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Preface

In order to meet the demands of modern-day medical needs, it is of paramount
importance that biomaterials and bioceramics transcend their current limitations of
simply augmenting or replacing bodily components to a more innovative role where
they can interact with cells and tissues. Although the presence of material require-
ments is common during the design and development of medical devices, relevant
clinical prerequisites should also be incorporated so that appropriate prosthetics
and implantable components are produced. This resulted in the creation of a highly
interdisciplinary field known as translational medicine.

The definition of translational medicine generally agreed upon in the scientific
community is that it is the constructive translation of new and innovative technique
and information through advancements in basic research performed by interdisci-
plinary research teams into novel methodologies for preventing, diagnosing, and
treating diseases for the benefit of patients and the public at large. Translational
medicine has three main pillars: benchside (in the laboratory), bedside (clinical trials),
and the community.

Bioceramics employed in medicine and surgery plays a crucial role in expanding
the performance and function of medical devices. The science and technology of
bioceramics is truly interdisciplinary, and consequently, improved or innovative
bioceramics can only be achieved through advancements in physical and biolog-
ical sciences, engineering, and medicine. There have been increasing demands on
medical devices that they not only extend life but also improve its quality. Of even
greater importance are the exciting and potential opportunities associated with the
production of patient-matched ceramic components containing complex shapes with
three-dimensional (3D) printing technology.

Gaining a deeper understanding into the correlations between material properties
and biological performance will be useful in the design of innovative bioceramics and
in addressing issues of implant failure and related infection. The challenge remains in
providing safe and efficacious bioceramics with the required properties and an accept-
able biocompatibility level. As the field of innovative biomaterials finds increasing
applications in cellular and tissue engineering, it will continue to be used in new
ways as part of the most innovative therapeutic strategies.
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Divided into 2 volumes, the books comprise of 23 chapters written by top-notch
international surgeons and experts in the fields of orthopedics, maxillofacial surgery,
orthodontics, spinal surgery, and biomaterials. It is envisaged that each chapter will
provide an in-depth examination of the latest research and clinical advances in hard
tissue reconstruction and regenerations and in the treatment of bone diseases such as
0Steoporosis.

The first volume, Fundamental Research, covers the basic principles and tech-
niques used in the manufacture of bioceramics and biocomposites for various biomed-
ical applications including drug delivery, implantable bionics and the development
of the cardiac pacemaker, and bone tissue engineering. Furthermore, self-healing
materials have been attracting increasing interest in both engineering and medical
applications during the past two decades. Self-healing hydrogels are particularly
interesting because of their ability to repair structural damages and recover their
original functions, specifically in tissue engineering.

The current emphasis of tissue engineering has changed by seizing the advan-
tage of combining the utilization of living cells with 3D scaffolds to transport vital
cells and other biological materials such as stem cells and peptides to the damaged
site of the patient with the intention of promoting tissue healing and regeneration.
Clinical applications of bioactive composite scaffolds containing bioceramics and
biodegradable polymers have attracted much attention during the past three decades.
These composite grafts can also provide antibacterial properties when combined with
therapeutic metal ions such as silver and copper. Similarly, functionalizing metallic
surfaces and bioceramics with antimicrobial peptides would enable the creation of
scaffolds and implants that can provide a mechanism against bacterial infection,
while at the same time, stimulate bone formation.

The second volume, Surgical Applications, covers the translation of innovative
techniques and novel applications of bioceramics and bioceramics-based composite
from the laboratory to a clinical environment in areas such as wound manage-
ment following orthopedic surgical incisions and the application of bioresorbable
bone fixation devices and ceramic—polymer biocomposite bone grafts for the repair
of damaged tissues in dentistry and orthopedics. The advancement in personal-
ized surgery and the manufacture of patient-specific 3D-printed bioceramic scaf-
folds for bone regeneration in craniomaxillofacial and spinal surgery are also thor-
oughly examined in this volume. Furthermore, the incorporation of biogenic mate-
rials such as bone morphogenetic proteins as well as regenerative pharmacologic
agents like dipyridamole will allow for the development of a new generation of smart
bioceramics-based scaffolds that promotes osteoconductivity and more importantly
osteoinductivity.

It has been a well-established fact that bone undergoes a continuous process of
remodeling or regeneration in which the activities of osteoclasts and osteoblasts
are combined. Osteoporosis arises if this relationship became unbalanced and the
quantity of bone resorbed exceeds the amount of new bone formed resulting in a
reduction in bone strength and an increase in fracture risk. Reducing the fracture
risk thus became the primary focus in the treatment of osteoporosis. Monoclonal
antibodies have been applied in recent years in the treatment of osteoporosis. In this
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volume, we also intended to give our readers a fundamental insight into the basic
properties, the technology used in their development, and their clinical application
in the treatment of osteoporosis.

Finally, I would like to express my deepest gratitude to all my contributing authors
from Australia, France, India, Italy, Japan, Portugal, South Korea, Tanzania, Turkey,
the United Kingdom, the United States, and Vietnam for their time and valuable
contributions to this informative book during the challenging time of the COVID-19
pandemic. I would also like to thank my great family for their support throughout this
endeavor. Also, I would like to give very special thanks to my mentor and co-editor
Prof. Besim Ben-Nissan for his friendship, support, and advice for over two decades.
Finally, I would like to acknowledge the people at Springer Publishing, especially
Mano Priya Saravanan, Ramesh Premnath, and Dharaneeswaran Sundaramurthy, and
Prof. Min Wang for their help and for making these two books possible.

Sydney, Australia Andy H. Choi
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Chapter 1 ®)
Past and Future of Wound Dressing Gissiia
in Soft and Hard Tissue Surgery

Innocent J. Macha and Besim Ben-Nissan

Abstract Wound management following surgery is challenging because of high
rates of wound infections due to the rise of antibiotic-resistant bacteria and increased
risk of allergic reactions. On the other hand, several factors play significant roles
in wound healing such as surgical techniques used, aging, oxygenation and pre-
existing medical conditions such as diabetes. The application of wound dressings
plays critical roles in wound healing and infectious prevention. The choice of proper
wound dressing depends on the type of a wound. This chapter will comprehensively
discuss advances in surgical wound dressings for soft and hard tissues with a focus
on proper preparations techniques and characterizations. Different post-operative
wound healing monitoring procedures will also be covered.

Keywords Wound healing - Wound dressing - Infection control - Dressing
materials + Alginate + Hydrogel - Hydrocolloid

1.1 Introduction

Among the key elements of surgical wound care, appropriate dressings play critical
roles in wound healing as well as prevention of potential risk of surgical site infection
and associated complications such as wound dehiscence. It has been reported that
about 27 million surgical procedures are performed in the US each year with up to
5% resulting in surgical site infection [1]. The burden of surgical site infection in
EU/EEA is estimated at 543,149 cases annually [2]. In developing countries, few data
are available on the healthcare associated infection and there is a need to improve
surveillance and surgical site infection control practices [3].
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Dressing selection and dressing change protocol in surgical wounds is not always
straightforward but necessitate taking into account patient’s circumstances and
personal preferences and education in psychosocial terms as well as wound’s healing
capacity without disturbing the healing process. It has been suggested that the ideal
dressing does not cause trauma or disturb the wound bed, enable easy and pain-
free removal and should create an undisturbed healing environment. “Undisturbed
wound healing”, a relatively new concept is gaining much attention in clinical set-
up for acute and chronic wound management [4]. Undisturbed wound healing is
connected to the choice of wound dressing materials which decrease frequency of
dressing changes, provide moist wound healing and prevention of wound adherence.
Principally, wound healing can be improved if the dressing remains in-situ especially
during the initial stages of healing such as epithelialization while preventing peri-
wound skin damage, bacterial infections and avoiding frequent dress removal which
is associated with an alleviated pain and delay healing. Dressing change is advisable
to base on clinical need rather routine.

This chapter will comprehensively discuss advances in surgical wound dressings
for soft and hard tissues with a focus on proper preparations techniques and charac-
terizations. Different post-operative wound healing monitoring procedures will also
be covered.

1.2 Wound Healing

The American College of Surgeons and Surgical Infection Society suggest that
surgical wounds heal follow one of the three mechanisms: primary, secondary or
tertiary intention [S] with four phases namely hemostasis, inflammation, prolifera-
tion, and remodeling regardless of the aetiology of the wound. These four phases are
separated but often occur concurrently. However, the mode of recovery of bone and
soft tissues wounds differ. Primary intention healing refers to the healing or wound
closure where by tissues are replaced in their original anatomic position similarly
to their structure they had before injury and without any tissue loss. This healing
is quick and if happens within eight hours after initial incision will prevent wound
exposure to substantial contaminants and minimal scarring.

Secondary intention healing occurs in wounds that are not linear and may take
longer time to heal. These are the wounds with high risk for dehiscence due to poor
patient’s conditions, exposed to substantial contamination, or subjected to extensive
tension as in articulating joints [6]. Wounds that are not covered with epithelialized
tissue due to intentional surgical procedures such as extraction sockets or accidental
wounds where there is loss of tissues, fall in this category.

The term tertiary intention referred to delayed wound healing from either primary
or secondary intention due to bacterial infections or excessive contamination. In that
case, wounds would require debridement followed by monitoring to ensure tissue
regeneration and wound closure. Also, traumatic injuries such as crush injuries which
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causes vascular damage and alteration in tissue perfusion undergo tertiary intention
wound healing.

1.2.1 Phases of Acute Wound Healing

The four phases of wound healing mentioned above are continuous and over-
lapping phases. Naturally, the body will activate healing processes by providing
various components of extracellular matrix (ECM) in response to different micro-
environment conditions. These phases comprising hemostasis phase, inflammation
phase, proliferation phase and remodeling phase and Fig. 1.1 shows different compo-
nents of ECM at each healing phase. Each phase must occur in the appropriate time for
normal wound healing but multitude of factors associated with patient’s conditions
may impair the wound healing in the post-operative period. It is therefore, impor-
tant for surgeons and other health workers involved in wound management to have
in-depth understanding of important factors affecting wound healing for successful
wound management [8]. Aging has been reported to affect different phases of wound
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healing and the course of chronic ulcer formation. Lifestyle and systemic diseases
such as diabetes, cancer, kidney failure and high blood pressure are reported to
significantly delay the healing process. Apart from patient’s lifestyle which could
be changed, controlling underlined diseases in support of wound healing could be
challenging. In a healing process, as previously indicated, wound dressings play crit-
ical roles in wound healing and choosing the right type of dressings and application
techniques for a particular wound need skilled and experienced personnel with a
deep understanding of wound healing dynamics.

1.3 Wound Dressings

The continuing advancement of science and technology has changed the way wounds
are being dressed. Since the first use of wound dressing developed from natural
materials in 18th Century, significant modifications have been done in the last 50 years
with the first modern wound dressing development in middle 1981 [9].

The modern wound dressings were more active with the ability to maintain a moist
environment at the wound bed and absorbing exudate. Nowadays there are smart
dressings with electronic sensors integrated to detect and give a wireless communi-
cation of the data in real time on the healing progress [10]. These smart dressings
offer a major benefit of facilitation of monitoring a healing process remotely resulting
in reduction of hospital cost. The challenges associated with smart dressing include
biocompatibility, moisture and biofouling resistance, availability of miniaturized
components, calibration and disposability.

The ideal wound dressing has characteristics discussed comprehensively in these
reviews [11, 12]. However, there are no a single material that possesses all ideal
criteria. Different strategies such as combinatory approach have been suggested
in the design of wound dressing materials. This approach combines two or more
different materials with different properties needed for supporting wound healing. It
should be iterated that the choice of dressing materials depends on wound character-
istics, patients’ preferences and many other factors. However, for practical purposes
only three factors such as wound characteristics, clinical effectiveness and economic
factors are considered. Currently, there are different synthetic dressing materials in
clinical use that can be categorized based on their ability to adsorb exudate, deliver
drugs such as antibiotic, anti-inflammatory or growth factors [13, 14], ability to
promote granulation and the activeness. Table 1.1 presents the summary of different
wound dressing categories and Table 1.2 highlights the wound dressing materials
that were previously used in the past and those currently in use.
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Table 1.1 Wound dressing materials and their categories

Category/main Dressing materials Suitability Change frequency
function
Exudate Hydrophobic polyurethane | Moderate to highly 1-4 days
absorbent or silicone foam, alginate exudating wounds
[15-17]
Delivery vehicle | Anticeptic (Silver, lodine, Prevent and treat 3 days
Chlorhexidine, wound infection

Polyhexamethyl-biguanide
(PHMB), Honey, Acetic acid
and Potassium
permanganate) [18-20]

Promoting Hydrocolloid [21] Granulated wounds 3-5 days
granulation with mild to moderate
exudate
Maintain moist | Polyurethane films and Superficial wounds, 1-3 times per week
environment semipermeable membrane, | wounds with light
hydrogels (propylene glycol) | exudate, wounds on
[17,22] elbows, heels or flat
surface
Activeness Poly (hydroxyethyl Delivery and 2-3 days
methacrylate) (pHEMA) and | extraction of solutes
silicone [23] via externally

controlled convective
mass transfer

Pressure Compression bandages, Venous laceration 3—6 months
stockings [21]

1.4 Post-operative Wound Management

Proper management of post-operative wounds provides a supportive and protective
environment for wound healing and surgical site infection respectively. Dressing
being one of the major components of wound management that promote healing by
providing a moist environment and protecting the wound from potential danger. In
surgical wounds, the specific function of the dressing is to absorb blood or exudate
fluid in the immediate postoperative phase that might lead to maceration of the wound.
Each wound needs a specific dressing regime to accommodate wound characteristics
and patient’s preferences. Dressings applied on a surgical wound should ideally be
left in place undisturbed unless to have the wound reviewed or when wound become
stained by discharge or clinical signs of infection. It has been suggested that it is not
necessary to dress a closed surgical wound after the removal of the initial. Typically,
initial surgical dressings are to remain undisturbed for 48—72 h and some stay in
place for up to seven days. However, some patients may prefer to have their wounds
dressed.
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Table 1.2 Past and present wound dressing materials, properties and usage

Materials

Properties and function

Usage

Animal-based (e.g.:
collagen, jellyfish
collagen, sponge)

Hydrophilic, can be porous,
high absorption ability

Acute wounds, skin regeneration

Herbal origin (e.g.: cotton,
bamboo viscose)

Cellulose, and/or viscose,
double layered, and sorption
ability

Burn wounds, chronic wounds
and ulcerations

Synthetic origin (e.g.:
Polyurethane, PU, PLA,
N-isopropylacrylamide)

Inexpensive well distributed
porous structures and high
flexibility and strength

Easily produced thin films, they
are suitable for relatively
shallow wounds, and with low to
moderate drainage, and high
absorbance

Alginate Highly absorbent, might need a | Infected and noninfected
secondary dressing wounds, but not for dried ones,
but can be made to aid blood
coagulation
Hydrogel Many different compositions, For wounds with low to

transparent, maintains a moist
wound environment, facilitate
autolytic debridement

moderate exudate, burns, ulcers,
surgical wounds, and skin
repairs

Hydrocolloid

Ability to inhibit bacteria
growth, appropriate for wounds
with low to moderate drainage,
encourage autolytic
debridement, and excellent
adhesion property

Traumatic injuries, leg ulcers,
acute and chronic wounds,
pressure sores, minor burns,
inappropriate for infected
wounds and diabetic foot
ulceration

Medicated

Mainly for prevention of further
infections, facilitate removal of
necrotic tissues, and most
importantly promotes tissue
regeneration

Mainly for infected wounds

Most of the open surgical wounds that are not linear on involve surgical proce-

dures such as extraction of sockets heal by secondary intention and they need appro-
priate dressings [24]. The risk of opting gauze-based dressing causes excessive pain
on removal because of dress adherence on the wound and covered by the healing
tissue. Studies have revealed that the use of hydrofibre dressing in surgical wounds
tend to decrease pain during dress change, reduce length of stay, enhance healing
and improve patient confidence. The recommended timeframe for staple or suture
removal is one to two weeks unless for cosmetic concerns in the area such as face
or eye they may require earlier removal to prevent scarring (three to five days).
For wounds located at palms or soles normally take 2—-3 weeks for dress change.
Other wound closure supporting materials such as steri-strips or tissue/skin adhe-
sives should be left in place until the fall off by themselves, usually five to ten
days.
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1.4.1 Post-operative Wound Complications

Surgical wounds suffer from two common complications such as surgical site infec-
tion and wound dehiscence. These normally occur when a healing process is stalled
at the inflammatory healing phase. The severity of these complications ranges from
mild cases needing wound care management and administration of antibiotics to
serious cases with secondary surgical procedures and a high mortality rate [25]. The
main contributing factors such as surgical technique and degree of contamination
have been regarded as strong indicators for surgical site infection and wound dehis-
cence. Complication risk factors can be grouped based on patient, surgical procedures
and post-operative factors. However, some scholars have refuted surgical technique
contribution to pathogenesis of the complications due to mainly the advancement
of surgical tools and appropriate procedures and training. Despite the advances in
medical supplies and devices for surgery, postoperative wound complications still
remain a serious challenge. Surgical site infection alone comprising of about 15% of
all health care associated infections, reportedly with more than 500,000 yearly [26].

Preventive measures for wound complications begin before surgical procedures.
This includes thorough assessment of the risk factors associated with the patient
(pre-existing underlined medical conditions that may limit healing by preventing the
delivery of oxygen and necessary nutrients to the healing tissues), intra-operative,
and post-operation, using of good surgical techniques and meticulous hemostasis,
proper technology choice to enhance healing and close monitoring strategies in the
post-operative period. Pre- and intra-operative risk factors and mitigations discussion
is beyond the scope of this chapter and only post-operative issues will be presented.

Different factors contributing to post-operative surgical site infection include satu-
rated or leaking wound dressing, physical disruptions of staple, suture or glue that
holds the tissue together before re-epithelialized which allow migration of bacterial
to the wound. The Centre for Disease Control and Prevention’s (CDC) guideline for
prevention of surgical site infection describes the specific criteria required for an
infection to be considered a surgical site infection [27]. It is indicated that surgical
site infection can occur within 30 days postoperatively or a year later for an implanted
device. An infection is considered surgical site infection if the tissues are affected
and show histological signs including purulent drainage or abscess.

1.4.2 Dressing Selection on Surgical Wounds

Post-surgical incision care being an important part of wound healing, must consider
all aspects of wound care in order to reduce the risk of infection and associated
wound complications. Dressing selection, dressing protocol and dressing change
time constitute to the ideal care of surgical wounds. It has been suggested that the
concept of undisturbed wound healing should be given considerable attention in
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surgical wound care. While there are specific indicators which should trigger imme-
diate dressing change such as potential dehiscence, excessive bleeding, dressing
saturation and suspected local infection, a longer wear time should be considered
more suitable for the healing. Apart from considering dressing and wound charac-
teristics in wound dressing selection, different requirements for individual patients
should also be considered. Table 1 shows suitability of different wound dressing
materials based on the wound characteristics. The ideal dressing, on the other hand
should possess specific properties required in managing post-surgical wounds [28].
Enough evidence should be needed to support the use of any specific type of dressing
post-operatively for wounds healing by different mechanisms; primary, secondary
or tertiary intentions. Acute surgical wounds sometimes are left open to heal by
secondary intention but require moist environment in which the wound dressings
should be able to keep moist environment and prevent bacteria from entering wound
bed.

1.4.2.1 Dressing Characteristics

Ability to handle exudate: Exudate is produced as a normal part of a healing process
to keep the wound bed wet. The wound fluid acts a medium for cells, nutrients
and growth factors to migrate to the wound and help the healing process. For the
normal wound healing, exudate production decreases over time but in chronic wounds
exudate is produced over the prolonged period of time in higher amount than normal.
Exudate contains high level of substance that are detrimental to cell-supporting extra-
cellular matrix which also lead to wound pain, delayed healing, enlargement of the
wound, skin maceration and local wound infection. Dressing that can minimize the
effects of excessive exudate to the wound healing would be an important parameter
to consider in choosing the dressing materials for surgical wounds.

Ability to stretch: This is a key important parameter for dressing materials for
skin protection and patient comfort and mobility. Flexible and conforming dressing
materials increases the levels of physical activity while recovery. With flexible mate-
rial pain management is improved through wound contact layer and reduce the risk
of blistering or irritation. The advancement in technology provides the possibility to
tailor the properties of flexible materials for specialized wound management applica-
tions with an improved reliability and efficiency. Most of the dressing materials such
as films, foams, adhesives, mesh and textile could be modified to have an improved
flexibility and conforming traits.

Waterproof: Waterproof dressing offer protective barrier to the damaged tissues
against contaminants. Patients wearing waterproof dressing can feel more secure
and protected even in challenging environment. It increases the level of physical
activities such as swimming without using an addition product on the wound. Most
of waterproof dressing have transparent layers that can allow monitoring of wound
without removing the dressing [29].
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Transparency: Transparent dressing which are referred to as transparent films are
impermeable to liquid, water and bacteria allowing one-way passage of moisture
and gases. They are normally ultra-thin, flexible and waterproof, offering optimal
protection for the wound. Transparency allows visualization of the wound bed make it
easy to follow the wound healing progress without dressing removal. These dressings
are suitable for the treatment of frictional wounds, closed surgical incision sites, skin
graft and donor sites, catheter sites and areas of friction. They cannot be used for
wounds with excessive exudate and usually changed three times a week [15].

1.4.2.2 Surgical Wounds

In this sub-section discussion is limited to selected common surgical wounds seen in
clinical and community settings but we are aware that there are many different types
of surgical wounds that may be encountered.

Total Joint Arthroplasty

Ithas been reported elsewhere that the ideal dressing for orthopedic surgical incisions
should be absorbent, able to act as complete barrier, transparent, non-adherent, able
keep the mound moist and require minimum changes. However, there is no single
dressing material that encompasses all of the above parameters [15]. It envisaged
that the combinatory approach in the development of dressing materials will result
into a product with all important parameters. Hydrofiber and hydrocolloid dressings
can handle excess exudate but keep the wound moist, have high absorptive capacity
and permeability. They have low blistering rates and require minimum change thus
reduce the risk of surgical site infection.

Caesarian (C) Section

C-section surgery is a surgical birthing method attributed with more risks of post-
surgery complications such as premature rupture, wound infections, pelvic peri-
tonitis than traditional vaginal births. Similar abdominal surgery to C-section include
hysterectomy, appendectomy, hernia surgery and laparotomy. Proper dressing mate-
rial should be able to handle exudate from the wound, provide optimal healing condi-
tions, protect the surgical area and prevent stitches catching clothes. The skin edges
normally seal within one to two days after the operation but varies from a person
to another. After two days wound can usually be left open, however, some people
prefer their wounds be covered.
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Skin Graft and Donor Site

Skin graft is surgical procedures undertaken to remove a section of a skin of varied
thickness from one part of the body (donor site) such as upper thigh and placed on
a site of the injury (recipient site). Donor site wound care would require application
of wound dressing capable of supporting moist environment [30]. Since the healing
at donor site is by epithelialization, a transparent dressing or fine mesh gauze are
preferred. Skin grafts are normally sutured, stapled or glued at the recipient site,
treated like surgical wound and covered with an appropriate dressing. The choice
of dressing remains with the surgeon responsible. Post-surgical risks are bacterial
infection, graft contracture and hematoma. The healing takes up to six weeks and up
to two years for scars to mature and inflammation to cease [31].

1.5 Future Directions

It has been becoming more clearer in the translational medicine that by incorporation
of the therapeutic agents into the wound dressings, it is possible to repair the wounds
more quickly and more efficiently. Among the therapeutic agents, antibiotics can
be used to prevent wound infections, growth factors to revitalize damaged tissues
and supplements, such as vitamins and minerals. In the past, plain gauze and thin
paraffin-impregnated gauze were utilized as drug carriers. Nowadays, hydrocolloids,
hydrogels, alginates, polylactic acid and polyurethane films/foams are the materials
used to deliver therapeutic agents. One factor that limits the wound healing process
is an infection and early detection.

Knowing the currently encountered problems, wound dressing researchers in addi-
tion to new material development are directing their efforts in next-generation wound
dressings with the abilities of diagnosis during early stages, real-time monitoring,
and on-demand therapy. Number of investigators, combined bioelectronics, and a
smart flexible electronics-integrated wound dressing with a double-layer structure,
the upper layer of which is polydimethylsiloxane-encapsulated flexible electronics
integrated with a temperature sensor and ultraviolet (UV) light-emitting diodes, and
the lower layer of which is a UV-responsive antibacterial hydrogel [32]. It was
reported that this dressing is expected to provide early infection diagnosis via real-
time wound-temperature monitoring by the integrated sensor and on-demand infec-
tion treatment by the release of antibiotics from the hydrogel by in situ UV irradiation.
Their animal trials showed that this integrated system possesses a good flexibility,
excellent compatibility, and high monitoring sensitivity and durability. It is envisaged
that this technology can be extended to patches using current nanotechnology.
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1.6 Conclusion Remarks

The need for proper wound dressing materials to appropriately manage surgical
wounds is gradually increasing as a major aspect to prevent post-operative compli-
cations, a growing area of concern for patients and surgeons. This is an opportunity
for the scientific community and biomedical industries to put more effort in devel-
opment of advanced wound dressing materials with ideal characteristics. A single
material, even with chemical and surface modifications cannot possess all necessary
traits of an ideal dressing, to support healing of surgical wounds. With the advances in
technology, we believe the combinatory approach in dressing development could be
employed to address the problem. With the large number of wound dressing products
available in clinical settings, the appropriate choice remains largely to the surgeons
and health-care professionals. The best practice for surgical wound dressing choice
recommended in this chapter when combined with the well evidence-based interven-
tions will equip healthcare professionals with ability to make the needed decisions
for the proper wound management.
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Abstract Three-dimensional (3D) printing is a type of additive manufacturing that
works by the application of material inks layer by layer using data from computer-
aided design (CAD) to help to place the ink in a predefined place, thus producing
a highly accurate product even with complex geometry. The goal in using 3D
bioprinting is to develop a biological scaffold that resembles the desired tissue to
be replaced, including the cells and the growth factors, in a specific spatial rela-
tionship. The developments in bone tissue engineering (BTE) and 3D bioprinting
are revolutionizing osseous craniofacial reconstructive surgery. This chapter aims
to describe 3D bioprinting of biomaterial and bioceramic scaffolds for bone tissue
engineering and maxillofacial reconstructive surgery.
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2.1 Introduction

Three-dimensional (3D) printing is a type of additive manufacturing that was first
invented in 1984 for engineering and industrial purposes. It works by the application
of material inks layer by layer using data from computer-aided design (CAD) to help
to place the ink in a predefined place, thus producing a highly accurate product even
with complex geometry [1, 2]. The technology found its way to the health sector
through dentistry when additive manufacturing was used to print a solid block of
dental implants, crowns, and bridges from a biocompatible and bioinert material that
does not elicit an immune reaction [3].

Scientists were overly ambitious realizing the precision of the end-product when
3D printing was used. They decided to unleash the power of 3D printing and use it for
medicinal purposes to bioprint tissues. The first bioprinting attempt was undertaken
early in 1988, using an inkjet printer depositing cell drops on-demand approach.
The goal in using 3D bioprinting is to develop a biological scaffold that resembles
the desired tissue to be replaced, including the cells and the growth factors, in a
specific spatial relationship. It is a customizable, patient-specific solution meeting the
patient’s need at a macro level (i.e., shape and size), and on a micro level resembling
patients’ tissue structure and architecture [4, 5]. The development in bone tissue
engineering and 3D bioprinting also aims to solve the crisis in the shortage in organs
needed for transplantation [6].

Tissue loss in the craniofacial region can occur due to a craniofacial genetic defor-
mity, trauma, or surgical excision as a treatment of tissue malignancy [7]. Facial
disfigurement has a severe negative impact on individuals, both socially and psycho-
logically, and requires rapid, precise, and aesthetic rebuilding producing a functional,
harmonious, and symmetrical face [8]. Osseous craniofacial reconstruction tradi-
tionally employs a graft harvested from the iliac crest or the ribs, which serve as the
bridge needed to direct the 3D bone growth (osseoconduction), as well as inducing
the differentiation and the recruiting of osteoblasts (osseoinduction) into the injured
area to promote bone healing [9]. However, placing a graft is not without risk; auto-
genous bone grafting carries the risk of morbidity (pain in the donor site, neuralgia,
blood loss, or infection), while the allogenic bone graft is associated with the possi-
bility of transmitting infection or eliciting an immune reaction [10]. Moreover, facial
reconstruction using a bone graft does not always provide aesthetic results due to the
anatomical complexity of bone, soft tissue, and the hollow cavities in the face. 3D
bioprinting, on the other hand, may provide a more precise alternative that fits the
defects, reducing the need to count on the surgeon’s ability to harvest or carve the
graft to fit the surface.
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2.2 Bone Tissue Engineering

Bone tissue engineering has received much attention in the last few decades, and it
showed tremendous progress due to the improved understanding of bone biology,
along with the advances in the biomaterials. It focuses on:

(a) Developing biomaterials that can provide the same physical and biological
properties as natural bone [11].

(b)  Producing scaffolds from these biomaterials, having the same architecture and
topography that ensure nutrient and oxygen passage, micro-vessels, and nerve
ingrowth, as well as regulating the stem cell differentiation down the osteogenic
fate [12, 13].

(c) Incorporating mesenchymal stem cells (MSC) that are directed toward differ-
entiating into osteogenic cell lineage [14].

(d) Incorporating bone growth factors; bone morphogenic proteins (BMP), insulin-
like growth factor-2 (IGF-1), vascular endothelial growth factors (VEGF), and
others that enhance osteogenesis [15].

2.3 Biomaterials in Bone Tissue Engineering

Bone is composed of 60-70% inorganic phase in the form of hydroxyapatite
(Cajp(PO4)6(OH),), while the organic phase is mostly formed of collagen type I
with some other proteins and growth factors. The simplicity of the natural bone
composition enabled the progress in bone tissue engineering. Biomaterials used to
fabricate scaffolds should be biocompatible, biodegradable to be replaced by the
newly generated bone, and bioactive to enhance bone regeneration, having physical
strength and mechanical properties, which enable it to support the load the natural
bone is supporting [16]. Examples of biomaterials used in bone tissue engineering
include demineralized bone matrix as well as anumber of bioceramics and bioglasses.

2.3.1 Demineralized Bone Matrix

These are allografts treated with chemical acid to demineralize as well as removing
the inorganic component of the graft, leaving the matrix proteins, mainly collagen
I and bone growth factor BMP, and are then treated with radiation to decrease the
possibility of eliciting an immune reaction [17]. Demineralized bone matrix has been
used for decades in clinical applications, and has shown tremendous success being
osteoconductive and osseoinductive, but because the end-product is in a powder form,
making it is difficult to handle during surgery, which consequently has limited its
use [18]. Solutions implemented to ease the manipulation of the powder were based
on using the powder mixed with a viscous carrier to enable it to condense and pack
into bony defects [17].
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Wagner et al. reported using demineralized bone matrix for mandibular recon-
struction by wrapping it in an acellular dermal matrix to confine the demineralized
bone matrix paste and placing it over a bent plate [19]. The patients were followed
up for five years and showed evidence of bone healing. In a recent study, Driscoll
et al. used demineralized bone matrix mixed with hydroxyapatite crystals in different
ratios in a 3D printer to print scaffolds for spinal repair, and it was tested in rat models
[20]. The preclinical studies showed successful fusion, with the developed bioma-
terial being a hybrid encompassing the osseoinductive properties of the demineral-
ized bone matrix carrying the bone growth factor along with the osteoconductive
properties of the hydroxyapatite.

2.3.2 Bioceramics and Bioglasses

These are inorganic oxides including hydroxyapatite, calcium phosphate, tricalcium
phosphate (TCP), and calcium silicate. They are considered bioactive as they bond
to bone and elicit osteogenesis [21].

2.3.2.1 Hydroxyapatite

This makes the bulk of the bone composition, thus, it has been studied extensively
as a bone substitute because its composition resembles natural bone. Both calcium
and phosphate ions present in hydroxyapatite promote bone regeneration. Calcium
ions stimulate osteoblasts by activating ERK1/2 pathways, which protect them from
apoptosis, as well as having a central role in bone maturation by deposition in imma-
ture bone [22]. Phosphate ions activate the IGF-1 pathway in osteoblasts, which is
implicated in cell survival, growth, and protein synthesis [23]. Besides, it is osseoin-
ductive and osseoconductive, making it ideal to be a synthetic bone substitute. But,
it is organized in a highly arranged crystalline microstructure that hinders it from
degrading, and it also inherits a low compressive and tensile strength making it brittle
when loaded [24]. To reduce the brittleness of hydroxyapatite, Mukherjee et al. inves-
tigated the effect of adding carbon nanotubes (CNT) to hydroxyapatite and found
that it increased the fracture toughness of the scaffold. They tested the scaffold on
animal models and found that the addition of CNT was biologically safe with no toxi-
city shown in either the liver or kidney, but with enhanced bone regeneration on the
implanted site [25]. However, the data was stated to be preliminary and incomplete
to proceed onto clinical studies.

In relations to the 3D printing of hydroxyapatite, Seitz et al. were able to use
hydroxyapatite powder sprayed with a polymeric binder dissolved in water to ensure
ink flow to produce a porous scaffold with fully interconnected channels sixteen years
ago, which are further compacted after printing in a 1250 °C furnace to remove and
achieve binder pyrolysis [26]. Six years ago, Shao et al. proposed the use of 3D-gel
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printing (3DGP) instead of regular 3D printing with the use of hydroxyethylmethacry-
late (HEMA) gelation system to produce a flowable slurry. Their new system has the
advantage of being appropriate to a wide range of materials from metal to ceramics,
keeping the cost low while achieving high printing efficiency, producing complex
shapes due to the flow of the slurry. They used it with stainless steel, zirconia, and
hydroxyapatite, and tested the fabricated scaffolds and their mechanical properties
[27-29]. Most studies on the fabrication of hydroxyapatite scaffolds were carried out
using biomaterials only, without embedding cells within the scaffold and the seeding
of cells occurred after fabrication, thus it should not be confused with bioinks, which
incorporate both biomaterials and cells [30].

2.3.2.2 Tricalcium Phosphate

In 1920, Albee was the first to report that rhombohedral B-form, B-tricalcium phos-
phate (B-TCP), enhances osteogenesis [31]. Tricalcium phosphate is composed of
calcium and phosphate ions just like hydroxyapatite, which renders it to have the same
effect on osteoblasts resulting in bone regeneration. Gao et al. showed the in vivo
osteogenic potential of the tricalcium phosphate granules placed in a titanium porous
scaffold and implanted in a femur defect on animal models [32].

In contrast to hydroxyapatite, tricalcium phosphate has a crystalline structure
that is not highly organized, which makes it more susceptible to resorption and
degradation, which is an ideal property for a scaffold material [33]. Ishikawa et al.
compared the mechanical properties and recorded the histological findings of the
newly generated bone when tricalcium phosphate and hydroxyapatite were used [34].
The study confirmed tricalcium phosphate has higher solubility than hydroxyapatite,
which explains why more bone is found around the implanted tricalcium phosphate
than the hydroxyapatite.

Degradation of the tricalcium phosphate is a desired property when constructing a
scaffold, but degradation of the material should be coordinated with the speed of the
osteogenesis process. To adjust tricalcium phosphate degradation, it has been doped
with mineral oxides like magnesium oxide (MgO) and strontium oxide (SrO), which
affect the crystalline orientation of the tricalcium phosphate and make it less soluble
and alter both the mechanical and biological properties of the tricalcium phosphate
[35]. Banerjee et al. confirmed slower degradation of the implanted MgO/SrO-doped
B-TCP than pure B-TCP on animal models [36]. They also showed that the doped
implant had more cell attachment, which increases cell differentiation and prolifera-
tion. Analysis of osteocalcin and type I collagen inside the implants indicated faster
osteogenesis and remodeling. Recently, Gu et al. used Mg-doped tricalcium phos-
phate and 3D-printed an interconnected-pores scaffold with mechanical properties
close to bone [37]. They further seeded the scaffold with MSCs derived from bone
marrow and umbilical cord and showed that both osteogenesis and angiogenesis
were enhanced. In an animal model, Kim et al. transplanted 3D-printed scaffolds
from a composite of tricalcium phosphate and polycaprolactone polymer and used
it to repair the maxilla in a dog after resecting a tumor with success [38].
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In 1986, another strategy was proposed to adjust the solubility of tricalcium phos-
phate in physiological conditions by combining hydroxyapatite with tricalcium phos-
phate in different ratios to achieve the best physical and mechanical properties for
the desired load-bearing application referred to as biphasic calcium phosphate [39].
Increasing the hydroxyapatite content in the biphasic calcium phosphate leads to a
more stable material, while increasing the tricalcium phosphate results in a material
that is more soluble, thus, it can be easily tailored. Liu et al. 3D-printed scaffolds using
biphasic calcium phosphate and examined the in vivo behavior using rabbit calvarial
defects which showed an increase in osteogenesis and high bone density [40].

2.3.2.3 Calcium Phosphate Cement

This cement was accidentally invented in the 1980s by the American Dental Asso-
ciation Health Foundation Paffenbarger Research Centre (ADAHF-PRC) who were
trying to develop a cement to treat and remineralize early dental caries. A mixture
of tetra calcium phosphate, dicalcium phosphate anhydrous, and dicalcium phos-
phate dihydrate with water was found to rapidly produce hydroxyapatite. A decade
after that, the FDA approved calcium phosphate cement for clinical use, and since
then a tremendous number of studies have been conducted [41]. The cement was
found to promote osteogenesis, being osteoconductive, and most importantly it is
injectable, which makes it easier for clinical use. Injecting the material into the site
of surgery will allow it to mould into the shape of the deformity without the need
for further drilling at the surgical site to match the size and shape of the scaffold.
Yu et al. reported the success of calcium phosphate cement in bone regeneration
when they performed an in vivo study in which injectable calcium phosphate cement
was implanted into a femoral condyle defects of rabbits [42]. Lin et al. cultured
three types of cells: induced pluripotent stem cells (iPSC), human umbilical vein
endothelial cells (HUVECS), and pericytes; into scaffolds made from calcium phos-
phate cement and implanted them into cranial defects created on rats [43]. They
found that the tri-culture group had elevated angiogenic and osteogenic markers, and
mineralization.

2.3.2.4 Bioactive Glass

These are silicate-based ceramics composed of silicon dioxide, calcium oxide, phos-
phorus oxide, potassium oxide, magnesium oxide, and boric oxide. The composition
and percentage of these oxides vary, but the key component, silicate, always consti-
tutes 45-52% of its weight [44]. Bioglasses possess the capability to form a strong
chemical bond with the bone tissue that is created through the polycondensation of a
silicone-rich layer on the surface of the bioactive glass due to ion exchange between
ions in the physiological fluid and leaching of ions from the surface of the bioglass
[44]. Moreover, the electronegative silicone-rich layer on the surface is considered
osseoinductive as it adsorbs protein that in turn attracts macrophages and MSCs [44].
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As a bone substitute material, bioactive glass proved its worthiness in an in vivo
animal study carried out by Moimas et al. where bioactive glass implanted into tibial
defects were found to be completely resorbed in six months and be replaced by bone
tissue [45]. It was shown that the composition of the bioactive glass affects the union
chemical reaction and stimulation of cells to promote osteogenesis. Bioactive glass
went through optimization of its formula, and 4554 was invented composed of 45%
Si0;, 24.5% Na, 0, 24.5% CaO, 6% P,0s (wt%), characterized by a high amount of
Na, 0O and CaO, which make the surface of the material very bioactive [46]. Scaffolds
made from 4555 were found by Detsch et al. to drive umbilical cord-derived MSCs
down the osteogenic differentiation pathway [47].

Recently, the development of the sol-gel method, adding ammonia to the sol
phase to transform it into a gel and then freeze-dry it, produced 58S bioactive
glass composing of 60 mol.% SiO,, 36 mol.% CaO and 4 mol.% P,0s. 58S bioac-
tive glass has the benefit of achieving a homogeneous biomaterial compared to the
melting method used originally where phosphate becomes volatile at high tempera-
ture [48]. Wheeler et al. compared in vivo bone regeneration capacity between 4554
and 58S scaffolds after implantation within critical-sized distal femoral cancellous
bone defects in a rabbit model and the results showed that the 58S degraded much
quicker but was able to form bone earlier than 4554 at 4 weeks, which is normalized
at 12 weeks [49].

The 3D printing of scaffolds composed of bioactive glass have been investigated in
a number of in vitro and in vivo studies El-Rashidy et al. comprehensively reviewed
the in vivo studies undertaken on the regeneration of bone with 3D-printed bioactive
glass scaffolds [50]. Recently, Kolan et al. compared the osteogenic potential of
bioactive glass scaffolds made by 3D printing with and without the use of BMP after
implantation into cranial defects in rats [51]. Their study concluded that the addition
of BMP to the scaffold greatly enhanced bone regeneration.

2.4 Cells in Bone Tissue Engineering

3D bioprinting includes both biomaterial and cells in the bioink to fabricate a scaf-
fold. Ideal biomaterials for bone substitutes should stimulate the seeded stem cells
to differentiate into osteoblasts responsible for the bone regeneration. Gao et al.
proposed different molecular mechanisms by which biomaterials interact with stem
cells to promote osteogenesis [14]. The exact process is not known, but they postu-
lated that phosphorus, magnesium, and strontium ions released from the biomaterial
activate the BMP pathway and increase the concentration of the calcitonin gene-
related peptide. The following section describes the various types of cells used in
bone tissue engineering.
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2.4.1 Mesenchymal Stem Cells (MSCs)

These are used for their pluripotency, ability to differentiate into osteoblasts, and
immune modulative effect [52]. They can also be derived from a variety of sources
ranging from bone marrow, umbilical cord, placenta, dental pulp, adipose tissue, and
other sources [52]. Injecting MSCs derived from adipose tissue along mandibular
fracture lines were found to enhance osseointegration and bone quality, as well as
promoted bone healing as observed in the study by Castillo-Cardiel et al. [53]. In
2016, a study by Chamieh et al. discovered that implanting collagen scaffolds seeded
with dental pulp-derived MSCs into calvarial defects in rats resulted in accelerated
bone regeneration compared to rats having a collagen scaffold with no seeded cells,
demonstrated by evaluating the variations in bone density and through histological
examination [54]. Fahimipour et al. reported in a recent article the utilization of the
bioprinter to bioprint collagen matrix to mimic the extracellular matrix of natural
bone with the MSC and BMP [55]. The matrix has the benefit of confining BMP as
well as preventing it from escaping the scaffold, which is known to cause ectopic bone
formation or osteomas [56]. The 3D printing was used again to 3D print a scaffold
that represents the mineralized part of the bone, which is then used to support the
MSC-BMP collagen matrix. It was found that using this method enhanced MSCs
seeding, and proliferation while the availability of BMP enhanced the osteogenic
potential of the MSCs [55]. A recent report by Dong et al. showed that the presence of
osteoclasts is crucial for bone regeneration as well as osteoblasts [57]. In their study,
a proteomic analysis was performed, and mass spectrometry was used to identify
proteins secreted in extracellular matrix. The analysis showed the presence of more
than 608 protein presents, among which two proteins are known to be secreted by
pre-osteoclasts, CXCL12 and IGFBPS proteins, both are responsible for MSC cells’
migration and osteogenic differentiation, respectively [57]. They confirmed their
hypothesis by implanting scaffolds made from decalcified bone matrix seeded with
co-cultured MSCs and pre-osteoclasts into femur defects in rats showing significant
enhancements in bone regeneration compared to implanting scaffolds seeded with
MSCs only.

2.4.2 Induced Pluripotent Stem Cells (iPSCs)

These are another exciting source of cells that can differentiate into any cell type,
mimicking embryonic stem cells. However, with the ethical dilemma that has risen by
extracting embryonic stem cells, which results in the destruction of human embryos,
motivated scientists to look for other sources of cells that have the same pluripotency
[58]. To circumvent this issue, iPSCs were produced by Takahashi et al. in 2007
by transducing four factors: Oct3/4, Sox2, Klf4, and c-Myc, present in embryonic
stem cells, in fibroblast turning them into cells mimicking pluripotency [59]. Xie
et al. investigated the osteogenic differentiation of iPSCs seeded on a scaffold made
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from a composite of hydroxyapatite-chitosan-collagen and found the proliferation of
iPSCs into osteoblasts and an increase in bone protein secretion [60]. Moreover, they
implanted these scaffolds into cranial defects of animal models, and compared the
density of bone with the scaffold seeded with iPSC and other seeded with MSCs and
found that the iPSCs scaffold has nearly double the bone density than when MSCs
were used alone.

The osteogenic differentiation of iPSCs was studied by a number of research
groups [61]. A study by Kao et al. discovered that resveratrol has a supporting
effect on the osteogenic differentiation of iPSCs [62]. Later, a study by Ji et al.
examined the osteogenic differentiation of human iPSCs regulated by nano-
hydroxyapatite/chitosan/gelatine 3D scaffolds with nano-hydroxyapatite in different
ratios [63]. Investigation was also carried out to reprogram iPSCs to functional
osteoblasts using only the small molecule exogenous adenosine [64]. However, iPSCs
still carry the potential of tumorigenicity and teratoma formation, which still limits
its use clinically, and further investigation should be conducted to optimize its use
and safety [65].

2.4.3 Exosome

Recently, increasing interest was diverted into cell-free therapies after the discovery
that MSCs cause tissue regeneration due to its paracrine effect. This approach carries
the benefit of avoiding tumorigenicity, resistance to apoptosis, triggering an immune
response, and genetic instability, which are all present in MSCs utilization [66]. It
will also permit the repeated injections or administration of the therapy without the
fear of accumulation of cells in non-targeted tissue, especially the lungs [67].

The cell-free approach uses the exosomes, which are membrane-bound vesicles,
produced by endosomes in the cell containing a specific cargo either: micro-RNA,
messenger-RNA, proteins, or other biomolecules, and get excreted outside the cell to
be communicated into another cell [68]. Exosomes are produced by most cell types as
a way of communication and crosstalk between cells. Exosomes from MSCs regulate
the paracrine effect that enhances the regeneration of tissues [69]. Several studies have
been conducted and showed the potential of using exosomes for bone regeneration.
Lu et al. extracted exosomes from adipose-derived MSCs and used a TNF-a pre-
conditioned medium, which was found to positively promote osteogenesis and bone
repair [70]. Zhao et al. proposed that exosomes extracted from bone marrow-derived
MSCs and co-cultured with osteoblasts, result in the activation of the MAPK pathway
on the osteoblasts, which is important for the cell cycle and growth, and results in
their proliferation, thus promoting bone regeneration [71].

More importantly, Diomede et al. demonstrated the ability of an implanted 3D-
printed scaffold to heal calvarial defect in rats that is composed of a polymer poly-
lactic acid (PLA), seeded with exosomes and gingiva-derived MSCs [72]. Further-
more, Zhang et al. also worked extensively on exosomes and in one of their study,
they showed that a scaffold made with tricalcium phosphate combined with exosomes
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derived from iPSCs healed calvarial defects on rats via activating the PI3K/Akt
signalling pathway [73]. In a later study, they used exosomes derived from umbilical
cord-derived MSCs combined in hydrogel and transplanted at the femoral fracture
site in the animal model. They found that implanted exosomes promoted angiogen-
esis, which in turn enhanced fracture healing [74]. Although the results of these
studies are promising, still, a consensus on exosome extraction and purification has
not been achieved which is important in translational medicine.

2.5 3D Bioprinting Approaches

In the process of bioprinting, deposition of both the biomaterial and the cells occur
simultaneously. 3D bioprinting is achieved by one or a combination of the following
strategies.

2.5.1 Biomimicry

This is a straightforward approach using the bioprinter to replicate the original archi-
tecture of the tissue, thereby providing the right environmental factors that guide cells
to differentiate into the right type of cells. This approach of bioprinting is extremely
dependent on the material ink used to construct the scaffold. A scaffold is the parallel
of the extracellular matrix, that should be able to provide the chemical and physio-
logical cues important for cell viability, differentiation, and expansion [75]. Scaffold
biomaterials should be biocompatible, permeable to nutrients, having adequate stiff-
ness to withstand loading and deformation while at the same time, able to undergo
degradation at the same pace that allows the growth of new bone tissue and even-
tually replaces the scaffold [76]. All these requirements are crucial in choosing the
most ideal scaffold bioink and they are also the primary factors that determines the
success of the printed scaffold. After bioprinting, a bioreactor is used to regulate
environmental factors such as the oxygen, temperature, nutrient diffusion, and the
gravitational force needed for cell infiltration to the depth of the printed scaffold [77].

2.5.2 Self-assembly Approach

This is a scaffold-free approach that eliminates the need for scaffold biomaterials and
mitigating the difficulties faced using the scaffold. The approach adopts the same
embryological development process which utilizes interaction and signals between
adjacent cells and their extracellular matrix to self-organize into the tissue intended
for engineering [78]. High-density initial cell seeding ensures cell—cell interaction,
resulting in cell producing their own extracellular matrix and forming cell aggregates
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in the form of spheres or sheets, and carries the advantage of efficiency to produce
tissues faster than using scaffold bioink. Various methods are used to form these cell
aggregates from magnetic levitation, hanging drop, hydrogel microwell, and others,
each with its pros and cons [79]. Spheroids and sheets are then used in a 3D printer
to form the engineered tissue. The advantage of using this approach is the ability
to use different types of cells as well as regulating their ratios. This allowed for the
co-culturing endothelial cells with MSCs, which promotes angiogenesis in the final
construct, while the MSCs differentiate into the desired cell type [80]. Yamasaki
et al. created a scaffold-free construct from adipose tissue-derived MSCs by using
the needle array 3D printing method and implanted them into femoral defects of
pigs which showed enhanced osteochondral regeneration [81]. Recently, Heo et al.
described a method to 3D print spheroid aggregates, made from human umbilical
vein endothelial cells (HUVECs) and MSCs and called it the aspiration-assisted
bioprinting (AAB) technique, in which they showed that it allowed for better and
more precise positioning of the spheroids to produce scaffold-free bone tissue [82].

2.5.3 3D Bioprinting in Bone Tissue Engineering
and Craniofacial Reconstruction

3D bioprinting is offering an exciting future for bone tissue engineering and cranio-
facial reconstruction, but the technology is still in its early stages. Few studies were
carried out or are currently in progress that shows promising results. In 2014, Goh
et al. implanted a polycaprolactone scaffold fabricated by 3D printing in sockets of
newly extracted teeth to preserve the height of maxillary and mandibular ridges [83].
In the same year, a Chinese team, led by Zhang who worked extensively in BTE,
published the results of their clinical trial on 23 female patients reconstructing the
mandibular angle after ostectomy [84]. They demonstrated that using 3D bioprinting
titanium scaffolds, led to greater bone regeneration, shorter operation time, and better
aesthetic results. In 2015, Sumida et al. published the results of their clinical trial of
implanting 3D printed scaffolds for maxillary and mandibular ridges in 13 patients
without randomization and reported favorable outcomes [85]. 3D printing is also
used by neurosurgeons for the correction of calvarial defects after resecting brain
tumours. Kilstrom et al. reported in 2019 the results of using 3D printing to fabri-
cate calcium phosphate-titanium reinforced scaffolds implanted on the skull of 52
patients with the intention to promote bone regeneration and osteointegration [86].

A search in the clinical trial government website (www.clinicaltrial.gov) in March
2021 revealed the presence of 342 clinical trials with different statuses, when
searching MSCs and bone regeneration, of which 6 trials are concerned with bone
regeneration in the craniomaxillofacial region, listed in Table 2.1.

At the same time, only 4 studies are concerned with using 3D printing for the
correction of bone defects in the craniomaxillofacial region, listed in Table 2.2.
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Table 2.2 Applications of 3D printing for the correction of bone defects in craniomaxillofacial

region
Title Status Study Conditions Interventions Locations
results
Efficiency of 3D-printed | Not yet No Significant * Procedure: bone
implant versus autograft | recruiting | results | bone defectin | autograft
for orbital reconstruction available | the orbit * Procedure: orbital
(TOR-3D) reconstruction by
(NCT03608280) 3D-printed porous
titanium implant
Craniofacial applications | Unknown | No Facial Procedure: 3D
of 3D printing status results fracture template
(NCT03292679) available
Three-dimensional Recruiting | No Mandibular Device: 3D-printed | The
printing of results neoplasms patient-specific Prince
patient-specific titanium available | Maxillary titanium plates Philip
Plates in Jaw Surgery: A neoplasms Dental
Pilot Study (3DJP16) Dentofacial Hospital,
(NCT03057223) deformities Hong
Maxillofacial Kong,
injuries Hong
Kong
Personalized titanium Completed | No Malocclusion | Device: 3D printing | Ninth
Plates vs CAD/CAM results abnormalities, | Personalized People’s
surgical splints in available | jaw Titanium Plate Hospital,
maxillary repositioning Shanghai
of orthognathic Surgery JiaoTong
(NCT02914431) University
School of
Medicine,
Shanghai,
Shanghai,
China

2.6 Concluding Remarks

Developing bone tissue engineering is important, as the need for bone implants
increases due to increasing population, increasing facial injuries, orthognathic surg-
eries, tumors, and craniofacial deformities. Translation of this technology would be
the only solution to treat large defects and non-union fractures and when technology
is combined with 3D printing, it allows potentially more aesthetic facial reconstruc-
tion and reduced surgery time. However, the technology needs further investigation
to optimize the biomaterial to ensure both optimal osteogenesis and angiogenesis
to enable vascularization of the scaffolds. Biomaterials used should also provide
the mechanical properties needed for the implanted site, as bone engineered to be
implanted in a load-bearing bone should be different from scaffolds created for non-
load bearing bone. Enhancing 3D printing technology enables it to provide scaffolds
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exactly mimicking the natural bone with the highest resolution. Also, the ease and
availability of the biomaterial, 3D printer, and expertise in hospital settings should
be discussed to allow its translation directly to patients.
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Chapter 3 ®)
Bioresorbable Bone Fixation Devices Geda
for Oral and Maxillofacial Surgery

Quang Ngoc Dong and Takahiro Kanno

Abstract Osteosynthetic devices play a critical role in the field of maxillofacial
surgery and can be applied in various operative procedures from facial reconstruc-
tion and trauma to corrective dentofacial jaw surgery. Titanium material has been
utilized to make bone fixation hardware for a very long time and has survived the
test of time with reliable characteristics. However, as a permanent foreign body,
titanium devices also bring some morbidities which lead to secondary operation for
removal. As a result, bioresorbable alternatives are developed to surpass the weak-
ness of non-resorbable materials. Several types of bioresorbable material have been
made commercially available and are widely used in the world. Recently, innova-
tive bioactive/osteoconductive composites of polymers and bioceramics as well as
bioresorbable metal with favorable features have attracted more attention from the
science community and may potentially become the new standard of osteosynthetic
materials in Oral and Maxillofacial surgery.

