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Preface

Food packaging is of interest to different stakeholders including producers, retailers
and consumers in view of societal and environmental concerns. Right choice of
packaging materials to improve packaging experience and shelf-life are therefore the
areas that have attracted the scientific community. This volume is a collection of
different chapters dealing with novel packaging materials and trends from pre- to
post-packaging of food items. Initial chapters have been planned to acquaint the
audience with food packaging industry and provide a link to latest research on
smarter ways of food packaging including artificial intelligence applications. Biode-
gradable packaging solutions for fruits, vegetables and animal-based food products
including dairy and fishery products have been covered in the following chapters.
Edible films and coatings have been presented in a separate chapter highlighting the
challenges and applications. Role of sensors to improve food packaging has also
been presented in a separate chapter as well. Similarly, another chapter presents the
applications of functional nanomaterials for food packaging. Rules and regulations
related to the packaging have also been included to bring in the sense of
completeness.

While going through the chapters, I learnt many things and expect the same for
the intended audience including novice researchers. I thank the expert contributors
from different laboratories/countries/disciplines making this volume truly interdisci-
plinary. Some of the authors accepted my request to review the individual chapters
and provided their valuable comments. This helped me a lot to present the quality
content before the readers.

I sincerely thank Dr. Naren Aggarwal, Editorial Director—Books, Asia, Medi-
cine & Life Sciences, Springer for giving me the opportunity to present this book to
the readers. I also thank Madhurima Kahali, Editor Books—Medicine & Life
Sciences, Springer and Mr. Suraj Kumar, Production Editor (Books), Springer for
their support during different stages of publication.

Prayagraj, Uttar Pradesh, India Ashutosh Kumar Shukla
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Food Packaging Industry: An Introduction 1
Vilásia Guimarães Martins and Viviane Patrícia Romani

1.1 Introduction

The basic materials used in the food packaging industry are glass, metal, paper and
paperboard, plastics, or their combinations in the same material. Innovations in the
sector of food packaging are adding many different compounds and using various
technologies to produce intelligent, active, sustainable, and biodegradable
packaging.

There is a growing demand from consumers who desire safer, high-quality,
extended shelf life, and less processed food products. In this case, the innovations
in terms of packaging are remarkably interesting. Active compounds with antimi-
crobial and antioxidant properties, for example, can be incorporated in the packaging
material. These compounds are released throughout the product’s shelf life, and
then, it is not necessary to add preservatives in the food product formulation. This
type of material is called active packaging. Another technology highlighted in recent
years is the intelligent packaging, which also contributes for food safety. Intelligent
packaging informs the consumer through indicators and/or labels if the food product
is appropriated to be consumed, even if it is within the expiration date described on
the product packaging. In some cases, food products are not stored, transported, or
even handled at the appropriate temperature, reducing their shelf life. Through
intelligent packaging, consumers will know if the product was appropriately
transported and handled, and thus, they will be sure about the quality of the product.

The world produces about 300 million tons of plastic waste each year, and so far,
only 9% of this waste has been recycled (ONU 2019a). Also, each year at least eight
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million tons of plastic go to sea and oceans, often decomposing into small
microplastics that end up in our food chain (ONU 2019b). Durability, resistance,
lightness, flexibility, and low cost are some of the characteristics that make the
plastic unique and indispensable in daily life (Heidbreder et al. 2019). However, the
qualities that make the plastic a good material for consumer products can also make
it extremely resistant to biodegradation and can remain in the environment for
decades.

Given the above, a sector of the packaging industry that is expanding is the
sustainable and biodegradable packaging. Research has been carried out all over the
world trying to find solutions to make possible to replace mainly the synthetic plastic
packaging by biodegradable packaging. The main raw materials used to produce
biodegradable packaging are proteins, lipids, and carbohydrates, usually extracted
from agroindustrial sources, and waste from food industries. Important findings are
reported in the production of biodegradable materials for food packaging; however,
their use is still limited due to the mechanical and barrier properties, which are
inferior to those of synthetic polymers. Several techniques have been used by
researchers to improve these properties, including the use of blends, chemical
modifications of polymers, addition of reinforcement materials (e.g., nanoparticles
and fibers), application of plasma, and UV light treatments.

In addition to the sustainable, renewable, and biodegradable materials being used
in the development of new plastic packaging, it is also possible to observe this
environmental concern for other materials as well. For example, the immense
exchange that is taking place from glass, metal, and plastic packaging by cellulosic
packaging also has this environmental appeal. Today is possible to find whiskey
“bottles” in cardboard on the market, which would have been unthinkable a few
years ago.

This chapter will briefly discuss information about the global food packaging
market, innovations in the food packaging sector, and what are the challenges and
perspectives for the packaging produced in research laboratories to reach the market.

1.2 Global Food Packaging Market and Sustainability

According to the World Packaging Organization (2020), the revenue of the global
packaging industry is over USD 500 billion. Sustainability, convenience, efficiency,
protection, and flexibility are the parameters associated with packaging solutions.
For consumers, easy-to-use and sustainable packaging is becoming a priority now
than ever before.

There are a lot of market analysis reports about the global food packaging market
size at the Internet. Most of them project the future market of food packaging based
on type of material, application, outlook, region, among others. The growth of the
food packaging market is estimated based on some factors such as convenience,
increase in the population, improvement of the shelf life, single serve packs, food
delivery, and high-performance materials; all these parameters have a positive
impact on the market. In the industries, the consumers’ desire is what drives the
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vector of changes, and in the packaging industry, it would be no different. In addition
to the improvement of the consumer experience when unpacking a product, its
design and how it relates to sustainability also matter.

About 40% of all plastic produced in the world is used for food packaging,
followed by building and construction industry (20%) (PlasticsEurope and EuPR
2015). Governments have been acting to reduce environmental impacts, establishing
agreements with brands to reduce or change the use of raw materials, such as plastic.
In the United Kingdom, for example, the government will introduce a tax on plastic
packaging from 2022. Besides that, financial sanctions will be established to encour-
age the incorporation of recycled plastic in the production chain of these companies,
creating an interesting precedent for their adhesion.

As mentioned by the Grand View Research (2020), the paper and paper-based
material segment accounted for a revenue share of 31.9% of the total food packaging
market in 2019. Growth of this segment is driven by high product adoption to
substitute nonbiodegradable packing solutions. Innovations in design, ease of print-
ability, and sustainability give paper packaging a competitive advantage over plastic
and metal packaging solutions.

Regarding bioplastics, which represents a crucial way to reduce the environmen-
tal burden, European Bioplastics, Nova-Institute (2020), mentioned that the global
production capacities of bioplastics including bio-based and biodegradable materials
are 2.11 million tons in 2020. Bio-based/nonbiodegradable materials (PE, PET, PA,
PP, PTT, and other) represent 41.9% of the bioplastics produced, and biodegradable
materials (PBAT, PBS, PLA, PHA, starch blends, and other) represent 58.1% of the
total. Going forward, the conscious consumption will be the meeting point for
transformations in the global food industry. Implementing sustainable policies and
philosophies in the manufacturing lines, from the product itself, through packaging
and logistics, will be a necessity to survive in a modern market that is concerned with
the planet.

1.3 Sustainable Food Packaging

Plastics are the most used materials in packaging applications in different fields.
Commonly used polymers, such as polyvinylchloride (PVC), polyethylene tere-
phthalate (PET), polypropylene (PP), polyethylene (PE), polyamide (PA), polysty-
rene (PS), and ethylene vinyl alcohol (EVOH), are cost-effective and have enough
properties to protect packaged products since production to consumption (Geyer
et al. 2017; Luzi et al. 2019). However, these fossil-based polymers are obtained
from finite sources. In addition, the incorrect plastic disposal, which has a nonrecy-
clable or nonbiodegradable nature, is driving the growing need of sustainable
alternatives, due to the environmental burden resulting from the high amount
discarded (Ahmed et al. 2018).

Sustainable materials protect the environment since the raw material extraction to
the final disposal, meaning that there is no damage to the nature. The food industry is
one of the largest users of packaging (All4Pack 2018) and thus has a valuable
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responsibility in using sustainable packaging as well as motivating industries and
consumers to adhere to the use of such materials. Then, the idea is to use renewable
and abundant resources to produce biodegradable/compostable alternatives. In this
context, it is important to consider that plastics produced by renewable resources are
not certainly biodegradable or compostable. Likewise, biodegradable materials are
not necessarily produced with renewable resources, as biodegradation is related to
the chemical structure in the matrix instead of its origin (Lambert and Wagner 2017;
Asgher et al. 2020). In summary, a sustainable packaging is a material obtained from
renewable sources that in the end of its cycle is biodegraded or composted.

Bioplastics are a potential alternative that can contribute to the sustainable
development in food packaging. Biopolymers or natural polymers can be generated
by plants or microorganisms and/or extracted from food industry by-products. Some
examples include carbohydrates (e.g., chitosan, starch, cellulose), proteins (e.g.,
keratin, gluten, collagen), polylactic acid (PLA) polyhydroxyalkanoates (PHAs),
and exopolysaccharides (EPSs) (Benbettaïeb et al. 2016; Asgher et al. 2020), which
are being widely explored in the development of films, wraps, and laminates for food
packaging. Some examples of recent developments include an edible film packaging
made from a milk protein for dairy, a box for pasta packaging prepared with wasted
vegetables and fruits, and a plant-based paper cup (TrendHunter 2017).

The production of bio-based materials for food packaging is a multistep process.
Generally, it starts with the breakage of the intermolecular linkages of the biopoly-
mer, followed by the synthesis of a new molecular structure and finally the develop-
ment of the three-dimensional network from the new linkages formed (Galić et al.
2011). The resulting material characteristics depend on the raw polymer structure
and the processing conditions. Bioplastics can be produced by wet or dry processing
(Blanco-Pascual et al. 2013). Wet processing, known as casting technique or contin-
uous spreading, is based on the solubilization of the biopolymer in the solvent with
the posterior solvent evaporation. The final polymer is influenced by the pH and
temperature of the suspension, and the type of solvent (Khwaldia et al. 2004;
Mellinas et al. 2016). Differently, the dry processing, including extrusion, or thermal
processing, depends on the thermoplastic properties of the polymers, based on the
theory of glass transition. This method consists of the conversion of the glassy
structure into a semi-solid condition at a specific temperature, where the molecules
are broken, and new linkages and bonds are formed (Khwaldia et al. 2004;
Hernandez-Izquierdo and Krochta 2008).

Bioplastics can also be incorporated with various additives, for example, antioxi-
dant and antimicrobial compounds, nutrients, and colorants. Agricultural
by-products are a potential and cheap source of renewable additives. These additives
reduce the possibility of microbial growth and lipid oxidation, and also have the
capacity to increase the shelf life of products (Jafarzadeh et al. 2020). Studies
reported the incorporation of various additives from renewable sources in different
matrices, such as durian leaf waste to enhance antioxidant activity in gelatin films
(Joanne Kam et al. 2018), jambolão skin extract in methylcellulose films to provide
antioxidant and color-changing properties (da Silva Filipini et al. 2020), grape seed
extract—carvacrol microcapsules in chitosan films to increase the shelf life of
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refrigerated Salmon (antimicrobial properties) (Alves et al. 2018), chitosan
nanoparticles in starch films to inhibit bacteria in wrapped cherry tomatoes (Shapi’i
et al. 2020), pomegranate peel particles into starch-based films as antimicrobial and
reinforcing agent (Ali et al. 2019), kombucha tea in chitosan films to retard lipid
oxidation and microbial growth in minced beef (Ashrafi et al. 2018), and pink pepper
phenolic compound incorporation in starch/protein blends to inhibit apple browning
(Romani et al. 2018). Bioplastics have strong potential as sustainable alternatives to
synthetic materials because they are produced using renewable sources, a prerequi-
site as previously mentioned, and despite some challenges that their use still faces
(discussed in the section ahead), generally they present fast biodegradation in soil
and water.

1.4 Technology Developed in the Laboratories X Scale Up
to Industries

Sustainable materials have been broadly studied and interesting results are being
obtained, but the large-scale production for commercial uses is still limited and the
commercial use is insignificant compared to the conventional plastics. There are
different reasons that prevent the wide use of sustainable packaging, including
(1) the material properties, which are not enough to protect the products and can
compromise the food shelf life; (2) scale-up, since the process of production,
development of the new technology, and financial capacity; (3) production and
logistic for feedstocks and composting infrastructure; (4) regulation policies; and
(5) consumer behavior (Rydz et al. 2018; Steenis et al. 2018; de la Caba et al. 2019).

New sustainable materials for packaging are generally produced using hydro-
philic biopolymers, which result in the low physicochemical properties (such as
mechanical and barrier performance) due to sensitivity to humidity. To overcome
these limitations, researchers are searching for strategies for material improvement.
Examples of strategies are the incorporation of reinforcing agents, blending different
raw materials, and chemical, enzymatic, and physical methods to alter polymer
chains (Bourtoom 2009). Promising results are being obtained; however, the chal-
lenge is the improvement of the overall performance of the polymer. Usually, the
increase in the mechanical resistance does not come with the increase in barrier
properties and vice versa. Indeed, the protection of foods requires the equilibrium of
different material’s characteristics to prevent the component oxidation and microbial
spoilage, and thus, attention is necessary at the minimum performance necessary in
the packaging to keep the quality of products (Martins et al. 2019). Additionally, the
change in the properties of bioplastics during the interaction with the food material
needs to be considered. Either, the compatibility of the polymers with the products
can affect the food quality and gained minimal attention (Asgher et al. 2020).

Another important hurdle that affects the wide adoption of biopolymers use is the
difficult scale-up of the production process. The production of biopolymers in
laboratories is widely performed through the casting technique. It consists of pouring
a suspension on plates (e.g., Petri dishes) controlling the mass of suspension to
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generate an uniform thickness, but variations are difficult to avoid. This technique is
suitable to produce films up to 30 cm, not larger, and takes long time in the drying
step making it useless at industrial scale. The tape casting, which consists of the
spreading of suspension in larger supports or on continuous carrier tapes, is useful to
produce larger films, but industries in general have well-established extrusion
processes (De Moraes et al. 2013; Werner et al. 2017). To advance in the large-
scale production of biopolymers, the proof of concept needs to be effectively
produced in industries. Even though some biopolymers are not suitable for extrusion
processes, as in the case of proteins due to their molecular architecture and spatial
arrangement (Mensitieri et al. 2011), it is important to focus on strategies to adequate
such polymers in a way to facilitate their processing by the industry technologies.
Generally, industries adopt and license unique raw materials to produce plastics, and
then, an industry adjustment would be necessary for the production of the
biopolymers. In addition, besides the fact that academic research mostly stops at
the proof-of-concept stage, patented technologies are frequently incomplete in scope
to be adopted by industry (Nerkar and Shane 2007; Tolfree and Jackson 2008; Inns
2012), impeding the advance of such technologies. That is why, it is also important
the pilot scale fabrication and characterization, otherwise it is possible to be finan-
cially inviable for industries to take high risks to adopt the sustainable technologies
for packaging (Werner et al. 2017).

1.5 Final Remarks

To increase the use of biopolymers, besides the mentioned aspects, the resource
efficiency and composting infrastructure need to be considered, as well as the
regulation policies. Currently, raw materials used to produce biopolymers often
compete with requirements for food-based products. The expansion of the first-
generation bio-based polymer production can generate unsustainable demands
(Babu et al. 2013). Furthermore, a composition structure is necessary for the suitable
biopolymer disposal. As the definition of ASTM-D6400, a compostable material is a
material that biologically degrades; therefore, just substances that can degrade
biologically in a composting environment can be labeled as “compostable”
(ASTM D 2004). In this sense, besides the processing of biopolymers, it is funda-
mental to the planning of resource efficiency, raw materials obtaining, and
composting infrastructure in the end of the biopolymer life.

Also, the consumer purchase probability and willingness to pay for sustainable
materials have a critical influence in the advance of new biopolymer technologies.
The consumer acceptance of these new materials has also an important role. Firstly,
the higher costs of biopolymer production result in superior market prices and
consumers usually do not pay the price for sustainability. Also, traditional
consumers can question the quality and/or safety of the new material due to the
limited information about the advantages and the low familiarity with biopolymers
(De Marchi et al. 2020). In addition, consumer insights related to sustainable designs
help designers to develop coherent strategies to adopt new initiatives. The lack of
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these consumer insights also complicate the adoption of new sustainable alternatives
(Steenis et al. 2018). Still regarding the attitudes to adopt sustainable materials,
industries have an essential role as well. Some manufacturers tend to support the use
of old technologies and prevent the adoption of more sustainable solutions due to the
efforts needed in adjusting their processes (Keränen et al. 2020). Therefore, reorien-
tation of existing industries toward sustainability demands more attention and
consumers need to be informed regarding the importance of sustainable packaging
and motivated to consume such products.
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Toward Smarter Food Packaging 2
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Abstract

Many food producers regularly know about new food packaging options, i.e.,
smart packaging, active packaging, intelligent packaging, and connected packag-
ing. This chapter review shows that these types of packaging benefit specific
types of food products, so producers can decide which ones most help them.
Smart packaging is an umbrella term used to describe food packaging with
enhanced functionality through technology. However, intelligent packaging that
will be focused on in this chapter contains sensors to determine the condition
(e.g., freshness or ripeness) of the food products. Another term used in smart
packaging is active packaging, where it is used to interact with the packaged
foods to enhance their condition, significantly to extend freshness or shelf life. In
comparison, connected packaging allows consumers to interact with a food
product through a label or code on the package that can be activated with a
mobile device. Finally, the role of I.T. in smart packaging applications for food
quality and safety monitoring is discussed.
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2.1 Introduction

There will be many food products that lose their nutritional values and properties
fastly if they are not packaging properly. Food packaging plays a very important role
in the food supply chain management system. Since it can be employed as a
protective layer to avoid food contamination and maintain food quality and safety
(Bambang Kuswandi et al. 2011), however, the classical food packaging system can
only protect or isolate food product from the external condition and environment
without informing food quality, such as freshness and safety, for users (Kuswandi
and Moradi 2019). Physical, chemical, and microbial properties and sensory evalua-
tion are traditional methods for the determination of food quality and safety. The
drawbacks of these methods are laborious works, long procedure, high cost, requir-
ing sample pretreatment, and destructions. Based on these methods, the detection of
food quality and safety is difficult to be performed in fast and nondestructive
methods. Therefore, smart food packaging that informs the consumer regarding
the food quality and safety evaluation is needed. It drives by the recent trends and
consumer needs as well as regulatory requirements on food products.

Food packaging also plays a crucial role in reducing waste and carbon dioxide
(CO2) caused by used packaging and their disposal (Kuswandi 2017). This is due to
the fact that our society has produced 8.3 billion metric tons of waste, where it
contains 76% of plastic, which is mainly not recycled (90.5%) for over the last
60 years (UN Environment Programme 2018). Furthermore, the current situation
due to the pandemic of COVID-19 caused food scarcity, which has to pay further
attention to the food waste problem. Even though all in the food sectors have a role
play in avoiding and decreasing food waste, starting from food producers to
consumers, the significance of domestic waste recommended that innovative pack-
aging can be an important tool for preventing and reducing food waste. In this
regard, packaging has become an important technology to assure quality and safety
in the food supply chain, enhance shelf life of foods, fulfill consumer satisfaction,
and prevent undesired consumer complaints (Kuswandi 2020). Since consumers are
more concerned about food quality and safety and require more accurate food
information on quality and safety, in this case, it needs to provide a simple and
real-time monitoring method for food product quality and safety during food supply,
distribution, storage, and display according to the consumer interests and rights.
Although there are many major innovations in food packaging systems and
materials, the basic food packaging principles are still the same. Among them,
smart packaging systems offer a great approach in reducing or even preventing
food wastes.

Smart packaging, especially intelligent, active, and connected packaging, could
support the optimization of the food supply management system, such as enhancing
food shelf life and food quality monitoring, and reducing food loss and waste. Active
packaging system helps in increasing the food product shelf life, enhancing their
condition, and significantly extending food quality by “interacting” with the food
product, while an intelligent packaging system helps in informing the food product
quality and safety during transportation and storage as well as a display by
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“monitoring” the food product condition (Kuswandi et al. 2011; Kuswandi 2017;
Rai et al. 2019). Furthermore, the connected packaging allows consumers to interact
with a food product via package label or code that can be accessed using a mobile
device. This chapter discussed smart packaging that will be more focused on
intelligent packaging development over active packaging since its “monitoring”
function could enhance to be smarter with the help of ICT via Apps, artificial
intelligence, or IoT (Internet of Things). In this case, connected packaging concepts
are also discussed that allow consumers to interact with a food product through a
label or code on the package that can be activated with a mobile device.

2.2 Intelligent Packaging

Based on the Commission of the European Communities, it is stated that intelligent
food contact materials are defined as materials that allow monitoring the packaged
food condition or the environment surrounding the food (Communities 2004).
Hence, intelligent food packaging could be defined as a new packaging technology
that integrates intelligent functions with food packaging systems. Intelligent pack-
aging can detect, sense, trace, record, and communicate internal or external changes
related to food products that associate with the formation of food quality and safety,
and extended the packaging information functions during transport, storage, and
display that promotes and enhances safety and quality of food producers or con-
sumer (Kuswandi et al. 2011; Salinas et al. 2014a, b). The intelligent packaging
functions are given in Fig. 2.1. Intelligent packaging performs the communication
functions on the packaged food condition during distribution, storage, sales, and
packaging waste disposal to food producers and consumers (Yam et al. 2005).

In order to allow real-time or online monitoring of a food product during
distribution, storage, and display, numerous smart devices are employed, such as
indicators (for monitoring food freshness, pH, leakage, integrity, time, and tempera-
ture), data carriers (bar codes, IoT), and sensors (gas chemical sensors and biosensor)
(Ghaani et al. 2016; Kuswandi 2018; Müller and Schmid 2019). Intelligent packag-
ing allows many applications in food freshness detection, spoilage, chemical, and
microbial contaminant detection, traceability, authentication, etc. (Majid et al. 2018;
Kalpana et al. 2019; Vanderroost et al. 2014; Popa et al. 2019). Some current
example of various smart devices used and integrated into intelligent food packaging
is shown in Table 2.1.

2.2.1 Freshness Indicator

A freshness indicator is a smart colorimetric device integrated into intelligent food
packaging. This type of colorimetric indicator is divided into two types: direct
colorimetric indicator and indirect colorimetric indicator as given in Fig. 2.2
(Kuswandi et al. 2011). The direct colorimetric indicator commonly works based
on color development of indicator caused by the volatile gas released by food that
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Fig. 2.1 Intelligent
packaging functions in food
packaging

Table 2.1 Some current examples of various smart devices integrated into intelligent food
packaging

Type of
smart
device

Sensitive
material

Target
analyte Material used

Type of
food References

Indicators Black
carrot

pH Bacterial cellulose Pasteurized
milk

Ebrahimi
Tirtashi et al.
(2019)

Red
cabbage

pH Bacterial cellulose Pasteurized
milk

Kuswandi
et al. (2020)

Alizarin pH Chitosan Fish Ezati and
Rhim (2020)

Shikonin pH CMC
CNF

Fish fillet
(mackerel)

Ezati et al.
(2021)

Gas
sensor

Oxygen
sensor

O2 A blending of
polyethylene and
ethylene-vinyl acetate

Beef Kelly et al.
(2020)

RFID O2 and
CO2

Wheat gluten Cheese Saggin et al.
(2019)

RFID O2 and
CO2

Cellulose Vegetables Eom et al.
(2012)
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can be directly related to the food freshness. This colorimetric indicator allows for
qualitative or semi-quantitative detection of food quality and safety as a result of
physiological changes or microbial growth during food storage, which directly
integrated into food packaging, where it can help consumers to judge food quality
easily by the naked eye (Ghaani et al. 2016; Kuswandi 2018), while indirect
colorimetric indicator works based on imitating or mimicking degradation of
targeted food to be monitored, for example, TTI (time–temperature indicator) and
T.I. (temperature indicator) (Kuswandi 2018; Kuswandi 2020). In other
perspectives, these freshness indicators could also be classified into two types, i.e.,
the first one is an internal indicator, and the second, external indicator. The internal
freshness indicators are placed inside the food package, and the external freshness
indicators are physically placed outside the food package (Pavelková 2013). Both
types of freshness indicators can inform consumers related to the presence or
absence of specific compounds, or the concentration of a specific substance, related
to the level of food freshness. Thus, a distinct characteristic of freshness indicator is
the type of information they provide, either qualitative or semi-quantitative toward
the user for freshness level.

