervised 31.76 27.1 28.35

our method. Second is the influence of different meta-learning datasets on the
translation quality of the target tasks. As shown in Table 3 and 4. According
to Table 3, we found that compared with the Transformer, BLEU scores of our
method are increased by 2.68, 2.87 and 2.83 respectively in the three target
tasks. In addition, compared with TF-NMT, the BLEU scores are also increased
by 2.25, 1.9 and 1.91, which fully demonstrates that the global optimal parame-
ters obtained from multilingual translation model training phase can not achieve
better performance in low-resource translation tasks, because the gradient corre-
sponding to the optimal parameter is easily introduced into the local minimum
problem. Compared with [5], we also get same conclusions. They utilized con-
ventional meta-learning algorithm and take the target language as the “pivot”
to realized multilingual unified word representation. They query and locate the
position of low-resource languages words in the unified semantic space via the
key-value networks, and then integrated the multilingual knowledge. In addition,
excessive consumption of computing resources during training phase. Therefore,
our method has also been greatly improved in training efficiency, as shown in
Table 5.

Table 5. Time consumption.

Model Time consuming Speedup

Meta-NMT ≈3day –

IR-Meta-NMT ≈1.7day 1.76×

When we select different meta-
training data, we found that the
results are also different. When
we select several large European
languages, such as En, Fr, De,
the parameters obtained by meta-
learning are transferred to the low-resource translation tasks, the BLEU scores is
better than that of other European languages. However, the BLEU scores of the
model is higher when Asia languages was used. In other words, whether model-
dependent or model-independent methods are adopted, the effect will be further
improved when there are some internal relations between the high-resource and
low-resource languages, such as belonging to the same language family or having
the same or similar grammatical structure.
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4.4 Ablation Experiments

Table 6. The ablation experiment.

Model Mo-Zh Ug-Zh Ti-Zh

Dev Test Dev Test Dev Test

ML+CSLS 28.78 28.16 24.2 23.35 25.77 25.28

ML+MWE 31.34 29.95 28.36 25.52 28.51 26.73

RML+CSLS 32.48 29.61 27.29 25.8 28.85 27.02

RML+MWE 33.35 30.83 28.58 26.29 30.07 27.18

We observed the influ-
ence of various mod-
ules on the NMT
model through abla-
tion experiments, and
analyzed the trans-
lation quality when
using the CSLS, MWE,
Meta-learning (ML)
and Reptile Meta-learning (RML). In addition, we also evaluated the impact of
sentences of different lengths on the quality of the model. As shown in Table 6.
We mainly use BPE to process the data. According Table 6, we found that when
using the common meta-learning method, the NMT model represented by MWE
word embedding is 1.79, 2.17 and 1.45 higher on the test set than the model rep-
resented by CSLS word embedding. It can be inferred that the MWE method
has higher alignment accuracy and representation ability. Meanwhile, when using
the improved reptile meta-learning method (RML), the translation quality of the
MWE method is also better than that of the CSLS method. In addition, under
the same conditions, the BLEU score of the test set using the RML method is
increased by 0.88, 0.77 and 0.45 respectively compared with the model using the
ML method, which is fully demonstrates the remarkable generalization ability
of the model in this paper.

Fig. 3. The BLEU scores in different translation tasks.

According to the experiment shown in Fig. 3. The BLEU scores was highest
when the sentence length was 20 to 30 words, and significantly decreased when
the length was greater than 50 words.

4.5 Case Study

Case study include crosslingual word embedding alignment visualization and
translation analysis. To observe the word embedding quality of meta training
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data and meta test data, we map Mongolian and English with the same semantics
into Chinese vector space, aligned word pairs have more weight (cyan line), which
proved that our method has a significant effect on crosslingual alignment, as
shown in Fig. 4.

Fig. 4. Unified word embedding alignment visu-
alization.

As shown in Fig. 5, we
observe the translation results
of different methods, and find
that Transformer model has
significant translation genera-
tion ability, which alleviates
the problem of unknown words
(UNK); TF-NMT and Meta-
NMT methods ignore the rela-
tionship between source lan-
guages due to the problem
of crosslingual word embedding
mapping. Our method not only
alleviates the above problems,
but also learns more semantic
representation including named
entity (bold font), which shows remarkable effect.

Fig. 5. Translation analysis.

5 Conclusion

In this paper, we proposed an improved reptile meta-learning method, in which
the parameters of the previous specific task are taken as the initial parameters
of the new specific task, and the final meta-parameter gradient is determined
in combination with the first-order calculation method of the meta-gradient.
Compared with the traditional method, this method is more efficient and effec-
tive. In addition, in order to integrate multi-language knowledge, we propose a
multi-aligned cross-language word embedding, which alleviates the problems of
knowledge sharing.
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Abstract. Pre-training method has been proved to significantly
improve the performance of low-resource neural machine translation
(NMT), while the common pre-training methods (BERT) uses atten-
tion mechanism based on Levenshtein distance (LD) to extract language
features, which ignored syntax-related information. In this paper, we
proposed a machine translation pre-training method with semantic per-
ception which depend on the traditional position-based modeling, we
uses semantic role labels (SRL) to annotate sentences with “predicate-
argument” structures at the word level, and merge vectorized SRL with
word vectors to deepen the model’s understanding of deep semantics.
In addition, to avoid parameter disaster, we proposed a hierarchical
knowledge distillation method to fuse the NMT model and pre-training
model to adapt to the output probability distribution of the pre-training
model. We validated the method in the LDC En-Zh and CCMT2017
Mongolia-Chinese (Mo-Ch), Uyghur-Chinese (Uy-Ch), Tibetan-Chinese
(Ti-Ch) tasks. The results show that compared with baseline, our model
achieves significant results, which fully illustrates the generalization of
the method.

Keywords: Pre-training · SRL · Machine translation

1 Introduction

The NMT method based on encoder-decoder framework [1,2] encodes the source
language X into a set of continuous vector representation Z from left to right,
and decodes the target language Y from Z in the same way. The model mainly
adopts recurrent neural network (RNN) structure to encode the source language
in a linear manner, resulting in the feature extraction ability being limited by the
linear distance between the word embedding and its context, it means that cor-
relation is inversely proportional to linear distance. In the early stage of training,
there is less context information available and semantic relationships cannot be
fully learned. Especially in low-resource tasks, the problem is more obvious due to
sparse data. In order to alleviate these problems, [3] proposed a parallel encoding
c© Springer Nature Singapore Pte Ltd. 2021
J. Su and R. Sennrich (Eds.): CCMT 2021, CCIS 1464, pp. 51–62, 2021.
https://doi.org/10.1007/978-981-16-7512-6_5
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method, which is free from the constraints of time series encoding, and the under-
standing of language is no longer limited to its linear context information, but
to extract features from the global perspective. While the Transformer model [4]
based on the self-attention mechanism can learn the weight ratio between words
in the language through the self-learning method, so that the model can improve
the implicit learning ability of language knowledge. However, whether sequen-
tial encoding or parallel encoding is used, the model only learns the explicit
structural information of the sentence (LD), and can not mine deeper grammat-
ical information, resulting in the model effect not being significantly improved.
Therefore, the NMT method that integrates grammatical information has gradu-
ally shows its potential. [5] proposed a syntactic attention-related NMT method
to calculate the linear context and syntactic context information corresponding
to the current target token by using the dual-attention mechanism, the decoder
can accurately predict the target token according to the dual context repre-
sentation. [6] proposed a novel NMT method for fusing abstract semantic rep-
resentations (AMR), which used graph recurrent networks (GRN) to represent
AMR information. Compared with syntactic tree, AMR greatly retains meaning-
ful words in sentences and ignores non-contributing words, which improved the
translation quality. [7] is similar to that of [6] in that it uses graph convolution
network (GCN) to model the syntactic dependency tree corresponding to the
source language and adds it to the top of the convolutional encoder to integrate
word embedding and the syntax tree information.

For low-resource tasks, the quality of syntax-based NMT models is limited
due to the lack of sufficient parallel corpus and corresponding syntax Treebank.
In recent years, profit from the powerful semantic feature extraction ability of
BERT, the pre-training method based on BERT has also been gradually applied
to many NLP tasks including machine translation. [8] proposed a syntax-infused
Transformer and BERT models for machine translation method, which adopted
the BERT model to learn the position-aware context representation and regard
it as the input of Transformer encoder. [9] proposed a BERT-based machine
translation pre-training method, they fed the representation of BERT to all sub-
layers of NMT model and use the attention mechanism to adaptively control how
each layer interacts with the representation of BERT. [10] proposed a knowledge
distillation method using dynamic fusion strategy to provide pre-trained knowl-
edge for NMT models. They use an adapter to dynamically transform the general
representations in the pre-training model into representations more suitable for
NMT model. In addition, the NMT model can fully learn the output distribution
of the pre-training model through the knowledge distillation method. However,
the pre-training method combined with rich semantic representation has not
been widely applied to NMT tasks. With the advantages of BERT methods, this
paper proposed a deep semantic perception assisted neural machine translation
pre-training method, which includes the following contents.

– We proposed a target-oriented language pre-training method, which uses an
improved BERT model to learn the implicit semantic features of the target
language (the target language in this paper is Chinese).
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– To alleviate the deficiency of syntax treebank, we adopted more easily avail-
able SRL labels to represent semantic information. We built a vector lookup
table to obtain the vector corresponding to the SRL label, the use BiGRU to
encode each vector, and finally splice different forms of SRL labels through
the full connection layer.

– We use the hierarchical knowledge distillation method to instruct the output
of each layer in the decoder, so that the NMT model can fully learn “prior
knowledge” from the pre-training model.

2 Background

Neural Machine Translation. The NMT model based on attention mech-
anism simulates the translation probability P (y|x) of the source language
X = {x1, ..., xn} to the target language Y = {y1, ..., ym} word by word, as
shown in Eq. 1.

P (Y |X) =
I∏

i=1

P (yi|y<i,X, θ) (1)

Where y<i indicates the partial translation result before the i-th decoding step,
and θ indicates the parameters of the NMT model. The NMT model uses the
maximum likelihood estimation method to optimize the parameters θ. For the
parallel sentence pair {[xn, yn]}N

n=1 in training set, the loss defined as shown in
Eq. 2.

LCE = argmax
θ

N∑

n=1

logP (yn|xn; θ) (2)

Although the argumentation method is widely used, the problem of exposure
deviation still exists, which also directly affects the quality of the NMT model.

NMT Assisted by Pre-training Method. The pre-training method transfers
knowledge from resource-rich tasks to low-resource tasks. However, the NMT
method takes the cross entropy between the two languages as the training goal
to optimize the parameters, which is significantly different from the monolingual
pre-training model.

Therefore, one approach is to use the resource-rich language pre-training
model, and then put source language and the target language into the pre-
training model to obtain the corresponding word embedding, and use pre-trained
word embedding training NMT model. Another approach is to design a new
sequence-to-sequence pre-training task to directly realize bilingual mapping in
machine translation. Among them, XLM [11], MASS [12] and BART [13] are
both cross-lingual pre-training method based on sequence-to-sequence.
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3 Method

This section is mainly divided into the following aspects: semantic perception-
assisted pre-training model and hierarchical knowledge distillation training pro-
cess.

3.1 Semantic Perception-Assisted Pre-training Model

Obtain Semantic Role Label. SRL mainly takes the sentence as the unit
and analyzes the predicate-argument structure of the sentence. Specifically,
the task of SRL is to take the predicate as the center, explore the relation-
ship between the various components in the sentence and the predicate, and
use semantic roles to describe the relationship (argument). Generally, the pro-
cess of SRL includes: syntax analysis-candidate argument pruning-argument
recognition-argument labeling. According to the results of syntactic analysis,
the part that is absolutely not an argument is pruned, and then the binary clas-
sification is used to determine whether the remaining part is argument, if so, the
semantic category to which it belongs will be marked.

Given a sentence w, various predicate parameter structures are generated. To
reveal the multidimensional semantics of sentences, we group different semantic
labels corresponding to the same sentence and embed them with text into the
next encoding component. The specific method is to input the sentence-predicate
pairs (w, v) into the high-speed BiGRU to search for the predicate’s argument,
and the semantic role corresponding to argument is marked as y. The goal of
prediction is to obtain the semantic role label sequence with the highest score
among all possibilities Y . As shown in Eq. 3.

ŷ = argmax
y∈Y

f(w, y) (3)

Where f(·) indicate the nonlinear activation function in the BiGRU. To improve
the prediction accuracy, the BIO constraints and semantic role label constraints
are added. [14] made a detailed explanation, I won’t repeat it.

Pre-training Model Combined with SRL. As shown in Fig. 1, pre-training
model includes text encoding module and SRL encoding module. The text encod-
ing module is similar to the common BERT. For sentence X = {x1, ..., xn}, we
employ BERT model to capture the context information of each word segment
and generate the corresponding context word embedding sequence.

For a sentence that contains the m semantic role label sequences associated
with the predicate, T = {t1, ..., tm}, and the i-th label sequence ti contains n
labels, which can be expressed as ti =

{
lbli1, ..., lbl

i
n

}
, because semantic labels

belong to the word level, the number of labels is equal to the sentence length. We
construct a vector table that maps the semantic role labels to the corresponding
vectors

{
vi
1, ..., v

i
n

}
, and feed the vector to BiGRU to capture the hidden state
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Fig. 1. Pre-training model combined with SRL. Word embedding (yellow circle) and
semantic role representation (cyan circle) are obtained by BERT and BiGRU respec-
tively. Then the new word embedding representation (purple circle) is obtained by
nonlinear fusion method and fed to the NMT model. (Color figure online)

representation of the semantic labels, so as to extract the feature of the label
sequences. As shown in Eq. 4.

e(ti) = BiGRU(vi
1, ..., v

i
n) (4)

Where 0 < i ≤ m, we assume that Li represents the set of label sequences
corresponding to the i-th predicate token xi, and the vector representation is
defined as e(Li) = {e(t1), ..., e(tm)}. Finally, we concatenate the m sequences
of label representation and feed them to a fully connected layer to obtain an
accurate label representation, as shown in Eq. 5.

econcat(Li) = W [e(t1), ..., e(tm)] + b,

eSRL = {econcat(L1), ..., econcat(Ln)} (5)

Where W indicates the weight, and b represents bias. eSRL represents the embed-
ding of the semantic label sequence corresponding to each predicate in a sentence.

The original sequence can be expressed as eword = {e(x1), ..., e(xn)}. Then,
word embedding and SRL embedding are concatenated by function h = eSRL �
eword.
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Fig. 2. Hierarchical distillation.

3.2 Hierarchical Knowledge Distillation Training Process

Table 1. Parameter scale of various pre-training models.

Model ALBERT BERT GPT-2 XLNet T5
Parameters 12mil 0.1bn 1.5bn 2bn 11bn

Table 1 shows several main-
stream pre-training mod-
els at present. It can be
seen that the parameters
scale of the model is very
large, resulting in the method of parameter transfer or word embedding trans-
fer method are difficult to achieve in neural machine translation model. There-
fore, we proposed a hierarchical knowledge distillation method, which selectively
extracts the output of a specific layer from the pre-training model and guides
NMT model training according to its probability distribution. As shown in Fig. 2.

Generally, there is a temperature hyper-parameter τ in knowledge distilla-
tion method, and a smoother output distribution probability can be learned by
increasing τ . The output probability is shown in Eq. 6.

pprt =
exp(zprti/τ)∑
j exp(zprtj/τ)

(6)

Where zprti represents hidden layer state, the equation also applies to the NMT
model. Generally, a well pre-trained model will generate distributions with high
probability for a few words, leaving others with probabilities close to zero. By
increasing τ we expose extra information to the NMT model. In addition, for each
layer of the pre-training model, it has certain representation ability. When some
intermediate layers already have high distribution probability or confidence, the
subsequent layers do not need to calculate KL divergence, which called “adaptive
inference”. While reducing resource consumption, it can still maintain a high
prediction probability, so that the distillation data of the pre-training model has
better indicative ability. The calculation of KL divergence is shown in Eq. 7.

