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Abstract. Human learning optimization (HLO) is a promising meta-heuristic
algorithm inspired by human learning mechanisms. As a binary-coded algorithm,
HLO can be used for discrete problems without modifying the encoding scheme.
However, as the scale of the problem grows, the “combinatorial explosion” phe-
nomenon inevitably occurs, which increases the computational complexity and
reduces the optimization efficiency of HLO. Therefore, this paper extends HLO
and proposes an enhanced discrete HLO (EDHLO) algorithm for the Permutation
Flow Shop Scheduling Problem (PFSSP), in which the original three learning
operators are reformed and new improvement strategies for PFSSP are intro-
duced. First, the Nawaz-Ensco-Ham (NEH) algorithm is utilized to initialize par-
tial population to improve the quality of initial solutions. Second, two crossover
operators are introduced into the individual learning of EDHLO to improve the
diversity of the population and enhance the quality of the solution. Third, a local
search approach is applied to manage escape from the local minimum. A total
of 21 benchmark problems have been taken into account to evaluate the perfor-
mance of EDHLO. The experimental outcomes and the comparison with other
metaheuristics verify the effectiveness and superiority of the EDHLO algorithm.

Keywords: Human learning optimization · Permutation flow shop scheduling
problem · Discrete human learning optimization

1 Introduction

In recent years, to break through the bottleneck limitation of traditional optimization
algorithms, various intelligent optimization algorithms based on animal foraging or other
learning behaviors, such as Artificial Bee Colony, Shuffled Frog Leaping Algorithm and
Firefly Algorithm, have emerged. Compared with other animals in nature, human has
evolved a higher level of intelligence and learning ability and is able to solve complex
problems that other animals are unable to solve. Inspired by a simple yet general human
learning mechanism, Wang et al. proposed Human Learning Optimization (HLO) [1],
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in which the random learning operator, individual learning operator and social learning
operator were designed through simulating the learning mechanism of humans to search
out the optimal solution of problems.

To further improve the optimization performance of HLO, Wang et al. proposed
an adaptive simplified human learning optimization algorithm (ASHLO), which set the
linearly increasing and linearly decreasing adaptive strategy for the parameters pr and
pi, respectively, to maintain the balance between algorithmic exploration and exploita-
tion [2]. Based on the phenomenon that human IQ follows normal distribution on the
whole and shows an upward trend, a diverse human learning optimization algorithm
(DHLO) was proposed, where the social learning capability of all individuals was sub-
ject to normal distribution and tuned dynamically [3]. The simulation results indicate
that DHLO possesses better global optimization performance. Yang et al. adopted an
adaptive strategy based on cosine and sine functions to propose a sine-cosine adap-
tive human learning optimization algorithm (SCHLO) [4]. Later, An improved adaptive
human learning optimization algorithm (IAHLO) [5] which used a two-stage adaptive
strategy to dynamically adjust the execution probability of random learning operators
is proposed, so that the algorithm focused on exploration to diversify the population
at the beginning of iterations, and focused on local search at the later phase of itera-
tions to enhance the mining ability of the algorithm. Nowadays, many various practical
problems, such as extraction of text abstracts [6], financial market forecasts [4], image
processing [7], mixed variable engineering optimization problems [8], and intelligent
control [9–11], have been successfully solved by HLO.

As a binary algorithm, HLO is capable of solving discrete optimization problems
directly. Fan W et al. adopted the ASHLO to take place local search in standard VNS
to solve scheduling problems with multiple constraints [12]. Li et al. took advantage
of HLO to solve the actual production scheduling problem of a dairy plant [13]. Ding
et al. combined an improved PSO and some scheduling strategies to solve the flexible
job shop scheduling problem under the algorithm architecture of HLO [14]. A. Shoja
et al. combined ASHLO with GA and PSO, respectively, to solve the two-stage supply
chain network design problem aiming at minimizing cost [15].