Keywords Osteosynthesis materials - Hydroxyapatite - Fracture fixation *
Magnesium - Polyglycolic acid - Poly(lactic acid) - Resorbable material *
Maxillofacial surgery

3.1 Introduction

Facial fractures are commonly encountered by oral and maxillofacial surgeons. These
fractures are usually treated with open reduction and internal fixation to facilitate bone
healing. Bone fixation is also required to immobilize bone fragments after surgeries
involving osteotomy, such as orthognathic surgeries and neoplasm ablation. There-
fore, bone fixation devices are very important for oral and maxillofacial surgeries.
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There are three stages of bone healing: inflammation, proliferation, and remodeling.
Bone and soft tissue healing have similar stages, except that calcification is only seen
in bone healing. After bleeding from an injury stops, a blood clot forms between
the bone fragments. Inflammatory and pluripotent mesenchymal cells migrate to
the interfragmentary blood clot, remove necrotic tissue, and produce a callus. The
callus, consisting of fibrous tissue, cartilage, and immature bone, connects the bone
fragments. If the fractured bone is immobilized, vascularized, and free of infec-
tion, the callus will gradually ossify during the remodeling stage to complete bone
healing. This healing process is termed indirect bone healing, but surgeons prefer
direct bone healing. In direct bone healing, bone fragments are surgically reduced
into either their original positions or any other suitable position and stabilized with
fixation devices. Lamellar bone, without callus, forms between bone fragments. This
healing process is termed healing by primary intention and has the best outcomes.
If the bone fragments are inadequately immobilized, the interfragmentary gap may
increase and delayed union or non-union may occur [1]. Therefore, the importance
of bone fixation devices cannot be overemphasized.

Titanium is the standard material used for bone plates and screws in multiple
surgical specialties, including oral and maxillofacial surgery. Compared to other
conventional materials, titanium has many favorable properties such as biocompati-
bility, osseointegration, high mechanical strength, ease of handling, radiopacity, and
minimal scatter on computed tomography scans that makes it the ideal choice in stabi-
lizing bone fragments [2—4]. However, titanium is non-bioresorbable and remains
in the body permanently. A second surgery may sometimes be required to remove
the titanium hardware because of complications, such as stress-shielding, migration,
thermal irritability, and infection [5]. Surgical removal of titanium increases the cost
and complications associated with general anesthesia and surgery. Because tempo-
rary bone fixation is required in most cases, bioresorbable materials may be used for
bone fixation in maxillofacial surgeries.

The structure and function of the facial bones are unique: the hollow paranasal
sinuses and orbits communicate with the external environment. Defects in the facial
bones are not uncommon, and mastication places a relatively large load on the bones.
Therefore, the ideal bioresorbable material for bone fixation should have adequate
strength, minimal foreign body reactions, and the ability to immobilize, support, and
regenerate bones.

Various bioresorbable bone plates and screws with different characteristics have
been developed. Earlier generations of bioresorbable devices had limited clinical
utility because of insufficient stiffness, rapid loss of strength, long resorption time,
and adverse reactions [6—8]. However, later generations of bioresorbable bone plates
overcame many of these limitations. These later generations possess greater mechan-
ical strength and demonstrate equivalent outcomes to titanium [9]. Recently, biomate-
rials consisting of bioceramics and polymers/co-polymers have proven to be appro-
priate alternatives for maxillofacial surgeries because of their favorable physical
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features, bioactivity, and shorter resorption times [10, 11]. Additionally, biore-
sorbable metals, such as magnesium (Mg) alloys, have been evaluated as alterna-
tives to titanium and polymer-based materials, but their use in oral and maxillofacial
surgeries remains limited.

In this chapter, we will describe bioresorbable bone fixation devices including
later-generation devices with innovative features, used in maxillofacial surgeries.

3.2 Polymer-Based Osteosynthesis Materials

Polymer-based fixation devices have been extensively studied, and many devices are
commercially available. Table 3.1 summarizes the bioresorbable implants approved
by the Japanese government for use in maxillofacial surgeries.

The most commonly used commercially available bioresorbable osteosynthesis
materials contain polyhydroxy acids, which are homopolymers or co-polymers of
poly-L-lactic acid (PLLA), poly-D-lactic acid (PDLA), polyglycolic acid (PGA), or
polydioxanone sulfate [12]. Homopolymers such as PLLA, with high crystallinity
and hydrophobicity, have long resorption times. Conversely, the use of co-polymers
accelerates degradation and reduces the resorption time. Bioceramics, such as unsin-
tered and uncalcined hydroxyapatite (u-HAp), with bioactive and osteoconductive
properties have recently been used as osteosynthesis materials. For the reason that
the above-mentioned materials stimulate bone regeneration, surgeons have many
options during maxillofacial reconstruction, especially of the mid-face and orbits.

3.2.1 Polyglycolic Acid

Polyglycolic Acid (PGA) was the first bioresorbable polymer to be used in clinical
practice. However, PGA has limited utility for osteosynthesis because of its rapid
degradation and loss of strength. The material loses its mechanical strength within 4—
7 weeks after implantation into the human body, which is insufficient for bone healing
[13]. Furthermore, rapid PGA degradation releases a large quantity of glycolic acid,
which lowers the pH and leads to complications such as sterile sinus formation,
osteolysis, and intraosseous fluid accumulation [14]. Therefore, PGA is used to
manufacture biodegradable sutures instead of bone fixation devices.
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3.2.2 Poly(Lactic Acid): Poly-L-Lactic Acid
and Poly-D-Lactic Acid

Poly(lactic acid) (PLA), a common bioresorbable polymer, is used as an osteosyn-
thesis material, and has a high molecular weight and high degree of crystallinity.
PLA has two stereoisomeric forms: poly-l-lactic acid (PLLA) and poly-d-lactic acid
(PDLA), differentiated by the basis of the optically active carbon atom in the lactic
acid [15]. PLLA has been used since 1990, and is considered the “first generation” of
bioresorbable bone materials [13, 16, 17] (Fig. 3.1). As aresult of its crystallinity and
hydrophobicity, PLLA is resistant to hydrolysis and bioresorption in vitro; complete
loss of strength takes more than 2 years [13, 17]. The resorption time in vivo for
PLLA is more than 3.5 years [18, 19]. Two PLLA devices: FixsorbMX® (TEIJIN
Medical Corp., Osaka, Japan) and GRAND FIX® (GUNZE, Kyoto, Japan), have
been utilized in maxillofacial surgery [6, 9]. Problems associated with these devices
include insufficient strength of materials, foreign body reactions, and a late degrada-
tion tissue response [9, 18, 19]. Conversely, PDLA has a lower degree of crystallinity
and is less resistant to hydrolysis. PDLA also shows slower degradation, which makes
it highly biocompatible and useful for extensive facial osteosynthetic surgeries, espe-
cially of the mid-face and mandible. Although crystalline particles offer a resistance
to degradation, they may elicit an inflammatory response [6, 15, 18].

Despite advances in the polymer technology of maxillofacial osteosynthesis
systems, there has been no significant improvement in the strength of materials.

Fig. 3.1 Maxillofacial osteosynthesis systems using first-generation bioresorbable materials [12].
a GRAND FIX® system; b FIXORB-MX system; ¢ GRAND FIX® flat-type system; d three-
dimensional and single type bioresorbable plates used during bilateral sagittal split ramus osteotomy
for mandibular setback using the GRAND FIX® system in orthognathic surgery; e thin/flat-type
bioresorbable plate (GRAND FIX®, flat type) used for internal fixation of the Le Fort I maxillary
osteotomy in orthognathic surgery and f used for left infraorbital rim and frontozygomatic suture
in a complex zygomatico-maxillary fracture
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Increased thickness of bioresorbable plate systems, which is required to maintain
strength, leads to complications such as palpability [9]. Several years are needed for
the complete resorption of PLLA plate systems; therefore, the thickness of osteosyn-
thesis plates is an important consideration. For this reason, the GRAND FIX flat-type
plate (Gunze) was modified to obtain a novel, commercially available thin and flat
bioresorbable plate. This system is ideal for mid-facial osteosynthesis because of its
durability and strength, although it has limited approval for use in Japan. The plate is
stiff and, because of its width, has mechanical strength similar to that of other PLLA
plates. This novel system reduces palpability at easily palpable facial sites, such as
the periorbital rim and frontozygomatic sutures [9].

3.2.3 Co-polymers of Polyglycolic Acid, Poly-L-Lactic Acid,
and Poly-D-Lactic Acid

Co-polymers of PGA, PLLA, and PDLA are categorized as rapidly bioresorbable
second-generation osteosynthetic materials, and are preferred over PGA and PLLA
alone [6, 13] (Fig. 3.2). Their properties can be controlled by modifying the ratio of
glycolide to lactide. The rates of hydration and hydrolysis increase when crystalline
PGA is co-polymerized with PLLA [6]. Therefore, different mechanical properties
and degradation rates can be achieved by co-polymerization of various derivatives
of a-hydroxy acids. The degradation time of the co-polymers depends on the ratio of

Fig.3.2 Maxillofacial osteosynthesis systems using second-generation rapidly bioresorbable mate-
rials [12]. a LactoSorb® system; b RapidSorb® system; ¢ Three-dimensional bioresorbable plate for
Le Fort II/IIl mid-face fractures using the LactoSorb® system; d Bioresorbable plate (RapidSorb®)
for internal fixation of a complex left zygomatico-maxillary fracture; e double-L-shape biore-
sorbable plate (LactoSorb®) for internal fixation of Le Fort I advancement and anterior maxillary
osteotomy in orthognathic surgery
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constituent monomers [13]. In general, co-polymers with higher glycolide content
degrade more rapidly. For example, the degradation time for an 85:15 PDLA:PGA
co-polymer is 5 months. As an exception to this rule, 50:50 PGA:PLLA co-polymers
degrade most rapidly [6, 20].

Co-polymers of L- and D-lactides, such as SR-P(L/DL)LA 70/30 (composed of
70% PLLA and 30% PDLA), lose strength in vitro within 48 weeks of implantation.
Co-polymers of L-lactide and glycolide (PLGA) are used extensively because of
their favorable physicochemical properties. LactoSorb® (Biomet Inc., Jacksonville,
Florida, USA) is a copolymer of PLLA (82%) and PGA (18%) [20-23]. RapidSorb®
manufactured by DePuy Synthes CMF (West Chester, PA, USA) is composed of
the same polymers and almost in the same ratio, as LactoSorb (85:15). RapidSorb
and LactoSorb are ideal for mid-face and maxillary osteosynthesis, but have limited
approval for use in Japan [24]. These co-polymers are designed to provide adequate
strength for 6-8 weeks and have a resorption time of 12—18 months, which is ideal for
mid-facial osteosynthesis [13, 20, 22, 25]. A retrospective study by Sukegawa et al.
found the PLLA/PGA co-polymer plate system was appropriate for maxillofacial
osteosynthesis, with only minor postoperative complications. These co-polymers
are metabolized via the citric acid cycle, and excreted by the lungs as carbon dioxide
and water [23, 24, 26]. Due to their amorphous structure, copolymers do not release
crystalline particles, and their slow degradation makes them highly biocompatible
[6, 13].

3.2.4 Unsintered Hydroxyapatite and PLLA
Bioactive/Bioresorbable Material

Recently, hydroxyapatite has been added to PLLA because of its osteoconductive
properties [27, 28]. SuperFIXORB-MX® (TEIJIN Medical Corp.), also known as
OSTEOTRANS MX® outside of Japan, is composed of fine particles of unsin-
tered hydroxyapatite, carbonate ions, and PLLA [3, 29]. Composites of unsin-
tered hydroxyapatite/PLLA, as third-generation bioactive/bioresorbable osteosyn-
thetic materials, are processed by machining and milling to create miniscrews and
miniplates containing 30 and 40% weight fractions of unsintered hydroxyapatite
particles (raw hydroxyapatite; neither calcined nor sintered), respectively [3, 27-30]
(Fig. 3.3). Due to the fact that they are osteoconductive and biodegradable, the unsin-
tered hydroxyapatite/PLLA nano-composites are completely replaced by bone [27,
28, 30, 31].

Bioactive/bioresorbable osteosynthetic devices maintain a bending strength equal
to that of human cortical bone for 25 weeks in vivo [27, 28, 30, 31]. After PLLA
is implanted, hydrolysis by body fluids and biodegradation begin. The molecular
weight of PLLA decreases, and the unsintered hydroxyapatite fraction increases
for almost 2 years [27, 28]. The composite is free from PLLA after 4 years, and
the majority of unsintered hydroxyapatite particles will be replaced by bone after
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Fig. 3.3 Maxillofacial osteosynthesis systems using third-generation bioactive/osteoconductive
and bioresorbable materials [12]. a SuperFIXORB—MX® (OSTEOTRANS MS®) system; b biore-
sorbable sheet and tack fixation for right naso-orbito-ethmoidal (midfacial) fracture reconstruction
using the SuperFIXORB-MX® (OSTEOTRANS MS®) system and infraorbital rim fixation using
the RapidSorb® system; ¢ three-dimensional and pre-formed bioresorbable plate applied during
bilateral sagittal split ramus osteotomy, intraoral vertical ramus osteotomy, Le Fort I osteotomy
and genioplasty using the SuperFIXORB-MX® (OSTEOTRANS MS®) system for orthognathic
surgery. d Use of the SuperFIXORB-MX® (OSTEOTRANS MS®) plate system for zygoma
and zygomatic arch replacement and fixation with modified Crockett’s method following total
maxillectomy of a maxillary squamous cell carcinoma

5.5 years [27, 30]. The prolonged duration of resorption may cause complications,
such as palpable discomfort over the plate beneath thin facial skin (e.g., periorbital
region), and the discomfort may worsen over time because of an increase in plate
volume due to the deposition of fibrous tissue [27, 30]. In comparison with other older
bioresorbable polymers, unsintered hydroxyapatite/PLLA osteoconductive compos-
ites provide greater stability and are approved for use in osteosynthetic surgeries,
especially those involving the mid-face and mandible [27, 30, 31].

The unsintered hydroxyapatite/PLLA composite has higher mechanical strength
compared to PLLA devices, including bending strength, bending modulus, shear
strength, and impact strength. A recent in vitro study involving biomechanical
loading of a three-dimensional mandibular model of bilateral sagittal split ramus
osteotomy (BSSRO) demonstrated high efficacy and stability of unsintered hydrox-
yapatite/PLLA plates [32]. Unsintered hydroxyapatite/PLLA plates possess osteo-
conductivity and bond directly to bone. Recent studies have evaluated the effects
of this plate system on bioactive osteoconductive bone healing through scanning
capacitance microscopy of incompletely exposed plates removed from maxillofacial
regions [5, 29-34]. These studies found deposits of bone-like regenerative tissue on
the surface of removed plates and screws that were in contact with the bone [3, 33],
suggesting that the plates bonded with the bone and accelerated its healing.

To study the bioactive and osteoconductive effects of unsintered hydroxyap-
atite/PLLA on facial bones, Dongetal. [11] and Ngoetal. [10] covered a critical-sized
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defect in rat mandible with a thin sheet of unsintered hydroxyapatite/PLLA, and
observed a large quantity of new bone inside the defect using histopathology and
micro-computed tomography (Fig. 3.4). The new bone was attached firmly to the
parent bone and unsintered hydroxyapatite/PLLA material, which may be a result of
the osteoconductive properties of unsintered hydroxyapatite. Shikinami and Okuno
[35] observed a calcium phosphate layer surrounding the unsintered hydroxyap-
atite/PLLA material after 3 to 6 days, which completely covered the entire surface
within 7 days of immersion in simulated body fluid at 37 °C. Kokubo [36] suggested
that the interaction between unsintered hydroxyapatite and the biological environ-
ment results in the formation of a calcium phosphate surface layer and serum protein
adsorption. This surface layer modifies the structure of the adsorbed serum proteins
(i.e., fibronectin). The bonds within the molecules are then exposed to osteoblasts,
and their progenitors attach to the material surface. Cellular differentiation, bone
matrix formation, and mineralization are regulated by intracellular signaling mech-
anisms, which stimulate the formation and bonding of bone. This phenomenon is
responsible for the osteoconductive properties of unsintered hydroxyapatite/PLLA.

Osteoconductive bioactivity is advantageous for maxillofacial osteosynthesis
and early functional improvements after fracture or osteotomy (Figs. 3.5 and 3.6).

Week 1 Week 3 Week 8 Week 16

a u-HA/PLLA
group

b u-Hapay
PGA group

Fig. 3.4 Three-dimensional views of the unsintered hydroxyapatite/poly-L-lactic acid (PLLA)
group a [10]; b three-dimensional views of the unsintered hydroxyapatite/PLLA group, showing
an increase in newly formed bone over time; ¢ three-dimensional views of the sham control group
without new bone. For an adequate view, images at week 16 are shown at a lower magnification
than those at other weeks. The unsintered hydroxyapatite/PLLA/polyglycolic acid material was not
visible due to its low radiopacity. Scale bars: 2000 pm (white), 5000 pm (yellow)
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Fig. 3.5 Midfacial osteosynthesis systems using fourth-generation bioactive/osteoconductive
and rapid bioresorbable materials. a SuperFIXORB-EX® system; b fourth-generation bioac-
tive/osteoconductive and rapid bioresorbable for Le Fort III/II/I severe midfacial fracture open
reduction and internal osteosynthesis, and the nasal cantilever technique using a calvaria bone
grafting

Fig. 3.6 A patient with a naso-orbito-ethmoidal fracture accompanied by defects in the orbital floor
and medial wall [12, 31]. a Preoperative computed tomography (CT) image; b intraoperative view of
orbital reconstruction using a bioresorbable sheet and tack fixation [SuperFIXORB-MX® (OSTEO-
TRANS MS®) system]; ¢ CT image obtained immediately postoperatively showing adequate orbital
reconstruction; d CT image obtained at 6 months postoperatively showing optimal mechanical,
bioactive, osteoconductive, and bioresorbable characteristics; e CT image obtained at 12 months
postoperatively showing healed bone with good function of the bioactive and osteoconductive
material in the orbit
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The unsintered hydroxyapatite/PLLA composite material has significant advantages
because of its bioactive, osteoconductive, and biodegradable properties, and may
have broad indications in maxillofacial surgery [5, 27, 28, 30-34].

3.2.5 Unsintered Hydroxyapatite/Poly-L-Lactic
Acid/Polyglycolic Acid Bioactive/Resorbable Material

The third generation bioresorbable polymer, unsintered hydroxyapatite/PLLA, has
excellent bone bonding and osteoconductive properties, but the degradation time
is very long. In some studies, unsintered hydroxyapatite/PLLA fragments were
still detected 5 years after insertion [30]. The long resorption time of unsintered
hydroxyapatite/PLLA may be associated with adverse effects; therefore, there is a
need to create materials with the favorable characteristics of unsintered hydrox-
yapatite/PLLA, but with shorter resorption times, to improve the outcomes of
maxillofacial reconstruction surgery.

The unsintered hydroxyapatite/PLLA/PGA polymers are fourth generation biore-
sorbable bone fixation devices (Fig. 3.5). This new material consists of unsintered
hydroxyapatite (10% of the weight), and the co-polymer of 88:12 PLLA:PGA. The
addition of PGA reduces the degradation time of the material.

Two recent animal studies compared unsintered hydroxyapatite/PLLA/PGA
with unsintered hydroxyapatite/PLLA. Ngo et al. found equal bone regeneration
ability between unsintered hydroxyapatite/PLLA/PGA and unsintered hydroxyap-
atite/PLLA applied to critical-sized rat mandible defects in vivo [10]. The new bone
formed in the unsintered hydroxyapatite/PLLA/PGA group was larger in quantity,
and matured earlier, than that in the unsintered hydroxyapatite/PLLA group, but
the differences did not reach statistical significance. Ishizuka et al. [37] evaluated
the interaction of bioactive materials (unsintered hydroxyapatite/PLLA and unsin-
tered hydroxyapatite/PLLA/PGA) with mandibular periosteum and measured the
molecular weights of both materials after immersion in the animal’s body [37]. The
interaction of periosteum with the osteoconductive materials (unsintered hydrox-
yapatite/PLLA and unsintered hydroxyapatite/PLLA/PGA), and bone regeneration,
were demonstrated using immunohistochemistry with Runx2 and periostin antibody.
In addition, the molecular weight in the unsintered hydroxyapatite/PLLA/PGA group
after 16 weeks was only half of that in the unsintered hydroxyapatite/PLLA group.
Therefore, both unsintered hydroxyapatite/PLLA/PGA and unsintered hydroxya-
patite/PLLA are appropriate choices of reconstructive material for the maxillofa-
cial region, where many hollow anatomical structures exist. Furthermore, unsintered
hydroxyapatite/PLLA/PGA is likely to have a shorter degradation time than unsin-
tered hydroxyapatite/PLLA. Further in vivo studies and clinical trials should be
performed to explore the use of this promising material.
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3.3 Magnesium-Based Bioresorbable Material

Magnesium is one of the most common elements found on earth, as well as in the
human body. This metal has been used in orthopedic surgery for over a century.
Magnesium has high compatibility but rapidly degrades, which results in excessive
gas formation and accumulation in the body [38]. Therefore, magnesium has limited
clinical utility as a bone fixation device. With advances in technology, magnesium
alloys have been developed to reduce impurities, improve compatibility, and increase
resistance. These magnesium alloys have been used as materials for cardiac stents
and orthopedic screws for more than a decade [39].

Magnesium-based materials are processed by alloying, surface coating and treat-
ment. Aluminum, rare earth elements, and other metals have been mixed with magne-
sium to create alloys. The addition of these elements to the alloy not only improves
the strength and ductility, but also the corrosion resistance [40—42]. Surface modifi-
cation and coating provide a protective layer for the metal, which prevents corrosion.
In some studies, a significant reduction in corrosion was seen with coated compared
to uncoated magnesium [39, 43].

Magnesium alloys have tensile strength ranging from 140 to 550 MPa [44] and
mimic the mechanical properties of cortical bone [45]. Since magnesium alloys are
weaker than titanium, maxillofacial bone fixation devices made from magnesium
alloys need to be thicker to compensate for the difference in strength [44]. Multiple
animal and human studies have found that magnesium alloys have high biocom-
patibility and rarely cause complications [46—49]. Current magnesium alloys are
designed to degrade more slowly to facilitate bone healing. Naujokat et al. discov-
ered that only 9% of the total volume of the WE43 magnesium alloy osteosyn-
thesis material appeared to have lower density on a computed tomography (CT)
scan [44]. Surprisingly, new bone was formed on the surface of the magnesium
device. Although the mechanism of bone regeneration is unclear, it has also been
observed in other studies [50, 51]. Future studies should compare the bone regener-
ation ability of magnesium alloys, unsintered hydroxyapatite/PLLA, and unsintered
hydroxyapatite/PLLA/PGA.

Based on animal and human studies, magnesium alloys have potential as maxillo-
facial bioresorbable materials [38, 47, 51-54]. To the best of our knowledge, only
two studies have evaluated the use of magnesium alloys as materials for bone screws
to fix the head of mandibular condyle [55, 56]. The results of these studies were
promising but more clinical research is still required.

3.4 Clinical Significance

Bioresorbable osteosynthetic implants are used to stabilize fractures, osteotomies,
and bone grafts of facial bones [3, 4, 13, 16, 25, 34, 57]. The use of bioresorbable
osteosynthetic implants is appropriate for the mid-face due to the fact that the fracture
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is easily accessible, and the implant has low biomechanical stress. Furthermore, based
on recent advances in implant technology, bioresorbable osteosynthetic systems can
also be used for the mandible.

3.4.1 Clinical Applications in Orthognathic Surgery

In orthognathic surgery, bioresorbable implants have the advantage over titanium
of not needing a second operation for removal of the implant [6, 57-60]. Le Fort I
osteotomies are stabilized with four L-shaped bioabsorbable plates and secured bilat-
erally in the pyriform aperture and zygomatic buttress [6, 13, 16]. Good outcomes
have also been reported after the use of a biodegradable mesh [6, 13]. Segmental
Le Fort I osteotomy is stabilized via standard bioresorbable fixation [34]. A system-
atic review of the effectiveness of bioresorbable fixation in orthognathic surgery by
Fedorowicz et al. [61] reported adverse effects, mainly in the posterior maxillary
region [21, 61]. Infection was associated with loose screws and wound dehiscence.
A recent meta-analysis reported similar complication rates between bioresorbable
and conventional titanium fixation in two trials of Le Fort I orthognathic surgery and
three trials of the bimaxillary Le Fort I osteotomy plus BSSRO [25].

The use of bioresorbable plates in BSSRO has been well-described [57, 58].
Standard techniques to stimulate osteosynthesis during BSSRO include triangular
placement of bicortical screws or the use of monocortical screws and two PLLA and
unsintered hydroxyapatite/PLLA mini-plates [6, 25]. The two plates are applied
above and below the inferior alveolar canal. Regardless of the fixation method,
mandibular setback causes more instability than mandibular advancement [6, 61—
65]. BSSRO with fixation for mandibular setback using a mini-resorbable plate
leads to segment mobility during the early postoperative period [63, 65]. A 0.7-mm-
thick unsintered hydroxyapatite/PLLA mesh can also be applied after BSSRO, espe-
cially when major segmental movements have been performed [63, 65]. Osteosyn-
thesis using unsintered hydroxyapatite/PLLA devices during orthognathic surgery is
advantageous because of the rigidity, osteoconductivity, and bone-bonding capacity
of these devices [5, 32, 33, 62]. Furthermore, a recent meta-analysis showed no
significant difference between bioresorbable and titanium plate fixation groups after
BSSRO [25], and there was also a similar rate of complications, including infections,
temporomandibular disorders, paresthesia, palpability, dehiscence, material-related
complications, exposure, and relapse [25]. The safety profile of bioresorbable and
titanium fixation devices is similar after bimaxillary operations, BSSRO, and Le
Fort I operations, except for lower palpability and the lack of requirement for second
surgery with the bioresorbable devices [6, 16, 25, 64, 66].
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3.4.2 Clinical Application to Maxillofacial Trauma Surgery

The application of bioresorbable osteosynthesis plates during maxillofacial trauma
surgery has been well-documented [3, 9, 15, 22, 29]. Similar stability of mid-facial
fractures can be achieved using unsintered hydroxyapatite/PLLA and PLLA plates
with titanium plates [3, 9, 13, 15, 25, 29, 66]. Bos et al. was the first to study the
use of biodegradable plates and screws during maxillofacial surgery for fixation of
zygomatic fractures [67]. The use of biodegradable plates and screws has also been
extended to craniomaxillofacial fracture surgeries of the mandible or mid-face, and to
three-dimensional orbital trauma reconstruction [7, 9, 15, 22, 29, 68]. The resorbable
system can be used for rigid internal fixation under conditions where muscular and
stress forces are not a determining factor in fragment displacement, including mid-
face and whole mandibular fractures [7-9, 15, 22, 29, 68]. In children, effective use of
resorbable PGA and PLLA plates combined with brief postoperative intermaxillary
fixation for mandibular fractures was reported by Stanton et al. [69]. However, the
stability of fixation, duration of degradation, and rate of complications (e.g., foreign-
body reactions) need to be explored further. Park et al. suggested that resorbable plates
and screws should be selected carefully on an individual patient basis depending on
the fracture site and presence of infection [70]. The use of biodegradable plates
is recommended for maxillofacial fractures with minimal load [9, 16, 31, 33]. In
addition, degradation of these devices, such as PLLA into carbon dioxide and water,
may take up to 3 years [17—-19]. Therefore, resorbable plates and screws may be used
for uncomplicated fractures of the mid-face and mandible after considering the load
of mastication at surgical sites [25, 70, 71].

A recent meta-analysis of five trials of maxillofacial mid-face and mandibular
fracture fixation revealed a significantly lower complication rate in the bioresorbable
than titanium group [13, 25, 72—75]. Subgroup analyses according to complications
revealed that palpability was more common in the titanium than bioresorbable group.
The rates of infection, paresthesia, foreign-body reactions, dehiscence, and maloc-
clusion, and of complications related to materials, exposure, and mobility, were not
higher in the bioresorbable group compared to the titanium group [25, 74]. However,
metal ions were detected near the implant site, suggesting leakage of the metal into
body fluids [5, 13, 25, 30, 72-75]. The bioresorbable fixation system has a favorable
safety profile, similar to that of titanium fixation. Next generation unsintered hydrox-
yapatite/PLLA bioactive/bioresorbable plates are suitable for internal bone fixation
of maxillofacial fractures because of their durability, bioactivity, and osteoconductive
potential [5, 27, 28, 30-33].

The bone regeneration ability of unsintered hydroxyapatite/PLLA and unsintered
hydroxyapatite/PLLA/PGA is particularly useful for reconstructing the hollow struc-
tures of the face (i.e., orbits and paranasal sinuses) (Fig. 3.6). Traumatic injuries of
the orbital floor and walls are usually reconstructed using biomaterials. The tradi-
tional materials used for reconstruction are autogenous bone from any other site,
non-resorbable materials like titanium, polymers such as porous polyethylene, and
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resorbable materials. Although autogenous bone is the ideal choice for orbital recon-
struction, a donor site is required, there is a risk of associated complications, and
the resorption of autogenous bone is unpredictable [76]. Titanium mesh is very diffi-
cult to remove [76]. Moreover, if the orbital contents are not reduced carefully, the
sharp edge of the material can cause injury, and there is a risk of orbital adherence
syndrome [26, 77]. Porous polyethylene is not visible on radiologic imaging and is
also expensive [78]. In addition, non-resorbable implants are permanent and may
cause delayed complications. Non-osteoconductive resorbable reconstruction mate-
rials, on the other hand, should only be used for small orbital defects; otherwise,
the defect will re-appear when the material is resorbed. Therefore, bioresorbable
osteoconductive materials, such as unsintered hydroxyapatite/PLLA and unsintered
hydroxyapatite/PLLA/PGA, are the ideal choice for reconstruction after orbital injury
or a defect-type lesion. The newly formed bone fuses with the native bone and
replaces the material that is resorbed [10, 11, 37]. Various studies have demonstrated
the effectiveness of these materials for treating orbital defects [29, 31, 79, 80].

Therefore, bioresorbable fixation systems appear to be a reasonable option for
maxillofacial fracture fixation, but large-scale randomized, prospective trials are
required to confirm the safety of this approach [25, 57, 81].

3.5 Conclusions and Future Perspectives

There have been significant technological advances in the bioresorbable osteosyn-
thesis plates used in oral and maxillofacial surgery. The development of new systems,
and improvement of old ones, has led to several advantages over titanium metal plate
systems for both patients and surgeons. We presented an overview of the currently
available bioresorbable osteosynthesis materials and osteofixation systems.

The use of bioresorbable osteosynthetic materials is associated with many compli-
cations, but these materials have some advantages over titanium fixation, including
the lack of requirement for a second surgery, the possibility of radiological assess-
ment, and improved bone healing and remodeling. Furthermore, based on recent
studies, bioabsorbable osteosynthesis systems are reliable for osteofixation in various
maxillofacial surgeries, including fragment fixation in orthognathic and trauma surg-
eries. The use of bioresorbable devices is associated with stable fixation, uneventful
bone healing, optimal remodeling, and skeletal stability similar to that of titanium
devices.

The third- and fourth-generation bioresorbable materials may be used in maxillo-
facial surgeries because of their optimal mechanical, bioactive, osteoconductive,
and bioresorbable characteristics. Although magnesium alloys have several favor-
able characteristics, more trials are needed to confirm their feasibility for use as a
reconstruction material.

Future studies of materials for maxillofacial osteosynthetic plates should focus
on reducing foreign body reactions and enhancing biocompatibility, mechanical
strength, bioactivity, the bioresorption rate, and customizability.
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Abstract The advancements in craniomaxillofacial surgical reconstruction have
led to improvements in patient-specific treatment care. One of the primary goals
is to restore form and function by balancing aesthetic, functional and physiolog-
ical demands while minimizing morbidity to the patient. Although the promise of
bone tissue engineering has yet to be fully achieved, clinically, translational devel-
opments have been evaluated with favorable results. This chapter reviews the recent
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and current advances in biomaterials science combined with 3D printing combined
with bioactive molecule osteogenic stimulation, and their integration toward the
development of devices capable of facilitating craniomaxillofacial bony restoration.

Keywords Craniomaxillofacial Surgery * 3D Printing - Additive Manufacturing -
Adenosine + Dipyridamole (DIPY) - Bone Tissue Engineering + Recombinant
Human Bone Morphogenic Protein (thBMP-2)

4.1 Introduction

The principles of craniomaxillofacial surgery were established with the goals of
restoring form and function by balancing aesthetic, functional and physiological
demands while minimizing morbidity to the patient. Surgeons, specifically plastic and
reconstructive surgeons, routinely operate on a breadth of conditions, without being
defined by an anatomical area, to address and treat the specific needs of the patient
from head to toe through a variety of reconstructive techniques. Plastic surgeons are
oftentimes a part of a team of specialists, including dentists, oral and maxillofacial
surgeons, neurosurgeons, orthopedic surgeons, and otolaryngologists. While each
anatomical realm has its own set of considerations, the common surgical principle
is the replacement of “like with like”. Therefore, the use of autogenous tissue with
analogous histologic and mechanical properties is often preferable over prosthetic
replacements. In craniomaxillofacial reconstruction, for example, autogenous tissue
is preferred for the restoration of congenital, oncologic, traumatic, and iatrogenic
deformities. To date, limitations to the gold standard of autogenous tissue reconstruc-
tion remain such as size, shape, and stock of donor tissue, coupled with extended
operative time and donor site morbidity. However, these challenges present an oppor-
tunity for modern and innovative approaches to craniomaxillofacial reconstruction,
such as the application for additive manufacturing, specifically three-dimensional
(3D) printing.
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4.2 Direct Ink Writing for Craniomaxillofacial
Applications

Three-dimensional printing (3DP) technology can be leveraged to reconstruct cran-
iomaxillofacial bone defects by designing and manufacturing customized patient
models, surgical templates and cutting guides, as well as patient-specific implants
and tissue engineering devices. Bony defects or deformities in the craniomaxillo-
facial skeleton can be congenital, infectious, neoplastic, traumatic, or iatrogenic in
etiology. Approximately one-third of all birth defects affect the craniomaxillofacial
region. Examples include bony defects of the mid-face such as alveolar clefts char-
acterized by an anterior alveolar defect of the maxilla, as well as cranial deformities
such as craniosynostosis or premature fusion of one or more of the cranial sutures.
Additionally, edentulism, a condition that more commonly affects the aging and
elderly population, is a leading contributor of alveolar bone deficiency. Etiologies for
edentulism may be linked to genetic factors, periodontal disease, or trauma. Ensuing
tooth loss and the lack of mechanical stress on the alveolar ridge result in physio-
logical alveolar bone resorption and ridge atrophy. Bone loss in the alveolar region
typically leads to one of the three primary types of ridge deficiencies: horizontal,
vertical, or a complex configuration, where both vertical and horizontal component
dimensions should be reestablished for adequate restoration of masticatory function
through dental implants.

There are a variety of different biomaterials which can be employed for bone tissue
engineering. Bioactive calcium phosphates are most commonly selected due to their
well-documented safety profile and biocompatibility [1, 2]. Specifically, calcium-
phosphate (CaPQOy,) bioactive ceramics, i.e., hydroxyapatite and B-tri-calcium phos-
phate (B-TCP), have been identified as suitable alternatives to autogenous bone grafts
[3] due to their similarities to bone. Hydroxyapatite, which is the predominant inor-
ganic component of bone, has been most commonly utilized ceramic. Although
hydroxyapatite is both biocompatible and osseoconductive, its degradation kinetics
(~2% per year in vivo [4]) render it an unfavorable material for replacement of scaf-
fold material by regenerated bone. As a result, B-TCP ceramic was developed [5]
and similar to hydroxyapatite, B-TCP is both biocompatible and osseoconductive.
Furthermore, B-TCP has the capacity to regenerate bone while being resorbed over
a 6-to-18-month period depending on overall macro, micro, and nanoporosity [4, 5].

Due to inferior bulk form configurations and degradation kinetics of bioactive
ceramics, an impetus was necessary for altering and improving construct designs
in an effort to improve performance and facilitate bone regeneration. While most
bioactive ceramics exist in powder form or in prefabricated bulk shapes, fabrication
of patient-specific bone grafting scaffolds with fit and fill designs has remained a
challenge. However, with the advent of 3D printing technology and its subsequent
evolution, equipment capable of printing viscous colloidal gels were developed [6,
7], ultimately allowing the fabrication of personalized devices that are capable of
fitting and filling bony defects of different size and complex tri-dimensional shape.
Through the utilization of a viscous colloidal ink system in conjunction with 3D
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printing, B-TCP can be printed into patient specific devices matching volumetric
configuration of the bone defect. Such capabilities allow for maximal interaction with
the interface of the bone defect for a prompt and complete osteointegration. Most
commonly, latticed-based structures with tailored surface texture facilitate the osseo-
conduction, vascular in-growth, and scaffold degradation/absorption. With additive
manufacturing or 3D printing technology, such customized modifications to scaffold
design can be systematically incorporated to tailor the device at various scales (i.e.,
macro-, meso-, micro- and nanometer) levels [8—11].

4.3 Personalized Fabrication of Scaffolds

The utilization of 3D printing technologies coupled with medical imaging (i.e.,
computed tomography (CT), magnetic resonance imaging (MRI), ultrasound or, in
some cases, high-resolution 3D photographs) to acquire volumetric data of the patient
and area of interest/anatomy may be utilized for the fabrication of not only surgical
guides/templates but also patient specific, fit and fill scaffolds for bone regeneration
[12-15].

After the volumetric data is acquired, it is subsequently exported to a data-editing
platform for processing, refinement, and isolation of the defect site. Digital data-
editing and surface refinement are finalized, the digitally reconstructed fit and fill
solid is then exported into a stereolithography (.STL) format that is digitally sliced
and meshed into a multilayered three-dimensional (3D) object, yielding a final scaf-
fold composed of ~5-7 layers per millimeter (mm) (Fig. 4.1). During the digital
processing steps, the engineer or end user tailor the scaffold’s attributes, such as
strut/rod and pore size. Once the final digital model is completed, a tool path is saved
in a code specified to the printer that is exported to the Direct Ink Writing printer
(Fig. 4.2).

The Direct Ink Writing (DIW) printing process, commonly referred to as robo-
casting, is the process of assembling a bioactive ceramic colloidal gel in a layer-
by-layer fashion [16]. The DIW technology utilizes a 3D printer assembled with a
stationary platform and a moveable gantry. The DIW equipment follows a tool path

2 mm : - 1mm 2 mm

Fig. 4.1 Digital images of different scaffold configurations used for regeneration of boney defects
of a radial; b calvaria; and ¢ full-thickness mandibular defect
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Syringes

Printing
Reservoir

Fig. 4.2 Schematic of Direct-Ink Write 3D printer (3D Inks LLC, Tulsa, OK) used to assemble
scaffolds. The machine is composed of 3 syringe pumps, along with a x-, y-, z-axis gantry. The
printer deposits the primary material and secondary support structure in a reservoir located directly
below the printing stage

from the saved programming code file and ‘extrudes’ successive layers (z-axis), in
the x- and y-axis, of colloidal gel to fabricate the tailored lattice scaffold. Notably,
the DIW process coupled with the bioactive ceramic colloidal inks does require a
post-processing step of sintering, which involves heating the construct to 1100 °C to
densify the structure in order to achieve sufficient mechanical properties for surgical
handling (Fig. 4.3).

The DIW method presents itself as one of the most favorable to the biomedical
field, due to its ability to not only tailor the colloidal ink suspensions to closely
mimic properties of native bone [7, 17], but also simultaneously design patient-
specific fit and fill scaffolds. A recent literature search revealed many publications

Fig. 4.3 Lateral view of
3D-printed B-TCP scaffold
being held with surgical
forceps for alveolar ridge
reconstruction in a pre-clinal
rabbit model
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demonstrating successful printing of volumetrically complex lattice structures for
various defects, but there is a paucity of relevant in vivo testing of such constructs.
Of note, there has been more research and publications made available about these
bioactive ceramic scaffolds and their clinically relevant applications [14, 15, 18].

4.4 Regenerative Pharmaceuticals

On a molecular level, bone regeneration is a multifaceted process, which is continu-
ously remodeling, and in addition, there is osseoinduction with the commitment of
osteogenic progenitor cells to differentiate [3, 19]. Combining patient-specific 3D-
printed scaffolds, with organized pores augmented with osseoinductive pharmaceu-
ticals has the potential to increase osteoblast activity and decrease osteoclast activity,
resulting in increased formation of new bone [19, 20]. Therefore, the implementation
of in vivo studies provides important insight into the role of agonists, (e.g., adeno-
sine) with respect to bone regeneration. Adenosine’s effects are systemic because its
receptors can be found in nearly all tissues. Unfortunately, due to its limited extra-
cellular presence and a restricted regulatory pathway ensuring a reduced half-life,
non-stressed cellular environments do not accumulate adequate extracellular adeno-
sine concentrations to activate adenosine receptors. Therefore, the ideal approach to
adenosine-induced bone regeneration would target the local delivery pathway that
can facilitate extracellular concentrations to activate adenosine receptors, ultimately
inducing bone formation.

The application of targeting pathways at specific sites has become feasible with
application of 3D-printed bioactive ceramic scaffold carriers enabling the delivery
of osseoinductive pharmaceuticals. The commercially available and FDA-approved
osteogenic agent recombinant human bone morphogenic protein (rhBMP-2), which
is commonly delivered locally, results in increased osteogenesis when compared to
scaffold alone [20-22]. Unfortunately, rhBMP-2 has been associated with significant
disadvantages such as ectopic and exuberant bone formation and in pediatric patients,
with premature suture closure in the craniomaxillofacial skeleton.

Alternatively, activators of purinergic receptors have exhibited favorable bone
regenerative potential without the adverse side effects associated with rhBMP-2
(Fig. 4.4) [23-27]. Adenosine is now garnering attention due to its osteogenic prop-
erties. Adenosine serves as a marker of metabolic status at the cellular level and is
known to attenuate activity for a wide array of cell types as a protective mechanism.
Adenosine release is stimulated in sepsis [28], is implicated in neutrophil suppression
[29] and induces a protective vasodilatory and negative inotropic effect on stressed
cardiac vessels and tissue. This mechanism forms the basis of anti-platelet agents
and those used in cardiac stress testing. Alternative approaches to adenosine receptor
activation, such as pharmacological manipulation, have been previously explored and
targeting this pathway has the capacity to achieve the necessary adenosine concentra-
tions to affect its receptors without the need to induce a stressful cellular environment.
The most notable pharmacologic agent is Dipyridamole (DIPY), an adenosine Aja
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Fig. 4.4 Volumetric analysis of calvarial bone volume fraction regenerated by scaffolds treated
with rhBMP-2 and 1000 pM DIPY at 8 weeks. Native bone porosity is denoted by dashed line;
black dashed lines are 95% confidence intervals

receptor indirect agonist. DIPY functions via the Type 1 equilibrative nucleoside
transporter (ENT1) to block adenosine reuptake into the cell and thereby results
in extracellular accumulation (Fig. 4.5) [30-32]. Dipyridamole has recently been
shown to further stimulate osteoblast function while limiting osteoclast formation;
these principles have recently been reproduced in highly translational preclinical
models.

For Dipyridamole (DIPY), the dosages needed to induce bone regeneration are
much lower when delivered via scaffold compared to those via oral administration.
Furthermore, the dose needed to achieve bone regeneration is lower than established
systemic doses for pediatric patients [18]. Our hypothesis was validated that adeno-
sine receptor activation augments the bone regenerative capacity of bioactive ceramic
3D-printed scaffolds; our group utilized the same scaffold material and design on
mice critical sized calvarial defects (Fig. 4.6). The results of the study showed signifi-
cantly increased amounts of bone formation for scaffolds immersed in dipyridamole
prior to implantation, relative to the plain scaffold group. These strategies were
further explored and confirmed in large translational sheep calvarial model (Fig. 4.7)
[18]. This result among others has led to studies assessing the regenerative poten-
tial of these principles in various shaped defects in skeletally immature and mature
translational models.
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Fig. 4.5 Mechanism by which facilitates osteogenesis. Dipyridamole inhibits equilibrative nucleo-
side transporter 1 (ENT-1) leading to increased osteoblast activity and decreased osteoclast activity
via increased AR signaling in an adenosine-dependent fashion. (Reprint with permission from
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Fig. 4.6 Volumetric 3-D analysis of bone formation in a collagen-coated scaffold. a MicroCT
images indicating new bone formation (blue) and the scaffold (gray). b Volume of new bone forma-
tion in the scaffolds at the site of trephination are presented as the means & SEM. (Reprint with
permission from [23])

4.5 Translational Evidence: Preclinical Models

Our group successfully utilized 3D-printed bioactive ceramic scaffolds in transla-
tional models for regeneration of critical-sized, full-thickness defects in both skele-
tally immature and mature rabbit and pig models [14, 34]. The results unequivocally
showed that scaffolds seamlessly fit and filled critical-sized defects and bridged the
defects with newly formed bone as early as 8 weeks in vivo [14, 35].
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Fig. 4.7 Representative histologic micrographs from animals in the a CTRL and b DIPY group
after 6-weeks of healing. (a.1 and b.1) Close-up depicting significant bony infill within the space
between the defect margin and wall of the scaffold, with several osteons highlighted (Yellow Arrows)
that provide evidence of lamellar reorganization. Osteon development is evident and more prevalent
in the (b.1) DIPY group compared to (a.1) control. (Adapted and reprint with permission from [18])

The challenges for regenerating the skeletally immature bone are different from
that of a skeletally mature bone. For example, alveolar cleft defects of the primary
palate are associated with structural instability of the maxillary arch, an inability to
support tooth eruption, and facial asymmetry. The current bone tissue engineering-
based treatment modalities must take into consideration the developing craniomax-
illofacial skeleton and thus cannot utilize treatment approach that may potentially
induce asymmetrical growth.

Based on the promising preclinical results seen in experiments reconstructing
calvaria and mandibular defects, the application of dipyridamole-loaded bioceramic
scaffolds has also been investigated in critical-sized alveolar defects in translational
skeletally immature rabbit and pig models, where scaffolds were coated with
cross-linked bovine collagen to function as the carrier for localized DIPY delivery
(Fig. 4.8). The DIPY augmented scaffolds were implanted and evaluated over
2-to-18-month periods. These preclinical experiments demonstrated the regener-
ative potential of 3D-printed scaffolds with dipyridamole to induce bone growth
in the alveolar and calvarial bone of rabbits, with bone formation spanning the
length of the established critical-sized defect. The long-term experiments, at 6- and
18-months, revealed regenerated alveolar bone is denser than unoperated bone [36],
but a decrease in regenerated bone volume percentage from 6 to 18 months likely
due to physiologic remodeling, culminating with similar bone density between
regenerated and native contralateral alveolar bone. In addition, regenerated alveolar
bone was functionally analogous to native bone in terms of mechanical properties
(Fig. 4.9). This morphologic difference yet mechanical similarity has been noted in
mandibular defect models [37].

In a similar study published by our group, no significant difference was noted
in bone volume between the calvaria and alveolar defects repaired with 3DP-DIPY
bioceramic scaffolds and autologous bone graft at 6 months (Fig. 4.10 a anb b)
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Fig. 4.8 a2D microCT cross-section and b histological micrograph showing the remaining scaffold
(blue arrow) and regenerated bone (red bone). Native bone (pink arrows) surrounding the scaffold
from the periphery in a pre-clinical rabbit model
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Fig. 4.9 a Elastic modulus (E) and b Hardness (H) of alveolar scaffold-regenerated bone yielded
no statistical differences when compared to that of native control. (Mean 4 95% CI) [36]

[36]. Furthermore, regenerated bone density was significantly increased compared
to native contralateral unoperated bone density yet with similar mechanical proper-
ties. Therefore, these results imply that regenerated alveolar bone tissue eventually
remodels to native bone density without detriment to function when given enough
time. Degradation rate and bone tissue properties were different between calvarial
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Fig. 4.10 Volumetric analysis of a calvaria and b alveolus bone yielding comparable bone volume
fraction regenerated by scaffold compared to native bone (red dashed line; black dashed lines are
95% confidence intervals) at 18 months in both (p = 0.064 and p = 0.337, respectively). Error bars
are 95% confidence intervals

bone and alveolar bone, highlighting the metabolic and mechanical heterogeneity in
the craniomaxillofacial skeleton that is important to consider when applying tissue
engineering principles to craniomaxillofacial reconstruction.

This most recent long-term animal study of immature rabbits through the time of
facial maturity reported a degradation kinetic profile [38]. The study demonstrated an
acceleration of B-TCP degradation to 55-90%/year through 3D printing augmented
with DIPY (Fig. 4.11). The qualitative assessment indicated that the absorbed f-
TCP was replaced by vascularized, organized bone, with histologic and mechanical
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Fig. 4.11 Degradation kinetics analysis of scaffold over 18 months used to calculate annual degra-
dation rate of B-TCP in calvarium and alveolus (54.6% and 90.5%, respectively). Change in Scaffold
occupancy can be calculated using the following equation [38]
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Fig. 4.12 Histological micrograph of 1000 uMDIPY scaffold after 24 weeks of healing in a rabbit
calvaria. The yellow arrow points to the scaffold material, black, remaining. The green arrows, far
right, point to the suture, with the dashed yellow line illustrating that it remained patent

properties similar to native bone and without damage noted to the growing suture
(Fig. 4.12). Most importantly, craniomaxillofacial growth appeared to be compa-
rable between 3D-printed B-TCP scaffold and autologous bone graft control - with
no readily evident increase in asymmetry, ectopic bone formation, or morbidity or
mortality associated with DIPY-coated 3D-printed B-TCP scaffold-treated defects.

Y%Scaffold at time, t
%Scaffold at time minus 1, (t — 1)

Scaffold Occupancy =

4.6 Conclusions and Future Directions

3D printing has the ability to create patient specific devices/scaffolds based on clin-
ical imaging offering a valuable approach to personalized fit-and-fill bony defects
(Fig. 4.13) [39]. Traditionally scaffolds were composed of bulk material such as
hydroxyapatite [40], but 3D printing allows for the design of porous scaffolds that
act as temporary void fillers similar to bulk scaffolds with the added benefit of pores
that behave as healing chambers, guiding osteoconduction from the walls of the
defect into pores via an intramembranous-like healing pathway and filling the scaf-
fold lattice structure with woven bone. With the rapidly evolving clinical setting, new
biomaterials and pharmacologic advances are likely to continue to be introduced to
clinician and surgeons. Therefore, a concrete understanding of the array of clini-
cally available regenerative treatment modalities, with translational potential, will
facilitate further innovation.

Clinicians, engineers, and surgeons have all witnessed striking clinical and
scientific innovations for craniofacial reconstruction. This has been in large part
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10 mm

Fig. 4.13 A CT rendering of a patient’s isolated mandible with the defect (region of interest)
denoted in red dashed box, b the isolated volumetric section from the CT data, highlighted in red
box in part a of figure, and ¢ final converted multilayered scaffold rendition; d Volumetric rendering
of a patient’s scan with the custom 3D printed scaffold virtually placed at the site of defect. (Adapted
and reprint with permission from [39])

due to the introduction of reconstructive microvascular surgery, autogenous non-
vascularized bone grafting techniques, distraction osteogenesis, osteoconductive
biomaterials, osteoinductive growth factors, computer-aided design and manufac-
turing (CAD/CAM), virtual surgical planning (VSP) coupled with three-dimensional
(3D) printing technology [41-44]. This expansion of the reconstructive surgical
armamentarium has allowed surgeons to have a myriad of techniques and technolo-
gies that address the functional and aesthetic needs of patients regardless of anatomic
and/or medical challenges at their disposal. Such advances in the field have enabled
craniofacial reconstruction to be categorized into four categories: (1) soft tissue pedi-
cled flaps; (2) non-vascularized soft and hard tissue grafts; (3) soft and hard tissue
vascularized grafts; and (4) alloplastic reconstructions with prosthetic appliances.
On occasion, composite techniques can be used, such as the staged reconstruction
of a defect where soft tissue is first added to a defect site followed by bone at a later
time. A newer, more modern, technique using a hybrid of vascularized soft and hard
tissue with nonvascular tissue engineered allogenic grafts, while reported in a limited
number of cases has shown favorable outcomes [45].

With the advances in bone tissue engineering, there has been a paradigm shift,
which has occurred over the past 10 years regarding the role and contribution of
mesenchymal stem or progenitor cells (MSCs) toward bone tissue engineering.
Previous preclinical large animal models using bone tissue engineering devices have
demonstrated increased bone formation with the addition of both adipose stem cells
(ASCs) and bone marrow-derived stem cells (BMSCs) [46, 47].