DKL(pprt||pnmt) =
N∑

i=1

pprt(i) · log
pprt(i)
pnmt(j)

(7)
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Where pprt and pnmt represent the probabilities of the pre-training model and
NMT model respectively, the pre-training model is regarded as a teacher, NMT
model is regarded as student. i represents the sentence number. Therefore, we
define the KL divergence (relative entropy) loss between the output probability
distribution of the pre-trained model and the NMT model, as shown in Eq. 8.

LKL(pprt0 , ..., pprtN−2 , pnmt) =
N−2∑

i=0

τ2DKL(pprti ||pnmt) (8)

Where pprt0 , ..., pprtN−2 represents the output probability of various intermediate
layers in the pre-training model. Our goal is to minimize the KL divergence loss
of the selected intermediate layers in the pre-training model and the NMT model,
so that the two distributions are gradually similar.

To improve the utilization of the intermediate layers and ensure that the
output probability distribution can optimize the NMT model, we set a threshold
U , when the result is less than the threshold, we can distill the output data in
advance. Otherwise, we need to calculate the output distribution of subsequent
layers and repeat the process until the last layer of the pre-training model. The
calculation of threshold U is shown in Eq. 9.

U =
∑N

i=1 pprt(i)logpprt(i)
log 1

N

(9)

The variables in the Eq. 9 have been explained above and will not be repeated.
For convenience, we use entropy as the threshold value. If the entropy value is
large, the confidence is low, and if the entropy value is small, the result can be
output, which not only saves subsequent calculation resources but also improves
the inference speed. For this reason, the objective function of the model can
be regarded as the weighted sum of cross-entropy loss (See Eq. 2) and relative
entropy loss (See Eq. 8), as shown in Eq. 10.

L = λLCE + (1 − λ)LKL (10)

We set λ to 0.5.

4 Experiments

4.1 Datasets and Configuration

We conducted experiments on English-Chinese (En-Zh) and three low-resource
translation tasks (Mo-Zh, Uy-Zh, Ti-Zh). For En-Zh task, the training set consist
of 1.2 million bilingual sentences from LDC corpus1, we use NIST02 as validation
set, and NIST03-06 as the test set. For low-resource translation task, the data
sets are provided by CCMT2017, as shown in Table 2.

1 http://www.ldc.upenn.edu/.

http://www.ldc.upenn.edu/
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Table 2. Data sets for three
low-resource machine transla-
tion tasks.

Training Valid Test
Mo-Zh 64752 500 500
Uy-Zh 542796 1000 1000
Ti-Zh 30004 500 500

In addition, we limit the bilingual vocabulary
to 35K words and limit the length of sentences
to 80. We utilized BLEU scores2 to evaluate the
quality. The parameters are updated by stochas-
tic gradient descent (SGD), and the learning rate
is dynamically adjusted by adam and the initial
value is set to 0.0001. Word embedding dimen-
sion and hidden layer set 512, the beam size is
8, we apply dropout to avoid over-fitting, with
dropout rate being 0.2, set U to 0.2. Since the pre-training model combined with
SRL is used to guide the distribution probability of the target language predic-
tion, we perform semantic role labeling on the target language (Chinese), and
the label sets comes from Chinese Binzhou Proposition Bank (CPB)3.

Our pre-training model is improved on SemBERT4. For the NMT model,
we improved the Transformer5 to implement our approach. To verify the effec-
tiveness of the model, we also adopted two NMT methods combined with the
pre-training model as the baseline,BERT4NMT [9]: A NMT method that inte-
grated BERT pre-training model, and extracted the knowledge of pre-training
model by introducing BERT-based attention mechanism.AK4NMT [10]: They
used fusion strategy to transformed pre-trained word embedding into a more
suitable representation for NMT task, and employed the distillation method to
learn the output probability distribution of the pre trained model. We employed
two TITAN X to train the model and obtained by averaging the last 5 check-
points for the translation tasks.

4.2 Results and Analysis

Results. According to Table 3, our model compared to the traditional Trans-
former, BLEU scores improved by 1.75, 0.49, 1.81, 1.28 and 2.58, respectively,
and the average BLEU scores increased by 1.18.

Table 3. En-Zh translation results in LDC corpus.

Model NIST02 NIST03 NIST04 NIST05 NIST06 AVG

Transformer 37.19 36.66 37.06 34.89 35.23 35.96

BERT4NMT [9] 38.01 36.67 38.45 34.92 34.02 36.01

AK4NMT [10] 37.92 36.25 38.08 35.53 36.29 36.54

Our model 38.94 37.15 38.87 36.17 37.81 37.5

2 https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-
bleu.perl.

3 http://verbs.colorado.edu/chinese/cpb/.
4 https://github.com/cooelf/SemBERT.
5 https://github.com/tensorflow/tensor2tensor.

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
http://verbs.colorado.edu/chinese/cpb/
https://github.com/cooelf/SemBERT
https://github.com/tensorflow/tensor2tensor
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Table 4 shows the experimental results of three low-resource translation tasks,
it can be seen that our method has also improved 4.18, 3.61 and 3.59 BLEU scores
in three low-resource machine translation tasks.

Table 4. The BLEU scores for three low-
resource machine translation tasks.

Model Mo-Zh Uy-Zh Ti-Zh
Transformer 27.18 32.41 24.29
BERT4NMT [9] 29.03 34.96 25.85
AK4NMT [10] 29.51 35.77 26.09
Our Model 31.36 36.02 27.88

Analysis. Compared with two NMT
models based on pre-training meth-
ods, our pre-training method com-
bines SRL to obtain additional infor-
mation. Meanwhile, due to the lim-
itation of the MLE algorithm, the
NMT model only relies on real trans-
lations to predict the target word,
making the output distribution of the
model more concentrated and cannot be effectively generalized to other words.
Therefore, the distillation data output by the pre-trained model is better used
to optimize the NMT model by adjusting the temperature hyper-parameter τ ,
and then extract more semantic representations.

4.3 Ablation Experiment

Table 5. The ablation experiment.

Pre-training Module En-Zh Mo-Zh Uy-Zh Ti-Zh
BERT Emb-Enc 36.1 28.15 32.98 25.26

Emb-All 36.02 28.28 33.05 25.47
+KD 36.39 29.78 33.96 26.17
+H-KD 36.92 30.11 34.79 26.85

SRLBERT Emb-Enc 36.59 29.72 33.18 26.12
Emb-All 36.72 29.26 33.25 25.87
+KD 37.03 30.75 34.98 27.17
+H-KD 37.5 31.36 36.02 27.88

The ablation experiment
in this paper is mainly
used to observe the effect
of the proposed method
on the quality of the tran-
slation, including whether
the pre-training model
is combined with SRL,
whether the encoder and
decoder of the NMT mo-
del use pre-trained word
embedding, and whether
knowledge distillation or hierarchical knowledge distillation is used. See Table 5
for details.

According to Table 5, when using general pre-training word embedding,
whether the word embedding applied to the encoder (Emb-Enc) or encoder-
decoder (Emb-All), it does not significantly improve the quality of translation.
However, when the word embedding generated by the BERT model integrated
with semantic role labels (SRLBERT) is used, the quality of the model has been
improved to a certain extent. Meanwhile, compared with the NMT model using
general knowledge distillation (KD), the hierarchical knowledge distillation (H-
KD) method has better representation ability and translation effect. This shows
that the intermediate representation of the pre-trained model also has accurate
semantic feature extraction ability.
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Fig. 3. BLEU scores for sentences of different length.

4.4 Case Study

We observed the BLEU scores with different length and the quality of translation
obtained by various methods. According to Fig. 3, when the sentence length is
about 20 to 30 tokens, the model has better performance. It can be seen that
the NMT model using pre-training word embedding combined with semantic role
labeling (SPTNMT) and hierarchical knowledge distillation (H-KD) methods has
better generalization performance and translation fidelity.

Fig. 4. Case analysis.

As shown in Fig. 4, taking Mo-Zh translation tasks as an example, our method
significantly improves the translation fluency and faithfulness compared with the
translation generated by the pre-training model based on BERT. It can be seen
that our method pays more attention to semantic coherence in the process of
context generation. Meanwhile, due to the use of pre-trained word embedding
combined with semantic roles labels, our proposed NMT model can effectively
representation the context when predicting verbs or nouns and the words with
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reference relations. In addition, the hierarchical knowledge distillation method
can also be used to provide more choices for translation, so as to significantly
improve the generalization ability of the model.

5 Conclusion

We proposed a pre-training method that integrates semantic role labeling, and
embed the words generated by the pre-training model into the NMT model
for training. Meanwhile, to improve the prediction accuracy of the decoder and
improve generalization ability, we proposed a hierarchical knowledge distillation
method to guide the NMT model to learn the output probability distribution of
the pre-trained model, so that the NMT model can comprehensively learn the
probability distribution of the translation. Experiments show that our method
has shown significant effects on large-scale corpus translation tasks and low-
resource translation tasks. In the future, we will continue to study syntax-based
pre-training methods and merge with NMT model to improve translation quality.
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Abstract. Web crawling is an important way to collect a massive train-
ing corpus for building a high-quality machine translation system. How-
ever, a large amount of data collected comes from machine-translated
texts rather than native speakers or professional translators, severely
reducing the benefit of data scale. Traditional machine translation detec-
tion methods generally require human-crafted feature engineering and
are difficult to distinguish the fine-grained semantic difference between
real text and pseudo text from a modern neural machine translation
system. To address this problem, we propose two semantic-aware mod-
els based on the deep neural network to automatically learn seman-
tic features of text for monolingual scenarios and bilingual scenarios,
respectively. Specifically, our models incorporate the global semantic
from BERT and the local semantic from convolutional neural network
together for monolingual detection and further explores the semantic con-
sistency relationship for bilingual detection. The experimental results on
the Chinese-English machine translation detection task show that our
models achieve 83.12% F1 in the monolingual detection and 85.53% F1

in the bilingual detection respectively, which is better than the strong
BERT baselines by 2.2–3.2%.

Keywords: Machine translation detection · Local & global semantic
representation

1 Introduction

As we all know, data-driven machine translation, including statistical machine
translation (SMT) [25] and neural machine translation (NMT) [4,23], strongly
depends on the quality and quantity of the training corpora. For example, bilin-
gual parallel pairs are used for supervision learning, and monolingual target data
is available for language model[14] or data augmentation [20]. In practice, due
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to its low cost, data mining from subtitles and web crawling is one of the most
popular ways to collect massive data for machine translation [12,19]. However,
there are many noises in the collected data, which may mislead the model train-
ing and damage the performance of machine translation systems. In this work,
we focus on the issue of machine translation detection (MTD) [1], which is a
typical noise sourcing caused by the fact that a large amount of crawling data
comes from machine-translated texts rather than native speakers or professional
translators.

Most previous MTD work aims at SMT [1–3]. They design many human-
crafted features and train binary statistical classifiers to identify whether a sen-
tence comes from a SMT system. As SMT is notorious for long-distance reorder
and is prone to generate the disfluent translation, these simple statistical classi-
fiers can achieve good performance by adding some explicit linguistic features.
However, the situation changes when turning to modern NMT systems. Specifi-
cally, NMT is modeled as a conditional language model, which is naturally good
at generating fluent and grammatical translation [13]. Therefore, we argue that
the previous coarse-grained MTD models cannot fit the NMT scenario, and it is
necessary to design a fine-grained MTD model to distinguish the semantic bias
between real text and machine-translated text.

To address this issue, we propose to model the deep semantic representa-
tion by neural network for both monolingual and bilingual scenarios. Specifi-
cally, aimed at monolingual sentence, we propose the Semantic-aware Influencing
Attention Network (SIAN) to capture the global and local semantic information
of a sentence by combining BERT model[8] and Convolutional Neural Network
(CNN) [11] together. SIAN integrates the important local semantic informa-
tion into the global semantic information by adopting an influencing attention
mechanism for obtaining the sufficient semantic representation of a sentence. In
contrast, for the bilingual scenario, we further propose a Semantic Consistency-
aware Interactive Attention network (SCIA), which match the semantics of a
target sentence with its corresponding source sentence to obtain the semantic
consistency. In addition, the Part-of-Speech (POS) is used as the input to make
the model better aware of the shallow syntactic information.

We compare our models with several baseline models (i.e., statistical classifier
model and neural network-based models) on the outputs of four online NMT
systems. Experimental results show that our proposed models outperform all
of the baseline models by achieving an 83.12% F1 in the monolingual scenario
and an 85.53% F1 in the bilingual scenario, respectively. To the best of our
knowledge, we are the first to explore neural network-based techniques to tackle
the machine translation detection task.

2 Related Work

Previous techniques for detecting machine-translated sentences are designed for
SMT [1–3]. In the monolingual scenario, Arase et al. [3] designed a sentence-
level classifier to distinguish the machine-translated sentences from a mixture
of machine-translated and human-translated sentences. They utilized the phrase
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salad phenomenon and gappy-phrase features to detect if a sentence is fluent
and grammatical. Aharoni et al. [1] utilized the common content-independent
linguistic features for this detecting task. The features in their work were binary,
denoting the presence or absence of each of a set of part-of-speech n-grams, as
well as the function words. Both of their work adopted a binary statistical super-
vised classifier, i.e., SVM, to determine the likelihoods of machine-translated or
human-translated sentences.

In the bilingual scenario, Antonova et al. [2] designed a phrase-based decoder
for detecting machine-translated content in a Web-scraped parallel Russian-
English corpus. By evaluating the BLEU score of translated content (by their
decoder) against the target-side content, machine-translated content can be
detected. Rarrick et al. [18] extract a variety of features, such as the number
of tokens and character types, from sentences in both the source and target
languages to capture words that are mistranslated by MT systems. With these
features, the likelihood of a bilingual sentence pair being machine-translated can
be determined.

The above work is designed for detecting the outputs of SMT by utilizing
some explicit linguistic features and statistical supervised classifiers. We also
address the problem as a binary classification task. In contrast, since the NMT
has achieved significant success, we pay more attention to the implicit semantic
features rather than such explicit linguistic features.

Data selection for machine translation system is a related area. These studies
[5,7,14] aim to properly select data for training a subset sentence pairs from a
large corpus, so that improve the performance of the MT system in the specific
domain. Chen et al. [7] proposed a semi-supervised CNN based on bi-tokens
(Bi-SSCNNs) for training machine translation systems from a large bilingual
corpus. Moore et al. [14] use the language model to select domain-relate corpus.
However, these methods are designed to select specific domain data. Our work
utilizes the similar idea that detects the machine-translated sentences by relying
on the neural networks for capturing more implicit information instead.

Another related area is the cross-lingual semantic textual similarity mod-
eling, to which assesses the degree of two sentences in a different language is
semantically equivalent to each other [6]. Shao et al. [21] use CNN to capture
the semantic representation of the source and target sentences. Then a seman-
tic difference vector between these two paired sentences is generated. While the
aims of the tasks mentioned above are different from ours, we take the advantage
of neural networks to obtain the semantic consistency information. We regard
semantic consistency as an implicit feature for detecting the sentences with the
semantic bias that were translated by the NMT system in the bilingual scenario.

3 Model Overview

This section,introduces our neural network-based methods for MTD task, includ-
ing semantic-aware influencing attention network in monolingual scenario and
semantic consistency-aware interactive attention network in bilingual scenario.
The model architectures are shown in Fig. 1 and Fig. 2, respectively.
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Fig. 1. Architecture of semantic-aware influencing attention network based on BERT
and CNN (SIAN).

3.1 Semantic-Aware Influencing Attention Network (SIAN) in
Monolingual Scenario

Our problem can be formulated as follows. Given a sentence with M words, we
need to judge whether the sentence is machine-translated or human-translated.
We propose a semantic-aware influencing attention network (SIAN) based on
BERT and CNN for this task and the model architecture is shown in Fig. 1.

