
Sector Error-Oriented Durability-Aware
Fast Repair in Erasure-Coded Cloud

Storage Systems

Yifei Xiao1 , Shijie Zhou1(B) , Linpeng Zhong1 , and Zhao Zhang2

1 School of Information and Software Engineering, University of Electronic Science
and Technology of China, Chengdu, China

sjzhou@uestc.edu.cn
2 School of Public Affairs and Administration, University of Electronic Science

and Technology of China, Chengdu, China

Abstract. There is a variety of erasure-coded data placement schemes
that make a great contribution to data repair. To repair data, the opera-
tor should replace the failed node with a new node first. However, almost
all these schemes assume the node replacement process (NRP) is done
quickly, which is not true. Generally, NRP includes failure detection and
failure repair, which may take hours or even days. Long delay of replace-
ment may cause the recovered data lost again due to the lack of durabil-
ity. To improve data durability, we propose a novel scheme called Sector
Error-Oriented Durability-Aware Fast Repair (SEDRepair), which care-
fully couples data migration and data reconstruction in parallel for data
repair. We conduct mathematical analysis and compute the optimal repair
in our model. The results show that, compared to the traditional erasure
coding methods, SEDRepair saves the repair time by up to 60% in most
cases and improves data durability while keeping minimal storage.

Keywords: Data repair · Node replacement · Sector error · Data
durability · Erasure coding

1 Introduction

As failures are the norm in cloud storage systems, improving data reliability
while maintaining the system performance during data repair is one of the most
important challenges in the literature [12]. To guarantee data reliability in the
face of failures, erasure coding techniques are gaining popularity due to their
comparable fault tolerance with reduced storage overhead compared to simple
replication.

A variety of data placement schemes based on erasure coding make a great
contribution for data reliability [1,3,6,8,15]. To recover data, the operator should
replace the failed node with a new node first. However, almost all these schemes
assume the node replacement process (NRP) is done quickly, which is not true.
Figure 1 shows an abstract model to characterize gray failure [9], which means

c© Springer Nature Singapore Pte Ltd. 2021
Y. Tan et al. (Eds.): DMBD 2021, CCIS 1454, pp. 445–459, 2021.
https://doi.org/10.1007/978-981-16-7502-7_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-7502-7_41&domain=pdf
http://orcid.org/0000-0002-7372-6561
http://orcid.org/0000-0001-8314-754X
http://orcid.org/0000-0002-7771-2511
http://orcid.org/0000-0002-0943-891X
https://doi.org/10.1007/978-981-16-7502-7_41


446 Y. Xiao et al.

the external app observes a failure but the internal observer does not. While the
model also reveals the general process of NRP, which is used to handle simple
crash and fail-stop (CFS) failures. In general, as shown in Fig. 1, the process of
NRP includes 2 steps: ❶ failure detection, in which the observer detect a CFS
failure based on the external app’s report or its own probing. If both the app and
the observer agree that the system is experiencing a failure, a CFS failure can
be confirmed, ❷ failure repair, in which the node replacement should be done
and the reactor will do some repair work, such as rebooting or reconstruction.

Fig. 1. The abstract model of a data center, in which there are 2 logical entities: a
system, which provides a service, and an app, which uses system. Examples of a system
include a distributed storage service, a data center network, a web search service, and
an IaaS platform. An app could be a web application, a user, or an operator. The
observer can check a failure either from the app’s reports or its own probes, and this
process is called failure detection. Once a failure is confirmed, the observer can
inform reactor to handle it, such as rebooting or reconstruction, and this process is
called failure repair.