In 2010, Muschler et al. identified four strategies for the use of osteogenic cells
with bone tissue engineering devices, including: (1) targeting local MSCs to a local
site using osteoconductive scaffolds, (2) transplantation of MSCs with or without
processing, (3) homing of MSCs into a wound site from regional tissues or systemic
circulation using bioactive factors, targeting with selective binding or magnetic fields,
and (4) ex vivo modification of MSCs to enhance their performance followed by
introduction using the other listed strategies [48]. However these strategies presume
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that the contribution of MSCs towards bone formation is largely direct, meaning that
the MSCs themselves differentiate into the heterogenous cell types which comprise
trabecular bone and bone marrow. After all, the initial promising aspect of MSCs
was their multipotency and ability to differentiate into various mesenchymal cell
lineages [49]. However, studies examining the cell fate of MSCs in animal models
demonstrate very little engraftment, suggesting instead that the contribution of MSCs
to tissue formation may be indirect [50-53]. We propose that it may be adequate
to provide constructs with osteogenic factors to recruit local MSCs rather than to
directly include progenitor cells in bone tissue engineering constructs. Ultimately,
for the reconstructive craniomaxillofacial surgeon omitting MSCs greatly reduces
regulatory hurdles encountered when attempting clinical translation.

Tissue engineering for the craniomaxillofacial bone region is and has been the
vision of surgeons for a long time. While the clinical potential of tissue engineering
in craniomaxillofacial regeneration is yet to be clinically deployed in a large scale,
promising patient specific constructs are under actively investigation in large preclin-
ical translational models. As described, 3D-printed bioactive ceramic scaffolds with
deliberate geometries for osseoconduction and osseoinduction provide regenerative
cells with physical pathways to communicate with one another and fill defects. Addi-
tionally, for the first time, significant bone healing responses to bones such as the
calvaria and mandible are being reported, where A, R activation appears to stimulate
local durable tissue which contributes to bone regeneration [15].
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Abstract Osteoporosis is a skeletal disorder in which bone strength is decreased,
leading to increased risk of fracture. In recent years, monoclonal antibodies have
increasingly been used to treat human diseases, including osteoporosis. In this article,
we discuss two monoclonal antibodies currently approved to treat osteoporosis-
denosumab, and romosozumab. We aim to give the reader a basic understanding
of the basic properties of monoclonal antibodies, the technology used to develop
them, and their clinical application in the treatment of osteoporosis.
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5.1 Introduction

In recent years, monoclonal antibodies have increasingly been used to treat human
diseases, including cancer, autoimmune disease, asthma, and osteoporosis. The total
number of monoclonal antibodies approved by the United States Federal Drug
Administration was 64 in 2018 with 11 new therapeutic monoclonal antibodies being
approved in 2017 alone. The sales of antibody-based therapeutic agents is expected
to reach approximately 170 billion in 2022, consisting of 20% of global pharma-
ceutical market [1]. Monoclonal antibodies now represent one of the most critical
advances in pharmacological development in the past several decades.
Osteoporosis is a skeletal disorder in which bone strength is decreased, leading to
increased risk of fracture [2]. Osteoporosis, and related fragility fractures are asso-
ciated with significant cost, morbidity and mortality. The treatment of osteoporosis
focuses on reducing fracture risk. In this article, we discuss two monoclonal anti-
bodies currently approved to treat osteoporosis: denosumab, and romosozumab. We
aim to give the reader a basic understanding of the basic properties of monoclonal
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antibodies, the technology used to develop them, and their clinical application in the
treatment of osteoporosis.

5.1.1 Antibody—What is It?

An antibody is a protein molecule synthesized by the immune system in response to
an antigen. Figure 5.1 shows the structure of an antibody. Antibodies consist of four
polypeptides. Two heavy chains and light chains join to form a Y-shaped molecule.
Antibodies circulate in the blood, recognize foreign antigens such as bacteria and
viruses, triggering an immune response, leading to the neutralization of bacteria and
viruses [3]. An antigen is any substance that elicits the production of an antibody by
the immune system. Antigens are large molecules, usually consisting of proteins or
polysaccharides. An epitope is a part of an antigen molecule to which an antibody
attaches itself. A single antigen is a large molecule and may contain several distinct
epitopes.

Antibodies consist of a variable region, and a constant region (Fig. 5.1). The
variable region contributes to the antigen binding site and determines an antibody’s
affinity to a specific antigen. When antibodies bind to antibodies through the variable
region, they exert direct effects (inhibition of a toxin/enzyme of a pathogen). The
constant region determines the antibody subtype. The constant region of the antibody
interacts with accessory molecules to mediate indirect effector functions including
antibody-dependent activation cellular cytotoxicity or complement cytotoxicity.

N-Terminus

Variable Region””
(pink area)

Constant Region

(blue area) Disulfide bonds

et b

C-Terminus

Fig. 5.1 Structure of an antibody
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Table 5.1 Difference Monoclonal Polyclonal antibodies
between monoclonal o
o antibodies
antibodies and polyclonal
antibodies B cell source Single B cell Different B cell lineages
clone
Antibodies Homogeneous Heterogeneous antibodies
antibodies
Target Single epitope of | Different epitopes of a
antigen single antigen

5.1.2 B Cells—The Immune Response and Formation
of Immunoglobulins

Each individual human possesses numerous clonally derived lymphocytes. The
clonal selection theory states that each B cell clone arises from a single precursor and
can recognize and respond to a distinct antigenic determinant. An antigen selects a
specific preexisting clone and activates it, leading to the proliferation of a single cell
line determined by the antigen. Memory cells remain in the circulation and proliferate
when the body is exposed again to the antigen [4, 5].

The polyclonal B cell response is the typical way the human immune system
responds to antigens. This response ensures that a single antigen is attacked at
different overlapping parts of the antigen (epitopes). In this response, various B
cell clones develop antibodies against distinct epitopes on a single antigen, leading
to polyclonal antibodies. Polyclonal antibodies, to be differentiated from monoclonal
antibodies, are a collection of antibodies that react towards a particular antigen, each
identifying a different epitope (Table 5.1).

5.1.3 Monoclonal Antibodies: What Are They?

Monoclonal antibodies are identical antibodies produced from a single clone of genet-
ically identical B cells. Monoclonal antibodies have high specificity to an epitope. In
treating human disease, monoclonal antibodies are desirable because of their unique
ability to target specific disease-related molecules.

Several advantages of monoclonal antibodies for the treatment of human disease
as compared to sera-derived polyclonal antibodies include: (1) lower lot-to-lot vari-
ability, (2) low risk of pathogen transmission, (3) more significant activity per mass of
protein due to specificity against the desired target, (4) lower rates of immunological
complications such as serum sickness and immediate hypersensitivity [6].
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Target Research

Fig. 5.2 Steps in developing monoclonal antibodies for treatment of human disease

5.2 Production of Monoclonal Antibody and Key
Technological Advances

5.2.1 Overview

The production of monoclonal antibodies is acomplex process. This section describes
key concepts involved in producing monoclonal antibodies that are essential in under-
standing antibody treatment in osteoporosis, summarized in Fig. 5.2. Developing a
monoclonal antibody requires prior research into the disease process’s molecular
pathways to identify targets for monoclonal antibodies. After identifying the target,
the first step is antibody selection. This step involves creating/finding an antibody
that has high affinity to the target antigen. One method to achieve this includes immu-
nizing an animal with the target antigen. Other more advanced techniques include
the screening of a library of antibodies developed through phage display technology.
Once an antibody has been chosen, the second step involves modifications made to
the antibody to generate a monoclonal antibody with the desired specificity, phar-
macokinetics, and properties. Modification includes processes such as humanization
and the development of antibody fragments to enhance pharmacokinetic properties
and efficiency. In the third step, monoclonal antibodies are mass-produced in large
quantities to treat disease. The initial technology used to achieve this was to create
a hybridoma (see subsequent section). Other methods of producing immortal cell
culture lines include the usage of Chinese hamster ovary cells.

5.2.2 Hybridoma

Plasma cell lines could not be directly used to produce monoclonal antibodies in vitro
because plasma cell lines could only replicate a limited number of times before dying.
The advancement of hybridoma technology was a significant step in developing
monoclonal antibodies to treat human disease. In 1975, Georges Kohler and Cesar
Milstein published their work titled “Continuous cultures of fused cells secreting
antibody of predefined specificity” describing the hybridoma technique of production
of monoclonal antibodies [7].
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In the hybridoma technique, monoclonal antibodies are developed in a labora-
tory by first vaccinating mice with a target antigen. The target antigen stimulates B
cells in the spleen of mice to produce specific antibodies. Subsequently, the B cells
in the spleen are isolated. B cells that produce specific antibodies are fused with
tumor cells with a strong ability to replicate, forming a hybridoma cell. Hybridoma
cells, produce antibodies and are “immortal”. Cultures to be cloned are subsequently
selected for production of monoclonal antibodies. Development of hybridoma cells
made unlimited production of monoclonal antibodies with predetermined specificity
possible. Georges Kohler, and Cesar Milstein were awarded the 1984 Nobel Prize in
Physiology for their work developing hybridoma cells.

5.2.3 Humanization of the Murine Antibody

However, murine antibodies are limited by (a) increased immunogenic potential; and
(b) decreased efficacy. Therefore, subsequent efforts were made to transform murine
antibodies to antibodies that were more similar to human antibodies. In the 1990s,
chimeric antibodies were developed by combining sequences of the murine variable
domain with the human constant region. In chimeric antibodies, 66% of the antibody
structure is of human immunoglobulin, while 33% is of mouse immunoglobulin.
The first chimeric monoclonal antibody, Abciximab, was approved in 1994 was
approved to treat heart disease. Subsequently, humanized antibodies were devel-
oped by the complementary-determining region grafting technique. Mice with an
unmodified genome are used to create humanized monoclonal antibodies. After
immunization, target DNA is extracted, complementary-determining region loops
responsible for antigen binding are transplanted into the human variable domain
framework sequence. In humanized monoclonal antibodies, only the complemen-
tary determining region (CDR) is of mouse sequence origin. Humanized anti-
bodies only contain 6-10% mouse proteins, while the 90-94% is human proteins
[8]. Romosozumab, one of the monoclonal antibodies described extensively in this
chapter, is a humanized monoclonal antibody.

The development of fully human antibodies was made possible by the discovery
of phage display by Sir Gregory P Winter and transgenic mice engineered to produce
human antibodies. Phage display allows the development of large antibody libraries
derived from the human B-cell repertoire. Phage display facilitates screening for
target binding antibody fragments within an extensive library without having to
screen each antibody individually. Transgenic mice are engineered to produce human
antibodies by replacing mouse immunoglobulin G loci with human immunoglobulin
loci in the germlines of mice deficient in mouse antibody production. When trans-
genic mice are injected with a human therapeutic target, they produce fully human
monoclonal antibodies. Target DNA is then extracted, with antibody genes cloned.
Monoclonal antibodies are then expressed from the Chinese hamster ovary cells.
Adalimumab was the first fully human antibody approved to treat rheumatoid arthritis
in 2002. Denosumab, the other monoclonal antibody described in this chapter, is a
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Table 5.2 Comparison of development of humanized monoclonal antibody versus fully human

monoclonal antibody

Humanized monoclonal antibody
(i.e., romosozumab)

Fully human monoclonal antibody
(i.e., denosumab)

Animal used

Mouse with unmodified genome

Mouse IgG locus is replaced with
human DNA locus

Antibody selection

Mouse injected with human
therapeutic target

Mouse injected with human
therapeutic target

Modification

Target specific DNA extracted (CDR
regions from mouse antibody grafted
onto human antibody framework)

Target specific DNA extracted

Mass production

Expression of monoclonal antibody
using Chinese Hamster Ovary Cells

Expression of monoclonal antibody
using Chinese Hamster Ovary Cells

Table 5.3 Classification of monoclonal antibodies based on the composition of mouse/human

proteins
Composition Substem B (International Suffix
Nonproprietary Names
Working Group nomenclature
system before 2017)
Murine antibodies Mouse proteins (0] Mab
Chimeric antibodies Approximately 2/3 human | Xi Mab
proteins /approximately
1/3 mouse proteins
Humanized antibodies Approximately 90-94% | Zu Mab
human proteins
/approximately 6-10%
mouse proteins
Fully human antibodies | Fully human proteins U Mab

fully-humanized monoclonal antibody that was developed using Xenomouse trans-
genic mouse technology [9]. Table 5.2 contrasts the development of humanized
monoclonal antibodies as compared to the development of fully human monoclonal
antibodies. Table 5.3 summarizes the classification of monoclonal antibodies based
on the composition of mouse/human proteins, and the nomenclature used in their

naming.

5.2.4 Modulation of Antibody Effector Functions

As previously described, the Fc portion of an antibody interacts with accessory
molecules, leading to indirect effector functions. Manipulating the sequences and
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glycosylation of the hinge and constant domains can modify antibody effector func-
tions and circulating half-life [10, 11]. Currently, every clinically used monoclonal
antibodies are immunoglobulin G monoclonal antibodies. The IgG class consists of
IgGl, IgG2, IgG3, and IgG4 subtypes. IgG1 and IgG3 are potent triggers of effector
mechanisms, while IgG2 and IgG4 have little indirect effects. In the development
of monoclonal antibodies, one of the factors affecting antibody isotype choice is
the effector functions required to mediate a biological process that confers a desired
disease outcome [11]. The monoclonal antibodies used for osteoporosis treatment
are of IgG2 isotype because antibodies with IgG2 isotype have little indirect effects
[12].

5.3 The Naming of Monoclonal Antibodies

The International Nonproprietary Names Working Group developed a specific struc-
ture to name monoclonal antibodies. Denosumab and Romosozumab were named
based on the older nomenclature system before 2017, where monoclonal antibody
names consist of a prefix, Substem A, Substem B, and suffix. The prefix has no
specific criteria, is the unique name of each of the monoclonal antibodies. The anti-
body’s target determines Substem A (i.e., fu for tumor; os/so for bone). In contrast,
the sequence from which the monoclonal antibody was derived determines Substem
B (i.e., o for mouse; xi for chimeric; zu for humanized; u for fully human antibodies)
(Table 5.3). The suffix mab is a common stem for monoclonal antibodies. Denosumab
(den) is a fully humanized monoclonal antibody that targets bone used to treat osteo-
porosis (prefix: den, Substem A: os (target bone); Substem B: u (fully humanized);
mab: monoclonal antibody). Romosozumab (romo) is a humanized monoclonal anti-
body that targets bone used to treat osteoporosis (prefix: romo; Substem A: os (target
bone), Substem B: zu (humanized), mab: monoclonal antibody). In 2017, the Inter-
national Nonproprietary Names Working Group issued new guidance to discontinue
the use of Substem B.

5.4 Monoclonal Antibodies in Therapeutics: General
Characteristics and Pharmacokinetics

The specificity of monoclonal antibodies towards the target antigen allows precise
targeting of pathways involved in disease processes. Monoclonal antibodies modulate
cells directly through binding to cell surface receptors, membrane-bound proteins,
growth factors, and circulating proteins [13]. Monoclonal antibodies can also have
indirect effects, mediated by the Fc region of the antibody. Indirect effects of mono-
clonal antibodies include: (1) recruitment of natural killer cells, monocytes, and
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macrophages, leading to antibody-dependent cellular cytotoxicity, and (2) activation
of the complement system leading to complement cytotoxicity.

Monoclonal antibodies are large complex proteins purified from living cells.
Due to their large size, monoclonal antibodies cannot cross cellular membranes.
Therefore, monoclonal antibodies are generally directed against extracellular targets.
Monoclonal antibodies, in general, have long half-lives; hence, dosing can range
from monthly to every several months. Monoclonal antibodies are usually adminis-
tered intravenously and subcutaneously because the gastrointestinal tract denatures
complex proteins.

After subcutaneous administration, lymphatic channels take up monoclonal anti-
bodies, which then enter the circulation [14]. Monoclonal antibodies leave the
vasculature primarily by convective transport. Convective transport depends on the
blood-tissue hydrostatic gradient and the sieving effect of the paracellular pores in
the vascular epithelium. Another mechanism of monoclonal antibodies leaving the
vasculature is by endocytosis/pinocytosis via endothelial cells [10, 14]. Monoclonal
antibodies are large-sized molecules and are too large to be cleared by the liver and
kidney. The elimination of monoclonal antibodies occur through: (1) nonspecific
elimination through proteolysis by reticuloendothelial system, and (2) more specific
antigen mediated clearance by internalizing the monoclonal antibody-target complex
into the target cell, followed by intracellular degradation [10].

Many monoclonal antibodies exhibit non-linear pharmacokinetics: at low concen-
trations, the drug is cleared by first-order kinetics (a constant proportion of the drug
is eliminated per unit time); at high concentrations, a drug is cleared by zero-order
kinetics (a constant amount of drug is eliminated per unit of time). Non-linear phar-
macokinetics observed because target mediated elimination has a small capacity and
hence is susceptible to saturation [14]. At low serum concentrations, rapid saturable
target mediated elimination regulates the elimination rate of the antibody. However,
when higher serum concentrations saturate target-mediated elimination, eliminating
antibody-protein occurs more slowly via nonspecific endocytosis and other processes
[14, 15]. Therefore, this leads to an increase in exposure to drug that is more than
dose-proportional at higher serum concentrations. Table 5.4 summarizes the common
characteristics of monoclonal antibodies.

5.5 Osteoporosis: Regulation of Bone Metabolism

Our skeleton consists of bones, which are living tissues. During human develop-
ment, bones are formed through intramembranous or endochondral ossification.
After formation, bone grows and changes shape by process of modeling. Bone
modeling occurs where osteoclasts and osteoblasts work independently to reshape or
shape bone. Bone modeling occurs primarily in childhood but continues throughout
life. Modeling leads to a net increase in bone mass. Genetic factors, combined
with environmental factors such as physical strain and hormonal factors, regulate
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Table 5.4 Characteristics of monoclonal antibodies

Characteristics Monoclonal antibody

Size/Structure High molecular weight protein

Target High specificity, targeting extracellular targets
Half-life Long half-life—from days to weeks
Production Culture derived

Administration | Intravenously or subcutaneously

Absorption Lymphatic system (after subcutaneous administration)

Distribution Limited due to large size-convective transport, endocytosis/pinocytosis via
endothelial cells

Excretion Reticuloendothelial system, antigen mediated clearance. Not through the
liver or kidneys

bone modeling. Parathyroid hormone and sclerostin inhibition also stimulate bone
modeling [16].

Bone remodeling renews the skeleton. The critical cells involved in bone remod-
eling are osteoblasts and osteoclasts within a bone remodeling unit. In the remodeling
process, osteoclasts and osteoblasts work sequentially within the same bone remod-
eling unit. The first step of remodeling is bone resorption. During bone resorption,
osteoclasts remove mature bone from the skeleton. Bone resorption occurs when
osteoclasts break down an old bone area, forming a pit or a small hole (resorption
pit). Ossification (laying down of new bone) then follows resorption. During ossifica-
tion, osteoblasts move into the resorption pit and start filling it with bone matrix. The
bone matrix is then mineralized, forming mature bone. The bone remodeling process
takes place over several months: resorption is a more rapid process (2—4 weeks), while
bone formation takes up to 4—6 months to complete [17, 18].

During the process of remodeling, our skeleton breaks down small areas and
rebuilds them. About 10% of the skeleton is remodeled annually [18, 19]. At that
rate, the entire skeleton turns over about every ten years. Remodeling adjusts bone
architecture to meet changing mechanical needs, also repairing microdamage in the
bone matrix [18, 20]. This process occurs throughout life, maintaining or leading to
a slight decrease in bone mass. Both systemic hormones and local factors regulate
the process of bone remodeling. Systemic hormones, such as parathyroid hormone,
calcitonin, vitamin D, and estrogen, affect bone remodeling. Many bone elements,
known as cytokines (including RANKL), growth factors, local regulator proteins
(including sclerostin), are also involved in regulating bone remodeling [21].

Understanding the bone remodeling and modeling processes as well as how it is
regulated has allowed targeting specific disease-related molecules, leading to osteo-
porosis treatment advances. The following sections describe two monoclonal anti-
bodies used to treat osteoporosis developed based on this understanding: (1) Deno-
sumab, a monoclonal antibody that binds to RANKL, leading to inhibition of the
RANKL/RANK/OPG system; (2) Romosozumab, a monoclonal antibody that binds
to sclerostin, leading to activation of the Wnt signaling pathway.
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Table 5.5 Bone turnover Bone formation markers Bone resorption markers
markers
Bone-specific alkaline N-terminal cross-linking
phosphatase (BSAP) telopeptide (NTX) of type I
collagen
Procollagen type I N C-terminal cross-linking
propeptide (P1NP) telopeptide (CTX) of type 1
collagen

5.6 Assessment of Bone Modeling and Remodeling:
Osteoporosis Medication Efficacy

Histologic examination of bone biopsies is the gold standard to assess bone forma-
tion and resorption in bone modeling and remodeling. However, the collections of
bone biopsies are invasive and are not widely available. Assessment of serum/urine
biomarkers is an inexpensive and easier way to understand the whole-body bone
formation and resorption at a given moment in time. When osteoclasts resorb
bone, they release mature collagen fragments such as C-telopeptide (CTX) and
N-telopeptide (NTX). CTX and NTX can be measured in the serum and urine.
Measuring the bone mature collagen fragments allows assessment of bone resorp-
tion. Osteoblasts produce bone-specific alkaline phosphatase (BSAP) when they
secret active bone matrix. When osteoblasts cleave components of collagen during
collagen synthesis, they release procollagen N-terminal extension peptide (P1NP).
Measuring of bone alkaline phosphatase and PINP provides information about bone
formation. Table 5.5 summarizes various bone turnover markers discussed in this
chapter.

The efficacy of osteoporosis medications is assessed by their ability to reduce
fragility fractures. However, using fracture as an end point is associated with signifi-
cant cost and requirements of large population size. Therefore, bone mineral density
(BMD) is measured as a surrogate for bone strength to gain additional information
about osteoporosis medication efficacy [12].

5.7 Denosumab

5.7.1 RANKL/RANK/OPG System in Skeletal Health

The RANKL/RANK/OPG system was discovered in the mid-1990s. NF-kappa-f
ligand (RANKL), expressed on osteoblasts and stromal cells, regulates osteoclast
formation, function, and survival. RANK Ligand is a glycoprotein that binds to
RANK on the osteoclasts, leading to maturation of CFU-M to mature osteoclasts,
leading to increased bone resorption. Osteoblasts and stromal stem cells secrete
osteoprotegerin. Osteoprotegerin prevents the binding of RANKL from binding to
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RANK, reducing osteoclast formation. Osteoprotegerin, therefore, exerts control
over the effects of RANKL on osteoclast function [22]. This understanding led to
efforts targeting the RANKL/RANK/OPG system to treat osteoporosis. It was postu-
lated that by inhibiting RANKL, osteoclast formation could be inhibited, therefore
allowing the reduction of bone loss in osteoporosis.

5.7.2 Development of a Monoclonal Antibody Targeting
the RANKL Pathway to Treat Osteoporosis

Although osteoprotegerin was effective in vitro in inhibiting osteoclast differen-
tiation, very high subcutaneous doses of recombinant osteoprotegerin had to be
administered to suppress bone resorption in mice. The full-length molecule with
the C-terminal heparin-binding domain also exhibited poor pharmacokinetic and
pharmacodynamic properties [12]. This led to the development of Fc-OPG fusion
molecules, which comprised human OPG fused to the human immunoglobulin Fc
region, which demonstrated higher potency, were more stable in vivo, and exhibited
longer half-life [23]. A Phase I clinical study evaluated RANKL inhibition’s efficacy
on bone resorption using recombinant Fc-OPG. The primary outcome measures being
bone turnover markers of urinary N-telopeptide (NTX) [24]. At the highest dose, an
80% reduction in NTX at four days after dosing, with bone turnover suppression
lasting 45 days, was noted, suggesting targeting the RANKL was a viable candidate
for the treatment for osteoporosis.

However, with Fc-OPG fusion molecules, there were concerns about developing
anti-OPG antibodies in humans, which might cross-react with endogenous OPG,
neutralizing its activity. One patient in the previously mentioned study did develop
anti-OPG antibodies after one dose of Fc-OPG fusion molecule [24]. Although clini-
cally non-significant, this raised concern because osteoporosis is a chronic condition
requiring repeated administration of the Fc-OPG fusion molecules for continuous
treatment [23]. Another potential problem was the binding of OPG to TNF-related
apoptosis-inducing ligand (TRAIL), which was a natural defense mechanism of the
body against cancer. Although osteoprotegerin had only a low affinity for TRAIL,
this was a concern because chronic treatment was needed for osteoporosis [23].

Therefore, focus turned to the development of a specific anti-RANKL antibody.
AMG 162, subsequently known as denosumab, was later developed. Denosumab is
a fully human IgG2 monoclonal antibody that binds to both soluble and membrane-
bound RANKL with high affinity [12]. As compared to the Fc-OPG fusion molecule,
denosumab does not resemble OPG in molecule structure. Consequently, this avoids
the issue of the development of anti-OPG antibodies [23]. Furthermore, denosumab
does not bind to other TNF family members such as TRAIL. Thus, this alleviated
concerns about interference with the defense mechanism against tumorigenesis [23].
A single dose of denosumab was more potent than the Fc-OPG fusion molecule. It
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showed more significant decreases in bone turnover markers at lower doses and more
prolonged anti-resorptive effect at equivalent doses [24].

5.7.3 Denosumab: Efficacy in Treatment of Osteoporosis

Denosumab is a fully human IgG2 monoclonal antibody that binds to both soluble
and membrane-bound RANKL with high affinity [12]. By binding to RANKL,
denosumab prevents binding of RANKL to RANK. Preventing oligomerizing of
RANK leads to decreasing osteoclast maturation, function, and survival. Denosumab
primarily exerts its effect by reducing bone remodeling, leading to reduced bone
breakdown and increased bone mass. Denosumab is administered as a subcutaneous
injection, 60 mg once every six months. Denosumab was initially approved for the
treatment of osteoporosis in postmenopausal women in 2010 [25]. In subsequent
paragraphs we described the clinical development of denosumab. The key findings
from Phases I, 11, and III trials are summarized in Table 5.6 [23, 25-31].

In a Phase I trial of healthy postmenopausal women, a single dose of denosumab
resulted in dose-dependent, rapid (within 12 h), profound (up to 84%), and sustained
(up to 9 months) decrease in urinary NTX [23]. The efficacy and safety of subcu-
taneously administered denosumab were evaluated in 412 postmenopausal women
with low bone density in a Phase II trial [26]. The primary endpoint was percentage
change from baseline in bone mineral density at the lumbar spine at 12 months.
A total of seven dosages and two dosing intervals (every three months, every six
months) were evaluated. Twelve months of denosumab treatment led to increased
bone density in the lumbar spine of 3.0-6.7%. In the hip and distal third of the radius,
there was a gain in bone density of 1.9-3.6% and 0.4—1.3%, respectively.

After denosumab treatment, a decrease in serum C-telopeptide from baseline was
noted three days after denosumab administration. The duration of bone turnover
suppression was dose-dependent [26]. Bone specific alkaline phosphatase levels
were decreased with a one-month delay. These findings are consistent with deno-
sumab’s anti-remodeling activity, where both bone resorption of osteoclasts and bone
formation of osteoblasts are inhibited [26]. Denosumab demonstrated non-linear
pharmacokinetics [26].

Based on the data from Phase II trial, dosing of 60 mg every six months was chosen
because this was the lowest dose with the least frequent administration interval,
which led to the most gain in bone mineral density in all skeletal sites. Furthermore,
with 60 mg every 6-month dosing, bone turnover markers started to increase toward
levels observed with open comparator alendronate at the end of the dosing interval.
60 mg every 6-month dosing was considered potentially more ideal than continuous
suppression at higher doses of denosumab.

The primary trial for denosumab was the Phase III randomized FREEDOM trial
[25]. The FREEDOM trial had 7868 women, with mean baseline T scores LS-2.8,
TH-1.9, and FN-2.2. 22% had prevalent vertebral compression fracture; 82—84%
of patients completed the study. The patients received every six months denosumab
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subcutaneously versus placebo for 36 months. The primary endpoint in the study
was vertebral compression fracture at 36 months. The secondary endpoints were
non-vertebral compression fractures and hip fractures. At three years, patients who
received denosumab had 68% less new vertebral fractures, 20% less non-vertebral
fractures, and 40% fewer hip fractures as compared to placebo.

Two Phase III head-to-head studies compared denosumab and alendronate, with
the primary endpoint being gain in hipbone mineral density. The DECIDE trial
included postmenopausal women with low bone mass who have never received
alendronate (n = 1189 patients) [27]. In contrast, the STAND trial included post-
menopausal women with low bone mass who had received at least six months of
bisphosphonates [28]. The primary endpoint for both studies was the change in total
hip BMD from baseline to month twelve. Other endpoints included change in bone
turnover markers and change in BMD at the femoral neck, trochanter, lumbar spine,
and one-third radius at 12 months. In both studies, denosumab was superior to alen-
dronate in increasing hip BMD at the total hip. Denosumab increased bone density in
all skeletal sites, but particularly cortical bone [27, 28]. Denosumab has been studied
in men, as compared to placebo, denosumab treatment leads to gain in bone density
at 12 months in the spine, hips and 33% distal radius in men with low bone mineral
density [29].

5.7.4 Denosumab: Safety

Overall, in the FREEDOM study, there was no significant difference in the risk of
infection, except for cellulitis between placebo and treatment groups. More than half
of the cellulitis was erysipelas from a site in Mexico City. There were numerically
more infection-related serious adverse events in the denosumab arm (4.1%) versus
the placebo group (3.5%). However, the difference was not statistically significant
[25]. The concern of the possibility of increased risk from infection is because certain
lymphocytes express RANK ligand. However, the role of RANKL in the immune
system is unclear. Eczema occurred more commonly in the denosumab group (3.0%,
vs. 1.7%).

The FREEDOM trial was continued further for ten years (Fig. 5.3). Patients who
received placebo for three years received Prolia subsequently for seven years, and
patients who received denosumab in the first three years continued to receive deno-
sumab (FREEDOM extension) [30]. The main reason for FREEDOM extension was
mainly to monitor for the safety of denosumab. The FREEDOM Extension results
were encouraging, where the yearly rates of adverse events for patients receiving
denosumab being stable or declining throughout the study (165.3 per 100 patient-
years to 95.9 per 100 patient-years) over ten years. Serious adverse events, including
cellulitis, were stable over time between 11.5 and 14.4 per 100 patient-years [30].

Osteonecrosis of the jaw and atypical femoral fracture were uncommon. One case
of atypical femoral fracture in the long-term group (year 7 of denosumab treatment)
and one case in the cross over group (year 3 of denosumab treatment). The incidence
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FREEDOM Extension, Duration: 10 years

Denosumab 36 months Denosumab 84 months (7 years)
Placebo 36 months Denosumab 84 months (7 years)
I| | I|
- — o A _1,_ _ )
FREEDOM EXTENSION

DEFEND Extension, Duration:4 years

Denosumab 24 months Off treatment 24 months
Placebo 24 months Off treatment 24 months
Il. 'il |
.'- h ".1,-' g
DEFEND EXTENSION

Fig. 5.3 Design of FREEDOM extension study and DEFEND extension study

of atypical femoral fractures was 0.8 per 10,000 patient-years. There were 13 cases
of osteonecrosis of the jaw, 7 cases in the long-term group, and six in the crossover
group. The incidence of osteonecrosis of the jaw was 5.2 per 10,000 patient-years.

At ten years in the FREEDOM Extension trial, cellulitis rates were persistently
low (Iess than 0.1-0.2 per 100 patient-years). This finding was reassuring given the
higher rates of cellulitis in patients who received denosumab as compared to patients
who received placebo in the first three years of the FREEDOM study [30]. Infections
declined over ten years, from 38.6 per 100 patient-years to 23.0 per 100 patient-years.
Infection-related serious adverse events were stable at 1.1-2.6 per 100 patient-years.
There was no increased risk of infection in the long-term treatment group and the
crossover group.

A separate analysis has been done to compare adverse events of interest including
malignancy, eczema, dermatitis, pancreatitis, endocarditis, and delayed fracture
healing and serious adverse events of interest including infections, opportunistic
infections, and cellulitis, or erysipelas between the first three years of the extension
in the crossover and long-term denosumab groups relative to placebo and denosumab
groups in FREEDOM. Notably, rates of adverse events incidence rates and serious
adverse events incidence rates were similar or lower in the first three years of the
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extension in the crossover and long-term denosumab groups compared to the placebo
and denosumab groups in the FREEDOM trial [32].

5.7.5 Denosumab: Long-Term Effects on Skeletal Health

With ten years of denosumab, there was an increase of bone mineral density in the
spine of approximately 20%. Hip bone mineral density gained approximately 9-10%
[30]. The bone density continues to increase and does not plateau as compared to
teriparatide, where the BMD gain plateaus. Although denosumab mainly suppresses
bone remodeling, denosumab may permit a modeling effect on the bone to proceed
even though bone resorption is marked suppressed [33].

The yearly incidence of new vertebral fracture and non-vertebral fractures
remained low during the FREEDOM extension, similar to rates observed in the
denosumab group during the first three years of the FREEDOM study. Although
there was no placebo in the FREEDOM extension, a simulation method was used to
estimate expected fracture rates had the denosumab participants who enrolled in the
extension study received placebo [30]. As compared to the simulated placebo group,
the relative risk for new vertebral fractures and non-vertebral fractures were lower
(new vertebral fractures 0.62, 95% Confidence Interval 0.47-0.80; non-vertebral
fractures 0.54, 95% Confidence Interval 0.43-0.68).

In the FREEDOM extension, patients who continued to receive denosumab after
receiving denosumab in the first three years had numerically lower non-vertebral
fractures. The lower number of fractures suggests the possibility that non-vertebral
fractures may decrease with prolonged denosumab use. On denosumab, a relationship
of higher the BMD and lower the non-vertebral fracture incidence was noted [34].
This relationship plateaued at a T score of between —1.5 and —2.0. These data
support the notion that treating osteoporosis to a specific T score threshold may be
a reasonable target for osteoporosis treatment. Treating to a target may be feasible
with denosumab because most osteoporotic women could achieve non-osteoporotic
T scores after ten years of denosumab treatment. After ten years of treatment, 95%
of patients had a total hip T score of more than —2.5, 81% had a total hip T score of
—2.0, and 61% had a T-score of more than —1.5 [34].

Although denosumab effectively and rapidly suppresses bone remodeling, this
effect is reversible after stopping of treatment [35-37]. This effect is consistent
with the pathophysiology of osteoporosis and the pharmacokinetics and pharma-
codynamics of monoclonal antibodies. In the DEFEND trial extension study, bone
mineral density declined after denosumab treatment was discontinued in the group
the received denosumab for two years (Fig. 5.3). After discontinuation of denosumab,
bone turnover markers increased above baseline. CTX increased within three months,
NTX increased within six months. Both turnover markers returned to baseline by
month 48. Similar findings were noted in a study by Miller et al., which included a
group of patients who received denosumab for 24 months. After 24 months patients
either continued denosumab for an additional 24 months, discontinued therapy or
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discontinued treatment for 12 months then reinitiated denosumab for 12 months.
Twenty-four months of denosumab treatment suppressed bone turnover markers.
With stopping of denosumab at 24 months, bone turnover markers overshoot that
of placebo and take two years to decrease back to baseline [35]. This correlated
with a loss of BMD in the first 12 months of discontinuation of treatment. However,
retreatment with denosumab led to regaining in BMD. The gain with retreatment
suggests bone remained responsive with resumed denosumab treatment. Levels of
bone turnover markers increased on discontinuation and decreased with retreatment
[35].

This reversible effect is of consequence because of the concept of a drug holiday
for osteoporosis. During a drug holiday, treatment is stopped temporarily for low-risk
osteoporosis patients who have been on bisphosphonate treatment for five years to
reduce the risk of side effects [38]. With the reversible effects of denosumab on bone, a
drug holiday without transitioning to another agent may not be recommended. There
have been reports of increased risk of fracture has after abrupt discontinuation of
denosumab [39, 40]. Based on limited data, treatment with oral bisphosphonate after
denosumab treatment has been suggested as a prudent strategy when discontinuing
denosumab [36].

5.7.6 Denosumab in Patients with Chronic Kidney Disease

As previously described, monoclonal antibodies, including denosumab, are elim-
inated by reticuloendothelial macrophages. Because denosumab is not eliminated
in the kidneys, no renal dosing is needed. Examining patients in the FREEDOM
study stratified by renal function, Jamal et al. noted that fracture risk reduction and
bone mineral density changes at all sites favored denosumab [41]. Treatment effi-
cacy did not differ with kidney function. Notably, changes in calcium, creatinine
level, and incidence of adverse events did not defer with kidney function [39]. It is
essential to be aware of the increased risk of hypocalcemia in patients with chronic
kidney disease. Therefore, ensuring normal calcium and vitamin D levels before
administering denosumab is vital in chronic kidney disease patients.

5.8 Romosozumab

5.8.1 The Wnt Signaling Pathway and Sclerostin in Skeletal
Health

The canonical Wnt-f-catenin pathway plays an essential role in skeletal health and
bone remodeling [42]. When the Wnt ligand binds to a specific Frizzled family
receptor and an LDL-receptor-related protein (LRP) co-receptor (LRP-5 or LRP-6
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co-receptor), this activates wnt-responsive genes. This activation leads to a cascade
of changes, ultimately leading to increased bone formation and decreased bone
resorption.

When the Wnt-B-catenin pathway is activated, f-catenin accumulates within the
cell. The accumulated B-catenin enters the nucleus, binds to the T-cell factor tran-
scription factor leading to activation of Wnt-responsive genes. One of the effects is
inducing osteoblast precursors to differentiate. Furthermore, activation of the Wnt-
B-catenin pathway also leads to increased expression of osteoprotegerin. As previ-
ously described, osteoprotegerin inhibits the binding of RANK to RANKL, leading
to inhibition of osteoclast differentiation [42]. The net effect of activation of the Wnt-
B-catenin pathway is increased bone mass from increased osteoblasts and inhibition
of osteoclasts. When the Wnt-f-catenin pathway is inhibited, a scaffolding protein
called axin builds a destruction complex that phosphorylates p-catenin. Phosphory-
lated B-catenin is ubiquitinated and degraded by a proteasome. When B-catenin does
not enter the nucleus, Wnt-responsive genes are not activated, leading to decreased
bone formation and increased bone resorption [43—45].

Sclerostin is a glycoprotein encoded by the SOST gene and is produced by
osteocytes. Sclerostin is an inhibitor of the Wnt-f-catenin and bone morphogenic
protein signaling pathways, stimulating osteoblasts’ proliferation. By binding to
LRP 5/6, Sclerostin prevents Wnt from binding to LRP 5/6 and Frizzled family
receptor, inhibiting the canonical Wnt signaling pathway [46]. The complex interac-
tion between osteocytes, sclerostin, and the Wnt pathway mediates the coupling of
mechanical stress on bone to the anabolic response. Sclerostin may be a crucial link
between osteocyte mechanosensing and osteoblastic bone formation [47, 48].

5.8.2 Development of a Monoclonal Antibody Targeting
Sclerostin to Treat Osteoporosis

Two rare genetic diseases provided insight into the possibility of pursuing sclerostin
inhibition in osteoporosis treatment. Sclerosteosis is a condition where patients have
homozygous mutations in the SOST gene [49]. Van Bunchem’s disease is a condi-
tion where patients have a deleted region in distant regulatory elements involved
in transcribing the SOST gene [50]. Both diseases have genetic abnormalities in
the SOST gene leading to biologically less active sclerostin. In both conditions, the
Whnt-B-catenin pathway is uninhibited, therefore leading to osteoblast hyperactivity.
Osteoblast hyperactivity leads to bone overgrowth in the skull, mandible, ribs, clav-
icles, and long bones [49, 51]. These patients have a low risk of fracture due to their
increased bone mass [49, 51].
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For sclerosteosis, heterozygote carriers of the SOST mutation had low but
detectable levels of sclerostin. They had high bone mass compared to healthy same-
aged patients but lower than homozygous patients and were also less prone to frac-
tures. This observation led to the initial hypothesis of circulating sclerostin’s gene-
dose effect, leading to different clinical phenotypes [52]. These observations were
further supported by SOST knockout mice’s findings having a high bone mass pheno-
type [53], while transgenic mice overexpressing the SOST gene having a low bone
mass phenotype [54].

Several animal models have shown the effect of anti-sclerostin antibodies on bone
formation. When ovariectomized rats, which develop estrogen deficiency-induced
bone loss, were given anti-sclerostin antibody treatment reversed estrogen deficiency-
induced bone loss. There was a significant bone mass increase with the anti-sclerostin
antibody. When cynomolgus monkeys were treated with anti-sclerostin antibodies,
BMD, and bone strength improved [55].

5.8.3 Romosozumab: A Monoclonal Antibody Against
Sclerostin Leading to Significant Bone Growth

Romosozumab is a humanized IgG2 monoclonal antibody that targets the glyco-
protein sclerostin. By inhibiting the wnt signaling pathway’s inhibitor, the wnt
signaling pathway is activated, leading to bone gain. With romosozumab, in contrast
to anti-remodeling agents (i.e., denosumab): there is a rapid initial increase in bone
formation, followed by a slighter more prolonged decrease of bone resorption. This
combined bone formation and bone resorption reduction lead to significant bone gain
with romosozumab treatment, with romosozumab being one of the most potent bone
anabolic agents to date [56]. Inhibition of sclerostin by romosozumab predominantly
seems to stimulate modeling-based bone formation at cancellous and endocortical
surfaces [57]. Romosozumab is administered as a subcutaneous injection 210 mg
once monthly. Romosozumab was approved in 2019 to treat osteoporosis in post-
menopausal women at high risk of fracture. In the following paragraphs, we described
the clinical development of romosozumab. The key findings from Phases I, II, and
III trials are summarized in Table 5.7 [58-63].

Two Phase I trials of romosozumab assessed the safety of romosozumab.
Both studies were placebo-controlled, randomized trials. In the first study, 72
healthy subjects were randomized to receive romosozumab subcutaneously (various
doses), intravenously (various doses), or placebo [58]. Depending on the dose of
romosozumab given, patients were followed for 29-85 days. The second was study
investigated multiple doses of romosozumab in 48 healthy men and postmenopausal
women [59]. The study involved three months of treatment followed by three months
of follow-up after treatment. Both studies showed that romosozumab was well
tolerated, with no deaths or significant safety findings.
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A subsequent Phase II trial evaluated the effectiveness and safety of romosozumab
in postmenopausal women with low bone density [60]. In this study, 419 post-
menopausal women 55-85 yearsold, with BMD T-score < —2.0 and > —3.5. Three
hundred and eighty three (91%) patients were randomized to receive romosozumab
monthly (doses 70, 140, 210 mg) or every 3-months (doses 140, 210 mg), placebo, or
open-label comparator group (oral alendronate 70 mg weekly, or subcutaneous teri-
paratide 20 g daily). In this study, the primary endpoint was percentage change from
baseline of lumbar spine BMD at 12 months in patients who received romosozumab
as compared to the pooled placebo group.

At 12 months, the study showed that pooled romosozumab group participants
achieved a statistically significant increase in BMD at the lumbar spine, total hip,
and femoral neck compared to the pooled placebo group participants at all doses and
frequencies evaluated in the study. Among the assessed doses, romosozumab 210 mg
administered subcutaneously monthly was associated with the highest BMD gain at
12 months with no increased incidence of adverse events. Romosozumab led to bone
mineral density increases of 11.3% in the lumbar spine, 4.1% in the total hip, and
3.7% in the femoral neck. There were no significant differences in the percentage of
serious adverse events between all groups. Injection site reactions (pain, hematoma,
erythema reaction, discomfort, hemorrhage, or rash at the injection site) were more
common with romosozumab treatment.

There was a transient rise in bone formation markers that peaked one month after
romosozumab administration. After peaking at one month, bone formation markers
decreased to baseline or dropped below baseline at months 2—-9 depending on the
romosozumab dose. Bone resorption markers decreased the most in the first week
but remained below baseline up to month 12 of treatment. This suggests an anabolic
window with romosozumab treatment that allows a rapid initial increase in bone
formation, followed by a slighter more prolonged decrease of bone resorption as
previously described. Romosozumab demonstrated non-linear pharmacokinetics.

The STRUCTURE study (STudy evaluating effect of RomosozUmab Compared
with Teriparatide in postmenopaUsal women with osteoporosis at high risk for frac-
ture pReviously treated with bisphosphonatE therapy) which was a randomized,
open-label, international multicenter trial assessed the effect of a 12-month treat-
ment course with either romosozumab or teriparatide on BMD after bisphosphonate
treatment [61]. The study included 436 postmenopausal women 55-85 years old
with osteoporosis (T-score <—2.5 at the lumbar spine, femoral neck or total hip,
history of a vertebral fracture, or non-vertebral fracture after 50 years of age) who
had taken an oral bisphosphonate for more than three years before screening and,
specifically, had taken weekly alendronate one year before screening. Patients previ-
ously on bisphosphonates were randomized to receive subcutaneous romosozumab
or teriparatide. The study’s primary endpoint was the change of total hip BMD on
DXA after treatment with 12 months of either romosozumab or teriparatide. After
12 months of therapy with romosozumab, total hip BMD increased by 2.6% versus
teriparatide (decrease of 0.6%). Romosozumab led to an increase in lumbar spine
bone mineral density as compared to teriparatide [61].
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5.8.4 Romosozumab: Efficacy in Treatment of Osteoporosis

The efficacy of romosozumab was subsequently demonstrated in the FRAME study
(FRACcture study in postmenopausal woMen with ostEoporosis). FRAME was a
multicenter, international, randomized, double-blind, placebo-controlled, parallel-
group study that compared the one-year treatment of romosozumab (subcutaneous
210 mg monthly) followed by denosumab (subcutaneously 60 mg every six months)
with one-year treatment with placebo followed by denosumab (subcutaneously 60 mg
every six months) (Fig. 5.4) [62]. The study included 7180 postmenopausal women
55-90 years old. The study participants had a total hip or femoral neck BMD T-score
of —2.5 to —3.5. Women who had a hip fracture history, any severe or more than two
moderate vertebral fractures were excluded. The primary endpoints for this study
were new vertebral fracture cumulative incidence at 12 and 24 months.

Twelve months of romosozumab treatment led to a 73% risk reduction of verte-
bral fractures compared to placebo (incidence of vertebral compression fracture in
romosozumab group 0.5%, placebo group 1.8%. At 12 months, romosuzumab treat-
ment led to a 36% reduction of clinical fractures (composite of non-vertebral fracture
and symptomatic vertebral fracture) as compared to the placebo group. At 24 months,
vertebral fracture incidence in the group who received romosozumab in the 1st year
and denosumab in the 2nd year was 0.6%. In the group that received placebo in the
1st year and denosumab in the 2nd year, vertebral fracture incidence was 2.5%. One
year of romosozumab followed by one year of denosumab was associated with 75%
fracture risk vertebral fracture risk reduction and 33% reduction in clinical fractures
compared to one year of placebo followed by one year of denosumab. There was
no significant difference in non-vertebral fracture incidence at 12 and 24 months

FRAME, Trial duration: 24 months, 7180 patients

I

Denosumab 12 months

ARCH, Trial duration: 24 months, 4093 patients

Fig. 5.4 Design of FRAME study and ARCH study
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between the two groups, although there were numerically fewer fractures in the
group that received romosuzumab followed by denosumab [62].

Another study compared romosozumab in the first year, followed by alendronate
for the second year, with two years of alendronate therapy in higher-risk patients [64].
The ARCH study (Active-contRolled FraCure Study in Postmenopausal Women
with Osteoporosis at High Risk of Fracture) was a Phase Il multicenter, international,
randomized, double-blind, alendronate-controlled study of Romosozumab (Fig. 5.4)
[63]. The ARCH study included a population of higher risk for fracture compared
to the FRAME trial by having patients with osteoporosis and a history of fragility
fracture. Inclusion criteria included patients with a bone mineral density T score of
—2.5 or less at the total hip or femoral neck and either one or more moderate or
severe vertebral fractures, or two or more mild vertebral fractures; or a bone mineral
density T score of —2.0 or less at the total hip or femoral neck and either two or more
moderate or severe vertebral fractures or a fracture of the proximal femur sustained
3-24 months before randomization. The study’s primary outcome was cumulative
incidence of new vertebral fractures at 24 months and cumulative incidence of clinical
fractures (symptomatic vertebral fractures 4+ non-vertebral fractures) at the time of
primary analysis (after clinical fractures had been confirmed in 330 or more patients).

In the ARCH study, 4093 postmenopausal women were enrolled were random-
ized to receive either two years of alendronate (alendronate group) or one year of
romosozumab followed by alendronate (romosozumab group). At 12 months, the
romosozumab group showed a 37% risk reduction of vertebral compression fractures
and clinical fractures as compared to the alendronate group. The benefit persisted in
the 2nd year when both groups received alendronate. The romosozumab group had
48% less vertebral compression fractures, 27% less clinical fractures, 19% less non-
vertebral fractures, and 18% fewer hip fractures than the alendronate group [63]. At
24 months, 6.2% of patients in the romosozumab group had new vertebral fractures
compared to 11.9% in the alendronate group. After 2.7 years, 9.7% of patients in the
romosozumab group developed clinical fractures, while 13.0% in the alendronate
group developed clinical fractures.

5.8.5 Romosozumab: Safety

In both the ARCH and FRAME study, adverse events and serious adverse events
were well balanced between active romosozumab groups and comparator groups
[62, 63]. In the FRAME study, patients who received romosozumab had higher injec-
tion site reactions (5.3% as compared to 2.9% in placebo). Seven patients receiving
romosozumab had hypersensitivity severe adverse events. Adverse events of more
than 10% included joint pains, nasopharyngitis, and back pain. There was one case
of osteonecrosis of the jaw after 12 months of romosozumab treatment and one case
after 12 months of romosozumab, followed by one dose of denosumab. There was one
case of atypical femoral fracture after three months of romosozumab administration.
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In the ARCH study’s first year, a higher frequency of serious cardiovascular
adverse events was observed patients who received the romosozumab group (2.5%
versus 1.9%). A higher cardiovascular risk was not noted in the FRAME study. This
led to a boxed warning for romosozumab that it may increase the risk of heart attack,
stroke and cardiovascular death. Romosozumab should not be used in patients who
have had a heart attack or stroke within the previous 1 year. In the ARCH study, there
was one case of osteonecrosis of the jaw and two cases of atypical femoral fractures
in the group of patients who received romosozumab followed by alendronate. In
patients who received alendronate for two years, there was one case of osteonecrosis
of the jaw and four cases of atypical femoral fractures [62, 63].

5.9 Concluding Remarks

In this chapter, we describe the remarkable discovery and utility of monoclonal
antibodies in the treatment of human disease. The specificity of monoclonal anti-
bodies towards the target antigen allows precise targeting of pathways involved
in disease processes. With osteoporosis, increased understanding of specific path-
ways involved in regulating bone metabolism has allowed significant treatment
advances. Harnessing monoclonal antibodies’ ability to target specific targets within
the RANKL/RANK/OPG system and the wnt signaling pathway, denosumab and
romosozumab were developed. These two new drugs have expanded the tools we
have available to address osteoporosis, a global health epidemic associated with
significant comorbidity and mortality.
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Chapter 6 ®)
Antibody Treatment and Osteoporosis: e
Clinical Perspective

Giacomina Brunetti, Sara Todisco, and Maria Grano

Abstract Osteoporosis is the most worldwide diffuse skeletal disease requiring new
therapeutic strategies for its cure. The discovery of the pro-osteoclastogenic receptor
activator of nuclear factor kappa-B ligand (RANKL) and anti-osteoblastogenic scle-
rostin’s role is strongly changing the therapeutic approach. In this chapter, we
overview the literature and data on the use of denosumab and romosozumab, anti-
bodies against RANKL and sclerostin respectively, for osteoporosis management.
Clinical trials show that denosumab long-term treatment determines a continuous
augment of the bone mineral density (BMD) with few adverse effects. Most recent
trials on romosozumab treatment reports bone formation increase and BMD improve-
ment, although there are controversial reports on its adverse effects, with particular
regard to cardiovascular events.

Keywords Denosumab + Romosozumab - Osteoporosis * Sclerostin + RANKL -
Bone remodeling

6.1 Introduction

Osteoporosis is the most worldwide diffuse skeletal disease with an incidence of
about 2 million fractures yearly in the United States [1]. World Health Organization
(WHO) sets a definition of osteoporosis considering a bone mineral density (BMD)
T-score more than 2.5 standard deviations below young normal reference ranges for
the spine, hip or radius [2].

Hip fractures are the gravest in fact they are related to a 3-fold augment in
all-cause mortality, reduced mobility, infirmity, and loss of capability perform
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quotidian activities [3]. In 2010, about 2.7 million hip fractures have been reported
in the world [4]. This value increases yearly and is predictable to rise to 4.5 to 6.3
million by 2050 [5, 6].

The female to male ratio of hip fractures is about 2:1.0 [7, 8]. The incidence
of these fractures exponentially rises with advancing age. Conversely, in the UK
and the US, wrist fracture occurrence ranges from approximately 400 to 800 per
100,000 women but is quite stable over several decades of elderly [8]. Women often
show Colle’s fracture than men (for example, a ratio of 10:1 by the age of 75) [8].
Vertebrae compression fractures are problematic to assess and frequently these can
remain asymptomatic. The female to male ratio of incidence is about 2:1.

Osteoporosis is characterized by the altered bone remodeling leading to skeletal
fragility and an increased fracture risk [9]. In physiological conditions, bone under-
goes a continuous process of “regeneration”, knows as bone remodeling, involving
the coupling activities of bone resorption by osteoclasts and bone formation by
osteoblasts [10-12]. Additionally, bone can be shaped through bone modelling, a
process featured by the uncoupling of bone formation or resorption [10—12]. Bone
modelling is required for shaping bone architecture subsequently mechanical load,
and it is associated to genetic and hormonal factors. Bone modelling occurred both
before puberty and in adult life [13]. Active modelling occurs in different sites, such
as the distal radius, tibia, ribs, and femoral diaphysis in the elderly [14, 15].