Global Semantic Feature Extraction by BERT. Specifically, the [CLS]
token’s hidden state is used as the hidden contextual representation of a sentence.

Local Semantic Feature Extraction by CNN. In order to capture the local
semantic information of the sentence sufficiently, we use convolution blocks with
different sizes of filters to encode the input sentence.

Let wi ∈ R
d be the d-dimensional word vector corresponding to the i-th

word in the sentence. Let X ∈ R
M×d denotes the input sentence where M is the

length of the sentence with padding. A convolutional filter Wc ∈ R
d×k maps k

words in the respective filed to a single feature c. As we slide the filter across
the whole sentence, we obtain a sequence of new features c = [c1, c2, ..., cM ].

ci = f(Xi:i+k ∗ Wc + bc), (1)

where bc ∈ R is a bias term and f is a nonlinear transformation function such
as ReLU, ∗ denotes convolution operation.

SIAN Model for Machine Translation Detection. We have introduced
the process about one feature is extracted from one filter. Since our SIAN model
utilizes multiple filters with different filter sizes to generate multiple feature maps
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Fig. 2. Architecture of semantic consistency-aware interactive attention network
(SCIA)

Table 1. An example of paired sentence.

Source
Human Freedom must be a purposeful freedom, otherwise, we can easily get

tired of it.
MT Freedom must be freedom of purpose, otherwise we will easily get bored.

for capturing more local n-grams semantic information of a sentence. Therefore,
we obtain the final local n-grams semantic representation by concatenating the
different feature maps, C = [c1; c2; ...; cn], where n is the number of filters.

Moreover, we capture the global semantic representation by using the [CLS]
token’s hidden state, hcls.

Next, we utilize the global semantic vector hcls and the convolutional features
vector C to calculate the attention weights, which attempts to capture some
important local n-grams features to supplement the global semantic information:

αi =
exp(s(ci,hcls))

∑M
j=1 exp(s(cj ,hcls))

(2)

where s is a score function that calculates the importance of ci in the whole
n-grams semantic features. The score function is defined as:

s(ci,hcls) = tanh(ci · Wa · hT
cls + ba) (3)

where Wa and ba are weight matrix and bias respectively, tanh is a non-linear
function and hT

cls is the transpose of the hcls. Then we can get the sufficient global
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semantic representation H by integrating the import local n-grams features to
global semantic vector,

H = hcls +
M∑

i=1

αci (4)

We obtain the final semantic representation HR by concatenating H and Cmax

for the completeness of semantic information,

Cmax = max(C),HR = [H;Cmax] (5)

where Cmax is generated by the max-over-time pooling operation.
Later, the sequence representation S is obtained by using a non-linear layer:

S = tanh(WRHR + bR), (6)

where WR and bR are weight matrix and bias, respectively.
We feed S into a linear layer, the length of whose output equals the num-

ber of class labels. Finally, we add a softmax layer to calculate the probability
distribution for judging a sentence is machine-translated or human-translated:

y = softmax(WfS + bf ), (7)

where Wf and bf are the weight matrix and bias of softmax layer, respectively.

3.2 Semantic Consistency-Aware Interactive Attention Network
(SCIA) in Bilingual Scenario

We further tackle this detecting task from the perspective of semantic consistency
in the bilingual scenario. For instance, given a source sentence, the standard
human-translated sentence and machine-translated sentence of the target side
are shown in Table 1.

In this example, due to the high performance of the NMT, we find that a
machine-translated sentence is as fluent and grammatical as a sentence generated
by human. When we focus on its semantics, we will find that its semantic infor-
mation is a little different from its source sentence. Therefore, in order to better
distinguish whether a sentence is machine-translated, we should further focus on
whether its semantics is consistent with its corresponding source sentence.

Here, the BERT and CNN are also used to encode the global and local seman-
tic representations in this scenario. We directly concatenate the representations
of the BERT and CNN without pooling for source sentence S (similar to the
target sentence T ), generating the semantic vector hS (semantic representation
hT for the target sentence). The architecture is shown in Fig. 2.

SCIA Model for Machine Translation Detection. In the bilingual sce-
nario, we should pay more attention to the mutual semantic relation between
the source and target sentence. Thus, an interactive attention network is pro-
posed to capture semantic consistency.
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Interactive attention is an approach that enables the semantic matching layer
to be aware of the current input pair, in a way that the hS is able to directly
influence the hT , and vice versa. The main idea of the interactive attention is to
encourage the hidden contextual representations interactively learning semantic
matching information for the source and target sentences. Then the attention
weights can be calculated by applying the column-wise and row-wise max pooling
over A matrix.

Consider the input pair (S, T ) where the length of the source sentence S is
N , and the length of the target sentence T is M . The matrix A ∈ R

N×M can
be calculated as follows:

A = tanh((hS)TUhT + bA), (8)

where U is a weight matrix, bA is the bias, and (hS)T denotes the transpose of
the hS .

Later, we apply the column-wise and row-wise max pooling over the A matrix
to generate the vectors as ∈ R

N and at ∈ R
M , respectively.

[as]i = max
1<n<N

[Ai,n] (9)

[at]i = max
1<m<M

[Am,i] (10)

Each element i of the vector at can be interpreted as an importance for the local
n-grams semantic information around the i-th word in the representation of tar-
get sentence hT according to the representation of source sentence hS . In the
same way, each element i of the vector as can be interpreted as an importance
for the local n-grams semantic information around the i-th word in the repre-
sentation of source sentence hS according to the representation of the target
sentence hT .

Sequentially, we adopt the softmax function to the vectors as and at to
generate the attention weight α and β

[αs]i =
exp([as]i)∑

1<b<M exp([as]b)
(11)

[βt]i =
exp([at]i)∑

1<b<N exp([at]b)
(12)

Next, we can get the final representations of the source and target sentences,
respectively:

HS = hS ∗ α (13)

HT = hT ∗ β (14)

In addition, we apply element-wise absolute difference and element-wise dot
product, which model the semantic bias information and consistency information
between two semantic vectors (HS and HT ), respectively.

H(1)
i = |HS

i − HT
i | (15)
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Table 2. Chinese-English data-sets

ZH-EN Train-set Development-set Test-set

Human-trans 3.7 ∗ 106 5000 5000

Machine-trans 3.7 ∗ 106 5000 5000

H(2)
i = HS

i � HT
i (16)

The final semantic consistent vector is got by concatenating H(1) and H(2), HF =
[H(1);H(2)], and then feed it to a fully connected layer to get the probability
distribution for judging a sentence is machine-translated or human-translated.

4 Experiments

4.1 Data Preparation

For the purpose of evaluation, we use human-translated and machine-translated
sentences to train our proposed models. For the human-translated sentences,
we use the WMT18 Chinese-English (ZH-EN ) parallel sentence pairs1. A few
methods [9] are used to filter the lower-quality sentence pairs. For the machine-
translated sentences, we randomly feed the source sentences (i.e., the Chinese
sentences) of the above high-quality parallel corpus to four online commercial
machine translators2 for obtaining target sentences (i.e., English sentence). In
this way, we can obtain large amounts of positive and negative (i.e., human-
and machine-translated sentence pairs) data instances. Moreover, the source
sentences are segmented and POS tagged by using an NLP toolset we developed.
The target sentences are tokenized and POS tagged by using NLTK toolset3. The
whole data-set is divided into three parts: train-set, development-set and test-set.
Table 2 shows the details of the data-sets used in our experiments.

4.2 Model Parameters Settings

In our experiments, including monolingual and bilingual scenarios, the POS tags
are converted to the corresponding tag embeddings, and the dimension of the
word embedding and the POS tag embedding are both set to 300, all of them
are randomly initialized and updated during the training process. In addition,
four convolution blocks are used with kernel windows of 1, 2, 3, 4, each with 200
feature maps. And in order to have a similar number of parameters in the CNN,
the BERT model is set to be 512 hidden size and 12 layers. We use PyTorch4 to
implement our proposed models and employ the Adadelta [24] as the training
algorithm, whose decay rate is set to 0.95. The regularization parameter λ is set
to 10−4 and the initial learning rate is set to 1.0.
1 http://www.statmt.org/wmt18/translation-task.html.
2 To our knowledge, all the four machine translators are NMT systems.
3 https://www.nltk.org/.
4 https://pytorch.org/.

http://www.statmt.org/wmt18/translation-task.html
https://www.nltk.org/
https://pytorch.org/
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Table 3. Performance of models in the monolingual scenario.

Model Acc F1

SVM 70.93 70.84

CNN 73.31 73.79

BERT 80.01 79.89

CNN+POS 74.78 74.31

SN 81.76 81.54

SIAN 82.45 82.56

SIAN+POS 83.01 83.12

4.3 Evaluation Metric

To evaluate our models, we adopt the Accuracy (Acc) and F1 score as metrics,
where Acc = number of correct predictions

Total number of predictions and F1 = 2∗precision∗Recall
precision+Recall .

4.4 Model Comparison and Analysis in Monolingual Scenario

In order to evaluate the performance of our SIAN model, we compare it with the
statistic classifier, i.e., SVM, and the CNN/BERT models used in data selection.

SVM: Using the common content-independent linguistic features, such as N-
grams, function words and POS tags, and adopt the SVM-SMO as a classifier
for this detecting task [1].

CNN/BERT: Using CNN or BERT as a sentence encoder, and then stack two
fully connected layers.

SN: Semantic-aware network (SN) model is designed by us in this work, which
also adopts CNN and BERT to encode the local and global semantic information
of a sentence. The only difference between SN and SIAN is that SN does not
utilize the influencing attention mechanism.

Table 3 shows the performance of our SIAN model and other methods. It
is obvious that our SIAN model with POS tags achieves the best performance
among all methods. We can find that SVM gets the worst performance because
this method mainly depends on some linguistic features or rules to judge the
fluency degree of a sentence for detecting the outputs of the SMT. The quality of
translations in NMT has been improved significantly over SMT, and the fluency
of NMT generated sentences are close to the human-translated sentences. Thus
machine-translated sentences cannot be effectively identified if only rely on such
features and classifiers.

Furthermore, when we compare the SN model with CNN and BERT models,
we find that SN model achieves better performance. Because if only adopt CNN
or BERT as a sentence encoder, which may neglect the global semantics or local
semantics of a sentence, while SN model simultaneously takes into account this



72 Y. Shi et al.

Table 4. Performance of models in the bilingual scenario.

Model Acc F1

CNN 78.59 76.32

BERT 83.24 83.31

CNN-Pair 80.19 78.90

CNN-Pair+POS 80.62 79.36

SCN 84.12 84.32

SCIA 84.98 84.87

SCIA+POS 85.35 85.53

semantic information instead. Therefore, according to these three experimental
results, we can demonstrate that it is important to combine the local and global
semantic features in this task.

As for the SIAN model, it outperforms the SN model. Since it pays more
attention to some important local n-grams semantic information that is achieved
by the influencing attention mechanism. Besides, SIAN integrates the local
semantic information into the global semantic information to obtain the suf-
ficient semantic representation of a sentence.

Here, we further employ the shallow syntactic information (i.e., POS) of the
sentences as an auxiliary feature to improve the performance of this task. From
Table 3, we can find that models with the POS tags perform better than their
corresponding models without POS tags.

4.5 Model Comparison and Analysis in the Bilingual Scenario

In this subsection, we compare the SCIA model with the following models.

CNN/BERT: CNN or BERT are used to encode source and target sentences.
Then the encoding vectors of the sentence pair are concatenated to generate the
final representation. Finally, we apply two fully connected layers to compute a
unique score for a bilingual sentence pair [16].

CNN-Pair: Using CNN to capture the semantic vectors of the source and target
sentences, respectively. Then generates a semantic difference vector between a
sentence pair by concatenating their element-wise absolute difference and the
element-wise multiplication of their semantic vectors. Finally, the feed-forward
layer is used to obtain a similarity score [21].

SCN: Semantic consistency-aware network (SCN) model is designed by us in this
scenario, whose architecture is similar to the SCIA model. The only difference
between these two models is that the SCN model does not utilize the interactive
attention mechanism.

From Table 4, it is obvious that our SCIA model with POS tags achieves the
best performance. We can find that the CNN-Pair model performs better than
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Fig. 3. A real case from our test set.

CNN model because both CNN encode the representations of the source and
target sentences without considering the semantic bias of the paired sentences.
Instead, the CNN-Pair model takes advantage of the element-wise absolute dif-
ference and the element-wise multiplication of the corresponding paired sentence
level embedding. It can model the relation of the source and target sentence and
is conducive to identify machine-translated sentences. Although CNN-Pair model
considers the relationship between the sentence pairs, it only captures the local
semantic information of the source and target sentences while without taking
the global semantic information into account. Thus CNN-Pair model performs
less competitively than our SCN model.

As for the SCIA model, it outperforms the SCN model since the SCIA realizes
the importance of the mutual relationship between a source and target sentence
pair by utilizing the interactive attention mechanism. It enables the semantic
matching layer to be aware of the current input pair in a way that the current
semantic representation of the source sentence can directly influence the semantic
representation of the target sentence and vice versa. Thus, the SCIA model can
learn more semantic consistency information than the SCN model. Similar to the
monolingual scenario, the POS tags bring further improvement to the CNN-Pair
or SCIA model.

4.6 Case Study

Particularly, to have an intuitive understanding of our proposed model, we give
a sample instance to illustrate the characteristics of the SCIA model better as
shown in Fig. 3. The same color corresponds to the word alignment translation.
From this case, we can find that although the machine-translated sentence can
be translated accurately in the word alignment level, its semantics of the whole
sentence is ambiguous according to its corresponding source sentence, i.e., there
is some semantic bias compared with the corresponding source sentence. Thus,
the statistical classifiers tend to identify these sentences as human-translated
while the SCIA model does not.

4.7 Evaluation on Neural Machine Translation Systems

We further test our SCIA model on an NMT system [4,22].
The experiments are carried out with an open-source system called Marian

[10], which is a transformer-based NMT training system[23]. We carry out exper-
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Table 5. BLEU scores of the WMT17 Chinese-English translation.

Data size Data description BLEU

0.4M Original dataset 16.3

0.4M Noisy dataset 15.4

0.34M Clean-up dataset 15.9

iments on the Chinese-English dataset of WMT2017 task5. We select 400000
sentence pairs from these datasets as the original training dataset; the develop-
ment set is WMT2017’s test set, which contains 2002 sentence pairs. The test
set comes from WMT2018 news translation task, which contains 3981 sentence
pairs. Then we randomly select 30% sentences from the training data and obtain
the corresponding machine-translated target sentences by four online machine
translators, obtaining noisy dataset. Next, we use our proposed SCIA model to
filter out the machine-translated sentence pairs from the noisy dataset, obtaining
the clean-up dataset.

Table 5 shows the BLEU[15] scores of the NMT systems based on different
training data. From this table, we can see that when we introduce the noise to the
original data, we lost 0.9 BLEU score. Then, if we apply our SCIA model to the
noisy data, the BLEU score improves the performance to 15.9 on the clean-up
data, which demonstrates that the SCIA model can screen out the machine-
translated sentences for improving the performance of the NMT system.

The Back-Translation method [17,20] has been widely used in building NMT
systems. Our models may improve the performance of Back-Translation further
by filtering low-quality back translated sentence pairs.

5 Conclusion

In this paper, we propose two neural network models for detecting the sentences
generated by NMT in monolingual and bilingual scenarios, including a semantic-
aware influencing attention network (SIAN), which is used to capture important
local semantic information; and a semantic consistency-aware interactive atten-
tion network (SCIA), which is used to capture semantic matching between a
source and target sentence pair. Results show that our models outperform all
of the baseline models by achieving an 83.12% F1 in the monolingual scenario
and an 85.53% F1 in the bilingual scenario respectively, which is better than the
strong BERT baselines by 2.2–3.2%. To the best of our knowledge, SIAN and
SCIA are the first neural network-based models that are proposed to apply on
the NMT output detection task.

