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Abstract There has been an increasing trend to use multiple drones to cooperate
autonomously beyond visual line-of-sight missions such as remote services, digital
governance and planning, control of safety and security in a smart nation/smart
city. In addition, machine learning (ML) has emerged as a key enabler to achieve
efficiency in missions such as object detection and intruder detection. In this context,
most of the commercially off-the-shelf Wi-Fi drones have limited resources and do
not offer any firmware customization; these inherent limitations and technical gaps
highlight the need for a software-based smart controller framework to realize support
for a team of autonomous drones working together as an Internet of Drones (IoD).
This can form the basis for strategic management of new Smart Cities that aim to
optimize resources utilization and autonomize services. In this chapter, we present a
preliminary architectural design to support needed capabilities and features of a cross-
platform Smart Drone Controller (SDC) framework. An SDC framework supports a
deployed team of Wi-Fi-based drones to conduct assigned missions collaboratively.
The SDC’s ML engine has an option to choose algorithms according to the assigned
mission. Overall, our SDC framework prototype improves the reliability of the team-
based mission and enables a mixed selection of commercial drones to be deployed
remotely and collaboratively as an IoD to create positive impact in service autonomy
offered to smart city residents. This chapter details framework’s implementation
and results with multiple Tello Edu drones assigned to an intruder drone detection
mission.
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Abbreviations

UAV Unmanned Aerial Vehicle
UAS Unmanned Aircraft Systems
SDC Smart Drone Controller
C3I Command Control Communication and Intelligence
MME Mission Management Engine
MLE Machine Learning Engine
FCE Flight Control Engine
IoD Internet of Drones
YOLO You Only Look Once
CNN Convolution Neural Networks
SSD Single Shot Detection

1 Introduction

Drones/UAV’s are increasingly becoming part of a smart city’s infrastructure [1].
Smart city core applications include traffic monitoring, crowd monitoring, critical
infrastructure inspection, management of limited resources such as air/water quality,
tourism-related activities, geodeticworks for remote sensing, delivery of goods, solu-
tion tonatural disasters, andhealthcare applications[2].With the advent of the Internet
of Things (IoT), drone networking has been given a new terminology called “Internet
of Drones” (IoD). IoD works as a layered network control architecture designed
mainly for coordinating the access of Drones in controlled airspace and providing
navigation services between locations referred to as nodes [3]. Since drone communi-
cation lacks standards, they face several challenges in interoperable implementation,
design, and deployment in smart city applications and other domains. For example,
multiple Wi-Fi Drones working on large-scale missions or swarm operations face
the following issues.

Cross Platform: Drone vendor supplied Software Development Kit
(SDK)/Application Programming Interface (API) may be limited to mobile
operating system (OS) platforms only. Usually, an SDK may be used to execute
custom code in the drone during the flight. When missions involve heterogenous
drones then controllers with more interoperable platforms, e.g., Windows/Linux OS
may be needed for special-purpose applications and services.

Data Harnessing: With multiple missions, the drone’s flight control data and sensor
data need to be stored in the backend (example: video surveillance footage). This
historical data helps enhance future drone incidents; mission statistics and outcomes
can help to improve the efficiency and effectiveness of operational protocols and
procedures. Further, to get actionable insights from this data, support from ML-
based analysis with implementation/customization of appropriate ML algorithms
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and computer vision-based solutions are needed. In some remote missions, it would
be operationally effective if drone behavioral autonomy can be extended in real
time, e.g., able to change the altitude of the drone or the camera angle, when certain
infrastructural or object points or areas require closer observation.