However, with the scale of the problem grows, the size of the feasible solution
set grows exponentially, and the phenomenon of “combinatorial explosion” inevitably
occurs, which results in a significant decrease in the optimization efficiency of binary
HLOfor discrete problems.Therefore, this paper extendsHLOandproposes an enhanced
discrete HLO (EDHLO) algorithm for the PFSSP, which is a classical discrete problem
and plays an essential part in ensuring the steady progress of production and improving
resource utilization. To solve PFSSP more efficiently, the learning operators of EDHLO
are improved and the efficient heuristic algorithm NEH [16] is combined with random
initialization to improve the quality of the initial solutions.Besides, a local search strategy
is utilized to help EDHLO algorithm get rid of the local optima.

The structure of this paper is as follows: Sect. 2 is a description of the PFSSP
and the related definitions. Section 3 describes the proposed algorithm EDHLO. The
experimental results of EDHLO and other metaheuristics are given in Sect. 4. Section 5
summarizes this paper.
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2 Permutation Flow Shop Scheduling Problem

PFSSP which is a simplified model of assembly-line production in many manufactur-
ing enterprises, one of the most well-known classes of scheduling problems, has been
investigated extensively and intensively due to its importance in the aspect of academy
and engineering applications [17].

The current approaches for solving PFSSP mainly can be divided into 3 classifica-
tions, i.e., precisionmethods, heuristic rule-basedmethods andmeta-heuristic algorithms
[18]. PFSSP, as an NP-hard combinatorial optimization problem, grows exponentially
in computational complexity as the problem scale increases. Although the precision
methods can find the exact solution to the problem, they are only suitable for solving
small-scale PFSSP considering the computational resources. Constructive heuristics are
methods for solving specific problems by inductive reasoning and experimental analysis
according to experience, which can obtain nearly optimal solutions. However, some of
them are difficult to obtain satisfactory solutions. Compared with the other two cate-
gories, meta-heuristic algorithms are more advantageous in terms of stability, conver-
gence speed and computational efficiency. Thus, currently, meta-heuristic algorithms
have become the most effective and efficient method to solve scheduling problems,
and the main hotspots of research are also concentrated on the improvement of the
meta-heuristics and the development of new algorithms.

The description of PFSSP is as following: n jobs require m processes on different
machines sequentially, and the processing sequence of n jobs on all machines is the
same, with the goal to find the best permutation to minimize the makespan. It should
be noted that each machine at the same time only one job is allowed to be machined,
accordingly, each job can be handled on only one machine at a time. The processing time
H(pj,k) is the time for job pj to be processed on the k-th machine. C(pj,k) represents the
processing completion time of job pjon the k-th machine. PFSSP can be mathematically
formulated as follows Eq. (1) [19]:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C(p1, 1) = H (1, 1)

C
(
pj, 1

) = H (j, 1) + C
(
pj−1, 1

)
j = 2, 3, . . . , n

C(p1, k) = H (1, k) + C(p1, k − 1) k = 2, 3, . . . ,m

C(pj, k) = H (j, k) + max(C(pj−1, k),C(pj, k − 1)) j = 2, 3, . . . , n; k = 2, 3, . . . ,m

Cmax = C(pn,m)

.

(1)

The optimal permutation p* can be found by the optimization in Eq. (2):

p∗ = arg min C(pn,m), ∀p ∈ �. (2)

3 Enhanced Discrete Human Learning Optimization for PFSSP

3.1 Initialization

The solution of PFSSP is a single linked list, which focuses on the position of each
element in the whole permutation. Therefore, different from the standard HLO, EDHLO
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uses the integer encoding framework, where the individual solution in EDHLO is
represented by an integer array as Eq. (3),

xi = [xi1 xi2 · · · xij · · · xiM ], xij ∈ {1, 2, · · · ,M }, 1 ≤ i ≤ N , 1 ≤ j ≤ M (3)

where xi is the i-th individual, xij is the j-th element of the i-th individual, N is the size
of population and M denotes the length of solutions, i.e. the number of jobs. Under the
assumption that the prior knowledge of problems does not exist at first, each variable of
an individual in EDHLO is initialized with an integer between 1 and M stochastically
to present the number of jobs.

Aiming at solving PFSSP efficiently, the NEH algorithm, an efficient heuristic algo-
rithm, is used to generate 10% of the individuals, so as to enhance the quality of the
initial population and maintain the diversity of the population.