NRP is not easy because every part of the process can be time-consuming.
In failure detection, the observer asks the error detector to run at a certain
period. The interval of detection can not be too short to degrade the perfor-
mance of the system, or be too long to pick up the failure too late. Besides,
nodes can become unavailable for a large number of reasons (e.g., a storage node
is overloaded, a node binary may crash, a machine may experience a hardware
error [5]). Fortunately, the vast majority of such unavailability events are tran-
sient and do not result in permanent data loss, but it still needs 15 min to filter
most transient failures since less than 10% of events had node unavailability with
a duration under 15 min [5]. Besides, waiting for the app’s observation is also
time-consuming, because users may not report or report soon even when they
are afflicted by failures. In failure repair, the reboot scheme will take some time
and NRP is also time-consuming since the system is online 24/7 while those
operators are not. Therefore, NRP cannot be done immediately, the delay can
be hours or even days.

The longer the delay NRP takes, the higher the risk of losing recovered data.
To the best of our knowledge, there are only memories or caches can be used to
save recovered data before NRP. Memory overflow, server malfunction or power
outage could take place at any time, thus the updates of recovered data may be



Sector Error-Oriented Durability-Aware Fast Repair 447

lost permanently due to the lack of durability (updates are very common, more
than 90% of write requests are updates [18]).

It has long been recognized that encoding data into its erasure-coded form
will incur a much heavier computation load than simple replication [20], thus
there have been extensive studies on improving the repair performance of era-
sure coding, such as proposing theoretically proven erasure codes that minimize
the repair traffic or I/Os [8,18] or proposing methods based on XOR operations
to reduce the computation load [16], or to accelerate the computation by better
utilizing the resources in modern CPUs [23]. However, simple replication
can offer continuous data durability in the face of failures, which is
overlooked in the literature. Against the above backdrop, we restrict our
attention to data repair based on continuous data durability where it is required
that any storage nodes can not impede data durability even during data repair-
ing. To this end, we seek to answer the following questions: 1) How to guarantee
data durability before NRP? Can we provide continuous data durability without
adding extra storage (e.g., store data in other healthy nodes)? 2) Based on 1),
how to repair lost blocks quickly after NRP?

To answer the above questions, we did a lot of research and proposed
an effective scheme called Sector Error-Oriented Durability-Aware Fast Repair
(SEDRepair) to speed up data repair.

• We first start to issue the problem of continuous data durability, and we
mathematically analyze the optimal repair and its conditions to be met.

• We propose Sector Error-Oriented Durability-Aware Fast Repair (SEDRepair)
to provide fast repair based on data durability when the sector error occurs.

• Our work is generic, i.e., it can combine with other erasure codes and tackle
multi-failure cases.

• We conduct extensive test results and show that SEDRepair can effectively
reduce the total repair time while maintaining continuous data durability.

The rest of the paper is organized as follows. In Sect. 2, we introduce back-
ground and our motivation. In Sect. 3, we conduct mathematical analysis of our
model. In Sect. 4, we present the implementation of SEDRepair. We evaluate
SEDRepair in Sect. 5 and introduce the related work in Sect. 6. Finally, the con-
clusion of our work is in Sect. 7.

2 Background and Motivation

2.1 Erasure Codes and RS Codes

A leading technique to achieve strong fault-tolerance in cloud storage systems is
to utilize erasure codes. Erasure codes are usually specified by two parameters:
the number of data symbols k to be encoded, and the number of coded symbols
n to be produced [22]. The data symbols and the coded symbols are usually
assumed to be in finite field GF (2w) in computer systems. A (n, k) erasure
codes storage system composed of n nodes dedicates k nodes to data, and the
remaining (n − k) nodes are dedicated to coding.



448 Y. Xiao et al.

Fig. 2. The encoding process of RS(5, 3). The leftmost matrix is called generator
matrix, which encodes data blocks (d0, d1, d2) into codeword (d0, d1, d2, p0, p1).

