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Abstract. High-frequency information such as image edges and textures have an
important influence on the visual effect of the super-resolution images. Therefore,
it is vital to maintain the edge and texture features of the super-resolution image.
A surface fitting image super-resolution algorithm based on triangle mesh parti-
tions is proposed in this study. Different from the traditional image interpolation
algorithm using quadrilateral mesh, this method reconstructs the fitting surface
on the triangle mesh to approximate the original scene surface. LBP algorithm
and second-order difference quotient are combined to divide the triangular mesh
accurately, and the edge angle is utilized as a constraint to makes the edge of the
constructed surface patch more informative. By the area coordinates as weighting
coefficients to perform weighted averaging on the surface patches at the vertices
of the triangle mesh, the cubic polynomial surface patches are obtained on the
triangle mesh. Finally, a global structure sparse regularization strategy is adopted
to optimize the initially super-resolution image and further eliminate the artifacts
at the image edges and textures. Since the new method proposed in this study
utilizes numerous information about local feature (e.g. edges), compared to other
state-of-the-art methods, it provides clear edges and textures, and improves the
image quality greatly.

Keywords: Surface fitting · Triangle mesh · Global structure · Sparse
regularization

1 Introduction

Image super-resolution is a technology about how to get information-rich high-resolution
(HR) images from low-resolution (LR) images through magnification and reconstruc-
tion, and the purpose is to improving the resolution of the image and restoring the
details of the image. Image super-resolution plays an important role in scientific research
fields including computer graphics, artificial intelligence, and computer vision. Based
on different reconstruction methods, image super-resolution algorithms can be classified
into two categories: interpolation-based algorithms and learning-based algorithms. This
paper mainly studies the method based on interpolation.

Interpolation-based algorithms [1–4] are the process of constructing curves or curved
surfaces [5–7] of LR images in a certain area through a specific function and predicting
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the HR images. Previous classical algorithms based on interpolation are nearest neighbor
algorithm, bilinear interpolation [8, 9], and bicubic interpolation [10–12]. Although
the interpolation functions used by these three methods are relatively simple, the HR
images obtained by interpolation are severely distorted and have obvious aliasing and
ringing effects. Zhang et al. proposed an interpolationmethod for soft decision estimation
[13]. Compared to the traditional methods for decision estimation of each pixel, this
method estimated missing high-resolution pixels in units of image patches. Besides, the
model parameters can be adaptively adjusted according to the pixels of the LR image
that is provided as inputs in the interface. Therefore, this method is simple, efficient,
and adaptable. Although the method has improved the objective quantification of data,
the subjective visual effect has not been significantly improved. The study conducted
by Takuro et al. (2017) proposed a single image super-resolution algorithm based on
multiple filtering and weighted average [14]. The algorithm utilized local functions to
reduce blur and introduced new weight to improve the reliability of local functions.
Besides, this method adopted convolution of small filters to replace the calculation of
each local function, which can reduce the calculation cost. High-quality, non-aliased,
and blur-free output images can be obtained by using this method in a short calculation
time. In 2018, Yang et al. proposed a method of fractional gradient interpolation [15].
By selecting an appropriate fractional gradient operator, not only the high-frequency
components of the signal are protected, but also the low-frequency components of the
signal are retained nonlinearly. The algorithm can effectively process the pixels with
similar gray values in the smooth area. The enlarged image effectively preserved the
texture details, highlighted the edges, and avoided the ringing and step effects. Liu et al.
proposed an image enlargementmethodbasedon cubicfitting surfaceswith local features
as constraint [16]. For the input image and the error image, the quadratic polynomial
surface patches are constructed in regions of different sizes, and the enlarged image
has a better visual effect. But for complex edge regions, the enlarged image obtained
by this method is relatively smooth. Literature [17] enlarged a given LR input image
to a HR image while retaining texture and structure information. This algorithm has
achieved high numerical accuracy, but there are high-frequency information missing or
artifacts at complex edges and texture details. In 2020, Zhang et al. proposed a more
advanced image super-resolutionmethod [18]. Creative and innovative results have been
achieved on LR images that are down-sampled by interlacing and inter-column, but the
magnification effect is poor for other down-sampled LR images.

This paper proposes a surface fitting image super-resolution algorithm based on
triangle mesh partition, mainly focuses on the edges of the quadrilateral meshes inclined
at 45° and 135°. The innovations are as follows:

1. This paper puts forward a strategy for triangle mesh partition that consists of the
neighboring pixels. By the combination of LBP algorithm and simple second-order
difference quotient, the strong edges and texture details of image are effectively
extracted.