3.2 Learning Operators

The standard HLO generates new candidates to search out the optimal solution by the
random learning operator, the individual learning operator and the social learning oper-
ator, but these three learning operators are not applicable to PFSSP. Thus, EDHLO
redesigns and introduces the learning operators to solve PFSSP more efficiently.

3.2.1 Random Learning Operator for PFSSP-Like Problems

In reality, humans usually have to solve a problem by using the random learning strategy
at the beginning due to a lack of prior knowledge. Moreover, since a person is easy to
be affected by various factors like interference and forgetting, the human cannot fully
replicate the previous experiences. And consequently, learning processes are always
accompanied by randomness [20]. To imitate the random learning behavior for the
PFSSP, the random learning operator is designed in EDHLO as Eq. (4),

xij = R(M ) (4)

where R(M) represents the random learning operator which randomly chooses a job not
scheduled yet.

3.2.2 Individual Learning Operators for PFSSP-Like Problems

Individual learning refers to the ability of an individual to construct his own knowledge
by reflecting on the extrinsic stimuli and sources [21]. Drawing on previous experi-
ence is conducive to efficient learning of humans. Set up an Individual Knowledge
Database (IKD) to store individual optimum solutions to simulate the individual learning
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mechanism described above, as shown in Eqs. (5–6),

IKD =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ikd1
ikd2

...

ikdi
...

ikdN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 1 ≤ i ≤ N (5)

ikdi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ikdi1
ikdi2

...

ikdip
...

ikdiK

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

iki11 iki12 · · · iki1j · · · iki1M
iki21 iki22 · · · iki2j · · · iki2M

...
...

...
...

ikip1 ikip2 · · · ikipj · · · ikipM
...

...
...

...

ikiK1 ikiK2 · · · ikiKj · · · ikiKM

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 1 ≤ p ≤ K . (6)

where ikdi represents the IKD of individual i, K is the size of IKD, ikdip is the p-th best
solution of individual i, and each ikipj is an integer between 1 and M.

EDHLO uses its previous knowledge in the IKD to generate a high-quality candidate
by conducting the individual imitation learning operator (IILO) as Eq. (7).

xij = ikipj (7)

Besides, to diversify the population and further enhance the quality of the solu-
tion, the individual swap learning operator (ISLO) and the individual reversal-insertion
learning operator (IRLO), inspired and borrowed from two cross operators, i.e. the swap
exploration operator and reversal-insertion operator, are introduced in the individual
learning process. The swap exploration operator and reversal-insertion operator are suc-
cessful ways of solving PFSSP in the previous studies, and their effectiveness has been
verified in [22] and [23] respectively.

As shown in Fig. 1, the individual swap learning operator refers to exchanging the
positions of two random jobs. The number of executions of the individual swap learning
operator is thirty percent of the number of jobs. The individual reversal-insertion learning
operation is described in Fig. 2 where it exchanges the position of two adjacent jobs,
removes them from the original permutation and then inserts them in any other (n-2)
positions. These two operators only need individual knowledge and therefore they are
designed as individual learning operators. The newly generated permutation will replace
the original one if and only if it has a better fitness.
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Original permutation

New permutation

joba-1 joba joba+1 jobb-1 jobb jobb+1

joba-1 jobb joba+1 jobb-1 joba jobb+1

swap

Fig. 1. The individual swap learning operator

Original permutation

New permutation

joba-1 joba joba+1 jobb-1 jobb jobb+1

joba+1 joba joba-1 jobb-1 jobb jobb+1

reversal-insertion

Fig. 2. The individual reversal-insertion learning operator

3.2.3 Social Learning Operator for PFSSP-Like Problems

The process of tackling complicated problems through individual learning alone can be
quite slow and inefficient. Therefore, as social animals, human beings naturally learn
from others in the collective to gain experience and expand their knowledge [24]. By
directly or indirectly transferring experiences, humans can improve their competence
and learning efficiency. To utilize the social experience productively, Social Knowledge
Database (SKD) which stores the optimal solution found by the whole population in the
search process is established in EDHLO as Eq. (8),

SKD =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

skd1
skd2

...

skdq
...

skdH

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sk11 sk12 · · · sk1j · · · sk1M
sk21 sk22 · · · sk2j · · · sk2M

...
...