In osteolytic bone disease, as in osteoporosis, the amount of resorbed bone by
osteoclasts surpasses the quantity formed by osteoblasts with consequent skeletal
architecture damage and reduced bone strength [16]. Biological studies highlighted
the mechanisms regulating bone remodeling thus leading to the finding of new
pharmacological targets that may help to improve bone health in osteoporosis.
Particularly, the identification of receptor activator of nuclear factor kappa-B ligand
(RANKL) [17] in supporting osteoclast formation, and of sclerostin [18] in inhibiting
osteoblast differentiation, led to the development of two monoclonal antibodies: one
anti-RANKL (denosumab) and anti-sclerostin (romosozumab) for the therapy of
osteoporosis. In this chapter, we report RANKL and sclerostin roles in physiological
and pathological bone remodeling, along with the current use of denosumab and
romosozumab.

6.2 RANKL

The control of osteoclastogenesis is exerted by receptor activator of nuclear factor
kappa-B (RANK), RANKL and osteoprotegerin [17, 19]. RANKL is produced by
osteoblasts, osteocytes, bone marrow stromal cells, and activated T cells [17, 20].
RANKL works in concert with macrophage colony-stimulating factor (M-CSF) to
determine the fusion of monocyte-macrophage precursors with consequent forma-
tion of mature and active osteoclasts [19]. Osteoclast apoptosis is also blocked by
RANKL [17]. Consistently, RANKL knockout mice develop severe osteopetrosis
[21]. RANKL levels can be modulated by glucocorticoids, Tumor necrosis factor-a
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(TNF-a) and interleukins [20, 22]. Furthermore, the pro-osteoclastogenic activity of
RANKL can be increased by other cytokines, such as TNF-o and LIGHT/TNFSF14
(homologous to Lymphotoxins exhibiting Inducible expression and competing with
herpes simplex virus Glycoprotein D for herpes virus entry mediator [HVEM], a
receptor expressed by T lymphocytes) [23-29].

The RANKL receptor is RANK, a transmembrane heterotrimer expressed
by pre-osteoclasts and mature osteoclasts [17]. RANK activation leads to the
transcription of genes involved in osteoclast differentiation, activity and survival
[30]. Osteoprotegerin is a soluble “decoy receptor,” that inhibits RANKL-RANK
binding with consequent inhibition of osteoclast formation and resorption [31]. The
RANKL and osteoprotegerin ratio represent thus a key issue for bone homeostasis.
In detail, if the ratio is shifted toward RANKL, the likelihood of bone remodeling
shifting towards osteoclastogenesis increases, and thus towards bone diseases, such
as genetic disorders, post-menopausal osteoporosis, cancer-related bone loss and
inflammatory disorders [32].

6.3 Denosumab

Denosumab is a fully human monoclonal IgG2 antibody, that selectively binds
RANKL with high affinity, mimicking an osteoprotegerin inhibitory effect with
consequent reduction of bone resorption. It is the first antibody approved by the
FDA for the management of osteoporosis or high fracture risk patients [33-36].

FDA approval arose from the results of a 3-year multicenter, randomized, double-
blind, placebo-controlled, phase 3 trial—the Fracture Reduction Evaluation of Deno-
sumab (FREEDOM) study [37]. This study involved postmenopausal osteoporotic
women aged 60-90 years, who were enrolled in 214 centers in North America,
Europe, Latin America, and Australasia and were randomly assigned (1:1) to receive
60 mg subcutaneous Denosumab or placebo every 6 months for 3 years. It was found
that Denosumab led to an increase of BMD at the lumbar spine 9.2%, hip 6.0%,
femoral neck 4.8%, trochanter 7.9%, and 3.5% at the distal third radius [37]. Simul-
taneously, hip, new vertebral, and non-vertebral fractures were reduced by 40%,
68%, and 20%, respectively [37].

Additionally, the enhancement of volumetric BMD in the cortical and trabecular
compartments of the tibia was also reported with Denosumab treatment [38]. Dual-
energy X-ray absorptiometry (DXA, previously known as DEXA) scans discovered
continuous increases of Trabecular Bone Score (TBS) from baseline at 12, 24, and
36 months following Denosumab management [39]. A significant reduction of the
levels of the bone resorption marker CTX (crosslinked telopeptide of type 1 collagen)
was measured during 3 years follow-up of Denosumab treatment [37]. Furthermore,
the reduction of bone-specific alkaline phosphatase (BSAP) and type 1 collagen
amino-terminal pro-peptide (P1NP) occurred after Denosumab first injection both in
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humans and in monkeys [37, 40—42]. Histomorphometry studies displayed a signif-
icant inhibition of bone turnover, associated with a regular bone microarchitecture
and mineralization [43].

All subjects who experienced the FREEDOM trial without treatment discon-
tinuation also participated in the open-label, 7-year extension [44]. The study also
comprised of women who received 3 years of placebo and transitioned to Denosumab
in the extension (crossover group). The primary outcome consisted of supervision
safety, whereas the secondary outcomes were finalized to monitor BMD and new
fractures. Rare cases of jaw osteonecrosis, hypocalcemia and atypical femoral frac-
ture, were documented. Remarkably, in the long-term group, BMD augmented from
the FREEDOM baseline by 21.7% at the lumbar spine, 9.0% the femoral neck, 9.2%
the total hip, and 2.7% the one-third radius. In the crossover group, BMD increased
from extension baseline by 16.5% at the lumbar spine, 7.1% at the femoral neck,
7.4% at the total hip, and 2.3% at the distal third radius. Denosumab treatment for
up to 10 years was associated to a low occurrence of adverse events, low fracture
rates, and a constant augment in BMD [44].

PINP and CTX serum levels were reduced during the 7 years of the extension for
participants in the long-term group [44]. Otherwise, in the crossover group, CTX and
PINP serum levels rapidly decreased after the initial administration of Denosumab
[44].In the crossover group, the reductions were preserved during 7 years of treatment
and were comparable to the findings observed for the long-term group during the
first 7 years of Denosumab treatment. The same trend was found for BSAP.

6.3.1 Bone Turnover Rebound and Post-discontinuation
Effects

The therapeutic effect of Denosumab is rapidly vanished after treatment discontin-
uation [45]. Thus, it is probable that following Denosumab withdrawal, RANKL is
promptly available and thus osteoclasts quickly differentiate and bone is resorbed.
Furthermore, it is important to consider the key role of osteocytes in RANKL
secretion.

In post-menopausal women, Denosumab discontinuation causes PINP and CTX
serum levels to rebound to levels of 60% and 40% above the pre-treatment levels,
respectively, that are maintained for about 2 years [45]. Moreover, Denosumab
discontinuation was associated with hypercalcemia in an adult subject treated with
the long-term therapy [46]. Bone turnover reversibility following the discontinua-
tion of Denosumab also ascertains a quick loss of its therapeutic effects. During
the FREEDOM trial, the increased bone density achieved with the treatment disap-
peared over a 1-year period in patients discontinuing Denosumab [47]. This event
can clarify the findings of the post-marketing period: in post-menopausal patients,
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spontaneous single or multiple vertebral fractures appeared during the discontinua-
tion period [48-51]. All these findings suggest that the Denosumab action on bone
cells is cytostatic and not cytotoxic.

6.4 Sclerostin

The Wnt/Bcatenin pathway plays a key role in the differentiation of mesenchymal
stem cells inhibiting adipogenic and chondrogenic differentiation and promoting
osteoblast differentiation [52]. Wnt/Bcatenin signaling also supports osteoblast and
osteocyte survival and inhibits osteoclast differentiation increasing osteoprotegerin
expression in osteoblasts and osteocytes [18]. Osteocytes are crucial in the regulation
of canonical Wnt/Bcatenin signalling, as they secrete the Wnt inhibitor sclerostin, a
protein encoded by the SOST gene largely expressed by mature osteocytes but not by
early osteocytes or osteoblasts [53]. In humans, the functional loss of sclerostin results
in sclerosteosis [54] and van Buchem’s disease [55], both showing augmented bone
mass as well as resistance to fractures. Similarly,the SOST deficiency or neutralizing
antibodies for sclerostin in mice reproduced the high bone mass phenotype [54—
56]. Otherwise, SOST/sclerostin over-expression reduces bone mass [57-60], as
demonstrated in numerous bone diseases, thus sustaining anti-sclerostin use for their
management [61-69].

6.5 Romosozumab

Romosozumab, formerly known as AMG 785/CDP7851, is a humanized IgG2 mono-
clonal antibody with high affinity and specificity for sclerostin. It binds sclerostin
and inhibits its activity leading to bone formation, an increase in BMD and in turn
bone strength. The antibody has an approximate molecular weight of 149 kDa and
it is produced in a mammalian cell line (Chinese hamster ovary) by recombinant
DNA technology [70]. Romosozumab is currently being used for the treatment of
0Steoporosis.

In particular, romosozumab has been assessed for the treatment of postmenopausal
osteoporosis in women in two Phase II studies and three Phase III studies. It has also
been assessed in men for osteoporosis management in a single-Phase III study. A
phase II study also evaluated romosozumab effect on fracture healing.

6.5.1 Phase Il Studies

A total of 419 postmenopausal women with low BMD (NCT00896532) were
included in this phase II/dose-finding study and were randomized to be treated with
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one of five subcutaneous romosozumab regimens (70, 140 or 210 mg monthly; 140
or 210 mg every 3 months), oral alendronate 70 mg weekly, subcutaneous teri-
paratide 20 pg daily or placebo for 12 months. At 12 months, all romosozumab dose
groups had significantly increase in BMD compared to placebo at the lumbar spine,
femoral neck, and total hip. The high gain was observed in the monthly subcutaneous
romosozumab 210 mg group with a BMD gain of 11.3% at lumbar spine, 3.7% at
femoral neck and 4.1% at total hip. All sites displayed a significantly higher BMD
gain compared with the alendronate and teriparatide groups [71]. An extension study
was executed in subjects who had received 24 months of romosozumab treatment
or placebo; these subjects received an additional 12 months of placebo or subcuta-
neous denosumab 60 mg every 6 months [72]. Women treated with romosozumab
followed by denosumab kept gain bone mass (BMD significantly increased by 2.5%
and insignificantly at the total hip by 2.0%), while BMD declined to baseline in
those receiving placebo from 24 to 36 months. A second extension study was then
completed in the same group of subjects for other 12 months (months 36 to 48)
where all subjects received subcutaneous romosozumab 210 mg monthly [73]. After
12 months of placebo, a second romosozumab course determined an important BMD.
Interestingly, after 12 months of denosumab, a second romosozumab course further
improved BMD at the lumbar spine by 2.3% and preserved BMD total hip.

In a parallel study of the Phase II trial (NCT00896532), quantitative CT was
utilized to quantify the modification of bone mineral content (BMC) and volumetric
BMD after 12 months of treatment with romosozumab or teriparatide (20 g daily) or
placebo at the lumbar spine and total hip. Romosozumab outclassed teriparatide either
parameters or sites [74]. In another sub-study of the same Phase II trial, quantitative
CT was used to measure percent change in strength at the lumbar spine showed a
greater increase in strength than teriparatide by finite element analysis [75].

A total of 252 postmenopausal Japanese women with osteoporosis
(NCT01992159) were enrolled in a Phase 2 trial and received subcutaneous
romosozumab (70, 140, 210 mg monthly) or placebo for 12 months. All
romosozumab doses determined a significant increase in BMD at the lumbar spine,
femoral neck, and total hip respect to with placebo. The highest gain was found with
romosozumab 210 mg monthly subcutaneously, showing an improvement of 16.9 at
lumbar spine, 4.7 at total hip and 3.8% at femoral neck [76].

6.5.2 Phase III Studies

A total of 7180 postmenopausal women with osteoporosis were randomized to
receive monthly subcutaneous romosozumab of 210 mg or placebo for 12 months
followed by open-label subcutaneous denosumab of 60 mg every 6 months for an
additional 12 months for both groups in the Phase III FRAME study (Fracture
Study in Postmenopausal Women with Osteoporosis, NCT01575834). There was
a 73% decreased risk of new vertebral fractures after 12 months of treatment with
romosozumab compared to placebo in postmenopausal women with osteoporosis,
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but no significant treatment effect was seen in non-vertebral fractures. The risk of
vertebral fracture was decreased by 75% with romosozumab compared with placebo
at 24 months. At 12 months, no significant reduction in non-vertebral fractures was
detected with 1.6% in the romosozumab group and 2.1% in the placebo group [77].
Interestingly in the FRAME extension, following denosumab treatment for two years,
it has been observed a significant reduction in the risk of non-vertebral, clinical and
vertebral fractures [78].

If BMD T-scores from FRAME were related to those of FREEDOM (Phase 11T
trial on denosumab), the analysis revealed that 1 year of romosozumab treatment
correspond to 3 and 4.5 years of denosumab treatment at the total hip and lumbar
spine, respectively. Otherwise, 12 months of romosozumab followed by additional
12 months of denosumab correspond to 7 years of denosumab for both bone
segments [79].

A total of 4093 postmenopausal women with osteoporosis and a previous frac-
ture were enrolled in the Phase III trial ARCH (Active-Controlled Fracture Study
in Postmenopausal Women with Osteoporosis at High Risk, NCT01631214) [80].
Patients were randomized to double-blinded monthly subcutaneous romosozumab
of 210 mg or weekly oral alendronate of 70 mg for 12 months followed by a supple-
mentary open-label alendronate for further 12 months in both groups. Interestingly,
romosozumab followed by alendronate compared to alendronate alone showed a
48% reduction in risk associated with additional vertebral fractures at 24 months.
Furthermore, at the time of primary analysis the romosozumab-alendronate group
showed a 19% reduction in risk associated with non-vertebral fracture as well as 38%
reduction in risk for hip fracture compared to the alendronate-alendronate group [80].

A total of 436 postmenopausal women with osteoporosis, a previous fracture
and who had received bisphosphonate for the last three years were enrolled in the
Phase III trial STRUCTURE (Study evaluating effect of Romosozumab Compared
with Teriparatide in postmenopausal women with osteoporosis at this risk of fracture
previously treated with bisphosphonate therapy, NCT01796301). For 12 months,
they were treated with monthly subcutaneous romosozumab of 210 mg or daily
subcutaneous teriparatide of 20 pg. Romosozumab increased hip BMD by 2.6%;
while on the other hand, teriparatide induced a change of —0.6% in hip BMD at
12 months [81]. BMD loss at the hip consequent to teriparatide administration in
this trial is consistent with other studies showing a blunted BMD variation with
teriparatide in patients who were beforehand treated with anti-resorptives [82—84].

The significant improvements in BMD displayed by romosozumab seems to be a
consequence of bone formation going on modeling surfaces, thus not dependent on
ongoing remodeling sites. Otherwise, teriparatide seems to augment bone formation
principally on remodeling surfaces and consequently would have reduced surface
to work in patients previously on bisphosphonates, due to the reduced continuous
remodeling [81]. Another study demonstrated that in patients who were previously on
alendronate, teriparatide exhibited a mean hip BMD to be at or below baseline up to
12 months, but an improvement from baseline of 0.3% was detected at 18 months [82].
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A total of 245 men with BMD T-score at femoral neck of <1.5 or a T-score at the
lumbar spine of <2.5 together with a history of a fragility non-vertebral fracture or
a vertebral fracture were enrolled in the Phase III BRIDGE trial (NCT02186171).
After 12 months of treatment with monthly subcutaneous romosozumab of 210 mg
or placebo, romosozumab showed statistically significant improvements in BMD at
the lumbar spine and total hip comparing to placebo in men with osteoporosis [85].

An interesting fact when comparing the different randomized trials for osteo-
porosis treatment, it is possible to observe the use of romosozumab followed by
an antiresorptive agent or teriparatide in combination with denosumab establishes
a quick and strong gain in BMD for patients who at very high risk of fractures.
Furthermore, it is fundamental to note that normally there is a correct sequence for
administrating osteoanabolic agent and antiresorptive agent in order to achieve a gain
in BMD. Interestingly, this will not happen when using romosozumab.

The STRUCTURE and DATA-switch studies have demonstrated that in osteo-
porotic patients, the switch from alendronate or denosumab to teriparatide caused
transient bone loss [86, 87]. However, in the STRUCTURE study and the Phase
Il studies by Kendler et al. [73, 81], this effect was not observed for patients
switching from denosumab or alendronate to romosozumab as they continued to
gain bone mass. These observations and findings are consistent with the theory
that romosozumab works primarily on modeling bone surfaces whereas teriparatide
works mainly on remodeling surfaces, which are educed following treatment with an
anti-resorptive drugs, as denosumab or a bisphosphonate [88]. Furthermore, quan-
tification of changes in PINP (bone formation marker) and CTX (bone resorption
marker) shows that romosozumab has a peak onset of 2 weeks after administra-
tion. The effect on CTX is preserved during the therapy, whereas a reduction in the
concentration of PINP from baseline after 9 months was observed and the concentra-
tion declines thereafter. Upon termination of therapy, an increase in the CTX levels
above baseline levels was observed within 3 months. After therapy discontinuation,
the levels of CTX, PINP, and BMD returned to baseline levels within 12 months [70].

6.5.3 Hip Fractures

A total of 332 patients in a phase II study were enrolled to evaluate romosozumab
improvement for the fracture-healing-related clinical and radiographic outcomes. A
total of 243 were randomized for the treatment with different doses of romosozumab
(70 mg, n = 60; 140 mg,n =93; and 210 mg, n = 90), while 89 received a placebo. The
difference in the mean timed “Up & Go” (TUG) score represented the first end point.
Furthermore, the score on the Radiographic Union Scale for Hip (RUSH) and the time
to radiographic evidence of healing were evaluated as additional end points. However,
no parameter among those chosen showed statistically significant changes [89].
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6.5.4 Indication, Dosing and Administration

Romosozumab has been approved by FDA for a maximum use of 12 months in
postmenopausal women with a high risk for osteoporotic fractures [70]. It is offered
in ready-to-use syringes for subcutaneous injection, each with 105 mg romosozumab
in 1.17 mL of solution. The therapeutic dose is 210 mg and should be administered
once monthly via injection of 2 syringes at different sites. It is divided for optimal
absorption as the concentration requires a higher volume respect to recommended
for subcutaneous injection.

6.5.5 Safety and Tolerability

In clinical trials, Romosozumab has been relatively well tolerated and the most
frequent adverse reactions (>5%) described were headache and arthralgia [90].

Given that romosozumab works by decreasing bone resorption and increasing
bone formation, hypocalcemia was observed in 0 to 3% of patients in phase II trials
[77, 80, 81, 85]. In contrast, hypercalcemia was recorded in <1% of patients treated
with romosozumab compared to 10% of patients treated with teriparatide in the
STRUCTURE trial [81].

Injection site reactions (often mild in severity) has been recorded in 4.4 to 8.0% of
participants during Phase III studies [77, 80, 81, 85]. In the STRUCTURE trial, one
severe injection site reaction was recorded resulting in the postponement of treat-
ment [81]. Hypersensitivity reactions that have been observed consist of erythema
multiforme, dermatitis, angioedema, urticaria and rash [90].

In the FRAME study, two cases with osteonecrosis of the jaw and one case of
atypical femoral fracture were recorded in the romosozumab group [75]. In the ARCH
study, two atypical femoral fractures and one osteonecrosis of the jaw occurred in the
romosozumab population; however, all three cases were found during the alendronate
period and a major case numbers have been discovered in the alendronate group [90].

Disturbingly, serious cardiovascular events took place more frequently for patients
(50 of 2040 patients or about 2.5%) treated with romosozumab than compared to
patients (38 of 2014 patients or around 1.9%) treated with alendronate in the ARCH
Phase III trial. In detail, 16 patients (0.8%) in the romosozumab group and 6 patients
(0.3%) in the alendronate groups suffered from cardiac ischemic events. Moreover,
16 patients (0.8%) in the romosozumab group and 7 patients (0.3%) suffered from
cerebrovascular events. Unfortunately, these discrepancies could not be elucidated
by baseline cardiovascular risk or simultaneous use of cardiovascular drugs [80].
Additionally, a large number of cardiovascular adverse events were also depicted in
the romosozumab group (8 patients (4.9%)) compared to placebo (2 patients (2.5%))
in the Phase III BRIDGE trial. In the romosozumab group, these events consisted of
cardiac ischemia in three patients; cerebrovascular events in three patients; cardio-
vascular death in one patient; and heart failure in one patient. However, it is important
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to note that in this study the patients in the romosozumab group started with a major
number of cardiovascular risk factors at baseline compared to the placebo group (77.3
vs. 72.0%) [85]. The higher number of cardiovascular events has not been illustrated
in other studies; in the FRAME study for instance, incidence of serious cardio-
vascular event during the first 12 months of the treatment was 1.2% (44 patients)
for the romosozumab group compared to 1.1% (41 patients) for the placebo group.
At 24 months, both groups transitioned to denosumab and the number of patients
increased, and the incidence for the romosozumab to denosumab was 2.3% (82
patients) and placebo to denosumab was 2.2% (79 patients) [77]. Despite ample
analysis, there were no elucidations found for this dissimilarity with the ARCH trial.

Numerous researchers tried to explain the cause of cardiovascular events asso-
ciated to the use of romosozumab. In detail, Asadipooya and Weinstock reported
that both cardiovascular and bone remodeling share different pathways and markers,
including the Wnt pathway, thus the use of romosozumab may cause endothelial
dysfunction by promoting endothelial inflammation as well as the secretion of reac-
tive oxygen species, lipid accumulation by smooth muscle cells and macrophages,
and vascular wall calcification [91]. Additionally, it has been reported that scle-
rostin is upregulated in calcified vessels [92]. Previously, we also demonstrated the
pro-angiogenic effect of sclerostin [93].

There was a theoretical apprehension for a possible pro-malignancy effect with
anti-sclerostin treatment as in different tissues cellular proliferation is regulated by the
Wnt signaling; however, in a lifetime study of rats treated with romosozumab, it has
no effect on tumor incidence or in any clinical trials [94]. Conversely, osteosarcoma
induction has been showed in analogous rat toxicity studies using the teriparatide and
abaloparatide (PTH agonists), which has led to the approval for these drug treatments
for a maximum of 2 years [95].

6.6 Concluding Remarks

The WHO has acknowledged osteoporosis as a public health emergency because
the high number of subjects who manifested the disease as well as the morbidity
and mortality linked to fractures. Anti-resorptive treatments with bisphosphonates
or denosumab represent the gold standard for therapy. However, it has recently
been recommended to treat patients at highest fracture risk using an anabolic agent,
followed by an antiresorptive agent because osteoanabolic agents seemed to increase
BMD and decrease fracture risk more quickly and effectively than antiresorptive
agents [96], as previously reported.

Until now, the results obtained stimulated the use of romosozumab for osteo-
porosis management. Since its first approval in January 2019 in Japan for the treat-
ment of osteoporosis, romosozumab treatment has been permitted by 37 nations
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within 12 months. Clinical trials have revealed that 1 year of romosozumab treat-
ment is better than compared to all the other standard therapies in improving BMD
and decreasing fracture risk. This crucial increase in BMD is maintained during
ongoing treatments that utilizes antiresorptive regime.

More importantly, future studies are required to define whether or not
romosozumab resulted in cardiovascular risk to patients.
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Abstract Elder people tend to be bedridden by accidents accompanied by bone frac-
tures. Therefore, a solution that maintains the quality of life for patients by providing
early recovery of wounded or damaged hard tissues supported by high-functional
bone substitutes would be ideal. In this chapter, we will describe the successful
fabrication of novel bone substitutes that is similar to natural bone from the perspec-
tive of inorganic component, crystallinity, and bioresorbability. These properties are
essential if natural bones damaged through falls are fully replaced by artificially
synthesized bone substitutes. We will also discuss the concept, synthesis route, and
the introduction of interconnected pores into the structures of bone substitutes.

Keywords Bone substitutes + Carbonate apatite + Carbonation * Phosphatization *
Porous scaffolds

7.1 Introduction

Bone graft is used in the reconstruction of hard tissue damaged or destroyed due to
disease or injury [1, 2]. Amongst the possible treatment options, the utilization of
autografts (grafts that are harvested from the patient) is the first priority. However,
there are many disadvantages such as intervention of a healthy site, limited bone
morphology and amount of collectable bone, risk of infection at the bone harvest
site, and prolonged treatment periods [3, 4]. Therefore, the fabrication of a superior
functional bone substitute identical to natural bone is an objective worth pursuing.
The main constituents of typical bone substitutes (in the forms of granules and
paste) commercially available in Japan are briefly summarized in Table 7.1. Bone
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Table 7.1 Main constituent

. . Type Main Constituent Chemical Formula
of typical bone substitutes
commercially available in Granules | Hydroxyapatite (HAp) Ca0(PO4)6(OH)2
Japan B-tricalcium phosphate (3-TCP) | Ca3(PO4)2
Biphasic of HAp and B-TCP
HAp of bovine origin
Paste Tetracalcium phosphate Cag(POy4)20
(TTCP)
a-tricalcium phosphate Caz(POy)2
(a-TCP)
Dicalcium phosphate anhydrate | CaHPOy4
(DCPA)
Dicalcium phosphate dihydrate | CaHPO4-2H,0O
(DCPD)

cements in the form of a paste possess a number of advantages such as the ability to
establish connection with the surrounding bone structure, applicable to bone defect
with complicated shape, injectable into bone defect. However, they are limited in
providing a macro-porous structure that allows newly formed bone tissue to penetrate
into the bone substitute once it is set [5-7].

On the other hand, macro pore, which affects bone ingrowth, can be designed and
incorporated into granular bone substitutes [8, 9]. The important point to remember
is that powders are not suitable for use as bone substitutes. This is due to the fact that
the small dimensions of the powders are incorporated into the macrophages because
of phagocytosis irrespective of the biocompatibility of the material. Consequently,
inflammation is induced. For this reason, bone cement having insufficiently setting
can lead to inflammatory response [10].

As shown in Table 7.1, nearly all granular bone substitutes consists of hydroxya-
patite (HAp) [11, 12], B-tricalcium phosphate (3-TCP) [12, 13] or their biphasic
component [14-16], while bone substitutes in the form of a paste [5-7, 17—
19] consists of tetracalcium phosphate (TTCP), a-tricalcium phosphate (a-TCP),
dicalcium phosphate anhydrate (DCPA), dicalcium phosphate dihydrate (DCPD).

The solubility of Ca?* in various calcium phosphates versus pH, calculated from
the solubility product of each calcium phosphate is shown in Fig. 7.1 [20]. HAp
is the most thermodynamically stable phase and B-TCP is the second most stable
phase in neutral pH. Granular bone substitutes are essential for cells as scaffolds for
creating new bony tissues and hence scaffolds should be designed based on calcium
phosphates such as HAp and B-TCP that has a comparatively low solubility (ther-
modynamically stable phase) under a physiological condition. On the other hand,
bone substitutes in the form of a paste are designed from calcium phosphates such
as TTCP, a-TCP, DCPA and DCPD that has comparatively higher solubility (ther-
modynamically metastable phase) under a physiological condition because initial
dissolution of the powdery raw material is necessary for determining their setting
property.
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Fig. 7.1 Solubility of Ca®* in various calcium phosphates versus pH calculated from the solubility
product of each calcium phosphate. Adapted from [20]

The characteristics of HAp are different from B-TCP when it comes to granular
bone substitutes. HAp shows superior osteoconductivity but its bioresorbability is
much lower compared to B-TCP. Despite $-TCP displays bioresorbability, the bone-
bonding ability is slightly lower than HAp. The rate of recovery to natural bone
decreases as the size of bone defect increases when using B-TCP bone substitutes
[21]. Biphasic bone substitute composed of HAp and B-TCP demonstrate a behavior
that is an amalgamation of HAp and p-TCP [14-16].

Recently, new types of bone substitutes based on the concept of hybrid material
were developed and commercialized in Japan: HAp-collagen [22, 23] and octacal-
cium phosphate (OCP)-collagen [24]. On the other hand, we gained an understanding
into the inorganic component of natural bone, which contains around 8% of carbonate
ions. Therefore, the fabrications of artificial bone substitute based on carbonate ions
containing hydroxyapatite (CO3Ap) would be ideal [20, 25]. In this chapter, we will
describe the concept, synthesis route, and the introduction of interconnected pores
into the structures of bone substitutes.

7.2 Fabrication of Bone Substitutes Through Chemical
Reaction Without Sintering

Generally, HAp or B-TCP bone substitutes are fabricated using sintering approach.
However, this approach cannot be used in the manufacture of CO3 Ap bone substitutes
because of its low thermal stability and hence decomposition will take place during
firing [26, 27]. Although a study by Doi et al. reported the fabrication of CO3Ap
bone substitutes by sintering CO3 Ap powder at 600 °C [28], the final product was
different to natural bone in terms of mechanical strength and crystallinity.
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On the other hand, fabrication of calcium phosphate bone substitutes without
sintering has been reported and the use of organic substances such as collagen is
one of strategy employed. As mentioned previously, inorganic-organic hybrid bone
substitute consisting of HAp-collagen [22, 23] and octacalcium phosphate (OCP)-
collagen [24] have been commercialized in Japan. Another strategy is a technique
that utilizes phase transformation of precursor through chemical reaction. A typical
example is known as coralline HAp [29-32].

Natural coral consists of calcite or aragonite that is thermodynamically metaphase
under ambient condition and thus it possess the characteristic of being moderately
dissolvable under an aqueous solution. The immersion of coral consisting calcium
carbonate into an aqueous solution containing phosphate ions, the solution reaches
saturation with respect to carbonate apatite due to the appropriate dissolution of coral.
As a result, the precipitation of carbonate apatite on the coral is observed.

Through a series of dissolution-precipitation reaction, the phase of calcium
carbonate gradually transforms into carbonate apatite while maintaining the macro-
scopic morphology of coral. Since the interconnected porous morphology of coral
is similar to that of human cancellous bone, coral must be a suitable precursor for
the fabrication of artificial bone substitutes. In effect, coralline apatite is used for
clinical application [29-31]. Howeyver, coral is a natural resource so that its utiliza-
tion will lead to environmental destruction if they are not harvested in a sustainable
manner. In addition, there are concerns related to the time and cost required for the
purification of natural coral as it contains impurity. Therefore, the application of a
fully artificial precursor instead of using natural coral is anticipated for the synthesis
of bone substitute via chemical reaction without sintering.

7.3 Precursor Block Utilized for Fabrication of CO3Ap
Bone Substitutes Through Chemical Reaction

As described above, the preparation of a fully artificial precursor block is a key
component in the production of CO3;Ap bone substitutes through chemical reaction
without sintering. There are a number of properties essential for precursor blocks.
Firstly, precursor block must have anti-washout property when immersed in the
surrounding solution because the precursor block gradually transforms into carbonate
apatite block while at the same time maintaining its macroscopic morphology. Over
again, the use of powders as bone substitutes is not suitable as it gives rise to an
inflammation response once implanted. Secondly, the precursor block must have at
least one constituent ion of carbonate apatite, such as calcium ion (Ca®*), phosphate
ion (PO?[) or carbonate ion (CO?). Furthermore, precursor block must be rela-
tively dissolvable (thermodynamically metastable phase [20]) in aqueous solution as
described previously. Calcium carbonate (CaCO3), calcium sulfate (CaSQOy,), a-TCP
(Ca3(POy4),), DCPA (CaHPQ,), and DCPD (CaHPO,4-2H,0) for instance are candi-
dates ideal as precursor blocks as they satisfy all of the requirements. Ions missing



7 Fabrication of Fully Artificial Carbonate Apatite Bone Substitutes 131

or unavailable during the constructing CO3Ap can be supplied from surrounding
aqueous solution during the treatment of bone defects. Phosphate salt solution is
used in case of precursor containing CaCOj3 or CaSOy, while carbonate salt solution
is employed in case of precursor involving calcium phosphates. In the following
section, we will describe the process in the production of precursor blocks.

7.4 Fabrication of Calcite Precursor Blocks

Calcite block is one of the candidates that can be used as a precursor because it is
the most thermodynamically stable phase among CaCO3; polymorphs. The process
of obtaining calcite is relatively easy and this can be achieved through the carbon-
ation of calcium hydroxide (Ca(OH),). Furthermore, microporous calcite is ideal
as the precursor for the fabrication of CO3Ap bone substitutes as the presence of
micropores allows the diffusion of PO~ ions into the interior of the precursor block
easily followed by the phase transformation from calcite to CO3Ap after immer-
sion in an aqueous solution. The following are some examples of the various routes
used in the fabrication of microporous calcite precursor blocks before compositional
transformation to CO3; Ap bone substitutes.

7.4.1 Calcite Precursor Blocks Derived from Ca(OH),
Compact

7.4.1.1 Carbonation of Ca(OH), Compact by Heating Under CO,
Atmosphere

Ca(OH), compact can be prepared using a stainless steel mold and an oil pressure
press machine. The resultant Ca(OH), compacts are placed in electronic tubular
furnace and heated under CO, atmosphere by the carbonation of Ca(OH), compacts
as shown in the following equation (Eq. 1):

Ca(OH), +COy — CaCO3 + H,O (D)

Phase composition of the compact prepared at various molding pressure followed
by firing at different temperature under CO, atmosphere is summarized in Table 7.2
[33]. It was discovered that pure calcite could be obtained under a very specific
set of conditions (0.2 MPa and 600 °C). Trace quantities of CaO are formed in the
synthesized precursor block when carbonated at temperatures above 700 °C. The
reason is that calcite decomposes to CaO as shown in the following equation (Eq. 2)
and the diffusion of CO; is not sufficient to penetrate the compact [33]:
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Table 7.2 Phase composition (relative amount (wt%) in parentheses) of specimens compacted at
various molding pressure (MPa) followed by firing at different temperature under CO;, atmosphere

[33]

Molding | Heat Treatment Temperature (°C)

Pressure | 5 400 600 700 800

(MPa)

0.2 Ca(OH),/Calcite | Ca(OH),/Calcite | Calcite (100) Calcite/CaO | Calcite/CaO
(99.0/1.0) (92.0/8.0) (100/trace) | (100/trace)

0.5 Ca(OH),/Calcite | Ca(OH),/Calcite | Calcite/Ca(OH), | Calcite/CaO | Calcite/CaO
(99.0/1.0) (91.0/9.0) (100/trace) (100/trace) | (100/trace)

1.0 Ca(OH),/Calcite | Ca(OH),/Calcite | Calcite/Ca(OH), | Calcite/CaO | Calcite/CaO
(98.0/2.0) (90.5/9.5) (100/trace) (100/trace) | (100/trace)

2.0 Ca(OH),/Calcite | Ca(OH),/Calcite | Calcite/Ca(OH), | Calcite/CaO | Calcite/CaO
(96.5/3.5) (90.0/10.0) (100/trace) (100/trace) | (100/trace)

CaCO; — CaO + CO,

@)

It is a well-known fact that CaO is sensitive to moisture and will transform to
Ca(OH), upon contact. This leads to the destruction of the CaO structure, resulting
in a reduction of mechanical strength. A restriction in CO, diffusion also affects the
carbonation of Ca(OH),. Forinstance, no traces of Ca(OH), was found if the Ca(OH),
compact was produced using 0.2 MPa of pressure, and on the other hand, trace
quantities of unreacted Ca(OH), was found in compacts produced with pressures
greater than 0.2 MPa. It can be concluded that with this approach, pure calcite can
be obtained under a very specific set of conditions (0.2 MPa and 600 °C) and the
obtained calcite has a higher crystallinity due to the way it is sintered.

7.4.1.2 Carbonation of Ca(OH), Compact via Exposure to CO, Gas
at Room Temperature

An approach where Ca(OH), compact is exposed CO, atmosphere at room tempera-
ture is also investigated to fabricate microporous calcite precursor blocks. The impor-
tant point with this method is that the carbonation process is affected by the humidity.
Calcite formation from Ca(OH), compact (the specimen is 3 mm in height and 6 mm
in diameter and compacted using 20 MPa of pressure) after exposure to CO, gas under
different humidity has been reported (Fig. 7.2) [34]. Ca(OH), compact can be trans-
formed into pure calcite under 100% relative humidity whereas no compositional
changes were observed even after 2 weeks when a Ca(OH), compact was exposed
to CO; under 0% relative humidity. It is discovered that the carbonation of Ca(OH),
compact can take place with relative ease at room temperature and under the high
humidity.

As described above, carbonation of Ca(OH), compact can take place effectively
by dry-heating Ca(OH), compact under CO, atmosphere as shown in Eq. 1, while
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the reaction will not take place if the Ca(OH), compact is exposed to a dry-CO,
atmosphere at room temperature. Under a dry-CO, condition, direct reaction of
Ca(OH), with CO, can occur at high temperature while it hardly occurs in room
temperature. On the other hand, Ca(OH), compact can transform into pure calcite
block if Ca(OH), compact is exposed to CO, under 100% relative humidity even if is
the transformation is performed at room temperature. This means that the presence
of water or moisture is needed for the carbonation of Ca(OH), compact at low
temperature. In case of carbonation of Ca(OH), compact at room temperature, both
Ca(OH), and CO, will dissolve in water to be Ca** and CO?', respectively according
to Egs. 3 and 4. Consequently, calcite is precipitated as shown in Eq. 5.

Ca(OH), - Ca*" +20H~ 3)
CO,+ H,0 - CO;” +2H* “4)
Ca*™ +COF — CaC0s 5)

Mechanical strength of the resultant calcite block increases with increasing
molding pressure used in the manufacture of Ca(OH), compact [35, 36]. However,
carbonation of Ca(OH), does not proceed efficiently due to the narrow intergranular
space which makes the diffusion of CO3 ions difficult [36]. The low crystallinity of
the obtained calcite block is advantageous during the compositional transformation
to CO3;Ap bone substitutes.
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7.4.2 Calcite Precursor Blocks Derived from Gypsum
Hardened Blocks

Gypsum has self-setting ability so that a precursor block with arbitrary configuration
can be fabricated. Adding gypsum hemihydrate powder to water will result in the
formation of gypsum dihydrate according to Eq. 6. Anhydrous gypsum is obtained
through the heating of gypsum dihydrate (Eq. 7).

1 3
CaS04-§H20+§H20—> CaSO4-2H20 (6)

CaS0O4-2H,0 — CaS0O4+2H,0 (7

Although the solubility of both gypsum dihydrate and gypsum anhydrate are low
[37], their partial dissolution in aqueous solution will lead to the release of Ca**
and SOAZ[ ions according to Egs. 8 and 9. If the solution already contains CO? as
well as Ca”*, it will become supersaturated with calcium carbonate and calcite will
precipitate (Eq. 10) as the solubility of calcite is very low (K, = 10734 at 20 °C) [38].

CaS0y4-2H,0 — Ca*t + S0~ +2H,0 (8)
CaS0y — Ca*™ 4+ 507~ )
Ca*™ +COF — CaCO0; (10)

Immersion of CaSO,4 * 2H,O block or CaSO4 block in Na, COj5 solution will result
in compositional transformation to CaCO3 block through dissolution-precipitation
reaction [39]. As a byproduct, NaySOy is dissolved in the solution due to its high
solubility as shown in Eqs. 11 and 12:

CaS04-2H,0 + Na,CO3 — CaCO3+ Na,SO4 + H, O (11D

CaSO4+ Na,CO3 — CaCO3+ Nay SOy (12)

7.5 Fabrication of Precursor Blocks Consisting Chemical
Composition Other Than Calcite

Once again, precursors must be in blocks or granules crushed from blocks and must
possess at least one constituent ion of carbonate apatite. Furthermore, precursor must
have a property of being relatively dissolvable in an aqueous solution as previously
described.
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a-TCP block satisfy the requirements set for use as precursor blocks. The a-TCP
block can be fabricated using a sintering approach. First, a-TCP compact is prepared
using a stainless steel mold and an oil-pressure press machine. The resultant a-
TCP compacts are placed in electronic furnace and heated above the a,p-transition
temperature (1180 °C) in order to obtain a-TCP phase. After heating for a few
hours, it must be quenched to room temperature in order to avoid the formation of
B-TCP phase. In the manufacture of porous body that is prepared by the burning
out of polymer template, the use of a-TCP precursor block has an added advantage
due to the fact that it remains stable at high temperature. The effects of sintering
temperature on physical and compositional properties of the a-TCP foam precursor
were reported in a study by Udoh et al. [40]. Details on the fabrication of ceramics
foam are described later with respect to the manufacture of porous body.

Similar to a-TCP, DCPD block can also be utilized as precursor block given it
met all the requirements. DCPD block can be synthesized using the setting reaction
of DCPD or brushite cement [17, 41]. Both B-TCP and monocalcium phosphate
monohydrate (MCPM) powders dissolve in water to supply H* as well as Ca?* and
PO?{ ions according to Eqgs. 13 and 14, and thus supersaturation with respect to
DCPD is reached under acidic conditions since DCPD is most stable at pH 2-4.5
(Fig. 7.1). As a result, DCPD crystals are precipitated and interlock with each other
during setting (Eq. 15).

Dissolution:

MCPM : Ca(H,POy) - H,0 — Ca** +2H" +2HPO;” + H,O  (13)
B —TCP: Cas(POs), +2H" — 3Ca*t +2HP O}~ (14)

Precipitation:

Ca(HyPOy) - HyO + Ca3(P0y), + TH,0 — 4Ca®" +4HP O} 4 8H,0
(15)

4Ca®* +4HP O™ +8H,0 — 4CaH POy - 2H,O[DCPD]

Mixture powder of B-TCP and MCPM were mixed with methanol at a Ca/P molar
ratio of 1.0. The methanol was allowed to evaporate at room temperature, and the
mixture was placed into a split plastic steel mold 6 mm in diameter and 3 mm in height.
Water was added dropwise until a water to powder weight ratio of 0.001 was reached.
The set specimen was kept at 100% humidity for 24 h prior to testing. Porosity of the
obtained DCPD block is approximately 37% and the pore structure (Fig. 7.3) must
be favorable for the precursor block before compositional transformation to CO3Ap
bone substitutes due to the fact that the pore structure helps to diffuse CO%‘ ions
(essential for carbonation) into the interior structure of the precursor block [42].



136 K. Tsuru et al.

Fig. 7.3 SEM micrograph
of a set specimen prepared
by the reaction of
B-TCP-MCPM mixture
powder with water [42]

A set gypsum is also useful as the precursor block. Recently, an arbitrary shaped
structure consisting of gypsum can be fabricated by 3D printer so that it can be
utilized for the precursor of CO3;Ap bone substitutes [43, 44]. As a final product,
SO?[ contamination in CO3Ap bone substitutes should be avoided. Consequently,
carbonation of the set gypsum precursor is recommended before the compositional
transformation to CO3Ap [39].

7.6 Fabrication of CO3Ap Bone Substitutes Through
Compositional Transformation of Precursors

Human hard tissue does not consist of calcium carbonate but calcium phosphate
instead; in particular, approximately 8% CO%‘ are contained in hydroxyapatite [45].
Therefore, compositional transformation of precursor to CO3;Ap is ideal for the
fabrication of artificial bone substitutes. The following are some examples used
in the fabrication of CO3;Ap bone substitutes through compositional transformation
of precursor block.

7.6.1 Phosphatization of Calcite Precursor Block

Compositional transformation of calcite to CO3Ap is achieved by immersing into a
phosphate solution [46]. Calcite is partially dissolved in the phosphate solution to
supply Ca** and CO%‘ according to Eq. 16. Consequently, the surrounding solution
would be supersaturated relating to CO3; Ap, which is thermodynamically the most
stable phase under that condition. Thus, CO;Ap is precipitated by consuming PO3-
ions from the phosphate solution (Eq. 17).
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Calcite

CaCO; — Ca** + CO;~ (16)

C03Ap
Ca® +CO¥ + PO} 4+ OH™ — Cayo_a(P04),(CO3)¢_(OH)5_, (17)

The compositional transformation of calcite to CO3Ap is influenced by porosity
and the crystallinity of calcite precursor block [47—49]. Calcite precursor block with
high porosity and low crystallinity is preferable for the compositional transformation
to CO3;Ap. This is due to the fact that the high porosity assists in the diffusion of PO?[
to the interior structures of the precursor block, while the low crystallinity affects the
reactivity on phosphatization of the calcite precursor block. Compositional transfor-
mation of calcite to CO3 Ap can be achieved by heating at 60 °C for 2 weeks (Fig. 7.4)
[49]. Carbonate levels of the obtained CO3Ap block (8—10 mass%) is similar to that
of natural bone (6—8 mass%). In fact, CO3; Ap granules fabricated using this approach
are approved for clinical use in the dental clinic by the Pharmaceuticals and Medical
Devices Agency (PMDA), Japan and commercialized as Cytrans® Granules in 2017.

Fig. 7.4 Changes in X-ray Calcite

diffraction (XRD) patterns Apatite
after treatment in

1 mol-dm~3 NayHPO4 \ H A
solutions at 60 °C for various 14d ———

periods up to 14 days [49] M
7d

20 /°
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7.6.2 Carbonation of o-TCP Precursor Block or DCPD
Precursor Block

Compositional transformation of a-TCP or DCPD to CO3;Ap can be achieved through
immersion in carbonate solution. a-TCP or DCPD partially dissolves to provide Ca>*
and PO?{ in the carbonate solution according to Eq. 18 or Eq. 19, respectively. Ca>*
and PO?{ dissolved from a-TCP or DCPD could be precipitated as CO3 Ap by reacting
with CO%‘ ions in the carbonate solution (Eq. 17).

a-TCP

Caz(PO4), — 3Ca*" +2P0; (18)

DCPD
CaHPO,-2H,0 — Ca*  + H" 4+ PO;™ +2H,0 (19)

In the fabrication of CO3Ap block using a-TCP precursor block, hydrothermal
treatment using a temperature of more than 100 °C is needed for compositional trans-
formation [50-52]. The carbonate contents of the resultant CO3 Ap tends to decrease
with increasing hydrothermal temperature. On the other hand, the hydrothermal treat-
ment is not necessary for the CO3Ap block fabrication from DCPD precursor block.
DCPD will be converted to CO3Ap within 3 days after immersion in NaHCO3 or
Na,COj5 solution at 80 °C [42, 53].

Despite the fact that the solubility of DCPD in the carbonate solution is higher
than the other precursors such as calcite or a-TCP, it will not be dissolved to such
as extent that the shape will be altered or vanished during the reaction and thus the
macroscopic structure can be maintained (Fig. 7.5) [42]. In comparison to CO3Ap
fabricated using other techniques, the maximum carbonate contents of the resultant
COsAp is relatively higher.

Fig. 7.5 Photographs of set samples. a Set sample made with the setting reaction of the B-tricalcium
phosphate and monocalcium phosphate monohydrate mixture, and samples obtained by immersion
in b2 M NaHCO3 and ¢ 2 M Na;COs3 solutions at 80 °C for 14 days [42]
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7.6.3 Phosphatization and Carbonation of Gypsum
Precursor Blocks

Compositional transformation of gypsum to CO3Ap is achieved through immersion
in mixture solution of phosphate and carbonate. The gypsum is partially dissolved to
supply Ca’* and SOZ* into phosphate solution (Eq. 20). Ca* dissolved from gypsum
would be precipitated as CO3Ap by reacting with POZ’ and CO%’ from the mixture
solution of phosphate and carbonate (Eq. 17).

Gypsum
CaS0y — Ca*™ 4+ 507~ (20)

The advantage of utilizing gypsum as the precursor is its self-setting ability
while the compositional transformation of gypsum to CO3;Ap will require the use
of hydrothermal treatment (Fig. 7.6) [54]. Mechanical property of block decreases
after the compositional transformation from gypsum to CO3;Ap. The increase in
porosity (60-70%) of the resultant CO3Ap blocks is the reason behind the decrease
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Fig. 7.6 Powder XRD patterns of set gypsum before treatment a and after treatment at 80 °C b,
100 °C ¢, 120 °C d, 160 °C e, and 200 °C f for 48 h. XRD pattern of commercial HAp g is also
shown for comparison [54]
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in mechanical strength. Both calcium and carbonate are used to fabricate CO3Ap
blocks if calcite is used as a precursor. On the other hand, only calcium is used to
fabricate CO3;Ap blocks if set gypsum is used as a precursor. Therefore, CO;Ap
block possess higher porosity than set gypsum even if phosphate and carbonate ions
were available in the solution during its fabrication [54].

7.7 Fabrication of Porous CO3Ap Bone Substitutes and Its
Efficacy on New Bone Formation

Macro-pores, which are valuable for bony tissues ingrowth, are incorporated to
almost all commercially available bone substitutes [55]. In particular, interconnected
macropore of an appropriate size can permit the penetration of cells followed by the
new vascular formation and bony tissues [8, 56, 57]. Porous CO3;Ap bone substi-
tute must be fabricated via compositional transformation if macro-pores are to be
introduced into the porous precursor block.

7.7.1 Fabrication of Porous Calcite Precursor Block Using
Microfiber as a Porogen

Organic fiber as a porogen is useful for creating pore structure in ceramics material.
Ca(OH), powder containing 10 wt% chopped nylon fiber (approximately 110 pm in
diameter and 3 mm in length) is pressed at 150 MPa by isostatic pressing machine,
and subsequently sintered to burn out the fiber and to carbonate the Ca(OH), under
the stream of 1:2 O,—CO, in order to fabricate porous calcite block. Sintering at
770 °C results in complete combustion of the fiber and complete carbonation of
Ca(OH); to calcite without forming CaO that results in the destruction of structure
as described previously. The size of macro-porosities within the porous calcite block
is slightly smaller (approximately 100 jum) than the diameter of porogen (110 pm).
The efficacy regarding bone tissue penetration is confirmed by in vivo test using the
bone defect in femur of 12-weeks-old rat [58].

Self-setting ability of gypsum is advantageous during the introduction of porogen
into the hardened body. Moreover, complete combustion of microfibers can be accom-
plished using a lower temperature without causing the thermal decomposition of the
precursor since the thermal stability of gypsum is higher than that of Ca(OH),.
Macro-porous CO3 Ap bone substitute is fabricated by compositional transformation
of set gypsum precursor containing different size of microfibers ranging from 30 pm
to 205 pwm in diameter (Fig. 7.7) [59]. The optimal pore size of the CO3Ap bone
substitute is estimated to be approximately 85 pwm, which is the most ideal for bone
formation to form inside the pores of the bone substitute as shown using calvarial
defects of rabbits during the early stage of recovery [59].
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Fig. 7.7 Typical SEM images of CO3Ap granules fabricated without microfiber a and with
microfibers of various diameters: b 30 wm; ¢ 50 wm; d 120 pwm; and e 205 pm [59]

7.7.2 Fabrication of Interconnected Porous CO3Ap Foam
Similar to Cancellous Bone

The so-called ceramic foam method or polyurethane foam replica method is unique
in that it produces precursor block with interconnected porous structure similar to
cancellous bone [60-63]. In this method, polyurethane foam which has cancellous
bone-like fully-interconnected pores is used as a template. Polyurethane foam is
immersed in ceramic slurry so that the ceramic powder would coat the polyurethane
foam strut. This is following by a sintering process in which the polyurethane foam
is completely disintegrated and at the same time, the ceramic powder is sintered to
produce the ceramic foam [60]. For the fabrication of CO3Ap foam, calcite precursor
construct was first prepared by coating polyurethane foam with a Ca(OH), slurry
and sintered at a temperature of 700 to 800 °C under CO,+O, atmosphere. The
sintered slurry is then immersed in a solution containing 1 mol/L. Na,HPOy at 60 °C
for two weeks. The calcite foam is transformed to CO3 Ap based on the dissolution-
precipitation reaction while maintaining its fully interconnected porous structure
(Fig. 7.8) [48].

a-TCP precursor foam can also be manufactured using the same technique [S0—
53]. Although the CO3Ap foam is similar to the fully interconnecting porous struc-
ture and inorganic composition of bone, it suffered from poor mechanical prop-
erty and brittleness. Bone is known as a composite of CO3Ap and collagen and
this demonstrates excellent mechanical property including limited elasticity. Rein-
forcing CO3 Ap with organic material is essential during the synthesis of CO3 Ap foam
intended to match as close as possible the structure and composition of cancellous
bone. PLGA or gelatin is used as reinforcement and added to CO3;Ap foam through
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Fig. 7.8 SEM images of foams sintered at 700 °C (a, d), 750 °C (b, e), and 800 °C (c, f) after
treatment in Nap HPO4 [48]

immersion and vacuum infiltration and consequently, the mechanical property of the
resultant CO3Ap foam can be improved using reinforcement [64—66].

7.7.3 Fabrication of Interconnected Porous CO3Ap Bone
Substitutes by Granular Bridging Method

The geometric packing of spheres is capitalized as a mean to fabricate interconnected
porous structures. For instance, hexagonal close-packed structures are constructed
by piling up spheres with 74% of the space being occupied by spheres. This also
resulted in an interconnected porous structure with 26% porosity. Accordingly, a fully
interconnected porous body can be obtained if a close-packed assembly of spheres
is prepared.
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The setting reaction of brushite cement [17, 41] can be explained by the bridging
actions of spheres or granules [67-69]. More specifically, a-TCP spheres are exposed
to the MCPM-H3PO; solution in order to obtain the bridging between the spheres.
DCPD crystals are precipitated and interlocked with each other at the interface
between spheres (Fig. 7.9) [69]. This method can also be applied for the bridging
of calcite granules [67, 68]. The application of a small external force of approxi-
mately 0.4 MPa must be loaded during the setting reaction if this technique is used
to produce a set porous body. In addition, H3POy is also applied in this approach
and the increase in its concentration results in an increase in the amount of DCPD
precipitated. The amount of DCPD precipitated relates to the compressive strength
of the obtained porous body (Fig. 7.10) [68]. Once the amount of precipitated DCPD
reached 3.8 mass%, the precipitated DCPD bridged the calcite granules with one
another, and thus, porous calcite was fabricated. The mechanical strength was not
increased even when the amount of the precipitated DCPD is more than 5.2 mass%.
This is due to the fact that the compressive strength between bridged DCPD reached
a maximum level. The porous body derived from a-TCP spheres or calcite granules
can be employed as a precursor for the fabrication of interconnected porous CO3Ap
bone substitutes (Fig. 7.11). In the event of a-TCP spheres, another route for bridging
the spheres is available. First, porous body consisting of a-TCP spheres are exposed
to steam to cause the bridging spheres via a setting reaction of a-TCP with water
that is utilized for the production of apatite cement [19] (Eqgs. 21 and 22).