2. An edge angle is proposed to constraint the process of solving the coefficients of the
quadratic polynomial surface.



A Surface Fitting Image Super-Resolution Algorithm 71

3. The initially reconstructed HR images is optimized by the global structure sparse
regularization strategy. The artifacts in edge and texture of the image are eliminated
during the iterations, improving the visual effect.

The rest of this paper is as follows. Section 2 is the overall description of the
method. Section 3 compares the experimental results of different methods. Section 4
is the summary of the method and the next step of this work.

2 Methodology

For a low-resolution image, the first step is to detected edge and texture image by using
the combination of the LBP algorithm and the second-order difference quotient method
(SODQ). The triangle meshes that consists of the neighboring pixels are obtained, taking
the edge and texture image as the guide. The algorithm constructs a cubic polynomial
triangle surface patch on each triangle mesh, and stitches these surface patches together
to approximate the original surface. Then, it resamples on the fitting surface to obtain the
preliminary reconstructed HR image Y. Since there are unavoidable errors of the fitting
surface, and the edges and textures of HR image Y are unsatisfactory, the next step is to
optimize image Y. The image Y is decomposed into a smooth component f1 ⊗Y1, where
Y1 is a low-frequency feature map of the image, and a sparse residual Yr representing
the global structure of this image. This operation ensures that the smooth component
contains low frequencies. The low-frequency feature map Y1 are enforced to be smooth
(i.e., to have a weak response to an edge-filter) by a gradient operator along horizontal
or vertical direction. The polished Y1 is superimposed with Yr and then an optimized
image is obtained. By repeating this process, the final enlarged image H can be obtained.
The flowchart of the proposed method is shown in Fig. 1.

Fig. 1. Flowchart of the proposed method.

2.1 Divide Triangle Mesh

Since the edge of the image will have a great influence on the visual effects of the
enlarged images, dividing the mesh according to the edge situation can depict the edge
of the image better when reconstructing the image. Since we only need to consider the
edges in the 45° and 135° directions, the paper firstly extracts strong edges according to
the LBP algorithm and determines the mesh division scheme according to the element
jump rule at the diagonal. The details are as follows:
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The binary number is the LBP value of the central pixel, reflecting the information
in the neighborhood. The algorithm only processes the uniform patterns among them.
Uniform mode refers to the mode in which the repeated binary digits corresponding to
LBP can, at most, transform twice between 0 and 1. Therefore, a rule can be obtained,
namely when the number of transformations equals 2 and such transformations occur at
diagonal positions, the edge inclined at this position equals to 45° or 135°. According
to this rule, precise division of strong edge meshes in the directions of 45° and 135° can
be obtained. The principle is simple while the edge accuracy is high.

Then, for the remaining undivided area, a rough mesh is divided according to the
simple second-order difference in the diagonal direction. According to the nature of the
image, the changing rate of the pixel values in the image along the edge is relatively
small. Therefore, for the remaining undivided areas (usually texture and flat areas), we
can calculate the simple second-order difference quotient of the image in the directions
of 45° and 135°, namely the rate of change. According to the rate of change in the two
directions, the quadrilateral mesh can be generated by using the adjacency relationship
of the pixels, and then a rough triangular mesh division scheme can be obtained.

The rate of change at the point Pi,j is shown in Fig. 2. Where the red dotted line
indicates the change along the 45° direction, and the blue dotted line indicates the change
along the 135° direction. The simple second-order difference quotient in the 45° and 135°
directions can be defined as follows:

g45(i, j) = Pi+1,j+1 − 2Pi,j + Pi−1,j−1

g135(i, j) = Pi−1,j+1 − 2Pi,j + Pi+1,j−1
(1)

If g45 < g135, it means that the rate of change of the image in the 45° direction is small,
and then the quadrilateral grid is divided into two triangular meshes along the red dotted
line to obtain a 45° division scheme. Otherwise, the division occurs along the blue dotted
line to get the 135° division scheme.

The combination of LBP algorithm and second-order difference quotient methods
can effectively extract the edge and texture, makes the division of triangle meshes more
accurate and efficient.

Fig. 2. Coarse division. Fig. 3. 3 × 3 Image patch. Fig. 4. Area coordinate
weighted average.

2.2 Construct Fitting Surface

This paper firstly constructs a quadratic polynomial surface patch centered on each
pixel. Then, the weighted average area coordinate is used to obtain the cubic polynomial
surface patch on the triangular mesh, so as to approximate the original surface.
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2.2.1 Construct a Quadratic Polynomial Surface Patch at a Pixel

Pixel can be regarded as the discrete data sampled from the surface.