Freshness indicators employed in food packaging inform a consumer on the issue
of food quality and safety related to food degradation due to microbial activity or
other food properties. Mostly, the information is presented by immediate color
change variations, such as different color intensities or the dye diffusion inside the
indicator area (Kalpana et al. 2019; Kuswandi 2020). Even though freshness
indicators are simple devices but crucial in assuring food quality and safety, they
allow a reduction in the food loss and the cost loss due to the food damage.
Therefore, it is very useful for nondestructive testing of food freshness, especially
for perishable foods and dairy products, such as fish, meat, milk, fruits, and
vegetables. Therefore, in other senses, it is also called a spoilage indicator since it
is also used to indicate food deterioration or spoilage. Even though intelligent food

Fig. 2.2 Types of freshness indicators
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packaging has many benefits for perishable foods, however, its application in the
food industry is still limited, and it needs further exploration and commercialization.

Commonly, freshness indicators are monitoring the packaged food quality by
detecting metabolite compounds produced associated with the food freshness caus-
ing by natural metabolism or microbial growth (Kuswandi et al. 2011; Realini and
Marcos 2014). Physicochemical changes during food distribution and storage are
indicators for food freshness. Food metabolites change during storage, such as pH,
lactic acid, carbon dioxide, ethanol, volatile nitrogen, biogenic amines, or hydrogen
sulfite, are an indication of microbial activities inside foods, which, in turn, can be
employed as indicators of food freshness (Arvanitoyannis and Stratakos 2012;
Kuswandi et al. 2011). Freshness indicator monitors food freshness via this metabo-
lite detection that has been reported in the literature (Kuswandi 2018), even though,
their successful commercialization is still limited. For instance, FreshTag® and
Toxin Guard™ are commercial freshness indicators that have been discontinued.
The former was a colorimetric freshness indicator that detects the volatile amines
produced in fish, based on the immobilization of antibodies into plastic films to
detect food pathogens (Kuswandi et al. 2011).

2.2.2 Ripeness Indicators

Freshness indicators are mainly employed for freshness monitoring of protein-based
food products, e.g., meat and seafood. Besides these, particularly, fruits and
vegetables produce a large number of volatile compounds during ripeness and
maturation that can be used to indicate ripeness and maturity. For the first time, in
2004, P-P Enterprise’s supermarket in New Zealand released a new ripeness indica-
tor, namely ripeSence (T.M.) for pear, as a new intelligent packaging system. It is the
first intelligent label in the world that can indicate the fruit ripeness or maturity or
even rotten. The ripeness indicator could detect fruit ripeness by determining the
fruit aroma compounds released during fruit ripening. Volatile aldehydes, such as
acetaldehyde produced during stone fruit maturation, such as apple, could be used to
detect their maturity. An indicator label based on methyl red can detect the release of
aldehyde from an apple. The ripeness indicator is fabricated by special ink printed
directly on a paper medium. Under mature conditions, the indicator color developed
from yellow to orange and then to red (Kim et al. 2018).

Ethylene produce can directly relate to fruit ripeness or vegetable maturity. A
colorimetric ripeness indicator for color change upon reaction with ethylene has
been developed. The indicator can be used to indicate the ripeness or maturity via the
ethylene release during ripening of fruits and vegetables, such as apple (Lang and
Hübert 2012) and kiwifruit (Hu et al. 2016). With the development of ripeness
indicators, a variety release of aromatic substances during fruit and vegetable
maturation or rotten can be employed as releases indicating fruit and vegetable
ripeness.

pH could also be used as an indicator for fruit freshness since many metabolite
changes during fruit ripeness or vegetable maturity relate to the pH change inside
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food packaging (Kuswandi 2018). For example, a ripeness indicator was developed
for monitoring guava (Psidium guajava L.) freshness based on immobilized
bromophenol blue onto a cellulose membrane by absorption (Kuswandi et al.
2013). The ripeness color indicator developed from blue to green as the pH declined
as a result of the guava over-ripening, where at this stage, the volatile organic
compounds were released. This indicator was successfully applied to detect the
guava ripeness at ambient temperature (28–30 �C). Furthermore, fruit ripeness
indicators have been developed by the same group for strawberries (Kuswandi
2013) and grape (Kuswandi and Murdyaningsih 2017) using a similar principle
based on pH change in fruits monitored as given in Fig. 2.3. Another indicator for
vegetable maturity was developed based on a silver nanoparticle that has yellow
color as a colorimetric sensor for the detection of organosulfur compounds produced
when onion spoilage. The color developments were observed during 10 days, where
the color developed with time, from yellow to orange, then pink, and lastly colorless
when the onion spoilage.

2.2.3 Other Indicators and Sensors

Other indicators or often called colorimetric sensors since these smart devices can be
classified as colorimetric chemical sensors or biosensors depend on the sensitive
membrane or film used. One example of this type of indicator is integrity indicator,

Fig. 2.3 Ripeness indicators were used for monitoring fruit ripeness (freshness) for strawberries
(a) and grapes (b)
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where it is informing regarding how long a packaged food has been opened or
inform the gases presence inside the food package. Usually, this integrity indicator is
employed with MAP (modified atmospheres in packaging), where the oxygen gas
replaces other gases, such as nitrogen or carbon dioxide, which, in turn, enhances the
shelf life of foods.

Ageless Eye, Tell-Tab, and O2 Sense are examples of commercial integrity
indicators that provide color changes upon oxygen exposure so that suitable for
the naked eye detection in terms of oxygen concentrations at low concentration
(0.5%). Another example is Food Sentinel System™ that has been discontinued
already. It is a biosensor system for the food pathogen detection using a specific
pathogen antibody immobilized onto the membrane creating a barcode part (Yam
et al. 2005). Here, when the contaminating bacteria are present, it will produce a
localized dark bar, which, in turn, causes the error or unreadable barcode while
scanning when it is used in the supermarket.

2.3 Smart Indicator for Food Freshness

Based on the type of design construction, the food freshness indicator could be
grouped into (1) single indicator; (2) dual indicator; and (3) indicator array
(Kuswandi 2020). The single indicator is a freshness indicator that only used one
indicator to detect, sense, trace, and inform the food freshness quality and safety
inside the package. The dial indicator is the freshness indicator that used two
indicators in monitoring and informing the food freshness quality and safety. At
the same time, an indicator array is the multiple indicators that used several
indicators in an array to create a pattern in detecting or sensing, and informing the
food freshness quality and safety. Mostly, commercially available freshness
indicators are a single indicator type, while dual indicator and indicator array are
undergoing laboratory-scale developments. Figure 2.4 shows the ripeness indicator
or sensors based on design, type, and application for food freshness.

The smart indicators integrated into food packaging can act as an important tool
in sensing, detecting, monitoring, and tracing food freshness quality and safety.

Fig. 2.4 Types of smart
indicators used in food
packaging for freshness
monitoring
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These smart indicators or sensors are critically important when foods are stored
outside their desired conditions, e.g., extreme hot or cold. Furthermore, in the case of
processed foods, where they should not be frozen, a smart indicator could be
necessary to monitor whether they had been stored in freezing conditions improperly
or not. On the other hand, a smart indicator could also inform if the processed food is
sensitive to heat where it had been exposed to hot conditions and the duration
involved. Moreover, the detailed description of the smart indicators for food fresh-
ness quality and safety is described in the following subsections.

2.3.1 Single Indicator

Commonly, a single indicator or sensor is used in a single color indicator construc-
tion, and the choice of reagent dye has a great impact on its colorimetric indicator
performance. In order to construct high sensitivity of the colorimetric indicator or
sensor, the reagent dye should have high sensitivity as well. For instance, if a single
indicator works based on pH change inside the headspace of food packaging,
therefore, a large pH range of the reagent dye is needed, or it should be sensitive
enough to pH change and easy to distinguish its color change related to the food
freshness during storage (Kuswandi 2018). By using a single indicator, simple, fast,
and sensitive detection of food freshness can be performed by using a noninvasive
colorimetric method detected by the naked eye. For example, it is used for fish
freshness detection, where it was observed to relate well with bacterial growth trends
in whiting and codfish samples, which in turn allowing real-time monitoring of fish
spoilage (Pacquit et al. 2007; Kuswandi et al. 2012a, b). This single indicator allows
the high potential for creating “best-before” dates where it could make
improvements in the food quality evaluation of food freshness active label.

Polyaniline (PANI) could make a distinctive color change with total volatile base
nitrogen (TVBN), so it is often used as a single indicator in an intelligent packaging
system. A single indicator was developed based on a similar working principle based
on PANI film for milkfish sample (Chanos chanos) freshness monitoring in the fish
package headspace (Kuswandi et al. 2012a, b). This single indicator showed color
changes toward a variety of TVBN produced during fish deterioration as shown in
Fig. 2.5. Here, the PANI film response presented as a color change is also related to
microbial activities in fish samples (Pseudomonas spp. and TVC (total viable
count)). The single indicator or sensor allows for the real-time spoilage detection
of fish either at stable or fluctuating temperatures. Furthermore, a single biosensor
was developed for xanthine (adenine nucleotide degradation product in animal
tissue) detection (Arvanitoyannis and Stratakos 2012). In this work, the xanthine
oxide was attached to the electrodes, e.g., silver, platinum, and pencil graphite
electrode (Devi et al. 2013; Dolmacı et al. 2012; Realini and Marcos 2014). Another
novel single indicator was developed based on curcumin for volatile amine (TVBN)
detection in shrimp (Kuswandi et al. 2012a, b). The curcumin was absorbed onto the
bacterial cellulose membrane to create a sensitive indicator and edible membrane for
food applications. The indicator develops color from yellow to orange and finally to
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reddish orange for the indication of shrimp spoilage. Moreover, the indicator color
change was correlated with bacterial activities in shrimp in ambient and chillier
conditions.

A single indicator was constructed to monitor the guava ripeness. The single
indicator was immobilized bromocresol blue on the cellulose membrane for acidic
volatile compound detection. Here, when the indicator color changes from blue to
green, the maturity of guava changes from ripeness to rotten (Kuswandi et al. 2013).
It is often that ripeness and rotten fruit foods can be distinguished by only two color
changes, since secondary ripeness fruits cannot be identified, such as medium
condition. Therefore, the same group constructed a single indicator based on
chlorophenol red as a ripeness indicator for the detection of grape maturity. Here,
acid volatile organic compounds released during grape maturation create the indica-
tor color development from white to beige and lastly to yellow that obviously show
the ripeness, medium, and rotten grade of grape (Kuswandi and Nurfawaidi 2017).

2.3.2 Dual Indicator

Sometimes, a single indicator is difficult to distinguish the color transition in the
process of color change, and therefore, mixture of two indicators could be employed
to increase the sensitivity of color development end point. Dual indicator can be
divided into three classes: First is to add an inert dye to the acid–base indicator,
where the color does not change at the pH less than 7.0, and second is to mix the two
acid–base indicators to accurately create the indicator color change in order to have a
narrower range of color change by using the complementary effects of each indica-
tor, and the last is using dual indicators simultaneously that used two indicators that
referencing each other in detecting, monitoring, and informing the food freshness
level, since the amount of TVBN and CO2 in meat products is the key maker for food
deterioration. Therefore, the mixed indicator color change was more obvious in the

Fig. 2.5 Example of a single indicator used for fish freshness monitoring based on PANI
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detection of TVBN at various levels of food freshness. A freshness indicator was
developed based on bromothymol blue phenol red for skate fish (Raja kenojei) (Lee
et al. 2016). Here, TVBN produced during the fish storage was increased in the fish
package, causing the headspace pH to increase. As a result, the indicator changed
from yellow to purple color when the fish product deteriorated.

The mixed dual indicator could also increase their sensitivity toward CO2. The
mixed dual indicator label of bromothymol blue and methyl red could accurately
evaluate the skinless chicken freshness. The label works based on CO2 detection as
the main gas released by the microbial metabolism of skinless chicken. Here, when
the mixed indicator shows green and orange color, it means freshness and spoilage,
separately (Rukchon et al. 2014). A similar principle was developed using a mixed
dye-based indicator in food spoilage for an effective shelf life detection by allowing
dynamic freshness to be detected visually alongside the best-before date, which, in
turn, reduces margins of error (Nopwinyuwong et al. 2010). Further applications of
mixed dual indicator for food freshness indicator to other perishable food products
are open up for future area of developments and commercialization.

The last type of dual indicator is dual indicators that used two indicators simulta-
neously as a label for food freshness monitoring. It was developed as a novel
approach for food freshness monitoring, i.e., beef meat, and proposed to prevent
the problem using a single indicator (Kuswandi and Nurfawaidi 2017). This is due to
the fact that a single indicator is similar to traditional acid–base titration using a pH
indicator dye, where it is often difficult to detect the onset of spoilage threshold, as it
could be too late or too early if it is related to microbial activities on food products
(Kuswandi et al. 2015). The dual indicator has several benefits as smart label, such as
suitable for naked detection for the spoilage onset threshold, easily to be displayed
and distinguished for each level of the food freshness as two color displays, more
accurate food freshness determination, preventing false negative and positive for the
level of freshness, more attractive due to two color tone as well as they referenced
each other, as one indicator develops color a long side with other indicator color
change. It was developed by using two pH dyes (methyl red and Bromocresol
purple) to fabricate an on-package dual indicator label for the real-time detection
of beef freshness (Kuswandi and Nurfawaidi 2017) (Fig. 2.6).

2.3.3 Indicator Array

Apart from single or dual indicator or colorimetric sensor, indicator or sensor array
based on imaging approaches offers many benefits in nondestructive determination
of food quality and safety. This imaging technique is using an indicator array or
sensor array to capture a pattern of an “odor” fingerprint related to the food quality
and safety (Chen et al. 2016; Morsy et al. 2016). Most of the developed indicator or
sensor arrays are employed for monitoring chemical species in the food packaging
headspace that are related to food freshness or spoilage of perishable foods, e.g.,
meat, seafood, fruits, and vegetables, which have high value. Since the cost of the
sensor array is the most expensive and not simple compared to other smart indicators
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or sensors, furthermore, sensor array needs additional tools, such as smartphone or
mobile device coupled with the dedicated app that have signal processing and
artificial intelligence inside that used in capturing odor pattern of food related to
food freshness or spoilage.

An indicator or sensor array, i.e., the electronic nose, is a system that works based
on the principle of imitating or mimicking the mammalian olfactory system in a
device proposed to obtain measurements that allow the classification of aroma
mixtures contained in the food odor. The array creates a pattern as a specific signal
to each odor, savor, or flavor. For example, e-nose contains a chemical sensor or
biosensor array that specifically enables the pattern recognition of simple or even
complex odor, savor, or flavor (Gardner and Bartlett 1994; Vanderroost et al.
2014b). This system was used in the quality determination of packaged beef and
fresh yellow fin tuna (Blixt and Borch 1999; Dobrucka and Cierpiszewski 2014).
Furthermore, it is also employed for freshness detection of broiler chicken cuts
(Rajamäki et al. 2006), for the freshness of boiled marinated turkey (Salinas et al.
2014a, b), for fresh pork sausage spoilage (Salinas et al. 2014a, b), and for squid
spoilage (Zaragozá et al. 2015).

Currently, the indicator array-based pH indicators and a colorimetric dye, selec-
tive for thiols, were developed for the spoilage monitoring of various meats, i.e.,
chicken, beef, pork, and fish, which produced the different models of the mimicking
degradation pathway. The spoilage monitoring for each type of meat then followed
the array color evolution using multivariate analysis by three-way PCA (principal
component analysis). Using this method, it found similar protein degradation pattern

Fig. 2.6 Example of dual indicator for beef freshness packaging used two pH indicators separately
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of meats, which can be used to monitor meat spoilage of different meats as shown in
Fig. 2.7 (Magnaghi et al. 2020). Generally, the results were compared to the results
of classical methods, such as sensory evaluation, microbiological assay, and head-
space gas analysis. The indicator or sensor array allows for better distinctive of the
food deterioration from fresh food and can be applied for different foods.

2.4 ICT for Smart Packaging

In the industrial era 4.0, ICT (Information and Communication Technology) plays a
major role in our daily activities. Therefore, the use of ICT in terms of smartphones
and other mobile devices has become an important part of our lifestyle. In this
regard, the use of these gadgets to access and connect with many things has become
obvious, including food packaging. Thus, the concept of “connected packaging”
clearly will become another part of smart packaging. Of course, the term connected
packaging is not only limited to food packaging but also limited to other applications
in almost every kind of consumer product. It could be connected for medicines,
cosmetics, category, apparel, etc. In this connected packaging, the applications could
be connected with a special printed code on or within the packaged consumer
products so that the consumers can activate this code with smartphones or other
mobile devices to receive exclusive information regarding the content of products. In
food packaging, the content could be online calorie and nutritional value, originality,
halalness, etc. Hence, by applying this novel packaging concept, the smart packag-
ing will become smarter as following applications (Fig. 2.8).

2.4.1 Artificial Intelligence

Recently, there is increasing use of artificial intelligence (AI) and machine learning
(ML) for smart sensor system development for the problem-solving-based approach.
For instance, online or real-time AI and ML or new algorithms are developed, and
various methods are employed to integrate these algorithms in a smartphone or other
mobile devices for sensor systems to allow for autocalibration measurement, enhanc-
ing linear range, etc. New clustering and classification techniques, learning methods,

Fig. 2.7 Example of indicator array used in food packaging for freshness monitoring of numerous
meats, (a) chicken, (b) beef, (c) pork, and (d) codfish (Magnaghi et al. 2020)
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and data quality methods are required, including distributed AI algorithms to make
indicators or sensors to be more accurate in the target analyte detection. For instance,
the integration of an ML algorithm to a sensor based on luminescence detection has
been used for time-resolved luminescence data for the detection of O2 in the sample
(Dordević et al. 2018). This approach also has great potential to be integrated into the
smart packaging system, including IoT, image processing, and artificial intelligence
(Schaefer and Cheung 2018). For instance, this approach was used for the protein
degradation pattern of meats and was applied to monitor meat spoilage of different
meats (Magnaghi et al. 2020).

Another approach that can be applied in smart packaging used a neural network
(NN). For example, in food freshness monitoring using an indicator or sensor array,
a NN learns to correlate the quantities image sensed by a sensor array with the
analyte target concentration. In this case, as the number of measurements is limited,
typically, the NN training was done with a simulated training dataset. Besides, the
temperature that needs to be counted in this array was kept constant but also could be
predicted. The best performing network was optimized by employing different
architectures and hyper-parameter tuning. Then, the trained network was used in
the data experiment to check its applicability when used to other data. The error in
the freshness-level prediction was caused by the synthetic training data that were
calculated using an approximate model. By employing this approach for the training
dataset, the experimental data would reduce the absolute error in the freshness-level
measurements. This approach was applied for the measurement of oxygen concen-
tration, and the results were comparable with many commercial oxygen sensors
based on the traditional methods (Chu et al. 2016; Michelucci et al. 2019). More-
over, the AI and ML integration support other fields, e.g., IoT, big data. Therefore, in
smart packaging development, these technologies would enhance the reliability of
the sensing system. In this case, the data were used to help consumer, particularly
when it allows the systems to monitor and to learn indicator or sensor responses that
can be related to food freshness status. Therefore, the future challenges in smart
packaging development are the novel approaches to use AI algorithms via

Fig. 2.8 Example of smartphone-based analysis in intelligent food packaging for food freshness
monitoring
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smartphone or other mobile devices in the food freshness monitoring system. This
work will cover new hybrid AI systems, novel ML models, etc., that could be
applied to enhance indicator or sensor array performance in monitoring of food
freshness status. Moreover, AI soon can be expected to play a more important role in
improving machine learning, data mining, and decision support systems that are
allowed to adjust processes and decision in real time and on the basis of big data
(Vanderroost et al. 2014).

2.4.2 IoT

The IoT is a concept focused on serving a global infrastructure of interconnected
networks for connecting objects to the cyber world. It allows for the tracking and
control of devices integrated with indicators, sensors, and actuators (Schaefer and
Cheung 2018). For instance, RFID tags equipped to the packaging objects will be
easily tracked along their chain from producer to customer (Cui 2016). Therefore, by
the integration of smart packaging in the IoT, the product lost or damaged during
shipments and distribution could potentially be prevented and reduced significantly.
In few years, not only smartphones and other gadgets will be part of the IoT, other
appliances, e.g., food packaging, furniture, and cars, or even machinery and factories
will also become part of the industrial IoT (IIoT) (Da Xu et al. 2014).

One of the most important areas in IoT is a further advancement in intelligent
food packaging technologies. It is improved in monitoring and controlling the
conditions of food packaging and managing online or real time. This advancement
will affect food quality and safety and food waste reduction significantly, which
would increase consumer health. A suitable and reliable IIoT infrastructure and the
associated ICT equipped into both the food packaging and their supply chain,
generally speaking, would create cyber-physical production and delivery networks
within a company and across several companies. Moreover, the further advantages
from these digitalization approaches of the food product life cycle and supply chain
are easy to be managed, organized, and distributed.

2.5 Conclusions

The recent advances in smart packaging, particularly intelligent packaging, depends
on the smart materials development and sensor technology, wherein some way allow
for direct detection or indirect detection by mimicking the packaged food freshness
condition to help a customer in judging the quality of food freshness and safety, as
well as its shelf life and computability. For freshness indicator or sensor, it should be
compatible with printing technology for mass production, low cost over the food
value, simple, user-friendly, reliable, accurate, and reproducible in their range of
operation, food contact safe, and environmentally friendly.

The integration of an indicator or sensor in food packaging has created innovative
ways in smart packaging developments. These innovations have allowed increasing
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food quality, safety, shelf life, and usability, reducing food loss and waste. Today,
most packaging advances have been paved by the consumer preferences and trends
worldwide, such as ICT, including imaging technology, A.I., big data, and IoT, with
their numerous mobile devices. In addition, some advances have derived from the
emerging technology, such as nanotechnology, the sensing technology in nanosize.
Undoubtedly, novel smarter indicator or sensor in smart packaging will be a rise in
the year to come as the marriage between emerging these technologies, so that the
smart packaging could inform the consumers smarter, not only by the color devel-
opment but also by their smart mobile devices in terms of food preferences, quality,
and safety. Furthermore, smart packaging could become even smarter in the near
future by numerous functions, such as tracking, tracing, authentication, preferences,
online calorie, and nutritional value, halalness, and food sustainability. These
functions can be covered via the connected packaging, where it allows consumers
to communicate with the food product via a mobile device using an active package
label or code that contains many pieces of information regarding the food products.
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Novel Packaging Development, Assessment
and Authentication Using Smart
Technologies, Non-invasive Biometric
Sensory Tools and Artificial Intelligence
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Abstract

Packaging creates the first impression from consumers when selecting commer-
cial food or beverages. Different packaging components are important as they
contain all areas of interest related to branding, shape, design and nutritional
information, which could determine willingness to purchase and success of
products in the market. However, traditional packaging acceptability assessments
based on focus groups, acceptance and preference tests may be biased and
subjective. Therefore, novel assessment methods have been developed based on
more objective parameters, including non-invasive biometrics such as eye track-
ing, emotional responses from consumers and changes in physiological
parameters, such as heart rate and body temperature. Emerging technologies
have also been studied for packaging assessment, such as virtual/augmented
reality and artificial intelligence tools, including computer vision and machine
learning modelling. Furthermore, counterfeiting has been a major issue among
commercial products, with food and beverages accounting for 10% counterfeited,
including packaging and branding. This chapter focuses on the latest research on
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intelligent and digital technologies for packaging development, assessing con-
sumer acceptability towards packaging and authentication using new and
emerging digital technologies.