Dissolution:

[« — TCP]3Ca3(P O4), + 6H,0 — 9Ca>* + 6HPO2™ +60H~  (21)

Precipitation:

9Ca** + 6HPO;™ +60H™ — Cay(HP 04)(P04)s(OH) + 5H,0 [cd — HAp|
(22)

Fig. 7.9 SEM images at interface between two a-TCP spheres after exposure to a MCPM-H3PO4
solution at 37 °C for 10 min. g low magnification; h high magnification [69]
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Fig. 7.10 Relationship between the compressive strength of interconnected porous calcite formed
by the setting reaction of calcite granules with acidic calcium phosphate solution and the amount
of formed DCPD [68]

setting reaction with acidic
calcium phosphate solution

CO,Ap CO,Ap

CO;Ap CO;Ap

Fig. 7.11 The schematic illustration of porous CO3Ap fabrication through the bridging of granules
followed by compositional transformation

As a result, interconnected porous calcium deficient hydroxyapatite (cd-HAp)
is formed (Eq. 22). The resultant porous body constituting cd-HAp can be phase-
transformed into a-TCP by sintering at 1300 °C. Finally, the compositional
transformation of a-TCP to CO3Ap is achieved through carbonation (Fig. 7.12) [70].
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(b) Steam

(c) 1300°C (d) Na-CO;-PO,

Fig. 7.12 Photographs of a a-TCP spheres; b after exposure to steam; ¢ after heating at 1300 °C
for 6 h; and d after immersion in Na-CO3-POy solution at 80 °C for 7 days [70]

More recently, it was reported that granules can be bridged using calcite-
polymethyl methacrylate (PMMA) mixture granules [71]. The calcite-PMMA gran-
ules can amalgamate in the mold through the fusion of PMMA, resulting in the
formation of porous blocks composed of interconnected calcite-PMMA granules.
This is followed by the thermal destruction of PMMA and the resultant intercon-
nected calcite granules are partially sintered. Finally, the composition of the inter-
connected granules is converted from calcite to CO3Ap in a dissolution-precipitation
reaction.

7.7.4 Fabrication of CO3Ap Honeycomb Scaffolds
by Injection Molding

The incorporation of a porous structure is important during the fabrication of scaf-
folds, as it will affect cell mobility, proliferation, differentiation, calcification, even-
tually bone formation. As a result, ceramic honeycomb is interesting and ceramics
with honeycomb structure can be obtained by injection molding using honeycomb
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metal extrusion die. In the fabrication of CO3Ap honeycomb, a mixture of Ca(OH),
and a wax-based binder is first extruded through the honeycomb extrusion die. The
obtained body is heated to remove the organic binder and for the carbonation to
take place at a temperature of 450 °C in a mixed O,-CO, atmosphere. This results
in a CaCOj3 honeycomb. Once the CaCO3; honeycomb is immersed in a solution
containing 1 mol/L Na3PO, solution at 80 °C for 7 days, its composition will change
from CaCOj3 to CO3Ap, while maintaining the structure of the original honeycomb
[72]. Currently, CO3Ap honeycomb with different macropore/channel sizes (100,
200 and 300 wm) can be fabricated (Fig. 7.13) [73]. Mechanical property of the
CO3Ap honeycomb is higher than that of porous CO3;Ap fabricated by the other
methods. The tissue response and bone regeneration are described in the next section
[72-75].

7.7.5 Construction of 3-D CO3Ap with Arbitrary Shaped
Structure Using 3-D Printer

Recently, 3-D printer has become popular and it makes 3D design easy even if the
structure is complex. Despite the amount of material that can be used in this method
is limited, gypsum is one material that is available for use in 3D printers. Since
gypsum can be used as precursors for CO3; Ap, the construction of 3-D CO3;Ap with
arbitrary shaped structure using 3-D printers are promising [43, 44].

7.8 In Vitro and in Vivo Evaluations of CO3Ap Bone
Substitutes

In vitro evaluation of CO3Ap bone substitute is conducted using human bone marrow
cells and CO3Ap disc were prepared through the carbonation of Ca(OH), compact
followed by compositional transformation [76]. The CO3Ap disc has the capacity to
promote osteoblastic differentiation of human bone marrow cells earlier than sintered
HAp disc as a control.

In vivo animal studies have been performed on CO3;Ap block or granule derived
from calcite granule [20], DCPD block [77], and gypsum granule [78]. For instance,
when CO3Ap granules (Cytrans®) are implanted into a rat’s cranial bone defect,
the granules are gradually resorbed and replaced to new bone. From the histolog-
ical examination after 24 weeks post-implantation, osteoclastic resorption can be
observed along with new bone (Fig. 7.14) [20]. A similar resorption and new bone
formation on CO3Ap can be observed irrespective to the type of precursor used in
the CO3Ap blocks or granules fabrication [77, 78].

Once interconnected porous structure is incorporated into CO3Ap bone substi-
tutes, not only material resorption but new bone formation will also become earlier
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Fig. 7.13 a The morphology of CO3Ap honeycomb scaffolds (HCSs). b—g p-CT images; (H-J)
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Fig. 7.14 Histological
pictures of carbonate apatite
granules 24 weeks
post-implantation in a bone
defect made to the cranial
bone of rats. After 24 weeks,
most of the carbonate apatite
granules were replaced by
new bone [20]

Osteoclastic resorption
"
. Carbonate
apatite |

compared to those of non-porous one [59, 70, 72-75, 79]. Interestingly, new bone
formation and vascularization can be confirmed within the pores even if the pore
size is less than 100 wm in diameter [59]. More specifically, CO3Ap honeycomb
provides an ideal environment for the generation of bone marrow-like tissues and
megakaryocytes [72-75].

In 2018, a study by Ishikawa et al. performed physical and histological compar-
isons between various commercial bone substitutes [80]. CO3;Ap (Cytrans®) has
high specific surface area (SSA) and low crystalline size due to the fabrication using
dissolution-precipitation reaction at low temperature whereas HAp (Neobone®) and
B-TCP (Cerasorb®) have low SSA and high crystalline size due to the fabrica-
tion through sintering at high temperature. The results revealed that Cytrans® is
more similar to natural bone in terms of chemical composition, SSA, and crystalline
size than Neobone® and Cerasorb®. Compared to Cerasorb®, Cytrans® displayed
limited dissolution under physiological condition and higher dissolution under weak
acidity mimicking Howship’s lacunae. It is the result of the relationship between pH
and stability of each calcium phosphate (Fig. 7.1).

Furthermore, Cytrans® elicits the greatest amount of new bone formation among
three bone substitute materials. Similarity to natural bone may become a prerequisite
in designing artificial bone substitutes that shows osteoconductivity and resorbability
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like natural bone. Compositional and histological comparison of apatite bone substi-
tutes with different carbonate content was performed [81, 82]. Carbonate contents of
Cytrans® and Bio-Oss® are approximately 12 and 5.5 mass%, respectively. Faster
and greater new bone formation is observed in Cytrans® then compared to Bio-
Oss®. In addition, resorption of Cytrans® is higher than that of Bio-Oss® of up to
12 weeks although both materials are resorbed over a period. Human clinical trial
using Cytrans® was also reported in a number of studies [83, 84].

7.9 Basic Researches on CO3Ap Bone Substitutes

An in vitro co-culture study using osteocyte-like cells and bone marrow cells as well
as in vivo implantations of hydroxyapatite with different carbonate content into rat
femurs was carried out by Nakamura et al. [85]. Higher carbonate content shows
greater osteoclastogenesis than hydroxyapatite containing lower carbonate content
under both in vitro and in vivo conditions. The results indicate that carbonate content
of CO3Ap affect osteoclastogenesis in the vicinity of the implanted CO3;Ap bone
substitutes.

Recently, Kawashita et al. investigated the adsorption behavior of fibronectin,
cell adhesion molecule, on hydroxyapatite with different carbonate content [86].
The carbonate content of CO3Ap influences the adsorption behaviour of fibronectin
and the study suggests that its specific adsorption contributes to the high osteocon-
ductivity of CO3Ap.

As discussed earlier, paste-type apatite cement has the advantage of not only
setting at the implanted site but also the resorbability of the set cement. However, the
reported results are controversial regarding the resorbability, for instance, the apatite
cement replaced by new bone tissue [87-94]. We hypothesized that the replacement
of apatite cement by new bone might be related to the carbonation of implanted
apatite cement under the body environment. Moreover, CO3Ap is detected in set
apatite cement if the cement powders are mixed with water under CO, atmosphere.
The set cement containing CO3Ap shows higher in vivo resorbability than the set
cement without CO3 Ap prepared under N, atmosphere [95]. Consequently, new bone
is expected to replace the set cement is it is composed of CO3;Ap and not of HAp.
Based on this idea, we developed CO3 Ap-forming cement consisting of CaCO3 and
DCPA [96]. In this cement, CaCO3 and DCPA will dissolve and provide Ca?*, CO_%‘
and PO; ions followed by the precipitation of the most thermodynamically stable
phase, CO3;Ap. Vaterite is the key among CaCO3 polymorphs and not calcite. Since
vaterite has higher solubility than calcite, the cement fully-transforms to pure CO3 Ap
without residual raw material [38, 97].
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Smart Bioceramics for Orthopedic oo
Applications

Fatma Nur Depboylu, Petek Korkusuz, Evren Yasa, and Feza Korkusuz

Abstract Smart bioceramics are mostly used to replace or reconstruct bone and
joints. They can induce bone formation in hard tissues, and they can be used to
increase the success of treating bone nonunion and fracture healing. A delayed
union or prolonged healing can occur in certain bone fractures such as in distal
tibia, scaphoid of the wrist, and talus of the ankle and in some cases can lead to
nonunion fractures. Smart bioceramics can be used to prevent nonunion fractures
and enhance the bone regeneration process. The addition of certain elements such as
magnesium, zinc, strontium, and boron may enhance the osteoconductive property of
bioceramics. They can be used to promote spinal fusion and/or assist implant integra-
tion in osteoporotic bones. Surfaces of nano-bioceramics improve osteointegration
by increasing the areas available for osteoblast attachment, proliferation, differen-
tiation and extracellular matrix formation. Nano-bioceramics are also biocompat-
ible and may induce bone formation. Smart bioceramics could be osteoinductive
when produced by combining them with active signaling molecules and/or cells.
The context of this chapter reviews the recent trends on smart bioceramics.
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8.1 Introduction

Bones are composed of organic and inorganic extracellular matrix (ECM) that is
continuously renewed by cells regulated by signaling molecules (Fig. 8.1). This
renewal process is a part of tissue homeostasis that is referred to as “bone remod-
eling”. The unique physiochemical reactions between the organic and inorganic
compounds of bone provide an incomparable mechanical strength that is rarely
disrupted by trauma or diseases [1].

The combination of cells and organic ECM, which is mostly type 1 collagen,
proteoglycans and glycoproteins and inorganic part as calcium-deficient carbonated
hydroxyapatite (CHAp) nanocrystals, form the bone tissue structure. The notable
feature of the apatite structure is its ability to hold different ions in its three ionic
subgroups (calcium, phosphate, and hydroxyl). These apatite nanocrystals develop
in the areas of regular mineralization of collagen molecules in bone [2].

An adult human skeleton has over 200 bones with various forms and sizes. Their
main function is to protect internal organs, establish attachments and lever arm for
skeletal muscles to enable motion and movement, store minerals and produce all
blood cells including stem cells. All bones have, however, a common hierarchical
structure, which ranges from nanocrystals to lamellae, lacunae and osteons at the
micron-level [1]. Embryonic (woven) bones are differentiated to adult spongy or
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Fig. 8.1 Systems that regulate bone and regeneration are presented and these include physical and
environmental factors; systemic regulators; blood-borne regulators; periosteum; brain; humoral
mechanism; spinal cord and peripheral nerve endings at the periosteum. (GH: growth hormone;
PTH: Parathyroid Hormone; Genetic Col-1al: collagen type 1 al as protein coding gene; FGF:
fibroblast growth factor; TGF-: transforming growth factor-f; BMP: bone morphogenetic protein;
TNF: tumor necrosis factor; PDGF: platelet-derived growth factor; SP: substance P; CGRP:
calcitonin gene-related peptide; VIP: Vasoactive intestinal polypeptide; NPY: neuropeptide)
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compact bones by intramembranous or endochondral ossification. The osteon that is
made by Haversian canal and lamellae is the functional metabolic unit of the compact
bone. Spongy bone consists of anastomosing trabeculae with irregular lamellae.
Periosteum is the irregular connective tissue layer that surrounds the compact bone.
Spongy bone is lined by endosteum that consists of bone lining cells at its interface
with marrow cavity. The porosity of bone tissue enables metabolic exchange during,
mineral accumulation, and pH equilibrium [3]. In addition, porosity makes a major
contribution in traditional bone repair and regeneration. If the porosity of the bone
tissue is under 20%, this type of bone is named as cortical/compact bone. If the
porosity is higher than that, it is named as trabecular/cancellous/spongy bone [1,
4]. The mechanical strength is correlated with porosity: the lower the porosity, the
higher mechanical strength.

Bioceramics, which have biomimetic features to the natural bone structure, can
be naturally derived or synthetically produced. Bioceramics have many different
classifications including oxides, phosphates, carbonates, nitrides, carbides, carbons
and glasses for repair/reconstructions of defects or damaged tissue sites [2]. For
clinical applications, these bioceramics can be in solid, powder and granule forms.
While the solid form is often preferred for load-bearing applications such as in
joint replacements, powder and granule forms are applied as bone grafts, coating on
metal implants, bone cement and porous scaffolds. Baino et al. [5] stated that, three
subgroups of bioceramics are described as inert (alumina, zirconia, sintered hydrox-
yapatite (HAp)), bioactive (HAp, bioglass, glass-ceramics) and biodegradable (a-
and B-tri-calcium phosphates (TCP), calcium sulphates). Once an inert bioceramics
are implanted, a protective fiber capsule 1-3 pm thick is formed around the implant.
Although there is no serious foreign body reaction against bioceramics, interaction
and bonding do not occur within the environment [6].

The main purpose of bioceramic material selection (in particular for coatings and
surface modifications of implants) is to provide stabilization between the metallic
implant and its surrounding connective tissue. Bioactive and biodegradable ceramics
are able to fulfil this purpose with steady bonds until degradation and/or tissue
replacement [7]. Although HAp belongs to the subgroup of bioactive material, it
shows slow degradation with a rate of 1-3% annually. On the other hand, other
calcium-based bioceramics such TCP and calcium sulfate possess faster degrada-
tion rates (35 to 40% annually for TCP and 100% annually for calcium sulfate) are
preferred for bone regeneration in non-load bearing sites [8].

Tissue integration may change depending on the degradation rate of bioce-
ramics. Recent investigations have focused on composites containing bioactive and
biodegradable ceramics [9—11]. These composites established strong bonds with
the tissue, and they were classified as second-generation bioceramics in orthopedic,
maxillofacial and dental applications. Tissue engineering has recently changed direc-
tions from bone repair to bone regeneration by combining cells and active signaling
molecules with bioceramics. Accordingly, the research and development into third
generation bioceramics have gained speed and they were categorized as innova-
tive or smart bioceramics. Smart bioceramics promote osteogenesis by inducing
cell response. The porosity of bioactive and biodegradable bioceramics has become
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vital in the encapsulation of bioactive substances such as growth factors, hormones,
peptides, which stimulate osteoprogenitor cells for osteogenesis [ 12]. Those bioactive
substance or cell containing ceramics may have osteoinductive properties.

8.2 Implant-Cell Interactions

Various implant designs, implant materials and surface modifications have accel-
erated the osteointegration over the years. Bone is a vascular, dynamic and living
tissue having a relatively constant remodeling rate until old ages. Implant material,
cell type, bone type, cytokines and growth factors act in synchronization to regenerate
bone. The type of material used plays arole in determining the regeneration potential
of bone surrounding the implant, and ultimately the osseointegration process.

Shortly after surgical implantation, the growth of regional blood vessels allows
the local mesenchymal stem cells (MSCs) recruitment that initiates stronger osseoin-
tegration at the implant and surgical site. The proliferation of MSCs lead to the devel-
opment of osteoprogenitor cells that is then differentiated into osteoblasts, which are
involved in the construction of the bone matrix and essential for implant integration
[13, 14]. The osteocytes are mature bone cells residing in their lacunae one by one.
They are interconnected with each other by their cytoplasmic processes located in
the canaliculus between the lacunae through the gap junctions.

During regeneration, the primary focus is the formation of bone cells that will be
attached to the implant surface. Determination of regenerative cell types is achieved
by the protein that binds to the surface when the implant surface and body fluid comes
into close contact. The process begins immediately after the implant is exposed to
bone tissue after implantation. Unique proteins contain certain molecules that specif-
ically attach to precise receptors on the cells. Therefore, it is necessary to regulate
cell penetration through surface modifications that develop binding structures [15].
Consequently, surface modification of implants and specifically smart bioceramics
is of clinical significance [16, 17].

Biological molecules such as ECM components, engineered peptides, and growth
factors may activate osteogenic cells and accelerate bone tissue development during
the initial phases of implantation once they are freshly introduced to the surface
textures of bioceramic implants. In addition to acting as a scaffold for cells, ECM
facilitates to their adhesion and promotes the regulation of attachment, proliferation,
differentiation and migration. In addition, growth factors are bioactive substances
that control several mechanisms involved in tissue regeneration. They promote
angiogenesis for vessel growing. These growth factors, especially in the presence
of osteoporosis, improve the surface property of the bioceramic and/or accelerate
the healing if the natural renewable potential of bone tissues around the bioceramic
is dysfunctional. Considering the significance of stem-progenitor cells, ECM, and
growth factors in the mechanism of osteointegration, it may be beneficial to create
a biochemically tunable bioceramics surface that combines these three components
[13]. Cells interact with extracellular bio-signals, which trigger the cytokines and are
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Table 8.1 Advantages and disadvantages of nano and micro-sized bioceramics

Bioceramics Advantages Disadvantages
Nano (< 50 nm) * Enhanced life quality and * Osteolysis (particle disease)
shorter rehabilitation * Aseptic implant loosening due
» Increased surface area to the release of particles
* Higher cell attachment * Inducing allergic or
« Less integration problems inflammatory reaction
« Faster tissue regeneration * Blood coagulation

Higher mechanical properties
Used in the treatment of bone
infections, drug/gene delivery

Micro (350 to 1000 nm) | » Cell aggregation * Lower mechanical hardness
¢ Vascularization than nanoceramics
¢ Ideal internal growth * More prone to crack
e Minimized stress shielding propagation

* Less cytocompatibility

1-10 nm in size. These bio-signals are growth factors, peptides, and proteins. Recent
smart bioceramic research has therefore concentrated on combining ECM-based
peptides and/or proteins on nano-scale surfaces to fulfill biomimetic approaches
through nanotechnology [18, 19]. The advantage of nano-bioceramics over micro-
bioceramics is their increased surface area that allows cell and tissue attachment and
their minimized tissue reaction problems (Table 8.1).

Biological response to bioceramics follows a familiar cascade with bone frac-
ture healing. The cascade starts with growth of hematoma, infection, initiation of
vascularity, osteoclastic resorption and ossification [20]. Interfacial bonds are formed
between bone and bioceramic substitutes with the surrounding ECM as degradation
of ceramic proceeds. The initial cell reaction towards the bioceramic begins with
the osteoblasts and blood cells. Vessel forming endothelial cells appear first after
the completion of osteoclastic resorption given that the restoration of blood circu-
lation is essential for bone regeneration. Mesenchymal stem cells stimulate and/or
transform to osteoblast directly as intramembranous ossification advances [21]. This
type of ossification for rigid fractures is the main regeneration mechanism although
endochondral ossification contributed to nearly all intramembranous ossifications
(Fig. 8.2) [22]. Monocytes that stimulate expression and secretion of the cytokines
and proteases interact with the bioceramic particles to trigger bone regeneration and
remodeling (Fig. 8.3) [23].

The implantation of calcium phosphate ceramics additionally deploys the
macrophages, which are responsible for the infiltration and the secretion of H*
Inflammatory cells promote the secretion of Interleukin-1 (IL-1) and Interleukin-6
(IL-6), osteoprotegerin (OPG), TNF-a, and other growth factors [8]. Macrophages are
able to support segregation of cytokines, fibroblast, platelet-derived and insulin-like
growth factors. TGF-f superfamily regulated by macrophages comprises BMPs and
vascular endothelial growth factor (VEGF) as shown in Fig. 8.4. These trigger angio-
genesis and new bone formation [24]. Osteoprogenitor cells appear as osteoclastic
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Fig. 8.3 The bar includes that growth factors, peptides, and proteins are between 1-10 nm in size;
cortical bone pore size and osteoblast size are between 10-50 pm while cancellous bone pore size
is between 300-600 p.m. Bone regeneration on the surfaces of bioceramics implant or coating with
growth factors (OPG: osteoprotegerin; VEGF: vascular endothelial growth factor; IL: Interleukin
1,6; BMP: bone morphogenetic protein 2. 7; TNF: tumor necrosis factor-a), osteoblasts and mineral
ions (Ca: calcium; Si: silicon; Na: sodium; POy4: Phosphate)

resorption of necrotic bone occurs. Since the osteoclasts signal the osteoblasts to
trigger bone formation, constant regeneration with or without bioceramics continues
during this bone-remodeling cascade by forming cutting cones (Fig. 8.5) [25].
After bioceramic implantation, the interaction rapidly begins between the ECM
proteins and surfaces of the bioceramic. Proteins generate biological signals
according to surface topology and chemical features of the implant. Thus, the biolog-
ical response is taken from the cells against the surface features. Biological response
to bioceramics provides cell adhesion stability and triggers cell proliferation and
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Fig. 8.5 Constant regeneration continues during the bone-remodeling cascade by forming cutting
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differentiation [26]. Another effective factor for interaction is the wettability, which
encourages surface protein and cell adhesions [27]. Wettability is considered as the
hydrophobic and hydrophilic behavior of the surfaces. Cells may react negatively for
both superhydrophobic and hydrophilic surfaces. The balance, therefore, is so critical
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to provide an adequate wettability on the surface of the biomaterial without the inter-
ference of rejection [28]. The wettability is related to the contact angle of the material,
which influences cell proliferation [27]. The contact angle is used to determine if
a surface is hydrophobic or hydrophilic, and for a hydrophobic surface, the contact
angle is between 90° and 150°. The contact angle for superhydrophobic surface is
over the 150°. For hydrophilic surface, the contact angle is between 10° and 90°,
while for superhydrophilic surface is less than 10° [28]. Menzies and Jones investi-
gated and tested the contact angle effects on the biocompatibility of an implant [29].
They discovered that the smaller contact angle gives better wettability and promotes
cell adhesion.

8.3 Bioceramics

8.3.1 Calcium Phosphates

Itis well recognized that bone consists of nanosized platelets of crystals of biological
HAp grown in close contact with an organic matrix rich in collagen fibers. Bone
apatite can be better defined as calcium-deficient carbonate apatite with the formula
(Ca, Mg, Na);o(PO4, HPOy4, CO3)s(OH); [30]. Therefore, the application of calcium
phosphate as the essential element of the inorganic ECM is recommended due to
both cell culture and promising results from in vivo testing [30, 31]. Benefits and
drawbacks of the most promising bioactive and degradable bioceramics available
in clinical use are shown in Table 8.2. When smart bioceramics are designed for
orthopedic applications, the choice of materials, their substitutes and combinations
play important roles to meet criteria presented below in Table 8.3.

Hydroxyapatite (HAp), whose formula is given as (Ca);o(PO4)s(OH),, is more
stable and less toxic compared to other calcium phosphates as its Ca/P ratio is 1.67,
which can affect its dissolution property [32]. It is primarily used in hard tissue
replacements of human bone as scaffolds and coatings on dental implants [33].
Using HAp is generally preferred as a composite with biopolymer reinforcements
or combined with other bioceramics such as TCP/HAp as biphasic calcium phos-
phate to achieve improvements in mechanical properties and to increase interfacial
bonding between scaffold and tissue [34, 35]. Such properties can also be observed
in macroporous biphasic calcium phosphate [36].

B-Tri-calcium phosphate is clinically used as a bone graft supply for orthopedic
and dental applications [37]. B-TCP is also preferred for the treatment of maxillofa-
cial disorders due to its outstanding bioresorbability, corrosion-resistance, and high
interfacial binding ability. The sintering temperature of B-TCP is 1100 °C. If the
temperature is higher than 1100°C, B-TCP transforms to a-TCP, which displays
less stability and high solubility [38]. The B-TCP comprises a, a’and B’ phases in
its structure and has a Ca/P ratio of 1.5. Lower Ca/P ratio enhances solubility and
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Table 8.2 Benefits and drawbacks of bioactive and biodegradable ceramics

Bioactive and Orthopedic Advantages Disadvantages
Biodegradable Applications
Ceramics
Hydroxyapatite | Coating material on |+ Excellent * Poor tensile strength
load-bearing implants | biocompatibility and low fracture
* Bone graft or fillers | Biodegradable toughness
* Osteoconductive and |+ Brittleness
osteoinductive  Inelasticity

Non-toxicity and
non-inflammatory

B-Tricalcium * Bone graft or fillers | ¢ Rapid degradation e Low fatigue
Phosphate * Scaffold rate compared to resistance
hydroxyapatite * Faster absorption
¢ Adjustable resorption | than newly formed
and bone remodelling tissue
¢ Although it is
osteoconductive, it is
not osteoinductive
Bioglass * Coating material on | Osteoconductive and | ¢ Poor mechanical

load-bearing implants
Used as bone cement
Used to repair bone
defects

osteoinductive
Adsorption of protein
Providing cell
differentiation and
proliferation

properties

¢ Unsuitable as
load-bearing implant
material due to its
brittleness

Glass-Ceramic

* Apatite-Wollastonite
(A-W) enables in
some compression
load-bearing
applications

Scratch and abrasion
resistant

Controlled and
designed crystal
phases enables the
combination of high
bioactivity and
mechanical properties
A-W has the highest
mechanical strength
Osteoconductive and
osteoinductive
bioglass can be
derived from
glass-ceramics with
modifications

¢ Unsuitable as
load-bearing implant
material due to its
brittleness

acidity of the environment compared to high Ca/P ratio. B-TCP has greater degrad-
able compared with HAp [39]. Although B-TCP is accepted as bioresorbable, it does
not fully replace bone when used as a bone graft. Furthermore, the amount of bone
formed is lower than the reabsorption rate of B-TCP [34]. B-TCP is bioactive and
biodegradable, but it cannot be regarded as osteoinductive. Moreover, it cannot be
defined as a smart bioceramic unless it is combined with osteoinductive substances

(Table 8.2).
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Table 8.3 Features and advantages of smart bioceramics

Features Advantages

1 Biodegradable ¢ Chemical dissolution
* Macrophagic phagocytosis of bioceramics

2 3-D Porosity ¢ Hierarchical model from macro to nano-level
 Interconnectivity for cell migration

3 Bioactivity * Sustainable ion releasing until degradation
* Osseointegration
¢ Osteoconductivity

4 Biomimicry of the bone ¢ Physio-chemical structure

Osteoinductivity ¢ Acceleration of new bone formation and regeneration

6 | Non-cytotoxicity * Biocompatible

Dicalcium phosphate dihydrate (DCPD) is preferred in certain bone regeneration
applications due to its high biodegradability under the physiological conditions when
compared to HAp. DCPD are categorized as osteoinductive material due to rapid
ossification after in vitro and in vivo degradation. Thus, it can be said that DCPD
and dicalcium phosphate are suitable options for use as bone cement. Dicalcium
phosphate/HAp biphasic ceramics also have both osteocondutive and osteoinductive
properties and can procure controllable biodegradability [34].

A study by Shuai et al. examined the biodegradable activity, mechanical features,
and biochemical performances of TCP/HAp porous scaffolds via selective laser
melting (SLS) rapid prototyping (RP) method [40]. A number of TCP/HAp ratios
were examined: 0/100, 10/90, 30/70, 50/50, 70/30, and 100/0. Their results showed
scaffolds with TCP/HAp ratios of 30/70 and 50/50 displayed better biological perfor-
mance as demonstrated by the adherence and proliferation of osteoblast-like cell
(MG63). After soaking the scaffolds in simulated body fluid for 7 days, it was revealed
that the amount of apatite precipitated on the surfaces of scaffolds increased as the
content of TCP increases. The scaffold with a TCP/HAp ratio of 30/70 revealed the
formation and uniform distribution of cavities on its surface. The results of mechan-
ical testing demonstrated that both the fracture toughness and compressive strength
increased with increasing content of TCP from 0 to 30 and the scaffold with the
TCP/HAp ratio of 30/70 exhibited the optimum fracture toughness and compressive
strength. Schmidleithner et al. indicated that a pure B-TCP could be manufactured
with 99.5% relative density using digital light processing (DLP) RP method [41].
Digital light processing also contributed to high cell compatibility and differentiation
of cultured Murine pre-osteoblastic (MC3T3-E1) cells on the B-TCP scaffolds.
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8.3.2 Bioglass and Glass-Ceramics

Bioglass s the silica-based amorphous structure, which possesses non-uniform distri-
bution of atoms due to rapid cooling of the ceramic. It consists of a stable interface
and stimulates angiogenesis and tissue regeneration during degradation [42, 43].
Bioglass can be characterized by the creation of a network that interconnects different
silica tetrahedron network via the —Si—O-Si— bridging oxygen bond. This network
can be disrupted by network modifiers such as Na and Ca creating non-bridging
oxygen bonds (—Si-O-NBO-). Na,0O, K,0, CaO, MgO can support the formation
of an apatite layer on the surfaces of the bioglass that supports ossification [44].
Silica-based bioceramics that present an improvement to the 45S5 bioglass with a
composition of 45 wt% SiO,, 24.5 wt% Na, 0, 24.5 wt% CaO, and 6 wt% P,Os have
been used in clinical practice since 1985. They trigger the secretion of growth factors
and support neovascularization [45]. Borate and phosphate bioglasses were used for
muscle and ligament replacements after the developments of silica-based bioglass
[18,46,47]. Bioglasses are applied as bone cements at defects because of their bioac-
tivity and the ability to induce bone. They are generally preferred as coating material
instead of load-bearing applications due to their weak physical characteristics. The
apatite film covered around the glass acts as a barrier against metal ion release [48].
A study by Jones has revealed that the potential of bone tissue regeneration and cell
response depend on the ionic degradation products of bioglass and glass-ceramics
and HAp layer formation [49].

Bioglass can be manufactured using either the melt-derived approach or the sol-
gel technique [5]. Silica increases the bioactivity of the glass. The interaction levels,
type of bond as well as the time needed for its formation governs the rate of bioactivity
of the bioglass. The rapid bond formation with soft and hard tissues can be achieved
when the silica content in the bioactive glasses obtained from the melt is between
42 to 53%. Bonding occurs in about 2 to 4 weeks in hard tissue but there is no soft
tissue interaction if the silica content in the bioglass is between 54 to 60%. Glass
behaves immobile and does not interact with tissues as the silica content increases
above 60% [44, 50].

Bioglass with asilica content of up to 90% can still achieve bioactivity and bonding
due to the formation of an HAp layer if it is manufactured using the sol-gel method
[5, 51]. Sol-gel manufacturing method can produce porous structures at nano scale
(from 1 to 30 nm) known as meso-porous bioglasses such as 58S (with a composition
of 58 wt% SiO,, 38 wt% CaO, and 4 wt% P,0s) and 70S30C (70 mol% silica and
30 mol% CaO). The features of meso-porous structures such as lattice dimensions,
area and volume are effective in regulating the adsorption and releasing activities of
biomolecules such as proteins, growth factors, peptides and drugs. Thus, it is possible
to obtain greater degradation rate and rapid generation of the apatite film on the glass
surfaces [52]. Bioglass produced from sol-gel technique exhibits higher chemical
and biological properties than compared to those synthesized using the melt-derived
method. The reason for this is the Si-OH surface layer and dissolved ions on the
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surface, which increase chemical reactivity. As mentioned previously, this value
cannot exceed 60% in the melt-derived bioglass, but reaches 90% in sol-gel-derived
bioglass [42].

Ojansivu et al. stated fiber-reinforced composite implants (S53P4) are capable
of achieving similar results comparable to titanium implants [53]. Nevertheless, the
formation of osteogenic medium extracts on the composite led to enhance pH of
body environment and triggered cell differentiation from hMSC to osteoblasts due
to the release of calcium and phosphate.

Depending on the thermal treatment parameters, glass-ceramics are composed of
fine grains with controllable size and contains a small fraction of residual glass found
at the grain boundary [5, 44]. These ceramics are known as polycrystalline solid and
one advantage is that a combination of special properties such as enhanced mechan-
ical properties, bioactivity, and workability can be achieved through the design and
control of the formation of crystal phases and crystallization [44, 51].

Thermal and mechanical characteristics of glass-ceramics such as scratch and
abrasion resistance permit its use in orthopedic applications [54]. Apatite wollastonite
(A-W) glass ceramics, which were developed from apatite matrix reinforced with
wollastonite, are utilized in compression load-bearing applications since it has the
highest crack resistance and Young’s modulus amongst bioglasses and glass-ceramics
[55]. A study by Shi et al. has demonstrated the biosafety and bone regeneration
capability of bioglasses [56]. Glass-ceramics, however, are not the ideal for load-
bearing applications due to their brittleness. A-W glass-ceramics cannot be regarded
as smart bioceramics if their biological activities are taken into consideration. They
display osteoconductive property due to crystalline phases, reduction in chemical
reactivity, and osteogenesis [42].

Yuan et al. reported that bone formation on the surface of implant occurred with
typical intramembranous ossification inside of the pores instead of crystal layers
when they implanted bioglass with osteoconductive lattice microarchitecture into
the muscles of dogs [57] (Fig. 8.2). The study presented that the osteoconductive
biomaterials can be converted to osteoinductive by optimization of the porosity,
geometry, and chemical surface and addition of growth factors and osteogenic cells.
Thus, glass-ceramic structures can also be classified as smart bioceramics through
appropriate modifications.

8.3.3 Biocomposites

8.3.3.1 Calcium Phosphate-Polymer Based Composites

Composites produced from calcium phosphate (CaP) and reinforced with polymer
matrix shows promise as the key biomaterial for orthopedic applications. Composites
can support tissue regeneration due to bioactive CaP and the biodegradable polymer
matrix [58]. While hydroxyapatite exhibits brittleness and is more prone to crack
generation, especially in load bearing applications, HAp-polymer (polylactic acid
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Fig. 8.6 Contribution of calcium phosphate and synthetic polymer to CaP/Polymer composite in
terms of mechanical and biocompatible properties

(PLA), poly (lactic-co-glycolic acid) (PLGA), poly-Ecaprolactone (PCL)) compos-
ites show improved ductility and deformity due to the flexibility of polymers. In
addition, the composites will have a greater lifespan as there is a reduction in the
possibility for cracks to form. Combination of CaP phase into biodegradable polymer
matrices, for instance by combining them with PLA, PCL and the copolymer PLGA,
may improve the Young’s Modulus and mechanical performance (Fig. 8.6) [59].
These composites help to control the adhesion of stem cells, which promote osteo-
genesis activities [60]. Acidic features of biodegradable polymers however may affect
their tissue response negatively. Alkali ceramics neutralize the acidic impact of the
polymers and, for this reason, their bioactivity is enhanced [44].

Chang et al. investigated the bone regeneration efficacy when collagen-enhanced
particulate biphasic calcium phosphate (TCP/HAp/Col) and dicalcium phosphate and
HAp (DCP/HAp) were grafted into critical bony defects of dogs. The composite bone
graft composed of 12% bovine-derived collagen and 88% ceramic, in the form of HAp
and B-TCP biphasic ceramic (60% HAp and 40% B-TCP) [34]. The long-term osteo-
conductivity and controllable biodegradation feature were provided by the HAp/TCP
biphasic ceramic for bone growth. Collagen also played an osteoinductive role at
the composite. Cell migration and differentiation were promoted with the porosity
and interconnectivity for bone graft application of composite. When TCP/HAp/Col
and DCP/HAp grafts were compared for bone defect repair, DCP/HAp exhibited a
profound impact for osteoblastic bone formation and compression strength compared
to TCP/HAp/Col composite.

8.3.3.2 Calcium Phosphate-Metal Based Composites

The CaP/metal matrix composites demonstrate enhanced mechanical character-
istics such as improved tensile strength, yield strength and Young’s modulus.
Magnesium-based CaP composites have been considered as a promising candidate
due to its favorable biodegradation and physical characteristics [9]. The main
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reason for utilizing magnesium is based on its degradation. Li et al. reported the
detection of magnesium, calcium and phosphorus ions at different time intervals
after magnesium alloy samples were immersed in simulated body fluid (SBF)
solution [61]. During the degradation tests, products bond and form a protective
layer on the surface of the metal. An increase in elasticity and yield strength was
observed during the mechanical testing. After the magnesium and calcium phosphate
bonds degraded, a decrease in mechanical properties was detected. Therefore, these
ions are considered as the degradation product of the metal/ceramic composite.
Thus, it has been proposed that magnesium/ceramic composites could be ideal for
orthopedic applications. Phosphate-based biodegradable and bioactive ceramics are
also desirable as they provide high corrosion resistance and appropriate mechanical
properties in orthopedic implants. Examples are calcium polyphosphate grains
(CPP), HAp and TCP [62].

Calcium polyphosphate grains are bone-like polymer ceramic oxides with good
biocompatibility similar to other phosphate-based ceramics. Its exact composition
is Ca(POs3),. A number of calcium phosphate-based ceramics were used as rein-
forcement in magnesium matrix composites. The degradation rate of magnesium is
extremely high and in the process releases a significant quantity of hydrogen gas,
which delays the healing of fracture bone tissue. The incorporation of calcium phos-
phate allows the degradation to be controlled at a given rate in vivo and in vitro
[9]. Magnesium has a biodegradable and osteoinductive characteristics and thus
contributes to the osteogenic differentiation of MSCs [63]. Also, the bioactive
ceramics are resistant to corrosion and can control the rate of biodegradation. The
osteoinductivity and controlled biodegradability as the crucial properties in smart
materials are the biggest reasons why magnesium/ceramic composites show promise
as candidate for smart composites. In addition, reinforcing titanium with HAp and
TCP will improve the mechanical strength of apatite by eliminating the brittle nature
of bioceramics that can be applied as cranial implants [64].

8.4 The Criteria of Smart Bioceramics

The primary definition of smart bioceramic scaffolds is to design a remarkable
artificial structure that will potentially promote osteoconduction as well as the
opportunity to induce bone formation. The specific features were verified in clin-
ical studies from the European program within the concept of “smart osteogenic
scaffolds” [65]. Macroporous Biphasic Calcium Phosphate (MBCP) Technology in
combination with human hMSC suspension is another approach to osteoinductive
smart bioceramics [36].

The definition of osteoconduction is that the bioceramic is able to promote bone
formation and conform to its surface. Bone tissue provides an optimum environ-
ment for the scaffold where it can regenerate bone. On the other hand, according
to the definition of osteoinduction, it stimulates the cells to phenotypically trans-
form into osteoprogenitor cell types that can form bone in any tissue. BMP injection
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and/or implantation are excellent examples of inducing osteoinduction (Fig. 8.4)
[66, 67]. Scaffolds can induce osteogenic cell differentiation through nano, micro
and macrostructure [36]. Osteogenic is defined as the ability for living cells to form
bone such as osteocytes or osteoblasts [68].

The advantages of smart bioceramic scaffolds are their enhanced support for the
recovery and reconstruction of bone tissue. Such absorbable medical devices have
versatile properties that can be found as solid bioceramics or moldable injectable
materials. In the clinical community, this smart scaffold innovative approach is
referred to as a part of the “Smart Biomaterials Diamond Concept”. The three
features included in this concept are volume restoration, stabilization and bone
regeneration [69].

Although several studies have recently shown osteoinductive properties for some
micro and macro scale CaP bioceramics with addition of growth factor and/or cells
[70], the major focus is on the nano and micro scale interconnectivity of smart
materials as depicted in Fig. 8.7. Therefore, the creation of a “smart scaffold” to assist
in the latest tissue engineering approach is challenging. The originality of the scaffold
is determined by the macro-to-nanostructure biomimetic approach associated with
biological fluids infiltration, protein adhesion, cells and tissue colonization and bone
reconstruction [71].

In order to meet the criteria and functions essential for the treatment of bone
defects, the smart scaffold must contain the features presented in Table 8.3. There
are several ways for the biomaterial to be resorbed by surrounding tissues such as
the process of chemical degradation, the resorption via osteoclasts and macrophagic

Interconnectivity

Macro-scale Micro-level Nano-level
Osteoconductive Niches Biological Fluid Penetration Protein Adhesion
Bone implant construct Cell-Tissue Colonization lonic Exchanges

Fig. 8.7 Macro to nano-level bioceramics representations and their biological advantages
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phagocytosis of the bioceramic fragments [72]. Another requirement is the multidi-
mensional 3D porosity. The first of these is the macroporosity that act as an osteocon-
ductive niche for cell attachment, growing and development. The second requirement
is the micro-level porosity for volume interconnectivity that provide enhance surface
area and great degradation rate for adsorption of biomolecules [65] (Fig. 8.3). Func-
tional performance of growth factors and peptides, which are osteoinductive agents,
can be enhanced by covalent implantation to the bone, causing their continuous
interaction with the bone microenvironment [73]. Interconnected 3D structures suit-
able for the circulation of body fluids are essential to establish a biologically active
medium to cell stimulation and accumulation, protein adsorption and ion exchange.
The assembly of macro-micro-nano structures may provide extremely reduced
density bioceramic structure with enhanced osteointegration capacity [72, 74].

In terms of bioactivity, the presence of Ca and P ions released from the nutri-
tive apatite plays an important role in the continuation of apatitic nucleation and
re-precipitation. Another remarkable feature is that body fluid interacts with the
adsorbed biomolecules to provide cell adhesion and osseointegration. In addition,
bone biomimicry should be considered in terms of microstructure and chemistry, and
other key factors include osteoinductivity or conductivitiy, as well as non-toxicity
and non-immunogenicity, in addition to biocompatibility [75, 76].

8.5 Smart Bioceramics

8.5.1 Porosity

A hierarchical porosity, which includes macro to nanoscale pore sizes as shown in
Fig. 8.7, which is similar to the unique bone structure, and the cascaded pores are
needed in tissue reconstruction [1]. The nano-structures and high percent of porosity
increase the surface area, and this tremendously contributes to the ion homeostasis of
the bone. The lattice structure sizes smaller than 1 wm is responsible for bioactivities
including protein interactions [77]. Highly porous structures allow the movement and
the growth of osteoblasts, osteoprogenitor cells and MSCs, as well as the delivery
of mineral and oxygen required for angiogenesis throughout the process of bone
tissue formation [78]. However, a reduction in mechanical strength is observed with
larger pore size. A study by Yuan et al. stated that the Young’s modulus of cortical
bone is between 7.7-21.8 GPa, while for cancellous bone this value is reported to
vary between 0.01 and 1.57 GPa [79]. Zaharin et al. reported that Young’s modulus
with lattice dimensions with pore size 300 um could be considered as giving similar
properties to that of natural bone [80]. In addition, nano bioceramics, when assembled
by electrospinning or 3D printing, could possibly obtain appropriate pore size with
increased mechanical strength. Various lattice structures might influence the mobility
of bone cells, which can serve as a system to control cell behavior in the ECM
environment [81].
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Looking at the synthetic bioceramics manufactured using conventional tech-
niques, inadvertent porosity causes low performance for bone repair and regener-
ation [82]. The fabrications of biomimetic hierarchical lattice structure (macro to
nano) bone implants are therefore essential in triggering greater bone regeneration
potential [83].

8.5.2 Trace Elements with Bioceramics

Trace elements can be integrated to HAp to improve properties such as bioactivity,
thermal stability, solubility, cell response and degradation, and mechanical properties
[18, 44]. HAp can incorporate with anionic and cationic substitutes for phosphates
and calcium, respectively. While zinc (Zn*?), magnesium (Mg*?), strontium (Sr*?),
boron (B), sodium (Na*!), silver (Ag*!), barium (Ba*?), yttrium (Y*?) and titanium
(Ti**) may interchange with calcium (Ca*?), while the phosphates are substituted
with carbonates, silicates, vanadates, borates and manganates [75, 84].

There are two main kinds of calcium, which affect the crystallinity and interactions
with different trace elements in a unit cell of the apatite [18]. Ca*? (I) includes four
Ca*? ions surrounded by nine oxygen atoms, Ca*? (II) includes six Ca*? ions, which
are bigger in size and volume than Ca*? (I), for each unit cell which provides the
motion of anions. Phosphate atom consists of PO,>~ surrounded by four oxygen
atoms [85].

The growth of the human skeleton requires silicon to increase bone mineraliza-
tion and regeneration with triggering gene activity [86, 87]. SiOy interacts with POy
that prevents grain growth and enhance surface area/volume ratio that affects topog-
raphy of cell attachment [88]. The bioactivity of HAp can be enhanced through
the incorporation various elements such as magnesium, strontium, boron [46], and
silicon [89]. As a mineral, the amount of magnesium contained in bone, dentin and
enamel are 0.72%, 1.23% and 0.44%, respectively. Similar to magnesium, stron-
tium is another element found in bone and they promote osteoblastic activity while it
decreases osteoclastic resorption. Both minerals are required for bone mineralization
at different stages. While magnesium is substituted with Ca*? (I), strontium reacts
with Ca*? (II) apatite region, in this way, these substitutions restricts stabilization
and ion release, while promoting B-TCP transition through thermal transformation
[90]. Geng et al. suggested that eggshell are a promising source of Ca*? and doping
it with Sr*? offers improved performance compared to strontium-free HAp in terms
of cell growth and differentiation. Alkaline phosphatase (ALP) activation for protein
expression is also prominent with the incorporation of Sr>* [91]. Zinc, which inter-
acts with Ca*? (II) and therefore exhibits a similar initiator effect on crystallinity with
magnesium and strontium. These features enhance protein adsorption and cofactor
enzymes. On the other hand, a better environment for osteoblastic adhesion is offered
by yttrium than compared to magnesium and zinc [18].

Protein adsorption is associated with the surface charge, which in turn impacts
the osteoinductivity and bioactivity of HAp. Therefore, the negatively charged HAp
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surface is responsible for the collection of basic proteins. The release of protein can
be controlled through the incorporation of zinc and magnesium [92]. Furthermore,
silicon-HAp, which is a higher negatively charged bioceramic compared to pure HAp,
provides a lot more protein adsorption on the surface because of addition of silicate
[93]. Integrins that are ECM receptors promote osteoblast attachment by giving off
signals [44]. After attachment, these receptors impact the cellular phenotype and
cytoskeletal molecules including vinculin and actin [8].

B-TCP requires improvement for expediting bone growth, and this can be achieved
through the addition of MgO, ZnO, SrO, and SiO, [94]. The integration of such
elements may influence and change the physical, chemical and biological behavior
of B-TCP. Increasing osteogenic activity was recorded in MgO/SrO doped B-TCP
[95]. Chou et al. reported that B-TCP doped with zinc bioceramics enhanced growth of
MSCs and ALP efficiency. Osteogenic differentiation and ECM formation occurred
and the calcium level established a positive difference after 14 days [96].

Gizer et al. investigated the effect of boron and nanoscale-HAp composite on
osteogenic activities of MSCs and osteoblast cells. The results showed increased
MSC:s proliferation and ALP efficiency with boron-containing-nano-HAp scaffolds
in comparison to boric acid and nano-HAp composite [46]. In addition, the study
by Tungay et al. showed that when comparing boron-doped-nano-HAp composite
with nano-HAp, the boron-doped-nano-HAp composite enhanced the adhesion and
growth potential of the MC3T3-E1 osteoblastic cells [97].

8.5.3 Nanoscale Bioceramics

The dimensions of nanoceramics should be less than 100 nm. There have been
changes in the manufacturing approaches from the micro-scale to nano-scale with
novel nanotechnologies. Nanoceramics will highly interact with biological tissues
and with nucleic acids, protein and others. Materials of this scale have been integrated
and adapted to biomedical devices. The biggest reason for this is that many biological
systems such as viruses, protein complexes, and membranes display natural nanos-
tructures. In addition, improvements in mechanical properties and bioactivity are
described as other advantages of nanomaterials over micro-scaled ones [44].

Cells can be triggered precisely based on the environmental topography at nano-
scale, and in this way, cell response increases [98]. Surface nano-topography will
positively influence the cell adhesion, cell signaling and some gene expression. The
nano-scale structure is similar to the bone hierarchical architecture from micro-
scale to nano-scale [99, 100]. The endocytosis of nano-HAp particles into the
MSCs cytoplasm by scanning electron microscope is shown in Fig. 8.8. This finding
strengthened the opinion regarding the strong biocompatibility of such bioceramics.
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Fig. 8.8 The scanning electron micrograph of a mesenchymal stem cell presenting the nano-HAp
particles within the cytoplasmic processes, 60,000x

8.6 Smart Bioceramics for Orthopaedic Applications

8.6.1 Bioceramic Surface Coatings

If the cellular recognition and excellent chemical bonds with the hosted tissue are
absent from surface of the implant, attachment of the implant will be inadequate and
micro-motions will occur at the bone-implant interface. This situation will lead to a
failure of the implant system. Along with the wear of the implant material, corrosion
provokes the release of metal ions or particles and causes infection and immune
response. These limitations are addressed by the surface coating method that protects
the implant material and at the same time increases their surface biocompatibility
[101, 102].

The most important requirement of any implant (metallic, polymeric, ceramic) is
to prevent infection and bone resorption, as well as to increase osteointegration and
biological stabilization. The deposition of nanocoatings and nanocomposite coatings
on these implants is to increase biological activity, corrosion resistance, and protect
the body from adverse reactions due to metal ion release. These coatings also allow
the surface properties of the implant to be altered to achieve improvements in clinical
reliability, longevity, and performance [30].
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Calcium phosphate has been used as a porous coating on metal implants in ortho-
pedic applications. The development of good interfacial strength between the bioce-
ramic coating and bone tissue is the effect of biochemical interference of released
calcium and phosphate ions [30]. Calcium phosphates are classified according to their
solubilities such as when attached to surrounding tissues together with their ability
to be degraded and replaced by advancing bone growth. Surface ions of calcium
phosphate are replaced with the aqueous solution when in contact with body fluid.
Various ions and molecules (protein and collagen), on the other side, can be adsorbed
onto the surface of calcium phosphate bioceramics (Fig. 8.4) [103].

Nanoscale coatings that improve the bonding between surfaces are gaining world-
wide attention. The principle of using bioceramics as bioactive coatings is due to their
fast and excellent biochemical bonding to the bone. The description of biological
fixation is an action by which an implant or prosthetic are tightly attached to host
bone through bone ingrowth and without the assistance of any form of physical fixa-
tion such as the application of adhesive [103]. Quality bioceramic coating promotes
speedy recovery and greater adhesion to the bone. Several implants coated with
a thick bioceramic layer show comprehensive bone attachment in vivo. Properties
of the calcium phosphate coating such as porosity, surface roughness, crystallinity,
component phase and thickness determine its long-term longevity [31, 103].

In the literature, Fujino et al. reported that silicate glass can be successfully coated
to Co-Cr alloy and formed hydroxyapatite on the glass surface after immersion in SBF
solution for 30 days [104]. In addition, Drnovsek et al. stated that nanoscale bioglass
on titanium implant stimulates osseointegration with interactions between apatite
layer and tissues [105]. Furthermore, Vitale-Brovarone et al. postulated that the use
of porous bioactive glass coating on alumina substrates could enhance osteogenesis
on bone defect repair [106].

8.6.2 Bone Graft

In addition to applications in orthopedic and maxillofacial surgery, bone grafts are
also utilized for mandibular reconstruction, filling defects, and non-union treatments.
The use of synthetic bone graft is preferred instead of the natural autograft and
allograft option. Although the autografts are accepted as the first and well-accepted
choice in bone recovery because of procuring osteoconductive and osteoinductive
growth factors, problems such as limited tissue suitability, high cost, nerve damage,
hematoma, pain to the patient, long operation time [107, 108] and infections at the
autograft removal site [ 109] makes the use of allograft and synthetic grafts a preferred
alternative option. The osteogenic activity of allograft is not as high as autografts. In
addition, the immunological reactions and disease transmission risk for allograft is
completely opposite. However, a reduction in osteoinductive feature and structural
strength can be observed in frozen allografts [68].
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The fabrication of calcium phosphates (HAp and TCP) and their combinations
are produced under controlled conditions to attain pure fine-grained powder bioce-
ramics for bone grafts. Customized bone grafts can be in various forms such as
powder, granules, or bulk ceramics [110]. The synthetic ceramic bone grafts are
osteoconductive similar to autografts; however, they do not show the osteoinductive
feature that stimulates fresh bone formation. Owing to smart technologies, osteo-
conductive and osteoinductive properties are incorporated through osteogenic cells
and/or inductive proteins. Besides, bone growth factors have been integrated into
ceramics to trigger protein synthesis, bone formation, and defect repair [44].