Pi,j =
∫ j+0.5

j−0.5

∫ i+0.5

i−0.5
gi,j(x, y)dxdy (2)

The 3×3 image patch (shown in Fig. 3) is constructed using a double quadratic polyno-
mial gi,j, that is, gi,j defined in the xy area of the plane [i−1.5, i+1.5]×[j−1.5, j+1.5].
We construct the following quadratic polynomial fitting surface patch centred at pixel
Pi,j.

gi,j(u, v) = a1u
2 + a2uv + a3v

2 + a4u + a5v + a6 (3)

in which, u = x − i, v = y − j, a1, a2, · · ·, a6 are unknown patch coefficients of gi,j.
Figure 5(a)–(f) are the interpolated images obtained when only the corresponding

coefficients ai(i = 1, 2, · · ·, 6) are retained and the other coefficients are 0, and (g) is the
original image. Cleaned up for presentation purposes, the gray values of Fig. 5(a)–(e)
are magnified 5 times. The results in Fig. 5(a)–(e) imply that coefficients ai(i = 1, 2, …,
5) provide more image details. Image edge information is mainly provided by Fig. 5(d),
(e), and (f), while Fig. 5(a), (b), and (c) provide limited information.

Fig. 5. The result of magnifying the image using only individual coefficients ai(i = 1, 2, · · ·, 6).

The above-mentioned information shows that different coefficients have different
effects on the edges and texture of the image. As i(i = 1, 2, · · ·, 6) continuously
increasing, more low-frequency information and less high-frequency information can
be obtained. In the solution process, the low-frequency information of the image needs
to be determined first. Therefore, the algorithm firstly considers how to accurately solve
the coefficients of the constant term a6, and then solve the remaining coefficients. Here,
the method proposed by Zhang [24] is used to solve the polynomial coefficients.

From Eqs. (2) and (3), we can get:

Pi+m,j+n = a1m
2 + a2mn + a3n

2 + a4m + a5n + a6 + a1 + a3
12

, m, n = −1, 0, 1

(4)
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Equation (5) can be inferred from Eq. (6):

a6 = Pi,j − 1

12
a1 − 1

12
a3 (5)

As shown in Fig. 5, the first-order deviations along the four directions at the points are:

x : λ1 = (Pi+1,j − Pi−1,j)/2

y : λ2 = (Pi,j+1 − Pi,j−1)/2

x + y : λ3 = (Pi+1,j+1 − Pi−1,j−1)/2

x − y : λ4 = (Pi+1,j−1 − Pi−1,j+1)/2

(6)

From Eqs. (4) and (6), we can get:

a4 = λ1, a5 = λ2, a4 + a5 = λ3, a4 − a5 = λ4

The unknown coefficients a4 and a5 can be obtained by constrained least squares using
Eq. (7):

CLS(a4, a5) = ω1(a4 − λ1)
2 + ω2(a5 − λ2)

2 + ω3(a4 + a5 − λ3)
2 + ω4(a4 − a5 − λ4)

2

(7)

Unlike Zhang, the algorithm in this study introduces an edge angle θ to define the weight
function ωi:

ωi = 1

1 + μ2
i |cos θ | (8)

μi in Eq. (9) is the second-order difference quotient of the corresponding equation along
the same direction. For example, the definition of μi along the x direction is as follows:

x : μ1 = Pi+1,j − 2Pi,j + Pi−1,j

2
(9)

The edge angle θ is defined as: θ = 0◦ in x, y direction, θ = 45◦ in x + y direction,
θ = 135◦ in x − y direction. If there is a linear function gi,j(x, y) along the 45

◦
edge

direction, the determination of the weight function should make the λ3 on the x + y
direction play a major role on the determination of a4 + a5 on this direction. That being
said, the weighted value ω3 in Eq. (8) should be a larger value. The edge angle makes
the weight bigger, and it plays a greater role in determining the direction coefficient,
which is consistent with the edge characteristics of the surface and effectively improves
the accuracy of the surface.

In order to obtain the remaining unknown coefficients a1,a2, and a3, the correspond-
ing conditions can be obtained by using the 8 pixel points around the point Pi,j into Eq.
(10).

Pi+m,j+n = a1m
2 + a2mn + a3n

2 + a4m + a5n + Pi,j, m, n = −1, 0, 1, m �= n = 0
(10)
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in which, m, n = −1, 0, 1 and m �= n = 0.
Similarly, the least-square method with constraints is used to obtain the unknown

coefficients a1,a2, a3.The minimum objective function is as follows:

22 2
1 2 3 , 1 2 3 4 5 , ,

, 1,0,1
0

( , , ) ( )m n i j i m j n
m n
m n

CLS a a a a m a mn a n a m a n P P (11)

The weight function ω is determined in the same direction by using Eq. (8) in the same
way.