5 http://www.statmt.org/wmt17/translation-task.html.

http://www.statmt.org/wmt17/translation-task.html
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Abstract. Most of the existing methods of document-level neural
machine translation (NMT) integrate more textual information by
extending the scope of sentence encoding. Usually, the sentence-level rep-
resentation is incorporated (via attention or gate mechanism) in these
methods, which makes them straightforward but rough, and it is diffi-
cult to distinguish useful contextual information from noises. Further-
more, the longer the encoding length is, the more difficult it is for the
model to grasp the inter-dependency between sentences. In this paper, a
document-level NMT method based on a routing algorithm is presented,
which can automatically select context information. The routing mecha-
nism endows the current source sentence with the ability to decide which
words can become its context. This leads the method to merge the inter-
sentence dependencies in a more flexible and elegant way, and model local
structure information more effectively. At the same time, this structured
information selection mechanism will also alleviate the possible prob-
lems caused by long-distance encoding. Experimental results show that
our method is 2.91 BLEU higher than the Transformer model on the
public dataset of ZH-EN, and is superior to most of the state-of-the-art
document-level NMT models.

Keywords: Natural Language Processing · Document-Level Neural
Machine Translation · Routing Algorithm

1 Introduction

With the development of deep learning methods, neural machine translation
(NMT) has made remarkable progress in most language pairs. However, the
standard NMT methods are first designed for sentence-level [1–3], which may
bring some document-level errors, such as document inconsistency [4–9]. In order
to reduce the errors caused by sentence-level NMT when translating discourses,
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a large number of document-level NMT methods have been proposed to improve
the translation performance by using context outside a single sentence.

The most recent context-aware methods take the context of the current
sentence as inputs of NMT model, and attach another input stream in paral-
lel [4,5,10]. Therefore, most researchers tend to reform the mature NMT models
to merge the representation from previous sentences as context [4,5,11–14] into
every layer of the encoder or decoder to consider the information from cross sen-
tences. To improve the comprehension of the current text, people can combine
with the future context. It is very common for us, not to mention the neural
network lacking prior knowledge and common sense. Consequently, context is
not necessarily limited to the sentences before the current sentence, it can also
come from the future, which is ignored but effective. However, if we simply and
roughly expand the scope of sentences as inputs without filtering them, it may
bring burden to the model. According to [15], information in the context is not
always useful. We are supposed to increase the content of context selectively.

This paper draws lessons from a routing method [16] of multilingual NMT
(MNMT), and puts forward a document-level NMT routing method based on this
algorithm. In MNMT, researchers find that using a mix of shared and language-
specific parameters can help the models obtain a great improvement in exploring
universal MNMT, but keep the question of when and where language-specific
capacity matters most. This is similar to what kind of context is the most useful
in document-level NMT. According to [15], we can assume that every word in
the context contains different levels of document-aware information. In order to
filter redundant information of context, we use routing algorithm, which helps
the model select words whose document-level information is more important as
context automatically. On the one hand, we avoid long-distance encoding. On
the other hand, redundant contextual information is filtered out.

In our experiments, we choose the sentence before the current sentence and
the sentence next to the current sentence as context. The results show that the
changes we made improve the performance of document-level NMT. Compared
with the methods which utilize the whole document as context [9,17], our method
still has competitiveness, especially on the dataset of ZH-EN.

2 Related Work

With the latest development and performance improvements of neural networks,
people are more interested in document-level MT and textual context also shows
its importance to machine translation. Based on the encoder-decoder NMT
framework, existing works mainly use the following three methods to introduce
document-level information:

Single-Encoder Approach. This kind of method expands the range of sen-
tences when inputting them into the model, such as [6,18–20], which has done
a lot of research about the input of model, including the expansion of encoder
input and decoder input. This kind of method is relatively rough for the appli-
cation of context, which is the earliest attempt of encoder-decoder framework.
These attempts proved that not only the previous context but also the future
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context can improve the translation effect, which is gradually ignored in later
studies. In addition, the method of fusing context at the encoder side contributes
more than the method of fusing context at the decoder side. Because fusion at
the decoder side may lead to error propagation.

Multi-Encoder Approach. According to when and where to fuse the output
of the multi-encoder inside the decoder (see Fig. 1), [13] or outside the decoder
(see Fig. 2), [13,21,22]. Reference [23] divides the multi-encoder method into
inside multi-encoders [4,19,24,25] and outside multi-encoders [5,9,17,26]. The
Multi-encoder method mainly adopts two fusion methods: 1) Some methods use
attention mechanisms to encode context statements into the encoder or decoder,
for example, Reference [4] inserts a context-attention layer into the model; 2)
the others use the gate mechanism to aggregate context, thus learning anaphora
resolution. These methods are similar in that they all add Transformer models
with additional context-related modules.

Post Processing. Reference [27] uses deliberation network, which adds another
decoder after Transformer, and employs reward teacher to model coherence for
document-level machine translation. Reference [8] uses another method called
document-level repair, which makes full use of monolingual document-level data
in the target language.

Inspired by previous works, we add an extra context module to the Trans-
former model to extract context information. Reference [15] suggests that in
document-level NMT, sometimes context is too long to simplify calculations,
and in fact, a lot of information in the context is actually unnecessary. They
retain the most likely words of the context, such as named entities and special
words like POS. Combined with the above points, we use the routing method in
multilingual NMT, and hope that the model itself can combine the input sen-
tence to determine which words are useful for forming context, not just named
entities and POS, so as to improve the translation effect.

Fig. 1. Fusion inside the decoder Fig. 2. Fusion outside the decoder

3 Background

3.1 Document-Level NMT

Compared with sentence-level NMT, document-level NMT considers contextual
information. We assume that (X,Y ) ∈ C where X represents source sentences
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and Y represents target sentences. We use xi to express the i-th sentence in
X. yi denotes the i-th sentence in Y . In order to generate target sentence yk,
document-level NMT is supposed to make full use of the contextual information
of source sentence xk. As the input of encoder, x is converted into the hidden
state H. We define set X<>k as context of xk, and then we can approximate the
document-level translation probability as:

P (yk|xk; θ) =
n∏

i=1

p(yk
i |y<i,H

k,X<>k; θ) (1)

3.2 Transformer

Encoder-Decoder architecture composed of sequence models, like RNN or LSTM,
has made great improvement in NMT [2,3]. However, Transformer [28], which
relies entirely on attention mechanism, has surpassed most previous models.
Considering the above points, we choose Transformer as our basic model.

To avoid gradient vanishing or explosion, the following residual normalization
structure is used for the Transformer block:

z = LayerNorm(h + f(h)) (2)

where h represents the output from the last block, z is the output of this block,
LayerNorm(·) means Layer Normalization and f(·) can be MultiHead Atten-
tion or Feed-Forward Network. The encoder of Transformer includes Multi-Head
Self-Attention and Feed-Forward Network. Though the decoder has similar sub-
layers, another sub-layer called Encoder-Decoder Attention is inserted between
these layers. With the help of MultiHead Attention, the model can pay attention
to information from different representation subspaces:

Output = MultiHead(h, h, h) (3)

Output = MultiHead(z,Eout, Eout) (4)

where Eout represents the encoder output, h and z come from last block. When
fed into the first layer of model, h represents the word embedding of sen-
tence. Equation (3) and Eq. (4) stand for the calculation of Self Attention and
EncDecAttention respectively.

3.3 Conditional Language-Specific Routing (CLSR)

From the perspective of the mapping between language pairs, the MNMT
model has three strategies: many-to-one, one-to-many and many-to-many. Refer-
ence [29] raises the question that just using specific language signs is not enough
to explore the features of specific language. To make a thorough inquiry of when
and where language specific modeling matters most in MNMT, reference [16]
introduces conditional language-specific routing (CLSR), a method that keeps
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the balance between language-specific path and shared path as controlled by the
gates. Equation (2) can be modified as follows:

z = LayerNorm(h + CLSR(f(h))) (5)

CLSR learns a gate g(·) for each input token, which helps blocks in Transformer
selectively route information through language-specific path hlang or shared path
hshared:

CLSR(f(h)) = g(h) � hlang + (1 − g(h)) � hshared (6)

hlang = f(h)W lang, hshared = f(h)W shared (7)

where W shared represents the trainable parameters shared across languages and
W lang is the trainable parameters for specific languages. The gate g(·) is com-
puted from a two-layer feed-forward network G(·), and zero-mean Gaussian noise
is used to discretize it during training:

g(h) = σ(G(h) + α(t)N (0, 1)) (8)

G(h) = Relu(hW1 + b)W2 (9)

where σ(·) is the logistic-sigmoid function, and W1 as well as W2 is trainable
parameters. α(·) is a linearly function and increases with training step t. When
inferencing, g(h) is replaced with a decision rule: g(h) = δ(G(h) > 0), where δ(·)
is a Dirac measure.

4 Method

In this section, we will introduce how we apply the aforementioned routing algo-
rithm to selecting words as context automatically for document-level NMT in
detail. Before that, we will introduce the symbols used in the model.

Assuming X and Y represent the source and target sentences in corpus C.
We define that clk−1

, clk1
are outputs from the l-th Prev Encoder Layer and Post

Encoder Layer. xl
k−1

, xl
k1

and xl
k are the input of the l-th encoder layer. When

l = 0, xl
k = xk, it’s the same as xl

k−1
and xl

k1
. clk means the l-th layer context

hidden state, which is got by gate aggregation. xl
k,self−attn is used to represent

the output from self-attention layer of l-th layer. We can see the details of the
model in Fig. 3.

4.1 Inputs of Our Model

Considering the differences between sentence-level NMT and document-level
NMT, it’s necessary to introduce the inputs composition of our model. In Trans-
former, researchers use sine and cosine functions to calculate position embed-
ding, which helps the attention mechanism pay attention to the word position
information added to the word embedding. While in document-level NMT, the
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Fig. 3. The main architecture of our model. The two context-encoders share param-
eters. Auto-Selection Layer takes xl

k,self−attn, clk−1
and clk1 as input to compute clk

which represents context information. To help xl
k,self−attn attend over all positions in

the input context, Context Attention Layer takes xl
k,self−attn as query and clk as key

and value, in which case, we can get zlk.

information of sentences order has its significance. We refer to the idea of [10],
in which way, we add the segment embedding to the position embedding and the
word embedding. In Fig. 4, we take x0

k as an example, which is the input of the
first layer of our model, and we add different segment embedding to x0

k−1
and

x0
k1

(0 indicates the previous context, 2 indicates the future context).

Fig. 4. The details about the composition of the inputs of the first layer of encoders,
taking x0

k as example, segment embeddings are set as 1 to represent the current sen-
tence.

4.2 Context Attention

First of all, we explain how the model integrates context into the translation
sentence. Between self-attention layer and feed-forward layer of the encoder for
xk, we insert context attention layer, which is defined as follows:

hAS = MultiHead(xl
k,self−attn, clk, clk) (10)
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zlk = LayerNorm(xl
k,self−attn + hAS) (11)

where zlk is the output of this layer and context hidden state clk is computed by
the algorithm following, which will be introduced in detail.

Fig. 5. The detail of Auto-Selection Layer. Gate is computed by xl
k,self−attn

4.3 Auto-selection

Since we choose the sentences around x as context, we must filter out the infor-
mation that may bring unnecessary noise from context. Inspired by CLSR, we
hope that our model can help x keep the balance between the information from
different sentences and filter out noise, just as CLSR helps MNMT models to
decide when and where to use language-specific parameters or shared parame-
ters:

clk = g(xl
k,self−attn) � hk−1 + (1 − g(xl

k,self−attn)) � hk1 (12)

with hk−1 = clk−1
Wk−1 , hk1 = clk1

Wk1 (13)

Wk−1 as well as Wk1 is trainable parameters.

G(xl
k,self−attn) = Relu(xl

k,self−attnW−1 + b)W1 (14)

g(xl
k,self−attn) = σ(G(xl

k,self−attn)) (15)

we can see Fig. 5 for details.
Compared with CLSR, we git rid of the zero-mean Gaussian noise, and totally

let xl
k,self−attn itself to design its context. About other aspects of computation

for g(·), following the configuration of CLSR, we apply a two-layers feed-forward
network and use Relu(·) and σ(·) as activation function.

Now, we can summarize our training process as follows:

– The inputs xl
k−1, x

l
k1

are fed into the Prev/Post Encoder Layer respectively.
The Prev Encoder Layer shares parameters with the Post Encoder Layer.
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– The outputs of the Prev/Post Encoder Layer are sent to the encoder of xl
k

and xl
k is used to calculate gate, which helps the model integrate more useful

information from context to calculate the output of the encoder.
– The steps above are repeated for N times, i.e. the number of layers. Then,

the outputs of encoder are sent to the decoder.
– Training the model. Continue the decoding process until meeting the end

token.

5 Experiments

We mainly conduct experiments on Chinese → English and English → German
task to verify our model, the details of datasets are as follows and listed in
Table 1.

Table 1. The number of sentences in the datasets

Datasets Training Dev Test

ZH-EN TED 0.20M 0.88K 5.47K

EN-DE TED 0.20M 8.96K 2.26K

NEWS 0.22M 2.16K 2.99K

Europarl 1.66M 3.58K 5.13K

5.1 Datasets

For fair comparison, we choose four widely used document-level parallel datasets,
one Chinese → English dataset and three English → German datasets:

– TED (ZH-EN, TED). The Chinese → English datasets are from IWSLT 2015,
where we mainly conduct our experiments. Following the work of [9], we take
dev2010 as development set and tst2010-2013 as test set.

– TED (EN-DE, TED). According to [21], we choose IWSLT17 [30] as datasets
for training. Tst2016-2017 is test set and the rest is the development set.

– News-Commentary (EN-DE, NEWS). Following [9] and [21], we obtain News
Commentary v11 for training, WMT newstest 2015 for developing and WMT
newstest2016 for testing.

– Europarl (EN-DE, Europarl). Train set, development set and test set are
extracted from the Europarl v7 [31]. Details are mentioned in [21].

For TED ZH-EN dataset, we first use jieba for word segmentation. In all
translation tasks, we tokenize the data with MOSE tokenizer [32] and apply
byte-pair-encoding (BPE) algorithm [33] to encode words with sub-word units.
We also use tools offered by Fairseq [34] to preprocess all dataset, in which form
that model can accept.
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5.2 Training Detail

On the basis of source code provided by Fairseq [34], we show detailed strategies
for training the model. Adam [35] is the optimizer of the network with (β1 =
0.9, β2 = 0.98). Warmup−updates is set 8000, dropout is 0.1, where warmup−
init − lr is 10−7. We set the batch size to 25,000 per batch and limit sentence
length to 150 BPE tokens. For models on TED Zh-En, hidden dimension is
dz = 256, and the feed-forward dimension is dffn = 512. We use 4 layers in
the encoder and decoder, each layer has 8 heads of attention. For the reset
datasets, the hidden dimension and feed-forward dimension are set to 512/2048
respectively. Note that the above hyper-parameter settings are the same as those
used in the baseline models.

5.3 Main Results

To make the results fair, we follow the work of [9] and [21] who use sacrebleu [36]
to evaluate the translation quality. In addition to the baseline Transformer, we
also compare our model with five state-of-the-art document-level NMT models
including:

– Document-aware Transformer (DocT, [4]). Introducing context information
by adding context sub-layers at each encoder and decoder layer.

– Hierarchical Attention NMT (HAN, [13]). Capturing the context in a struc-
tured and dynamic manner.

– Selective Attention NMT (SAN, [21]) Using sparse attention to selectively
focus on relevant sentences.

– Query-guided Capsule Network (QCN, [22]). Clustering context information
into different perspectives from which the target translation may concern.

– Arbitrary Context NMT (ACN, [9]). Being able to deal with documents con-
taining any number of sentences.