RS codes [17] are a well-known erasure code construction and have been
widely deployed in production [7,14,15,17,21]. RS(n, k) encodes k uncoded
equal-size blocks into a stripe with n coded equal-size blocks via linear combi-
nations based on GF (2w). Figure 2 shows the typical encoding process of RS(5,
3), where the leftmost matrix is called generator matrix, which can be generated
from Vandermonde matrix [17] or Cauchy matrix [2]. The top k rows of the gen-
erator matrix compose a k × k identity matrix (here k = 3). The remaining m
rows are called coding matrix [15] (here m = n − k = 2). The generator matrix
encodes the data blocks (denoted by d0, d1, d2) into a codeword (d0, d1, d2, p0, p1).
Each block can refer to one symbol in the codeword. After encoding, data blocks
(d0, d1, d2) will be sent to the corresponding data nodes and the parity blocks
(p0, p1) will be sent to the corresponding parity nodes. From Fig. 2 we can infer
that, in a (n, k) RS-based cloud storage system, each parity block could be
represented by the linear combination of the k data blocks with the following
equation,

pi =
k−1∑

j=0

αi,jdj , i ∈ [0,m − 1] (1)

In this paper, we also use RS codes to generate the parity blocks.

2.2 Motivation

As mentioned in Sect. 1, NRP can be time-consuming, which may lead a lack of
data durability for a long time. However, most of data repair schemes overlooked
this problem, which increases the risk of losing data. In this paper, we seek to
fill this gap in the literature.

Besides, there is a large body of work that overlooked the accessibility of the
failed node with sector error, thus we utilize it to accelerate the process of data
repair as well as improving data durability.



Sector Error-Oriented Durability-Aware Fast Repair 449

Fig. 3. The repair model for BN. (Color figure online)

Fig. 4. The repair model for AN (the new node is as a data node).

3 Mathmatical Analysis

We conduct simple mathematical analysis to provide preliminary insights into
the performance gain of the theoretical optimal repair over the conventional
repair in a cloud storage system. For ease of presentation, we assume there is
only one failed node.

In our model, we employ RS(n, k), thus we have k data nodes and n − k
parity nodes. We label the data nodes as Di, i ∈ [0, k − 1] and the parity nodes
as Pj , j ∈ [0,m − 1],m = n − k. Generally, every node has identical number of
blocks, and we denote it as U . Furthermore, as we only consider the failed node
with sector error, i.e., we can use parts of the failed node. Let M denote the
accessible number of blocks, thus the number of lost blocks is U − M . As shown
in Fig. 3, the failed node Dk−1 has U − M lost blocks colored gray and M good
blocks colored yellow.

As mentioned above, according to whether the NRP is done, we divided data
repair into 2 phases: ① BN (before NRP), ② AN (after NRP).

For the First Phase (BN): As mentioned earlier, in BN, we can couple migra-
tion and reconstruction. For migration, let tm,M1 denote the time to migrate
a block from one node to another node and the migration number of blocks



450 Y. Xiao et al.

in BN, respectively. Similarly, for reconstruction, let tr, C1 denote the time to
reconstruct a block and the reconstruction number of blocks in BN, respectively.
As Eq. (1) shows, the reconstruction of one block needs to receive k blocks from
other k healthy nodes, while migration only needs to transmit one block from
one node to another, obviously, tm < tr. As migration and reconstruction can
run in parallel (see details in Sect. 4), we have,

T1 = M1 · tm = C1 · tr,M1 ∈ (0,M ], C1 ∈ [0, U − M ] (2)

Now, (C1+M1) lost blocks are re-accessible, thus the meta info server should
change the addresses of the lost blocks to P0, ensuring smooth connections
between users and these lost blocks.

For the Second Phase (AN): In this phase, the NRP is done, i.e., a new node
is available (as shown in Fig. 4, here we call the new node N). As P0 stores some
data blocks of Dk−1 for data durability in BN, we should decide the roles of P0

and N in this phase (e.g., if the NRP is too slow that most blocks of P0 are data
blocks of the failed node Dk−1, maybe it is better to let P0 replace Dk−1 as a
new data node). So we have two choices: ① exchange the roles of P0 and N , or
② maintain the roles of P0 and N .

Taking the example of choosing ①, that is, we should fully fill P0 with data
blocks and fill N with parity blocks. As shown in Fig. 4, it is required to do three
things:

1. Migration (P0 → N), it is required to migrate the parity blocks from P0 to
N , as P0 receives M1 data blocks from migration and C1 data blocks from
reconstruction in BN, there are U − M1 − C1 parity blocks colored green left
which can be migrated to N (as tm < tr, we prefer to employ migration).