Extending Range: Wi-Fi drones supported by the 802.11 family of protocols offer
less than 250 m range in open space [4]. Operating environment interference, device
used, and other parameters can affect the operating range which leads to degradation
of operational effectiveness of the team-based drone mission. These issues clearly
point to the need for a Smart Drone Controller (SDC) framework, which supports the
Internet of Drone (IoD) infrastructure to realize better operational decision-making
and consensus achievement for the mission’s drone team. For example, the SDC can
be implemented on mobile endpoint nodes inside a mesh network to increase the
drone team’s operating range. In this context, we propose a cross-platform (Linux,
Windows, Android OS) SDC framework. It communicates directly with the Drone’s
access point via Wi-Fi. The SDC comprises four core sub-systems as follows

(1) Command, Control, Communications, and Intelligence (C3I)
(2) Mission Management Engine (MME)
(3) Machine Learning Engine (MLE)
(4) Flight Control Engine (FCE).

The rest of the chapter is organized as follows. Related work and the SDC frame-
work’s technical overview are reviewed in Sect. 2. The proposed SDC framework’s
design and functionality are then discussed in Sect. 3. Section 4 examines the appli-
cation of the SDC framework in an Intruder drone detection mission. The results in
Sect. 5 shows the outcome of the deployed mission—a real-time object detection
task in the Intruder drone detection mission. Object detection is implemented using
SDC’sMLEngine with YOLO4/Darknet library, and performance evaluation is done
empirically. In Sect. 6, we present our conclusions and future work.

2 Related Work

Ground drone controller or smart drone controller-relatedworks are not readily avail-
able in the literature. However, we have reviewed some of the important articles
related to IoT for drones or swarm operation’s domain. In Ref. [5], the authors
describe how the multiple UAV or drone services with IoT platform operate with
oneM2M global standard. An automated UAV-based surveillance system using
multiple drones (Patrol UAV and Tracking UAV) was also implemented. However,
their surveillancemission depends on the video being transmitted through the camera
mounted on the UAV, for a user to act and no implementation of machine learning
approaches is involved for the mission. In Ref. [6], authors have attempted to provide
vision-based drone swarms by Imitation Learning (another approach of reinforce-
ment learning). It is more toward a fully decentralized, vision-based swarm with
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no communication. In Ref. [4], the authors analyze UAV IoT framework views and
challenges to efficient deployment of drones as “Things” with architecture, security,
and privacy points of view. Furthermore, the literature covers how to extend the IoT
security layers to UAV including vision-based security enhancements that support
self-protection and path/destination identification, safe landing locations by using
video-processing and computer-vision (CV) techniques. However, no implementa-
tion details of these techniqueswere discussed. In reference [7], the authors explained
well about machine-learning-based real-time object detection on an Android OS
mobile platform with some benchmarking results. We note the details mentioned
and consider these points when implementing SDC on the Android OS platform. A
lot of related works found in the literature [8–11].

As an alternative to drone firmware customization, commercial drones like Tello
Edu can be programmed via predefined code blocks to do basic flight navigation.
Currently, there is no support for autonomous teamwork. Similar limitations are
inherent in the AR Parrot Drone system. A comparison analysis overview of related
commercial offerings follows:

• Services companies offer drones equipped with computer vision and AI. AI-
processed image data from such drones yields actionable insights, however, no
autonomous teamwork is supported. Examples include Drone Sense, Neurala,
Scale, Skycatch, Alive, Skydio, etc. [12].

• Domo uses IP mesh technologies [13] that provide decision-support with predic-
tive analytics to business users. Drones need to be coordinated and controlled via
human operators via the mesh-based network.

• Skylark Drones uses cloud-based intelligence with system-integrated drones to
enhance a customer’s insights in sectors like utilities and infrastructure [14].
Machine learning is used only to process drone data. User-managed services
that the company offer includes analysis, tracking, and detection.

• Optelos is a leading provider of secure drone data management and AI analytics
software. However, the software executes on backend servers that depend on a
cloud-based platform for connectivity. An app is available to streamline delivery
of actionable drone data [15].

• DroneDeploy is a leading cloud software platform for commercial drones. Soft-
ware automates individual drone’s flight and facilitates the capture of aerial data
with a mobile app. The DroneDeploy software platform processes the imagery
using computer vision. There are solutions for user-controlled drone-based
mapping, modeling, and data analytics capabilities [16].