...
...

skq1 skq2 · · · skqj · · · skqM
...

...
...

...

skH1 skH2 · · · skHj · · · skHM

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 1 ≤ q ≤ H (8)

where skdq denotes the q-th optima solution in the SKD and H is the size of the SKD.
When an individual performs social learning, it operates as Eq. (9).

xij = skqj (9)
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3.3 Updating of IKD and SKD

Although the individual learning operators and the social learning operator can learn the
order of jobs scheduled for processing from the better solutions efficiently, they may
produce duplicate job numbers and yield infeasible solutions. Therefore, after the new
population is generated, EDHLO will find the duplicate job numbers from the random
position of the individual sequence and replace them randomly with the job numbers
that have not been assigned. Then the new candidates are substituted into the fitness
function to calculate the fitness values. Only when the number of candidates stored in
IKD is fewer than the set value K or the new candidate solution is superior to the worst
in IKD, the new candidate solution will be saved in the IKD directly, otherwise, it will
be discarded. For the SKD, the same updating strategy is applied. Moreover, to obtain
a superior SKD and help the EDHLO escape from the local minimum, a local search
approach is applied in EDHLO.

The local search method operates as follows: move each job in the optimal permuta-
tion with dimension M to the remaining (M-1) positions sequentially except the current
position, and keep the rest of the permutation unchanged. After every movement, calcu-
late the fitness of the new permutation. If the fitness is better, update the SKD. To avoid
redundant computations, the local search is activated every 50 iterations.

3.4 Implementation of EDHLO

In summary, EDHLO performs the random learning operator, individual learning oper-
ators, and social learning operator with specified probabilities to search for the optimal
solution. The implementation of EDHLO can be described as below:

Step 1: set the parameters of EDHLO, such as the population size, maximum number
of iterations, pr, pi;
Step 2: initialize 10% of individuals by NEH and randomly yield the rest initial
population;
Step 3: evaluate the fitness of the whole population and generate the initial IKDs and
SKD;
Step 4: yield new candidates by executing the learning operators of EDHLO as Eq. (4),
Eq. (7) and Eq. (9) with the probabilities of pr, (pi-pr) and (1-pi), respectively;
Step 5: fix the infeasible solutions and execute the ISLO and the IRLO for 20% of
individuals;
Step 6: update the IKDs and SKD according to the calculated fitness of new individuals.
Step 7: perform the local search on the SKD every 50 iterations;
Step 8:Determinewhether the termination condition is satisfied, if so, output the optimal
solution found, otherwise go to step 4.
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4 Experimental Results and Discussion

To estimate the performance, the proposed EDHLO, together with six meta-heuristic
algorithms, i.e. the particle swarm optimization based memetic algorithm (PSOMA)
[25], hybrid genetic algorithm (HGA) [26], discrete bat algorithm (DBA) [27], hybrid
differential evolution algorithm with local search (L-HDE) [22], hybrid backtracking
search algorithm (HBSA) [19] and chaotic whale algorithm (CWA) [23], are adopted
to solve 21 benchmark problems proposed by Reeves. Referring to the literature [1],
the IKD and SKD sizes of EDHLO are 1, and the remaining parameters of EDHLO are
specified as given below: population size popsize = 60, maximum iterations Gmax =
2000, pr = 0.1, pi = 0.45. Run each instance 30 times independently to compare. The
computations were carried out using a PC with AMD Ryzen 5 2600 Six-Core Processor
CPU and 32GB RAM on Windows 10, 64-bit operating system.

The best relative error (BRE), the average relative error (ARE) and the worst relative
error (WRE) of the optimal solution are selected as the evaluation metrics, which are
defined as Eqs. (10–12),

BRE = SBest − BKS

BKS
× 100%. (10)

ARE = SAverage − BKS

BKS
× 100%. (11)

WRE = SWorst − BKS

BKS
× 100%. (12)

where SBest , SAverage and SWorst represent the best solution, the average solution and
the worst solution found by the algorithm respectively, and BKS represents the optimal
solution value known so far of the benchmark problem.