2. Reconstruction for N (ER → N , ER means erasure coding), there are M1 +
C1 blank blocks of N demanding to be filled by reconstruction.

3. Reconstruction for P0 (ER → P0), as P0 moves U − M1 − C1 parity blocks
to N , these positions should be filled with data blocks by reconstruction.

Let T2 and T be the repair time of AN and the total repair time, respectively.
So we have,

T2 = max((U − M1 − C1) · tm,

(M1 + C1) · tr, (U − M1 − C1) · tr)
= max((M1 + C1) · tr, (U − M1 − C1) · tr) (3)

T = T1 + T2 (4)

From Eq. (2) to Eq. (4), we can readily show that T is minimized when
(M1 + C1) · tr = (U − M1 − C1) · tr, so we get,

C1 =
tm
tr

M1 (5)

C1 + M1 =
U

2
(6)



Sector Error-Oriented Durability-Aware Fast Repair 451

If we choose ②, similarly, it is required to do three things:

1. Migration (P0 → N), as P0 receives M1 data blocks from migration and C1

data blocks from reconstruction in BN, we have M1 + C1 data blocks colored
yellow which can be migrated to N .

2. Reconstruction for N (ER → N), N still need U −M1−C1 data blocks which
are generated by reconstruction.

3. Reconstruction for P0 (ER → P0), as P0 moves M1 + C1 parity blocks to N ,
these positions should be filled with data blocks by reconstruction.

So we have,

T2 = max((M1 + C1) · tm,

(U − M1 − C1) · tr, (M1 + C1) · tr)
= max((M1 + C1) · tr, (U − M1 − C1) · tr) (7)

The Interesting Thing is, no Matter we Choose ① or ②, T2 is the Same.
But here is the special case: if NRP is not finished(e.g., the operator notices
the failed node too late) until all the migrations and reconstructions have been
completed in P0, which means, P0 is totally a ‘DataNode’. Obviously, ① is the
better choice. Except for the special case, ① and ② have the same result.

In conclusion, Eq. (5) and Eq. (6) are the conditions of achieving the optimal
repair, which is in accordance with the results of our simulation experiments in
Sect. 5.

In this section, we only analyze the single-failure case, but if there are m failed
data nodes, e.g., Di, i ∈ [0,m − 1] is failed, we can set (Di, Pi), i ∈ [0,m − 1] as
pairs, and use the same method to repair them. Therefore, the scheme can also
be used in multi-failure cases.

4 Implementation

To address data durability in data repair, we propose a novel scheme Sector
Error-Oriented Durability-Aware Fast Repair (SEDRepair), which is divided
into 2 parts: 1) BN, 2) AN.

Similar to [20], to simplify our analysis, we do not address disk I/O interfer-
ence, which occurs in the following cases: ❶ a node reads a block for reconstruc-
tion and reads another block for reconstruction, and ❷ a node reads a block while
writing another block. Meanwhile, we do not consider the computational costs
of coding operations, which are negligible compared to disk I/Os and network
transmission [10].

4.1 BN

First let us review the first question: 1) How to provide data durability before
NRP? As mentioned earlier, updates are common in cloud storage systems.



452 Y. Xiao et al.

Before NRP, we can only store the updates of the failed node in caches or mem-
ories, however, this is dangerous. To improve the data durability, we set the
parity node as the temporary place for the data blocks of the failed node, since
it’s known that the parity node stores linear combinations of other data blocks
instead of primitive data. Therefore, it’s acceptable to replace parity blocks with
data blocks for data durability.

Fig. 5. The pipeline model of BN. (Color figure online)

Choosing the parity node as the temporary storage node to provide data
durability is a straightforward way, but it’s provably effective. Besides, it’s not
required to use extra storage to save data.