• GarudaRoboticsuses aBVLOSplatform thatwill be controlledby aDroneOper-
ations Centre [17]. There is currently no reported work on autonomous teamwork
in drones.

Often, the remote physical environments that drones operate in, may prohibit the
use of enterprise cloud-based platforms. Further constraints include the data transfer
overheads and the limited computing resources on each drone. Beyond these, the
above offerings apply machine learning to drone-collected data and not operational
mission-focused data, e.g., mission progress, drone actions/status, or event history
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etc. They also still require human intervention and control via internet/cloud connec-
tivity with no support for smart autonomous teamwork among multiple drones.
Unlike any other approach in recent literature, our main contribution in this chapter is
to design and develop smart drone controller (SDC) framework with implementation
of mission-based deep learning algorithm like YOLO/Darknet for real-time object
detection while SDC receiving video streaming from the drone/UAV; further in this
process, we evaluate the deep learning algorithms and benchmark it.

3 Smart Drone Controller Design and Functions

The Smart Drone Controller (SDC) is designed in Qt C++, a cross-platform appli-
cation development technology for desktop, embedded and mobile applications on
Linux platform. The SDC framework prototype is installed on laptop computers
running Ubuntu 20.04 LTS platforms. Each laptop computer has an external Wi-Fi
access card to enable wireless connection to a mission drone. The laptop’s internal
Wi-Fi card connects, in turn, to a wireless local area network (LAN) supported by
router. This forms the mesh network and facilitates other SDCs to connect within
network range. For user identification purpose, we label the first connected laptop
computer as SDC 1. Subsequent laptop computers joining the LANnetwork are iden-
tified as SDC 2, SDC 3, etc., though each SDC’s IP address act as unique identifier
referenced as SDCi@192.160.0.102,where i = 1, 2, 3…

Tello Edu drones are used drone team (Patrol and Tracking), which can capture
5MP photos, streaming 720p HD video, and around 13 min flight time per fully
charged battery. Its SDK connects to the aircraft through a Wi-Fi UDP port,
allowing programmatic control of the drone with text-based commands. A GUI
(Graphical User Interface) dashboard provides administrative control during devel-
opment, testing and mission specification, and selection phases. The completed SDC
framework is envisaged to be operationally deployed as depicted in Fig. 1.

The SDC framework deployed in a basic network is shown with SDC 1 and SDC
2 running different operating systems in Fig. 2. One of the SDC design goals is
to support cross-platform deployment. It has four core sub-systems with dedicated
functionalities as shown in Fig. 3.

i. Command, Control, Communications, and Intelligence (C3I) Sub-system

The C3I sub-system is used to support the sharing of mission-focused data
and actionable insights, assist the correlation and generation of decisions as
well as the achievement of team consensus. Mission-focused data is based
on specified surveillance and inspection scenarios. Examples include mission
progress, drone actions/status or event history, etc. The (C3I) sub-system is
designed to run cross-platform and supports multi-media data transmissions. It
is customized from an existing C3I sub-system used in an earlier IoT Real-time
Security Framework [18].
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Fig. 1 SDC framework architecture

Fig. 2 SDC framework basic network

ii. Mission Management Engine (MME)

The MME references and correlates mission-focused data, actionable insights
shared by the C3I sub-system to decide on the next course of action. Its main
objective is to coordinate mission flight progress and drone team actions.
A prioritized set of decisions will be derived and validated by each drone
controller to achieve team consensus. The Plug-and-Play Mission Interface
facilitates the integration of a range of mission-specific surveillance and
inspection apps with no change of the core SDC framework code.
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Fig. 3 SDC core sub-systems

iii. Machine Learning Engine (MLE)

Mission-specific directives are disseminated to the drone team via the C3I
sub-system. A mission-focused machine learning algorithm considers the
data (mission flight configuration, team actions, events history, and mission
progress) to generate actionable insights. These insights will be shared with
the drone team before consensus is derived. This differs from commercial
offerings that apply machine learning only to collected drone data.

iv. Flight Control Engine (FCE)

The Flight Control Engine’s primary purpose is to control drone flight behavior.
Itwill support the integration of a set of customizedflight navigation parameters
and code libraries for the specified deployed drones. In addition, we design the
SDC framework prototype with a Graphical User Interface (GUI) dashboard
application that supports developer administration during the implementation,
integration, and testing phases as well as mission administration.