BMP is isolated and obtained from the demineralized bone matrix (DBM) which
contains a transforming growth factor family (TGF-$) [108]. BMP-2 and BMP-7
stimulates osteogenesis or angiogenesis with differentiation of MSCs for new bone
formation. Meeting the requirements of bone remodeling can be achieved through the
applications of BMP delivered using CaP ceramics and composites to the intended
defect sites as well as in the therapeutic applications in osteoporosis [44]. Commer-
cially available DBM is used in the treatment of non-union fractures. Bovine collagen
is another material that is used for bone graft substitute in conjunction with HAp
at the fracture site. Although the graft is osteogenic, osteoconductive, and osteoin-
ductive by having high biological features and no transmissible diseases, it is weak
however in terms its mechanical strength [111].

8.6.3 Scaffolds

Bioceramic scaffolds are generally preferred for non-load bearing and compres-
sive load orthopedic applications due to its unfavorable mechanical properties [6].
Smart synthetic scaffolds for bone tissue engineering should compensate for essential
requirements such as osteoinduction, 3D porosity (nano-micro level), and mechan-
ical stability. It is worthy to mention that these requirements should be different to
the criteria of other bioceramics [36]. The hierarchical porous structure provides the
combination of nano- and macro-porosity with interconnectivity for the production
of synthetic scaffold. If the porosity is categorized based on biological functions,
then pore sizes between 150 and 400 pum are suitable for cell aggregation and vascu-
larization. Pore sizes below 20 pwm are ideal for capillary ingrowth factors, peptides,
and biological apatite [1]. Figure 8.6 shows the nano and micrometer dimensions of
biological structures. The microscale to nanoscale approaches accelerated due to the
strong interactions between nanostructures and nucleid acids and proteins [44].

A study by Lu et al. examined the anti-microbial/anti-inflammation effects of
nanoporous HAp/Polyamide 66 scaffold with 2.35 wt% TiO; and various amounts
of silver ions (0.22% or 0.64 wt%). Using an animal model, they observed the
scaffolds exhibited effective antibacterial activities against E. coli and S. aureus as
well as supporting cell adhesion and proliferation of pre-osteoblasts, and stimulate
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osteogenic regulator/marker expression. More importantly, scaffold containing 0.64
wt% Ag* displayed more proficient antibacterial/anti-inflammation effects in vivo
and promotes bone formation at the lesion site of osteomyelitis [112].

In addition, improvements in smart bioceramics should combine traditional prop-
erties of 3-D porous bioactive scaffolds with therapeutic ion release, as well as
providing antibacterial properties and supporting osteoinductivity via doping with
different trace elements such as strontium, copper, and zinc [5]. Surface reactions
of bioglass increase with a porous texture and larger surface area. Consequently,
acceleration in the amount of ions released during the degradation of the glass is
observed and the rate in which apatite is formed on the glass increases. Nonetheless,
the degradation rate can be controlled simply by changing the pore size, structure, and
the composition of the glass [113]. A study by Naik et al. noticed that porous 45S5
bioglass/polyethylene composite orbital prosthesis enhances neovascularization
compared to porous synthetic HAp, alumina, bovine and coralline scaffolds [114].

8.6.4 Injectable Bioceramics

Injectable bone substitutes are used in complicated surgeries and injected into regions
where the bone structure is uneven as they can be molded into shape. In other words,
they present an alternative concept to the minimum invasive surgery procedure [115].
Although calcium sulphate and calcium phosphate injectable bone cement have been
clinically applied in dental, maxillofacial surgeries, and orthopedic fracture treat-
ments at the moment, there are serious drawbacks as they degrade before healing is
completed and losses its mechanical support functions [116]. As a result, cracking
in the cancellous bone will occur under loading and the formation of injectable
cement fragments can result in inflammation [117]. Xu et al. investigated the use
of an injectable composite consisting of magnesium-doped TCP nanoparticles (43.8
£ 9 nm) and calcium sulphate hemihydrate microparticles between 5-21 pum in
size for bone defect repair instead of pure calcium sulphate bone cement [118].
The results of mechanical and biological testing demonstrated that the injectable
composite possess appropriate compression strength (between 2.28-6.33 MPa) and
no cytotoxicity when the composite was cultured with MC3T3-E1 osteoblast-like
cells in vitro. Another significant outcome is the acceptable initial setting time of
between 11.7-19.2 min. In vivo bone defect repair using an animal model could be
successful using the injectable composite. Moreover, nanoparticles degrade faster
than microparticles and are more favorable for cellular uptake.

A biomimetic and injectable hydrogel scaffold was synthesized by Huang et al.
consisted of chitosan, nano-hydroxyapatite, and collagen that is capable of forming
a stable gel at body temperature [119]. The injectable scaffold demonstrated charac-
teristics of natural bone both in terms of microstructure and composition due to the
presence of collagen fibers and nano HAp. Xu et al. developed a moldable/injectable
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self-setting calcium phosphate cement using tetracalcium phosphate and dicalcium
phosphate [120]. The scaffold was mechanically strong and can be used for bone
regeneration and delivery of osteogenic cells and growth factors.

Malik etal. [121] suggested that nanobioglass/polymer composite semi-solid scaf-
folds could enhance bioactivity and mechanical properties with the generation of new
apatite on the bovine dental tooth tissue cavity under ambient conditions. During the
experiment, bioglass nanoparticles assisted in the continuous cell proliferation and
growth through the highly interconnected porous structure and the enhancing surface
area.

8.7 Conclusion

Autografts are accepted as the best bone replacement and regeneration alternative.
Complications at the donor site and their limited availability increased the search
for smart synthetic materials. Osteogenesis can be supported with synthetically
obtainable intelligent bioceramic materials and design approaches. Research into
smart bioceramic to replace and regenerate bone is an active and ongoing field
of study. Surgical needs can be best overcome by injectable materials that attain
biomimetic porosity and biomechanical properties after application. Nano-ceramics
possess advantages such as increased surface areas for cell attachment, proliferation,
differentiation, and ECM formation. Such nano-bioceramics can deliver signaling
molecules and cells/cell components to the regeneration site. However, smart bioce-
ramics that induce bone formation must meet physicochemical and bioactivity criteria
for osteoconduction and osteoinduction. The osteoinductive feature is a key function
for potential new bone formation. Various trace elements can be integrated into nano-
bioceramics to enhance osteointegration. Biomimetic porosity and hierarchical bone
structure can be regained when such biomaterial is combined with functional poly-
mers. Active signaling molecules, stem, progenitor or mature cells combined with
smart bioceramics are open to research. Such molecules and growth factors func-
tion in a time and dose-dependent manner. Smart bioceramics and especially their
nano-forms can also be used in 3D printing. This technology will soon be available
to produce implants in extreme conditions to replace and regenerate bone tissue.
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Abstract Bone morphogenetic proteins (BMPs) as osteoinductive components orig-
inated from bone, play vital roles in a wide variety of processes during the forma-
tion of bone, cartilage, blood vessels, etc. BMPs fall within the superfamily of the
transforming growth factor-p (TGF-f) and signal transduction occurs through type
I and type II serine-threonine kinase receptors. BMPs are indispensable mediators
of osseous tissue creation concerned with the regulation of segregation of osteo-
progenitor cells into osteoblasts. However, their sustained and targeted delivery to
a particular site is of concern to researchers, scientists, and clinicians. Bioceramic
is considered an outstanding candidate for novel scaffold material because of its
excellent biocompatibility, bioactivity, and osteoconductivity but it lacks osteoin-
ductivity. On the contrary, BMPs are osteoinductive and their combination can result
in a scaffold with enhanced quality in orthopedics.
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9.1 Introduction

Bone has the inherent capability of rejuvenation as part of the repair process against
the threat of injury, as well as during skeletal expansion or constant remodeling
during adult life. Bone regeneration follows well-orchestrated sequences of biolog-
ical events involving bone induction and conduction, connecting numerous cell types
and intracellular and extracellular molecular signaling pathways.

From a different perspective, there are various biological factors responsible for
bone formations and these include: (i) definite bone cell categories viz. mesenchymal
stem cells (MSCs) and osteoclasts; (ii) appearance of soluble molecules (cytokines,
growth factors, hormones, ions, vitamins); (iii) the scaffold (calcium hydroxyapatite,
extracellular matrix molecules, etc.); and (iv) several mechanical stimuli [1].

There are five types of bone cells present in human bone tissues such as pre-
osteoblast, osteoblast, osteoclast, osteocyte, and bone lining cell. In response to new
stress, a constant bone remodeling process is facilitated by those cells. Above all,
osteocyte cells play a vital task during the remodeling process [2].

Several key molecules have been identified which regulates the fracture healing
and bone regeneration process (Fig. 9.1). There are three types of signaling molecules
that governs the healing process: (i) the pro-inflammatory cytokines, (ii) the trans-
forming growth factor-beta (TGF-f) superfamily and other growth factors, and (iii)
the angiogenic factors [1].

Mamow Cortical bone

Fig. 9.1 Graphical representation shows three principal stages of normal bone healing, inflamma-
tory stage, endochondral bone formation, and coupled remodeling (Reprint with permission from

3D
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e Pro-inflammatory cytokines: Interleukin- 1 (IL-1), interleukin-6 (IL-6), and
tumor necrosis factor-alpha (TNF-a) play a significant role in the commencement
of the repair cascade in addition to bone remodeling.

e Growth and differentiation factor: It includes the role of the transforming
growth factor-beta (TGF-B) Superfamily, the platelet-derived growth factor
(PDGF), fibroblast growth factors (FGFs), and the insulin-like growth factors
(IGFs).

e Metalloproteinases and angiogenic factors: Matrix metalloproteinases cause
degradation of cartilage and bone and permit angiogenesis at the last stages of
endochondral ossification and during the remodeling phase. Angiogenesis is regu-
lated by two different dependent pathways namely the vascular endothelial growth
factor (VEGF) and the angiopoietin.

A well-designed three-dimensional scaffold is one of the vital tools to monitor
in vitro and in vivo tissue formation during the healing process. It is essential that
appropriate scaffolds capable of providing adequate support to the cells be selected
so that cells can perform in a preferred manner during the formation of tissues and
organs with desired shape and size. Furthermore, the addition of growth factors like
bone morphogenetic proteins (BMPs) or other bioactive elements into scaffolds will
effectively increase bone tissue response and improve bone fracture healing [4].
BMPs inspire the differentiation of mesenchymal stem cells and other osteogenic
cells and boost the differentiation function of osteoblasts. This chapter plans to review
the present understanding of BMP signaling within the osteoclast lineage, its function
in bone resorption, and osteoblast-osteoclast pairing. In addition, subsequent clinical
implications in cartilage and bone repair using bioceramic scaffolds and BMPs are
discussed.

9.2 Bone Morphogenetic Proteins and Their Classification

The transforming growth factor-beta (TGF-B) superfamily contains a number of
various growth and differentiation factors including BMPs, TGF-, growth differen-
tiation factors (GDFs), activins, inhibins, and Miillerian inhibiting substance [5].

BMPs are created during fracture by mesenchymal cells, osteoblast cells, and
chondrocyte cells. After the fracture, these cells in combination with individual
BMP or with other members of the TGF-f superfamily stimulate the bone and carti-
lage formation process. Different cellular processes were promoted like angiogen-
esis, chemotaxis, mesenchymal cell propagation, and the creation of an extracellular
matrix [6].

BMPs are produced and accumulated as large dimeric proteins in the cytoplasm
and slashed by proteases throughout the secretion. BMP is a dimeric molecule with
two polypeptide chains containing 431 amino acids held together by a single disulfide
bond. The crystal structure of BMP 2 is a “hand-shaped structure” containing two
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Table 9.1 Classification of bone morphogenetic proteins [8]

BMP classification Function

BMP-2 Supports osteoinduction, osteoblast differentiation,
and apoptosis

BMP-3 (osteogenin) Most abundant BMP in bone in addition to
inhibiting osteogenesis

BMP-4 Assists in osteoinduction in addition to lung and
eye development

BMP-5 Supports chondrogenesis

BMP-6 Supports osteoblast differentiation and
chondrogenesis

BMP-7 (osteogenic protein-1) Assists in osteoinduction as well as the
development of kidney and eye

BMP-8 (osteogenic protein-1) Supports osteoinduction

BMP-9 Assists in the development of the nervous system

and hepatic reticuloendothelial system

BMP-10 Supports cardiac development

BMP-11 (growth/differentiation factor-8) | Assists in the development of neuronal tissues

BMP-12 (growth/differentiation factor-7) | Supports tendon iliac tissue formation

BMP-13 (growth/differentiation factor-6) | Supports tendon and ligament-like tissue formation

BMP-14 (growth/differentiation factor-5) | Activates tendon healing and bone formation

BMP-15 Helps in follicle stimulating hormone activity

fingers of antiparallel B-strand and an a-helical region at the heel of the palm [7].
BMPs are classified based on the amino acid residues sequence and are shown in
Table 9.1 [8].

9.3 Receptors of BMPs

BMPs express their actions through two types of serine/threonine kinase transmem-
brane receptors: type I and type II receptors [9]. In mammals, three types of type II
receptors such as the BMP type II receptor (BMPRII), the activin type II receptor
(ActRII), and the activin type IIB receptor (ActRIIB) are present. These receptors
attach mostly to BMP ligands and they regulate the binding inclinations of BMP to
type I receptors. In addition, these type II receptors phosphorylate the glycine-serine
domain of the type I receptor. Type I receptors generally control the specificity of
intracellular signals. For most BMPs, type I receptors are- activin receptor-like kinase
(ALK)-3 (BMPRIA), ALK-6 (BMPRIB), ALK-2, and ALK-1.

There are eight Smad proteins present in mammals (from Smad 1 to Smad 8). The
activated receptor kinases phosphorylate the transcription factors Smadl, 5, and 8.
The phosphorylated and activated R-Smad proteins form complexes with Smad4 and
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Fig. 9.2 Schematic representation of BMP signaling pathway (Reprint with permission from [10])

move into the nucleus and control transcription of target genes attaching to specific
DNA sequences, networking with other DNA-binding proteins, and employing
transcriptional co-activators (Fig. 9.2) [10].

9.4 Signaling Cascades of BMPs

BMPs perform their function as growth and differentiation factors and chemotactic
agents. At the time of embryonic development, BMPs regulate neurogenesis and
erythropoiesis and induce mesmerization. They encourage angiogenesis and reloca-
tion, propagation, and differentiation of mesenchymal stem cells into osteoblasts and
cartilage. Clinical studies revealed that BMPs are also capable of motivating bone
fracture healing, controlling the formation of different morphological characteristics
of mammal bone systems [8, 11].

Due to small quantities of bone morphogenetic proteins identified within the extra-
cellular matrix of bone, recombinant technologies play a crucial role and they have
been utilized to generate BMPs for therapeutic purposes. Since the recognition of
the chemical structures of several human BMPs, it is likely to employ DNA probes
to obtain human complementary DNA sequences. The human cDNA is cloned and
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merged into a viral expression vector. Consequently, recombinant-BMP produced
offers the optimal capacity for clinical purposes. In 2002, The US Food and Drug
Administration (FDA) permitted the utilization of BMP-2 and BMP-7 for applica-
tion in bone regeneration [8]. Recombinant human BMPs (thBMPs) are primarily
intended for applications in orthopedics and in oral and maxillofacial surgery. They
are also equally important as an adjunct treatment for the management of few muscu-
loskeletal disorders. The FDA-approved thBMP-2 and thBMP-7 are being used for
anterior lumbar interbody fusion, non-union, and open tibial fractures. Spinal fusion
using iliac crest bone graft may become a successful procedure nowadays as a result
of the advancement of bone morphogenetic proteins [12].

9.5 Carriers for BMPs

A suitable carrier is required to express the biological potency of BMP. Carriers
help to confine BMPs within the injured treatment area for a longer period of time
so that it is possible to recruit regenerative tissue forming cells and for these tissue
forming cells to propagate and differentiate. Moreover, this matrix also assists in cell
infiltration during the tissue repairing process.

The indispensable necessities for ideal carriers of BMPs are listed below [13, 14]:

The capacity of preventing potential inflammatory responses;

The formation of a boundary with the neighboring biological tissue;

Perfect porosity for cell infiltration and vascular in-growth;

Should have satisfactory mechanical strength;

Should have adequate biodegradability property and in the same time it must also
protect BMPs from degradation for a sufficient time to stimulate bone mass at the
treatment site;

e Carriers should be produced on a large scale effortlessly and economically;

e Sustained and controlled release of the incorporated proteins.

The incorporation of BMPs in a delivery system can be achieved through adsorp-
tion, entrapment or immobilization, in addition to covalent binding. Amid the various
ways, adsorption of thBMPs to the surface of the implant is the simplest mode of
delivery. However, it leads to a less sustained release of the protein due to the initial
burst release. Although, thBMPs are attached to the implant surfaces for a longer
time, the covalent bonding hinders free diffusion of the protein within the environ-
ment. Entrapment and encapsulation of hBMPs are the most popular way of delivery
of thBMP, which avoids the concerns of a fast release. However, complication can
crop up during the loading of BMPs within certain materials as pH or tempera-
ture conditions often lead to denaturation of the protein. Therefore, researchers are
searching for a more effective and optimal way to develop a specific carrier system
for BMPs without the loss of functional activity [14].
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Table 9.2 Categories of carrier materials and some of their examples

Categories Examples

Natural polymers Collagen, Chitosan, Silk fibroin, Alginate, Gelatin

Synthetic Polymers | Polylactic acid (PLA), Poly (glycolic) acid (PGA), Polyethylene glycol
(PEG), Poly lactic-co-glycolic acid (PLGA)

Bioceramics Hydroxyapatite, B-Tricalcium phosphate (3-TCP), Biphasic calcium
phosphate (BCP)
Composites Hydroxyapatite-Collagen, Hydroxyapatite-Chitosan, Tricalcium

phosphate-Collagen, PLGA-Collagen

There are four major categories of carrier materials for the delivery of BMPs such
as natural and synthetic polymers, bioceramics, and their combinations in the form
of composites. Examples of the types of carrier materials currently being utilized for
BMP delivery are shown in Table 9.2.

9.6 Calcium Phosphate as a Carrier of BMP

Calcium phosphate bioceramics are considered to be an excellent candidate for novel
scaffold material due to its excellent biocompatibility, bioactivity, and osteocon-
ductivity properties [15, 16]. The biocompatibility of calcium phosphate ceramics
is similar to the structural similarity of bone (Fig. 9.3) [17] and its degradation

10 1 102 10 10-¢

i i >

Tropocollagen
Lamella * Dy
-
!“'
.\.

e
by 1.5nm

3-7pm s .]-Sll nm

Collagen fiber A crystals
Natural bone Cortical bone (~500 nm)

Fig. 9.3 Structure of human bone (Reprint with permission from [17])
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products can contribute to bio-mineralization [18]. The chemical analysis of human
bone revealed it is made up of both organic and inorganic components. The organic
constituent of bone is the main collagen (33%), while the inorganic constituent (67%)
is consisted of calcium, phosphate, magnesium, sodium, carbonate, etc.

Collagen, the matrix of bone, is found in form of fibers and they produce a net-like
structure. The diameter of fibers ranges from 100 to 200 nm. Calcium phosphates
are the main inorganic part of bone that provides the stiffness to the bone. Calcium
phosphates are present in the form of crystallized hydroxyapatite having needle of
plate shape with a length of 40 to 60 nm, 20 nm in width, and a thickness ranging
between 1.5-5 nm [19]. The hydroxyapatite crystals are oriented in the direction
of collagen fibers within the bone [20]. Calcium phosphates have a high linking
affinity for growth factors, which makes them appropriate candidate for the delivery
of growth factors. There are three types of calcium phosphates such as hydroxya-
patite, tricalcium phosphate and biphasic calcium phosphate, and they have been
used in orthopedic implants. Tricalcium phosphate/hydroxyapatite composite mate-
rial displayed a very high resemblance to thBMP-2. The growth factor-ceramic rela-
tions is dependent on the hydroxyl, amine, and carboxyl groups present in the BMP
and on the number of divalent Ca** ions present in the bioceramic materials [1].

Autogenous bone graft is ‘gold standard’ material as bone graft substitutes. There
are numbers of studies examining the the use of calcium phosphate-based materials
for delivery of BMP as shown in Table 9.3 [21-28]. Majid et al. investigated the
use of calcium phosphate coating as a BMP delivery system in spinal arthrodesis
[29]. Calcium phosphate showed sustained and localized delivery of BMP at fusion
site when coated with rhBMP [29]. Hirakawa et al. demonstrated the tendon-to-bone
repair process, which was performed by use of BMP-2 delivered by $-TCP [22].

Table 9.3 The delivery of BMP using calcium phosphate-based carriers [21-28]

Investigator Year | Materials Growth Factor | Subject
Han et al. [21] 2020 | HAp/Collagen BMP-2 Rat
Hirakawa et al. [22] 2018 |B-TCP BMP-2 Rabbit
Huang et al. [23] 2018 | Chondroitin BMP-2 Mice

sulfate-functionalized calcium
phosphate cement

Jietal. [24] 2018 | Calcium phosphate BMP6 Mice

Tenkumo et al. [25] 2018 | Nano HAp/Collagen BMP-2 Rat

Ding et al. [26] 2016 | Mg modified calcium phosphate | rhBMP-2 Rat
cement

Tsuzuki et al. [27] 2012 | Gelatin-B-TCP sponge BMP-2 Horse

Louis-Ugbo et al. [28] | 2002 | BCP and BCP/Collagen rhBMP-2 Rabbit
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9.7 Role of BMP in Bone Regeneration and Repair

The enhancement of fracture repair and regeneration of critical-sized bone defect
remains an important challenge in the arena of orthopedic and maxillofacial surgery.
Although autologous bone grafts are considered the gold standard as previously
mentioned, the issues of limited availability, donor site morbidity, in addition to
enhanced cost have compelled researchers to search for alternatives to augment bone
restoration and repair [30, 31]. Hence, three new strategies have been evolved [32]:

(1) Gene therapy: gene transduction at repair site by encoding cytokines that have
osteogenic properties.

(2) Stem cell therapy: host bone marrow-derived osteogenic cells transplantation
at the defect site.

(3) Protein therapy: osteoinductive growth factor application at the defect site.

Amongst these, gene therapy and stem cell therapy are most promising, but
still there are some drawbacks with respect to their efficacy and safety for human
application [33-37].

The idea of using BMPs for bone regeneration started after the studies that depicted
demineralized bone matrix is capable of inducing ectopic bone formation in subcu-
taneous and intramuscular spaces as well in rodents [38, 39]. Subsequently, many
investigators reported that BMPs have the potentiality to produce osteogenic cells by
inducing differentiation of mesenchymal stem cells, leading to bone formation [40].
As discussed above, BMPs belong to the superfamily transforming growth factor-f
(TGF-B). The actual mechanism by which BMPs augment bone formation remains
unclear until recent studies that were carried out [41]. It was postulated that the mech-
anism starts with the activation of a BMP signaling cascade at the time BMPs adhere
to the surface receptors of mesenchymal cells; subsequently a specific protein sends
the signal to the nucleus that eventually elicits gene expression leading to the produc-
tion of specific macromolecules responsible for chondrogenesis and osteogenesis.
As a result, mesenchymal cells differentiate into chondrocyte or an osteoblast.

Demineralized bone matrix acts as a repository of BMPs. The process of bone
morphogenesis is considered as a sequential phenomenon of three phases: (1) firstly,
chemotaxis and mitotic division of mesenchymal cells, (2) secondly, mesenchymal
cell differentiation into cartilage, (3) thirdly, and finally, cartilage replacement into
bone [42]. To be more precise, the phenomenon is initiated with the attachment
of plasma fibronectin with the demineralized bone matrix [43] and attachment of
mesenchymal cell as well as enhanced proliferation after three days. Mesenchymal
cell differentiation into chondroblasts is mostly evident after five days. Mostly, chon-
drogenesis is evident after seven to eight days. Hypertrophic cartilage with resultant
mineralization is seen on day nine. Angiogenesis and osteoblastic differentiation are
mostly seen after ten to eleven days. Thus, remodeling of new endochondral bone
occurs and hematopoiesis [44, 45].

Inrecent years, BMPs, more precisely BMP-2 and BMP-7, have shown promise as
a substitute for various pathological conditions of bone-like compound tibial fracture,
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non-union and spinal fusion, and they are also capable of expediting osseous tissue
healing [46,47]. Acceleration of fracture healing and new osseous tissue formation is
the primary goal in a majority of clinical studies using various pharmaceutical agents
[48, 49]. However, BMPs combined with osteoconductive agents [50] and ultrasonic
device Exogen® are the only FDA approved drug and/ or delivery systems that can
be used to treat patients in a clinical environment. There are several in vivo studies
where it is evident that BMPs along with various growth factors like transforming
growth factor-beta (TGF-), insulin-like growth factor (IGF), fibroblast growth factor
(FGF), platelet-derived growth factor (PDGF), and vascular endothelial growth factor
(VEGF) are responsible for normal bone healing [51-58]. On the contrary, the clinical
utilization of thBMP-2 and thBMP-7 is governed by specific regulatory bodies of
various countries in which their application is restricted to only treating non-union
fracture of the tibia (thBMP-7) in the treatment of tibial compound fracture and
spinal fusion (thBMP-2) [59-61]. Nevertheless, there is still a considerable quantity
of BMPs in demineralized bone matrix despite the fact that platelet rich plasma and
demineralized bone matrix can be used in a clinical setting [62, 63] (Table 9.4).

9.8 Role of BMP in Cartilage Repair

Typically, osteogenic BMPs induce stimulates undifferentiated mesenchymal cells
to differentiate into chondrocytes that produce type II collagen and various
proteoglycans within seven days following implantation [97].

Articular cartilage possesses the minimum capacity to repair itself after an injury
[98]. Even so, it cannot hold the same strength to withstand the joint mobility after
it has been repaired, as the repaired tissue is biochemically and structurally different
to that of normal cartilage. Most of the time, the repaired cartilage will degenerate
as a result of the mechanical forces applied at the joints. Degeneration of articular
cartilage will eventually lead to the development of osteoarthritis [99]. Following an
injury to cartilage, chondrocytes are activated by chemokines [100, 101] and lead to
the degradation of the damaged tissue. Yet, the exact healing mechanism of cartilage
remains unknown [102].

Since the mid-1980s, a number of clinical approaches and trials have been
conducted for the repair of articular cartilage that includes chondrocyte transplanta-
tion, perichondrium, meniscal allograft, periosteum, osteochondral grafts, microfrac-
ture, and abrasions arthroplasty [103—113]. Healing of articular cartilage defect
utilizing stem cells to well-differentiated chondrocytes [114] as well as allogeneic
muscle-derived cells [115] have been demonstrated experimentally with promising
results. Efficacy of many growth factors like insulin-like growth factor-1, basic
fibroblast growth factor, transforming growth factor-8, BMPs, have been extensively
investigated for its chondrogenic properties both in vivo and in vitro [116-126].

The fascinating work carried out by Seller and co-workers [98] confirmed that
the incorporation hBMP-2 into collagen sponge is capable of accelerating the repair
of full-thickness cartilage defect. It has been postulated that the accelerated healing
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Table 9.4 Carriers used to deliver BMPs in various experimental and clinical studies

Growth factors

Delivery carriers

BMP-2

Absorbable gelatin sponge [64, 65]

Autogenic graft [66]

Chemically crosslinked absorbable collagen, de-hydrothermally
crosslinked collagen sponge [64]

Chitosan [67]

Collagen [68, 69]

Fibrin matrix [70-72]

Gelatin capsules loaded with PDLLGA microparticles and demineralized
freeze-dried bone allografts [73]

Glutaraldehyde cross-linked gelatin [74]

Human demineralized bone matrix, thermoashed bone mineral,
non-demineralized bone particles, and irradiated cancellous chips [64]

Hydroxyapatite/tricalcium phosphate bone graft covered with heparinized
collagen membrane [75]

Hydroxyapatite porous particles and coral-replicated porous tablets [76]

PLA coating [77, 78]

Poly (a-hydroxy acids) [64, 79, 80]

Poly (DL-lactic-co-glycolic acid) (PDLLGA )/gelatin microcapsules [81,
82]

Poly (e-caprolactone) scaffolds [83]

Polyester nanocapsules [84]

Rat demineralized bone matrix, and de-lipidated bovine bone matrix [64]

Si—Ca-P porous glass (xerogels) [85]

Synthetic and bovine-derived hydroxyapatite particles and coral-derived
hydroxyapatite [64]

Tricalcium phosphate [64]

BMP-7

Calcium phosphate-coated nanofiber mesh/PRP matrix [86]

Chitosan [67]

Chitosan microparticles/vancomycin and cefazolin [87]

Collagen [88]

Hydroxyapatite/tricalcium phosphate bone graft covered with heparinized
collagen membrane [75]

Mesoporous bioglass/silk fibrin scaffolds [89]

PGLA microspheres/3D collagen gel [90]

Poly (e-caprolactone) scaffolds [83]

Polyester nanocapsules [84]

Polylactide (PLGA) microspheres [91]

Polyphosphate [92]

(continued)
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Table 9.4 (continued)

Growth factors Delivery carriers

BMP-9 Adenoviral vector (ADGBMPY) [93, 94]

Citrate-based thermoresponsive hydrogel (PPCNg) [95]
Collagen/Chitosan [96]

might be either due to recruitment of more numbers of required cells in the defect
sites or due to initiation of repair process or the combination of both processes. Other
studies have demonstrated that the repeated administration may be required as the
proteins have a very short half-life which again predispose to osteophyte formation
and hypertrophy despite the positive effects of direct injection of such proteins [127].
A study by Kuroda et al. demonstrated that MDSCs can be used as an adequate carrier
of therapeutic gene as well as possessing the capability of delivering a proper amount
of BMP-4 protein to the damaged cartilage site [114]. Furthermore, another study
by Mattioli-Belmonte et al. examined the efficacy of chitosan as a delivery agent of
BMP for cartilage healing and the results are promising [128].

A cell-free technology of subchondral implantation of a triple composite of inter-
connected porous hydroxyapatite, synthetic polymer (PLA-PEG), and bone morpho-
genetic protein-2 (thBMP-2) for the regeneration of induced rabbit articular cartilage
defect model was studied by Tamai et al., with very promising results with respect
to early healing [129].

In another study, overexpression of BMP-7 along with accelerated healing and
greater quantity of hyaline cartilage deposition were observed in an experimental
cartilage defect in the patelleo-femoral joint of horses [130]. Similarly, greater
hyaline cartilage regeneration was also observed in a study by Yang et al. in which
they examined the theory that the long-term delivery of BMP-2 to cartilage defects
subjected to microfracture results in regeneration of high-quality hyaline-like carti-
lage [131]. The role of mesenchymal stem cells and BMP in cartilage repair has been
extensively studied by various workers and have logically been presented in a review
by Scarfi [132] and are shown in Table 9.5.

Table 9.5 Utilization of Conditions Scaffold
mesenchymal stem cells and
bone morphogenetic proteins MSCs transfected with BMP7 | Bioresorbable polymer scaffold
in cartilage defects in vivo [133]
MSC:s transfected with BMP7 | Bilayered osteochondral
and TGF-B1 scaffold [134]
MSCs + TGF-B1, PDGF and | Bilayer scaffold with platelet
BMP2 rich plasma [135]
MSCs + TGF-1, TGF-$3, Osteochondral allograft with
BMP2, 4 and 7 extracellular matrix proteins
[136]
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9.9 Conclusion

Bone tissue engineering involves the combined use various materials, cells, growth
factors and it holds great potential in the repair and management of bone disor-
ders. However, composite scaffolds have not been extensively utilized in the clinical
setting on a wide scale. Autologous bone graft is still the ‘gold standard’ in ortho-
pedic surgery but its ample availability within a required timeframe is a great concern
for orthopedic surgeons. As a member of the multi-functional cytokines, BMP are
involved in a multitude of molecular cascades and signaling pathways. Apart from
their significant role during bone remodeling, BMPs also persuade osteoclast home-
ostasis. Despite a considerable amount of time has passed, we still have not fully
understood how the signals from the family of BMPs regulate the formation and
maintenance of various organs in vivo. The local and sustained delivery of BMPs is
also a major concern and to address this issue, the application of bioceramic scaffolds
is worth considering not only to deliver BMPs in a sustained manner but also to serve
as bone graft substitutes.
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Chapter 10 ®)
Spine Surgery—Part I: Biomechanics, o
Materials, and 3-D Printing Technology:
Surgical Perspective and Clinical Impact

Samuel H. Brill, Jee Ho Chong, Dongyoung Kim, and Woojin Cho

Abstract Due to the prevalence of spine pathologies, biomechanical research has
become essential in the clinical setting. Spinal stability is a requirement for the
spine to achieve its biomechanical goals and therefore surgical intervention is often
required to maintain a normal spine pathology. Interventions designed to promote
spinal stability require various implants such as pedicle screws and interbody cages.
The required hardware comes in different biomaterials which each have advantages
and disadvantages based on their material and structural properties. 3D printing has
been proposed as a method for accurate preoperative planning, patient and trainee
education, intraoperative guidance systems, and intraoperative implants.

Keywords Spinal surgery - Biomechanics - Biomaterials - Elastic modulus -
Polyetheretherketone (PEEK) - Glass ceramic + Three-dimensional printing -
Tissue engineering

10.1 Biomechanics of the Spine

Clinical biomechanics of the spine refer to the study of both normal and patho-
logic mechanical functions of the human vertebral column caused by mechanical
insult. Biomechanical research on the spine has increased at a rapid pace due to the
prevalence of spinal pathologies in our society. The understanding of spine biome-
chanics has therefore become essential as it underlies the general methodologies of
intervention in the clinical setting.
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The basic biomechanical goals of the spine include structural support, trunk move-
ment, and protection of neural elements. Spine stability is a requirement for these
biomechanical goals and is clinically important to prevent early mechanical dete-
rioration of spinal components. Clinical spine stability is defined as the ability to
maintain a normal pattern of displacement under physiological loads. Clinical insta-
bility is therefore the inability to limit excess or abnormal spinal displacement to
prevent deformity, neurological injuries, or pain [1]. The Denis Three Column Theory
suggests the stabilizing roles of the structures along the neutral axis of the spine
can be divided into three areas: middle column (posterior longitudinal ligament,
dorsal annulus fibrosus, dorsal wall of vertebral body), anterior column (anterior
longitudinal ligament, ventral annulus fibrosus, ventral wall of vertebral body), and
the posterior column (facet joints, supraspinous ligament, interspinous ligaments,
ligamentum flavum) [2].

10.1.1 Biomechanics of Normal Spine

The spine consists of 33 stacked vertebrae and is categorized into five regions: 7
cervical, 12 thoracic, 5 lumbar, 5 sacral, and 4 coccygeal vertebrac. However, the
sacral and coccygeal vertebrae are of lesser biomechanical importance because no
motion is permitted between the vertebrae as they are fused together. The functional
spinal unit (FSU) is the basic building block of the spine and consists of two adjacent
vertebrae, an intervertebral disc, facet joints, and spinal ligaments [3].

The vertebra is a complex structure of bone and its relevant anatomy consists
of a vertebral body, neural arch, and bony processes. As a vital structural compo-
nent, one of the primary purposes of the vertebral body is to resist compressive
loads. The posterior sides of the vertebral body and the neural arch form the verte-
bral canal as well, serving to house and protect the spinal cord along with other
essential blood vessels. From the neural arch, spinous processes protrude to provide
mechanical advantages to attached muscles and resist compressive loads especially
during hyperextension [4]. These processes also form facet joints which are of great
biomechanical importance because they are a major determinant of movement within
individual spinal segments. Facet joints channel the movement of spinal segments and
prevent abnormal movements of the spine such as rotational torsion and shear. There-
fore, facet joints are not only vital posterior stabilizing structures but also contribute
to the degree and plane of motion in the spine depending on its anatomical orientation
and region [5].

Intervertebral discs are located between each vertebral body and the relevant
anatomy of intervertebral discs includes an outer ring of fibrous tissue (annulus
fibrosus) and the core of the disc (nucleus pulposus). The primary purpose of these
discs is to transfer loads from one vertebra to the other. The core of the disc consists
of highly viscoelastic mucoprotein gel and has a high resistance to compression due
to its high fluid content. On the other hand, the outer ring of intervertebral discs
consists of concentric and crisscrossing bands of collagenous tissue—these tissues
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prevent abnormal movements of the spine because they are resistant to torsion, shear,
and rotational strains [3, 6].

The ligaments contribute to the stability of moving spinal segments as they respond
to tensile forces and protect the spinal cord by limiting the motion of the spine. The
intrinsic strength of ligaments varies based on the anatomical region and the length
of the lever arm. There are several ligaments that contribute to the biomechanics
of the spine: Vertebral bodies are connected through strong anterior longitudinal
ligaments and weaker posterior longitudinal ligaments, and supraspinous ligaments
are connected to spinous processes. Adjacent vertebrae are connected through inter-
spinous ligaments, intertransverse ligaments, and the ligamenta flava. Most ligaments
are composed of collagen fibers that provide minimal movement but the ligamentum
flavum is unique due to its high proportion of elastic fibers. These fibers are constantly
in tension, therefore enhancing overall stability [7].

The motion and stability at each spinal level vary due to the unique anatomy of
each FSU. Overall, the spine contains four curves in the sagittal plane: 2 primary
curves which concave posteriorly (thoracic and sacral), and 2 secondary curves which
concave anteriorly (cervical and lumbar). The curves serve a mechanical advantage
by absorbing shock and other loads as compared to a straight spine [8]. In addition
to the curves of the spine, recent studies have shown that the rib-cage accounts for
a great percentage of thoracic stability as well [9]. Generally, there is a progressive
increase in the size of vertebrae and intervertebral discs from the cervical to the
lumbar region of the spine—this serves a functional purpose because the increase
in surface area of each vertebra reduces the stress subjected upon it. The vertebrae
in the lower regions of the spine must bear more compressive loads than any other
region and therefore are the largest [3].

Each FSU is also considered to be a motion segment and each has three joints.
Although the permitted motion per motion segment is generally limited, spinal move-
ments always involve several motion segments. As a whole, the spine allows move-
ment in all three planes of movement and can be organized into four categories:
extension, flexion, rotation, and lateral bending [10].

The range of motion (ROM) is the greatest in the cervical spine. C1 and C2
levels are specialized due to their unique anatomy and function. The atlas-occipital
joint, the region between the occiput of the skull and the first cervical vertebrae,
is extremely stable and provides a large degree of flexion and extension. However,
motion in any other plane is not permitted in this joint. Rather the atlanto-axial joint,
the joint between C1 and C2, provides a large degree of axial rotation as well as
lateral bending and extension to a certain degree [6, 11].

The ROM in the thoracic and lumbar region is much more limited than the cervical
region, but still provides motion in all three planes to a certain degree. The extension
and flexion of the trunk can mainly be attributed to the range of motion of the lumbar
region and the thoracic region to a lesser degree. On the other hand, lateral flexion
and spinal rotation can mainly be attributed to the thoracic region and the lumbar
region to a lesser degree. Lateral flexion is higher in lower segments of the thoracic
region whereas rotation is more permitted in the upper segments [3, 5, 6].



212 S. H. Brill et al.

10.1.2 Biomechanics of Abnormal Spine: Spinal Instability

Spinal instability is a highly prevalent issue in our society and common issues such
as generalized lower back pain is experienced by 85% of the population [3]. Spinal
stability and its natural biomechanics can be affected adversely by congenital causes,
degeneration, and trauma to spinal components. However, the etiology of spinal
instability is not well understood and the best diagnostic/treatment approaches are
up to debate.

Spinal instability can occur due to congenital factors especially when it comes to
spinal deformity. Proper spinal curvature is essential for bearing loads on the spine
and to minimize deterioration of spinal components [8]. However, spinal curva-
ture varies among individuals and can be caused congenitally although pathologic
conditions and other environmental factors can be factors as well. Abnormal spine
curvatures include lordosis, kyphosis, and scoliosis. Lordosis is characterized as the
excessive curvature of the lumbar region, kyphosis is characterized as the excessive
curvature of the thoracic region, and scoliosis is characterized by lateral deviations
of the spine coupled with rotational deformities of affected vertebrae. Abnormal
spinal curves are of clinical importance as improper curves can cause asymmetric
and increased stress on spinal components. For example, significant lordotic curves
can increase compressive stress on the posterior spine and are a risk factor for lower
back pain [8, 12].

Besides congenital deformities, spinal instability can also be attributed to the
degeneration of the spine and is caused by age-related factors, a multitude of environ-
mental factors, pathological conditions, and trauma. Specifically, the lumbar region
of the spine is often the subject of degeneration as it experiences the most mechan-
ical stress and compressive loads compared to any other region of the spine. The
deterioration of spinal components can occur naturally with age. An age-related
decrease in water content of discs and bone density limits the range of the spine and
its load-carrying capacity [10, 13]. Although there are many environmental factors
contributing to the degeneration of the spine as well, they are generally due to exces-
sive mechanical stress on the spine. Excessive stress can be caused by carrying large
or repetitive loads, excessive movements, and bad postural habits, which is why the
incidence of lower back pain is very high among athletes, physically demanding
occupations, and obese patients [3, 14].

Common degenerative pathologies include disc degeneration, facet joint degener-
ation, and adjacent segment disease (ASD). Disc degeneration is characterized by the
formation of tears in the annulus fibrosus, fraying, and dehydration of the nucleus
pulposus. Degeneration of discs occurs naturally but also can also be expedited
by alteration of mechanical forces distribution across the FSU [10, 13]. The biome-
chanics of instability of the spine caused by disc degeneration are complex, however,
it is usually followed by instability, abnormal joint movement, and increased ROM.
Disc degeneration also causes an increase in loads on facet joints and often precedes
facet joint degeneration. Increased demands on facet joints can produce metaplasia,
capsular hypertrophy, and bone spurs. Osteoarthritis caused by degeneration of facet
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joints can result in abnormal motion of motion segments and alter mechanical forces
experienced by intervertebral discs. Long-term instability of the spine can result in
more complex issues such as ASD, which is characterized by general degeneration
of mobile spinal segments [15]. A multitude of issues can be caused by unstable
motion segments such as disc herniations, listhesis, stenosis, etc. The relationship
between the degeneration of various spinal components is complex. However, there
is evidence that degenerative spinal instability originates from disorders of move-
ment triggered by disc degeneration, followed by bony or articular abnormalities. In
turn, these abnormalities extend to other joints at the same level and then to adjacent
segments [16].

Traumatic injuries can also contribute to the deterioration of the spine. Common
traumatic injuries of the spine include soft-tissue injuries, vertebral fractures, and disc
herniations. Soft-tissue injuries are the most common cause of back-pain. These types
of injuries include contusions, muscle strains, and ligament strains and are caused
by a blow or overloading of the muscles [3]. Vertebral fractures can occur in many
different ways. Compression and burst fractures occur through large compressive
loads and can cause deterioration of vertebral end-plates [17]. The transverse and
spinous processes are prone to acute fractures as they are the most exposed and can
be caused by excessive use of attached muscles or trauma. Stress fractures often
occur in the pars interarticularis, the weakest point of the neural arch. A fracture of
the pars is referred to as spondylolysis. A bilateral separation of the pars results in
spondylolisthesis and results in the anterior displacement of vertebrae relative to the
vertebrae below it. Disc herniations can also be caused by trauma and is caused by
the protrusion of the nucleus pulposus from the annulus [10]. Other factors such as
cancer tissues and osteoporosis can contribute to the risk of fractures. Although there
are many different biomechanical outcomes from traumatic injuries, in the clinical
setting, instability is determined by trauma in at least two of three columns according
to the Denis three-column theory [17].

10.1.3 Clinical Interventions

The non-surgical intervention of the treatment of back pain includes rest, physical
therapy, and anti-inflammatory medications. However, when conservative treatment
fails to treat pain or abnormal movement, surgical intervention is often required
to regain a functional lifestyle. Surgical interventions include fusion, motion-
preservation, decompression, and minimally invasive surgeries although interven-
tions involving the use of instrumentation have the most drastic biomechanical impact
on the spine. The basic goals of instrumentation include realigning the vertebrae,
maintaining stability, and promoting fusion [18].

Surgical interventions including instrumentation can be categorized into fusion
and motion preservation. In the last few decades, surgical stabilization of the spine
through spinal fusion has become an increasingly common practice. The complexity
of fusion has produced novel challenges where understanding the biomechanical
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nature of the spine has become essential. Indications of spinal fusion include joint
pain, spine deformity, and degeneration of bony elements, soft tissues, and inter-
vertebral discs [19]. Spinal fusion can be done in many different ways but can
generally be categorized by posterior and anterior instrumentation. Instrumentation
used for fusion is typically composed of longitudinal elements, vertebral attach-
ments, and elements that join longitudinal elements together. Features such as natural
mobility, facet joint orientation, size, and bone density must be considered before
instrumentation [2, 20].

Common instrumentation used in fusion surgeries includes plates or rods with
pedicle screws, facet screws, transverse connectors, and interbody cages. Pedicle-
screw-based instrumentation is the most common form of instrumentation for fusion
[21]. Posteriorly, screws are placed in the pedicles of vertebrae that can span from
single to multiple segments and are connected by rods or plates. Crossbars and
transverse connectors can be used for additional stability. Facet screws can also be
used as an alternative for posterior instrumentation although it is not as effective
[22]. In order to support the anterior column, interbody cages are commonly used
and have replaced the need for anterior fusion due to their efficacy. Interbody cages
are placed along the weight-bearing axis of the spine. They provide anterior column
support to fusion sites and re-establish load transmissions along the spinal column
[23-25].

Although fusion remains a gold standard for spine stabilization, it can result
in many complications such as ASD, long postoperative rehabilitation, and other
morbidities [26]. Therefore, many non-fusion techniques have been developed for
motion preservation. Total disc arthroplasty is a procedure that completely replaces
degenerative discs with an artificial implant. The purpose of doing so is to restore
disc height, avoid ASD, faster recovery, and preservation of motion [27]. Dynamic
stabilization systems have also been developed that mechanically restrict the motion
of segments within a safe range [2].

10.2 Biomaterials

The term biomaterials encompasses all synthetic and natural materials which are
used during orthopaedic procedures. Each biomaterial has structural and material
properties. Structural characteristics differ from strength characteristics, as they not
only depend on the material used, but also on the structural configuration of the
object. The first term to consider is a load is a force, which acts on a body. Second is
stress, which is defined as the intensity of an internal force and is calculated by force
divided by area with the units Pascals or Newtons/Meters”. Third is strain, which is
defined as a relative measure of the deformation of the object and is calculated by
the change in length divided by the original length of the object.
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10.2.1 Biomaterials: Structural Properties

One important structural property is bending rigidity or stiffness. Stiffness is a
measure of a material’s ability to return to its original shape after a load is removed.
This value is defined as the slope of the curve in the elastic range on a structure
stress-strain curve. For a solid cylinder, bending rigidity, or stiffness is proportional
to the radius of the cylinder, raised to the fourth power. For a hollow cylinder, the
bending rigidity is proportional to the radius of the cylinder raised to the third power.
For a rectangular object, the bending rigidity is proportional to the base multiplied by
the height raised to the third power. Another structural property is the area moment
of inertia (1) is closely related to bending rigidity. It is a function of structure width,
thickness, and polar moment of inertia (J). The polar moment of inertia represents
an object’s resistance to torsion. The last structural property is deflection. Deflection
is proportional to the applied force divided by the elastic modulus all multiplied by
the area moment of inertia.

10.2.2 Mechanical Properties

When a load is applied to any biomaterial, two kinds of deformations can occur
before fracture. The first is elastic deformation. This deformity is a reversible change
in shape due to load in which the material returns to its original shape when the load
is removed. The second is plastic deformation which creates an irreversible change
in the shape of a material in which the material does not return to its original shape
when the load is removed. When considering the type of material that is used, one
must consider the elastic zone and the plastic zone which are separated on the stress
versus strain curve by the yield point or proportional limit, which is defined as the
transition point between elastic and plastic deformation.

Every material obeys Hooke’s law when in the elastic zone as the amount of stress
it can handle is proportional to the amount of strain it can handle. Each material’s
measure of stiffness, or ability to resist deformation is calculated by measuring the
slope in the elastic zone of the material’s stress versus strain graph (Fig. 10.1). This
is defined by Young’s modulus of elasticity which measures the stiffness, or ability
to resist deformation, of a material in the elastic zone. This value can be calculated
by measuring the slope of the stress versus strain curve in the elastic zone for that
given material. A higher Young’s modulus of elasticity directly correlates to a stiffer
material. On the stress versus strain plot, the elastic zone is separated from the plastic
zone by the yield point or the proportional limit.

The yield point is the point on the curve for which plastic deformation begins to
occur. In the plastic zone, the material will not return to its original shape for a given
amount of stress. In this region, there is a breaking point at which the object fails
and breaks. Before the breaking point on the graph is the point of ultimate strength,
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Fig. 10.1 The stress versus strain curve for a material’s strength can be derived by axially loading
an object into a tensile strength testing machine and plotting the curve

which is defined as the load to failure. This point represents the maximum amount
of stress coupled with the strain that a material can handle before failing as a device
or fracturing.

Toughness is defined as the amount of energy per volume that a material can absorb
before failure. This is calculated by taking the area underneath the stress versus strain
curve with the units of joules per meter cubed. Creep is defined as increased load-
deformation with time under constant load. Load relaxation is a decrease in applied
stress under conditions of constant strain. Hysteresis or energy dissipation is the
characteristic of viscoelastic materials where the loading curve does not follow the
unloading curve.

10.2.3 Material Descriptions

Based on the mechanical and structural properties of a material, one can apply various
descriptions based on the behavior of the material when loads are applied. A brittle
material is a material which exhibits elastic deformity and linear stress and strain
curve until its yield point. For a brittle material, the yield point is analogous to the
point of failure because it will break entirely. Two examples of brittle materials are
polymethylmethacrylate (PMMA), which has a relatively high Young’s modulus of
elasticity and ceramics such as Al,O3 (Fig. 10.2).

Viscoelastic materials exhibit a stress-strain relationship which depends on the
duration of time that the load is applied to the material and the strain rate, which is
the rate that the load is applied. Viscoelastic materials include ligaments and bones.
Isotropic materials possess the same mechanical properties in all directions due to
their symmetry around a given point. One example of an isotropic material is a
golf ball. Anisotropic materials possess different mechanical properties and are the



10 Spine Surgery—Part I: Biomechanics, Materials ... 217

Relative Values of Young's Modulus

Ceramic (A1,0,)
Alloy (Co-Cr-Mo)
Stainless Steel
Titanium

Cortical Bone

Matrix Polymers

PMMA

Polyethylene
Cancellous Bone
Tendons and Ligaments
Cartilage

Stress (pascals)

mOoODONDDORWN =

—

Strain

Fig. 10.2 The relative values of Young’s modulus as shown on the stress versus strain graph

opposite of isotropic materials as they have different mechanical properties based on
the direction of the applied load. Bones and ligaments are anisotropic for this reason.
Ductile material is defined by its ability to undergo significant amounts of plastic
deformation before failure. Some examples of ductile materials include metals such
as cobalt alloys, stainless steel, and titanium. These are typically used for fracture
plates, screws, femoral stems, and intramedullary nails.

10.2.4 Metal Characteristics

Metals also have specific terms associated with their properties. Fatigue failure is
the failure of material before the ultimate tensile strength point due to repeated loads
being applied to the material. This will often depend on the magnitude and frequency
of the stress that has been previously applied to the material. The endurance limit
is the maximal stress that a material can withstand before it is no longer immune to
fatigue failure, regardless of the number of cycles.

One of the most important characteristics to consider when choosing a metal
to use is corrosion or the chemical dissolving of metal. There are various types of
corrosion as well. Galvanic corrosion is when dissimilar metals lead to electrochem-
ical destruction of the material or implant. The highest risk of galvanic corrosion
occurs when 316: stainless steel is mixed with cobalt-chromium. The chances of
galvanic corrosion occurring can be reduced by using similar metals. Another type
of corrosion is crevice corrosion which occurs in fatigue cracks due to differences
in oxygen tension, or the differences in the partial pressure of oxygen, within the
surrounding environment. The fatigue resistance of titanium alloys is lower than that
of other available rod materials including Co-Cr [28]. 316L stainless steel is the
most prone to crevice corrosion of the current metals used for biological implants.
Fretting corrosion is a mode of destruction of the implant at the contact site from the
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relative motion of two materials or two components of the materials. This is clini-
cally significant due to its frequency of occurrence at the head-neck junction of hip
arthroplasty. Fretting corrosion is also the most common cause of mid-stem failure
in modular revision type stems. There is an increased risk of fretting corrosion with
the increased number of interfaces between the various metals.

Cobalt alloys present many advantages including their strength and their superior
resistance to corrosion over stainless steel. Stainless steel and Co—Cr are protected
by a chromium oxide layer whereas titanium is protected by titanium oxide [29].
Co—Cr alloys have also shown low ion release and better biocompatibility than other
samples [30]. Co—Cr and ultrahigh strength stainless steel rods can produce the
highest correction forces for rigid scoliosis, but both can plastically deform, making
it important to have a know the quality of bone fixation [31]. Stainless steel alloys
which are composed typically of iron-carbon alloys can also contain small amounts of
chromium, molybdenum, manganese, and nickel. Stainless steel alloys are very stiff
and fracture resistant which contributes to their use. However, they are susceptible to
corrosion and due to their superior stiffness, they sometimes cause stress shielding
of bone which can lead to a reduction in bone density. Furthermore, a remarkable
chromium release without any clinical-radiologic sign was recorded in some female
patients raising concern for young fertile women [32].

Titanium alloys are very biocompatible due to their corrosion resistance. This is
due to the fact that they form an adherent oxide coating through self-passivation. Tita-
nium’s low modulus of elasticity also makes it more similar to biological materials
such as cortical bone which increases its effectiveness. Titanium does present disad-
vantages such as poor resistance to wear and generates more metal debris than cobalt
chrome. The fatigue resistance of titanium alloys is lower than many other commer-
cially available rod [28]. Therefore, improvements are of paramount importance to
minimize imperfections and withstand greater loads without cracking.