Feasibility for Parallel: In Sect. 3, tm and tr represent the time to migrate a
block from one node to another node and the time to reconstruct a block of the
failed node, respectively. Now we extend our general formulation to model the
values of tm and tr in detail.

Figure 5 illuminates the reason why we can couple migration and reconstruc-
tion in parallel: for migration (Dk−1 → P0), tm (the blue bars) consists of three
parts:

– R, the read time of a block,
– Sm, the transmission time of a block from one node to another;
– W , the write time of a block;

For ease of presentation, we assume R = W . For reconstruction (ER → P0), tr
(the green bars) also consists of three parts:

– R, the read time of a block, which occurs in k helpers,
– Sr, the total transmission time of all k helpers for sending k blocks, because

tm < tr, we get Sm < Sr;
– W , the write time of a block;

At any moment of BN (e.g., at ti in Fig. 5), where it is required to do three
things for migration:

1. writing a block in P0;
2. transferring a block from Dk−1 to P0;
3. reading a block in Dk−1;



Sector Error-Oriented Durability-Aware Fast Repair 453

As mentioned above, we do not consider the disk I/O interference, thus they
can run in parallel. On the other hand, we focus on the green part, where it
is required to do 2 things for reconstruction: 1) transferring k blocks to P0; 2)
reading k blocks from k helpers;

Obviously, we can also perform them in parallel. Therefore, it is feasible to
couple migration and reconstruction in BN.

Algorithm 1: BN Algorithm
Data:
the number of good blocks in the failed node M ;
the number of blocks in a node U ;
the past time before new node is available mt;
Result:
the number of lost blocks repaired in BN C;
// migration

1 if R > Sm then
2 tmax = R; tmin = Sm;
3 else
4 tmax = Sm; tmin = R;
5 end
6 mCnt = (mt− tmin −W )/tmax;
7 mTime = M × tmax + tmin + W ;
8 if mCnt < M then
9 C = mCnt;

10 else
11 C = M ;
12 end

// reconstruction

13 if W > Sr then
14 tmax = W ; tmin = Sr;
15 else
16 tmax = Sr; tmin = W ;
17 end
18 rCnt = (mt− tmin −R)/tmax;
19 rT ime = (U −M) × tmax + tmin + R;
20 if rCnt > (U −M) then
21 C = C + rCnt;
22 else
23 C = C + (U −M);
24 end
25 T1 = max(mTime, rT ime);

Algorithm Details: Algorithm 1 presents the main idea of BN. Let C denote
the number of blocks in the failed node repaired in BN, and mt denote the past
time before new node is available (if T1 < mt, that means the repair is over but



454 Y. Xiao et al.

new node has not arrived). As shown in Fig. 5, we should align the blue bars
based on the longest time consumer (here R > Sm, we align the blue bars based
on R), and store it to tmax (lines 1–5). According to the number of good blocks
M and mt, we can get the number of blocks for migration, and preserve it to C
(lines 6–12).

Meanwhile, we can do reconstruction for lost blocks. Similarly, we first get
the longest time consumer for pipelined work (lines 13–17), and then we can get
the rCnt which preserves the number of blocks for reconstruction (lines 17–24).
Finally, we compute the repair time of the first phase stored in T1 and return
the number of blocks repaired C.

Fig. 6. The pipeline model of AN. (Color figure online)

4.2 An

Feasibility for Parallel: Similarly, Fig. 6 illuminates the reason why we can
couple migration and reconstruction in parallel. At ti, the only difference between
BN and AN is that, we should read 2 blocks in every helper, but as mentioned
above, we do not address the IO interference, thus we can perform them in
parallel.

As the conclusion we make in Sect. 3, the AN algorithm is very easy to
implement. Thus, we do not show it in this paper.

This is our answer to the second question: 2) How to fast repair lost blocks
after NRP? Similar with BN, we can also couple migration and reconstruction
to do the repair in parallel.

In conclusion, SEDRepair consists of two phases: BN and AN, BN is used
to offer temporary data durability until the NRP is done, while AN is used to
complete the conventional data repair and offer continuous data durability.