2.2.2 Constructing Cubic Polynomial Surface Patches on Triangular Mesh

As shown in Fig. 4, fi(x, y), fj(x, y), fk(x, y) are quadratic polynomial surface patches
constructed by using three vertices Pi,Pj,Pk as the centers, respectively. The triangular
surface patch fi,j(x, y) is obtained by weighted average of these three surface patches:

fi,j(x, y) = lifi(x, y) + ljfj(x, y) + lkfk(x, y) (12)

To simplify the process of surface construction, the definition of area coordi-
nates is introduced. As shown in Fig. 7, the area coordinates (li, lj, lk) =
(li(xi, yi), lj(xj, yj), lk(xk , yk)) of triangle M are defined as:

li = 1

2S
[yjxk − ykxj + (xj − xk)y + (yk − yj)x]

lj = 1

2S
[ykxi − yixk + (xk − xi)y + (yi − yk)x]

lk = 1

2S
[yixj − yjxi + (xi − xj)y + (yj − yi)x]

(13)

in which S represents the area of the triangle M. According to the nature of the area
coordinates, we can get li+ lj+ lk = 1. The obtained triangular surface pieces fi,j(x, y)
are spliced together to obtain a continuous and curved surface f (x, y).

2.3 Global Structure Sparse Regularization Optimization

There are inevitable errors in fitting the curved surfaces with surface patches, and it is
unrealistic to process the details of some edges and textures. Therefore, to reduce the
reconstructed artifacts of the enlarged image, this paper adopts a global structure sparse
regularization strategy to optimize the enlarged image.

The key of the strategy is to decompose the smooth component of the image [28].
Y is the enlarged image after the preliminary reconstruction. Y1 is the low-frequency
feature map of the image, and the residual component Yr that mainly containing the
high-frequency information of the image (i.e. edge texture and other details). The global
structure of the image can be expressed as:

Y = fl ⊗ Yl + Yr (14)

in which fl is a 3×3 low-pass filter, ⊗ represents the convolution operation.
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To construct the regularized function, two prerequisites need to be provided. One is
‖Yr‖p, indicating the residual component is sparse in lp norm. Given this study considers
convexity, the L1 norm is used. In addition, the low-frequency feature map Y1 needs to
be enhanced to smooth the image. This process is expressed as ‖gd ⊗ Yl‖22, in which
gd = [1, 2] and d ∈ {1 = level, 2 = vertical} indicates the gradient operator in the
horizontal or vertical direction. Based on these twoprerequisites,we can get a regularized
function as follows:

Rg = ‖Yr‖1 + ϕ

2∑
d=1

‖gd ⊗ Yl‖22 (15)

Where φ controls the smoothness of the low-frequency feature map. The larger the φ

is, the more image information the residual components contain. At the same time, the
image is smoother. As regularization enhances sparsity, the gradient of the reconstructed
image is reduced, which can effectively reduce artifacts at edges and textures.

At this time, the image reconstruction can be written as:

arg min(λ,ξ) ‖Y−fl ⊗ Yl−Yr‖22 + Rg (16)

3 Results and Discussion

3.1 Parameter Settings

The downsampled images of all experiments in this paper are obtained by averaged
downsampling. The parameters ϕ in the global structure sparse regularization strategy
are set to 1 empirically. The algorithm termination threshold ξ is set as e−5

.The max-
imum number of iterations is set to 4 to balance the time complexity and the obtained
image quality. Our experiments show that the time increases as the number of iterations
increasing. However, the PSNR value of the algorithm does not increase significantly
after 4 iterations. The maximum number of iterations is set to 4 to balance the image
quality obtained and the time complexity.

3.2 Analysis of Results

The experiment is divided into two parts. The first part is a comparison experiment of
10 representative images listed in Table 1. The second part is to compare the dataset
images, the dataset includes Set5, Set14, BSD100 and Urban 100. This paper compares
8 methods: Bicubic [12], LGS [28], FRI [17], Zhang [27], NLFIP [24], NARM [29],
SelfEx [25] and ANR [30].

Figures 6 and 7 show the results of nine representative methods of two images. To
facilitate observation, the nearest neighbor interpolation method is used to enlarge the
red area with a scale factor of 3 or 4.