3.1 GUI Support for C3I

The core functionalities of C3I may be programmed pre-mission in the SDC dash-
board’s home page where mission selection, network connectivity of SDC, and
drone’s network and battery status updates are displayed. Figure 4 shows the
screenshot of C3I page. It has the following functions:

• Get the IP address (self) of SDC
• Show the available SDC in the network
• Get the IP address of drone and network status
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Fig. 4 Dashboard (C3I) home page

• List the available missions for user selection
• Send the Take-off and other mission commands
• Showing the streaming video during flight
• All SDC messages are shown as log and stored in SDCLog folder.

The selected mission routine starts when the user clicks the “TakeOff” button. The
C3I sub-system verifies that the required mission and machine learning parameters
are configured correctly. If there are errors, error messages will be shown in the log.
Overall, the C3I plays a critical role to support successful mission completion.

3.2 GUI Support for MME

The drone mission flight details such as Takeoff altitude <UP>, distance to move
<FORWARD/BACKWARD>, movement direction <RIGHT/LEFT> options are
available to user on the MME page. These mission configuration details are saved
in the SDC.ini file for each mission and passed to the C3I sub-system. The distance
to move is referred as the distance between “Point A to Point B” where point A is
the starting point of the mission and Point B is the destination. Figure 5 shows the
MME’s configuration page.
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Fig. 5 MME configuration page

3.3 GUI Support for MLE

When a new mission is created, the MME’s configuration is uploaded by user as
shown in Fig. 6. Following this, the selected mission’s ML configuration will be
loaded automatically by MLE from the SDC.ini file. Clicking the Add button, a new
mission is created, the related machine learning weights, configuration, data file,
and names file are uploaded by the user. These files are saved in the SDC.ini file
and mission folder. The selected mission and files are deleted from mission folder
and SDC.ini file by the Delete button. The Edit option serves to update the ML
configuration file.

The values are passed to C3I module where the selected mission’s machine
learning model, configuration files, and other related modules are loaded. Hence,
the SDC mission routine starts when the user clicks the “Take-off” button
on the C3I Home page. We have implemented the real-time object detection
using YOLOv4/Darknet [19]—Neural Networks library for Object Detection. The
following section describes the Intruder drone detection mission used to verify the
functionality of the SDC framework prototype.



10 C. S. Veerappan et al.

Fig. 6 MLE configuration page

4 Mission Deployment

Deployment of the drone team (Patrol and Tracking drone) in the Intruder drone
detection mission involves the following steps

(1) At point A, SDC 1’s—Patrol drone 1 checks the mission configuration, takes
off and flies to waypoint B.

(2) At waypoint B, the Patrol drone searches for the Intruder drone and detects the
target. The drone then informs SDC 1 and alerts the user.

(3) SDC 1 then informs the other SDCs in the local network, i.e., SDC 2, SDC 3
via the C3I sub-system.

(4) The corresponding Tracking drones 2 and 3 are remotely tasked by SDC 2
and SDC 3, independently, to fly to waypoint B to confirm the detection of the
intruder drone. Upon confirmation, drones 2 and 3 informs SDC 2 and SDC 3,
respectively.