5 Performance Evaluation

Experimental Setup: To verify our model, we conduct an number of tests,
which focus on the total repair time for data repair and the service time for



Sector Error-Oriented Durability-Aware Fast Repair 455

requesting one block. All tests in this work are conducted on a workstation with
an Intel Core i7 CPU (4 cores) running at 2.2 GHz, 16 GB DDR3 memory, which
runs the Ubuntu 18.04 64-bit operating system and the compiler is GCC 7.3.0
which is the default compiler of the OS. Using different compilers and different
compiler options may yield slightly different coding throughputs, but will not
change the relative relationship among different repair methods, when the same
compiler and compiler options are used across them.

In our tests, we remove all the actual operations of disk I/Os and network
transmission from the prototype, and simulate the operations by computing their
execution times based on the input network and disk bandwidths. We compare
SEDRepair with two approaches:

1. ERT (reconstruction-only), which is the conventional method based on RS
codes, ERT only use reconstruction operations;

2. ER (reconstruction-only, with durability), which is based on ERT, but ER
preserves recovered data in the parity nodes in BN. That is, ER offers data
durability.

We encode the blocks by RS(5, 3), RS(9, 6) (adopted by QFS [13]) and RS(14,
10) (adopted by Facebook [11]). Our implementation is based on encoding and
decoding APIs from Jerasure library 2.0 [15].

We assume the following default configurations. We set the disk bandwidth
as 100 MB/s and network bandwidth as 1 Gb/s. We configure both the block
size and the packet size as 64 MB. The number of blocks in every node is fixed as
1000 blocks (U = 1000) in each experimental run for consistent test. We compare
SEDRepair with ER and ERT. We plot the total repair time over ten runs.

Experiment A.1 (comparison of service time): First we consider the service
time per request. As app users can directly get data from memory instead of disk,
the service time only consists of read time (R in Fig. 5) and transmission time
(Sm and Sr in Fig. 5). As shown in Fig. 7a, the service time of SEDRepair and
ER is shorter than ERT, because ERT store recovered data in the memory of the
failed node in BN, which needs k blocks from k helpers. But SEDRepair and ER
first store data in the memory of the parity node in BN, which only need k − 1
blocks from helpers (as the parity node has a parity block for reconstruction),
thus the average service time of SEDRepair and ER is 1.64 s in RS(5, 3), 3.14 s
in RS(9, 6), and 5.14 s in RS(14, 10).

We next consider five possible factors for total repair time: 1) the proportion
of lost blocks, 2) the parameters of n and k, 3) the first phase time T1, 4) the
block size, 5) the packet size.

Experiment A.2 (impact of lost block): Figure 7b shows the simulation
results of the total repair time in different methods, in which we vary the pro-
portion of good blocks in the failed node from 0% to 100%, among which ER
is the worst, since its performance is bottlenecked by the network consumption
and I/O of the failed node. ERT is better than ER in most cases, but it can
not offer data durability in BN. Overall, SEDRepair reduces the repair time of
both ER and ERT, for example, by 68.0% and 63.3% when P = opt, which is
computed by Eq. (5) and Eq. (6).



456 Y. Xiao et al.

(a) The service time comparison un-
der different (n, k).

(b) The repair time comparison un-
der different amount of good blocks.

(c) The repair time comparison un-
der different (n, k).

(d) The repair time comparison un-
der different T1.

Fig. 7. The comparison under different service time, good blocks, (n, k) and T1.

Experiment A.2 (impact of erasure coding): We now evaluate the total
repair time for different RS(n, k). Here, we focus on RS(5, 3), RS(9, 6), and
RS(14, 10). We assume that T1 = 500 s, the proportion of good blocks is set
to 30% (i.e., P = 300, U = 1000). Figure 7c shows the results. The repair time
of ERT and ER increases significantly in RS(9, 6) and RS(14, 10) compared
to RS(5, 3), as it increases the amount of repair traffic. Overall, SEDRepair
reduces the repair time of ERT and ER by 60.7% and 63.6% in RS(9, 6), 59.4%
and 63.7% in RS(14, 10), and 32.1% and 33.5% in RS(5, 3), respectively.