10.2.5 Non-metal Characteristics

Some specific non-metals have large clinical significance. One such material is
PMMA which is commonly referred to as bone cement and is often used for fixation
and load distribution in conjunction with orthopaedic implants. It functions by inter-
locking bones and can be used to fill tumor defects or minimize local recurrence. It
is a two-component material with powder and liquid. It presents the advantages of
reaching its ultimate strength at 24 h, high strength in compression, and a Young’s
modulus between cortical and cancellous bone. However, PMMA has relatively poor
tensile and shear strength. In a study conducted by Cho et al. concluded that pedicle
screws could be easily and safely backed out after augmentation with PMMA or
calcium phosphate cement before any bony ingrowth [33].

An alternative would be silicones, which can be used for replacement in non-
weight bearing joints. Silicones have less clinical significance as they have poor
strength and wear capability that can cause high occurrences of synovitis. Ceramics
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are another material which present advantages such as high compressive strength
and superior wear characteristics. Ceramics are also limited by their high Young’s
modulus, low tensile strength, poor crack resistance characteristics, low fracture
toughness, and brittle character.

10.2.6 Surgical Implications

Despite its relatively low incidence, recent literature has discussed the drawback of
bacterial adherence of biofilm formation on implants which can cause infection on
various spinal implant surfaces, due to the significance of serious infection. Ha et al.
published their results which state that biofilm-forming Staphylococcus epidermis
showed heavy adhesion across all rough and smooth surfaces for both stainless steel
and titanium alloys [34]. On scanning electron microscopy, there was a significantly
greater number of aggregated microcolonies with thick biofilm in biofilm-forming
S. epidermidis, and much fewer colonies in nonbiofilm-forming S. epidermidis. M.
tuberculosis rarely adhered to the metal surfaces and did not show biofilm formation.
Therefore, it is less likely that M. tubuerculosis will form infection than S. epider-
midis on implant surfaces. Further studies have studied the effects of the antimicro-
bial effects of modified titanium pedicle screws with methicillin-resistant Staphylo-
coccus aureaus (MRSA). The novel experimental study completed by Hazer et al.
concluded that modified titanium pedicle screws were shown to have antimicrobial
effects especially after additional inhibition of biofilm formation [35].

Other research has centered on implants, which can support growth around the
implant margins. Polyetheretherketone (PEEK) devices have been widely used for
cervical discectomy and fusion, but they are limited in the surface area for bone
attachment. Furthermore, although rare, PEEK implants may cause allergic reactions
[36]. PEEK implants have also reduced osteoblastic differentiation of progenitor cells
and produced an inflammatory environment that favors cell death via apoptosis and
necrosis [37]. In a study conducted by Sinclair et al., they found that the porous
tantalum implants supported bone growth into and around the implant margins more
effectively than the PEEK implants [38]. Biomaterials such as PEEK may actually
hinder bone healing [39]. Porous tantalum implants may be advantageous because
of their open cell porous structure, which facilitates host bone ingrowth and bone
bridging through these devices.

Traditionally, dexamethasone or biological signals (BMPs) have been required for
osteogenic differentiation of stem cells [39]. Recent evidence has suggested that nano
topography alone can alter cell morphology, adhesion, motility, and proliferation.
From this, we can understand that by integrating trabecular metals, applying nanopar-
ticulate sprays, etching metal surfaces, embedding ceramics, depositing protein
onto inorganic scaffolds or implants, and implementing complex matrix changes,
microenvironmental cues can be changed and improved.

When considering a material for interbody cages, one must consider their clinical
outcomes. The most widely used interbody fusion method uses the insertion of a
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titanium or PEEK cage filled with autogenous bone into the disc space after removing
the disc. However, PEEK is a hydrophobic material. This issue can be solved by using
a plasma-sprayed titanium coating which can improve the mechanical properties in
the cortical sites of the surgery [40]. However, these titanium coated PEEK implants
can easily lose coating material, and are susceptible to impaction related wear debris
[41]. Another option, as indicated by Olivares-Navarrete et al. is to modify the surface
structure, as this is sufficient to create an osteogenic environment without the use
of exogenous factors as this may induce better and faster bone during interbody
fusion [42]. Other materials include CaO-SiO,-P,0s-B,0j3 glass ceramics, which
can naturally improve the osteoblastic differentiation of human mesenchymal stem
cells [43]. In a clinical study by Lee et al., they concluded that CaO-SiO,—P,05—
B,0; glass ceramics spacer showed a similar fusion rates and clinical outcomes
when compared with titanium cages [44]. Despite these viable materials, carbon
fiber-reinforced polymer (CFRP) cages should be avoided due to their failure in
patients with rheumatoid arthritis which can lead to significant morbidity [45].

10.3 Three-Dimensional (3D)-Printing

Three-dimensional (3D) printing has been a transformative technology for the field of
medicine. Its implications can reach more specifically into orthopaedic spine surgery.
3D printing has already been used for surgical planning of complex spine surgeries
since the 1990s [46]. The models created by 3D printing have since been expanded
to both the preoperative and intraoperative settings.

In a preoperative setting, 3D printing is currently being used to create anatomically
accurate and precise models of spinal deformities to educate residents and patients.
These models are also being used for preoperative surgical planning. They allow
for easier visualization and simulation for complex spinal pathologies. Although
computed tomography (CT) and magnetic resonance imaging (MRI) are both used
clinically, they are limited by their two-dimensional images. Tangible 3D visual
representations provide a better depiction than any two-dimensional image. Intra-
operatively, 3D printing can be used in other ways that can aid the surgeon. These
methods include the creation of surgical guidance systems, templates, and customized
patient-specific implants. 3D printing provides significant utility for surgeons.

Advantages of 3D printing include improved patient outcomes, decreased radia-
tion exposure for patients, and increased patient and resident education. However, 3D
printing currently faces challenges which prevent its broader application in clinical
practice. 3D printing remains an intriguing technology for orthopaedic surgery, and
it has the potential to vastly improve the practice of orthopaedic spine surgery in the
near future [47].
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10.3.1 Printing Techniques and Tissue Engineering
Applications

The first of various useful printing techniques is additive manufacturing, colloqui-
ally referred to as 3D printing or rapid prototyping. The process begins with two-
dimensional images from CT or MRI image data and are converted to 3D models
using software which can create a specialized multiplanar model. The computer
then uses this model to print a 3D image using thin cross-sections layered on top
of one another. Since the earliest version of 3D printing, technology has developed
significantly. Additional processes have been developed for a wide range of applica-
tions including non-clinical settings as well as surgical simulations and personalized
surgery and tissue engineering.

The technique of 3D printing involves building a model from cross sectional
layers. The technique has been advantageous in fabricating scaffold with micro-
scopic internal channels because the surrounding powders act as the supporting
material [48]. It has allowed for phosphate and strontium-containing scaffolds which
enable the stimulation of blood vessel formation and osteoblast proliferation [49, 50].
Various studies have demonstrated the efficacy of using scaffolds to support tissue
development, enable cell growth, and use as potential bone implantation [51-54].

Another technique which has proven useful in 3D printing is fused deposition
modeling (FDM), which deposits molten thermoplastic materials into cross-sectional
layers [48]. Recently, a scaffold has been created with biocompatible building mate-
rial. Such biocompatible materials have been able to support FDM-generated scaf-
folds in bone tissue through the use of hydroxyapatite which promoted osteocon-
ductive properties [48, 55]. Other recently developed 3D printing techniques include
selective laser sintering and 3D plotting; both of which have demonstrated excellent
potential in reconstructing tissue, especially with regards to bone tissue [5S6—58].

10.3.2 Accuracy of 3D Printing

In order for 3D printing to have clinical utility in orthopaedic spine surgery,
outstanding accuracy and precision are necessary in order to create representations
of true anatomic structures [47]. Studies have confirmed the potential for 3D-printed
media to provide such accuracy in representing the anatomy of the spine. Wu et al.
compared the CT images of cervical, thoracic, and lumbar vertebrae against their
respective 3D-printed models and found a strong correlation between the anatomy
of the two [59]. McMenamin et al. found that 3D-printed models could accurately
represent air and fluid filled negative spaces in addition to accurately representing
radiologic data [60]. The various modern printing techniques allow for the creation of
models which can represent the true density of bone through the use of high calcium
content [61]. Modern printing techniques allow for the creation of models with high
calcium content to accurately mimic the true density of bone [62].
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10.3.3 Preoperative Planning Applications

One previously discussed advantage provided by 3D printing includes the use of
spine models. By using these models, physicians can realistically simulate surgery
in preoperative planning, which can be advantageous in preparing for complex spinal
pathologies. Xiao et al. was able to perform complex en block resections of primary
cervical tumors through using 3D printed spine models to prepare and refer to as a
visual reference [62]. In another case, 3D models were utilized to study inclination of
joints, false articulations, pedicle sizes, and vertebral artery courses preoperatively
in craniovertebral surgery. Data from the models allowed physicians to calculate
screw and plate sizes as well as the angle of screw insertion preoperatively [63].
Personalized 3D printing has also been used to create surgical planning models and
patient-specific spinal instrumentation in the correction of spinal deformity in chil-
dren with meningomyelocele [64]. Preoperative modeling for surgical planning was
alsoused in surgery of a thoracolumbar fracture with dislocation by providing a model
of sagittal curves. It also provided navigation templates for pedicle screws. When
completed with a 3D model, the procedure was performed with shorter operation
time, less intraoperative blood loss, better recovery of thoracolumbar dislocation,
and better Frankel classification, all of which are clear advantages [65]. Reduced
operation time and perioperative blood loss have also been reported through the use
of rapid prototyping of 3D models in surgical planning for lumbar discectomy [66].
Despite these advantages, no significant differences were observed in complication
rate, length of hospital stay, postoperative radiological outcomes, or pedicle screw
misalignments between surgeries performed with a 3D printed model and those
without one [67].

Furthermore, there are concerns and limitations associated with the introduction of
3D printing to the preoperative setting. Although studies show multiple advantages of
the utility of 3D-printed models, this additional step may be unnecessary. Regardless
of the fact that models may provide reduced operation time, physicians must consider
the time required to design and construct the preoperative model, especially when
considering reconstruction after trauma.

Advancements in the speed and availability of rapid prototyping technology may
allow for more widespread use in the trauma setting. Consequently, 3D printers will
be most useful in complex cases.

10.3.4 Trainee and Patient Education Applications

Before the development of 3D printing, cadaveric models were traditionally used
for educational purposes and surgical simulation. However, these models are limited
in their usage due to constraints regarding the quantity of models which exist in
addition to health and safety issues [59]. 3D-printed spine models could provide an
alternative to cadaveric models. Due to their customizability and ability to resemble
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complex cases, 3D-printed models will inspire more confidence in residents as they
will be able to perform those surgeries much more effectively. These 3D-printed
models have a promising future in supplying surgical residents and practitioners with
excellent training simulations of surgical experiences [68]. Hughes et al. reported the
utility of 3D models in navigating complex deformities and improving anatomical
understanding for training [69]. 3D-printed spine models have also been successfully
used in the informed consent process through the use of patient-specific 3D-printed
spine models to help guide patients in making decisions by educating them on their
own spinal pathology and potential surgery [70, 71].

10.3.5 Intraoperative Applications: Guidance Systems

One of the primary clinical applications of 3D printing in spine surgery is the creation
of intraoperative guidance systems for the insertion of pedicle screws. Computer
software can design navigation templates for pedicle screw fixation for intraoper-
ative use that can be 3D-printed preoperatively through the use of CT thin-slice
data of the patient’s spine [72, 73]. 3D-printed templates also present advantages
in reducing the risk of complications during fixation of cervical pedicle screws
(CPS) due to narrow clearance and increased risk for neural and vascular injury.
Multiple studies comparing pedicle screw insertion via 3D template versus fluo-
roscopy indicate increased accuracy and precision of placement, which in turn leads
to reduced complications. 3D template guided placement of pedicle screws has also
been conducted on thoracic and lumbar pedicle screw fixation and has proven to
be equally accurate, safe, and convenient [74-76]. As a result, authors agree that
the reduced operating time, ease of use, moderate cost, and ability to insert cervical
screws without radiation provide additional benefits for intra-operative use [72-74].

Despite the benefits, there are multiple limitations preventing the widespread
use of 3D printing in the intraoperative setting. Using 3D technology requires a
specialist who understands managing 3D software to perform segmentation of a 3D
model for printing. As previously mentioned, creating these devices is also a time
intensive process which has limited its use in a hospital setting. Furthermore, the
modeling of these devices requires an additional cost for the patient for surgery. As
technology becomes more user-friendly, the process for device creation will become
more streamlined. Although imaging processing and printing can take several hours
before surgery, the reduced time spent in the operating room is extremely valuable.
One review of intraoperative 3D guidance systems concluded that 10 min saved in
the operating room is equivalent in monetary terms to one hour spent creating the
guidance devices [77].
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10.3.6 Intraoperative Applications: Implants

Another application of 3D-printing in spine surgery can be through the use of
implants. Because commercially available implants will not always match with the
patient specifically, 3D printing encourages the advancement of personalized surgery.
Multiple cases have reported successful use of patient specific 3D-printed implants
which have been used in spinal fusion for complex spinal pathologies. These 3D
implants include posterior fixation implants and anterior and posterior interverte-
bral fusion cage implants [78—81]. The implants all showed improved load bearing
surface, lowered the rate of implant dislocation and subsidence, provided excellent
primary stabilization, shortened time of procedure, improved correction of defor-
mity, decreased blood loss, and reduced risk of neurovascular compromise [64, 77,
81]. Although the technology allows the creation of patient-specific spinal implants,
there is very limited literature on the subject.

There are limitations to the use of 3D-printed implants which include a lack
of long-term follow-up data for post-surgical clinical outcomes of surgeries. Data
which supports the use of 3D printing in implants must be used in order to justify
its utilization, and for the safety of patients, the Food and Drug Administration must
provide approval before inserting 3D-printed implants into the patients’ body.
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Spine Surgery—Part II: Ceramic i
and Non-ceramic Bone Substitutes:

A Surgical Perspective

Sanghyo Lee, Matthew T. Morris, David A. Essig, and Woojin Cho

Abstract Bone grafts have been used for decades to achieve successful bone fusion
in spinal surgeries. Autograft is the most effective bone graft due to the proper-
ties of osteogenesis, osteoconduction, and osteoinduction. However, autograft may
not always be available in sufficient quantities, and harvesting may cause patient
morbidity. Various ceramic and non-ceramic bone graft extenders have been intro-
duced to limit the need for autograft harvest. These bone substitutes have rapidly
evolved in recent years with technological and industrial advancements. Spinal
surgeons should closely follow new trends in this industry to achieve the best
outcomes for their patients.

Keywords Bone grafts - Hydroxyapatite - Tricalcium phosphate (TCP) - Calcium
sulfate + Bioactive glass * Spinal fusion * Autograft - Allograft

11.1 Introduction

Spinal fusion surgeries have become treatments of choice for a variety of conditions,
especially degenerative spinal diseases and spinal deformity. Fusion surgeries may
consist of intervertebral body fusion, posterior fusion, or posterolateral fusion, and
generally consist of instrumentation and bone graft transplantation on the decorti-
cated bone in order to encourage a solid bony fusion. There are many available options
currently available for bone graft, both commercially available and harvested from
the patient.
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The ideal bone graft contains properties of osteogenesis, osteoinduction, and
osteoconduction. Osteogenesis refers to the presence of osteoblast precursor cells
that directly contribute to the growth of new bones in grafts. Osteoinduction refers
to the presence of molecular growth factors and signaling molecules that stimulate
the migration of osteoblast precursors to graft sites to mature into osteoid-producing
cells and increase bone matrix production. Lastly, osteoconduction refers to struc-
tural scaffolding in which the cells that produce the matrix can deposit new bones.
Autograft is often regarded as the “gold standard” bone graft, as it contains all of the
three of these properties to encourage bone formation (osteogenesis, osteoinduction,
and osteoconduction).

Spinal surgeons have harvested autograft from iliac crest bone, ribs, spinous
processes, or laminae that are approachable during the surgery. However, the amount
of autograft attainable during surgery can be insufficient. Moreover, as a result of
graft harvest, patients may be placed at risk of postoperative pain, nerve injury, vessel
injury, hematoma, fracture, infection, and gait disturbance [1, 2].

For these reasons, a variety of bone graft substitutes, such as ceramic, demineral-
ized bone matrix (DBM), bone morphogenetic protein (BMP), and collagen scaffolds
have been introduced, studied, and applied in practice recently [2—4]. They have been
used in combination with one or more other type of bone graft, including autologous
bone, in order to decrease postoperative morbidity while adding bulk to the implanted
bone graft mass [5—-9]. Using these bone graft substitutes in combination with others
can help overcome their individual shortcomings in order to create a graft mixture
that contains maximum osteoconduction, osteoinduction, and osteogenesis.

11.2 Ceramic-Based Bone Graft Substitutes

A commonly used class of material for bone graft substitutes is ceramic, one
of the most commonly used synthetic products worldwide. Ceramic-based bone
graft substitutes contain multi-porous structures similar to human cancellous bone,
affording this substance a robust osteoconductive matrix and providing structural
support to the graft. While this material lacks the osteoinduction and osteogenesis of
biologic materials, native mesenchymal cells are often able to adhere the structural
matrix of the ceramic. Subsequently, the mesenchymal cells may proliferate and
differentiate to become mature osteoblasts, yielding bone formation [10]. Nonethe-
less, ceramic products combined with local autograft or bone marrow aspirate have
shown higher fusion rates than those of ceramic graft only [11].

The mechanical and structural properties of ceramics are important to achieve
successful bone fusion. Ceramic-based bone graft must contain an adequate number
and adequate size of pores. The hardness of ceramic is inversely proportional to
the number of pores. When the number of pores is increased, the ceramic becomes
vulnerable to fracture due to the decreased mechanical strength and resorption rates.
The adequate size of pores has been reported that is from 150 to 500 micrometers to
maximize ingrowth of bone to pores, biodegradation [10].
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Some have conducted animal studies for assessment of the efficacy of ceramic
graft for bone fusion. They largely showed inferior fusion rates when using ceramic
graft alone versus when using autograft alone in a rabbit pauci model [12].

There are several advantages of using ceramics as a bone graft substitute. First,
they do not induce a host inflammatory response. Second, as they are non-allogenic
materials, they carry no risk for blood-borne disease transmission. Third, they can
be molded into various shapes, such as brick, granule, or powder. Lastly, bone graft
substitutes made of ceramic are cheaper than other commercially available bone
substitutes [10, 13].

Over fifteen years, several ceramic-based bone graft products have been intro-
duced, including hydroxyapatite, tricalcium phosphate, and calcium sulfate. Many
authors have studied the efficacy of using ceramic materials as bone graft substi-
tutes, and have tried to find the optimal ratio of multi substitute combined ceramics
[1, 14]. Many of these products and product-combinations have been introduced and
commercialized [14].

11.2.1 Hydroxyapatite

Hydroxyapatite is a crystalline structure with calcium-containing pores, and accounts
for a majority of bone’s natural mineral component. Hydroxyapatite can be found
in various forms, such as powder, granule, or brick, and can be coated on metal
surfaces as well. Hydroxyapatite is similar in structure to both cancellous bone and
coral found in the ocean [15]. Its porosity and similar structure to bone renders it a
useful clinical substance for encouraging bone formation during fusion procedures.
Furthermore, hydroxyapatite is absorbed very slowly without penetrating radiation.
Therefore, the main process of fusion is to connect bone tissue formed inside of
hydroxyapatite to surrounding bones.

The role of hydroxyapatite is not clearly defined in the literature regarding spinal
surgeries. A prospective large randomized controlled trial assessing outcomes of
PLLF (posterolateral lumbar fusion) using hydroxyapatite compared to the autol-
ogous iliac crest bone graft was conducted by Korovessis et al. in 2005 [16]. In
this study, the authors compared postoperative clinical and radiographic outcomes
among 60 patients divided into three groups. Each group consisted of 20 patients
(iliac crest bone graft (ICBG) only vs. coralline hydroxyapatite granule + local auto-
graft (LAG) in a 3:1 ratio with ICBG vs. coralline hydroxyapatite granule + LAG
bilaterally). All three groups showed radiographic evidence of solid fusion over a
year, but hydroxyapatite was found to provide an inadequate fusion of intertransverse
processes during this period. Both hydroxyapatite/LAG and ICBG groups showed
improvements in clinical outcomes such as Oswestry Disability Index (ODI) and
Visual Analogue Scale (VAS) score. Besides, using hydroxyapatite can reduce the
time of the autograft harvesting process, which reduces the surgical duration and
postoperative complications.
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Similar studies have been reported and support these results. In some instances,
hydroxyapatite can be used alone or in combination with other substances, such as
bioactive glass, bone marrow aspiration, or absorbable collagen sponge. It has been
shown to improve function and reduce pain to the same extent as ICBG, while it has
shown suboptimal fusion rates [17-19].

11.2.2 Tricalcium Phosphate (TCP)

Tricalcium phosphate is a synthetic ceramic material composed of calcium and
phosphate. p-tricalcium phosphate (3-TCP) is another calcium-based synthetic that
provides osteoconductive scaffoldings for bone proliferation and fusion. Unlike
hydroxyapatite, TCP is absorbed quickly, with its absorption takes place over months.
Therefore, it is easier to evaluate bone fusion with TCP based on radiography than
with hydroxyapatite, which has a comparatively longer life span. The disadvantage of
using TCP is that the strength is weaker compared with hydroxyapatite, and it breaks
more easily. Many studies have evaluated the utility of B-TCP for aiding spinal fusion
surgery with mixed results.

Dai et al. conducted an RCT comparing bone fusion rates and postoperative
clinical outcomes in patients who underwent single-level PLLF with ICBG/LAG
vs. B-TCP/LAG. Both groups showed one hundred percent bone fusion. The -
TCP/LAG group showed complete bone fusion at a year postoperatively. The group
using the combination of ICBG and LAG showed complete bone fusion at two years
postoperatively [6].

Significant improvements in functional clinical outcomes such as ODI and Odom
scale have also been reported. The Japanese Orthopaedic Association (JOA) scores
tended to improve in the B-TCP/LAG group but were not clinically significant
[20, 21].

11.2.3 Calcium Sulfate

Calcium sulfate is a synthetic ceramic material that combines calcium and calcium
sulfate in a 1:1 ratio. Calcium sulfate has long been used as an osteoconductive
void filler for lumbar fusion. Specifically, calcium sulfate has shown that there is a
possibility of selling in the market in human models and animal models [22-26].

However, shortly after these initial findings, several reports demonstrated that
calcium sulfate restoration occurs as fast as 6-8 weeks after surgery, causing often
pathological local inflammation without bone formation. Although using calcium
sulfate has become unpopular over time since the surfacing of these reports, reports
that are more recent suggest a more positive outlook of using calcium sulfate for
bone fusion.
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In a number of studies, using calcium sulfate with LAG showed good fusion rates
(up to 88%) and non-inferiority compared with ICBG [27-29]. Besides, functional
clinical outcomes like ODI seemed to be comparable between calcium sulfate +
LAG versus ICBG alone [28, 29].

11.2.4 Bioactive Glass

Bioactive glass is biologically compatible synthetic material containing a variety of
crystalline components. There has not been enough consensus regarding the use of
bioactive glass extenders.

To evaluate the stand-alone efficacy of one particular glass-ceramic, Apatite and
Wollastonite-containing Glass Ceramic(AWGC), Kasai et al. performed 35 PLLFs
using a total of 20 grams of AWG and local autograft in 2:1, 1:1, and 1:2 ratios.
There were no significant differences in the fusion rate, functional improvements,
and complication rates for all three groups [30]. While AWGC has been shown to
have moderate utility in PLLF, other varieties of glass extenders show less promise.

Frantzen et al. were able to demonstrate that a bioavailable glass extender named
BAG-S53P4 composed of 53% SiO,, 23% Na,0, 20% CaO, 4% P,0s had a lower
fusion rate than that of ICBG [31].

Furthermore, Acharya et al. examined the topic of different bioactive glass-based
extender, Chitra-HABg (Sree Chitra Tirunal, Trivandrum, India). It also showed a
lower fusion rate than that of ICBG. Their study was terminated early due to poor
patient outcomes [18].

11.3 Non-ceramic-Based Bone Graft Substitutes

11.3.1 Autograft (Iliac Crest Bone Graft, Local Autograft)

Autograft is the most commonly used bone graft in spinal fusion surgery, and consists
of the patient’s own bone either decompressed at the surgical site or harvested from
secondary site, such as the iliac crest. Autograft contains abundant osteoprogen-
itor cells, osteoinductive factors, and an osteoconductive scaffold of native cortical
and cancellous bone. Therefore, autograft is largely considered the “gold standard”
bone graft for obtaining a robust spinal fusion, resulting in very high fusion rates in
many studies [6, 16]. In addition, since the graft is harvested from the patient’s own
tissues, there is no risk for triggering an immune response or transmitting blood-
borne disease. Autograft can be harvested from a variety of secondary sites, such as
iliac crest, rib, and tibia. Harvesting sites may be decided depending on the surgical
site, accessibility to the site given patient positioning, the requirement of cortical
bone and cancellous bone, as well as the shape, and the length, and the degree of the
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requirement for structural strength. The primary problem with autograft harvesting
is the incidence of complications such as pain, hematoma, and infection at harvesting
sites [16, 32-35]. In addition, the amount of autograft harvesting or the nature of
the bone can be insufficient or improper for bone grafting. For example, if there is
fatty bone marrow present or severe osteoporosis, the graft may not be ideal for bone
grafting.

11.3.2 Allograft (Demineralized Bone Matrix,
Corticocancellous Allograft)

Allograft, or bone donated from another individual, may refer to corticocancel-
lous bone chips, demineralized bone matrix (DBM), or bone morphogenic proteins
(BMPs). The primary function of allograft is an osteoconductive bony matrix. Given
the fact that allograft originates from another individual, the graft must be frozen
and sterilized to minimize potential transmission of blood-borne disease and limit
recipient inflammatory reaction. Most commercially available allografts are frozen
and dried after the complete removal of bone marrow. This necessary process inher-
ently limits the grafts osteogenic properties by removing all osteogenic cells, and
may actually weaken the mechanical strength of the graft as well. However, a small
amount of growth factors may remain after sterilization, so the graft retains some
osteoinductive qualities. Recent advancements in tests, processes, and storing tech-
niques for allograft harvesting have also attenuated some of these drawbacks. Above
all, the biggest advantage of using allograft is that it does not require harvesting
from patient, thereby reducing local harvest site complications. In addition, given
that allograft is commercially available in large quantities, it can be molded or cut
into nearly any shape required by the surgeon. However, many commercial allografts
are quite expensive, so their use should be somewhat judicious. In short, allografts
spare the patient morbidity associated with graft harvest, but this must be weighed
against the less ideal graft qualities of allograft compared to autograft.

11.3.2.1 Demineralized Bone Matrix (DBM)

Demineralized bone matrix is allograft that has been treated with an acid extraction
process to remove its mineralization. This demineralized bone that remains is a matrix
of osteoconductive type 1 collagen, non-collagenous proteins, and osteoinductive
growth factors. One of the most important of these growth factors is BMP, a protein
found in bone with osteoinductive properties. Other substances such as transforming
growth factor-p (TGFp), platelet-derived growth factors (PDGF), insulin-like growth
factors (IGF), and fibroblast growth factors (FGF), are found in DBM and help
afford the graft osteoinductive properties. Urist et al. reported that demineralized
bone grafts were found to be bone-forming when transplanted into rat musculature
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[36]. Demineralized bone matrix exists in various forms such as powder, granule,
etc. It can be used as solid putty and shaped during the surgery to fill bone defects
or fusion sites. Demineralized bone matrix is considered an autograft extender in
that it is commonly combined with autograft during surgery. While this practice is
common, studies have yielded shown mixed results in terms of its clinical utility.
For example, Kiely et al. recently reported no significant difference in fusion rate in
a rabbit model of posterolateral spinal fusion when using DBM as a graft extender
compared with autograft alone [37]. Vaccaro et al. conducted a prospective study
comparing mixed DBM with ICBG (1:1) and with bone marrow aspirate (BMA)
and LAG (3:1:1 ratio) for use in lumbar PLLF in 2007 [34]. The authors found that
both DBM composites did not show significant differences from ICBG alone in both
clinical and radiographic results.

Epstein et al. reported similar results in their study [2, 21]. The study enrolled 140
patients undergoing instrumented PLLF using LAG and DBM (1:1), evaluated by
radiography and functional outcome at a year postoperatively. The authors reported
similar fusion rate and functional improvement in both groups. However, despite
some disagreement in the efficacy of using DBM, a large number of studies do support
the use of DBM as an extender/carrier for BMA, LAG, and ICBG for augmenting
spinal fusion.

Furthermore, DBM has several shortcomings that are worth noting. The structure
of DBM is often considered inadequate to promote good osteoconduction on its own.
In addition, it is extracted from cadaver bone, so the graft quality is dependent upon
the quality of the donor bone. For this reason, it is difficult to maintain precise quality
of among all individual products. In addition, although there are some growth factors
in DBM naturally, the quantity of growth factors is relatively less compared to the
amount of artificially concentrated recombinant human bone morphogenetic protein
(rthBMPs) which is used for augmenting and accelerating solid spinal fusion.

11.3.2.2 Corticocancellous Allograft

The mineral component of allograft has excellent osteoconductive properties, and
for this reason, it has been used as a bone graft extender/carrier for LAG and BMA.
In 1994, Jorgenson et al. conducted a prospective study of 144 patients undergoing
instrumented PLLF evaluating fusion status achieved using various bone substitutes.
They found that the group using ICBG and allograft combined showed a significantly
lower bone fusion rate than the group using ICBG alone [4]. Demineralized allograft,
however, achieved the lowest fusion rate among the three groups. Therefore, the
authors did not recommend using allograft as an extender with ICBG in PLLF [4].
In 2014, Hart et al. reported that bone fusion rate improved when using bone
marrow aspiration with allograft compared with using allograft alone [38]. In 2010,
Lee et al. conducted a retrospective study comparing fusion rates and clinical
outcomes in patients over 65 years old undergoing PLLF with either autograft or a
mixture of allograft, autograft, and growth factors [32]. Fusion status was evaluated
with lumbar spine x-ray and CT scans. Clinical outcomes were assessed with a VAS
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score and a graded functional scale. They observed similar radiographic and clin-
ical outcomes postoperatively. These results suggest that allograft may be cautiously
used with either corticocancellous autograft or bone marrow aspiration to achieve
good fusion rates and clinical outcomes in the patient undergoing PLLF, although a
clear consensus has not been reached regarding its efficacy [39].

11.3.3 Bone Marrow (Bone Marrow Aspirates, Bone Marrow
Concentrate)

Bone marrow is rich in osteogenic cells and osteoinductive factors that can be used
to augment fusion in PLLF. The marrow is aspirated in the operating room using
a large bore needle and syringe, most commonly from the patient’s iliac crest. The
aspirate can be introduced to the fusion site as is, or can be concentrated via centrifuge
prior to implantation [40]. Bone marrow aspirate (BMA) and bone marrow aspirate
concentrate (BMAC) has the advantage of providing the osteogenic and osteoinduc-
tive properties of autograft while reducing the complications associated with ICBG
autograft harvest. Despite these advantages, one shortcoming is that bone marrow
aspirate/concentrate lacks the structural support of corticocancellous autograft. To
overcome this shortcoming, BMA can be used with other bone substitutes, such as
allograft and ceramics.

QOdri et al. conducted a prospective study that examined the effect of the concentra-
tion process on bone growth in PLLF [40]. Patients were fused using local autograft
plus calcium phosphate with either concentrated or whole bone marrow aspirate. The
aspirate was centrifuged intraoperatively using a portable centrifuging machine to
reach an average concentration of osteoprogenitor cells 2.2 x that of whole BMA
[40]. Graft site cortical bone volume was assessed via CT scan at one week and
3 months postoperatively. There was no significant difference in bone growth between
the two groups, suggesting a lack of observable benefit obtained from concentration.
However, they failed to achieve an adequate concentration of osteogenic cells in the
concentrated group. Therefore, the authors suggest that the raw number of these cells
present in the graft is an important factor predicting initial bone growth; if that can
be optimized using concentration, then it may benefit the fusion mass. Particularly
when using ceramics and allografts, which do not have any osteogenic cells, adding
bone marrow aspirate has been shown to significantly benefit the fusion rate [38].

Hartetal. conducted a blinded RCT regarding comparing the degree of bone fusion
in patients undergoing instrumented PLLF with either spongious allograft chips or
allograft mixed with concentrated bone marrow. The degree of fusion was assessed
using plain radiographs and CT scans by evidence of at least unilateral bridging bone
between transverse processes. The authors observed remarkably greater successful
fusion and mineralization status with the combination of bone marrow aspirate and
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allograft than with allograft alone at two years postoperatively. The results demon-
strate the role of bone marrow aspirate as a beneficial adjunct to allograft in lumbar
PLLF [38].

So far, the combination of local autograft and bone marrow aspirates is known to
have at least comparable fusion rate and similar functional outcomes as ICBG, with
potentially lower rate of donor-site related complications [41].

11.3.4 Growth Factors (Bone Morphogenetic Proteins,
Autologous Platelet Concentrate)

11.3.4.1 Bone Morphogenetic Proteins

Bone morphogenetic protein (BMP) is known to be highly osteoinductive. They are
involved in the differentiation from mesenchymal cells to osteoblasts and increasing
the number of osteoblasts directly. Bone morphogenetic proteins also produce extra-
cellular substances like type I collagen, type II collagen, fibrin, proteoglycan, which
are required to be essential in bone formation. It is not clear exactly how BMPs
regulate gene expression within cells. So far, it is known that BMPs attach to cell
wall receptors and activate an intracellular transmitter (SMAD) to induce osteogenic
gene expression within the nucleus.

Bone morphogenetic proteins belong to the TGF-f superfamily of extracellular
proteins. They have been known as involving in organ development, cellular differ-
entiation, chondrogenesis, and osteogenesis. There are about 1420 known BMPs in
the human body, including BMP-2, BMP-3 (osteogenin), BMP-4, BMP-5, BMP-6,
BMP-7 (OP-1), BMP-§8 (OP-2), BMP-9 (GDF-2), BMP-10, BMP-11 (GDF-8),
BMP-12 (GDF-7, CDMP-3), BMP-13 (GDF-6, CDMP-2), BMP-14 (GDF-
5,CDMP-1), and BMP-15 (OP: Osteogenic protein, GDF: Growth/differentiation
factor, CDMP: Cartilage-derived morphogenetic protein). Among these 20 BMPs,
BMP-2,4,6,7,9 have been known to have osteoinductive activity. Recently a high
number of studies have been introduced regarding the efficacy of BMP-2 and -7
in spinal surgery. Recombinant forms of these proteins (thBMP-2 and thBMP-7,
or OP-1, respectively). rhBMP-2 was the first BMP to be extensively studied for
use in spine surgery, and was originally FDA-approved in 2002 for anterior lumbar
interbody fusions. However, it has been commonly used off-label for the last decade
for PLLF surgery [42].

Dimar et al. conducted the RCT comparing ICBG versus thBMP-2 with bovine
collagen and B-TCP/hydroxyapatite carrier to describe the advantages of this off-
label use in 2009 [43]. 239 people were enrolled and the authors assessed the person’s
single-level fusion rate based on radiograph, CT scan, and functional outcome based
on ODI and SF-36 score. The fusion rate of the group using thBMP-2 was higher than
that of the ICBG group. In addition, subjects in the group using ICBG experienced
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more blood loss and longer operative times than those of the group using rhBMP-2.
Nearly two-thirds of patients in the ICBG group reported donor site pain or tenderness
at 2-years follow-up [43].

As reported by Dimar et al., Many researchers reported that the group using
rhBMP-2/8-TCP/hydroxyapatite shows a higher fusion rate than the group using
ICBG for single-level PLLF, but lower fusion rate for multiple-level (>=2) PLLF [2,
44]. Glassman et al. tried to prove a similar efficacy of rhBMP-2 compared to ICBG
in smoking and non-smoking population. The fusion rates when using rhBMP-2 are
higher than that of using ICBG in both groups [45, 46]. Based on these reports, a
number of ceramic-based extenders have been used in conjunction with rhBMP-2.

Bae et al. performed RCT regarding the comparison of ICBG and rhBMP-
2/collagen sponge/ceramic matrix. In addition, rhBMP-2/collagen sponge/ceramic
matrix group showed a significantly higher solid fusion rate than that of ICBG group
(95% vs. 67%). The thBMP-2/collagen sponge/ceramic matrix group also showed
improvement in ODI, SF-36, VAS score at 2-year follow-up [47]. Dawson et al.
also corroborate these findings for two years. Indeed, several articles demonstrated
the effective use of thBMP-2 ceramic composites as an alternative to ICBG auto-
graft [48]. After 2006, some individual studies have been conducted regarding the
complication of using rhBMP-2.

RhBMP-7, an osteogenic growth factor related to BMP-2, was first approved by
the FDA in 2001 for use as an alternative to autograft for long bone fracture repair.
The approval of hBMP-7 by the FDA was expanded to cover PLLF in 2004. Since
that time, several studies have been conducted regarding the safety and efficacy of
rhBMP-7.

Vaccaro et al. performed a study regarding the use of rhBMP-7 (OP-1) in conjunc-
tion with bovine collagen and carboxymethylcellulose. The OP-1 putty which is a
product, a proprietary blend of rhBMP-7, bovine collagen, and carboxymethylcel-
lulose. Using OP-1 putty with ICBG obtained a 50% solid fusion rate and 20%
improvement in ODI at 1-year follow-up [49]. Afterward, in a RCT comparison of
OP-1 versus ICBG, The authors were able to show significantly better fusion rate
in the OP-1 using group than in the ICBG group (55% vs. 40%). They also report
improvement in functional outcomes based on ODI, SF-36 in the group using OP-
1 [50]. While both of these studies demonstrate the efficacy using OP-1 putty, the
sample sizes of both studies were small (12 and 24, respectively), limiting their
broad applicability. Still, OP-1 used with graft extenders appears to be a reasonable
alternative to ICBG in the carefully selected patient.

In a 2016 Buser et al. conducted a systematic review comparing synthetic
bone graft versus autograft or allograft in terms of fusion rates, patient-reported
outcomes, and functional outcomes in both cervical and lumbar fusion. Although
the authors admitted some selection bias, they cautiously concluded that synthetic
grafts performed similarly to autologous grafts with regards to these outcomes [51].

Similarly, in their review of bone graft materials used in lumbar fusion surgery,
Tuchman et al. reported similar fusion rates, pain scores, and functional outcome in
patients undergoing fusion with ICBG autograft or allograft groups. However, there



11 Spine Surgery—Part II: Ceramic and Non-ceramic Bone Substitutes ... 241

was not sufficient evidence to make definitive recommendations. They conclude that
a choice must be made carefully regarding the type using graft within the framework
of the current literature [52].

However, it is also important to note that there have been several limitations docu-
mented to using BMPs. Despite their potent osteoinductive properties, to achieve
adequate osteoinductivity, a large amount of BMP is required. For this reason, BMP
can be associated with high cost, host immune reaction, ectopic bone formation,
excessive bone formation, and soft tissue edema. Although there are some limita-
tions of using BMP, it has shown to achieve better fusion rate than using autograft
alone. Therefore, the potential benefit of using BMP is to alleviate the complications
associated with autograft harvest while maximizing fusion rate. In addition, some
study groups have tried certain genetic treatments based on the gene regarding BMPs
or intermediate genes.

11.3.4.2 Autologous Platelet Concentrate

Another effort to stimulate bone growth and improve fusion rates in PLLF has
focused on the use of autologous serum concentrated via centrifugation. This autol-
ogous concentrate contains endogenous cytokines, platelets, and growth factors that
were theorized to promote fusion via osteoinductive factors. Some surgeons have
advocated for its use as a supplement to corticocancellous autograft to augment
PLLFE.

Carreon et al. reviewed 76 patients who underwent instrumented PLLF using
ICBG and APC and compared fusion rates to a randomly selected control group
who received ICBG alone. The authors found no statistically significant difference in
fusion rates between groups and recommended against the use of APC to supplement
ICBG in PLLF [33].

Acebal-Cortina et al. confirmed this recommendation in a prospective study of
107 patients who underwent lumbar fusion using a mixture of autologous local
bone graft and TCP/hydroxyapatite with and without the addition of APC. They
observed a significantly lower fusion rate with the addition of APC to the graft mix,
as measured by plain radiographs at 12 and 24 months [5]. Preparation of APC
marginally increases patient morbidity due to the need for blood draws. Based on
the current literature, the use of APC has been shown to either fail to increase or
actually to decrease fusion rates. Therefore, its use as a graft adjunct in PLLF is not
recommended.

11.3.5 Collagen (Absorbable Collagen Sponge)

Absorbable collage sponge (ACS) has been used generally as a carrier for BMP,
but does not have a role in contributing to fusion on its own. Absorbable collage
sponge is a sponge manufactured from xenogeneic type I collagen. It serves as an
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osteoconductive scaffold and contributes to hemostasis at the surgical site. A benefit
of the ACS is that it can be applied directly to the surgical field or placed in a cage
for interbody fusion, and is absorbed easily. It is more commonly used in posterior
fusion, and less commonly in the case of PLLF.

Arnold et al. conducted a non-inferiority RCT comparing fusion rate and compli-
cation rate in single level anterior cervical discectomy and fusion using a synthetic
collagen fragment suspended in a hydrogel (i-Factor) with cortical ring allograft
versus autograft [48]. The synthetic collagen group showed non-inferiority to auto-
graft in terms of radiographic and clinical outcomes, as well as a comparable safety
profile.

Hostin et al. conducted a retrospective study evaluating the effectiveness of using
collagen and bone marrow aspirates in multi-level anterior spinal fusion surgery.
Using mineralized collaged and BMA, they observed a fusion rate of 88%, relatively
lower than other studies that observed fusion rates greater than 95% for similar
surgeries using BMPs [53].

11.4 Future of the Bone Substitutes

The ideal graft must have properties of osteoconductivity, osteoinductivity, and
osteogenicity [54]. Bone graft technology has improved rapidly in recent years,
proving the robust and dynamic nature of this industry. Therefore, it is vital that
practicing spine surgeons pay close attention to the latest trends in bone substitutes
to achieve optimal fusion rates while minimizing morbidity and complications for
their patients.
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Abstract In recent years, large skeletal defects have attached wide attention from
researchers and the use of new biomaterials represents a main topic in orthopedic
surgery. Bone grafting is a complex process that require an accurate choice of specific
material for every host. The ideal graft is able to stimulate the bone healing and at the
same time is biocompatible, bioresorbable, and generating minimal fibrous reaction
like autograft. The magnesium-doped hydroxyapatite/type I collagen 3D scaffolds
are an effective and safe bone substitute and seems to be useful in spinal fusion and
orthopedic infection’s field without adverse and inflammatory reactions. They can
be securely used with autologous bone stimulating formation of new bone. Further
investigations are needed to support long-term efficacy and additional indications for
1ts use.

Keywords Spine surgery * Bone grafts - Magnesium-hydroxyapatite-collagen
scaffold - Skeletal defects - Bone healing

12.1 Introduction

Bone is the most common transplantation tissue, after blood [1]. The main solid
constituents of human bone are collagen and a mineral phase that is composed of
hydroxyapatite. Collagen is a natural polymer, and it is the most present protein in
the body, which provides flexibility. On the other hand, hydroxyapatite is a natural
ceramic, represents the main component of natural bone and it is also found in teeth.
These constituents are typically utilized as a biomimetic composite material in tissue
engineering due to their great biocompatibility and biodegradability.
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Tissue engineering is an interdisciplinary field that applies the principles of engi-
neering and the life sciences to development of biological substitutes that restore
tissue function [2]. Bone-tissue engineering tries to induce bone healing using osteo-
conductive and biodegradable matrixes associated to osteoinductive growth factors
[3]. The repair mechanisms that occur in our bodies are angiogenesis, osteogenesis,
and chronic wound healing. However, there are some critical size defects beyond
which the tissue will not regenerate on its own and needs surgical repair.

In the Unites States alone there are around 500,000 surgical procedures per year
for bone tissue repair [4]. These bone defects can arise from trauma, tumor, infections
such as osteomyelitis and orthopedic revision surgery. In these cases, we need a graft
not only to “fill the gap”, but it has to be able to build functional bone. Despite other
human tissues which heal with a connective tissue scar, bone can heal by producing
normal bone, as it does after fractures. A number of processes are involved in this
mechanism: osteogenesis, osteoconduction and osteoinduction. Some materials, such
as bone autograft, have osteogenic, osteoconductive and osteoinductive properties.

The ideal graft is able to stimulate the bone healing and at the same time is
biocompatible, bioresorbable, and generating minimal fibrous reaction. Nowadays
graft options are various, but from a biological point of view the gold standard
solution remains the autologous bone graft harvested from the iliac crest (ICBG).
Although very successful in many operations, autografts have the disadvantages of
insufficient supply and morbidity, as well as increasing surgery times and donor site
pain [5-7]. Local autograft bone (LAB) harvested near the surgical site, like the
lamina and the spinous process during spinal surgery, reduced local morbidity with
great rates of fusion. Nevertheless, the inadequate quantity and quality, especially in
older patients, leads the focus to develop bone graft substitutes as an alternative of
autologous bone. Other options for bone repair are the use allografts and xenografts.
However, these approaches are associated with increased incidence of infection and
ethical implications. Xenografts also carry the risk of species-to-species transmissible
diseases [8].

As one of the major challenges in the field of tissue engineering, large skeletal
defects have attached wide attention from researchers and the use of new biomate-
rials represents a main topic in orthopedic surgery. In recent years, the advances in
biomaterial engineering related to various aspects of regenerative medicine, surface
functionalization and composite systems have led to development of new implants.
However, problems and pitfalls related to use of biotechnology products in a clinical
context are still discussed. Synthetic bone graft substitutes start to spread into the
market from the 1980s as an osteoconductive alternative material to fill the bone
loss and contour small irregularities [5, 9—11]. They represent synthetic, inorganic,
or biologically organic combinations which can be inserted for treating bone defects
instead of autogenous or allogenous bone graft. These materials, derived from natural
ceramics, are able to function as a cellular adhesion site permitting bone growth and
mechanical stability thanks to their structural porous framework.

The use of bone graft substitutes as a valid alternative to autologous bone has
been well documented and they can provide comparable fusion rate to autologous
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bone if used as graft extenders, avoiding donor site complication [12—-16]. Bioma-
terials can be synthetic or natural and can be non-absorbable, partially or fully
absorbable. Hydroxyapatite, tricalcium phosphate (TCP) and calcium sulphate are
the most common examples of ceramic-based grafts, their composition is similar to
the inorganic phase of bone. They represent partially absorbable and osteoconduc-
tive materials. Hydroxyapatite, as ceramic based alternatives, accounts nearly 70%
of the mineral component of bone [17, 18] so it is the most suitable material for
bone replacement. The new generation of bone graft substitutes, developed in the
last years, allowed to obtain enhanced mimicry of the biophysical and biochemical
characteristics of the human bone providing mechanical support until the tissue can
renewed and remodeled itself naturally.

Bioresorbable grafts can avoids the problems that occur with metallic implants,
such as corrosion and stress shielding. Amongst various metallic biomaterials, use
of titanium and its alloys (Ti-6Al-4V) is one of the most widespread for orthopaedic
applications. Good biocompatibility, favorable tissue response, adequate strength
and corrosion resistance are some of the key attributes which make it an excellent
choice as a biomaterial worldwide. However, incomplete osteointegration can still
occur where there is insufficient contact between the metal and host bone. Methods to
address these issues include modifications to increase surface roughness, oxide layer
and bioactivity. Titanium particles produced from wear of hip implants were shown
to suppress osteogenic differentiation of human bone marrow and stroma-derived
mesenchymal cells and to inhibit the mineralization of extra cellular matrix [19].

Collagen, as a natural polymer, is increasingly being used as a device in tissue
engineering. It is, for example, found in bone (Type 1), cartilage (Type II) and in
blood vessel walls (Type III) and has excellent biocompatible properties. Collagen
is easily degraded and resorbed by the body and allows good attachment to cells.
However, its mechanical properties are relatively low (Young’s Modulus —100 MPa)
in comparison to bone (Young’s Modulus —2-50 GPa) [19] and it is therefore
highly crosslinked or found in composites, such as collagen-glycoaminoglycans for
skin regeneration [20], or collagen-hydroxyapatite for bone remodeling [21]. Both
collagen and hydroxyapatite materials significantly inhibited the growth of bacte-
rial pathogens, the most frequent cause of prosthesis-related infection, compared to
poly-lactic-co-glycolic acid (PLGA) devices [22].

12.2 Bone Defects in Orthopedic Surgery

Trauma, infections, tumors and orthopedic revision surgery can produce bone
loss. Bone tumors may require surgical excision according to oncological criteria.
Depending on bone defect and instability, an instrumentation with bone grafting is
usually performed. In the orthopedic oncological field, autografts are limited to small
bone defects while larger bone defects need allografts. The indications for bone graft
substitutes in these circumstances have to be carefully established regarding the risk
of recurrence (in malignant tumors), associated oncological treatments, as well as
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the ability to fit to the implants [23]. Nowadays, due to the increase in the number
of arthroplasty procedures in the last few decades, the treatment of bone defects in
revision surgery has become more frequent. Poor bone stock in the osteoporosis and
the osteolytic areas induced by mechanical stress require bone graft able to sustain
the functional loading [24].

In the field of bone infections, the indications of bone graft substitutes must be
carefully assessed, especially because all healing processes are impaired by infection
and even osteogenetic compounds have limited or no activity in a septic environment.
Therefore, in the osteomyelitis grafting must be performed only when the infection
has been fully resolved and using materials with maximum biological integration,
since local viability is affected by chronic inflammation [25].

A very common cause of bone defects is represented by deformities or malunions
of long bones following high-energy trauma. In these cases, since the main problem
is the maintaining of the correction, optimal loading resistance has to be considered
when choosing the most appropriate bone substitute.

The most severe cases of bone loss are those which combine two or more of the
causes previously mentioned. One example is that of septic prosthetic loosening,
when the bacterial action initiates the osteolysis, thus enhancing the mechanical and
biological triggers of the implant-induced chronic inflammation. In these cases, the
bone defect affects not only the integrity of the joint, but even the function of the
limb and the daily activities of the patient.

In the orthopedic surgery, the key aspects to choose a bone substitutes are the
biocompatibility, the osteointegration and the resorption. More biocompatibility has
been described for calcium phosphate, collagen composites and hydroxyapatite as
osteoconductive materials [26]. The osteointegration of bone substitute depends on
its main features. A number of processes are involved in its ability to regenerate to
normal bone:

e Osteogenesis: formation of the new bone from progenitor bone substitute;

e Osteoconduction: the property of substitute that provides the microstructure to
facilitate the in-growth of cells the produce bone;

e Osteoinduction: the capability of substitute on stimulating new bone formation.

12.3 Scaffolds in Orthopedic Surgery

The fabrication of biomimetic scaffolding is a challenging issue in tissue engineering.
It is well known that the role of the scaffold is to imitate as much as possible the
structure and the composition of natural tissues. The scaffolds consist of 3D struc-
tures needed to promote incorporation of cells or biomolecules with the objective to
promote the generation of a new tissue and support the proliferation of specific cell
type. They must be designed with micrometer precision to enable cell proliferation
requiring customization based on the type of tissue. Fiber orientation, porosity and
pore size can modify their integration in the host. The degradation of the scaffold
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and the mechanical properties are important characteristics for successful perfor-
mance in vivo. Their resorption varies according to material and host environment;
it’s a cell-mediated mechanism influenced by proteolytic degradation and hydrol-
ysis. A material is defined biodegradable if it loses its tensile strength within 60 days
in vivo [27]. The metal ions and local pH play a relevant role in the hydrolysis
process. Biomaterials used as scaffolds can be synthetic or natural. Several synthetic
polymers are used for implant use, such as PGA or PLA. Pure materials lack prop-
erty versatility and exhibit deficiencies in clinical practice. Combination of several
biomaterials to produce new composites should provide new properties. In recent
years, adequate combination of natural polymers and synthetic material are of great
interest, for example the association of collagen with hydroxyapatite.

12.4 Hydroxyapatite

Hydroxyapatite is a biologically active calcium phosphate ceramic with a structural
similarity to the mineral parts of natural bone. Its main characteristic is the ability
to stimulate the bone growth, for this reason has been widely used in orthopedic
surgery. However, it has some mechanical limitations such as a poor tensile strength
and weak wear resistance, thus it is an insufficient load-carrying material [28]. The
incorporation of Mg?* ions induces a reduction in crystal size and an increase in
solubility [29]. The effect of low crystallinity is high reactivity of bone apatite,
which is reflected in bone-resorption processes.

12.5 Collagen

Collagen is a key component of the extracellular matrix that provides the tensile
strength needed to tissue biomechanical features. Physically, collagen forms a rod-
like triple helix. The fibers are cross-linked, and this characteristic provides mechan-
ical extracellular matrix strength and integrity. The number of cross-links influences
the tensile strength and elasticity of the tissue. The collagen biocompatibility can be
correlated with its physical and structural properties along its immunogenicity and
natural turnover. In recent years has been describes as the collagen triple helix can
interact with many molecules and enzymes involved in its synthesis and degradation.