Edges and textures are important indicators for evaluating high-resolution image
quality. Compared to other methods, the method proposed in this paper can keep edges
and texture well. Figures 6 and 7 mainly compare the effectiveness of the methods at the
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edges. In Fig. 6, Bicubic, Zhang, NLFIP, ANR and NARM at the edges are relatively
blurry, and there is obvious aliasing at the stripes of LGS, SelfEx and FRI. In Fig. 7,
it can be seen that the proposed method can display the sloping edges clearly. On the
contrary, LGS, SelfEx and FRI have obvious aliasing, and Bicubic, Zhang, NLFIP, ANR
and NARM have obvious fuzziness.

Fig. 6. (a) NARM. (b) ANR. (c) Bicubic. (d) LGS. (e) Zhang. (f) NLFIP. (g) SelfEx. (h) FRI. (i)
Ours. (j) GroundTruth.

Fig. 7. (a) NARM. (b) ANR. (c) Bicubic. (d) LGS. (e) Zhang. (f) NLFIP. (g) SelfEx. (h) FRI. (i)
Ours. (j) GroundTruth.

In this paper, the objective quantitative analysis uses peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) as the indicators to test the image quality.
Table 1 lists the PSNR and SSIM values of the images enlarged by 6 methods and the
scale factor is 2. The last line shows the average PSNR and SSIMvalues for eachmethod.
The maximum value of the PSNR and SSIM are marked in bold. The higher the PSNR
and SSIM values are, the better the image quality is. As shown in Table 1, the PSNR
and SSIM values of the method proposed in this paper are the largest except the SSIM
value of Baboon. Therefore, compared to the other methods, the method developed in
this paper can provide the best image quality.
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Table 1. The PSNR and SSIM of six methods

Image Ours NLFIP LGS Zhang NARM SelfEx

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bird 39.25 0.978 39.21 0.976 37.40 0.971 37.97 0.976 38.32 0.977 39.17 0.964

Butterfly 31.27 0.961 30.16 0.950 28.92 0.940 28.76 0.937 29.23 0.952 31.05 0.954

Woman 35.07 0.966 34.28 0.963 33.24 0.956 33.19 0.957 34.09 0.960 34.56 0.962

Baboon 26.14 0.973 25.28 0.987 25.86 0.786 24.78 0.979 23.74 0.899 25.45 0.965

Head 35.33 0.885 35.19 0.872 35.27 0.878 35.07 0.868 34.38 0.817 35.25 0.883

Barbara 29.15 0.984 27.74 0.897 28.17 0.891 27.78 0.983 26.33 0.913 28.54 0.982

Lena 36.55 0.991 35.92 0.899 35.64 0.925 35.38 0.899 35.35 0.915 36.52 0.990

Comic 28.55 0.921 27.44 0.902 27.44 0.897 26.69 0.875 26.58 0.886 28.33 0.915

Zebra 33.12 0.988 32.33 0.985 31.70 0.920 31.67 0.984 31.93 0.972 33.07 0.968

Monarch 36.28 0.997 35.27 0.996 34.30 0.968 34.09 0.995 35.40 0.992 36.08 0.994

Average 33.07 0.964 32.28 0.943 31.79 0.913 31.54 0.945 30.95 0.922 32.80 0.957

This paper tested the images from several datasets, including Set5, Set14, BSD100,
and Urban100, which are all classic datasets commonly used in image super-resolution
algorithms. According to the results shown in Table 2, the method proposed in this
paper leads to the largest average PSNR and SSIM values, implying the advantage of
the method proposed in this paper compared to other previous methods.

Table 2. Results of nine methods on different data sets

DataSet Ours NLFIP LGS Zhang NARM FRI Bicubic SelfEx ANR

Set5 35.73
0.957

35.51
0.945

34.68
0.937

34.50
0.948

34.55
0.938

33.87
0.934

33.64
0.929

35.45
0.941

35.26
0.943

Set14 31.84
0.956

31.37
0.893

29.02
0.864

30.02
0.928

30.66
0.924

30.15
0.912

30.22
0.868

31.25
0.885

31.22
0.884

BSD
100

31.15
0.892

30.45
0.871

28.72
0.841

29.93
0.855

30.87
0.876

29.36
0.851

29.55
0.843

31.08
0.886

30.98
0.879

Urban
100

29.08
0.940

28.43
0.888

26.52
0.859

27.22
0.911

28.51
0.903

25.93
0.795

26.56
0.837

28.89
0.917

28.68
0.908

4 Conclusions

The paper proposes a surface fitting image super-resolution algorithm based on triangle
mesh partition. This method not only effectively improves the quality of the enlarged
image edges and textures but also provides a better visual effect. By applying global
structure sparse regularization strategy on iterative optimization, the time complexity
of the algorithm is increased. Therefore, how to further improve the image quality and
effectively shorten the time are the focus of the next step.
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