Table 2. BLEU results on four datasets. The score in parentheses represents the BLEU
of their baseline.

# Models ZH-EN EN-DE

TED (baseline) TED (baseline) NEWS (baseline) Europarl (baseline)

1 DocT (2018) [4] n/a 24.00 (23.28) 23.08 (22.78) 29.32 (28.72)

2 HAN (2018) [13] 17.90 (17.00) 24.58 (23.28) 25.03 (22.78) 28.60(28.72)

3 SAN (2019) [21] n/a 24.42 (23.28) 24.84 (22.78) 29.75 (28.72)

4 QCN (2019) [22] n/a 25.19 (23.28) 22.37 (21.67) 29.82 (28.72)

5 ACN (2020) [9] 19.10 (17.00) 25.10 (23.10) 24.91 (22.40) 30.40 (29.40)

Ours

6 Transformer (2017) [28] 17.11 23.20 23.13 29.49

7 Our model 20.02 25.01 24.03 29.87

As shown in Table 2, the proposed model improves the BLEU scores of the
aforementioned datasets by 2.91, 1.81, 0.90 and 0.38 points compared with the
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baseline of sentence-level Transformer. Especially on TED ZH-EN, our model
makes a significant improvement and surpasses the best model that we know by
1 point, showing its outstanding performance. Although our model is not the best
on datasets of EN-DE, it is still capable of competing with other outstanding
document-level NMT models, like SAN [21] and QCN [22]. We make the following
analysis of the reasons for these listed results:

– Firstly, apposite translation requires more context, while document informa-
tion is mainly used for semantic disambiguation. Therefore, using the whole
document as context, like ACN [9] may perform better. However, after ana-
lyzing the translation results, we find that our method which uses word-level
automatic routing has more advantages in structured information modeling.
Besides, the proposed method is significantly improved on the datasets of
TED, which may contains more structured information than the others. See
Sect. 5.5 for details.

– Secondly, when we reproduced the experiment of DocT [4], we found that
the improvement brought by training strategy is little. Considering the phe-
nomenon above, we do not take the two-step training strategy. But we will
keep following it in the future.

– Finally, the context-encoder and the module of auto-selection are just updated
by the back propagation of the loss between the label and the predicted value.
Due to the lack of other supervision, the larger the dataset is, the easier the
model overfits the label. Therefore, it can be understood that our method is
not significantly improved on the dataset Europarl.

Table 3. Results of ablation study

# Models ZH-EN

TED

1 Transformer [28] 17.11

2 DocT [4] 18.82

3 DocT+AS 19.72

4 Ours (online) 19.50

5 Ours (offline) 20.02

5.4 Ablation Study

We list our results of ablation in Table 3. We mainly produce our ablation study
for the following aspects:

Offline vs. Online Document MT. SAN [21] divides the source of context
into two cases: offline context is both the context of the past and the context
of the future; online context is only the context of the past. In this part, we
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compare the result of offline and online document-level MT settings on TED
ZH-EN. From the Table 3, we can find that the result of offline (row 4) is close to
that of online (row 5) settings. It is quite self-explanatory that the post sentence
as part of context really works in our methods. The proposed method can be
extended to the full text as well, but it has achieved impressive performance even
if only the previous and the post context sentences are considered, or even only
the previous one. Moreover, usually the discourse structure information of local
context is usually more meaningful to translation, so we mainly use pre-context
and post-context sentences in our experiments.

Universality. According to the experiment of online document-level MT, we
make an assumption that whether we can apply our methods in other document-
level MT methods. To test our intuition, we reproduce the model of DocT [4],
whose results are listed in the row 2 and row 3 of Table 3. Compared with the
original model, this result achieves an improvements of +0.9 BLEU. The main
difference is that our approach of auto-selection helps the model to filter some
redundant information and focus on the words that are really useful to improve
the quality of document-level MT. But we only implement our method on a
similar model to ours. We will carry out more experiments in the future to
study the universality of our method.

5.5 Analysis

Table 4. Counts of conjunctions

Ref. Baseline DocT DocT+AS Ours (online) Ours (offline)

and 3251 2569 2702 3027 3055 3210

but 561 590 587 606 594 590

or 233 183 201 206 186 197

because 285 295 314 316 307 337

so 853 487 497 526 519 563

yet 27 9 2 10 15 12

then 186 98 84 107 161 140

In order to analyze our model’s ability of capturing structured information
between sentences, we list some common conjunctions that can express the rela-
tionship of sentences in Table 4, such as and, but, because. According to the
statistical results, we find that the document-level MT models tend to generate
more conjunctions to capture the structured information. From the comparison
of the statistical results of DocT [4] and online, we can find that the addition of
auto-selection allows DocT [4] to add more related words than the original ver-
sion which is also reflected in the online of our model. According to the results
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of offline, we find that with the addition of future context, offline tends to add
words that express the coordination or causality between sentences.

In order to prove our analysis aforementioned, we list an example in Table 5.
The sentences in the source language express both coordination and causality.
Among the listed models: baseline, DocT, DocT+AS, online and offline, only the
offline model using automatic selection and future context information shows
coordination and causality in translation results, which is helpful to prove the
effectiveness of our methods.

Table 5. Results of baseline and document-level NMT models

6 Conclusion and Future Work

In this paper, we expand the source of context, and integrate the future context
with the sentence to be translated, which is beneficial to the document-level
NMT. In order to filter redundant information, we study the routing algorithm
in MNMT, and propose a document-level NMT routing algorithm based on this
algorithm. With auto-selection, the model together with the input is capable of
deciding which words to use as context. According to the results of experiments,
our online model achieves +1.39 BLEU improvement compared with the baseline
on TED ZH-EN, which proves the effectiveness of auto-selection in document-
level NMT; Combined with the future context, our model improves the BLEU
by another 0.52 points, which proves that document-level NMT benefits from
future contextual information. In addition, we also transplant our method to
the previous document-level NMT work, which proves the universality of our
method.

We still have a lot of work to do. For example, we do not achieve the expected
results on the EN-DE datasets. These problems have already been mentioned



Routing Based Context Selection for Document-Level NMT 89

above. The lack of other supervision methods and information after the inte-
gration of deep coding are the key points that need to be solved in our future
work. Besides, we will continue to study the universality of our method in other
document-level NMT methods.
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Abstract. Back-translation has been proven to be an effective data aug-
mentation method that translates target monolingual data into source-
side to improve the performance of Neural Machine Translation (NMT),
especially in low-resource scenarios. Previous researches show that diver-
sity of the synthetic source sentences is essential for back-translation.
However, the frequently used random methods such as sampling or noised
beam search, although can output diverse back-translations, often gen-
erate noisy synthetic sentences. To alleviate this problem, we propose
a simple but effective constraint random decoding method for back-
translation. The proposed method is based on an automatic post-editing
(APE) data augment framework, which incorporates fluency boost learn-
ing. Moreover, to increase the diversity of synthetic data and ensure
quality, we proposed to use an evolution decoding algorithm. Compared
with the original back-translation, our method can generate more diverse
while less noisy synthetic sentences. The experimental results show that
the proposed method can get 0.6 BLEU improvements on the WMT18
EN-DE news dataset and more than 0.4 BLEU improvements on the
EN-ZH dataset which is in the medical field, respectively.

Keywords: NMT · Back-translation · Automatic post-editing ·
Evolution decoding algorithm

1 Introduction

In the past years, attention-based Neural Machine Translation (NMT) has
become the mainstream approach because of its significant performance [1,20,
21]. However, to achieve promising performance for a single language pair, mil-
lions of parallel sentences are necessary, which are data-hungry in many lan-
guage pairs. To cope with this issue, researchers investigated using monolingual
c© Springer Nature Singapore Pte Ltd. 2021
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data for NMT and other natural language processing (NLP) tasks [2]. Specially,
[15] proposed back-translation, which makes use of an NMT model with oppo-
site translation direction to translate the target-side monolingual data into the
source-side to enrich the parallel training corpus. However, the traditional back-
translation still has problems. Current strong NMT model such as Transformer
[21] adopts beam search in the decoding stage and generates candidates that
only differ with one another by punctuation or minor morphological variations,
making the translated sentences lack of diversity [7,12]. On the other hand, the
common alternative methods based on random decoding, such as sampling [26],
often put too much noise into synthetic sentences, which reduce the data quality.

There are some works attempting to get more diverse and high-quality trans-
lation results, e.g. mirror-generative neural machine translation (MGNMT) [29],
diverse beam search [22], adding an additional penalization term to expansion
the same parent node [12], introducing a discrete latent variables to control
generation [7,16], manipulating attention heads [19], etc. While most of these
studies have exploited decoding strategy, a few of them have tried developing
automatic post-editing (APE) method to efficiently use the monolingual data.

In this work, we proposed a simple but effective constraint random decoding
method for back-translation, which follows an APE framework. First, we build
fluency boost sentence-pairs by combining the golden source-side sentences and
the corresponding pseudo source-side sentences generated by back-translation.
Then a sequence-to-sequence APE model was trained to re-generate pseudo
source-side sentences, which will be used in the next iterations. Please note
that, the above-mentioned process will be iterated several times.

Finally, we build synthetic fluency boost corpus by combining the source-side
fluency boost sentences which generated by APE and target-side golden sentences
for data augment. During the APE decoding process, a evolution decoding algo-
rithm could be optionally adopted. Our methods can double the training data at
maximum and can be applied to any encoder-decoder framework. As far as we
know, we are the first to introduce fluency boost learning into the field of back-
translation. Experimental results show that the proposed method can get 0.6, 0.4
BLEU improvements over the baseline model on EN-DE, EN-ZH test set.

2 Related Work

The NMT system is known to be extremely data-needed. Previous works proved
that the diversity of the training data can provide more discriminative informa-
tion for the NMT model [5,6]. However, high-quality parallel corpus is limited.
To address above problem, [15] proposed back-translation, which utilize abun-
dant amount of mono-lingual data during the model training process. [3,25]
broadens the understanding of back-translation and investigated a number of
methods like unrestricted sampling, large-scale noised training to generate syn-
thetic source sentences. To explore the actual effects of the back-translation,
[14] studied the performance of EN-DE NMT models when incrementally larger
amounts of synthetic data are used for training.

Some recent works have looked at the diverse decoding method for NMT.
[22] proposed diverse beam search that modifies classical beam search algorithm
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with a diversity augmented sequence decoding objective and get state-of-the-
art results on several language generation tasks at that time. Other than design
diversity encouraging decoding algorithm, [7,16] proposed mixture model, which
could improve both quality and diversity of the translations by introduced latent
variables to control generation. However, this method will increase the difficulty
of model training [19]. More recently, to make better use of non-parallel data,
[29] proposed a mirror-generative NMT model (MGNMT), which outperforms
previous approaches in all investigated scenarios by combing the source-side and
target-side monolinguals and corresponding language models organically during
the training phase.

Our work was partly followed with [4], which they proposed a fluency boost
learning and inference mechanism and get significant improvement over the for-
mer Grammar Error Correction (GEC) models. However, they focused on gener-
ating more error-corrected data, while we use this strategy to iteratively enhance
the predictions of back-translation by rewriting the sentences with our proposed
APE model and providing more training signals for NMT model. Moreover, we
also incorporated a novel evolution decoding algorithm in the model decoding
stage to get more diverse candidates.

3 Proposed Methods

3.1 Fluency Boost Learning

Fluency boost learning (FBL) is an iterative learning strategy, which was first
proposed by [4] for solving the GEC problem [9,27]. GEC aims for automatically
correcting various types of errors in the given text, while there are mainly Rule-
based approaches [17], MT-based approaches [13] and LM-based [18] to solve
this problem.

In this paper, we transfer it to the field of back-translation and proposed an
Automatic Post-Editing (APE) model which enable to learn how to improve a
sentence’s diversity and quality without changing its original meaning by FBL.
Specifically, the sentences generated by back-translation usually have various
errors. Hence we treat it as a MT-based GEC problem, which the source-side
is pseudo sentences generated by back-translation and the target-side is golden
sentence from parallel corpus. Figure 1 illustrates the training process of our APE
model, where PD is parallel dataset, MD is monolingual dataset, NMT and
APE are neural machine translation model and automatic post-editing model,
respectively. Superscript # denotes the machine translation results, subscript
src and trg are source-side sentences and target-side sentences respectively, P
stands for it generated by monolingual data. Specifically, We use parallel corpus
PDsrc−trg to training the back-translation model NMTtrg−src, then we can
obtain the fluency boost sentence pairs PDsrc−src# by combining MDp

src and
MDP

src# , Where the former is obtained by PDsrc−trg and the latter is generated
from NMTtrg−src by decoding MDD

src. Finally, we use PDsrc−src# to training
the NMT-based APE model.

The aim of the NMT model is to maximize the probabilities P of the target
languages Y = (y1, ..., yj) given the source language sequences X = (x1, ..., xi),
which calculated as follows:
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Fig. 1. The training process of our APE model.

argmax
1
N

N∑

n=1

log(Pθ(Yn|Xn) (1)

Where n is the n-th sentence in corpus with a total number of N and θ is model
parameters.

In this work, the transformer architecture is used for both NMT and APE
models. The difference is, when apply to APE model, the target-side is the
sentences which contain various grammatical errors. Our method can be applied
to any encoder-decoder framework without any code changes. We expect that
other neural sequence-to-sequence based generative model could benefit from our
approach, but the choice of the model architecture is not a focus of this paper.

3.2 Evolution Decoding Algorithm

Beam search is a limited-width breadth first search algorithm [11]. For a input
sentence x, the generated candidate sequences {y1, ..., yj} by beam search are
highly similar, especially at the beginning part, which is harmful for back-
translation or our APE model to generate diversity data. The evolution algo-
rithm [8] is inspired by Darwin’s theory, which simulates the natural evolution
process of gene sequence and make the next generation of genes stronger through
of fittest. When in the decoding stage of back-translation, N -best candidates
can be generated like a set of gene sequences. Some words between these can-
didates are different but have similar semantics, which just provides the basic
pre-conditions for our evolution decoding algorithm.

For this part, to further increase the diversity of synthetic data and ensure
the quality as much as possible, we proposed an evolution decoding algorithm
(EDA), which summarized in Algorithm 1. Formally, we use the offline method1

to integrate our algorithm into the training process.
As shown in Algorithm 1, EDA selects m-best candidate sequences as the ini-

tial population and uses crossover and mutation to modify the original sequence
to achieve diversity improvement. For crossover operation, we exchange frag-
ments of two adjacent candidate sequences. If dbi and dbj were chosen, we simply

1 We still use beam search at the model training stage but use EDA at the decoding
stage of back-translation or APE.
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Algorithm 1. Evolution decoding algorithm
Input: Beam search decoding sequence DB, beam size b, batch size n, the sample size m,

maximum number of iterations T and the number of wining samples k
Output: Wining sequence set DB∗
Parameters initial: Population init pop = DB0, time step t = 0, the samples of the wining

sequences are initialized as candidate sequences db∗
i = dbi and initial diversityD0, whereD0

j
is the diversity score of the sample j at time step 0

1: do

2: for each wining sequence db∗
jt

do
3: dbjt+1 ⇐ crossover(db∗

jt
) # Crossover

4: db
′
jt+1

⇐ mutate(dbjt+1 ) # Mutation

5: Dt+1
j ⇐ fitness function(db

′
jt+1

) # Calculate the fitness of sample candidates

6: db∗
jt+1

⇐ select(Dt+1
j , db

′
jt+1

) # Update winning sequence

7: Dt+1 += 1
n
Dt+1

j # Calculate total fitness

8: DBt+1 ⇐ update(DBt, db∗
jt+1

) # Update wining sequence set

9: t = t+ 1

10: while Dt+1 > Dt and t+ 1 < T
11: return DB∗

split dbi and dbj into s0i and s1i , s0j and s1j from the middle position, where super-
script 0/1 is the first/second half of the candidate sequence. When using beam
search decoding, as we mentioned above, s0i and s1i are usually same, so we set
10% probability to exchange s0i and s0j , 90% probability to exchange s1i and s1j .
Although this may cause the newly generated sequence to be incoherent, previ-
ous works [23,24] proved that adding noise to the source-side data can make the
model more robust. To avoid getting too much noise, the training data choose
15% of the sequences at random for mutation operation, which follows [2]. If the
i-th sequence is chosen, we random replace i-th word with a random word from
the vocabulary. We constructed a fitness function to measure sequence diversity,
which calculated as follows.

dn =
m of unique n − grams in k translations

total m of n − grams in k translations
(2)

ui =
k∑

i=1

unique(sj) − same(sj , si)
len(sj)

(3)

Dj =
N∑

n=1

dn
j + uj (4)

where Dj is our final diversity score for sequence j, which was calculated by
dn and ui. Specifically, dn reflects the degree of sub-sequence repeatability for
a given sequence, Which higher score means it contains more unique n-gram
tuples. We set n to 2 in experiments. However, for a too short sequence, dn may
give an overly high evaluation. To address this shortcoming, we adapt another
diversity metric uj , which measures the difference between j-th sequence and
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Fig. 2. The whole training process of our NMT model based on FBL and EDA.

others. Where function unique() counts unique words of sj and same() calculates
the identical words between sj and si.