Table 1 lists the experimental data of EDHLO. The corresponding data of compared
algorithms are obtained from the original literature and the experimental results not
given in the original literature are indicated by “–”.

Figures 3 and 4 show the average values of the three evaluationmetrics on the Reeves
benchmark problems. Since the original literature of CWA contains results for only 19
Reeves benchmarks, for the sake of fairness, CWA is compared with EDHLO separately.
It can be seen in Figs. 3 and 4 that EDHLO achieves the best results. Compared with
PSOMA, HGA, DBA, L-HDE and HBSA, EDHLO ranks first in terms of the mean of
BRE, ARE and WRE, with the lowest values of 0.258, 0.564 and 0.628, respectively.
According to the values of the mean of BRE, ARE and WRE, EDHLO is also superior
to CWA. The above experimental outcomes prove the effectiveness and stability of
EDHLO.



An Enhanced Discrete Human Learning Optimization 253

Table 1. Comparison of EDHLO and other algorithms on Reeves benchmarks

Problem n*m BK PSOM HG DB L- HBS CW EDHL
REC0 20*5 124 BR 0 0 0 0 0 0 0

AR 0.144 0.14 0.08 0 0.14 0 0
WR 0.16 – 0.16 0 0.16 0 0

REC0
3

20*5 110
9

BR 0 0 0 0 0 0 0
AR 0.189 0.09 0.08

1
0 0.08 0 0.018 

WR 0.721 – 0.18 0 0.18 0 0.180 
REC0 20*5 124

2
BR 0.242 0 0.24

2
0.242 0.24 0 0

AR 0.249 0.29 0.24
2

0.242 0.24 0 0
WR 0.402 – 0.24

2
0.242 0.24 0 0

REC0 20*1
0

156
6

BR 0 0 0 0 0 0 0
AR 0.986 0.69 0.57 0 0.46 0.16

9
0

WR 1.149 – 1.14
9

0 1.15 0.83 0
REC0

9
20*1

0
153 BR 0 0 0 0 0 0 0

AR 0.621 0.64 0.63
8

0.026 0.07 0.04
6

0
WR 1.691 – 2.40 0.260 0.65 0.32 0

REC1
1

20*1
0

143
1

BR 0 0 0 0 0 0 0
AR 0.129 1.1 1.16 0 0 0 0
WR 0.978 – 2.65 0 0 0 0

REC1
3

20*1 193
0

BR 0.259 0.36 0.41 0 0.1 0 0
AR 0.893 1.68 1.46

1
0.275 0.53 0.45

8
0.140 

WR 1.502 – 3.78
2

0.777 1.14 0.82
9

0.259 
REC1 20*1 195

0
BR 0.051 0.56 0.15

4
0 0.05 0 0

AR 0.628 1.12 1.22
6

0.523 0.64 0.57
4

0.179 
WR 1.076 – 2.10

3
1.180 1.18 1.02

6
0.462 

REC1 20*1 190
2

BR 0 0.95 0.36
8

0 0 0 0
AR 1.33 2.32 1.27 0.363 1 0.67

2
0.074 

WR 2.155 – 2.15
4

0.946 2.16 1.41
9

0.368 

(continued)
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Table 1. (continued)