3.1 Introduction

It is well known that 95% of new food and beverage products are deemed to fail in
the market without proper evaluation in terms of consumer acceptability and liking
assessments (Buss 2018; Fuentes et al. 2020; Gonzalez Viejo and Fuentes 2020).
The latter is especially relevant for food and beverage packaging since it is the first
contact with the product and creates the first impression among consumers. Tradi-
tionally, the design and information added to packaging have been determined by
food companies hiring visual design companies to present several alternatives. Then,
the best packaging design is subjectively chosen by an executive group from the
food company, without any other objective measures being considered.

When including sensory science in the decision-making process for effective
packaging, food companies can use either focus groups conformed by professionals
in the food and beverage area or by selecting potential consumers in the respective
age group the food and beverage products are targeted. More in-depth studies can be
conducted using consumer testing of 3D packaging prototypes or 2D and 3D image
rendering on screens. These techniques can give a more objective sense of why
consumers prefer different packaging features, depending on the number of
questions included in the test.

However, all these techniques are either subjective, require trained professionals
or rely on the conscious responses of panellists according to several pre-set
questions. Recent research has determined that human sensory perception and
emotional response towards images, food and beverages are mostly determined by
the response of the autonomic nervous system (ANS) (Fuentes et al. 2020, 2021a;
Gonzalez Viejo et al. 2019a, b, 2020, 2021; Biju et al. 2021; Gunaratne et al. 2019a).
Hence, the conscious responses to preference or packaging appeal may only render
partial information for decision-making.

New and emerging technologies have been applied in recent years in an effort to
tap into missing information, such as the responses of the ANS to packaging design
from consumers and how different features of the packaging elicit different emo-
tional and physiological responses that may be linked to liking and preference.

The packaging design is also important to avoid anti-counterfeiting, which is a
major problem within the industry and may affect consumers’ confidence when
selecting a food product. It has been shown that, when incorporating anti-
counterfeiting elements using different technologies from intelligent or smart pack-
aging, consumers’ trust and loyalty are reinforced (Francis 2019).

This chapter focuses mainly on these new and emerging technologies applied to
packaging assessment. This includes biometrics for physiological and emotional
response assessment, eye trackers, virtual and augmented reality, artificial
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intelligence (AI), the development of intelligent or smart food packaging as innova-
tive additions and anti-counterfeiting solutions, and consumer acceptance
assessments for these technologies.

3.2 Biometrics in Packaging Assessment

Typical assessment of consumers’ responses towards packaging/labels consists of
the use of acceptance tests using hedonic and just about right scales, and ranking or
paired preference tests. Other scales such as 100- or 15-cm non-structured scales and
check-all-that-apply (CATA) tests have also been used to assess emotional responses
from consumers. However, all those methods are self-reported, which means that
participants go through a thinking process for decision-making to provide their
answers. This leads to subjective responses that may be affected by different types
of bias, such as suggestion effect, distraction error, halo effect and cultural factors
(Kemp et al. 2011; Meilgaard et al. 2006).

The use of biometrics in sensory analysis has become more popular, especially in
the last 5 years, to assess consumers’ responses from the ANS and their emotions
(Fuentes et al. 2021a; Gonzalez Viejo et al. 2019b, c). The ANS controls the body’s
involuntary function, such as heart rate, body temperature, pupil dilation, respiration,
skin conductance and blood pressure. Once a stimulus is received, the brain is able to
integrate the information and elicit an involuntary response to the environment,
which, depending on the type of stimulus, may trigger either the sympathetic (stress)
or parasympathetic (resting) nervous system (Donato 2018; Silverthorn 1998). On
the other hand, emotional responses depend on the release of different hormones,
which are released depending on the stimuli that have been received. Some of these
hormones include adrenaline and cortisol, which trigger negative emotions, and
dopamine, oxytocin, and serotonin that elicit positive emotions; these are the
subconscious responses. After receiving motivation, this affects the behaviour,
leading to the thinking process and ending in decision-making (Smith 2015). In
previous studies, these responses have been reported to be different according to
consumers’ cultural background, such as Asians vs Westerners. This is because the
reactions to stimuli also depend on participants’ previous experiences and familiarity
with the products (Fuentes et al. 2020; Torrico et al. 2018a; Gonzalez Viejo et al.
2018a; Gunaratne et al. 2019b).

Most of the published studies use contact sensors placed either on the chest,
extremities or head to measure the physiological responses; however, this creates
awareness of the participants about being monitored and affects their ANS responses
as possible creation of a stressful environment (Gonzalez Viejo et al. 2018b; Frelih
et al. 2017). Therefore, some researchers have developed non-invasive techniques
using video analysis to reduce bias (Gonzalez Viejo et al. 2018b, 2019b; Gonzalez
Viejo Duran 2020; Mohamed et al. 2020; Jain et al. 2016). On the other hand, for the
assessment of subconscious emotional responses, some commercial software has
been developed such as FaceReader™ (Noldus Information Technology,
Wageningen, Netherlands), Affectiva (Affectiva, Boston, MA, USA), iMotions
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(iMotions, Copenhagen, Denmark) and MorphCast® (MorphCast, Florence, Italy).
Furthermore, commercial eye trackers such as Tobii (Tobii, Danderyd Municipality,
Sweden) and Gazepoint (Gazepoint, Vancouver, BC, Canada) have been used to
assess gaze parameters such as duration and number of fixations when evaluating
packaging/labels.

3.2.1 Physiological Assessment

The most common physiological responses measured while assessing packaging/
labels are heart rate and skin conductance (Table 3.1). Among the latest studies using
these technologies is the research from Liao et al. (2015), who assessed different
elements in packaging such as the image, colours and typefaces. In this test, they
assessed the self-reported responses and skin conductance of 120 participants while
evaluating 12 samples. The authors used two sensors (Procomp2, ThoughtTech,
Montreal, Quebec, Canada) attached to the middle and index fingers of the left hand
of participants to measure skin conductance. The main findings consisted of signifi-
cant differences ( p < 0.05) in skin conductance between samples with a negative
image and without any image. Cuesta et al. (2018) assessed consumers’ physiologi-
cal response based on skin conductance towards four types of packaging with
different colours and areas of interest (AOI). The authors did not report the method
or sensors used to assess skin conductance, but it was claimed that a similar skin
conductance response was obtained for all samples. However, no statistical analysis
was reported. Rodriguez-Escudero et al. (2019) evaluated four different label layouts
(changes in size and location) of smoothies’ packaging and recorded skin conduc-
tance of 42 participants using electrodes (Bitbrain Technologies, Zaragoza, Spain)
attached to the fingers of the left hand. The authors converted the skin conductance
results to two parameters: activation and impact, and found significant differences
between samples for both variables at p < 0.05 and p < 0.01. Modica et al. (2018)
conducted a study using chocolate and rice packaging to assess consumers’ heart rate
and skin conductance responses towards different brands (major vs private label),
hedonic value (comfort vs daily food) and familiarity (foreign vs local products).
The authors used a pulse oximeter placed on the thumb of participants to measure
heart rate and Shimmer electrodes (Shimmer Sensing, Dublin, Ireland) placed on the
non-dominant hand for skin conductance. However, no results were reported for
these parameters.

Schulte-Holierhoek et al. (2017) evaluated milk packaging with different colours
to assess heart rate and skin conductance responses from consumers of different
nationalities. The authors used the Vrije University Ambulatory Monitoring System
(VU-AMS, ver. 3.9) (Willemsen et al. 1996). Heart rate was measured using the
electrocardiogram method with seven electrodes (Kendall™ ECG Electrodes;
H98SG; Cardinal Health, Dublin, OH, USA) attached to the chest, while for skin
conductance, electrodes attached to the index and middle fingers of the
non-dominant hand were used. For heart rate, significant differences ( p < 0.05)
were found between responses from participants according to their nationality. Skin
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conductance was significantly higher when evaluating red rather than blue packag-
ing, while it was lower when assessing packaging with low popularity. On the other
hand, Vila-Lopez et al. (Vila-López and Küster-Boluda 2019; Vila-López et al.
2021) published two papers using the same low-fat food packaging samples with
different colours (black, blue and red) and design/message (added a small drawing).
In both publications, the authors measured skin conductance of 83 participants using
a PowerLab/16SP electrode (AD Instruments, Sydney, NSW, Australia) attached to
the palm of the non-dominant hand; however, for the second publication, heart rate
was included, and it was measured using a PowerLab/16SP electrode
(AD Instruments, Sydney, NSW, Australia) attached to the finger. In the first
paper, the authors reported that the skin conductance was significantly ( p < 0.05)
lower when evaluating blue packaging samples. In their second paper, they com-
pared results when evaluating the packaging virtually and physically and found that
for heart rate and skin conductance there was a positive and significant ( p < 0.01)
correlation (r ¼ 0.90).

As highlighted by previous research, there is an opportunity to conduct research
and develop new methods in consumer evaluation towards food packaging using
non-invasive biometrics to assess physiological responses to avoid the bias
generated by contact sensors. There are novel techniques developed to measure
heart rate and body/skin temperature using computer vision to assess food and
beverages (images, videos and tasting). The heart rate method consists of recording
videos of participants using the BioSensory Application (App; The University of
Melbourne, Parkville, VIC, Australia) while evaluating the products. The videos are
analysed using computer vision algorithms developed in MATLAB® (MathWorks
Inc., Natick, MA, USA) using the photoplethysmography (PPG) method based on
the luminosity changes in the forehead and cheeks produced by the blood flow
(Gonzalez Viejo et al. 2018b; Fuentes et al. 2018). On the other hand, the contactless
body/skin temperature method consists of using a thermal infrared camera integrated
with the BioSensory App that can capture thermal images to assess consumers’
temperature changes when evaluating the samples. These are then automatically
analysed using MATLAB® to obtain the maximum temperature of the eye section
(Gonzalez Viejo et al. 2018c, 2019a).

3.2.2 Emotional Assessment

Recent studies have used the subconscious assessment of emotions from consumers
when evaluating food packaging/labels (Table 3.1). While the traditional technique
uses sensors attached to specific muscles in the face to assess facial movements,
more recently, the most common method is the non-invasive video analysis using
commercial software. The software used to analyse videos for emotions works by
automatic face detection and recognition of features such as eyebrows, mouth, eyes
and nose. Once these are identified, the software can track the features identifying
the micro- and macro-movements, through the duration of the video, using a specific
model or algorithm developed by each software, such as an active appearance model
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in FaceReader™ and histogram of an oriented gradient in Affectiva. Then, these are
translated into emotions such as happy, sad, joy, contempt, angry and scared using
machine learning models based on artificial neural networks (ANNs) in
FaceReader™ and support vector machine (SVM) in Affectiva. This non-invasive
automatic process is convenient to assess emotional responses towards stimuli such
as food packaging/labels, as consumers are not aware of the video recording
throughout the study, making them have more natural/spontaneous reactions when
evaluating the stimuli and, therefore, reduces bias.

Authors such as Liao et al. (2015) still use the traditional method of attaching two
electrodes to the muscles above the left eyebrow using the Procomp2 sensors;
however, this technique only measures the valence of emotions. This study found
that chocolate packaging with a positive image elicited significantly higher valence
than those with no image; the authors also found that the results from this analysis
were different from those self-reported for emotions. As mentioned before, this may
be due to consumers’ awareness of being monitored with the attached sensors.
Therefore, authors such as Songa et al. (2019) conducted a study with yoghurt
packaging to assess consumers’ emotional responses to recyclable logos (recyclable,
non-recyclable, no logo) included in labels. This was conducted using FaceReader™
5, which is capable of analysing facial expressions and translate them into emotions
such as happy, sad, angry and surprised. The authors found that packaging with the
recyclable logo elicited more positive emotions. Similarly, Vergura and Luceri
(2018) evaluated spatial representations of packaging from different snacks
(biscuits, focaccia, crackers and cake) by placing the product representation in the
foreground and background to assess consumers’ emotional responses. Authors also
used the FaceReader™ 5 to analyse the videos from consumers while assessing the
samples, and it was found that there were significantly ( p < 0.05) more positive
emotions (happiness) for the foreground and higher sadness for the background
representation.

Pichierri et al. (2021) evaluated four samples of olive oil packaging with different
health claims and assessed consumers’ emotions analysed using FaceReader™.
However, the authors only focused on the arousal value and discarded any other
parameters provided by the software. They found an interaction between the per-
ceived healthiness and arousal. Clark et al. (2021) also used FaceReader™ to assess
emotional responses from consumers, but with a different objective, as they
displayed milk packaging samples with different materials/colours and no label.
They did not find significant ( p < 0.05) differences between samples for any
emotion, but there were significant differences between emotions for each sample.
Gunaratne et al. (2019a) used the BioSensory App to gather self-reported
responses and videos from consumers when evaluating chocolate packaging (six
familiar and six novel). The authors also focused on assessing consumers’ emotional
responses towards different AOI (brand, ingredients, manufacturer, nutrition facts,
net content and bar code). The videos from consumers were analysed using
FaceReader™ and found significant differences ( p < 0.05) between samples from
the novel packaging for sadness. The authors also found that more positive emotions
were elicited by the brand AOI of novel packaging. On the other hand, Gonzalez
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Viejo et al. (2021) evaluated six different coffee pods packaging designed with
different concepts (bold, fun, premium, classic, natural, everyday) based on the TNS
NeedScope model™ (NeedScope International, Auckland, New Zealand). The
authors used a novel virtual method to conduct the sensory session using Zoom
(Zoom Video Communications, Inc., San Jose, CA, USA) and Google Forms
(Google, LLC, Mountain View, CA, USA) to display the questionnaire and record
consumers’ reactions during the test. These videos were analysed using a computer
application developed by the Digital Agriculture Food and Wine Group from the
University of Melbourne, Australia, based on the Affectiva (Affectiva, Boston, MA,
USA) software development kit (SDK). Results showed that positive emotions were
related to the everyday packaging concept, valence with the premium sample and
more negative emotions were associated with the bold packaging.

3.2.3 Eye Tracking

Eye tracking is the most used biometric method to assess consumers’ subconscious
responses towards food packaging/labels (Table 3.1). This is, generally, a
non-invasive or contactless method, except for the alternative of eye tracking
glasses, which are often used as a portable method when the test is conducted in
an external location. Eye trackers are composed of camera-based sensors with an
integrated infrared light that can detect the eyes and pupils. Once these are detected,
it can follow and measure the gaze movements and positioning, and pupil size
(Gonzalez Viejo et al. 2018c, 2019b; Torrico et al. 2018b). Using specific software
connected to the eye tracker, different parameters such as fixation duration, the
number of fixations, time to the first fixation and pupil dilation can be determined
(Table 3.1). Fixation duration refers to the time spent looking at a specific location or
AOI and is related to the importance that consumers give to the specific elements in
the sample (Torrico et al. 2018b; Merdian et al. 2020). The number of fixations is
used to assess how many times the participants fixate in a specific AOI during the
test and is related to the importance that consumers give to the AOI (Torrico et al.
2018b; Meyerding and Merz 2018). Besides, the time to first the fixation is the time
that participants take to fixate in a specific AOI for the first time (Merdian et al.
2020). On the other hand, pupil dilation refers to the pupil size and its changes during
the evaluation of the samples; when it is more dilated, it has been associated with
negative stimuli or emotions (Oliva and Anikin 2018; Shechner et al. 2017). The eye
trackers can also obtain qualitative data such as heat maps and fixation maps to
assess the areas of higher visual focus and the path or order in which the sample was
evaluated.

The most used eye trackers among the recent publications are the Tobii (Cuesta
et al. 2018; Rodríguez-Escudero et al. 2019; Merdian et al. 2020; Meyerding and
Merz 2018; Ballco et al. 2019), and SMI eye trackers (SensoMotoric Instruments,
Teltow, Germany) (Songa et al. 2019; Mokrý et al. 2016; Drexler et al. 2018;
Sielicka-Różyńska et al. 2021; Popova et al. 2019; Huang et al. 2021a), and, to a
lesser extent, Gazepoint (Gunaratne et al. 2019a), The EyeTribe Tracker (The
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EyeTribe#, Copenhagen, S. Denmark) (Torrico et al. 2018b) and the RealEye
System (RealEye, Poznań, Poland). The latter consists of an online software pro-
gram capable of tracking eye movements in real time using a computer-integrated
webcam (Fazio et al. 2020). The number of consumers recruited for the tests in the
recent publications varied from 15 to 180, while the number of samples ranged from
2 to 251, and the time used to display the stimulus is within 2–15 s (Table 3.1).
However, the experiment must be carefully designed to avoid any possible bias in
the results; in this context, using 251 samples for a test (Ballco et al. 2019) is too
large and may cause consumers’ fatigue. Furthermore, displaying the stimulus for 2 s
(Rodríguez-Escudero et al. 2019) may not be enough time for the participants to
evaluate the sample. The studies mentioned in Table 3.1 were mainly conducted in
packaging belonging to (1) beverages (Cuesta et al. 2018; Rodríguez-Escudero et al.
2019; Merdian et al. 2020; Mokrý et al. 2016; Popova et al. 2019), (2) snacks
(Gunaratne et al. 2019a; Sielicka-Różyńska et al. 2021; Huang et al. 2021a),
(3) yoghurt (Songa et al. 2019; Ballco et al. 2019), (4) organic food (Meyerding
and Merz 2018; Drexler et al. 2018) and others such as baby formula (Torrico et al.
2018b) and olive oil dressing (Fazio et al. 2020). Furthermore, these publications
focus on the assessment of mainly four elements such as (1) claims (Songa et al.
2019; Meyerding and Merz 2018; Ballco et al. 2019; Sielicka-Różyńska et al. 2021;
Popova et al. 2019), (2) AOI or layout (Gunaratne et al. 2019a; Cuesta et al. 2018;
Rodríguez-Escudero et al. 2019; Mokrý et al. 2016; Drexler et al. 2018), (3) colours
(Cuesta et al. 2018; Torrico et al. 2018b; Huang et al. 2021a) and (4) design
(Merdian et al. 2020; Fazio et al. 2020). More recently, Fuentes et al. (2021b)
presented a novel and integrated method that allows assessing subconscious emo-
tional and eye tracking responses towards each AOI from packaging and labels using
non-invasive biometrics. This method eases the interactive and real-time evaluation
and re-design only of the specific AOIs that require any modifications, rather than
the entire label. This method has the capability of integrating other ANS responses
such as heart rate, blood pressure and skin temperature to obtain more responses
from consumers.

3.3 Virtual and Augmented Reality

Two main types of reality, virtual and augmented, have been developed to either
modify the environment, create scenarios or incorporate virtual elements in real-life
environments or objects. Virtual reality (VR) consists of a 3D environment or
scenario presented through a headset covering the eyes to isolate the subject from
the real situation. On the other hand, augmented reality (AR) combines virtual or
digital 2D or 3D images or animations overlayed in the real objects or environment.
This is often through special glasses such as the Microsoft HoloLens (Microsoft
Corporation, Redmond, WA, USA) or devices such as smartphones (Fuentes et al.
2021a; Djurdjevic et al. 2019; Crofton et al. 2019). The third type of reality, named
mixed reality, has been developed, consisting of a combination of a VR environment
displayed using an AR device that allows mixing both the real and virtual
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environments with interaction (Fuentes et al. 2021a). However, it has not been used
much in food packaging evaluation.

Using VR technology, stores have been created to experience the store environ-
ment without going to the physical place. This environment allows customers to
virtually walk through the store aisles, browse the products through the shelves, see
their position and use a controller to pick the products, read the label and add them to
the cart for purchasing (Lombart et al. 2020; Siegrist et al. 2019). In VR stores, the
packaging acquires higher importance because consumers cannot touch, assess
freshness, look at the expiry date or smell the product; therefore, the visual aspects
become the sole driver of purchase decision-making. In this context, VR is a very
convenient tool for product development. It allows researchers and developers to
conduct consumer tests to assess the acceptability of the prototypes and easily
modify the packaging characteristics according to consumers’ feedback (Lombart
et al. 2020). Virtual reality may also help assess whether the success or failure of a
product may be due to its packaging or its position on the shelves in a virtual store
without the need to take consumers to the supermarket for testing.

Some researchers have explored whether the physical and VR store experiences
are similar to assess if conducting VR tests is reliable. Siegrist et al. (2019)
conducted a test with 68 participants in a physical and VR store with 33 cereal
products and instructed consumers to walk through the store and pick the products to
read the nutritional label. The authors found no significant differences ( p > 0.05)
between the VR and physical environments in consumers’ browsing behaviour and
the number of times they looked at the nutritional labels. Similarly, Xu et al. (2021)
assessed the behaviour of 98 consumers in physical and VR environments when
looking for cereals asking them to rate their perceived healthiness. Participants were
also asked to walk through the aisles and interact with the product using a controller.
Results from both environments were highly correlated (r ¼ 0.91) when rating the
cereals according to the perceived healthiness, but also found that participants took
longer evaluating the products in VR. Pizzi et al. (2019) evaluated 95 confectionery
products displayed on supermarket shelves in physical and VR environments. In this
study, 50 consumers participated in the study, and results also showed that the
sample assessment and consumers’ behaviour in both settings are comparable. On
the other hand, Huang et al. (2021b) conducted a session with 80 participants to
evaluate eight potato chip samples. The study aimed to assess consumers’ behaviour
when browsing for potato chip packaging with flavour–colour congruency and
incongruency using a VR headset to walk through the store aisle and look at the
products on the shelves. It was found that consumers were less efficient locating the
incongruent flavour–colour packaging.

Augmented reality has been integrated into food packaging by incorporating an
element in the product, such as an image or quick response (QR) code that can be
read with any smartphone camera. This is then able to display a virtual object, image,
animation or game overlayed with the real product so that consumers can interact
with it in real time. This is used at purchasing or at home to provide more informa-
tion about the product such as nutritional facts, cooking instructions, freshness of the
product, country or region of origin, display animated characters, and educational
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content or games (Djurdjevic et al. 2019; Yang 2019). These technologies applied to
packaging have also been used as anti-counterfeiting solutions as consumers can
assess their authenticity by scanning the packaging before purchasing them. Some
examples of products in the market with AR integrated into their packaging are
Kellogg’s cereals, which display mini-games and quizzes as educational tools for
kids when using a smartphone. Likewise, Nesquik cereals display content for
entertainment and learning when pointing the smartphone camera to the packaging.
On the other hand, in 2016, McDonald’s launched an AR app in the UK to display an
advent calendar when pointing the camera at their products; this displayed different
games, filters, vouchers and animations every day (Konopelko 2019). In Australia,
McDonald’s released an AR monopoly game that could be played with each product
purchase, and consumers could win different prizes (Tran 2020). To test the useful-
ness of AR in food packaging, Sonderegger et al. (2019) conducted a test with
84 participants to compare AR and static information in a smartphone when
consumers assessed five food products’ nutritional and environmental information.
The authors found that the participants learned more about the product when using
the AR version.

3.4 Intelligent Food Packaging

The term smart or intelligent is interchangeable when it comes to packaging tech-
nology. This refers to the use of embedded sensor technologies in the packaging
(Francis 2019). Food packaging materials play several important roles in transport
and delivery to the consumer and are predominantly made of plastics. The
advantages of plastic over other materials are its ability to block pathogens, moisture
and gases depending on the type of food being delivered. Active packaging involves
the ability for the product to actively deter degradation and prolong the lifetime of
the foodstuff. However, the consumer is often unaware of these technologies, despite
the important role they play in fighting against food spoilage, counterfeiting and
supply chain tracing.