In theory, for a input sequence x, we can get k −1 candidates by EDA. After
the t-th iteration, (k − 1)2(t−1) + 1 samples will be generated. To reduce the
pressure of computation and memory, we only keep the top-k sequences when
making the selection operation.

3.3 Joint Training

Figure 2 illustrates the overall architecture of our proposed methods. Where PD
is parallel dataset, MD is monolingual dataset, superscript # and ∗ denotes the
synthetic data that generated by NMT and APE respectively, M stands for it
comes from bilingual dataset. Our final goal is to get the diversity and high-
quality sentence-pairs to improve the performance of NMT model. Therefore, in
the first step, NMTtrg−src which is trained by golden parallel data PDsrc−trg

to back-translate the target-side monolingual data MDM
trg into the source-side

pseudo monolingual data MDM
src# , then we training the APEsrc to boost the

fluency of MDM
src# and get the fluency-boosted monolingual data MDM

src#∗ . We
can carry out multiple rounds of APE to gradually improve the fluency of the
corpus. And EDA was applied optional during the APE decoding stage. Finally,
we merge PDsrc−trg and synthetic parallel corpus PD∗

src−trg to training the
NMTsrc−trg.

4 Experimental Setting

4.1 Metrics

To quantitatively assess the quality and diversity of the translation results, we
use perplexity to measure the fluency of translation sentences, which a lower
perplexity score means the better generalization performance. For evaluate the
overall performance of the NMT model, standard BLEU score was calculated.
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And we use DEQ (Diversity Enhancement per Quality, [19]) to measure the
diversity and quality, which was calculated as follows.

DEQ =
(pwb∗ − pwb)
(ref∗ − ref)

(5)

Where rfb and rfb∗ refer to reference BLEU score of the evaluated system
and baseline respectively, pwb and pwb∗ refer to pair-wise BLEU score of the
evaluated system and baseline respectively, which was calculated as follows.

pwb = BLEU([yj ], yk)j∈[k],k∈[k],j �=k (6)

Where {y1, y2, ..., yk} are k translation hypotheses of a source sentence x. Lower
pwb and higher rfb means better results.

4.2 Dataset

We evaluate NMT training on parallel corpus and with additional monolingual
data, which consist of the following five parts.

2M EN-DE. We randomly select 2M sentence-pairs in the news filed from
WMT18 for English-German translation task.

80K EN-DE. To simulate low-resource scenarios, we randomly select 80K
sentence-pairs from 2M EN-DE.

2M EN-ZH. We randomly select 2M sentence-pairs in the medical field from
10M English-Chinese which collected by our own.

2M DE. Contain 2M German monolingual sentences from News Crawl.

2M ZH. Contain 2M Chinese monolingual sentences from 10M EN-ZH, which
the 2M ZH training data has been excluded.

Finally, we choose newstest2013-2018 and randomly select 3K from 10M EN-
ZH as our test set for EN-DE task and EN-ZH task respectively, which 2M
EN-ZH training data has already been excluded.

4.3 Experiment Settings

We use the Moses tokenizer [10] and learn a joint source and target Byte-Pair-
Encoding [15] by fastBPE1 with 35K types. Before we conduct the random
selection, all sentences were lowercased, and which length longer than 150 sub-
words were removed. We also remove the sentence pairs whose length ration
exceed 1.5 between the source-side and the target-side. The hyper-parameters
for our neural NMT and APE model are adopt from [28]. All models are trained
on NVIDIA GeForce RTX 2080Ti GPUs and use label smoothing with a uniform
prior distribution over the vocabulary ε = 0.1. We use same hyper-parameters
for all experiments.
1 https://github.com/glample/fastBPE.

https://github.com/glample/fastBPE
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Table 1. Under different data scenarios, model performance comparison.

80k bilingual training data and with 2M monolingual data

Models NST13 NST14 NST15 NST16 NST17 NST18 AVG

BITEXT 15.25 14.32 16.51 19.09 15.99 21.05 17.03

BITEXT+BEAM 21.47 22.26 23.85 28.41 23.52 32.19 25.28

BITEXT+SAMPLING 21.38 21.85 23.86 28.81 23.21 32.16 25.21

BITEXT+APE1 21.44 22.48 24.56 29.43 23.73 32.89 25.76

BITEXT+APE2 21.51 22.71 24.27 29.06 23.73 33.57 25.81

BITEXT+APE3 21.66 22.86 24.55 29.27 23.78 33.31 25.90

2M bilingual training data and with 2M monolingual data

Models NST13 NST14 NST15 NST16 NST17 NST18 AVG

BITEXT 24.64 25.83 27.93 33.82 27.49 39.76 29.91

BITEXT+BEAM 25.94 27.76 29.6 35.77 28.76 42.12 31.66

BITEXT+SAMPLING 25.58 27.59 29.86 35.85 28.91 42.35 31.69

BITEXT+APE1 26.15 28.41 30.22 36.17 29.11 42.61 32.11

BITEXT+APE2 26.13 27.98 30.05 36.31 29.16 43.2 32.14

BITEXT+APE3 25.95 28.15 30.06 36.12 28.87 42.75 31.98

Table 2. The comparison of different data augment methods.

Methods perplexity pwb |DEQ|
Baseline 478.00 75.68 0

Back-translation 392.11 80.01 1.89

APE 324.35 73.02 3.11

5 Results and Analysis

5.1 Main Results

As shown in Table 1, We conducted experiments on two different data scale.
Where BITEXT is baseline NMT system without adopting any data augment
methods. +BEAM and +SAMPLING are NMT systems with standard back-
translation, which adopts different decoding strategies. +APE are our proposed
APE model with different iterations. As the APE rounds increase, the BLEU
score shows an overall upward trend, which is consistent with our assumption,
with the iteration of APE, there will be more higher-quality candidate transla-
tions to choose from. Compared with +BEAM, our best model can achieve aver-
age 0.60 and 0.48 BLEU score improvement respectively through APE. These
results suggest that our method can improve the quality of back-translation.
Moreover, insufficient NMT model training leads to the poor-quality of back-
translation. So our method is more effective in low-resource scenarios, which the
improvement of 80K BITEXT+APE is larger than 2M BITEXT+APE.
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Table 3. Model performance comparison between different decoding strategies.

Decoding Strategy NST13 NST14 NST15 NST16 NST17 NST18 AVG

BEAM 25.94 27.76 29.6 35.77 28.76 42.12 31.66

SAMPLING 25.58 27.59 29.86 35.85 28.91 42.35 31.69

EDA N-GRAM 25.86 28.14 29.96 36.05 29.14 42.54 31.95

EDA DIFF 25.54 27.3 29.98 35.74 28.88 42.31 31.63

EDA 25.72 27.51 30.1 35.94 29.01 42.6 31.81

APE+EDA 26.02 28.01 30.15 36.14 28.83 43.02 32.03

Table 4. Translation diversity and quality comparison.

Decoding strategy perplexity pwb

Beam search 364.06 80.01

SAMPLING 1138.28 12.93

EDA 418.78 74.79

5.2 Quantitative Analysis

Furthermore, we want to prove that our proposed method can both improve
diversity and quality of the synthetic data. For this purpose, we conducted anal-
ysis experiments on the translations and use perplexity, Pair-wise BLEU (pwb)
and DEQ as evaluation metrics.

Specifically, to evaluate the APE model at corpus level, we randomly select
7M monolingual data from News Crawl to training a 5-gram language model,
then use it to calculate the average perplexity. And we select 5-best candidates
for each source sentences in newstest2013-2018 to calculate pwb and DEQ score.
As shown in Table 2, through our proposed fluency boost learning method, the
quality and diversity of synthetic data are significantly improved. Compared
with the baseline system BITEXT, the perplexity and pwb dropped by 153.65
and 2.66 through APE, which indicating that both the diversity and quality of
the translations have been improved. On the contrary, back-translation will both
reduce the diversity and quality of the translations, which perplexity and pwb
increased 67.76 and 1.22 respectively in our experiment. Finally, compared with
back-translation, DEQ increased by 1.22, which also proves the diversity and
quality are both improved by APE.

To further boost synthetic data diversity and explore the effectiveness of
EDA, we conduct experiments to compare the performance of the NMT model
with different decoding strategies. As shown in Table 3, all models are trained
with 2M EN-DE and adopt 2M DE for data augment. Where EDA DIFF adopts
formula (2) as fitness function, EDA GRAM and EDA adopts both formula (3)
and (4) as fitness function, respectively. The average overall score of EDA is
slightly higher than BEAM and SAMPLING system. With one round of flu-
ency boosting, APE+EDA model achieved best performance. As mentioned in
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Table 5. Model performance on EN-ZH test set.

Model Test set

BITEXT 37.23

BITEXT+BEAM 38.51

BITEXT+SAMPLING 37.98

BITEXT+APE1 38.93

Table 6. Case study.

Example 1

Src doch in amerika wird mehr so viel getanktwie früher

Ref americans don’t buy as much as gas as they used to

Baseline but in America is not a lot more than is before

Ours but in America, however , is not much more the before

Example 2

Src 30 vorschläge standen zur auswah, fünf sind noch im rennen

Ref there were 30 proposals to choose from, five of which are still
in the running

Baseline 30 proposals were made to selection , five are still in the race

Ours thirty proposals were made to select , five are still in the race

formula (2) and (3), we have defined two indicators to measure diversity for
candidates re-ranking, so we perform ablation experiments to test the effects of
the two indicators separately. The experimental result in Table 3 shows that the
BLEU of EA N-GRAM system is 0.29 higher than BEAM, indicating that it is
feasible to use the diversity of sub-sequences to measure the diversity of whole
sequence. On the other hand, EA DIFF can also produce equivalent results to
the standard beam search, but the effect is not as good as the EDA or EA N-
GRAM.

We also did a quantitative analysis of EDA, as shown in Table 4, our evolu-
tionary decoding algorithm can achieve a compromise between beam search and
sampling. Compared with beam search, EDA improves diversity of generated
data. And compared with the sampling, EDA introduces less noise.

5.3 Qualitative Analysis

For testing the applicability of our proposed model in other domains, we con-
ducted experiments on 2M EN-ZH medical data and with 2M ZH monolin-
gual data. As shown in Table 5, we can get conclusions similar to 2M EN-DE
experiments, BITEXT+APE1 still get best performance. But the improvement
brought by data augmentation is limited. We believe that the quality of 2M EN-
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ZH is higher than 2M EN-DE. So improvement brought by data augmentation
is limited.

To observe the effect more intuitively, we give two examples to illustrate the
improvement brought by our model. As shown in Table 6, all models are trained
with 80K EN-DE and use 2M DE for data augment. Compared with baseline
model, our model could not only correct word errors and grammatical errors
like “is” in Example 1 but also improved sentences diversity like “however” in
Example 1 and “thirty” in Example 2, which proved that our method can both
improve the diversity and quality of the back-translation sentence by introduc-
ing fluency boost learning. However, due to the NMT model did not correctly
translate “getankt” into “gas”, our model was not corrected it either.

6 Conclusion

To promote the diversity and quality of synthetic data generated by back-
translation, in this paper, we proposed a fluency boost learning based data
augment framework, which could extend the origin corpus and applied to any
sequence to sequence machine translation model. Furthermore, we performed
experiments on different language pairs and resource scenarios to prove our
methods could boost both the quality and diversity of the synthetic corpus
generated by back-translation. Finally, the experiment results on EN-DE and
EN-ZH showed that our proposed methods were effective. In future work, we
will explore the influence of noise bring by back-translation under different data
scales and further improve our evolution decoding algorithm.
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Abstract. This paper demonstrates an overview and the technical
details of the neural machine translation system developed by the Insti-
tute of Scientific and Technical Information of China (ISTIC) for the 17th
China Conference on Machine Translation (CCMT’ 2021). ISTIC partic-
ipated in the following four machine translation (MT) evaluation tasks:
MT task of Mongolian-to-Chinese daily expressions, MT task of Tibetan-
to-Chinese government documents, MT task of Uyghur-to-Chinese news,
and MT task of Russian-to-Chinese in low resource languages. Our sys-
tem is based on Transformer architecture and several effective strategies
are adopted to improve the quality of translation, such as corpus filtering,
back translation, data augmentation, context-based system combination,
model averaging, model ensemble, and reranking. The paper presents the
system performance under different parameter settings.

Keywords: Neural machine translation · Self-attention mechanism ·
Context-based system combination

1 Introduction

The machine translation team of the Institute of Scientific and Technical Infor-
mation of China (ISTIC) participated in four machine translation evaluation
tasks in the 17th China Conference on Machine Translation (CCMT’2021),
including three bilingual evaluation tasks (Mongolian-to-Chinese daily expres-
sions track, namely M2C; Tibetan-to-Chinese government documents track,
namely T2C; Uyghur-to-Chinese news track, namely U2C) and one low resource
evaluation task (Russian-to-Chinese tourism oral track, namely R2C). This
paper describes the general overview and technical details of ISTIC’s neural
machine translation system for CCMT’ 2021.

In this evaluation, we adopted the neural machine translation architecture
of Google Transformer [1] as the basis of our system. As regards data source,
the monolingual data released by the evaluation organizer is filtered to construct
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pseudo parallel corpus through the back-translation method in M2C, T2C, and
U2C evaluation tasks; the pseudo parallel corpus and the original given bilin-
gual parallel corpus are used together as the training set of our neural machine
translation system. External data of self-built Russian-Chinese dictionary and
bilingual parallel corpus are introduced in the R2C evaluation task since the scale
of given data is too small. In terms of data pre-processing, we proposed a general
pre-processing method and a specific pre-processing method for the given data.
Several filtering methods of the corpus are explored to reduce the data noise and
improve the data quality. As for model construction, the context-based system
combination method inputs the source sentence and its translation results from
multiple machine translation systems as additional signals into multi-encoders
respectively, which are weighted by attention mechanism to get combination
result by encoder combination and decoder combination through gate mecha-
nism. Model averaging and model ensemble strategies are adopted to generate
the final output translation. We removed spaces between words and restored the
target language translation results to the prescribed XML format in data post-
processing. For each task, we compared the system performance under different
parameter settings and further analyzed the experimental results.

The structure of this paper is as follows: the second part introduces the tech-
nical architecture of ISTIC’s neural machine translation system; the third part
introduces methods used in different tasks; the fourth part introduces the param-
eter settings, data pre-processing, experimental results, and related analysis; the
fifth part gives the conclusion and future work.

2 System Architecture

Figure 1 shows the overall flow chart of our neural machine translation system
in this evaluation which includes data pre-processing, model training, model
decoding, and data post-processing (see Fig. 1).