Nowadays, 26 different types of collagen have been described. Their chemical
structures condition mechanical properties. For example, collagen Type II and XI
have a strong torsional stability and extensibility and they are the main type of
collagen presents in articular cartilage. In contrast, the highly cross-linked structure
is typical of collagen type I, the key component of bone tissue.
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12.6 Collagen-Hydroxyapatite Bone Substitutes

Skeletal bones consist primarily of collagen (mainly type I) and carbonate substi-
tuted hydroxyapatite, both osteoconductive components. Therefore, an implant fabri-
cated from these components shall have similar characteristics. In fact, the scaffolds
that structurally and compositionally resemble the natural bone would be an ideal
candidate for bone regeneration [30]. Actually, both collagen type I and hydrox-
yapatite individually were found to improve osteoblast differentiation [31], while
mixed together, the result was an acceleration of osteogenesis. A composite matrix
when combined with human-like osteoblast cells, displayed better osteoconductive
properties than monolithic hydroxyapatite producing calcification of equal bone
matrix [32, 33]. Collagen-hydroxyapatite composites resulted to be biocompatible
and performed mechanically better than individual components [33, 34]. The ductile
properties of collagen contribute to increase the poor fracture toughness of hydrox-
yapatites. Polymeric scaffolds can take up to two years to degrade while collagen-
hydroxyapatite has a more reasonable degradation rate [35]. Moreover, in relation to
adherence in vitro to collagen surface, osteogenic cells performed better than PLLA
(poly L-lactic acid) and PGA (polyglycolic acid) implants [36]. The results of the
comparison between ceramic scaffolds and ceramic composite scaffolds, was that
collagen-hydroxyapatite composites performed better than single hydroxyapatite or
TCP scaffolds [19]. Indeed, the collagen added to a ceramic structure can bring
a number of further advantages to surgical applications: control of shape, adapta-
tion to space, increased particle and defect wall adhesion, and the ability to favor clot
formation and stabilization [34]. Therefore, the combination of collagen and hydrox-
yapatite should offer advantages compared to other materials for the utilization in
bone tissue repair.

In addition, as several studies have showed, a multitude of doping ions (i.e.,
carbonate, magnesium), substituting either calcium or phosphate ions in the crystal
lattice, describe the formation of new bone [37-39]. The achievement of a desirable
osteogenic microenvironment is dependent on physical and chemical properties of the
implanted biomaterial, including the rate of release of metal ions. A favorable bone
regeneration could potentially be achieved by facilitating sustained release of ions
from biodegradable materials [40]. Moreover, incorporation of inorganic or metal
ions offers advantages over the use of expensive and fragile polypeptide-based growth
factors [41]. This phenomenon is deemed to be the main cause of structural issue in
the mineral bone component, and it increases the chemical reactivity and dissolution
ability. Moreover, it keeps a good affinity with osteoblast cells. A recent study [42]
demonstrated that zinc silicate/nanohydroxyapatite/collagen (ZS/HA/Col) scaffolds
considerably improve bone regeneration and angiogenesis in vivo in comparison
with hydroxyapatite/Col scaffolds. Zinc is an important factor for bone formation
and mineralization and its deficiency impairs skeletal development and can lead to
osteoporosis [43].

In another study [44], a novel intrafibrillar mineralized collagen-hydroxyapatite-
based scaffolds, constructed in either cellular and lamellar microstructures were
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established through a biomimetic method to enhance the new bone-regenerating
capability of tissue engineering scaffolds. Further, two of the crucial trace elements
in the body, iron and manganese have been successfully integrated into the lamellar
scaffold to further increase the osteoinductivity of such biomaterials. The authors
found that lamellar structure have superior osteogenic skills compared to both in-
house and commercial collagen-hydroxyapatite-based cellular scaffolds in vitro and
in vivo. Iron/manganese incorporation enlarged further the osteogenetic promotion
of lamellar scaffolds. The device used in a recent study by Giorgi et al. [45] is a
commercially available, porous, 3-dimensional composite bone substitute composed
by type I collagen fibers (from equine source) in which nanosized (10-20 nm) crystals
of biomimetic magnesium-doped hydroxyapatite (Mg-HA) are nucleated at a 40—
60% ratio. The combined device is construed in order to reproduce the anatomical
structure of the bone compartment as it occurs in the biological process of neo-
ossification [46].

12.7 Biotechnology

These materials are made by an assembling and mineralization procedure simulating
the reaction of events leading to the creation of new bone on a living model [47],
using equine-derived type 1 collagen, undergone to self-assembly and simultaneous
mineralization with an apatite nanophase. In this intricate procedure of biomineral-
ization an extracellular matrix (ECM) -mimicking matrix acts as an active template
for the deposition of the mineral phase and is also capable to direct mineral deposi-
tion and limit crystal growth. The start of these control mechanisms happens through
the connecting of collagen functional groups (e.g., carbonyl groups) with calcium
ions, which are then the nucleation sites for the mineral part. The highly controlled
chemical-physical interaction between the inorganic (hydroxyapatite) and organic
(type I collagen) phase is essential to permitting the creation of a compound material
(bone) with unique characteristics of stiffness (minerals) and elasticity (collagen)
[48, 49]. The information collected in the organic phase (type I collagen) drives the
mineralization process toward the development of nanostructured apatite platelets
orientated along the long axis of the collagen, which is a feature considered to
promote osteoblasts’ adhesion [50] (Fig. 12.1). Between the doping ions taking part
to this process, Mg?* ions, partially substituting calcium ions, are associated with
the first fast stages of new bone formation. The presence of Mg>* ions intensifies the
nucleation kinetic of the novel mineral bone constituent while postponing the crystal-
lization process, thus making it very active during remodeling [48]. For the purpose
of manufacturing a 3D fibrous mineralized construct which shows a very high degree
of mimicry of the natural bone tissue, the assembling and simultaneous mineraliza-
tion of type I collagen fibrils with biomimetic magnesium-hydroxyapatite in aqueous
media is provided, thus obtaining a newly developed 3D scaffold for bone renewal
made of magnesium-doped hydroxyapatite/type I collagen (MHA/Coll) (Fig. 12.2).



254 P. D. Giorgi et al.

A
H:PO:

Coll fibers

Ca:f
Biomineralization MHA/Coll composite

B

Fig. 12.1 A representation of biomineralization process used in the synthesis of magnesium-doped
hydroxyapatite/type I collagen scaffold. B Transmission electron microscopy (TEM) analysis:
Collagen fiber completely covered with magnesium-doped hydroxyapatite (MHA) nanoparticles a
and detail of the disordered crystalline structure of magnesium-doped hydroxyapatite nanoparticles
b

Fig. 12.2 The
magnesium-doped
hydroxyapatite/type 1
collagen 3D scaffold
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The ability of this type of biomimetic bone graft substitutes to stimulate bone
regeneration and to support new bone formation has been confirmed in preliminary
animal studies [51, 52], showing good results and representing an effective alternative
to ICBG in the orthopedic and traumatological field, especially for those surgical
procedures that requires large amounts of bone substitute.

12.8 Pearls and Pitalls

12.8.1 Spine Surgery

More than 200.000 spine fusion procedure are performed each year in the United
States [53]. Modern approaches in spinal surgery have taken advantage from the
integration of classical biomechanical and pathophysiological concepts with effec-
tive and readily available prosthetic systems. The biomechanical performance of
the different constructs has been considerably enhanced thanks to the usage of new
materials like titanium and tantalum. Biomimetic scaffolds have attracted interest for
their potential in spinal fusion applications. Biomimetic 3D collagen/hydroxyapatite
scaffolds offer a robust and minimally invasive option to obtain vertebral fusion
providing a structured environment to promote osteogenesis. In traumatological and
degenerative spine posterior surgical procedures, these kind of bone substitutes can
be associated to the rod/screw systems and intersomatic cages in order to obtain
the postero-lateral or anterior arthrodesis, especially in extended approaches. Today
vertebral trauma is still a significant causa of morbidity. In many cases the possi-
bility of having bone grafts substitutes can be a game changer. No bone graft substi-
tute is better than autologous bone graft. Nowadays, the increase of the complex
spine procedures needed a most demand for high quality of bone substitutes. A
basic understanding of the biology of healing in different types of spinal fusion and
the differences between various bone graft substituted can help surgeons to choose
the better graft substitute. As described above, autologous bone material, harvested
through stripping of the laminae to obtain a certain number of lamellae is associated
to limited availability of bone. Moreover, the grafts obtained from the iliac crest
are an expensive procedure not only in term of time, but also in terms of morbidity
of the donor site. Complications like post-op pain, hematoma, infection and blood
loss (25-30%) limits its use [5]. An additional alternative is using allograft bone
but this procedure can be associated with disease transmission, bacterial contamina-
tion or host-related reaction [54]. The use of magnesium-doped hydroxyapatite/type
I collagen 3D scaffold [45] is effective to achieve extensive spinal fusion in the
surgical treatment of adult scoliosis and can be safely mixed with autologous bone
(Figs. 12.3 and 12.4). The scaffold shows physicochemical, structural, morpholog-
ical and ultrastructural features similar to the newly formed bone tissue (Figs. 12.5
and 12.6) [55]. This biomimetic scaffold demonstrated great potential for osteogenic
activities both in vitro and in vivo mouse model, showing high rates of blood vessels
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Fig. 12.3 Intraoperative
image showing the
malleability and flexibility of
the magnesium-doped
hydroxyapatite/type I
collagen 3D scaffold. The
device can be cut and shaped
according to the surgeon’s
needs

Fig. 12.4 Intraoperative
imagine showing the use of
the magnesium-doped
hydroxyapatite/type 1
collagen 3D scaffold in
association with local
autologous bone graft for the
postero-lateral fusion in the
adult scoliosis surgery

ingrowth and bone formation with successful fusion. The characteristics of such new
scaffold have been described by Grigolo et al. [56] that reported the case of a long
posterolateral fusion for treatment of adult scoliosis with sagittal imbalance. One
year later during the revision surgery, a histological examination found the whole
osteointegration of the graft (Fig. 12.7).

12.8.2 Septic Bone Disease

Bone and joint infections are a major complication in orthopedic and trauma surgery
[25]. The presence of implanted biomaterials or foreign bodies strongly increases
the risk of local infection, due to the ability of bacteria to adhere on implant surfaces
and to form protective biofilm [57-59]. The chronic bone infections are probably
the most difficult condition to treat because the infected bone is partially or totally
avascular, so the antibiotics are difficulty blood-delivered. Moreover, the infected
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Fig. 12.5 Posterior a and Lateral b X-ray at 36 months of follow-up showing successful postero-
lateral fusion using magnesium-hydroxyapatite/collagen scaffolds, as confirmed by the presence of
mature bony trabeculae (arrows), in a patient who underwent T10 ileum fusion

Fig. 12.6 Intraoperative
imagine of postero-lateral
fusion area at 30 months
(case of spine revision
surgery in adult scoliosis)
that shows a complete
osteointegration of
hydroxyapatite/type I
collagen 3D scaffold
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Fig. 12.7 Histological imagines showing newly formed bone tissue marked by purple-red staining
(black arrows) and the complete osteointegration at 30 months post-op

bone is surrounded by fibrous tissue with low blood flow and inflammatory charac-
teristics, thus unable to protect the bone or to induce healing. For this reason, in these
cases, large excision of the infected structures is mandatory for a correct treatment.
The resulting bone gaps is often very important requiring a difficult and extensive
grafting associated to high risk of recurrence.

In fact, most of the bone substitutes are contraindicated in the treatment of osteitis.
In this critical situations effective infection control and bone defects management is
very challenging and the autologous bone graft remains the gold standard. The new
generations of bone substitutes have shown the ability to be have as local carriers of
antibiotics, acting at the same time as a bone filler, an osteoconductive biomaterial and
alocal antibacterial [10, 60, 61]. The most studied of the biocompatible carriers so far
has been collagen, especially the bovine collagen. The gentamicin has been added
to the collagen matrix, resulting in the so-called gentamicine containing collagen
implants (GCCI) [62].

It was reported that the introduction of gentamycin in the collagen/hydroxyapatite
composite resulted in an increase in the therapeutic effect of the drug due to
the possibility of its slow release over a long period of time. Parent et al. deter-
mined the profile of vancomycin release from hydroxyapatite scaffolds that were
treated with different concentrations of this antibiotic [63]. In this study, all the
analyzed scaffolds showed good bactericidal properties against Staphylococcus
Aureus. For this reason, the ternary system containing hydroxyapatite, collagen and
vancomycin seems to be an interesting solution [64]. In a study by Egawa et al.,
vancomycin/hydroxyapatite/collagen composites showed higher adsorption rates and
antibacterial activity in rats’ model [65]. In another study [66], the authors inves-
tigated the vancomycin release and bone stimulant properties in the treatment of
osteomyelitis. The porous heparinized nanohydroxyapatite/ collagen granules and
vancomycin showed the ability to eliminate bacteria achieving bone regeneration.
The magnesium-doped hydroxyapatite/type I collagen 3D scaffold preloaded with
vancomycin or with vancomycin and meropenem shows a rate of infection control
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comparable with other existing methods of local antibiotic delivery but has a higher
tolerability even with implanted biomaterials.

12.9 Summary

The goal of bone grafting is the restoration of functional bone, not only the filling of
a gap. For this reason, is a complex process which success depends on the host and
the accurate choice of the properly graft for the single case. The most actual tendency
is that of obtaining and using BG with properties as close to those of autograft. The
new generation magnesium-doped hydroxyapatite/type I collagen 3D scaffold is an
effective and safe bone substitute and seems to be useful also in spinal fusion and
orthopedic infection’s field without adverse and inflammatory reactions.

Future researches are needed to clarify the mechanisms of osteointegration
and local tissue responses with the aim of improving this model of biomaterial
engineering.

References

1. Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: an update. Injury 36(Suppl
3):S20-S27
2. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920-926
3. Dimitriou R, Jones E, McGonagle D et al (2011) Bone regeneration: currnt concepts and future
directions. BMC Med 9:66
4. Geiger M, Li RH, Friess W (2003) Collagen sponges for bone regeneration with rhBMP-2.
Adv Drug Deliv Rev 55:1613-1629
5. Park JJ, Hershman SH, Kim YH (2013) Updates in the use of bone grafts in the lumbar spine.
Bull Hosp Jt Dis 71:39-48
6. Carlson GA, Dragoo JL, Samimi B et al (2004) Bacteriostatic properties of biomatrices against
common orthopaedic pathogens. Biochem Biophys Res Commun 321:472-478
7. Silber JS, Anderson DG, Daffner SD et al (2003) Donor site morbidity after anterior iliac crest
bone harvest for single-level anterior cervical discectomy and fusion. Spine 28:134-139
8. Uemura T, Dong J, Wang Y et al (2003) Transplantation of cultured bone cells using
combinations of scaffolds and culture techniques. Biomaterials 24:2277-2286
9. Gupta A, Kukkar N, Sharif K et al (2015) Bone graft substitutes for spine fusion: a brief review.
World J Orthop 6:449-456
10. Campana V, Milano G, Pagano E et al (2014) Bone substitutes in orthopaedic surgery: from
basic science to clinical practice. J Mater Sci Mater Med 25:2445-2461
11. Miyazaki M, Tsumura H, Wang JC et al (2009) An update on bone substitutes for spinal fusion.
Eur Spine J 18:783-799
12. Alsaleh KA, Tougas CA, Roffey DM et al (2012) Osteoconductive bone graft extenders in
posterolateral thoracolumbar spinal fusion: a systematic review. Spine 37:E993-E1000
13. Lerner T, Bullmann V, Schulte TL et al (2009) A level-1 pilot study to evaluate of ultraporous
beta-tricalcium phosphate as a graft extender in the posterior correction of adolescent idiopathic
scoliosis. Eur Spine J 18:170-179



260

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

P. D. Giorgi et al.

Dai LY, Jiang LS (2008) Single-level instrumented posterolateral fusion of lumbar spine
with beta-tricalcium phosphate versus autograft: a prospective, randomized study with 3-year
follow-up. Spine 33:1299-1304

Linovitz RJ, Peppers TA (2002) Use of an advanced formulation of beta-tricalcium phosphate
as a bone extender in interbody lumbar fusion. Orthopedics 25(5 Suppl):s585-s589

Muschik M, Ludwig R, Halbhiibner S et al (2001) Beta-tricalcium phosphate as a bone
substitute for dorsal spinal fusion in adolescent idiopathic scoliosis: preliminary results of
a prospective clinical study. Eur Spine J 10(Suppl 2):S178-S184

Gao C, Deng Y, Feng P et al (2014) Current progress in bioactive ceramic scaffolds for bone
repair and regeneration. Int J Mol Sci 15:4714-4732

Zhou H, Lee J (2011) Nanoscale hydroxyapatite particles for bone tissue engineering. Acta
Biomater 7:2769-2781

Wang X, Grogan SP, Rieser F et al (2004) Tissue engineering of biphasic cartilage constructs
using various biodegradable scaffolds: an in vitro study. Biomaterials 25:3681-3688

Clarke KI, Graves SE, Wong ATC et al (1993) Investigation into the formation and mechanical
properties of a bioactive material based on collagen and calcium phosphate. J Mater Sci: Mater
Med 4:107-110

O’Brien FJ, Harley BA, Yannas IV et al (2004) Influence of freezing rate on pore structure in
freeze-dried collagen-GAG scaffolds. Biomaterials 25:1077-1086

Kikuchi M, Matsumoto HN, Yamada T et al (2004) Glutaraldehyde cross-linked hydroxyap-
atite/collagen self-organized nanocomposites. Biomaterials 25:63—69

Nishida J, Shimamura T (2008) Methods of reconstruction for bone defect after tumor excision:
areview of alternatives. Med Sci Monit 14:RA107-RA113

Holt G, Murnaghan C, Reilly J et al (2007) The biology of aseptic osteolysis. Clin Orthop Relat
Res 460:240-252

Romano CL, Romano D, Logoluso N et al (2011) Bone and joint infections in adults: a
comprehensive classification proposal. Eur Orthop Traumatol 1:207-217

Larsson S, Hannink G (2011) Injectable bone-graft substitutes: current products, their
characteristics and indications, and new developments. Injury 42(Suppl 2):S30-S34

Altman GH, Diaz F, Jakuba C et al (2003) Silk-based biomaterials. Biomaterials 24:401-416
White AA, Best SM, Kinloch IA (2007) Hydroxyapatite-carbon nanotube composites for
biomedical applications: a review. Int J Appl Ceram Technol 4:1-13

Yoshikawa H, Myoui A (2005) Bone tissue engineering with porous hydroxyapatite ceramics.
J Artif Organs 8:131-136

LiuY, Kim YK, Dai L et al (2011) Hierarchical and non-hierarchical mineralisation of collagen.
Biomaterials 32:1291-1300

Xie J, Baumann MJ, McCabe LR (2004) Osteoblasts respond to hydroxyapatite surfaces with
immediate changes in gene expression. J Biomed Mater Res A 71:108-117

Wang RZ, Cui FZ, Lu HB et al (1995) Synthesis of nanophase hydroxyapatite/collagen
composite. J Mater Sci Lett 14:490-492

Serre CM, Papillard M, Chavassieux P et al (1993) In vitro induction of a calcifying matrix
by biomaterials constituted of collagen and/or hydroxyapatite: an ultrastructural comparison
of three types of biomaterials. Biomaterials 14:97-106

Scabbia A, Trombelli L (2004) A comparative study on the use of a HA/collagen/chondroitin
sulphate biomaterial (Biostite) and a bovine-derived HA xenograft (Bio-Oss) in the treatment
of deep intra-osseous defects. J Clin Periodontol 31:348-355

Johnson KD, Frierson KE, Keller TS et al (1996) Porous ceramics as bone graft substitutes
in long bone defects: a biomechanical, histological, and radiographic analysis. J Orthop Res
14:351-369

El-Amin SF, Lu HH, Khan Y et al (2003) Extracellular matrix production by human osteoblasts
cultured on biodegradable polymers applicable for tissue engineering. Biomaterials 24:1213—
1221

Celotti G, Tampieri A, Sprio S et al (2006) Crystallinity in apatites: how can a truly disordered
fraction be distinguished from nanosize crystalline domains? J Mater Sci Mater Med 17:1079—
1087



38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Orthopedic Application of Collagen-Hydroxyapatite Bone Substitutes ... 261

Landi E, Tampieri A, Celotti G (2005) Nucleation of biomimetic apatite in synthetic body
fluids: dense and porous scaffold development. Biomaterials 26:2835-2845

Bigi A, Foresti E, Gregorini R et al (1992) The role of magnesium on the structure of biological
apatites. Calcif Tissue Int 50:439-444

Chen Z, Klein T, Murray RZ et al (2016) Osteoimmunomodulation for the development of
advanced bone biomaterials. Mater Today 19:304-321

O’Neill E, Awale G, Daneshmandi L et al (2018) The roles of ions on bone regeneration. Drug
Discov Today 23:879-890

Song Y, WuH, Gao Y etal (2020) Zinc silicate/nano-hydroxyapatite/collagen scaffolds promote
angiogenesis and bone regeneration via the p38 MAPK pathway in activated monocytes. ACS
Appl Mater Interfaces 12:16058-16075

Suzuki T, Katsumata S, Matsuzaki H et al (2016) A short-term zinc-deficient diet decreases bone
formation through down-regulated BMP2 in rat bone. Biosci Biotechnol Biochem 80:1433—
1435

YuL, Rowe DW, Perera IP et al (2020) Intrafibrillar mineralized collagen-hydroxyapatite-based
scaffolds for bone regeneration. ACS Appl Mater Interfaces 12:18235-18249

Giorgi P, Capitani D, Sprio S et al (2017) A new bioinspired collagen-hydroxyapatite bone
graft substitute in adult scoliosis surgery: results at 3-year follow-up. J Appl Biomater Funct
Mater 15:¢262-e270

Barbanti Brodano G, Gritfoni C, Zanotti B et al (2015) A post-market surveillance analysis of
the safety of hydroxyapatite-derived products as bone graft extenders or substitutes for spine
fusion. Eur Rev Med Pharmacol Sci 19:3548-3555

Tampieri A, Celotti G, Landi E et al (2003) Biologically inspired synthesis of bone-like
composite: self-assembled collagen fibers/hydroxyapatite nanocrystals. J] Biomed Mater Res
A 67:618-625

Minardi S, Corradetti B, Taraballi F et al (2015) Evaluation of the osteoinductive potential of
a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation. Biomaterials
62:128-137

Tampieri A, Sprio S, Sandri M et al (2011) Mimicking natural bio-mineralization processes: a
new tool for osteochondral scaffold development. Trends Biotechnol 29:526-535

Weiner S (2008) Biomineralization: a structural perspective. J Struct Biol 163:229-234

Kon E, Delcogliano M, Filardo G et al (2010) Orderly osteochondral regeneration in a sheep
model using a novel nano-composite multilayered biomaterial. J Orthop Res 28:116-124
Kon E, Filardo G, Delcogliano M et al (2010) Platelet autologous growth factors decrease the
osteochondral regeneration capability of a collagen-hydroxyapatite scaffold in a sheep model.
BMC Musculoskelet Disord 11:220

France JC, Yaszemski MJ, Lauerman WC et al (1999) A randomized prospective study of
posterolateral lumbar fusion. Outcomes with and without pedicle screw instrumentation. Spine
24:553-560

Delloye C, Cornu O, Druez V et al (2007) Bone allografts: what they can offer and what they
cannot. J Bone Joint Surg Br 89:574-579

Sprio S, Sandri M, Panseri S et al (2012) Hybrid scaffolds for tissue regeneration: chemotaxis
and physical confinement as sources of biomimesis. J Nanomater 2012:e418281. https://doi.
org/10.1155/2012/418281

Grigolo G, Dolzani P, Giannetti C et al (2016) Use of a fully-resorbable, biomimetic composite
hydroxyapatite as bone graft substitute for posterolateral spine fusion: a case report. Int J Clin
Exp Med 9:22458-22462

Gristina AG, Shibata Y, Giridhar G et al (1994) The glycocalyx, biofilm, microbes, and resistant
infection. Semin Arthroplasty 5:160-170

Gristina AG (1987) Biomaterial-centered infection: microbial adhesion versus tissue integra-
tion. Science 237:1588-1595

Gristina AG, Costerton JW (1984) Bacterial adherence and the glycocalyx and their role in
musculoskeletal infection. Orthop Clin North Am 15:517-535


https://doi.org/10.1155/2012/418281

262

60.

61.

62.

63.

64.

65.

66.

P. D. Giorgi et al.

Hanssen AD (2005) Local antibiotic delivery vehicles in the treatment of musculoskeletal
infection. Clin Orthop Relat Res. https://doi.org/10.1097/01.b10.0000175713.30506.77
Zalavras CG, Patzakis MJ, Holtom P (2004) Local antibiotic therapy in the treatment of
open fractures and osteomyelitis. Clin Orthop Relat Res. https://doi.org/10.1097/01.blo.000
0143571.18892.8d

Noah EM, Chen J, Jiao X et al (2002) Impact of sterilization on the porous design and cell
behavior in collagen sponges prepared for tissue engineering. Biomaterials 23:2855-2861
Parent M, Magnaudeix A, Delebassée S et al (2016) Hydroxyapatite microporous bioceramics
as vancomycin reservoir: antibacterial efficiency and biocompatibility investigation. J Biomater
Appl 31:488-498

Suchy T, Supova M, Klapkové E et al (2016) The sustainable release of vancomycin and its
degradation products from nanostructured collagen/hydroxyapatite composite layers. J Pharm
Sci 105:1288-1294

Egawa S, Hirai K, Matsumoto R et al (2020) Efficacy of antibiotic-loaded hydroxyap-
atite/collagen composites is dependent on adsorbability for treating staphylococcus aureus
osteomyelitis in rats. J Orthop Res 38:843-851

Coelho CC, Sousa SR, Monteiro FJ (2015) Heparinized nanohydroxyapatite/collagen granules
for controlled release of vancomycin. J Biomed Mater Res A 103:3128-3138

Pietro Domenico Giorgi Dr. Giorgi is an orthopaedics and trau-
matology specialist and consultant spine surgeon. Dr. Giorgi
also serves as the director of the spine center: traumatic and
degenerative disease at ASST Grande Ospedale Metropolitano
Niguarda, Emergency and Urgency Department, Orthopedic and
Traumatology Unit. In addition, Dr. Giorgi is also a member
of AOSpine Europe. Dr. Giorgi is skilled in traumatic vertebral
fracture and spinal cord injuries as well as an expert in anterior
surgical approaches and minimally invasive spinal surgeries.

Giuseppe Rosario Schiro Dr. Schird is an orthopaedics and
traumatology specialist as well as a consultant spine surgeon
at ASST Grande Ospedale Metropolitano Niguarda, Emergency
and Urgency Department, Orthopedic and Traumayology Unit.
Dr. Schiro is skilled in traumatic vertebral fracture and spinal
cord injuries.


https://doi.org/10.1097/01.blo.0000175713.30506.77
https://doi.org/10.1097/01.blo.0000143571.18892.8d

12 Orthopedic Application of Collagen-Hydroxyapatite Bone Substitutes ... 263

Simona Legrenzi Dr. Legrenzi is an orthopaedics and trau-
matology specialist as well as a consultant spine surgeon at
ASST Grande Ospedale Metropolitano Niguarda, Emergency
and Urgency Department, Orthopedic and Traumayology Unit.

Francesco Puglia Dr. Puglia is a fellow resident at ASST
Grande Ospedale Metropolitano Niguarda, Emergency and
Urgency Department, Orthopedic and Traumatology Unit.




Index

A

Absorbable collagen sponge, 234, 241

Additive manufacturing, 15, 16, 56, 58, 221

Adenosine, 23, 60-62

Adipogenic differentiation, 115

Alginate, 5, 6, 10, 193

Allograft, 17, 176, 196-198, 236-240, 242,
248, 249, 255

Alumina (Al,03), 159, 176, 178, 216

Amino acid, 189

Angiogenesis, 19, 24, 25, 28, 160, 161,
163, 167, 172, 177, 189, 191, 195,
248,252

Angiopoietin, 189

Antibacterial, 10, 178, 258

Antibacterial activity, 177, 258

Antibiotic-resistant bacteria, 1

Antibiotics, 4, 7, 10, 256, 258, 259

Antimicrobial, 219

Autogenous bone grafts, 26, 57, 194

Autograft, 28, 127, 176, 177, 179, 231-233,
235-238, 240-242, 247-249, 259

Autologous platelet concentrate, 241

B

Bacteria, 6, 8, 9, 76, 256, 258

Bacterial infection, 2, 10

B cells, 77, 79

Bilateral Sagittal Split Ramus Osteotomy
(BSSRO), 39, 42, 47

Bioactive, 17, 18, 21, 35, 37, 41, 42, 44, 45,
48, 49, 56-62, 67, 68, 159, 160, 164,
165, 168, 170, 176, 178, 189

Bioactive glass, 20, 21, 167, 176, 234, 235

Bioceramics, 17, 18, 35-37, 157, 159-162,
164, 166, 167, 170-174, 176, 177,
179, 187, 193, 194

Bioceramic scaffolds, 15, 63, 170, 171,
177, 189, 199

Biocompatibility, 4, 36, 46, 49, 57, 128,
164, 165, 170, 172, 174, 175, 187,
193, 218, 247, 249-251

Biocomposite, vi

Biofilm, 219, 256

Biofilm formation, 219

Bioglass, 17, 18, 20, 159, 165, 167, 168,
176, 178, 179, 197

Bioinert, 16

Biological scaffold, 15, 16

Biomaterials, 15, 17-19, 21, 24, 26, 28, 29,
36, 48, 56, 57, 66, 67, 164, 168, 171,
179, 209, 214, 215, 219, 247-249,
251-253, 256, 258, 259

Biomimetics, 159, 161, 171, 173, 178, 179,
247, 250, 253, 255

Biomimicry, 24, 166, 172

Bionics, vi

Bioprinting, 15, 16, 21, 24, 25

Bioresorbable, 35-42, 44-49, 165, 198,
247,248

Bioresorbable grafts, 249

Bioresorbable osteosynthetic implants, 46

BMP classification, 190

Bone cells, 115, 160, 172, 188

Bone defects, 21, 25, 28, 57, 58, 128, 129,
131, 140, 146, 148, 165, 169, 171,
176, 178, 195, 237, 248-250, 258

Bone fixation, 35-37, 45, 46, 48, 218

© The Editor(s) (if applicable) and The Author(s), under exclusive license 265

to Springer Nature Singapore Pte Ltd. 2022

A. H. Choi and B. Ben-Nissan (eds.), Innovative Bioceramics in Translational
Medicine II, Springer Series in Biomaterials Science and Engineering 18,

https://doi.org/10.1007/978-981-16-7439-6


https://doi.org/10.1007/978-981-16-7439-6

266

Bone formation, 22, 60-63, 66-68, 83, 84,
86, 96-100, 103, 111, 112, 115,
117-119, 140, 145, 146, 148, 157,
161-163, 166, 168-170, 177-179,
188, 190, 195, 232234, 239, 241,
250, 252, 253, 255, 256

Bone fracture, 127, 157, 161, 189, 191, 240

Bone grafts, 16, 26, 46, 63, 66, 127, 159,
164, 165, 169, 176, 177, 194, 195,
197, 199, 231-233, 235-237,
240-242, 248-250, 255, 256, 258

Bone healing, 16, 18, 22, 35-37, 42, 46, 49,
68, 188, 196, 219, 247, 248

Bone infection, 161, 250, 256

Bone lining cell, 159, 188

Bone marrow aspirates, 232, 237-239, 242

Bone metabolism, 106

Bone Mineral Density (BMD), 84, 86-92,
94,95, 97,99-101, 103-105, 111,
113-118, 120, 121

Bone Morphogenetic Protein (BMP), 17,
21,22, 158, 161-163, 170, 177, 187,
189-199, 219, 232, 236, 237,
239-242

Bone regeneration, 17-23, 25, 26, 37, 45,
46, 48, 57, 58, 60, 61, 68, 146, 157,
159, 161, 162, 166, 168, 169, 171,
173, 179, 188, 192, 195, 252, 255,
258

Bone remodeling, 83, 86, 94, 95, 112, 113,
120, 158, 163, 177, 188, 189, 199,
249

Bone substitutes, 18, 21, 127-130, 136,
140, 146, 148, 178, 231, 233, 237,
238, 242, 247, 250, 253, 255, 258,
259

Bone tissue engineering, 15-17, 21, 25-28,
55,57, 63,67, 68, 177, 199

Brain, 25, 158

C

Calcite, 130-134, 136-138, 140, 141,
143-146, 149

Calcium Carbonate (CaCO3), 130, 131,
134, 136, 146, 149

Calcium hydroxide (Ca(OH>)), 131

Calcium phosphate, 18, 20, 25, 43, 57,
128-131, 136, 144, 148, 159, 161,
164, 168-170, 176-178, 193, 194,
197, 238, 250, 251

Calcium phosphate cement, 20, 179, 194,
218

Calcium sulfate, 130, 159, 233-235

Index

Callus, 36

Carbonate apatite, 130, 134, 148, 164

Carbonation, 131-133, 135, 136, 140, 144,
146, 149

Cartilage regeneration, 198

Chitosan, 23, 178, 193, 197, 198

Chondrogenic differentiation, 115

CO3Ap bone substitutes, 129-131, 133,
135, 136, 143, 146, 149

CO3Ap foam, 141

Coatings, 46, 141, 159, 162, 164, 165, 167,
175, 176, 194, 197, 218, 220

Collagen, 6, 17, 19, 22, 23,27, 62, 63, 84,
113,129, 130, 141, 158, 164, 169,
176-178, 193, 194, 196-198, 211,
232,236, 239-242, 247, 249-259

Composite scaffold, 199, 252

Compositional transformation, 131,
133-140, 144, 146

Computer-Aided Design (CAD), 15, 16, 28,
67

Computer-Assisted Manufacturing (CAM),
28, 67

Copper, 178

Coral, 130, 197, 233

Corticocancellous allograft, 236, 237

Craniomaxillofacial surgery, 56

Crystal growth, 253

Crystal structure, 189

D

Delivery carrier, 197, 198

Demineralized Bone Matrix (DBM), 17,
18, 177, 195-197, 232, 236, 237

Denosumab, 75, 79-81, 83, 85-95, 97, 101,
104-106, 111-114, 116-118, 120

Dental implants, 16, 57, 164

Dental pulp, 22, 26

Dicalcium Phosphate (DCPD), 20, 128,
130, 135, 138, 143, 144, 146, 166,
169, 179

Differentiation factor, 189-191, 239

Dipyridamole (DIPY), 60-63, 65, 66

Direct ink writing, 58

Dressing materials, 2, 4-6, 8,9, 11

Drug delivery, 13, 205-207

E

Embryonic Stem Cells (ESCs), 22
Escherichia coli (E. coli), 177
Exosome, 23, 24



Index

Extracellular Matrix (ECM), 3, 8, 22, 24,
157, 158, 160-162, 164, 172, 174,
179, 188, 189, 191, 198, 251, 253

F

Facial fractures, 28, 35, 48

Fibroblast Growth Factor (FGF), 158, 189,
196, 236

Fracture fixation, 48, 49

Fracture healing, 24, 88, 93, 115, 157, 161,
188, 189, 191, 196

Fracture repair, 195, 240

G

Gene delivery, 161

Gene expression, 174, 195, 239

Glass ceramics, 168, 220, 235

Growth factor, 4, 8, 10, 15-18, 67, 81, 83,
158, 160-162, 167, 168, 171, 172,
176, 177, 179, 188, 189, 194-199,
232,236,237, 240, 241, 248, 252

Gypsum, 134, 136, 139, 140, 146

H

Hard tissue, 1, 2, 67, 127, 136, 157, 164,
167

Hip fracture, 88, 92, 104, 105, 111, 112,
117

Honeycomb scaffolds, 145, 147

Hot Isostatic Pressing (HIP), 86-90, 92, 94,
100, 101, 103-105, 111, 113, 114,
116-118, 218, 249

Hydrocolloid, 5, 6, 9, 10

Hydrogels, 5, 6, 10, 24, 25, 178, 198, 242

Hydroxyapatite (HAp), 17-20, 23, 37, 38,
41-43, 4549, 57, 66, 128-130, 136,
139, 144, 146, 148, 149, 158, 159,
164-170, 173, 174, 176178, 188,
193, 194, 197, 198, 221, 233, 234,
239-241, 247, 249-259

I

Iliac crest bone graft, 192, 233

Implantable bionics, vi

Induced Pluripotent Stem Cells (iPSCs),
20, 22-24

Infection, 1, 2, 5-10, 16, 36, 47, 48, 88, 92,
93, 127, 161, 175, 176, 219, 232,
236, 247-250, 255, 256, 259

Infection control, 1, 258

267

Infection treatments, 10

Injectable bioceramics, 178

Insulin-like Growth Factor (IGF), 17, 18,
161, 189, 196, 236

Interbody cages, 209, 214, 219

Interleukin (IL), 113, 161, 162, 189

K
Kappa-B ligand, 111, 112

L

Layer by layer, 15, 16

Local autograft, 232, 233, 235, 238, 239,
248

M

Magnesium, 19-21, 37, 46, 49, 157, 170,
173,174, 178, 194, 247, 252-259

Marine biomaterials, 206

Mass Spectrometry (MS), 22, 27, 38, 42,
44,189, 219

Maxillofacial reconstructive surgery, 15

Medication efficacy, 84

Mesenchymal Stem Cell (MSC), 17, 19-27,
67, 68, 115, 160, 161, 170, 172, 174,
175, 177, 188, 189, 191, 195, 198,
220

Metalloproteinases, 189

Monoclonal antibody, 75-83, 85-87, 94,
95,97, 106, 112, 115

Murine antibody, 79, 80

N

Nanocoating, 175
Nanocomposite, 175
Nano-Hydroxyapatite, 23, 178
Non-Union fracture, 28, 177, 196

(0]

OPG, 83-85, 106, 161-163

Orthognathic surgery, 28, 35, 39, 40, 42, 47

Osseoinductive pharmaceuticals, 60

Osseointegration, 22, 36, 160, 166, 172,
176

Osteoblast, 16, 18, 19, 21-23, 43, 60-62,
82-84, 86,96, 112, 115, 157,
160-163, 166, 168, 171, 172, 174,
178, 187, 189-191, 195, 221, 232,
239, 252,253



268

Osteoclast, 22, 60-62, 82-86, 96, 112—115,
162, 163, 171, 188, 189, 199

Osteoconduction, 66, 170, 179, 231, 232,
237, 248, 250

Osteocyte, 96, 112, 114, 115, 149, 160,
171, 188

Osteogenesis, 17-21, 23, 28, 60, 62, 67,
159, 160, 168, 169, 176, 177, 179,
190, 195, 231, 232, 239, 248, 250,
252,255

Osteogenic differentiation, 21-23, 170,
174, 219, 249

Osteogenic progenitor cells, 60

Osteoinduction, 170, 177, 179, 190, 231,
232,248,250

Osteomyelitis, 178, 248, 250, 258

Osteoporosis, 75, 76, 78, 81, 83-88, 90, 91,
94-97, 99, 100-106, 111-113,
115-118, 120, 160, 177, 213, 236,
250, 252

Osteoprogenitor bone cells, 163, 170

Osteosynthesis materials, 37, 39, 46, 49

P

Pacemaker, vi

Pedicle screws, 209, 214, 218, 219, 222,
223

Peptide, 21, 84, 158, 160-162, 167, 172,
177

Phase transformation, 130, 131

Phenotype, 97, 115, 174

Phosphatization, 137

Plasma spraying, 220

Platelet-Derived Growth Factor (PDGF),
158, 189, 196, 198, 236

Pluripotent cells, 36

Polyclonal antibodies, 77

Poly-D-lactic acid, 37, 39

Polyetheretherketone (PEEK), 219, 220

Polyglycolic acid, 37, 38, 43, 252

Poly(lactic acid), 10, 23, 39, 168, 193

Poly-L-lactic acid, 37-39, 43, 252

Porous scaffolds, 18, 19, 66, 159, 166

Posterolateral lumbar fusion, 233

Precursor blocks, 130-132, 134-138, 140,
141

Pre-osteoblast, 177, 188

Pro-inflammatory cytokines, 188, 189

Proteins, 17, 18, 20, 22, 23, 43, 60, 76, 77,
79-83, 95, 96, 115, 158, 160-163,
165, 167, 171-174, 176, 177,
189-192, 195, 198, 219, 236, 239,
247

Index

Proteomics, 22

Q
Quantum Dots (QDs)

R

RANK, 83-86, 92, 96, 106, 112, 113

RANKIL, 83-87, 92, 96, 106, 111-114

Recombinant Human bMPs (thBMPs),
192, 194, 196, 237, 239, 240

Recombinant human bone morphogenic
protein-2 (rthBMP-2), 60, 61, 192,
194, 196, 198, 239, 240

Regenerative pharmaceuticals, 60

Resorbable material, 35, 48

Robocasting, 58

Romosozumab, 75, 79-81, 83, 97-106,
111,112, 115-120

S

Scaffold, 17-25, 28, 57-68, 128, 145, 160,
164, 166, 170, 171, 174, 177-179,
187-189, 193, 197, 198, 219, 221,
232,235,242, 247, 250-259

Sclerostin, 83, 96, 97, 111, 112, 115, 120

Selective laser sintering, 221

Self-Assembly approach, 24

Self-Healing, vi

Self-Repair

Septic bone disease, 256

Serine, 187, 190

Signaling cascades, 195

Silver, 5, 173, 177

Skeletal defects, 247, 248

Skeletal disorder, 75

Skin graft, 9, 10

Smad proteins, 190

Smart bioceramics, 157, 159-161, 165,
166, 168, 170, 171, 178, 179

Sol-Gel, 21, 167

Spine surgery, 220, 221, 223, 224, 239, 255

Staphylococcus aureus (S. aureus), 177, 258

Staphylococcus epidermidis (S.
epidermidis), 219

Stem cells, 17, 21, 26, 67, 84, 158, 169,
195, 196, 219

Strontium, 19, 21, 157, 173, 178, 221

Surface functionalization, 248

Surface modification, 11, 46, 159, 160

Surface treatment, 155

Surgical wounds, 1, 2, 5-11



Index

T

Tetracalcium phosphate (TTCP), 128, 179

Thin film, 6

3D printing, 16, 18, 19, 21, 22, 25, 28,
56-58, 65, 66, 172, 179, 209,
220-224

Ti-6Al1-4V, 249

Tissue engineering, 27, 57, 65, 68, 159,
171, 221, 247-250

Tissue engineering scaffold, 253

Titanium, 19, 25, 28, 35-37, 4649, 168,
170, 173, 176, 217-220, 249, 255

Titanium alloy, 217-219

Titanium Dioxide (TiO,), 177

Total joint arthroplasty, 9

Transforming Growth Factor (TGF), 158,
161, 163, 177, 187-189, 195, 196,
198, 236, 239

Tricalcium Phosphate (TCP), 18-20, 23,
57-59, 65, 66, 128-130, 135, 136,
138, 141, 143-145, 148, 159,
164-166, 169, 170, 173, 174, 177,

269

178, 193, 194, 197, 233, 234,
239-241, 249, 252

Tumor Necrosis Factor (TNF), 23, 85, 112,
158, 161, 162, 189

A\

Vascular Endothelial Growth Factor
(VEGF), 17, 161, 162, 189, 196

Vascularization, 28, 148, 161, 177

W

Wht signaling pathway, 83, 96, 97, 106
Wound dressing, 1, 2, 4-8, 10, 11
Wound healing, 1-5, 7-10, 248

Wound management, 1-3, 5, 8, 11

V4
Zinc, 157, 173, 174, 178, 252
Zirconia, 19, 159



	Preface
	Contents
	Editors and Contributors
	1 Past and Future of Wound Dressing in Soft and Hard Tissue Surgery
	1.1 Introduction
	1.2 Wound Healing
	1.2.1 Phases of Acute Wound Healing

	1.3 Wound Dressings
	1.4 Post-operative Wound Management
	1.4.1 Post-operative Wound Complications
	1.4.2 Dressing Selection on Surgical Wounds

	1.5 Future Directions
	1.6 Conclusion Remarks
	References

	2 3D Printing and Bioprinting of Biomaterials and Bioceramic Scaffolds: Clinical Outcomes and Implications in Bone Tissue Engineering and Maxillofacial Reconstructive Surgery
	2.1 Introduction
	2.2 Bone Tissue Engineering
	2.3 Biomaterials in Bone Tissue Engineering
	2.3.1 Demineralized Bone Matrix
	2.3.2 Bioceramics and Bioglasses

	2.4 Cells in Bone Tissue Engineering
	2.4.1 Mesenchymal Stem Cells (MSCs)
	2.4.2 Induced Pluripotent Stem Cells (iPSCs)
	2.4.3 Exosome

	2.5 3D Bioprinting Approaches
	2.5.1 Biomimicry
	2.5.2 Self-assembly Approach
	2.5.3 3D Bioprinting in  Bone Tissue Engineering and Craniofacial Reconstruction

	2.6 Concluding Remarks
	References

	3 Bioresorbable Bone Fixation Devices for Oral and Maxillofacial Surgery
	3.1 Introduction
	3.2 Polymer-Based Osteosynthesis Materials
	3.2.1 Polyglycolic Acid
	3.2.2 Poly(Lactic Acid): Poly-L-Lactic Acid and Poly-D-Lactic Acid
	3.2.3 Co-polymers of Polyglycolic Acid, Poly-L-Lactic Acid, and Poly-D-Lactic Acid
	3.2.4 Unsintered Hydroxyapatite and PLLA Bioactive/Bioresorbable Material
	3.2.5 Unsintered Hydroxyapatite/Poly-L-Lactic Acid/Polyglycolic Acid Bioactive/Resorbable Material

	3.3 Magnesium-Based Bioresorbable Material
	3.4 Clinical Significance
	3.4.1 Clinical Applications in Orthognathic Surgery
	3.4.2 Clinical Application to Maxillofacial Trauma Surgery

	3.5 Conclusions and Future Perspectives
	References

	4 Tissue Engineering Strategies for Craniomaxillofacial Surgery: Current Trends in 3D-Printed Bioactive Ceramic Scaffolds
	4.1 Introduction
	4.2 Direct Ink Writing for Craniomaxillofacial Applications
	4.3 Personalized Fabrication of Scaffolds
	4.4 Regenerative Pharmaceuticals
	4.5 Translational Evidence: Preclinical Models
	4.6 Conclusions and Future Directions
	References

	5 Clinical Application of Monoclonal Antibodies: Key Technological Advances and Treatment of Osteoporosis
	5.1 Introduction
	5.1.1 Antibody—What is It?
	5.1.2 B Cells—The Immune Response and Formation of Immunoglobulins
	5.1.3 Monoclonal Antibodies: What Are They?

	5.2 Production of Monoclonal Antibody and Key Technological Advances
	5.2.1 Overview
	5.2.2 Hybridoma
	5.2.3 Humanization of the Murine Antibody
	5.2.4 Modulation of Antibody Effector Functions

	5.3 The Naming of Monoclonal Antibodies
	5.4 Monoclonal Antibodies in Therapeutics: General Characteristics and Pharmacokinetics
	5.5 Osteoporosis: Regulation of Bone Metabolism
	5.6 Assessment of Bone Modeling and Remodeling: Osteoporosis Medication Efficacy
	5.7 Denosumab
	5.7.1 RANKL/RANK/OPG System in Skeletal Health
	5.7.2 Development of a Monoclonal Antibody Targeting the RANKL Pathway to Treat Osteoporosis
	5.7.3 Denosumab: Efficacy in Treatment of Osteoporosis
	5.7.4 Denosumab: Safety
	5.7.5 Denosumab: Long-Term Effects on Skeletal Health
	5.7.6 Denosumab in Patients with Chronic Kidney Disease

	5.8 Romosozumab
	5.8.1 The Wnt Signaling Pathway and Sclerostin in Skeletal Health
	5.8.2 Development of a Monoclonal Antibody Targeting Sclerostin to Treat Osteoporosis
	5.8.3 Romosozumab: A Monoclonal Antibody Against Sclerostin Leading to Significant Bone Growth
	5.8.4 Romosozumab: Efficacy in Treatment of Osteoporosis
	5.8.5 Romosozumab: Safety

	5.9 Concluding Remarks
	References

	6 Antibody Treatment and Osteoporosis: Clinical Perspective
	6.1 Introduction
	6.2 RANKL
	6.3 Denosumab
	6.3.1 Bone Turnover Rebound and Post-discontinuation Effects

	6.4 Sclerostin
	6.5 Romosozumab
	6.5.1 Phase II Studies
	6.5.2 Phase III Studies
	6.5.3 Hip Fractures
	6.5.4 Indication, Dosing and Administration
	6.5.5 Safety and Tolerability

	6.6 Concluding Remarks
	References

	7 Fabrication of Fully Artificial Carbonate Apatite Bone Substitutes
	7.1 Introduction
	7.2 Fabrication of Bone Substitutes Through Chemical Reaction Without Sintering
	7.3 Precursor Block Utilized for Fabrication of CO3Ap Bone Substitutes Through Chemical Reaction
	7.4 Fabrication of Calcite Precursor Blocks
	7.4.1 Calcite Precursor Blocks Derived from Ca(OH)2 Compact
	7.4.2 Calcite Precursor Blocks Derived from Gypsum Hardened Blocks

	7.5 Fabrication of Precursor Blocks Consisting Chemical Composition Other Than Calcite
	7.6 Fabrication of CO3Ap Bone Substitutes Through Compositional Transformation of Precursors
	7.6.1 Phosphatization of Calcite Precursor Block
	7.6.2 Carbonation of α-TCP Precursor Block or DCPD Precursor Block
	7.6.3 Phosphatization and Carbonation of Gypsum Precursor Blocks

	7.7 Fabrication of Porous CO3Ap Bone Substitutes and Its Efficacy on New Bone Formation
	7.7.1 Fabrication of Porous Calcite Precursor Block Using Microfiber as a Porogen
	7.7.2 Fabrication of Interconnected Porous CO3Ap Foam Similar to Cancellous Bone
	7.7.3 Fabrication of Interconnected Porous CO3Ap Bone Substitutes by Granular Bridging Method
	7.7.4 Fabrication of CO3Ap Honeycomb Scaffolds by Injection Molding
	7.7.5 Construction of 3-D CO3Ap with Arbitrary Shaped Structure Using 3-D Printer

	7.8 In Vitro and in Vivo Evaluations of CO3Ap Bone Substitutes
	7.9 Basic Researches on CO3Ap Bone Substitutes
	References

	8 Smart Bioceramics for Orthopedic Applications
	8.1 Introduction
	8.2 Implant-Cell Interactions
	8.3 Bioceramics
	8.3.1 Calcium Phosphates
	8.3.2 Bioglass and Glass-Ceramics
	8.3.3 Biocomposites

	8.4 The Criteria of Smart Bioceramics
	8.5 Smart Bioceramics
	8.5.1 Porosity
	8.5.2 Trace Elements with Bioceramics
	8.5.3 Nanoscale Bioceramics

	8.6 Smart Bioceramics for Orthopaedic Applications
	8.6.1 Bioceramic Surface Coatings
	8.6.2 Bone Graft
	8.6.3 Scaffolds
	8.6.4 Injectable Bioceramics

	8.7 Conclusion
	References

	9 Bone Morphogenic Proteins and Bioceramic Scaffolds in Orthopedics
	9.1 Introduction
	9.2 Bone Morphogenetic Proteins and Their Classification
	9.3 Receptors of BMPs
	9.4 Signaling Cascades of BMPs
	9.5 Carriers for BMPs
	9.6 Calcium Phosphate as a Carrier of BMP
	9.7 Role of BMP in Bone Regeneration and Repair
	9.8 Role of BMP in Cartilage Repair
	9.9 Conclusion
	References

	10 Spine Surgery—Part I: Biomechanics, Materials, and 3-D Printing Technology: Surgical Perspective and Clinical Impact
	10.1 Biomechanics of the Spine
	10.1.1 Biomechanics of Normal Spine
	10.1.2 Biomechanics of Abnormal Spine: Spinal Instability
	10.1.3 Clinical Interventions

	10.2 Biomaterials
	10.2.1 Biomaterials: Structural Properties
	10.2.2 Mechanical Properties
	10.2.3 Material Descriptions
	10.2.4 Metal Characteristics
	10.2.5 Non-metal Characteristics
	10.2.6 Surgical Implications

	10.3 Three-Dimensional (3D)-Printing
	10.3.1 Printing Techniques and Tissue Engineering Applications
	10.3.2 Accuracy of 3D Printing
	10.3.3 Preoperative Planning Applications
	10.3.4 Trainee and Patient Education Applications
	10.3.5 Intraoperative Applications: Guidance Systems
	10.3.6 Intraoperative Applications: Implants

	References

	11 Spine Surgery—Part II: Ceramic and Non-ceramic Bone Substitutes: A Surgical Perspective
	11.1 Introduction
	11.2 Ceramic-Based Bone Graft Substitutes
	11.2.1 Hydroxyapatite
	11.2.2 Tricalcium Phosphate (TCP)
	11.2.3 Calcium Sulfate
	11.2.4 Bioactive Glass

	11.3 Non-ceramic-Based Bone Graft Substitutes
	11.3.1 Autograft (Iliac Crest Bone Graft, Local Autograft)
	11.3.2 Allograft (Demineralized Bone Matrix, Corticocancellous Allograft)
	11.3.3 Bone Marrow (Bone Marrow Aspirates, Bone Marrow Concentrate)
	11.3.4 Growth Factors (Bone Morphogenetic Proteins, Autologous Platelet Concentrate)
	11.3.5 Collagen (Absorbable Collagen Sponge)

	11.4 Future of the Bone Substitutes
	References

	12 Orthopedic Application of Collagen-Hydroxyapatite Bone Substitutes: A Clinical Perspective
	12.1 Introduction
	12.2 Bone Defects in Orthopedic Surgery
	12.3 Scaffolds in Orthopedic Surgery
	12.4 Hydroxyapatite
	12.5 Collagen
	12.6 Collagen-Hydroxyapatite Bone Substitutes
	12.7 Biotechnology
	12.8 Pearls and Pitalls
	12.8.1 Spine Surgery
	12.8.2 Septic Bone Disease

	12.9 Summary
	References

	Index