Covert intelligent technologies designed to manage the supply chain include anti-
counterfeiting technologies such as invisible UV inks, DNA tracking or small
compounds known as taggants concealed within the packaging for detection by
specialized instruments. The Australian plastic banknote, first released in 1988, is
one good example that incorporated many security devices, some overt including
holograms, intaglio features, microprinting and fluorescent inks, while others remain
covert (Australia TRBo 2021). In its first release, its acceptance by the public was
48%, with 26% disliking the new technology, while today, with the gradual decline
in cash, the public has come to accept this diminishing form of currency (Prime and
Solomon 2010).
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3.4.1 Data Loggers

Intelligent technologies designed to inform the supply chain from the producers to
the retailers often use relatively expensive data loggers. Here devices are included
with a bundle of products to track such things as the location, temperature and
humidity over time and can be communicated at all stages of the supply chain
through near-infrared (NIR)/radio frequency identification (RFID), ultra-high fre-
quency (UHF) light-emitting diode (LED) or simple universal serial bus (USB) data
storage.

The majority of intelligent or smart packaging, on the other hand, are deliberately
designed to inform the consumer of the quality of the food contained within, guide
them in the best storage for consumption temperature, identify its authenticity or
whether the packaging has been improperly tampered with or adulterated. Overt
intelligent food packaging is designed to be obvious and requires little interaction to
understand the information triggered or contained within the device. In addition, the
removal or absence of these technologies on a package can indicate a tampered or
substituted product or that it is counterfeited.

3.4.2 QR Codes

A common form of communicating product information is the addition of a QR
code, which can be linked to online information about the product, promotions,
advertising or use-by-date information. It could also be used for product recall in a
safety breach simply by changing the online information linked to a separate set of
QR codes.

Consumers have become familiar with this form of intelligent technology. Gen-
erally, consumers accept the presence of these technologies in their day-to-day life,
with QR codes being routinely used for things such as movie tickets and sporting
event entry being scanned directly from their phones. Although consumer awareness
of QR codes has gradually increased since their initial applications, the use of this
technology has had a slower increase. Consumer surveys on the use of QR codes on
the packaging have seen a gradual increase in their awareness and acceptance.
However, in one survey, it was shown that, depending on the type of content the
consumer could access, this might be a reason not to use the technology in the future
(Cox and Shiffler 2014). In a 2019 survey of tourists visiting Serbia, the impact of
QR codes linked to hospitality venues was studied. The majority of the respondents
were satisfied with the technology and the information it garnered; however, the
overall satisfaction of the destination was more likely due to the venue itself and
other local factors (Vuksanović et al. 2021). In a targeted survey with 240 young
Indian adults, the majority were aware and used QR codes, while 46% scanned for
fun and 40% scanned for information (Chandramouli Rajaiah 2017). However, the
nature of the product would be expected to be a large factor in its use.

With the appearance of COVID-19 worldwide and the advantages gained by
social distancing, QR codes have been successfully used for contact tracing (Chen
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2021; Faggiano and Carugo 2020; Wu et al. 2021; Li and Guo 2020). This allows the
health authorities to track those who have contracted the virus and the people they
have come in contact with. In Australia, for example, this has led to people routinely
registering with a QR code at every venue they frequent. In the light of social
distancing rules, restaurants have used QR codes to allow for contactless ordering
of food while remaining seated and distanced from other patrons (Patil and Karekar
2019). According to Rogers’ adoption model of new products (Rogers 1976), the
uptake is led by innovators, early adopters, followed by the early and late majority
and, finally, laggards. With new technologies such as intelligent packaging, gender
and age affect the category of adoption for each group. In a study on the perception
of active and intelligent packaging of European Consumers, Tiekstra et al. (Tiekstra
et al. 2021) chose the generation Y respondents to validate their findings since they
represent an important population segment. Advertisers recognizing that they are
economically valuable, that abandoned their existing methods to this cohort and are
expected to become richer over time represent an important potential market. This
concurs with the findings by Erika et al. (2020), who determined using the Kano
model a fear of packaging innovation by older responders, although they had the
highest need for such technology. Careful selection of consumer groups can be used
to either enhance and target specific innovator groups or enhance and improve trust
and understanding among the majority and laggards of the population.

3.4.3 Chromic Sensors and Indicators

The recent development of chromic (colour changing) sensors and indicators for the
food industry has produced sensors placed outside the packaging, which actively
monitor and display various food attributes. These sensors can also be used to
identify substituted products, in the case of irreversible sensors, or where removed
or absent may be an indication of counterfeiting. The area has grown to include
several scientific approaches, including colour changing sensors triggered by
changes in pH (Alizadeh-Sani et al. 2020; Liu et al. 2019) (halochromism), temper-
ature (Liu et al. 2020a) (thermochromism), humidity (Moustafa et al. 2021)
(hydrochromism), mechanical forces (Qiu et al. 2019) (mechanochromism), light
(photochromism), bacterial growth (Weston et al. 2021a) (biochromism) or the
passage of time (chronochromism) (Zhang et al. 2013). Of these technologies, a
range of commercial examples has been used with great success. The most notable of
these was the inclusion of a thermochromic sensor onto the outside of the Coors beer
can that changed colour when chilled to the correct consumption temperature. The
consumer acceptance of this product increased sales of this product by 3% in 1 year
attributed to the intelligent technology alone (Alsever 2009). A summary of some
commercial examples of intelligent technology sensors for the food industry is listed
in Table 3.2. The most prolific of these sensors on the market is the freshness/
integrity indicators, thermochromic inks and time–temperature indicators (TTIs).
These devices are preferred to be used on impermeable containers such as glass or
metal to stop the migration of inks or chemicals to the food within or contain a
suitable barrier where paper and plastic are insufficient. For freshness indicators that
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Table 3.2 Commercial examples of Intelligent Packaging Technologies

Trigger
Commercial
example Company

Freshness/
integrity indicators

Degradation gases Fresh Tag COX Technologies

ripeSense ripeSense™ ad ort
Research

Food Fresh Vanprob

Oxygen gas O2xyDot® OxySense

Ageless Eye® Mitsubishi Gas
Chemical Inc.

O2Sense™ FreshPoint Lab

Tell-Tab IMPAK

O2 Sense™ FreshPoint Lab

Pathogens Food Sentinel® SIRA Technologies

SensorQ® DSM NV and Food
Quality Sensor

Polymer degradation Mimica Touch® Mimica Lab

Toxin antibodies Toxin Guard™ Toxin Alert

Time-temperature
indicators

Enzymatic degradation FreshTag™ VITSAB International
AB

Checkpoint® VITSAB

Polymerization Fresh-Check® Temptime Corp.

HEATmarker® Temptime Corp.

Diffusion WarmMark ShockWatch

Monitor Mark™ 3M Company

Novas® Insignia Technologies
Ltd

Tempix® Tempix AB

Timestrip®

Plus™
Timestrip Plc

Photochromic ONVU™ FreshPoint and Ciba

Lay’s Chips Chromatic
Technologies (CTI)

Fluorescent Glow in the Dark
Products

Chromatic
Technologies (CTI)

Biological TRACEO® Cryolog

Thermochromic
inks

Temperature Coors Beer Chromatic
Technologies (CTI)

Thermax® LCR Hallcrest

Paint,
Hypercolor
T-Shirts

Matsui Int. Comp.,
Inc.

Colour-Therm Colour-Therm

(continued)

3 Novel Packaging Development, Assessment and Authentication Using Smart. . . 49



are triggered by the product themselves, such as those relying on pathogen, toxin,
gas or oxygen release, alternative non-toxic sensors are required that avoid the safety
issues associated with their components (Liu et al. 2019, 2020a, b; Seeboth et al.
2013). Many critical reviews of intelligent food packaging in the food industry have
been reported covering both the commercial and research-based technologies cur-
rently being developed. These reviews go into great detail about the mechanism of
these devices and their advantages and disadvantages, including their safety, cost
and accuracy (Firouz et al. 2021; Fang et al. 2017; Biesuz and Magnaghi 2021;
Weston et al. 2021b).

3.4.4 Consumer Acceptance of Intelligent Packaging

A systematic review of consumer perceptions of smart packaging was reported by
Young et al. in 2020, including 28 studies (Young et al. 2020). The models used in
these studies included the Siegrist risk/benefit model (five studies on
nanopackaging), Kano model (five studies from one group), value-driven model
(one study), the relationship between neophobia and acceptance of food technology
(one study on nanopackaging), random utility theory (two studies on
nanopackaging) and the theory of planned behaviour (two studies on meat products),
while 13 studies did not cite any theories or models. Familiarity is generally low for
active and intelligent packaging, which is not countered by educational communica-
tion. Well-known brands’ awareness can help reduce the risk perception and
increase acceptance. Five studies were cited, which identified that the provision of
information to consumers about the packaging technology would increase trust,
improve attitude and reduce the perceived risk. They concluded that the acceptance
of intelligent and active packaging is not a well-researched area and should include
more longitudinal studies, a broader geographical spread, specific examples and
“real” applications and consumer responses to specific food groups. This was
confirmed by Li et al. (2020), who showed that, when presented with product-
specific applications, the approval of intelligent packaging increased. They also

Table 3.2 (continued)

Trigger
Commercial
example Company

Temperature data
logger

Radiofrequency
identification technologies

CS8304 Convergence Systems

Intelligent box Mondi Pic

PakSense
Express

PakSense

K1-2:
ESCREC014

Cryopak (tiptemp.
com)

Time-temperature
data logger

Ultra-high-frequency LED TempTRIP TempTRIP LLC
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reiterated that surveys should be specific about the type of product group, for
example, cheese and specific types of intelligent packaging; TTIs should be
conducted to lead to “rich detail and industry-relevant results”.

Regional surveys of consumers on the perception of intelligent packaging have
included geographical surveys from China (Li et al. 2020), Slovakia (Erika et al.
2020; Loucanova et al. 2019), Latvia (Kocetkovs et al. 2019), Italy, Europe (Tiekstra
et al. 2021; Pennanen et al. 2015) and Turkey (Aday and Yener 2015) with varying
findings.

A survey conducted in the different regions of Lativa in 2019, with
865 respondents, determined how familiar they were with the terms intelligent and
smart packaging (Kocetkovs et al. 2019). The results showed that the majority of
respondents had insufficient knowledge or understanding about smart packaging.
However, it did show that there has been a decrease in the percentage of respondents
not willing to pay more for innovative packaging, from 29% in 2017 to 6% in 2019.
The report suggested that if customers were introduced to these new technologies
through trust, comfort and satisfaction, there would be an improvement in perception
and an increase in willingness to use smart packaging. These findings were similar to
that of Slovak consumers that, in 2019, the results indicated they had a low level of
awareness of intelligent packaging overall (Loucanova et al. 2019) and as an
ecological innovation in the context of the bioeconomy (Erika et al. 2020).

In an earlier publication in 2013, consumers were tested for their acceptance of
“Innovative packaging”. The terms intelligent and active packaging were not used
yet; the questions specifically targeted each category. In that study, 265 Turkish
respondents were asked 24 multiple-choice questions. Here, homogeneity analysis
was used to determine, among other findings, that intelligent packaging was pre-
ferred over active packaging as consumers want to be able to visually monitor
product quality themselves using either freshness, microbial growth or toxin risk
as well as shelf life conditions such as temperature sensors/indicators (Aday and
Yener 2015). The respondents indicated that education through advertising would be
the most effective way to increase innovative packaging acceptability. It was noted
that increased awareness of innovative packaging in warmer climates such as Italy,
Spain and Turkey might be due to their increased concern regarding microbial
spoilage.

In a quantitative survey of intelligent food packaging using the intercept method
in Beijing, 371 consumers were tested for their acceptance of the new technology
(Li et al. 2020). In this study, a high percentage of respondents (81%; n¼ 181) had a
qualification in science and technology, although no significant association was
measured for education, employment, gender or age. Overall, acceptance of novel
packaging was high (56%), with levels increasing when presented with product-
specific applications.

A 2020 study of European generation Y respondents (n ¼ 1249) used a 7-point
scale, where 1 represented “not important” and 7 “very important” to determine the
impact of various active and intelligent packaging features” (Tiekstra et al. 2021).
Overall, it was clearly determined that packaging was important (score of 5.3) to the
consumer with the main properties of protection (6.0), sustainability (5.8), economy,
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i.e. low cost or good value (5.8), information (5.5), especially to guarantee authen-
ticity and detailed content, convenience (5.2), portability and storage (4.8) and
promotion (4.0). Of the intelligent packaging products tested, respondents reported
that they would buy packaging that indicated that it had been maintained at the
correct temperature (5.9), with a higher response for women (5.9) over men (5.7).
This would represent sensors such as the already commercially present freshness
indicators and TTIs in Table 3.2. Sensors that showed the ideal consumption
temperature, such as CTI’s Coors beer label, were the next highest-ranked (5.5)
and would include reversible sensors such as the thermochromic devices and inks.
Products that brought with it more interaction with the product ranked next in
importance (4.7) with a significant preference by women (4.8) over men (4.5)
once again. Packaging that provided engagement and leisure (e.g., QR codes, VR
and conductive inks) was less appreciated (4.0), while the last appreciated were those
that emitted smell (3.8), light or sound (2.7). More than half (51%) of the consumers
were willing to pay less than 10% more for intelligent packaging, while almost more
a third would pay between 10 and 50% more (28%).

In a 2021 publication, Cammarelle et al. (2021) surveyed 260 Italian consumers
using a modified theory of planned behaviour (TPB) model focusing on reducing
household food waste. They found that the respondents were more willing to
purchase intelligent rather than active packaging. The survey identified the intelli-
gent packaging as freshness indicators (colour change sensors), gas sensors (emitted
from the food), leak indicators, temperature indicators (ready to drink/eat) and TTIs.
The questionnaire measured several parameters, including attitudes towards food
waste, subjective norms, perceived behavioural control, awareness, shopping,
planning and leftover reuse routines. The coefficient for willingness to purchase
intelligent overactive packaging was higher for all measures aside from the attitude
(favourable/unfavourable evaluation of the behaviour), with significant preference of
intention to reduce household waste through willingness to purchase intelligent
(0.81) overactive packaging (0.68).

The main considerations when developing intelligent packaging and understand-
ing consumer acceptance include improved education and awareness, visual com-
munication of safety authenticity and quality, increased studies specific to individual
technologies and food groups, geographical and demographic considerations, and
economic and ecological impacts in an atmosphere of openness and trust.

Most of the studies reported were in the form of written or oral questionnaires.
Considering non-invasive biometrics, physiological measurement, virtual reality and
AI, greater insights into consumer-targeted intelligent packaging could be achieved.
Improvements to the application of such technologies could lead to full acceptance
of this new and emerging approach to food packaging.
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3.5 Artificial Intelligence in Food Packaging

The implementation of AI has gained increasing popularity in the last decade,
especially in the food and beverage sciences (Fuentes et al. 2021a; Gonzalez Viejo
et al. 2019b). It is important to note that AI does not involve only machine learning
modelling, which is a discipline within AI, but also involve the integration with other
disciplines, such as sensor technology, sensor networks and Internet of Things (IoT),
robotics, biometrics, VR and AR, computer vision using imaging and multispectral
cameras for smart or intelligent assessments (Fig. 3.1).

Different AI modelling strategies have been implemented for food and beverage
applications, including packaging assessment, through the use of supervised
machine learning and deep learning depending on the data availability and the
objectives and targets of the models to be developed (Gonzalez Viejo et al.
2019b). Once the AI models are developed, they can be deployed using the respec-
tive sensor technology that is readily available, which can be cost-effective. One of
the main principles to consider for efficient AI model deployment is the parsimony
requirement of models, which states that the inputs of the models need to be simple
enough and easier to acquire compared to the targets (Robbins n.d.).

Recent research is of special relevance, which implemented non-invasive
biometrics for emotional and physiological response assessment from panellists in
sensory tests. An interesting application of AI was proposed by the Digital Agricul-
ture, Food and Wine research group at the University of Melbourne, using the

Fig. 3.1 Venn diagram
depicting the artificial
intelligence sub-disciplines
and their relationship within
each other. Diagram adapted
from Gonzalez Viejo et al.
(2019b). IoT: Internet of
Things
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automated integration of eye trackers and emotional response from participants
assessed through computer vision (Fuentes et al. 2019). Through this methodology,
it was possible to synchronize the assessment of different components of packaging
labels, or AOI and the emotional response elicited by each (Fuentes et al. 2021b).
Many other critical applications of AI in the food sector have been identified, such as
improvement of quality of packaging and food safety (Paul et al. 2021), and the
assessment of coffee labels under social isolation using online video conference
resources and computer vision, which makes these studies relevant in times of
pandemic (Gonzalez Viejo et al. 2021). Also, data collection and AI modelling
have been facilitated recently through the development of a specialized BioSensory
App to obtain self-reported data and video and infrared thermal imagery to process
them using computer vision algorithms (Fuentes et al. 2018). Although it has not
been widely explored, AI may be integrated into intelligent packaging technologies
as more efficient anti-counterfeiting strategies. This is a promising application of AI,
which is being explored and developed, especially in the most recent years (Schaefer
and Cheung 2018). This includes the integration of machine learning to intelligent
packaging sensors as support systems for food quality and safety (Sohail et al. 2018).
For example, this may predict the product shelf life in real time according to the
storage and transportation conditions (Loisel et al. 2021).

3.6 Conclusion

The implementation of new and emerging technologies for intelligent packaging
assessment and smart feature integration shows promising results for the food and
beverage industries. Implementing AI for packaging assessment of consumer
acceptability by integrating sensor technology and machine learning could increase
objectivity for the analysis of packaging for new products, which can support the
decision-making process more efficiently. More research should focus on the effi-
cient deployment of AI models and sensor integration since most recent
developments are only up to the stage of model development. The latter will secure
the proper application of AI in smart or intelligent packaging to benefit the industries
and consumers through higher information, transparency, provenance, traceability
and combat counterfeiting.
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Abstract

The most used materials for the development of food packaging are petroleum-
based polymers. Despite the advantages that synthetic polymers have, the low
rates of recycling, coupled with their nonbiodegradability and nonrenewable
nature, drive the concerns regarding environmental pollution. Alternatives to
replace synthetic polymers include different types of biomolecules, and these
molecules might be provided by the metabolism of microorganisms, from bio-
mass, by-products from food industries, and chemical synthesis of bio-derived
monomers. Even with many sources being investigated as raw materials for food
packaging development, the large use of these bio-based materials is still limited
by different reasons. Many strategies can be used to improve the performance of
these materials, such as blends, reinforcing agents, cold plasma, UV light, and
chemical and enzymatic methods. Thus, an opportunity remains in the search to
improve the overall performance of biodegradable materials in order to overcome
the limitations regarding their packaging performance for the commercial use.
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4.1 Introduction

Packaging has a primordial role in the maintenance of the quality of the food
products from their production to consumption. The four main functions of food
packaging are containment, protection, convenience, and communication. Among
the most widely used materials are petroleum-based polymers; however, the wide
use of these nonrenewable sources of polymers coupled with the low recycling rates
has been causing their accumulation in nature leading to serious environmental
problems. In this way, the search for alternatives from renewable and nonpolluting
sources is of utmost importance in order to replace these synthetic materials.

The most widely used molecules for the development of sustainable polymers for
food packaging materials include polysaccharides, proteins, and lipids. The films
developed with macromolecules from agricultural sources have different
characteristics regarding their mechanical, color, and barrier properties. Although a
wide variety of raw materials have been explored to develop these materials, several
factors still limited the advancement of these technologies for commercial use.
Among them, the hydrophilic behavior of many proteins and polysaccharides is
responsible for the low performance of the developed films compared to the syn-
thetic polymers, avoiding these materials to perform the basic functions of protection
of the packaged products (Wihodo and Moraru 2013; Benbettaïeb et al. 2016b).

Polylactic acid (PLA) is a polymer that is characterized as biocompatible and
biodegradable thermoplastic aliphatic polyester (Mochizuki 2009), and it is obtained
industrially through the polymerization of lactic acid or the polymerization with
opening of the lactide ring (Avérous 2008). PLA can be produced from renewable
nonfossil natural resources by fermentation of polysaccharides such as sugar or
extracted from corn, potatoes, cane molasses, and beets (Murariu and Dubois
2016). One of the major disadvantages of using PLA is its higher cost and deficiency
in some properties, such as low thermal resistance and lower barrier properties,
limiting its commercial applicability (Swaroop and Shukla 2018).

Polyhydroxyalkanoates (PHAS) are polyesters of natural origin, and these
biopolymers are produced by microbial fermentation by a wide variety of bacteria.
PHB has thermoplastic properties, which allow them to be molded or transformed
into films for different applications. The high crystallinity of polyhydroxybutyrate
(PHB) makes the films of these biopolymers very fragile (Ghanbarzadeh and Almasi
2013). Therefore, it is important to search for alternatives to improve the polymer
network formed by macromolecules from agricultural sources, microorganisms, and
bio-derived monomers.

Different strategies can be used to improve the performance of these materials,
such as the mixing of different raw materials to combine their properties,
incorporation of reinforcing agents, use of chemical and enzymatic methods for
modification of polymer chains, and physical methods that alter the properties of the
polymeric networks (Bourtoom 2009). Chemical treatments using acid or alkaline
agents or crosslinking agents have shown promising results in relation to mechanical
and film barrier performance (Shah et al. 2016; Benbettaïeb et al. 2016b). The use of
physical methods such as cold plasma and UV light technologies has the advantages
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of not requiring chemical reagents, also these techniques are nongeneration waste,
and the treatment application has a great uniformity. These technologies are known
to alter the properties of polymers by generating radicals that initiate reactions in
their structure, such as the formation of crosslinking, and/or the breaking and
degradation of chains (etching) (Morent et al. 2011; Wihodo and Moraru 2013).
Due to these characteristics, the study of cold plasma and UV light to modify the
properties of films developed with molecules from agricultural sources is promising
since they are nonpolluting technologies being used for the improvement of
polymers from renewable sources.

This chapter aims to present a review of biodegradable polymers used in the
development of food packaging, as well as the techniques that can improve the
performance of these biodegradable materials in relation to physical, mechanical,
and barrier properties.

4.2 Biopolymers

In view of the environmental impacts generated by the disposal of the use of
nonbiodegradable packaging, the search for alternative materials for the production
of biodegradable packaging is necessary and has been intensified and the latest years
(Cazón et al. 2017; Thakur et al. 2018). In this context, biodegradable and/or
bio-based polymers, also called biopolymers, are alternative sources that have
been widely studied for this replacement since they are raw materials with the ability
to decompose in nature in a short period of time after disuse (Gouveia et al. 2019;
Nešić et al. 2020). Biopolymers are polymers obtained from natural sources, which
can be extracted from plants or marine organisms, such as polysaccharides and
proteins, or produced by microorganisms (Paixão et al. 2019), such as microbial
polyesters (PHAs) or microbial polysaccharides (Nešić et al. 2020), and also could
be chemically synthesized from biological material (Rogovina et al. 2019). Fig-
ure 4.1 shows the most used sources of biopolymers for food packaging production.

It is worth noting that in order to obtain biopolymeric films of proteins and
polysaccharides, in most cases it is necessary to incorporate plasticizer additives to
modify and improve properties, since the use of polymer alone is not sufficient to
form rigid or elastic films with good barrier properties (Han 2014). Reinforcement
materials such as composite materials or bioactive compounds can also improve the
physical–chemical properties of the polymeric matrix (Zafar et al. 2016; Kumar et al.
2019).