2.1 Baseline System

Our baseline system used in participated evaluation tasks is Transformer, which
includes an encoder and a decoder (see Fig. 2). The transformer is completely
based on an attention mechanism. It can achieve algorithm parallelism, speed up
model training, further alleviate long-distance dependence and improve transla-
tion quality [2].

The encoder and decoder are formed by stacking n identical layer blocks,
where n is set to 6. Each layer of encoder contains two sub-modules, namely
a multi-head self-attention module and a feed-forward neural network module.
The multi-head self-attention module divides the dimension of the hidden state
into multiple parts, and each part is separately calculated by using the self-
attention function. Furthermore, these output vectors are concatenated together.
The multi-head mechanism enables the model to pay more attention to the fea-
ture information of different positions and different sub-spaces. The multi-head
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attention method includes two steps: 1) dot product attention calculation; 2)
multi-head attention calculation. The calculation method of dot product atten-
tion can be expressed as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

) · V (1)

where Q is the query vector, K is the key vector, V is the value vector, and
dk is the dimension of the hidden layer state. Based on dot product attention,
the calculation method of the multi-head attention mechanism can be expressed
as:

MutiHead(Q,K, V ) = Concat(headi, ..., headn) · WO (2)

where WO is the matrix parameter. The attention value of each head is:

headi = Attention(Q · WQ
i ,K · WK

i , V · WV
i ) (3)

Each layer of the decoder is composed of three sub-modules. In addition to
the two modules similar to the encoder, a decoder-encoder attention module is

Fig. 1. Overall flow chart for machine
translation tasks.

Fig. 2. Transformer model structure.
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added between them and can focus attention on source language information
in the decoding process. To avoid the problem that too many layers cause the
model to be difficult to converge, both the encoder and the decoder use resid-
ual connection and hierarchical regularization techniques. To make the model
better obtain the position information of the input sentence, additional position
encoding vectors are added to the input layer of the encoder and decoder. After
the encoder obtains a hidden state, the Transformer model inputs the hidden
state into the softmax layer and scores with candidate vocabulary to obtain the
final translation result.

2.2 Our System

Based on the transformer model, we propose a context-based [3] system combi-
nation method, which also adopts an encoder-decoder structure composed of n
identical network layers, where n is set to 6. Two different methods of system
combination are designed according to the fusion in different positions, which are
Encoder Combination method and Decoder Combination method. Both of them
adopt multi-encoder [4] to encode the source sentences and the context infor-
mation from machine translation results of the source sentence. In the Encoder
Combination method, the hidden layer information of context (multi-system
translation) is transformed into new representation through attention network,
and merges the hidden layer information of source sentence through gating mech-
anism at encoder end; In Decoder Combination method, the hidden layer infor-
mation of multi-system translation and the hidden layer information of source
sentence is calculated at the decoder to obtain the fusion vector. The attention
calculation method is the same as the original transformer model, to obtain a
higher quality fusion translation.

The Encoder Combination model (see Fig. 3) uses multiple system trans-
lations, and then converts the system translations into new representations
through the attention network, integrating the hidden layer information of
homologous language sentences for attention fusion through the gating mecha-
nism in the Encoder. In the Encoder Combination mode and the Self-Attention
of the multi-system translation Encoder, Q, K, and V are all from the upper
layer output of the multi-system translation Encoder; in the Self-Attention of
the source language Encoder, Q, K, and V are all from the upper layer output
of the source language Encoder; in the Translation Attention of the source lan-
guage Encoder, both K and V come from the upper hidden layer state HTr

of
the multi-system translation Encoder, and Q comes from the upper layer hidden
state Hs of the source language Encoder. Hs represents the hidden state of the
source language sentence, HTr

represents the hidden state of the multi-system
translation, and H represents the hidden state of the Translation Attention part
of the Encoder.

HTr
= Concat(HTr1, ...,HTrn) (4)

H = MutiHead(HTr
,Hs) (5)
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The Decoder Combination model (see Fig. 4) combines the hidden layer infor-
mation of multiple encoders with attention in the decoder. The Decoder can
process multiple encoders separately, and then fuse them using the gating mech-
anism inside the Decoder to obtain the combined vector. In the Decoder Combi-
nation mode and the Self-Attention of the target language Decoder, Q, K, and
V are all from the output of the previous layer of the target language Decoder;
in the Translation Attention of the target language Decoder, Q comes from the
output of the upper layer of the target language Decoder, K comes from the
upper hidden layer state Hs of the source language Encoder, and V comes from
the upper hidden layer state HTr

of the multi-system translation Encoder; in
the Encoder-Decoder Attention of the target language Decoder, Q comes from
the upper layer output of the target language Decoder, K, V come from the
previous output of the source language Encoder. Hs represents the hidden layer
state of the source language sentence, HTr

represents the hidden layer state of
the multi-system translation, HDecoder represents the hidden layer state of the
upper layer output of the Decoder, and H represents the hidden state of the
Translation Attention part of the Decoder.

H = MutiHead(HTr
,Hs,HDecoder) (6)

Fig. 3. Encoder combination model. Fig. 4. Decoder combination model.

3 Methods in Different Tasks

In this evaluation, ISTIC participated in the four tasks of the Mongolia-Chinese,
Tibetan-Chinese, Uyghur-Chinese, and Russian-Chinese. The methods used in
each task are introduced below. For convenience, M2C represents Mongolian-
to-Chinese daily expressions MT task, U2C represents Uyghur-to-Chinese news
field MT task, T2C represents Tibetan-to-Chinese government documents MT
task, and R2C represents Russian-to-Chinese low resource languages MT task.
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3.1 M2C Task, U2C Task, and T2C Task

In the M2C task, U2C task, and T2C task, the parallel corpus is small in scale,
so the back translation method is used to construct a pseudo parallel corpus.
We used the given parallel corpus data of Mongolian-Chinese, Uyghur-Chinese,
and Tibetan-Chinese released by the evaluation organizer to train the Chinese-
to-Mongolian, Chinese-to-Uyghur, and Chinese-to-Tibetan translation models.
The Chinese monolingual data filtered by Elasticsearch [5] is translated into
the pseudo parallel corpus of Mongolian-Chinese, Uyghur-Chinese, and Tibetan-
Chinese as a supplement to the training set of neural machine translation model.

In model training, the Transformer model based on the self-attention mech-
anism is adopted as the baseline model, and the Encoder Combination and
Decoder Combination are introduced respectively. The source sentence and con-
text information are integrated into the combination system. Here, the source
language sentence, the target language sentence, and the machine translation of
the source language sentence through the baseline model are used as the context
information respectively.

The model averaging strategy [6] is used in the evaluation. Model averaging
means that the parameters of the same model at different training moments are
averaged and the more robust model parameters are obtained, which is helpful
to reduce the instability of model parameters and enhance the robustness of
the model. After the max epoch parameter is specified in the trainer and the
training process is completed, our team gets the best epoch checkpoint and the
last epoch checkpoint and averages the two checkpoints. The more stable and
robust single model obtained by the model averaging strategy will also be used
in model averaging, to jointly predict the probability distribution.

The model ensemble strategy [7] is also used in the evaluation. Model ensem-
ble means that multiple models simultaneously predict the probability distri-
bution of target words at the current time in decoding, and finally, a weighted
average of the probability distribution predicted by multiple models is calculated,
to jointly determine the final output after the model ensemble.

3.2 R2C Low Resource Task

The success of neural machine translation is closely related to computing
resources, algorithm models, and data resources, especially the scale of bilin-
gual training data. In the R2C task, the number of sentence pairs of parallel
corpus available for training is as low as 50,000. Therefore, the introduction
of external resources can effectively improve the performance of the machine
translation system. Here, 123,605 phrase pairs and 55,504 sentence pairs from a
self-built Russian-Chinese dictionary are used.

In our constrained system, the Encoder Combination and Decoder Combina-
tion are also adopted based on the Transformer model. Here, the target sentences
in the training corpus are directly used as the context of the source sentences
for system combination training. The strategy of model ensemble is also used. In
our unconstrained system, 123,605 phrase pairs and 55,504 sentence pairs from
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a self-built Russian-Chinese dictionary are used as the training set together with
the training corpus released by the evaluation organizer.

4 Experiments

4.1 System Settings

The open-source project fairseq [8,9] is chosen for this evaluation system. The
main parameters are set as follows. Each model uses 1–3 GPUs for training, and
the batch size is 2048. The embedding size and hidden size are set to 1024, the
dimension of the feed-forward layer is 4096. We use six self-attention layers for
both encoder and decoder, and the multi-head self-attention mechanism has 16
heads. The dropout mechanism [10] was adopted, and dropout probabilities are
set to 0.3. BPE [11] is used in all experiments, where the merge operations is set
to 32000. The maximum number of tokens is set to 4096. The loss function is set
to “label smoothed cross entropy”. The parameter adam betas is set to (0.9,
0.997). For the baseline system, the initial learning rate is 0.0007, the warm-
up steps are set to 4000, and the maximum epoch number is set to 30. For
the Encoder Combination system and Decoder Combination system, the initial
learning rate is 0.0001, the warm-up steps are set to 4000, and the maximum
epoch number is set to 10.

4.2 Data Pre-processing

In the M2C task, U2C task, and T2C task, the bilingual parallel corpus, and
monolingual corpus are released by the evaluation organizer. In the R2C low
resource task, the only bilingual parallel corpus is released.

1. Bilingual Parallel Corpus Pre-processing.
The Mongolian-Chinese parallel corpus is in the field of daily expressions, the
Tibetan-Chinese parallel corpus is in the field of government literature, the
Uygur-Chinese parallel corpus is in the field of news, and the Russian-Chinese
parallel corpus belongs to low resource languages. The characteristics of lan-
guage pairs of the evaluation tasks are similar as well as different. Therefore, a
two-stage pre-processing method is designed as a general pre-processing stage
and a specific pre-processing stage [12].

The the general pre-processing stage includes conversion from traditional
Chinese to simplified Chinese, conversion between full angle and half-angle, spe-
cial character filtering, same content filtering, sentence length filtering, and sen-
tence length ratio filtering. Among them, sentence length of the Chinese language
is calculated in the unit of “character” and sentence length of non-Chinese lan-
guage is calculated in the unit of “token”. Sentence length filtering removes
sentence pairs which source sentence length or target sentence length exceeds
the range of [1, 200]. Sentence length ratio filtering excludes the sentence pairs
whose ratio of source sentence length and target sentence length exceeds the
range of [0.1, 10]. In the specific pre-processing stage, Chinese word segmentation
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is implemented using the lexical tool Urheen [13] and Chinese word segmentation
is implemented using the lexical tool Polyglot [14].

In the M2C task, U2C task, and T2C task, parallel corpus data other
than “imu-test-mnzh-cwmt2018”, “imu-test-uyzh-cwmt2018” and “imu-test-
tizh-cwmt2018” are taken as training sets. All the training set is processed in
two stages. In the pre-processing of the development set and test set, the same
content filtering, sentence length filtering, and sentence length ratio filtering are
excluded. In the R2C task, all parallel corpus data is taken as the training set.
Same content filtering, sentence length filtering, and sentence length ratio filter-
ing are excluded in training data, development set, and test set. The number of
sentence pairs of training set before and after data pre-processing is shown in
Table 1.

Table 1. Training set data reprocessing results.

Direction Before Pre-processing After Pre-processing

mn-ch 269462 249069

uy-ch 170061 165143

ti-ch 162096 153324

ru-ch 50000 50000

2. Monolingual Corpus Pre-processing.

In the M2C task, U2C task, and T2C task, the scale of the Chinese monolingual
corpus released by the CCMT’2021 evaluation organizer is 662904 news articles,
about 11 million words. The monolingual data is filtered and screened by the
Elasticsearch retrieval tool [12], and then both general pre-processing and specific
pre-processing are used to obtain the final monolingual data for back-translation.
The quantity is shown in Table 2.

For the selected monolingual data, this evaluation adopts a back-translation
strategy to construct pseudo parallel corpus to enhance the machine translation
results. According to the parallel corpus of Mongolian-Chinese, Uyghur-Chinese,
and Tibetan-Chinese provided by CCMT’ 2021, the neural machine translation
model of Chinese-to-Mongolian, Chinese-to-Uyghur and Chinese-to-Tibetan are
constructed, and then the selected Chinese monolingual corpus is translated into

Table 2. The scale of pseudo parallel corpus.

Direction Sentence scale

mn-ch 240000

uy-ch 159894

ti-ch 140000
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the corresponding minority languages through these models. Finally, the pseudo
parallel corpus obtained from back translation and the preprocessed high-quality
bilingual parallel corpus provided by CCMT’ 2021 are mixed for training, to
improve the machine translation quality of Mongolian Chinese, Tibetan Chinese,
and Uighur Chinese.

4.3 Experimental Results

In the Mongolian-to-Chinese translation evaluation task, the primary system
(mc-2021-istic-primary-a) trains 10 epochs with the Encoder Combination model
system and uses the last epoch checkpoint to decode. The contrast system 1 (mc-
2021-istic-contrast-b) trains 10 epochs with the Encoder Combination model
system and uses the model ensembling strategy to decode. The contrast system
2 (mc-2021-istic-contrast-c) trains 10 epochs with a Decoder Combination model
system and uses the last epoch checkpoint to decode. The above three systems
take the translated sentences of the source language sentences decoded by the
intermediate translation model as the context and use the pseudo-parallel corpus
constructed from monolingual data as the supplement of the training set. The
BLEU5-SBP [15] scoring results on the released test set are shown in Table 3.
Among all constrained systems, the primary system (mc-2021-istic-primary-a)
ranked third. Among all of the participated systems, mc-2021-istic-contrast-b
ranked fifth, mc-2021-istic-primary-a ranked sixth, and mc-2021-istic-contrast-c
ranked seventh.

Table 3. BLEU5-SBP scoring of Mongolian-to-Chinese track on released test set.

System BLEU5-SBP

mc-2021-istic-primary-a (encoder combination model) 0.3566

mc-2021-istic-contrast-b (encoder combination + model
ensembling)

0.3607

mc-2021-istic-contrast-c (decoder combination model) 0.354

In the Tibetan-to-Chinese translation evaluation task, the primary system
(tc-2021-istic-primary-a) takes the source language sentences as the context,
trains 30 epochs with the Transformer baseline system, and uses the last epoch
checkpoint to decode. The contact system 1 (tc-2021-istic-contact-b) uses the
source language sentences as context, trains 30 epochs with the Transformer
baseline system, and uses the model ensembling strategy to decode. The con-
trast system 2 (tc-2021-istic-contact-c) takes the target language sentence as the
context, trains 10 epochs with the Encoder Combination model system and uses
the last epoch checkpoint to decode. The above three systems do not use mono-
lingual data, and the BLEU5-SBP scoring results on the released test set are
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shown in Table 4. Among all constrained systems, the primary system (tc-2021-
istic-primary-a) ranked third. Among all of the participated systems, tc-2021-
istic-contrast-c ranked fourth, tc-2021-istic-contrast-b ranked fifth, and tc-2021-
istic-primary-a ranked the sixth.

Table 4. BLEU5-SBP scoring of Tibetan-to-Chinese track on released test set.

System BLEU5-SBP

tc-2021-istic-primary-a (baseline) 0.1567

tc-2021-istic-contrast-b (baseline + model ensembling) 0.1678

tc-2021-istic-contrast-c (encoder combination model) 0.1737

In the Uyghur-to-Chinese translation evaluation task, the primary system
(uc-2021-istic-primary-a) trains 10 epochs with a Decoder Combination model
system and uses the best epoch checkpoint to decode. The contrast system 1
(uc-2021-istic-contrast-b) trains 30 epochs with a Transformer baseline system
and uses the model ensembling strategy to decode. The contrast system 2 (uc-
2021-istic-contrast-c) trains 10 epochs with the Encoder Combination model
system and uses the model ensembling strategy to decode. The above three
systems take the translated sentences of the source language sentences decoded
by the intermediate translation model as the context and use the pseudo-parallel
corpus constructed from monolingual data as the supplement of the training set.
The BLEU5-SBP scoring results on the released test set are shown in Table 5.
Among all constrained systems, the primary system (uc-2021-istic-primary-a)
ranked fourth. Among all of the participated systems, uc-2021-istic-contrast-b
ranked sixth, uc-2021-istic-contrast-c ranked seventh, and uc-2021-istic-primary-
a ranked eighth.