Experiment A.3 (impact of T1): As mentioned earlier, it may take a long
time for NRP, thus we evaluate the impacts of different T1. We keep good blocks
70% and select RS(9, 6). We range T1 from 100 s to 900 s. As shown in Fig. 7d,
the performance of ER and ERT remains unaffected by different T1, since no
matter how long it takes before the new node available, when the requests come,
they can only employ reconstruction to repair data, and fill all blanks of the
new node by decoding. The blue line shows the impact of T1 for SEDRepair,
where there is a minimum value near 500 s. Our analysis shows that different T1

makes different amount of migration and computation operations, and produce
different proportion of data blocks in AN. According to Eq. (5) to Eq. (6), the



Sector Error-Oriented Durability-Aware Fast Repair 457

(a) The repair time under different
block size and packet size in RS(14,
10).

(b) The repair time under different
block size and packet size in RS(9,
6).

(c) The repair time under different
block size and packet size in RS(5,
3).

(d) The repair time in different
packet size in RS(9, 6).

Fig. 8. The repair time in different packet size.

closer M1
C1

is to tm
tr

, the shorter the repair time is. Thus, it is consistent with our
analysis.

Experiment A.4 (impact of block size and packet size): Figure 8 shows
the repair time in the impact of different block size and packet size. We found
that when the block size and packet size is small (i.e., from 1M to 8M), the
difference among them is not significantly obvious in the performance of repairing
data. However, if the block size > 8M, our method performs much more greater
than ER and ERT, not only because of coupling migration and reconstruction,
but also because the network becomes dominant. Meanwhile, we found that, as
shown in Fig. 8d, the packet size has little influence on our model.

6 Related Work

We focus on the continuous data durability throughout the whole data repair.
The main design of our work is mainly based on FastPR (G = 1) [20], which
couples migration and reconstruction operations in parallel. But FastPR is



458 Y. Xiao et al.

proactive because it conducts migration before the failure occurs. From [4] we can
see, some parts of the failed node can be accessible, which gives us an opportu-
nity to do data migration on the failed node. Therefore, different from FastPR,
SEDRepair is reactive. Besides, unlike FastPR, we do not need extra storage
(called hot-standby nodes in FastPR) for saving data.

CAU [19] is a update scheme which focus on mitigating the rack-across
update traffic, and it performs interim replication, which creates a short-lived
replication to maintain high data reliability. The idea of interim replication also
helps us design SEDRepair.

7 Conclusion

To solve the problem of continuous data durability before node replacement
process (NRP), we propose Sector Error-Oriented Durability-Aware Fast Repair
(SEDRepair), which carefully couples migration and reconstruction in parallel.
To verify our model, we have conducted series of experimental studies on its
performance to identify various impacts of different facts (such as block size,
packet size, erasure coding). The results of tests show that we can save repair
time by over 60% in most cases while maintaining fast service without extra
storage. We believe our method also works in a real environment, thus we plan
to migrate our model to a local cluster and Amazon EC2. Besides, the multi-
failure case is also our future consideration.

Acknowledgment. We thank the anonymous reviewers for their insightful feedback.
We also appreciate Jingwei Li, Zhirong Shen and Hu Xiong for their sincere help.

References

1. Blaum, M., Brady, J., Bruck, J., Menon, J.: Evenodd: an efficient scheme for tol-
erating double disk failures in raid architectures. IEEE Trans. Comput. 44(2),
192–202 (1995)

2. Blömer, J., Kalfane, M., Karp, R., Karpinski, M., Luby, M., Zuckerman, D.: An
XOR-based erasure-resilient coding scheme (1995)

3. Chan, J.C., Ding, Q., Lee, P.P., Chan, H.H.: Parity logging with reserved space:
towards efficient updates and recovery in erasure-coded clustered storage. In: 12th
{USENIX} Conference on File and Storage Technologies ({FAST} 2014), pp. 163–
176 (2014)