The addition of plasticizer has the function of reducing the strain stress and
hardness and increase the flexibility and resistance to fracture the biopolymeric
films. However, the modification of the properties will be related to the combination
of the polymer and the plasticizer used (Vieira et al. 2011; Espitia et al. 2014).
According to Espitia et al. (2014), among the most used plasticizers are polyols
(glycerol and sorbitol), lipids (monoglycerides, phospholipids, and surfactants), and
sugars (glucose and sucrose).
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4.2.1 Polysaccharide-Based Films

Polysaccharides are promising sources for the development of packaging for food
products, since they are a group of polymeric carbohydrates with desirable
characteristics such as biocompatibility, biodegradability, and nontoxicity to live
organisms (Chopin et al. 2014; Nešić et al. 2020). This biopolymer is a very
abundant raw material, which could be originated from plants and marine biomass
(Cazón et al. 2017; Nešić et al. 2020), bacteria, or fungi (Delattre et al. 2007).

In general, polysaccharide-based films have low barrier properties to water vapor
and poor mechanical stability, due to the hydrophilic nature of most of these
polymers (Cazón et al. 2017) However, polysaccharide packaging has good barrier
properties to oxygen and carbon dioxide when exposed to low or moderate relative
humidity (Nešić et al. 2020). The packages can be directed to products compatible
with their properties; for example, some polysaccharides, e.g., alginate and carra-
geenan, are hydrophilic and hygroscopic and can be applied on the food surface to
absorb water and slowing the loss of moisture (Bourtoom 2008; Cazón et al. 2017).
Although there are some limitations for the preparation of biodegradable packaging,
it is possible to improve the natural properties of polysaccharides through chemical
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Fig. 4.1 Types of biopolymers used for the preparation of food packaging
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modifications, in order to obtain molecular structures of interest and functionalized
(Majid et al. 2018) The desired properties in polysaccharide films can also be
obtained by combining them with other polymers and incorporating nanocomposites
and/or bioactive compounds in the system (Hussain et al. 2017; Nešić et al. 2020).

Among the most used polysaccharides for the development of films are alginate,
starch, cellulose, gums, pectin, and chitosan. In the next topic, the sources, desirable
and undesirable characteristics, and some studies using different polysaccharides in
the development of food packaging will be addressed.

4.2.1.1 Alginate
Alginate is a polysaccharide obtained from the alkaline treatment of alginic acid,
extracted from cell walls of brown seaweed (Phaeophyceae), also can be obtained
from bacterial sources (Aziz et al. 2018). The algae species most used for alginate
extraction are Ascophyllum nodosum, Fucus species, Laminaria species,
Macrocystis pyrifera, and Ecklonia (Hay et al. 2013; SenturkParreidt et al. 2018).
On the other hand, the extraction from a bacterial source occurs through the species
of Pseudomonas and Azotobacter (Hay et al. 2013).

Due to the high hygroscopic, water-soluble properties, ease gel formation at room
temperature, and emulsification capacity, alginate has shown great potential for the
production of biodegradable films (Fig. 4.2). The films produced with alginate
presented low permeability to oil and oxygen, in addition to having good flexibility,
gloss, and absence of flavor and odor (Pawar and Edgar 2011; Paixão et al. 2019).
According to Cazón et al. (2017), alginate films offer a low moisture barrier, and
their hygroscopicity makes possible a delay dehydration of the foods in which they
are applied. However, it can be used to mix polymers to get films with higher barrier
properties, and despite the characteristics, alginate salts can also be modified by the
process of crosslinking and/or adding lipids in the formulation, thus increasing the
barrier to humidity (Benavides et al. 2012; SenturkParreidt et al. 2018).

Fig. 4.2 Sodium alginate-based films (a) and alginate based-film incorporated with
Caryocarbrasiliense extract (b)
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4.2.1.2 Cellulose
Cellulose is the most abundant biopolymer in the world, being present mainly in
plants due to cell development and biogenesis of cellulose in vegetables (Moon et al.
2011). However, this biopolymer can be found in fungi, algae, marine organisms,
invertebrates, and gram-negative bacteria (Jõgi and Bhat 2020). It is one of the first
biopolymers to be applied in the development of biodegradable packaging. Many
packaging based on cellulose is used, as paper, cardboard box, wood box, among
others.

A single cellulose fiber has Young's modulus values above 114 GPa, crystallinity
about 89%, and a high degree of polymerization, with a thermal degradation
temperature above 230 �C (Srivastava et al. 2018). Cellulose is commonly used in
the paper and textile industries, generating materials of high quality and resistance,
being applied as coatings and multilayer packaging for various types of food.
However, due to the hydrophilic character, low solubility, and high crystallinity,
the formation of films based on native cellulose becomes unfeasible because of the
difficulty of the process and its high costs (Nechita and Iana-Roman 2020). There-
fore, cellulose derivatives such as carboxymethylcellulose (CMC), methylcellulose
(MC), ethyl cellulose (EC), hydroxypropyl and hydroxyethyl cellulose (HPC and
HEC), and hydroxypropyl methylcellulose (HPMC) could be used to produce
biodegradable films and membranes (Thakur and Thakur 2016).

In addition, due to the previously mentioned properties of high strength, crystal-
linity, and biodegradability, cellulose fibers can be reduced to nanocellulose
(by mechanical or acid hydrolysis method) and applied as nanocomposites in the
development of food packaging (Vestena et al. 2016; Hafemann et al. 2019). The
incorporation of nanocellulose particles in filmogenic solutions can promote good
emulsion and viscosity characteristics of fluids and, due to the hydroxyl groups
present, nanoparticles can assist in the interaction between polymeric networks and
lipophilic compounds, promoting the development of films more homogeneous and
with greater resistance, malleability, and desirable barriers to UV light and gases
(Mu et al. 2019).

4.2.1.3 Chitosan
Chitosan is a copolymer, obtained from the deacetylation of chitin (Brasselet et al.
2019). Chitin is a naturally occurring polysaccharide that is among one of the most
abundant biopolymers; however, its application is limited because it is not soluble in
water or other common organic solvents, requiring its alkaline deacetylation in a
solid state, which can also be obtained by fermentation (Jayakumar et al. 2010).
After deacetylation, chitosan is obtained, and this polysaccharide is composed of two
different monomers N-acetylglucosamine and glucosamine linked by β-(1 ! 4)–
glycosidic bonds (Younes and Rinaudo 2015).

According to Fernandez-Saiz (2011), chitosan is a polymer that presents bioavail-
ability, biocompatibility, bio-adhesiveness, and biodegradability, is nontoxic, and
can be ingested, in addition to intrinsic antimicrobial properties against fungi and
bacteria (Laroche et al. 2018; Brasselet et al. 2019). Due to the physical and chemical
properties of chitosan, several studies have demonstrated the potential of this
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biopolymer for the development of food packaging (Souza et al. 2017, 2019; Nešić
et al. 2020). In films, chitosan has selective permeability to gases such as O2 and CO2

and good mechanical properties. However, the chitosan presents a poor water barrier
due to its high sensitivity to water (Fernandez-Saiz 2011; Priyadarshi et al. 2018;
Bouissil et al. 2019).

More recent studies have explored the development of active packaging using
chitosan-based films incorporated with antioxidant and antimicrobial compounds as
a strategy to improve the properties of chitosan films (Souza et al. 2017; Nešić et al.
2020). Bonilla et al. (2018), analyzing chitosan films (C) incorporated with clove oil
(CO) and ginger oil (GO), observed that the incorporation of essential oil produced
films with greater antioxidant activity, being CO>GO> C. Both films incorporated
with essential oil showed better UV-Vis light barrier properties. The addition of
clove oil also increased the properties of tensile strength and elastic modulus,
compared to pure chitosan, showing that essential oils not only function as a
bioactive compound, but also function as a reinforcing agent.

Studies also show that chitosan can be applied in the production of intelligent
packaging, taking as an example the study of Wu et al. (2019), which used chitosan
for the elaboration of intelligent packaging based on the incorporation of
anthocyanins extracted from black rice bran, in which the response was
characterized by pH sensitivity, higher antioxidant properties, and UV barrier effect.

Chitosan films can be applied to different products, as fruits, cuts of meat,
biscuits, and butter (Drevinskas et al. 2017; Mostafavi and Zaeim 2020). In meat
products, can be cited the study of Ruiz-Navajas et al. (2015), where chitosan films
incorporated with nanocomposites of montmorillonite and rosemary essential oil
were able to reduce the oxidation and color change of chicken meat.

4.2.1.4 Gums
According to Salehi and Kashaninejad (2015), the term “gum” is applied to refer to a
group of naturally occurring polysaccharides that have the capacity to form gels,
viscous solutions, or emulsion stabilizers, also can be used as texture modifiers,
thickeners, gelling agents, dietary fiber, and on the development of films and
coatings (Kurt and Kahyaoglu 2014; Dick et al. 2015). Another nomenclature used
is “hydrocolloids,” referring to water-soluble gums (Salehi and Kashaninejad 2015).
In general, the gums can be defined as molecules of high molecular weight that can
produce gel when combined with appropriate solvents (Quiroga 2015).

The gums can be extracted from terrestrial or marine vegetables, products of
microorganism biosynthesis, and chemical modification of natural polysaccharides
(Quiroga 2015). Several studies have demonstrated the potential of the application of
gums in the development of biodegradable food packaging, and some of them are
shown in Table 4.1.

Among the polysaccharides capable of forming films, the gums are the class of
mannans (consisting of glucomannan), present high molecular weight polymers, and
have a strong interaction with water (Kurt and Kahyaoglu 2014).

Several studies have used agar as a raw material to produce films (Abdul Khalil
et al. 2017; Contardi et al. 2019; Xu et al. 2019). In general, agar-based films are
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relatively brittle, showing low elasticity and thermal stability, high solubility, and
water vapor permeability (Arham et al. 2016). On the other hand, agar films have a
high rate of shrinkage, are transparent, and heat-sealable, as well as biodegradable.
However, worth to remember the film formation capacity of the agar is based on the
gelling property and is closely linked to the origin of the source, the method of
production of the film, and the components incorporated in the matrix (Sousa and
Gonçalves 2015; Garrido et al. 2016; Huang et al. 2020).

Agar and carrageen are natural hydrophilic polymers extracted from red algae
(Gonsalves et al. 2011; Siah et al. 2015), and films obtained from these polymers
have limited use because it is a highly hydrophilic compound, but have a good
barrier for fats and oils (Tavassoli-Kafrani et al. 2016). Capable of forming highly
viscous solutions even at low levels of concentration, the xanthan gum has an
excellent ability to form films (Mohsin et al. 2018; Murmu and Mishra 2018).
However, the xanthan films also have poor mechanical properties (Kurt et al.
2017; Hao et al. 2018; Wu et al. 2018b). As well as other polysaccharides, the
properties of these polymers can be improved by mixing other polymers (Hou et al.
2019) or by incorporation of bioactive compounds (Rhim andWang 2014; Soni et al.
2016).

Cashew bark is a nonconventional gum source, and it is a nonallergenic, biocom-
patible, and biodegradable polymer obtained from the gummy exudate extracted
from Anacardium occidentale (Nayak et al. n.d.). Films made only of cashew gum
have poor mechanical properties and low stability; for this reason, some studies have
analyzed the mixture of polymers with this matrix (Oliveira et al. 2018; Cruz et al.
2019).

Table 4.1 List of gums more common used in the films production

Gums Source References

Agar Red seaweed of the class Rhodophyceae
(Gelidium sp. and Gracilaria sp.)

Mostafavi and Zaeim (2020);
Sousa and Gonçalves (2015)

Arabic Exudate from Acacia Senegal and other
species of the family Leguminosae.

Murmu and Mishra (2018);
Murmu and Mishra (2017)

Carrageenan Red seaweed of theRhodophyceae family:
Chondrus crispus and
Gigantinamamillosa

Rhim and Wang (2014); Siah
et al. (2015); Sedayu et al.
(2019)

Gellan Secreted by the bacteria Sphingomonas
elodea

Kim et al. (2015); Sapper et al.
(2018)

Guar Cyamopsis tetragonolobus seeds Saurabh et al. (2015); Liu et al.
(2020)

Locust Ceratonia siliquo of the family
Leguminosae

Barak and Mudgil (2014); Liu
et al. (2020)

Unconventional Chia seed Barak and Mudgil (2014); Dick
et al. (2015)

Salep glucomannan of roots or tubers Kurt and Kahyaoglu (2014)

Basil seed (OcimumbasilicumL.) Khazaei et al. (2014)

68 V. G. Martins et al.



Another nonconventional gum is the gum obtained from chia seeds, and the
mucilage extracted from chia has the potential to produce edible films (Muñoz
et al. 2012; Barak and Mudgil 2014), coatings (Dick et al. 2015), and soluble films
(Fernandes et al. 2020). The mucilage is mainly composed of xylose, glucose, and
methyl glucuronic acid that form a branched polysaccharide of high molecular
weight with excellent gelling properties in aqueous solution, even in very low
concentrations (Barak and Mudgil 2014).

Other sources are studied in order to evaluate the potential for the elaboration of
biopolymeric packaging, such as salep glucomannan extracted from tuberculosis
roots (Kurt and Kahyaoglu 2014), basil (Ocimum basilicum L.) seed gum (Khazaei
et al. 2014), Lepidium perfoliatum seed gum (Seyedi et al. 2014), Brea gum
extracted from Circadian praecox (Spotti et al. 2016), and tara gum (Wu et al.
2018b; Liu et al. 2020).

4.2.1.5 Pectin
Pectin is one of the main structural polysaccharides of superior plant cells, and pectin
is found mainly in citrus fruits and apples, and can also be extracted from
by-products of the food industry, such as fruit and greenery marcs. It is an important
biopolymer in the food industry due to its gelling properties, generally formed by
water-soluble pectinic acids with varying levels of ester methyl, with the ability to
form gels when combined with sugars and acids in appropriate proportions
(Narasimman and Sethuraman 2016; Martău et al. 2019; Coman et al. 2020).

Chemically, pectin is constituted by poly α1–4-galacturonic acids, can be classi-
fied according to its degree of esterification with methanol as high methoxy pectin
(DE <50%) or low methoxy pectin (DE >50%) (Espitia et al. 2014). However, the
source and conditions of extraction can affect the molecular weight of the pectin and
the degree of esterification (DE) (Gouveia et al. 2019).

In the food industries, pectin is applied mainly as a stabilizer, thickener, and
encapsulant (Rodriguez-Garcia et al. 2016). However, it is widely studied in differ-
ent fields such as agriculture and medicine (Gupta et al. 2014; Smith et al. 2016). In
addition to the ability to form gels, pectin has antimicrobial and antiviral properties,
which can be directed toward the development of active films and coatings (Gouveia
et al. 2019).

Generally, pectin films are produced by casting technique (Bátori et al. 2017), but
other methods such as thermocompression or extrusion have been studied due to
their simplicity and their ability to produce films without polymer solubilization
(Gouveia et al. 2019).

Pectin films have high-water solubility and poor mechanical properties, limiting
their application as food packaging (Nesic and Seslija 2017; Gouveia et al. 2019). In
order to improve these properties Makaremi et al. (2019) incorporated clay
nanoparticles into a pectin matrix, obtaining pectin films with better mechanical
performance, thermal stability and water vapor barrier properties.

Another strategy to improve the properties of pectin films is the incorporation of
polyols. In the study made by Norcino et al. (2020), biodegradable pectin films were
elaborated with incorporation of copaiba oil nanoemulsions in order to study the
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interactions of the polymers and how they influenced the mechanical and morpho-
logical properties of the films. It was observed that the incorporation of copaiba oil
resulted in a gradual decrease in the modulus of elasticity and tensile strength, while
increasing elongation art break, it was also observed an inhibition of microbial
growth after the addition of copaiba oil, thus obtaining active packaging.

4.2.1.6 Starch
Starch is a polymer with great potential for manufacturing biodegradable packaging
because it is a low cost and could be obtained from different plant sources (Dai et al.
2019). However, the properties of starch films are dependent on the source of the
polysaccharide, and they are commonly extracted from rice, potatoes, cassava
(Luchese et al. 2017b), corn, and wheat (Luchese et al. 2018; Sivakanthan et al.
2020). However, alternative sources for obtaining starch are studied, such as lentils,
beans (Joshi et al. 2013), peas, jackfruit, mango, and yams (Li et al. 2019; Rodrigues
et al. 2020).

Chemically, starch consists of a crystalline linear amylose polymer
(poly-α-1,4-D-glucopyranoside) and highly branched amylopectin formed by a
large number of D-glucose units linked by α-1,4 and α-1,6-glycoside bonds
(Sivakanthan et al. 2020). When starch is solubilized in an aqueous solution, and
subsequently heated to a certain temperature, the starch granules absorb a large
amount of water, and swell or even collapse, releasing the amylose, occurring the
process of gelatinization and increased viscosity of the solution, which is used in the
development of edible coatings and biodegradable films (Dai et al. 2019; Li et al.
2019; Ruan et al. 2019).

In general, starch-based films are great alternatives for food packaging due to the
transparent, tasteless, and odorless, being materials with good oxygen barrier
properties (Sapper et al. 2018). On the other hand, starch film has limited use, due
to the high sensitivity to water and retrogradation phenomena that influence the
barrier and mechanical properties of these materials (Cano et al. 2014; Kumar et al.
2019).

Although the limitations inherent starch films, the properties can be improved
through physical and chemical modifications of the polymer matrix (Nechita and
Iana-Roman 2020). The starch modification consists of the alteration of the native
characteristics of the starch by the introduction of new functional groups in the
molecules of the polysaccharide, changing the molecular size of the polymer and the
properties of the particles (Liu et al. 2018; Kumar et al. 2019). Physical modification
generally consists of combinations of polymeric matrix or addition of nanoparticles
(Kumar et al. 2019), while chemical modification consists of structural modification
as the crosslinking process.

In the study of Dai et al. (2019) was evaluated the physicochemical properties of
native cassava starch and films of cassava starch modified by different methods. It
has been observed that modified starches have better properties than native starch.
When comparing the modification methods, they observed that the starch modified
by crosslinking had better mechanical properties and water vapor barrier in relation
to the esterified starch and the oxidized starch.
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Luchese et al. (2018) evaluated the properties of films made with different
conventional sources of starch (wheat, potatoes, cassava, and corn), and it was
observed that cassava starch presented more hydrophobic surfaces than corn and
wheat starch films. Higher water vapor permeability values and lower mechanical
properties values were also found for wheat starch films. While films of cassava
starch showed higher values of elongation at break and lower permeability to water
vapor.

Acosta et al. (2015) propose mixing starch with other biopolymers to improve the
physical and functional properties of films, in addition to the incorporation of
hydrophobic substances or antimicrobial compounds to produce active films
(Fig. 4.3). Evangelho et al. (2019) incorporated orange essential oil in corn starch.
The films incorporated with essential oil showed greater antibacterial activity against
Staphylococcus aureus and Listeria monocytogenes, obtaining active packaging.
The addition of oil also influenced the properties of the films, causing a reduction
in tensile strength and elongation, increasing the moisture content, water solubility,
and water vapor permeability.

Menzel et al. (2019) evaluated potato starch films incorporated with sunflower
peel extract for preparation of active packaging. The addition of sunflower peel
extract proved to be a valuable source of a natural antioxidant extract, and the
incorporation of up to 6% of active compounds altered the mechanical properties,
generating less elastic module and more durable films, and attributing this alteration
mainly to the interactions of the phenolic compounds of the extracts with the
polymeric starch network.

In general, it was observed that several sources of starches have potential for the
development of biodegradable packaging; however, many of these matrices require
chemical and or physical modifications to obtain packaging with more applicable
properties.

Fig. 4.3 Cassava starch films plasticized with glycerol (a) and active cassava starch-based film
incorporated with Annatto extract (Bixa orellana) (b)
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4.3 Protein-Based Films

Proteins are among the most used natural biopolymers to produce films, and it is due
to the presence of several polar and nonpolar amino acids that confer specific
structural and functional variations (Scudeler et al. 2020). Proteins are
heteropolymer composed of more than one hundred amino acids (monomers) linked
through peptide bonds. Each of these amino acids contains a central carbon linked to
a carboxyl group, a hydrogen, an amino group, and a R group (Nur Hanani et al.
2014).

When applied to packaging development, proteins have promising properties due
to their ability to form three-dimensional networks stabilized and strengthened by
hydrogen bonds, hydrophobic interactions, and disulfide bonds, allowing the crea-
tion of intermolecular bonds and cohesive matrices (Benbettaïeb et al. 2016a).
However, the hydrophilic nature of proteins affects mechanical and barrier perfor-
mance, which are essential properties for food packaging materials (Benbettaïeb
et al. 2016c).

Protein biopolymers from animal and vegetable origin are of great interest for
film production due to their relatively low cost, inherent biodegradability, and high
availability as by-products from food and agriculture industries (Janjarasskul and
Krochta 2010; Reddy and Yang 2013). Another advantage is that protein polymers
can be processed by various methods, such as solvent evaporation or
thermomechanical processes to produce films, developing materials with excellent
oxygen barrier properties and adequate mechanical properties (Guerrero et al. 2010;
Song et al. 2011).

There are several sources of proteins that have the ability to produce films. Some
of them are whey proteins, sodium caseinate, gelatin (bovine, swine, and fish), corn,
and soy proteins (Huntrakul et al. 2020).

4.3.1 Whey Protein

Whey proteins have been of great interest; currently, the world production of whey is
about 1.8–1.9 � 108 tons/year. Whey proteins are responsible for 20% of the total
milk protein, being a co-product of cheese production, and it is recovered through
ultrafiltration or diafiltration. The main constituents of whey protein are
α-lactalbumin, β-lactoglobulin, immunoglobulin, and bovine serum albumin
(Smithers 2008; Tsai and Weng 2019).

According to Zhang et al. (2020b), whey proteins include whey protein isolate
(WPI), whey protein concentrate (WPC), and whey protein hydrolysates. WPI has
values above 90% of protein, and the main components are α-lactalbumin and
β-lactoglobulin. The whey protein concentrate (WPC) is separated from the whey
by ultrafiltration, and has strong nutritional properties and film formation capacity,
which is transparent and elastic, making it a biodegradable and renewable source of
protein of high biological value (Smithers 2008).
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Protein-based films have no aroma and flavor and present good transparency,
allowing a wide range of applications. Despite the promising use for packaging, the
films produced have moderate mechanical characteristics, but poor water resistance
due to their hydrophilic fractions. The high-water vapor permeability limits their
application as packaging material when compared to synthetic polymers (Oymaci
and Altinkaya 2016; Yayli et al. 2017).

GökkayaErdem et al. 2019 investigated the effect of the addition of sunflower oil
on the formation of edible biocomposite films based on whey protein. The authors
found that the water vapor permeability values decreased regardless of the added oil
concentration, and their barrier properties were improved. Janjarasskul et al. (2020)
developed edible films, based on whey protein (WPI) to package food or dry
ingredients. The authors report that the films showed good permeability to water
vapor and oxygen and low values for the mechanical properties of tensile strength,
elongation, and modulus of elasticity and concluded that the films have the potential
to be used as leave-in packaging for food dried in portions.

Zhang et al. (2020b) produced films composed of isolated whey protein (WPI)
and psyllium seed gum (PSG), and the authors note that the WPI/PSG composite
films had a greater contact angle with water and vapor permeability of water,
demonstrating greater hydrophobicity, as well as less oxygen permeability and
light transmittance compared to individual WPI or PSG films. It was also observed
that the tensile strength, elongation at break, and the modulus of elasticity of the
composite film WPI/PSG were higher than in the individual films.

4.3.2 Sodium Caseinate

Sodium caseinate is a mixture of casein monomers and small aggregates formed after
elimination of colloidal calcium phosphate from casein micelles (Pankaj et al.
2014a). The technical and functional properties of caseinates make them proteins
used mainly to improve the emulsifying properties of food matrices and the devel-
opment of edible films (Broyard and Gaucheron 2015).