(5) With receipt of intruder alert messages from all 3 SDCs via the C3I sub-
system, SDC 1 correlates all received alerts and reaches consensus that there
is an intruder detected at waypoint B. The mission flow is described in Fig. 7.
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Fig. 7 Intruder drone detection routine

5 Intruder Drone Detection Mission Results

Intruder drone detection is an object detection problem. Recent developments in
convolution neural networks (CNN) have increased the deep learning methods in the
image detection algorithms. Algorithms such as Single Shot Detection (SSD), Faster
Region-based Convolutional Neural Networks (FasterR-CNN), andYouOnly Look
Once (YOLO). Among this YOLO version 3 (YOLOv3) shows the best overall
performance [20]. Last year, the YOLOv4 was released by Alexey Bochkovskiy,
and there were a large number of features that are said to improve Convolutional
Neural Network (CNN) accuracy [21]. In this preliminary research work, we have
experimented with and used YOLOv4/YOLOv4 Tiny as deep learning library with
Darkent as a backbone in Machine Learning Engine (MLE). Our training dataset
parameters are:
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Fig. 8 YOLO version
comparison

• 200 DJI MINI drone images to train as an intruder drone
• Transfer learning used with pre-trained YOLOv4 weights
• Image size: 416 × 416
• Batch size 6000
• Size of yolov4-custom_best.weights = 256 MB
• Size of yolov4-tiny- custom_best.weights = 23.5 MB
• Test System configuration: i7 i7-10750H CPU @ 2.60 GHz/RTX 2060

(6 GB)/Memory 32 GB RAM.

The training dataset consists of DJI Mini’s images from the public-domain and
images captured by our team.YOLOv4 Tiny/YOLOv3 Tiny are simplified versions
of YOLOv3/YOLOv4. YOLO-Tiny algorithm developed for embedded devices with
poor data processing capabilities. Its model structure is simple but the detection
accuracy is low.

Figure 8 shows our experimental outcomes with different YOLO models on
detecting intruder drone. In this test, we found that only YOLOv4 can detect the
Intruder drone target with >80% accuracy up to a 5 m distance. But the YOLO-Tiny
version is faster and more lightweight than others. This mission requires detection
of the Intruder drones at maximum distance. To conclude, the YOLO v4 model is
the best choice.

The next stage of our experiment is to improve the accuracy in the YOLO v4
model with different sized image sets—320 × 320, 416 × 416, 608 × 608. The
image size is dimensions width and height of the neural network in the YOLOv4
configuration file during training. As shown in Table 1, we can see that when the
image size increases, we get more accuracy percentage on the detection, but it also
incurs more processing time during training the dataset. We have decided to use
YOLOv4 with 416 × 416 frame size model for this performance verification stage
for near optimality.
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Table 1 YOLOv4 training
image size comparison

Distance (m) Accuracy at image size

320 × 320 416 × 416 608 × 608

1.0 97.65 96.92 99.16

1.5 88.53 95.12 98.28

2.0 75.25 92.73 98.36

2.5 55.23 91.16 94.35

3.0 55.23 87.91 93

3.5 Not detected 86.23 85.69

4.0 Not detected 85.27 76.43

4.5 Not detected 83.36 65.64

5.0 Not detected 81.58 Not detected

6 Conclusion and Future Work

In this work, we have presented the context, design, and functionality of the Smart
Drone Controller (SDC) framework. The real-time object detection mission imple-
mented with ML engine in the SDC framework prototype was verified. The intruder
dronewas detectedwith 80% accuracy consistently. This is an important use case that
leverages the current developments inMachine Learning/Deep Learning domain and
introduce value-added benefits to smart city planning, governance, and support. Our
Smart Drone Controller (SDC) enables access to more collaborative drone-based
services and technologies, support standardization of cross-platform development
efforts, facilitate seamless integration of drone networks in a digital economy and
lifestyle.

At present, the SDC framework design and features are still at an early stage of
development and the software is in beta mode. There is potential for improvement,
and we plan to add:

• Collision avoidance to ensure safe operations of mission routes.
• Collect the metrics like route length, minimum distance, battery used, total time,

time per each computation step, no. of unsuccessful missions, etc.
• Optimization of ML algorithms to reduce the latency and improve accuracy for a

chosen mission.
• Add features to enhance the drone’s network security and operational security.
• More real-time object detection applications like finding building wall cracks.
• Develop the SDC version to work in Windows OS and mobile device platform

with Android OS.
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