4. Emami, T.K.: Partial disk failures and improved storage resiliency, November 2011
5. Ford, D., et al.: Availability in globally distributed storage systems (2010)
6. Huang, C., Li, J., Chen, M.: On optimizing XOR-based codes for fault-tolerant

storage applications. In: 2007 IEEE Information Theory Workshop, pp. 218–223.
IEEE (2007)

7. Huang, C., et al.: Erasure coding in windows azure storage, p. 2 (2012)
8. Huang, C., Xu, L.: STAR: an efficient coding scheme for correcting triple storage

node failures. IEEE Trans. Comput. 57, 889–901 (2008)



Sector Error-Oriented Durability-Aware Fast Repair 459

9. Huang, P., et al.: Gray failure: the achilles’ heel of cloud-scale systems. In: Pro-
ceedings of the 16th Workshop on Hot Topics in Operating Systems, pp. 150–155
(2017)

10. Khan, O., Burns, R., Plank, J.S., Pierce, W., Huang, C.: Rethinking erasure codes
for cloud file systems: minimizing I/O for recovery and degraded reads, p. 20 (2012)

11. Muralidhar, S., et al.: F4: Facebook’s warm {BLOB} storage system. In:
11th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 2014), pp. 383–398 (2014)

12. Nachiappan, R., Javadi, B., Calheiros, R.N., Matawie, K.M.: Cloud storage relia-
bility for big data applications: a state of the art survey. J. Netw. Comput. Appl.
97, 35–47 (2017)

13. Ovsiannikov, M., Rus, S., Reeves, D., Sutter, P., Rao, S., Kelly, J.: The quantcast
file system. Proc. VLDB Endow. 6(11), 1092–1101 (2013)

14. Plank, J.S.: The raid-6 liberation code. Int. J. High Perform. Comput. Appl. 23(3),
242–251 (2009)

15. Plank, J.S., Simmerman, S., Schuman, C.D.: Jerasure: a library in C/C++ facili-
tating erasure coding for storage applications-version 1.2. University of Tennessee,
Technical report, CS-08-627, 23 (2008)

16. Plank, J.S., Xu, L.: Optimizing cauchy reed-solomon codes for fault-tolerant net-
work storage applications. In: Fifth IEEE International Symposium on Network
Computing and Applications (NCA 2006), pp. 173–180. IEEE (2006)

17. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind.
Appl. Math. 8(2), 300–304 (1960)

18. Shen, J., Zhang, K., Gu, J., Zhou, Y., Wang, X.: Efficient scheduling for multi-
block updates in erasure coding based storage systems. IEEE Trans. Comput.
67(4), 573–581 (2017)

19. Shen, Z., Lee, P.P.C.: Cross-rack-aware updates in erasure-coded data centers, p.
80 (2018)

20. Shen, Z., Li, X., Lee, P.P.C.: Fast predictive repair in erasure-coded storage, pp.
556–567 (2019)

21. Vajha, M., et al.: Clay codes: Moulding MDS codes to yield an MSR code. In: 16th
USENIX Conference on File and Storage Technologies (FAST 2018), Oakland, CA,
pp. 139–154. USENIX Association, February 2018

22. Wicker, S.B., Bhargava, V.K.: Reed-Solomon Codes and Their Applications. Wiley,
Hoboken (1999)

23. Zhou, T., Tian, C.: Fast erasure coding for data storage: a comprehensive study of
the acceleration techniques. ACM Trans. Storage (TOS) 16(1), 1–24 (2020)


	Sector Error-Oriented Durability-Aware Fast Repair in Erasure-Coded Cloud Storage Systems
	1 Introduction
	2 Background and Motivation
	2.1 Erasure Codes and RS Codes
	2.2 Motivation

	3 Mathmatical Analysis
	4 Implementation
	4.1 BN
	4.2 An

	5 Performance Evaluation
	6 Related Work
	7 Conclusion
	References