Due to the high proportion of polar groups, sodium caseinate films are good
barriers to nonpolar substances, such as oxygen, carbon dioxide, and aromatic
compounds. On the other hand, they present low resistance to traction and do not
present a good barrier to water vapor due to their relatively high hydrophilicity
(Belyamani et al. 2014; Jiang et al. 2020; Lin et al. 2020). Different types of
physical, chemical, and biochemical modifications can be used to improve the
structure and functionality of caseinates (Broyard and Gaucheron 2015; Picchio
et al. 2018).

Brzoska et al. (2018) studied the effects of plasticizers sorbitol and glycerol and
the concentration of lipids (oleic acid or mixtures of oleic acid–beeswax) in films
based on sodium caseinate. According to the authors, films plasticized with sorbitol
were more rigid than those with glycerol and it was also possible to observe a decline
in the rate of moisture transmission with the addition of 10% bee wax.
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4.3.3 Gelatin

Gelatin is a biodegradable and renewable material, obtained by the chemical or
thermal degradation of collagen, and is widely found in skin, bones, and connective
tissue (Chiellini et al. 2001; Rbini et al. 2020). In addition, skin, bone, or animal
tissues constitute a significant by-product from animal processing industry,
generating waste and pollution problems, and these by-products are capable of
providing a valuable source of gelatin (Badii and Howell 2006).

Gelatin presents a unique sequence of amino acids with high content of glycine,
proline, and hydroxyproline. The content of proline and hydroxyproline is particu-
larly important in terms of the gelling effect (Gomez-Guillen et al. 2011). It is a
material of relatively low cost and easy to obtain, being widely used by the food,
cosmetic, and pharmaceutical industries due to its functional and technological
properties (Badii and Howell 2006).

Its characteristics of biocompatibility, high availability, good processability,
biodegradability, low cost, and absence of toxicity make gelatin a suitable material
for the production of food packaging (Badhe et al. 2017; Hosseini and Gómez-
Guillén 2018; Rbini et al. 2020). As one of the potential biomolecules for film
development, gelatin has been extensively studied due to its good film-forming
properties and its application as an encapsulating material, as well as a carrier of
active ingredients (Gómez-Guillén et al. 2009; Shankar et al. 2017).

The films made with gelatin have good oxygen barrier properties. On the other
hand, it has moderate mechanical properties, and relatively poor thermal stability
(Gómez-Guillén et al. 2009; Wang et al. 2014) and its high-water permeability limit
its industrial applications. However, gelatin functionality can be improved by
mixing with other ingredients, such as plasticizers and food additives. The use of
plasticizers improves the stability, resistance, and flexibility in gelatin films, which
allows its use as packaging material (Park et al. 2008).

Nur Hanani et al. 2012 produced films with bovine, swine, and fish gelatin in
different concentrations. The authors observed that films with a higher concentration
of gelatin had their mechanical properties improved. Fish gelatin films showed the
lowest water vapor permeability values, while films derived from swine gelatin
showed less water solubility compared to those formed with fish and bovine skin,
regardless of the concentrations used.

In the study of Dammak et al. (2017), an active gelatin-based film was developed,
and microparticles coated with chitosan were prepared to encapsulate the rutin. The
authors comment that results for water vapor permeability and the mechanical
properties of tensile strength, elongation, and modulus of elasticity showed a
decrease in values when the concentration of chitosan was greater than 0.5%. The
microstructure analysis of the films revealed different micropores soaked in oil,
resulting from the incorporation of the microparticles in the gelatin matrix, and they
concluded that the film can be a good alternative to incorporate fat-soluble active
compounds to design an active packaging.

Khedri et al. (2021) investigate the effects of bioactive casein phosphopeptides
(CPPS) on gelatin-based films and reported that the addition of CPPs to the films
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significantly decreased solubility and water vapor permeability. The films also
showed improved mechanical properties when compared to the standard and the
FTIR and DSC analyses indicated adequate interactions between the functional
groups of gelatins and CPPS.

4.3.3.1 Fish Gelatin
Gelatin prepared from fish skin has advantages over bovine and swine, such as the
deficit in outbreaks of bovine spongiform encephalopathy (BSE) and religious
restrictions (Islam and Judaism) (Rattaya et al. 2009; Kwak et al. 2017). Fish-
derived gelatin (FG) is known to have a relatively low amino acid content (hydroxy-
proline and proline) compared to mammalian gelatin, presenting less strength in the
formation of gels and, therefore, are more suitable for application in films (Karim
and Bhat 2009).

Fish gelatin films exhibit good physical and mechanical properties and have an
oxygen barrier superior to synthetic films (Nilsuwan et al. 2017). However, they
have disadvantages such as high-water solubility and low-water barrier property, due
to its high hydrophilicity (Vanin et al. 2005). One way to improve the mechanical
properties and moisture susceptibility of films is to modify the polymer network by
inducing intermolecular and intramolecular chemical bonds through chemical, enzy-
matic, or physical treatment (Kwak et al. 2017).

Syahida et al. (2020) studied fish gelatin films added with different concentrations
of palm wax (PW) (0–60%). The results showed that gelatin/palm wax films with a
higher concentration of PW were thicker, opaque, and more flexible than the control
films without PW. The tensile strength increased with the incorporation of 15% PW
and also showed a lower water vapor permeability and greater contact angle than the
control film.

4.3.4 Fish Protein

Proteins attract attention due to their structure, which has the ability to form strong
three-dimensional networks (Rhim et al. 2013; Benbettaïeb et al. 2016a). Animal
proteins, such as myofibrillar proteins, are more promising due to their ability to
form slightly transparent films with excellent barrier properties to ultraviolet light
compared to commercial polyvinyl chloride film, for example (Kaewprachu et al.
2016, 2017).

Fish myofibrillar proteins (FMPs) have become a resource that they can be used
to produce films with good transparency and resistance. These proteins are
completely filamentous and elastic, and play a functional role because they have
functional groups to form intra- and intermolecular bonds in the food system
(Limpan et al. 2012; Blanco-Pascual et al. 2014). The use of fish myofibrillar
proteins is also taken into account due to the economic aspects and the need to
find adequate ways to take advantage of the remaining residues and by-products of
fish production and processing (Hamaguchi et al. 2007; Pires et al. 2013).
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Myofibrillar proteins extracted from the muscles of several species of fish have
been used successfully for film production. In general, films have poor mechanical
properties compared to synthetic polymers. Shabanpour et al. (2018) produced films
of fish myofibrillar proteins adding bacterial cellulose nanofibers. The authors report
that the addition of nanofibers led to a 49% increase in tensile strength, as well as a
reduction in water vapor permeability, swelling, and solubility properties, and the
evaluation of the thermal properties of these films suggests an improvement in the
thermal stability of them.

The search for alternatives to improve the properties of materials of biological
origin is necessary to make them suitable for use in food packaging without
compromising the food product quality. Strategies to improve the performance of
these bio-based polymers, such as the use of chemicals (López De Dicastillo et al.
2016), enzymes (Al-Hassan and Norziah 2017; Kaewprachu et al. 2017), mixed with
other materials (Mujtaba et al. 2017; Romani et al. 2019), and others, have been
widely studied, and physical strategies, such as cold plasma, are ecological and dry
processes and its use can be explored.

Romani et al. (2019) investigated the use of cold plasma as a surface modification
strategy for the treatment of films prepared from fish myofibrillar proteins (Fig. 4.4).
The authors point out that films treated for 2 min with cold plasma showed an
increase in elongation at break and a decrease in tensile strength. However, the
plasma treatment could be a promising alternative in order to improve the properties
of myofibrillar protein films for food packaging.

Fig. 4.4 Fish myofibrillar protein film (Source: Romani et al. (2019))
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4.3.5 Corn Protein Films

Zein is a prolamin polymer derived from corn, which is a co-product obtained during
the extraction of corn starch (Ghanbarzadeh et al. 2006). The zein is insoluble in
water, and this characteristic occurs due to the low content of polar amino acids and
the high content of nonpolar amino acids present in the structure (Yong Cho et al.
2002).

Many studies in the pharmaceutical and food areas illustrate the potential of zein
as a material for packaging production due to its biocompatibility, biodegradability,
and nontoxicity (Han et al. 2014; Paliwal and Palakurthi 2014; Wang et al. 2019), in
addition to its ability to incorporate bioactive compounds (Ozcalik and Tihminlioglu
2013; Yin et al. 2014; Wang et al. 2019). With the composition of 1/4 of the
hydrophilic amino acid residues and 3/4 of the lipophilic amino acids, zein has
inherent hydrophobic properties (Sun et al. 2017).

The development of methods to improve the functional properties of zein films,
especially the mechanical properties and wettability, present challenges for their
applications, such as increasing the shelf life of food products, tissue engineering,
grafting, or printing of materials (Wang et al. 2009; Paliwal and Palakurthi 2014).
Kadam et al. (2017) evaluated the effect of adding TiO2 nanoparticles on the
thermomechanical properties of zein films, where they observed that the
incorporation of nanoparticles changed the properties of the films and improved
some of their mechanical properties; however, it reduced the elongation at break
in 50%.

The study of Gu et al. (2013) sought to improve the flexibility of zein films by
adding gliadin. The authors report that there was a significant improvement in the
flexibility of the films, as the amount of gliadin added to the solution increased, the
water vapor permeability decreased. Indicating that the interactions of zein and
gliadin established a solid network structure, gliadin conferred extensibility, and
zein contributed to the resistance of the films.

Nogueira and Martins et al. (2018) developed and characterized zein/hake protein
isolate (Cynoscion guatacupa) bilayer films (Fig. 4.5). The authors comment that the
bilayer film was malleable and easy to handle, and with improved mechanical and
thermal properties, they also report that the structural assessment of the bilayer
revealed interaction between the different polymer layers and it was not necessary
to use any type of adhesive to form a single structure.

4.3.6 Soy Protein Films

One of the most important by-products of the soy oil industry is the soy protein
isolate (SPI), but its economic value is lower compared to the lipid components
(Siracusa 2012; Koshy et al. 2015). SPI contains a large number of polar amino acids
that provide hydrophilicity to SPI-based materials, and this effect is reflected in the
film's fragility against moisture, resulting in a poor water vapor barrier and
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insufficient mechanical properties when compared to some synthetics films
(González et al. 2011).

Wang et al. (2016) developed antioxidant films of isolated soy protein with
aqueous extract of Chinese chestnut (Castanea molíssima). The authors report that
the films presented a good barrier to ultraviolet light and oxygen and the hydrophilic
properties were improved. Advances in research involving the protein polymer have
been recognized, but further studies are needed. Then, more alternatives can be
presented to improve the physical and mechanical properties of the protein’s films in
general.

4.4 Biopolymers Produced by Biotechnological Processes

An alternative for obtaining biodegradable polymers is through biotechnological
processes, using enzymes, fungi, and bacteria. The most well known are polylactic
acid, polyhydroxyalkanoates, and polyhydroxybutyrate, which have great diffusion
and industrial application in the development of commercial biodegradable packag-
ing (Jõgi and Bhat 2020). These biopolymers and their derivatives have
characteristics and properties similar to conventional petroleum-based polymers,
and among the types of biopolymers presented above, polyesters have greater
industrial application in replacing conventional packaging.

Fig. 4.5 Bilayer film of isolated protein from hake and zein (Source: Nogueira and Martins et al.
(2018))
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4.4.1 Polylactic Acid (PLA)

PLA aliphatic polyester is a bio-based polymer produced industrially, being applied
in the development of packaging for food and medical materials due to its
characteristics of thermoplasticity, transparency, biodegradability, and biocompati-
bility (Nofar et al. 2019). Discovered in 1845, PLA is produced from the chemical
synthesis of lactic acid obtained from bacterial glucose fermentation, which can be
derived from corn starch, sugar beet, sugar cane, and other renewable biomass and
waste (Srivastava et al. 2018).

Initially, new polymerization techniques were studied to obtain PLA with high
molecular weight (higher than 100.000 g/mol), which offer better physical and
mechanical properties (Hamad et al. 2018). Currently, synthesis to obtain PLA
occurs through two polymerization techniques, the direct condensation of lactic
acid monomer, or the opening of the cyclic lactide dimer ring (Nofar et al. 2019),
in which the last technique is commonly used industrially for generating PLA
polymers with lower production costs and high molecular weight (Hamad et al.
2018; Nofar et al. 2019).

Regarding its properties, PLA has characteristics similar to conventional
polymers from petroleum, such as polyethylene terephthalate (PET), polyethylene
(PE), polystyrene (PS), polypropylene (PP), and polycarbonate (PC) (Hamad et al.
2018; Koh et al. 2018). PLA when applied as food packaging offers good malleabil-
ity, resistance to UV light, higher oxygen limit index, lower water absorption rates,
and lower processing temperature, when compared to conventional thermoplastics,
such as PET (Srivastava et al. 2018; Asgher et al. 2020).

Furthermore, several studies show that the incorporation of additives (e.g.,
essential oils, plant extracts, and synthetic active compounds) and nanomaterials
(e.g., cellulose nanofibers, nanoclay, and metallic nanoparticles) can act improving
the physical and mechanical properties of packaging PLA basis. In the incorporation
of rosemary, myrtle, and thyme oils in the PLA matrix, Yahyaoui et al. (2016)
observed that the films obtained did not show changes in the transparency index,
providing materials with less moisture transfer and better mechanical properties,
when compared to PLA films without the addition of the oil.

In the study of Mohsen and Ali (2018), the addition of nanoclay provided a
reduction of up to 32.38% in the elongation of PLA films; however, the tensile
strength and Young's modulus increased 30.06 MPa and 6.4 GPa, respectively. On
the other hand, the authors point out that the incorporation of nanoclay in the PLA
matrix reduced the oxygen permeability coefficient and the water vapor transmission
rate, demonstrating that this nanomaterial can offer better barrier properties when
incorporated in PLA films and, consequently, greater protection against moisture
and gases when applied on food, extending the shelf life of packaged products.

Bearing in mind that PLA is capable of releasing compounds in a controlled
manner, in the area of food packaging, this biopolymer is commonly incorporated
with antioxidant and antimicrobial compounds, which promote an increase in the
shelf life of food products (Zhang et al. 2020a). Table 4.2 shows some of the studies
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using PLA incorporated with active compounds that promote a longer shelf life of
some food products.

Despite the many applications and advantages of using PLA in the area of food
packaging, the reduction in production costs is one of the problems encountered by
the polymeric industries, since its value is quite high when compared to oil-derived
polymers (Koh et al. 2018). In addition, PLA has a low resistance to breakage
compared to commercial polymers, making it more brittle (Zhong et al. 2020). For
this reason, the alternatives studied to supply the mechanical and barrier deficiencies
found in the PLA are the mixture with other biopolymers, resulting in low-cost
biopolymeric blends with better mechanical and barrier properties (Koh et al. 2018;
Zhong et al. 2020).

4.4.2 Polyhydroxyalkanoates and Polyhydroxybutyrate

Polyhydroxyalkanoates (PHAs) are biopolymers synthesized through microbial
fermentation, being thermostable, having a melting temperature around 180 �C
(Srivastava et al. 2018). On an industrial scale, Cupriavidus necator is the culture
commonly used to obtain PHA in which, in restricted conditions of nutrients and in
high concentrations of carbon source, its cells increase in weight and size,
accumulating intracellular PHA (Jõgi and Bhat 2020).

PHA has great applicability in packaging development due to its good chemical
properties, biocompatibility, resistance to UV light, and ability to be recyclable,
being similar to petrochemical thermoplastics (Muneer et al. 2020; Zhong et al.
2020). Through the microbial synthesis of PHA, it is possible to obtain several
classes of biopolymers, which are classified according to the size of its carbon chain.
Among these PHA classes, the most well-known polymers are PHB and PHBV,
which have a high crystallinity index (55–80%) and short chain, representing the
most basic forms of commercial PHA available (Muneer et al. 2020).

Table 4.2 Incorporation of active compounds in PLA matrix

Active compound Effects in foods Reference

Thymol, kesum and
curry oils

Increased shelf life of chicken meat Mohamad et al. (2020)

Beta-carotene and
lycopene

Preservation and reduction of sunflower
oil peroxides

Stoll et al. (2019)

Nanochitosan Increased shelf life of chilled white
shrimp

Fathima et al. (2018)

Green tea extract Reduced lipid oxidation of smoked
salmon

Martins et al. (2018)

α-tocopherol Oxidative stability of soybean oil Manzanarez-López et al.
(2011)

Natamycin Mold inhibition on the cheese surface Lantano et al. (2014)

Fennel oil Extended shelf life of chilled oysters Miao et al. (2019)
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Regarding its applicability, packaging produced from PHB and PHBV has a high
barrier to aromatic compounds and water vapor, preserving and maintaining the
quality of packaged foods for a longer time (Muneer et al. 2020; Zhong et al. 2020).
In addition, PHBV can be applied in the development of blow-molded beverage
packaging, resisting processing temperatures above 200 �C, making it an interesting
biopolymer for the development of food packaging (Muneer et al. 2020). PHB films
incorporated with eugenol oil were produced, and showed greater crystallinity, and
antioxidant and antimicrobial activity, being able to be applied as food packaging
(Rech et al. 2020). On the other hand, the incorporation of graphene nanocomposites
in the PHB matrix promoted a reduction in the permeability to water vapor and
oxygen, and an increase in the melting point, thermal stability, and tensile strength of
the developed films (Manikandan et al. 2020). Therefore, the PHA matrix can be
easily incorporated with additives that promote better physical, chemical, and
mechanical characteristics of the packaging.

However, these polymers have low physical and mechanical resistance, making
their industrial and commercial application difficult, when compared to other biode-
gradable polymers or petroleum derivatives (Meereboer et al. 2020). Therefore, PHB
and PHBV when associated with other polymers demonstrate better strength tensile,
less fragility, and greater flexibility, being suitable for the development of materials
for the medical and food areas. In addition, its high production cost limits its
application, having as an alternative the use of food waste as a carbon source during
the fermentation process, reducing the costs of the synthesis of PHA polymers
(Srivastava et al. 2018).

4.5 Techniques for Improving the Performance
of Biodegradable Films

The main restriction in the application of natural polymers in the development of
food packaging is due to the poor mechanical and barriers properties in relation to
conventional petroleum-based packaging, and therefore, several techniques are
developed and used to improve the performance of biodegradable packaging. One
of the most used techniques involves mixing two or more natural polymers in the
same film-forming solution, developing biopolymeric blends (Asgher et al. 2020).
As previously mentioned, biodegradable films are commonly impregnated with
nanocomposites (e.g., nanocellulose, nanofibers, and nanoclay) or bioactive
compounds (e.g., essential oils, antioxidant and antimicrobial extracts) to provide
better mechanical and barrier properties. On the other hand, the crosslinking tech-
nique, obtained by physical (e.g., UV lights, hot or cold plasma), enzymatic (e.g.,
transglutaminase), and chemical agents (e.g., calcium chloride, citric acid, and lactic
acid), modifies the structures of natural polymers, improving the physical, mechani-
cal, and barrier properties of biodegradable packaging, expanding the possibility of
replacing conventional packaging (Rezaee et al. 2020).
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4.5.1 Blends of Natural Polymers

The development of eco-friendly materials that present optimized performance and
properties has been obtained over the years, such as the synthesis of blends made
from different natural sources. The practice of developing blends for food packaging
is a simple alternative for obtaining materials with improved characteristics and
properties suitable for application as food packaging (Nogueira and Martins 2019).
In general, the formation of blends consists of the mixture of two or more compatible
polymers in the same filmogenic solution, obtaining dry films through the technique
of casting, thermocompression, or extrusion (Zhong et al. 2020).

Blends from natural polymers are materials developed in order to reduce the
impacts caused by the overuse of plastics from petroleum. In addition to the
sustainable appeal, the mixture of biopolymers generates materials with improved
physical, mechanical, and barrier characteristics due to the intermolecular
interactions of polymeric networks, as reported in several studies (Romani et al.
2018; Nofar et al. 2019; Nogueira and Martins 2019; Filipini et al. 2020). Blends can
present lower degrees of crystallinity in relation to conventional films, promoting
important characteristics for food packaging, such as greater density, transparency,
tensile strength, barrier to water vapor, and less flammability (Imre and Pukánszky
2013).

Another relevant point in relation to blends is the modification of the thermal
degradation index, the mixture of biopolymers, promote greater stability at low
temperatures of the films, enabling their application on chilled or frozen foods
(Filipini et al. 2020; Wang et al. 2020). The changes in the thermal properties of
blends and greater resistance to changes at high temperatures expand its industrial
application, and it can be produced by blowing, extrusion, blow molding, or
injection (Zhong et al. 2020). Some examples using blending technology to improve
the treatment of film properties can be seen in Table 4.3.

A mixing material that gained attention was curdlan gum for having unique
physicochemical properties such as insolubility in water and alcohol (Mohsin et al.

Table 4.3 Effects of biopolymer blends compared to single polymer film

Polymeric matrix Effects References

Cassava starch/Chitosan
Corn starch/Chitosan

The blend resulted in higher tensile
strength

Luchese et al. (2017a)

Gelatin/chitosan The blend resulted in higher elongation
property

Bonilla et al. (2018)

Starch/gelatin The incorporation of gelatin increased the
mechanical properties of the films

Kumar et al. (2019)

Xanthan-Curdlan Synergistically increased tensile strength Mohsin et al. (2020)

Whey protein isolate/
Chitosan

The blend resulted in the improvement of
the mechanical properties

Tavares et al. (2021)

Isolated soy protein/Poly
(lactic acid) (PLA)

The incorporation of PLA improved
functional properties

González and
Alvarez Igarzabal
(2013)
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2019). According to Wu et al. (2018b), its dispersion in aqueous solutions should
help in the formation of gels with better qualitative and mechanical characteristics. In
the study of Mohsin et al. (2020) were evaluated the properties of films obtained by
combining xanthan and curdlan gums in different proportions. It was observed that
individually both polymers have low tensile strength; however, when mixed this
property increased. It was also observed that elongation, thickness, and solubility are
inversely proportional, with higher values of xanthan gum and lower for curdlan, so
the combination can be performed to obtain films with specific properties by varying
the concentration of each polymer.

The gelatin/chitosan blend increased the elongation property, compared to the use
of each matrix separately; however, for traction and water vapor permeability, the
best results were chitosan> chitosan/gelatin> gelatin (Bonilla et al. 2018). When
chitosan was combined with corn starch, higher values of tensile strength and
elongation were obtained, and higher values of tensile strength were also observed
when chitosan was combined with cassava starch compared to the polymer sepa-
rately (Luchese et al. 2017a).

4.5.2 Crosslinking

The crosslinking process is mainly aimed to modify certain polymer properties, such
as chemical and thermal stability, rigidity, permeability, chelation efficiency, pro-
tein, and cellular immobilization capacity (Neto et al. 2005; Nair et al. 2020). Nair
et al. (2020), state that the number of methods and crosslinking agents found in the
literature is many, but the choice of parameters is closely linked to the purpose of the
application, given that each agent, method, and type of polymer influence the results
obtained from the crosslinking differently.

However, the modifications of the polymers by crosslinking process can be
classified by physical or chemical methods (Fig. 4.6).

4.5.2.1 Chemical Crosslinking
The chemical crosslinking method occurs due to the numerous hydroxyl groups
(�OH) present in the polymers, and they are susceptible to chemical modifications,
such as sulfonation, carboxymethylation, phosphorylation, or hydroxyethylation
(Ren et al. 2017a; Dimassi et al. 2018; Musso et al. 2019). From specific agents,
all chemical groups along the polymer’s backbone can be crosslinked to form
“chemical” hydrogels, or “physical” hydrogels from interactions with each other
due to ionic and hydrophobic interactions, and molecular entanglements (Pellá et al.
2018). A representation of a crosslinking method is shown in Fig. 4.7.