Table 5. BLEU5-SBP scoring of Uyghur-to-Chinese track on released test set.

System BLEU5-SBP

uc-2021-istic-primary-a (decoder combination model) 0.3495

uc-2021-istic-contrast-b (baseline + model ensembling) 0.352

uc-2021-istic-contrast-c (encoder combination + model ensembling) 0.35

In the Russian-to-Chinese translation evaluation task, the primary system
(rc-2021-istic-primary-a) takes the target language sentences as the context,
trains 30 epochs with the Transformer baseline system, and uses the last epoch
checkpoint to decode. The contrast system 1 (rc-2021-istic-contrast-b) uses exter-
nal 123,605 Russian-Chinese dictionary data and 55,504 bilingual parallel corpus
data and the training process is the same as the primary system. The BLEU5-
SBP scoring results on the released test set are shown in Table 6. Among all
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of the participated systems, rc-2021-istic-contrast-b ranked second, and rc-2021-
istic-primary-a ranked third.

Table 6. BLEU5-SBP scoring of Russian-to-Chinese track on released test set.

System BLEU5-SBP

rc-2021-istic-primary-a (baseline) 0.069

rc-2021-istic-contrast-b (baseline + dictionary) 0.1077

The results show that: (1) Model averaging, model ensembling, and multi-
encoder system combination are helpful to improve translation quality; (2) The
construction of pseudo parallel corpus by monolingual data back translation is
conducive to the improvement of translation quality; (3) The accuracy of data
pre-processing has a great influence on the quality of translation; (4) The method
of multi-dimensional and multi similarity fusion is helpful to filter the corpus and
select higher quality parallel sentence pairs.

5 Conclusions

This paper introduces the main technologies and methods of ISTIC in CCMT
’2021. To sum up, our model is constructed on the Transformer architecture of
self-attention mechanism and context-based system combination method. In the
aspect of data pre-processing, we explore several corpus filtering methods. In
the process of translation output, the strategies of the model averaging, model
ensemble are adopted. In the process of corpus filtering, Elasticsearch is used
for similar corpus filtering. Experimental results show that these methods can
effectively improve the quality of translation. For machine translation tasks of
low resource language, adding external dictionaries and parallel corpus can effec-
tively improve the translation performance.

Due to the limited time, many methods have not been tried in this evaluation.
Some problems have been found in the evaluation process, and the translation
model still has a lot of room for improvement. In the future, we hope to learn
more advanced technology and contribute to the research of machine translation.
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Abstract. This paper presents the systems developed by Beijing Jiao-
tong University for the CCMT2021 evaluation tasks. We joined four
translation tasks of Chinese-English, English-Chinese, Uyghur-Chinese,
Tibetan-Chinese. In all directions, we build our system based on trans-
former architecture and Dynamic-Conv. Additionally, we apply Byte Pair
Encoding (BPE) to all translation tasks to resolve the out-of-vocabulary
(OOV) problem. We also adopt some techniques that have been proven
effective recently in academia, such as data augmentation, finetuning,
model ensemble and reranking. Experiments show that our machine
translation systems achieved high accuracy on all directions.

Keywords: Neural machine translation · Data augmentation ·
Finetuning · Model ensemble · Reranking

1 Introduction

This paper introduces in detail the submission of Beijing Jiaotong University
to the translation evaluation task in the 17-th China Conference on Machine
Translation (CCMT2021). We participated in both directions of Chinese-English
translation tasks from the news field and two minority language translation tasks
Tibetan-Chinese translation from government literature and Uyghur-Chinese
translation from the news field.

In these directions, we built our system based on five different architectures,
the first one is solely based on attention mechanisms, namely the Transformer-
base model [11]. We broadened Transformer with bigger hidden dimensions
and more attention headers to better extract features from source segments,
which is named as Transformer-big. We also tried to augmented the encoder
layers to extract more semantic information from the source which is named
as Transformer-deep. Transformer-big and Transformer-deep are proved to out-
perform Transformer-base model in most cases [12]. Additionally, we also tried
to substitute the self-attention layer with lightweight convolution, providing us
with another different model to use when doing model ensemble [14].
c© Springer Nature Singapore Pte Ltd. 2021
J. Su and R. Sennrich (Eds.): CCMT 2021, CCIS 1464, pp. 117–124, 2021.
https://doi.org/10.1007/978-981-16-7512-6_10
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Additionally, we applied sub-word segmentation to both languages to resolve
the out-of-vocabulary problem [9]. To deal with the scarcity of training data,
we created massive synthetic data using back translation based on monolingual
Chinese data [8]. To make full use of the translation knowledge learned by other
decoding models, knowledge distillation is used to integrate various knowledge
into one model [3].

The in-domain finetuning is very effective in our experiments and espe-
cially, we used a boosted finetuning method for Chinese→English and English→
Chinese tasks. We also take advantage of the combination methods to further
improve the translation quality.

We also applied two model ensemble techniques, namely model averaging and
model ensemble, to leverage multiple models to further improve the result [1,7].
To alleviate unbalanced output and error accumulation during left to right decod-
ing, we performed reranking on the top-k outputs based on z-Mert algorithm [4].

2 Data

2.1 Chinese-English

We use all available data provided by CCMT’21 and WMT’21, which contain
28.6M bilingual sentence pairs and 100M Chinese Monolingual data and 120M
English Monolingual data. We apply the following procedures to preprocess the
data:

1. Remove illegal UTF-8 characters and replace control characters with a single
space.

2. Convert Traditional Chinese sentences into Simplified Chinese.
3. Apply Unicode NFKC normalization.
4. Remove duplicated sentence pairs.
5. Keep parallel sentences with a length ratio between 0.7-2.2.
6. Truecase1 the English corpus.

For the new corpus “ParaCrawl v7.1” in WMT’21, there are plenty of noisy
sentence pairs. We have trained a baseline model with Transformer-base to filter
out the noisy pairs with SacreBLEU lower than 35.0.

2.2 Uyghur→Chinese

We use the parallel data provided by CCMT’21, which contains 0.17M pairs. We
cleaned the provided training data accords to two criteria, namely the length
ratio of source to target for each sentence pair, and the average length of source
sentence and target sentence.

1 https://github.com/moses-smt/mosesdecoder.

https://github.com/moses-smt/mosesdecoder
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2.3 Tibetan→Chinese

We use all available data provided by CCMT’21, which has 0.15M parallel sen-
tences. However we have not used the devset provided by CCMT’21, we ran-
domly sample 1k sentences in parallel sentences as our devset and the rest of the
available data is used as training data. We apply Unicode NFKC to normalize
the data. For Tibetan word segmentation, we build a vocabulary which consists
of 140k words, and use Bidirectional-Maximum Matching algorithm.

3 Model

As we explained before, we combined four different architectures in our work,
namely Transformer-base, Transformer-deep, Transformer-big and Light-Conv.

Transformer-Base. Transformer is a completely attention-based structure for
dealing with problems related to sequence models [10], such as machine transla-
tion. The Transformer model does not use any CNN or RNN structure, capable
of working in the process of highly parallelization, so the training speed is very
fast while improving the translation performance. Transformer-base is the naive
version of transformer.

Transformer-Deep. The performance of Transformer can be improved by
increasing the number of layers in the encoder. We follow to use deep Trans-
former. To address the vanishing-gradient problem in deep Transformer, we use
the post-layer normalization instead of the pre-layer normalization. In Chinese-
English directions, we adopt this model which has great performance.

Transformer-Big. In some cases, Transformer-deep does not perform better
than big, which have a fewer parameters than the former. Therefore, for the
stage of training and inference, Transformer is faster than Transformer-deep.

LightConv. Lightweight convolution uses the prototype of deep (separable)
convolution in CV domain, which greatly reduces the number of parameters and
reduces the complexity by sharing parameters in the channel dimension. On the
basis of light weight, dynamic convolution is proposed, where the weight of CNN
is calculated dynamically from the input feature. The Dynamic-Conv model is
proved to be competitive with Transformer model in many scenarios.

4 Method

4.1 Data Augmentation

Back-Translation. We augment the training data by exploring the monolin-
gual corpus using back translation. Specifically, we select target monolingual
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corpus which has the same size as the training corpus and then translate them
back into the source language using target-to-source (T2S) models. We merge
the synthetic data with the bilingual data to train our models. We also add
noise to the translated sentences to further improve the performance namely
Noisy Back-Translation.

Knowledge Distillation. The existing translation model decodes from left to
right (L2R), and from source to target (S2T). In order to make full use of the
translation knowledge learned by other decoding models, knowledge distillation
is adopted to improve the translation performance. Knowledge distillation is
a method for knowledge transfer, where the prediction distribution of teacher
model is used to guide the parameter learning of student model. In our submis-
sion, the following three teacher models are trained first:

1. The translation model decodes from source to target and from left to right
(L2R).

2. The translation model decodes from source to target and from right to left
(R2L).

3. The translation model decodes from target to source and from left to right
(T2S).

After obtaining the above three translation models, we use the method of sen-
tence level knowledge distillation to decode the training data and get their
respective decoding results, and form the bilingual sentence pairs of knowledge
distillation with their respective input sentences. In this evaluation, we mixed the
knowledge distillation bilingual sentence pairs with the original training data.
In this way, in mixed bilingual data, in addition to the original training data, it
also contains the prediction results of the respective teacher models. Finally, the
student model is retrained with mixed training data.

4.2 Model Average

Because of the mismatch of BLEU and MLE Loss in the final convergence
stage, we have applied the Model Average method to average the parameters
from the last several checkpoints. We have found that Model Average works on
Uyghur→Chinese and Tibetan→Chinese but makes no sense in Chinese-English.

4.3 Finetune

Finetuning [2] with in-domain data can bring huge improvements. We also use
development set as the in-domain dataset. The source side of newsdev2017, new-
stest2017 and newstest2018 are composed of two parts: documents created orig-
inally in Chinese and documents created originally in English. We split these
datasets into original Chinese part and original English part according to tag
attributes of SGM files. For Chinese-English translation, we use CWMT2008,
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CWMT2009 and original Chinese part of newsdev2017, newstest2017, new-
stest2018 and newstest2020 as the in-domain dataset. For English-Chinese trans-
lation, we use original English part of newsdev2017, newstest2017, newstest2018
and newstest2020 as the in-domain dataset. During finetuning, we use a larger
dropout rate, a smaller constant learning rate and batch size. The parameters
are updated after each epoch, which is enabled by using gradient accumulation.

4.4 Model Ensemble

Ensemble is a well-known technique to combine different models for stronger per-
formance. We utilize the frequently used method for ensemble, which calculates
the word level averaged log-probability among different models during decoding.
On account of the model diversity among single models has a strong impact
on the performance of ensembling models, we combine single models that have
different model architectures (Transformer-base, Transformer-big, Transformer-
deep, Transfomer-deepbig, Light-conv, Dynamic-conv). We also try to use Trans-
ductive Ensemble Learning (TEL) [13] to replace ensemble. TEL is a technique
utilizing the synthetic test data (consists of original source sentences and trans-
lations of target-side) of different models to finetune a single model.

4.5 Reranking

Neural machine translation models are usually decoded from left to right, and
are faced with the problem of unbalanced output and error accumulation. In the
process of translation generation, if there are errors in the first few moments, it is
difficult to produce correct results in the following. To some extent, this problem
can be alleviated by increasing the space of beam search. However, since we only
select the sentence with the highest prediction probability as the final output,
the increase of searching space will not bring significant benefits, and even bring
some performance losses. Therefore, this paper uses the method of reranking. In
this paper, several feature models are trained to grade the candidate translation.
The feature models include the R2L model, L2R model, T2S model and language
model scores. Word-penalty is also included to penalize too short output, which
is the length of each candidate. After that, z-Mert [15] is used to rerank the
candidate translations, and the translation with the highest score is selected as
the final output translation.

5 Experiment

5.1 Chinese→English

We use the PyTorch implementation of open-source toolkit fairseq [5] to conduct
all experiments. To enable open vocabulary, we learn 32K BPE operations sepa-
rately on Chinese and English texts using subword-nmt toolkit. We set Chinese
vocabulary size of 40k and English vocabulary size of 32k. All models are trained
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on Tesla-V100. Table 1 shows the results of Chinese-English Translation on new-
stest2019 dataset. All methods we used can bring substantial improvement over
the baseline system. Applying data augmentation methods improve the base-
line system by 2.3 BLEU score. Finetuning is the most effective approach. With
transductive ensemble on newstest2019 our model has achieved 40.12.

Table 1. BLEU evaluation results on the newstest2019 Chinese-English test set

Settings Transformer-big Transformer-deep Lightconv

Baseline 27.72 28.14 27.11

+ data augment 30.12 30.07 29.88

+ finetuning 39.32 38.55 38.32

Ensemble 40.12

5.2 English→Chinese

We have the same preprocessing setting with the Chinese→English direction.
And all the models are trained on RTX 1080Ti. However, the back-translation
does not work, therefore we just apply noisy back-translation. Our results are
depicted as Table 2 where finetuning in English→Chinese does not have the same
improvement.

Table 2. BLEU evaluation results on newstest2019 English-Chinese test set

Settings Transformer-big Transformer-deep Lightconv

Baseline 36.96 35.75 −
+ data augment 37.34 36.66 37.43

+ finetuning 38.47 37.46 38.77

Ensemble 39.81

5.3 Uyghur→Chinese

In Uyghur, we adopt fast-align and kenLM to select the monolingual data. We
then back translate the monolingual sentences to generate the twice size of the
parallel data. Finally we combine the parallel data and the pseudo-parallel data.

In our experiment, we utilize the BPE-Dropout [6] as a method of data
augmentation with the dropout rate 0.1. BPE-Dropout performs well on the
mini-scale dataset.



BJTU’s Submission to CCMT 2021 Translation Evaluation Task 123

Table 3. BLEU evaluation results on CCMT’21 Uyghur-Chinese dev set

Settings Transformer-base Transformer-big Transformer-deepbig Dynamic-conv

Baseline 41.12 40.09 41.03 43.91

+ data augment 43.96 43.85 43.75 45.17

+ finetuning 44.65 45.03 45.79 45.22

Ensemble 48.02

Table 4. Result of BPE-dropout in Uyghur-Chinese.

Models BPE BPE-dropout

Transformer-base 41.12 43.96

Dynamic-conv 43.91 45.17

Table 5. BLEU evaluation results on CCMT’21 Tibetan-Chinese dev set.

Settings Transformer-base Transformer-big Dynamic-conv

Baseline 46.83 46.48 46.76

+ data augument 47.34 46.91 46.97

+ finetuning 48.50 47.62 48.90

Ensemble 51.09

Rerank 54.35

5.4 Tibetan→Chinese

Table 5 shows the result of Tibetan→Chinese that reranking has improved 3.3
BLEU score, which does not make sense in Chiense→Englsih, English→Chinese
and Uyghur→Chinese.

6 Conclusion

In this paper, we described our submission in four translation evaluation projects
including Chinese to English, English to Chinese, Tibetan to Chinese and
Uyghur to Chinese. In all directions, we build our system based on six dif-
ferent architectures, namely Transformer-base, Transformer-big, Transformer-
deep, Transformer-deepbig and Dynamic-Conv. Finally, we obtain substantial
improvements combining these methods. Our training strategies including back-
translation, knowledge distillation, model ensemble and reranking have good
performance in these tasks.
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