Problem n*m BK PSOM HG DB L- HBS CW EDHL
REC1

9
30*1

0
209
3

BR 0.43 0.62 0.57
3

0.287 0.29 0.28 0.143 
AR 1.313 1.32 0.92

9
0.702 0.81 0.53

8
0.397 

WR 2.102 – 2.02
3

1.242 1.29 1.05
1

0.860 
REC2

1
30*1

0
201 BR 1.437 1.44 1.43

8
0.645 0.69 0.64

2
0.406 

AR 1.596 1.57 1.67
1

1.279 1.5 1.47
2

1.234
WR 1.636 – 2.23

1
1.438 1.83 1.63

6
1.438 

REC2
3

30*1
0

201
1

BR 0.596 0.40 0.79
6

0.348 0.45 0.34
8

0.348 
AR 1.31 0.87 1.17

3
0.428 1.28 0.85 0.417 

WR 2.038 – 2.38
1

0.497 3.08 1.93
9

1.044 
REC2 30*1 251

3
BR 0.835 1.27 1.63

2
0.557 0.4 – 0.279 

AR 2.085 2.54 2.92
1

1.082 1.29 – 0.712 
WR 3.233 – 3.94 1.632 2.43 – 1.353 

REC2 30*1 237
3

BR 1.348 1.10 1.01
1

0.253 0.25 0.01
1

0.253 
AR 1.605 1.83 1.41 0.851 1.27 1.00 0.839 
WR 2.402 – 2.29

8
1.222 2.57 1.72

8
1.054 

REC2
9

30*1 228 BR 1.442 1.4 1.04
9

0.831 0.57 0.49
9

0.087 
AR 1.888 2.7 2.58 1.049 1.42 1.24

3
0.822 

WR 2.492 – 3.93 1.443 2.97 2.31 1.443 
REC3

1
50*1

0
304 BR 1.51 0.43 2.29

9
0.427 0.43 0.42 0.263 

AR 2.254 1.34 3.39
2

0.644 1.91 0.99 0.785 
WR 2.692 – 4.53

2
0.920 2.66 1.47

8
1.478 

REC3
3

50*1
0

311
4

BR 0 0 0.61 0 0 0 0
AR 0.645 0.78 0.72

8
0.244 0.59 0 0.328 

WR 0.834 – 1.73
4

0.835 1.28 0 0.739 
REC3 50*1

0
327 BR 0 0 0 0 0 0 0

AR 0 0 0.03 0 0 0 0
WR 0 – 0.09

2
0 0 0 0

REC3 75*2
0

495
1

BR 2.101 3.75 3.37
3

2.565 1.92 – 1.827 
AR 3.537 4.9 4.87

2
3.001 2.93 – 2.467 

WR 4.039 – 5.97
9

3.555 4.2 – 3.272 
REC3

9
75*2

0
508 BR 1.553 2.2 2.28 1.730 0.9 0.08

1
0.806

AR 2.426 2.79 3.85
1

1.832 1.88 1.57
3

1.246 
WR 2.83 – 5.34 2.005 3.38 1.98 1.553 

REC4
1

75*2
0

496
0

BR 2.641 3.64 3.81 2.661 1.69 1.45 1.008 
AR 3.684 4.92 5.09 3.350 2.72 2.34 2.185 
WR 4.052 – 6.53

2
3.770 3.55 3.04

4
2.742 
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0.688  
0.863  0.955  

0.502  0.380  0.258  

1.310  
1.601  1.686  

0.757  
0.989  

0.564  

1.818  

2.660  

1.046  

1.719  

0.869  

0.000

0.500

1.000

1.500

2.000

2.500

3.000

PSOMA HGA DBA L-HDE HBSA EDHLO

Average of BRE
Average of ARE
Average of WRE

Fig. 3. The comparison of PSOMA, HGA, DBA, L-HDE, HBSA and EDHLO on Reeves
benchmarks

0.197  0.174  

0.628  

0.456  

1.032  

0.717  

0.000

0.200

0.400

0.600

0.800

1.000

1.200

CWA EDHLO

Average of BRE
Average of ARE
Average of WRE

Fig. 4. The comparison of CWA and EDHLO on Reeves benchmarks

5 Conclusions

To further study HLO and extend it to solve discrete problems more efficiently, this
paper proposed an enhanced discrete human learning optimization (EDHLO) algorithm
for solving PFSSP. EDHLO is based on the standard learning mechanisms of HLO,
but it redesigns and introduces the learning operators to solve PFSSP efficiently. In
the proposed EDHLO, the efficient heuristic algorithm NEH is integrated with random
initialization to improve the original population quality and maintain the diversity of
the original population, two cross operators are introduced into the individual learning
of EDHLO to upgrade the local exploitation capacity, and a local search method is
used to facilitate EDHLO to get rid of the local optimum. The experimental results
on 21 benchmark problems and the comparisons with other meta-heuristics verify the
effectiveness and stability of the EDHLO.
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