Several chemical agents are used for the purpose of crosslinking polymers
(Xu et al. 2015). The study made by Nair et al. (2020) addresses the main
crosslinking agents applied to collagen, as well as their advantages and
disadvantages. Among the chemical agents mentioned by the authors are GTA
(glutaraldehyde), EDC-NHS ((1-ethyl-3-(3-dimethylaminopropyl) carbodiimide)-
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NHS (N-hydroxysuccinimide)), genipin, transglutaminase 2, and physical agent,
ultraviolet radiation (UV), and DHT (dehydrothermal treatment).

As mentioned throughout this chapter, some natural polymers have poor mechan-
ical and barrier properties, so the crosslinking process is applied to modify and
improve these properties. For example, alginate is a hydrophilic polymeric matrix;
therefore, its films present low barrier properties. According to Benavides et al.
(2012) and Rhim and Wang (2014), making a crosslink with polyvalent cations is an

Fig. 4.6 Classification of crosslinking modification methods

Polymer

Monomers

Crosslinking

Crosslinker

Fig. 4.7 Representation of crosslinking method
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alternative to improve its water barrier properties, mechanical resistance, cohesive-
ness, and rigidity.

The addition of certain cations to the alginate solution leads to the formation of a
gel through ion exchange (Lu et al. 2006). Among the most used cations, calcium
(Ca2+), strontium (Sr2+), and barium (Ba2+) (Lee and Rogers 2012) stand out.
Calcium ions are more used to crosslink alginate, especially calcium chloride
(SenturkParreidt et al. 2018). Ca2+ sources influence the rate of gel formation and
its concentration. Thus, it is possible to obtain films with less permeability to water
vapor and greater resistance (Cazón et al. 2017).

Another agent used for crosslink films is citric acid, which has the advantage of
being nontoxic, low cost, and capable of improving the functional properties of the
film (Amanatidou et al. 2000). Kumar et al. (2019) showed that films made with
citric acid crosslinked starch showed good tensile and barrier properties and also
improved solubility in water; however, the films showed low elasticity. Some
crosslinking agents are not used for food packaging, as copper, zinc, lead, and cobalt
(SenturkParreidt et al. 2018).

According to González et al. (2011), the polymer chain of chitosan can be
crosslinked by different agents, such as metallic ions (Ag+, Hg2 +, and Cu2+), and
the authors also state that studies demonstrate greater resistance to dissolution in acid
medium, less hydrophilicity, and reduced chemical reactivity of the material
prepared from crosslinked chitosan. The characteristics of chitosan and the reaction
conditions will affect the crosslinking process (Berger et al. 2004).

According to Xu et al. (2015), chemical modifications in the structure of
polysaccharides and proteins (starch, cellulose, gelatin, gums, etc.) can be carried
out by various crosslinking agents, and in general, the mechanism is used for the
same purpose, to improve the properties of polymers to enhance their use in
biodegradable packaging.

4.5.2.2 Enzymatic Crosslinking
The application of enzymatic crosslinking occurs mainly in protein matrix (e.g.,
collagen, gelatin, and casein) due to the damage of structures caused during the
dissociation and/or extraction process of the biopolymer (Duan et al. 2020). The use
of enzymes to promote the crosslinking process has been showing positive effects in
the formation of films, generating materials resistant to water and with better
mechanical, barrier, thermal, and morphological properties (Liu et al. 2017).

According to Wu et al. (2018a, b), the application of enzymatic crosslinking has a
nontoxic characteristic, high efficiency, and viability, since the enzymes are GRAS-
certified and are usually used in the food industry (e.g., transglutaminase, laccase,
tyrosinase, and peroxidase). In this context, enzymatic crosslinking comprises the
approximation and formation of inter- or intramolecular covalent bonds of protein
molecules, without the formation of toxic and harmful compounds to human health,
providing safe control to the process when compared to the chemical crosslinking
(Isaschar-Ovdat and Fishman 2018).

Due to its wide availability, ease, and low cost to obtain in relation to the others,
the commercially available enzyme transglutaminase (MTg) is widely used in the
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food industries to promote changes in the texture of protein products, inducing
gelation cold and/or joining protein molecules (Romeih and Walker 2017;
Isaschar-Ovdat and Fishman 2018). MTg shows optimum activity at pH between
5 and 7 and in the temperature range of 40–50 �C, being inactivated by exposure to
temperatures above 70 �C (Romeih and Walker 2017).

Gelatin films crosslinked with transglutaminase showed a solubility reduction of
up to 80% (Liu et al. 2017). Films composed of coconut protein and guar gum
showed better mechanical, barrier, and thermal properties when treated with MTg.
The crosslinking promoted by the enzyme increased the interaction between the two
biopolymers. On the other hand, when inserting the enzyme oxidase tyrosinase in
casein films, Juvonen et al. (2011) obtained materials with lower values of solubility
and smaller contact angle, enabling the application of this biomaterial as packaging
for foods with higher moisture content.

4.5.2.3 Plasma Technology
Plasma is considered the fourth state of matter in the world. With the increase in the
energy level, the state of matter is changed from solid to liquid, then to gas, and
finally to plasma (Pankaj et al. 2014c). The term “plasma” refers to an almost neutral
ionized gas, which can be explained by the existence of an equal number of positive
and negative charges carried by different species, composed mainly of ions,
electrons, photons, and atoms in their fundamental states or excited (Pankaj et al.
2014b; Sharma and Singh 2020).

Plasma is generally divided into two categories, thermal and nonthermal (cold
plasma) that depend on the condition in which they are generated (Pankaj and
Thomas 2016). The thermal process occurs when operated at high pressure and
temperature and requires great power to produce it, and this occurs when electrons
and other types of gases are in thermodynamic equilibrium. Nonthermal process is
when the operation occurs at low pressure, requiring less operating energy (Hati
et al. 2018). Plasma can be generated by radio frequency (RF), direct current (CD),
or microwave (MW) applied to the precursor gas used in the application (Sharma and
Singh 2020).

There are several options to choose the carrier gas. Gases such as air, nitrogen,
oxygen, helium, or argon can be used individually or combined at plasma technol-
ogy, and the basic advantage of using air as a transport gas is its availability and low
cost (Niemira 2012). Misra et al. (2014) reported that plasma chemistry depends on
several factors, such as the composition of the feed gas, humidity, energy, applied
voltage, and surrounding stage.

The interaction of the compounds generated by the plasma gas discharge with the
different groups of the polymer molecules will form polar hydrophilic groups
improving the adhesion and wettability properties, allowing the retention of active
molecules and other compounds on the polymer surface, as representing in Fig. 4.8.
These changes in polymer surfaces through the use of cold plasma have the
advantage of not using hazardous solvents, in addition the treatment is uniform
and does not cause thermal damage when in contact with the materials, which allows
it to be used in temperature-sensitive biomaterials (Morent et al. 2011).
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The use of cold plasma to improve the properties of biopolymers has attracted
attention in research such as the use of chitosan (Demina et al. 2012; Chang and
Chian 2013), polylactic acid (Pankaj et al. 2014b; Benetto et al. 2015), starch
(Albuquerque et al. 2014; Benetto et al. 2015; Pankaj et al. 2015a), zeina (Pankaj
et al. 2014c; Gezer et al. 2015), gelatin (Demina et al. 2012; Pankaj et al. 2015b), fish
protein (Romani et al. 2019), and defatted soy flour (Oh et al. 2016) are some
examples where treatment with cold plasma was performed.

Cold plasma technology has applications in several fields, such as textile pro-
cesses, sterilization, biological sciences, packaging, and drug distribution systems
(Samanta et al. 2010; Luna et al. 2011; Hagiwara et al. 2013). It presents several
promising applications for the food industries such as food decontamination, toxin
degradation, food process causing modification of the functionality of food
components, equipment sterilization, air filtration, wastewater remediation,
improved germination performance of seeds, improvement in the physicochemical
properties of grains, degradation of agrochemical residues, and packaging surface
treatments (Pankaj and Thomas 2016).

According to Ren et al. (2017b), cold plasma treatment is an environmentally
friendly process, since it is free of chemicals and does not produce waste. It is an
example of a dry process suitable for materials sensitive to heat that do not pollute
the environment (Chu et al. 2002; Pankaj et al. 2014a; Mahmoud 2016).

There are several rapidly expanding technologies that have been used to generate
cold plasma. Since they can operate at atmospheric pressure or in a vacuum, ionized
gas can be as simple as air or nitrogen, or it can be a more complex mixture using
noble gases, as helium, argon, or neon (Niemira 2012).

Among the plasma systems most used to modify the surfaces of the films, the
low-pressure luminescent discharge (DC) stands out, which is formed when a
sufficiently high potential difference is applied between two electrodes placed in a
gas, the latter will divide into positive ions and electrons, giving rise to a discharge of
it (Pankaj et al. 2014a). The atmospheric pressure plasma jet method (APPJ) is

Polymer surface Functionalized surface
Functionalized

Polymer surface

Fig. 4.8 Representation of the functionalization of surfaces by plasma technology (Source:
Adapted from Goddard and Hotchkiss (2007))
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generated when rare gases, such as helium or argon, are used to generate cold plasma
even under atmospheric pressure (Ojha et al. 2021).

In dielectric barrier discharge (DBD), plasma is generated between two metal
electrodes, at least one of which is covered by a dielectric layer that has the role of
limiting the discharge current by preventing the transition of the arc and randomly
distributing its coils on the electrode surface for homogeneous treatment (Tendero
et al. 2006; Pankaj et al. 2014c). Another method used for cold plasma generation is
cold plasma at atmospheric pressure (ACP), which can be obtained by exposing a
gas or mixture of gases to an electric field, and it accelerates the charged particles,
resulting in collisions with heavy species (as ions and neutrals) (Attri et al. 2013;
Sadhu et al. 2017).

Studies show that treatment with cold plasma can induce various physical and
chemical changes in the plasma surfaces. Some sources of plasma are more used in
the modification of film surfaces, and Table 4.4 presents some polymers and the
source of plasma used to obtain improvements in the characteristics of the films.

Romani et al. (2019) functionalized fish protein films, using cold plasma (lumi-
nescent discharge) and coated with carnauba wax. The application of luminescent
discharge plasma followed by carnauba wax coating resulted in an increase of 175%
in the tensile strength and 65% less water vapor permeability in fish protein films
compared to control films.

Moosavi et al. (2020) studied the influence of different cold plasma treatments to
modify the properties of whey and gluten protein film. The authors report that the
films treated with low-pressure vacuum luminescent discharge plasma showed an
increase in the tensile strength 10 min of processing, from 6.9 to 10.7 MPa and from
1.8 to 2.5 MPa for whey and gluten protein films, respectively.

Table 4.4 Source of plasma and polymers used

Plasma source Polymers Reference

Low pressure luminescent
discharge (DC)

Fish myofibrillar proteins Romani et al. (2019)

Whey protein and gluten Moosavi et al. (2020)

Fish proteins Romani et al. (2019)

Dielectric barrier discharges
(DBD)

Polylactic acid (PLA) Pankaj et al. (2014b)

Bovine gelatin Pankaj et al. (2015b)

PLA/microfibrillated cellulose
(MFC)

Meriçer et al. (2016)

Zein/Chitosan Chen et al. (2019)

Casein Wu et al. (2020)

PLA coated zein Chen et al. (2020)

Sodium caseinate Jahromi et al. (2020)

Isolated pea protein MahdavianMehr and
Koocheki (2020)

Atmospheric pressure cold
plasma (ACP)

Isolated whey protein Segat et al. (2015)

Defatted soybean meal (DSM) Oh et al. (2016)

Zein Dong et al. (2018)
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The exposed above indicate that the plasma source, working gas, type of protein,
sample volume, and treatment medium play an important role in plasma application,
inducing denaturation/modification of proteins. The targeted functionalization can
offer another innovative approach for specific modification of the functional
properties of films.

4.5.2.4 UV Irradiation
The application of irradiation by UV light can promote the crosslinking of
biopolymers, causing the modification and improvement of the characteristics of
biodegradable materials. UV irradiation is a physical crosslinking technique that has
several advantages over other types of crosslinking, highlighting its simplicity,
environmental friendly, and low costs, eliminating the use of chemical agents in
the process (Rezaee et al. 2020). In addition, UV irradiation has no negative effects
on human health, being applied as a technique to reduce and inactivate a wide range
of microorganisms (Bigi et al. 2020). UV irradiation is classified into UV-A
(315–400 nm), UV-B (280–315 nm), and UV-C (200–280 nm) according to the
wavelength region, and this technique can cause modifications in the polymer chains
from exposure of the film-forming solution or pre-formed film (Fathi et al. 2018) as
shown in Fig. 4.9.

During the exposure of films to UV irradiation, the molecules become excited,
causing chain splitting, crosslinking, and oxidation (Sionkowska et al. 2010). In
addition, the increase in chemical reactions from photo-oxidative degradation
modifies the surfaces of polymers, generating reactive sites in which they can
immobilize various active compounds (e.g., metallic nanoparticles, bioactive
compounds, and antimicrobial agents), which can improve the characteristics of
the packaging (Alonso et al. 2009). However, the time of exposure to UV irradiation
must be accurately determined for each type of material, since the permanence to UV
light for long periods can damage and impoverish the characteristics of biopolymers
due to photodegradation that, in the first instance, destroys interactions of

Fig. 4.9 Representation of the crosslinking system in polymers using UV-light
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noncovalent polymer chains and then breaks the covalent bonds of the matrix,
resulting in reductions in physical, mechanical, and barrier properties (Sionkowska
et al. 2015).

In relation to protein-based films, the nondestructive and moderate effects of UV
irradiation under suitable conditions cause desirable changes in the physical and
mechanical properties of protein materials (Rezaee et al. 2020). Several studies
demonstrate the efficiency of using UV irradiation in collagen and gelatin films.
This efficiency occurs because proteins are one of the main targets of UV light,
inducing several physical–chemical processes to the biopolymeric network, promot-
ing expansion and chemical stability (Stylianou et al. 2014).

Table 4.5 shows some effects of the UV light on the surface of the biopolymer-
based materials.

4.6 Conclusion

One of the main functionalities of the packaging is the preservation and extension of
the shelf life of food products, reducing waste and promoting greater safety in the
consumption of food products. Biodegradable packaging becomes an alternative to
conventional packaging, since it can reduce the impacts caused by the excessive use
of synthetic materials. However, biodegradable materials have poor mechanical and
barrier properties in relation to synthetic packaging, hindering their diffusion in the
industrial area. Despite this, studies show that the application of some techniques can
expand the applicability of biodegradable materials. However, it is increasingly
necessary to develop more studies in relation to the effects of applying these

Table 4.5 Effects of UV irradiation on biodegradable films

Biopolymer Effects on materials Reference

Isolated sesame
protein

Increased crystallinity index
Compact structure formation
Reduced moisture content, solubility and water
vapor permeation
Increased hydrophobic density of films
Greater tensile strength and Young modulus

Fathi et al. (2018)

Whey protein
isolate

Modification of the tertiary structures of proteins
Reduction of solubility
Increased surface hydrophobicity

Kristo et al. (2012)

Whey protein
concentrate

Structural modifications of proteins
Different color of the films
Increased tensile strength of films

Díaz et al. (2016)

Blend of collagen/
chitosan

Reduction in tensile strength and elongation of
films
Increased of Young modulus

Sionkowska et al.
(2006)

Blend of chitosan/
keratin

Reduction of traction, elongation and Young
modulus
Increased surface polarity of films

Sionkowska et al.
(2010)
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techniques to improve the performance of bio-based films, in order to improve their
properties, making them more competitive in the packaging market.
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Smart Freshness Indicator for Animal-Based
Product Packaging: Current Status 5
Pimonpan Kaewprachu, Samart Sai-Ut, and Saroat Rawdkuen

Abstract

Freshness is one of the most significant attributes for monitoring the quality of
animal-based products. During product supply chain, freshness of animal-based
products decreases, along with the product quality and safety. In order to meet the
consumer preferences for the fresh and safe products, smart freshness indicator
has been developed. Smart freshness indicator is a device that can indicate degree
of freshness and provide directly information about the quality of product based
on microbial growth or metabolites in packaged products through direct color
visual change. The application of smart freshness indicator has become increas-
ingly interesting because it can provide convenience, enhance safety, and provide
information to consumer. According to its benefits, much research is published
every year focusing on evaluation of animal-based product freshness using
freshness indicator. Therefore, smart freshness indicator could be helpful in
assuring the quality and safety of packaged products.
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5.1 Introduction

Animal-based products (meat, poultry, fish, and seafood) are classified as highly
perishable foods. They are rich in nitrogenous substances, carbohydrates, and lipids
with a pH of �6 and water activity (aw) greater than 0.97 (Erkmen and Bozoglu
2016). These factors are favorable for microorganism growth (bacteria, yeasts, and
molds) and biochemical reactions. Microorganisms can cause unacceptable changes
with the formation of various metabolites in animal-based products. Microbial-
generated metabolites (e.g., biogenic amines (e.g., cadaverine, histamine, putrescine,
tyramine), carbon dioxide, ethanol, organic acids, sulfuric compounds (hydrogen
sulfide), and volatile nitrogen compounds (ammonia, dimethylamine, and
trimethylamine described as total volatile basic nitrogen; TVB-N)) are mostly
found in animal-based products (Rukchon et al. 2014; Smolander 2003). As is
known, the spoilage process always generates during storage, transport, and retail-
ing, and in consumers’ homes, which is correlated with the organoleptic changes.
However, it is hard to believe decision by evaluating the organoleptic analysis of
products and traditional quality analysis method has complicated and time-
consuming procedures. Thus, the development of new technologies with accurate,
convenient, cost-effective, rapid, and nondestructive method to evaluate quality and
safety of animal-based products is a great needed.

Intelligent or smart packaging is defined as packaging that contains an internal or
external indicator to provide information about aspects of the history of the package
and/or the product quality directly (Robertson 2012). Smart packaging has been
currently focused because it has a function for freshness indication. A smart fresh-
ness indicator can be made from biopolymer material (solid support) incorporated
with dye indicator (chemical and natural dye indicators). The consumers are cur-
rently concerned about the use of chemical dye indicators in food packaging system
because of their possible toxicity and potential risk to human health. So, its use is
restricted as dye indicator. Many natural dye indicators have been effectively
incorporated into biopolymer films. Some include anthocyanin (Liu et al. 2019;
Rawdkuen et al. 2020; Zeng et al. 2019), betalains (Kanatt 2020; Qin et al. 2020;
Yao et al. 2020), and curcumin (Chen et al. 2020; Liu et al. 2018). Smart freshness
indicators are able to indicate the product quality directly by changes in color in the
real time, resulting from the reaction between the presence of generated metabolites
and the smart freshness indicators during loss of freshness. Thus, smart freshness
indicators are a promising tool to inform product quality and safety to consumers and
suppliers via real-time and rapid qualitative analysis (through visible color changes
by naked eye) at any given time. Recently, many research studies have successfully
used natural dye indicators and then applied in a real food system. For example,
smart freshness indicators can be used as an effective tool for the real-time monitor-
ing of meat, poultry, fish, and seafood products during storage (Chen et al. 2019;
Dudnyk et al. 2018; Mohammadalinejhad et al. 2020; Moradi et al. 2019).

In this chapter, the compounds indicating the quality of packaged animal-based
products are presented. Subsequently, the concept of smart freshness indicators and
the potential sources of dye indicators are reviewed. The current researches on the

108 P. Kaewprachu et al.



applications of smart packaging with a function of freshness indication on various
animal-based products are also discussed.

5.2 Compounds Indicating the Quality of Packaged
Animal-Based Products

Freshness is a critical variable that affects the organoleptic properties and food
product acceptability (Cardello and Schutz 2003). The freshness of animal-based
products is reduced in time as a result of microbial growth or chemical changes. Loss
of freshness indicates that animal-based products have started to spoil. Difference in
formation of metabolites in animal-based products is affected by the nature of
product, associated spoilage flora, packaging system, and storage conditions
(Kerry 2012; Smolander 2003). During storage, transport, and retailing, various
metabolites are generated in animal-based products such as biogenic amines (e.g.,
cadaverine, histamine, putrescine, tyramine), carbon dioxide (CO2), ethanol, organic
acids, sulfuric compounds [hydrogen sulfide (H2S)], and volatile nitrogen
compounds [ammonia (NH3), dimethylamine (DMA; (CH3)2NH), and
trimethylamine (TMA; (CH3)3N) described as total volatile basic nitrogen
(TVB-N)] due to microbial growth and metabolism (Rukchon et al. 2014; Smolander
2003). Animal-based products are composed of free amino acids; proteins in animal-
based products are broken down into amino acids by hydrolysis. As a result, they can
be partially or totally degraded into simple compounds such as CO2, H2O, NH3, and
H2S (Rukchon et al. 2014). Currently, most research studies have developed metab-
olite indicators associated with animal-based products such as CO2, H2S, and
TVB-N produced during storage by microbial degradation of protein-rich foods.
Some of the metabolites or compounds indicating the quality of packaged animal-
based products representing potential target marker metabolites for the smart fresh-
ness indicators are discussed in detail.

5.2.1 Biogenic Amines

Biogenic amines are known as a toxic substance. They have been employed as
indicators of hygienic quality, freshness quality index, and control the processing of
muscle-based products (Ruiz-Capillas and Herrero 2019; Smolander 2003). The
most important biogenic amines substance found in food are cadaverine, histamine,
putrescine, and tyramine. Fish and fishery products are abundant in histamine. The
hazard potential of biogenic amines should be considered due to their physiological
and toxicological effects, and risk to human health. In the USA, Food and Drug
Administration (FDA) has set histamine limits in fish and fishery products in general
at 50 mg/kg (Ruiz-Capillas and Herrero 2019). Kung et al. (2017) studied the effect
of polyethylene packaging (PEP) (in air) and vacuum packaging (VP) on histamine
changes in milkfish sticks during storage. They found that milkfish sticks packaged
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with VP had lower levels of aerobic plate count (APC), TVB-N, and histamine than
milkfish sticks packaged with PEP.

5.2.2 Carbon Dioxide

Carbon dioxide (CO2) is mainly generated during microbial growth (Smolander
2003). It can be used to indicate the quality deterioration. Increased CO2

concentrations are frequently accompanied by increasing the storage time (Lee
et al. 2019). However, the indication of microbial growth by CO2 may be difficult
in some packaging technology system like modified atmosphere packaging (MAP)
because MAP already containing high concentration of CO2 (typically 20–80%)
(Kerry 2012). Lee et al. (2019) developed a freshness indicator based on poly(ether-
block-amide) incorporated with bromocresol green for the real-time monitoring of
quality changes in chicken breasts during storage at 4 and 10 �C for 10 days. They
found that changes in color (from yellow to green) of freshness indicator were
correlated with CO2, TVB-N, and bacterial growth in the chicken breast.

5.2.3 Organic Acids

Organic acids, such as lactic acid and acetic acid, are the main compounds having a
role in glucose fermentation by lactic acid bacteria (Smolander 2003). Zhao et al.
(2019) found that the concentration of lactic acid, acetic acid, and succinic acid in
tilapia fillet increased with increasing storage time. They also suggested that organic
acids were related to fish spoilage.

5.2.4 Ethanol

Ethanol is another major end product of fermentative metabolism of lactic acid
bacteria. Zhao et al. (2019) found an increase in the amount of ethanol concentration
in tilapia fillet during refrigeration storage. The formation of ethanol can contribute
to unfavorable fishy odor.

5.2.5 Sulfuric Compounds

Hydrogen sulfide (H2S) is produced from cysteine. It forms a green pigment,
sulfmyoglobin, when it is bound to myoglobin (Smolander 2003). It has a remark-
able effect on the sensory quality of animal-based products due to their off-flavor and
low odor threshold. H2S and other sulfuric compounds have been found to be
produced during the spoilage of meat, poultry, and seafood by a number of bacterial
species. Shewanella are H2S-producing and responsible for seafood spoilage
markers when stored at low temperature (Zhu et al. 2015).
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5.2.6 Volatile Nitrogen Compounds

Volatile nitrogen compounds are ammonia, dimethylamine, and trimethylamine,
which are responsible for quality and spoilage of fish (Kung et al. 2017). These
compounds (ammonia, dimethylamine, and trimethylamine) are described as
TVB-N. TVB-N is formed during storage due to endogenous enzymes and microbial
activities, resulting in the formation of compounds. TVB-N increases as the fish
freshness decreases. Currently, the use of anthocyanin as natural dye indicator for the
determination of volatile nitrogen compounds has been suggested in many studies
(Chen et al. 2020; Dudnyk et al. 2018; Kang et al. 2020).

5.3 Smart Freshness Indicators

Indicators are tools or devices that provide information about the absence or
presence of substance or the degree of reaction between two or more substances
by changing characteristic like color (Hogan and Kerry 2008). Most often, they
provide qualitative information through directly visible color change (different
product’s status exhibits differences in color intensities). Indicators can be divided
into three categories of time–temperature indicators, gas indicators, and freshness
indicators. According to Robertson (2012), all of the indicators are group of product
quality and value-improving systems, which are frequently used for intelligent food
packaging applications.

Smart freshness indicators are produced in the form of labels or tags, and then
attached inside the packaging materials. They have been developed with the aim of
the real-time monitoring of the quality and safety of packaged food products through
visible color changes, which can be directly observed by the naked eye. Changes in
color of indicators should be noticeable even at the minimal spoilage level of the
packaged food products. The concept of smart freshness indicators is based on
changes in color of the indicators due to the presence of microbial-generated
metabolites during loss of freshness. The smart freshness indicators accurately
track the increase in concentration of metabolites in the package headspace. They
may share information about the packaged animal-based product quality and safety
directly to the consumers and suppliers at any given time. They can also alert the
consumers and suppliers about the degree of freshness. Thus, the consumers and
suppliers can decide that the packaged product should be distributed or retailed or
consumed or discarded (Fig. 5.1). The major advantages of smart freshness indicator
are sensitive, can be detected by naked eye, and are easy to be integrated into
packaging system. However, the disadvantage of smart freshness indicators is
false-negative results. This problem should be resolved before widespread commer-
cial uptake to prevent producers from adopting indicators in the use of real situation.
Furthermore, an exact correlation between target metabolites, product type, and
organoleptic quality and safety is necessary to avoid false negatives (Smolander
2003). Currently, smart freshness indicators have been proposed, for example, for
CO2 and TVB-N.
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5.4 Sources of Dye Indicators

There are two major sources of dye indicators: chemical dye indicators and natural
dye indicators. Currently, the consumer preferences have shifted the attention of dye
indicators from chemical to natural because natural dye indicators are safe, renew-
able, and have no harmful effects of the human health. Dye indicators are generally
added to packaging material to produce intelligent packaging. They can alert the
quality and safety of packaged products to consumer during retailing and storage
through visible color changes.

5.4.1 Chemical Dye Indicators

Chemical dye indicators are also commonly known as acid–base indicators or pH
indicators, belonging to two different families: Sulfonephthalein and Azo (Pastore
et al. 2021). Most of these indicators are organic and synthetic origin. They are dye
substances, which can change color as a result of exposure to different conditions
(e.g., variation of pH and concentration of gases) (Pastore et al. 2021). Most of them
are soluble in organic solvent but insoluble in water. They have been widely used in
the industry such as food packaging industry (pH sensor device for monitoring food
spoilage), cosmetics, detergent industry, and textile industry. However, the current
trend of chemical dye indicators is not acceptable due to their toxicity (e.g., acute
toxicity, carcinogenicity, mutagenicity, and genotoxicity), which may affect
consumer’s health (Sabnis 2007). The consumer preferences have shifted the atten-
tion of manufacturers from chemical to natural dye indicators. They are also limited
in the pH range because they showed very narrow color, which are difficult to
observe by the naked eye. For example, bromocresol green has only three color
transitions: yellow (pH 3.8), green (pH range 3.8–5.4), and blue (pH 5.4). Thus, the
combination of two or more chemical dye indicators is needed for effectively
enhancing their pH indication. Example and color changes in chemical dye
indicators frequently used in the intelligent packaging are summarized in Table 5.1.

5.4.2 Natural Dye Indicators

Recently, there is becoming increasingly important in smart freshness indicator
made up of natural dye indicator and natural biopolymer materials, owing to their
nontoxic material, safe, eco-friendly, renewable, and biodegradable that might
replace chemical one. Various compounds that found in natural source have inter-
esting potential for use as dye indicators. Currently, many research studies focus on
natural dye pH sensing indicators such as anthocyanin, betalains, and curcumin due
to their nontoxic, renewable, and safe. All of these compounds could be a good
source of dye indicator material. Many studies have demonstrated a promising of
natural dye indicators for potential development of smart packaging systems
(Table 5.2).
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Anthocyanin is water-soluble phenolic pigments, belonging to the family
flavonoids. It is responsible for red, pink, purple, and blue color of plants. It can
be extracted from barberry (Alizadeh-Sani et al. 2021), butterfly pea (Rawdkuen
et al. 2020), mulberry (Zeng et al. 2019; Zhang et al. 2020), purple sweet potato
(Choi et al. 2017; Jiang et al. 2020), red cabbage (Dudnyk et al. 2018; Liu et al.
2021; Vo et al. 2019), and roselle (Zhang et al. 2019). Color changes in anthocyanin
are mostly due to modification of chemical structure of phenolic substances. The
structure of anthocyanin changes at different pH values (Miguel 2011). Anthocyanin
can change its color with wide ranges when the pH changes. Butterfly pea anthocy-
anin extract solution had red color, pink color, violet or purple color, blue color, and
turned to green color when the pH of butterfly pea anthocyanin extract solution was
2, 3, 4–6, 7, and 7–12, respectively (Rawdkuen et al. 2020). Red cabbage, sweet
potatoes, butterfly pea, mangosteen, and mapring seed have been reported to be
suitable natural sources of anthocyanin extraction and can be added into biopolymer
films for developing smart indicator (Rawdkuen et al. 2020). Mohammadalinejhad
et al. (2020) suggested that the film based on bacterial cellulose with Echium
amoenum anthocyanin is highly sensitive to detect TVB-N by visually distinguish-
able color changes (fresh: violet, use soon: gray, spoiled: yellow) of shrimp and the
incorporation of Echium amoenum anthocyanin can be beneficial for monitoring
protein-rich food spoilage.

Betalains are water-soluble pigments, which are composed of a nitrogenous core
structure of betalamic acid [4-(2-oxoethylidene)-1,2,3,4-tetrahydropyridine-2,6-

Table 5.1 Examples and color changes in chemical dye indicators

Chemical dye indicators pH range Indication (color changes)

Alizarin red 5.5–6.8
10.1–12.1

From yellow to red
From red to purple

Bromocresol green 3.8–5.4 From yellow to blue

Bromocresol purple 5.2–6.8 From yellow to purple

Bromophenol blue 3.0–4.6 From yellow to blue-purple

Bromophenol red 5.2–6.8 From yellow to red

Bromothymol blue 6.0–7.6 From yellow to blue

m-Cresol purple 1.2–2.8
7.4–9.0

From red to yellow
From yellow to purple

o-Cresol red 0.2–1.8
7.0–8.8

From red to yellow
From yellow to reddish purple

Methyl orange 3.0–4.4 From red to yellow

Methyl red 4.4–6.2 From red to yellow

Methyl yellow 2.9–4.0 From red to yellow

Phenolphthalein 8.0–10.0 From colorless to pink

Phenol red 6.8–8.4 From yellow to red

Resazurin 3.8–6.5 From orange to purple-violet

Thymol blue 1.2–2.8
8.0–9.6

From red to yellow
From yellow to blue

Source: Sabnis (2007)
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dicarboxylic acid] (Rahimi et al. 2019). Betalamic acid can either condense with
imino compounds (cyclo-DOPA) to form red/violet betacyanins, or with amines and
their derivatives to form yellow/orange betaxanthins (Prieto-Santiago et al. 2020).
They are obtained from plants such as amaranth, red pitaya, red beetroot, cactus
pears, and prickly pear (Kanatt 2020; Qin et al. 2020; Rahimi et al. 2019; Yao et al.
2020). In alkaline conditions, they have variations in color from red to yellow and
their structures are largely stable in the pH range of 3–7 (Qin et al. 2020). Betalains
have broader pH stability than anthocyanins (Kanatt 2020). They also possess
various biological properties such as antioxidant, antimicrobial, anti-inflammatory,
anticancer, and anti-lipidemic (Kanatt 2020; Prieto-Santiago et al. 2020). Betalains
have a potential for being used as dye indicator in intelligent packaging. Qin et al.
(2020) developed intelligent film from red pitaya (Hylocereus polyrhizus) peel
extract incorporated in starch/polyvinyl alcohol film. They reported that developed
intelligent film could be effectively presented as visual color changes and could be
used as intelligent film for monitoring food freshness. Kanatt (2020) suggested that
the incorporation of betalains extracted from Amaranthus leaf into polyvinyl alco-
hol/gelatin film could help to alert the consumer to know the food begins to spoil due
to visible color changes (from red to yellow).

Table 5.2 Examples and color changes in natural dye indicators

Sources
pH
range Indication (color changes) References

Anthocyanin

Mulberry 2.0–11.0 From bright red to dark green Zeng et al. (2019)

Butterfly pea 2.0–12.0 From red to green Rawdkuen et al.
(2020)

Purple sweet potato 2.0–12.0 From red to green and yellow Jiang et al. (2020)

Jambolan (Syzygium
cumini) fruit

1.0–13.0 From red to yellow Merz et al. (2020)

Echium amoenum 2.0–12.0 From red to yellow Mohammadalinejhad
et al. (2020)

Black carrot 2.0–11.0 From red to gray Moradi et al. (2019)

Lycium
ruthenicum Murr.

2.0–10.0 From pink to yellow Liu et al. (2019)

Betalains

Red pitaya (Hylocereus
polyrhizus) peel

3.0–12.0 From red to yellow Qin et al. (2020)

Amaranthus leaf 1.0–9.0 From pink to yellow Kanatt (2020)

Cactus pears (Opuntia
ficus-indica)

3.0–12.0 From purple/red to orange/
yellow

Yao et al. (2020)

Curcumin

Turmeric 3.0–10.0 From yellow to red and then
reddish brown

Liu et al. (2018)

Turmeric 5.0–11.0 From yellow to light yellow
and then reddish brown

Chen et al. (2020)
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Curcumin is a natural polyphenol compound found in the rhizome of Curcuma
longa (turmeric) and in others Curcuma spp. (Hewlings and Kalman 2017). It
represents the main curcuminoid of turmeric and is responsible for the intense yellow
color. It is widely used as a spice, medicinal herb, and colorant. It has several
pharmacological activities such as antimicrobial, antioxidant, anti-inflammatory,
and anticancer properties (Hewlings and Kalman 2017; Liu et al. 2018). Liu et al.
(2018) studied the color changes in curcumin solutions in a wide pH range (3–10)
and found that the color of curcumin solutions changed from bright yellow to reddish
brown with increasing pH values. However, the color changes in curcumin solutions
are difficult to distinguish in pH range from 3 to 7 and may affect to judge freshness
of product accurately. Chen et al. (2020) developed freshness indicator based on
starch/polyvinyl alcohol containing curcumin, anthocyanin, and mixture of
curcumin and anthocyanin. The films containing curcumin had greater color stability
than the films incorporated with anthocyanin when stored at 25 �C for 180 days.
They also reported that the incorporation of a mixture of curcumin and anthocyanin
in a ratio of 2:8 (v/v) into films exhibited good color indication and significant
change in color for fish freshness during storage at 4 �C for 10 days.

5.5 Applications of Smart Freshness Indicator

The quality and safety of packaged animal-based products continuously decrease
with increasing storage time. Freshness is basic characteristic for judging the quality
and safety of packaged animal-based products. The loss of packaged product
freshness means packaged product has begun to spoil. Animal-based products are
classified as highly perishable foods due to their richness in nutrients, resulting in
susceptibility to microbial contamination and biochemical reactions. The
metabolites generated by spoilage microorganisms affect quality and safety of
packaged products. Recently, the consumers are more concerned about animal-
based product quality, safety, and their health. Consumers generally know the
freshness of food products through checking “best before” or “expiration date”
that label on the package or sensory method. However, it is hard to believe decision
by evaluating the overall appearance or texture of animal-based products. In recent
years, so-called smart freshness indicator has emerged as an alternative method for
monitoring animal-based product freshness. Thus, smart freshness indicator for the
real-time evaluation of highly perishable food quality like meat, poultry, fish, and
seafood is needed.

5.5.1 Meat Products

Meat products are extremely highly perishable food. They have a very short shelf
life, usually 3–4 days at refrigerated storage, owing to microbial contamination and
biochemical reactions. They contain adequate amounts of essential nutrients, which
support the growth of microorganisms. Various metabolites are produced by
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microorganism associated with food spoilage, leading to off-flavor, off-odor, discol-
oration, and nutritional loss. These effects result in pH variation in the packaged
meat products. Generally, it is difficult to detect spoilage of packaged meat through
the naked eye. Thus, meat product industry requires rapid, inexpensive, simple, and
nondestructive tool or device for naked eye and real-time monitoring of the degree of
freshness of packaged meat products. Smart freshness indicator is an effective tool
for evaluating packaged meat quality and safety. Recently, various natural dye
indicators are increasingly interested in developing smart freshness indicator such
as purple sweet potato (Choi et al. 2017), barberry (Alizadeh-Sani et al. 2021),
roselle (Zhang et al. 2019), and red cabbage (Dudnyk et al. 2018; Liu et al. 2021; Vo
et al. 2019). These natural dye indicators can effectively sense packaged meat
product spoilage, exhibiting through visual color changes. Thus, the consumer can
know information about the packaged meat quality and safety by the naked eye
through the visible color changes in smart freshness indicator on the package.
Several smart freshness indicators have been developed with the aim of monitoring
meat product freshness (Table 5.3).

5.5.2 Poultry Products

Poultry products are classified as highly perishable food. They usually deteriorate
rapidly (within 1 week of slaughter) because they are susceptible to physicochemical
and biological changes. They are rich in proteins (made up of 18%) and are
composed of approximately 75.5% water (Cutter et al. 2012). The presence of
water in poultry tissue affords microorganism with another component to support
microbial growth. Spoilage in packaged poultry products is mainly due to the growth
of microorganisms such as Escherichia coli, Staphylococcus aureus, Campylobacter
sp., Salmonella sp., Pseudomonas sp., and Listeria monocytogenes. Furthermore,
the growth of microorganisms can produce a variety of metabolites such as CO2,
NH3, and H2S during storage and negatively affect organoleptic characteristics and
nutritional value of packaged poultry products. Thus, smart freshness indicator for
the real-time evaluating of poultry product quality and safety is needed. Many
studies have demonstrated the development of smart freshness indicator for moni-
toring poultry product quality and safety (Table 5.4).

5.5.3 Fish and Seafood Products

Fish and seafood products are highly susceptible to microbial and enzymatic deteri-
oration, owing to their richness in protein nitrogenous substances, non-protein
nitrogenous substances, polyunsaturated fatty acids, and other growth factors. A
major characteristic in monitoring packaged fish and seafood products is freshness,
which can be investigated by releasing TVB-N. During fish and seafood product
spoilage, volatile amines, such as TMA, NH3, and DMA, are generated by
microorganisms and are responsible for the fishy odor and flavor. In general,
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increased levels of TVB-N are accompanied by increased pH in the packaged fish
and seafood products as a result of bacterial metabolism. Moradi et al. (2019)
developed smart freshness indicator from bacterial cellulose nanofibers incorporated
with black carrot anthocyanin for monitoring the freshness of rainbow trout and

Table 5.3 Smart freshness indicators for monitoring meat product quality and safety

Meat
products

Packaging/film
materials Dye indicator Marker

Indication (color
changes) References

Lamb
meat

Methylcellulose/
chitosan
nanofiber

Barberry
anthocyanin

TVB-
N

From pink to
pale green and
turned to yellow

Alizadeh-
Sani et al.
(2021)

Pork Cellulose Naphthoquinone
dyes extracted
from Arnebia
euchroma

TVB-
N

From magenta
to purple

Dong et al.
(2020)

Pork Methylcellulose Mixture of
bromothymol
blue and methyl
red

TVB-
N

From red to
goldenrod and
turned to green

Chen et al.
(2019)

Pork Starch/polyvinyl
alcohol

Roselle
anthocyanin

TVB-
N

From red to
green and turned
to yellow

Zhang et al.
(2019)

Pork Polyvinyl
alcohol/sodium
carboxymethyl
cellulose

Red cabbage
anthocyanin

TVB-
N

From red to
blue-green

Liu et al.
(2021)

Pork Cellulose fibers Bromothymol
blue

TVB-
N

From yellow to
green

Cao et al.
(2019a, b)

Pork Agar/potato
starch

Purple sweet
potato
anthocyanin

TVB-
N

From red to
green

Choi et al.
(2017)

Pork Chitosan/
polyvinyl
alcohol

Red cabbage
anthocyanin

TVB-
N

From
translucently sea
green to pink
and turned to
yellowish with
pale green

Vo et al.
(2019)

Beef Cellulose
acetate

Methyl red TVB-
N

From red to
yellow

Lee and
Shin (2019)

Beef Filter paper Methyl red
Bromocresol
purple

TVB-
N

From red to
yellow
From yellow to
purple

Kuswandi
and
Nurfawaidi
(2017)

Beef Pectin Red cabbage
extract

TVB-
N

From purple to
yellow

Dudnyk
et al. (2018)

Minced
beef

Cellulose–
chitosan

Alizarin TVB-
N

From yellow to
brown and
turned to purple

Ezati et al.
(2019a, b)

TVB-N total volatile basic nitrogen
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common carp fillet during storage at 4 �C for 15 days. They reported that freshness
indicator showed accurately sensed fish fillet spoilage by distinguishing color
changes at different stages. During different freshness stages (fresh, best to eat,
and spoiled), the indicator had deep carmine color, charm pink color, and jelly bean
blue and khaki colors, respectively. Many studies have demonstrated the develop-
ment of smart freshness indicator for monitoring fish and seafood product quality
and safety (Table 5.5).

Table 5.4 Smart freshness indicators for monitoring poultry product quality and safety

Poultry
products

Packaging/film
materials Dye indicator Marker

Indication
(color
changes) References

Chicken
breast

Sugarcane
bagasse
nanocellulose

Bromothymol blue/
methyl red

CO2 From green
to red

Lu et al.
(2020)

Chicken
breast

Poly(ether-
block-amide)

Alizarin Red S
Bromocresol green
Bromophenol blue
Bromothymol blue
m-Cresol purple
Cresol red
Curcumin
Thymol blue

TVB-N
and
CO2

From red to
yellow
From yellow
to blue
From yellow
to blue
No color
change
From red to
yellow
From red to
yellow
No color
change
From red to
yellow

Lee et al.
(2019)

Chicken
breast

Chitosan/
polyethylene
oxide

Curcumin TVB-N From bright
yellow to red

Yildiz
et al.
(2021)

Chicken
patties

Filter paper
strips

Jamun fruit
(Syzygium cumini)
skin extract

TVB-N From violet
to yellow

Talukder
et al.
(2020)

Chicken Cellulose fibers Bromothymol blue TVB-N From yellow
to green

Cao et al.
(2019a, b)

Chicken Agarose Bromocresol purple TVB-N From light
yellow to
purple

Soni et al.
(2018)

Chicken
fillet

Pectin Red cabbage extract TVB-N From purple
to yellow

Dudnyk
et al.
(2018)

Chicken Polyvinyl
alcohol/gelatin

Amaranthus leaf
extract

TVB-N From red to
yellow

Kanatt
(2020)

CO2 carbon dioxide, TVB-N total volatile basic nitrogen
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5.6 Conclusions

Because animal-based products are important source of nutrition for humans, they
also play an important role in the economic growth. As a result, the new packaging
technology has been continuously developed to meet consumer needs in the animal-
based product area. Recently, the effective potential of smart freshness indicators
based on natural biopolymer materials incorporated with natural dye indicators for
the real-time monitoring of animal-based product quality and safety has been
demonstrated by many studies. The developed smart freshness indicators have
exhibited great sensitivity toward pH and target metabolites, showing color
variations and thus exhibiting prospective use as visible smart freshness indicators.
The use of smart freshness indicators could improve product quality and safety, and
real-time monitoring and reduce food loss across the supply chain. However, smart
freshness indicators also have many limitations, such as some dye indicator had
broad-spectrum color changes and can be provided false-negative results, which lead
to the producer rejection and consumer reliability. Therefore, the further develop-
ment of extremely sensitive freshness indicators, more exact color, and cost effec-
tiveness is of great significance for commercialization opportunity and increasing
consumer acceptance.
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Packaging of Dairy Products: Emerging
Strategies 6
Marta Biegańska

Abstract

Consumer demand for dairy products has changed significantly in recent years.
Globalization, urbanization, and changing lifestyles with increasing number of
consumers with higher incomes in developing countries keep pushing demand for
innovative dairy products. The current trend observed on the dairy market
regarding healthy products forces producers to increase the variety of premium
and specialty products. Consumers are more aware nowadays of health benefits
of dairy products and require controlled quality, convenience (e.g., on-the-go
dairy), extended shelf life, and eco-friendly products. To meet these growing
requirements, manufacturers are introducing product innovations to the market,
as well as modern packaging. Beside the typical packaging functions like protec-
tion, containment, communication, marketing, and ergonomics novel packaging
should also have an active role. As dairy products are highly perishable, they
require proper packaging in order to protect and prolong shelf life of the product
inside. Among different types of packaging, active and intelligent packaging is a
powerful tool, alongside with novel packaging materials (e.g., paper-based,
bioplastics). Moreover, novel packaging can be a tool for detecting food fraud,
but also facilitates traceability. This review will cover potential use of smart
packaging with indicators (e.g., gas/integrity, freshness, time-temperature), anti-
microbial coatings, data carriers, sensors in dairy packaging.
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Keywords

Dairy products · Shelf life · Smart packaging · Active packaging · Intelligent
packaging · Data carriers · Sensors

6.1 Introduction

Packaging has been used from the moment when primitive man began to stockpile
food. Over the years and with the development of civilization, it has become more
and more sophisticated and complex. Packaging in the past and now is designed to
fulfill specific functions, such as protection, containment, communication, market-
ing, and ergonomics. The primary function of any packaging is to protect the product
from the surrounding environment. When it comes to food stuffs, it should be a
barrier to temperature abuse, light, moisture changes, gases, pressure, odors, micro-
organism, pests, dirt, and dust (Ščetar et al. 2019; Alizadeh-Sani et al. 2019; Mirza
Alizadeh et al. 2020; Elsherif et al. 2020). The second important function of any
packaging is its communication. In recent years, packaging has become a major
brand communication vehicle. From a consumers’ point of view, it is the first point
of contact with a particular brand—a so called “silent seller”. In other words,
packaging has become an important feature of brand differentiation and factor in
consumers’ purchase decisions (Omeni and Daniel 2020). However, this basic and
also passive role of a packaging in modern, urbanized world is not enough. In this
view, it mostly allows for protecting and preserving food helping to reduce food
waste. Moreover, consumers are more aware of safety hazards related to food and
demand safe, high quality and convenient products with extended shelf life
(Sajdakowska et al. 2020; Chávez-Martínez et al. 2020). Food safety issues pose a
significant challenge worldwide as foodborne illnesses result in productivity loss and
increased treatment cost of $15 billion annually (e.g., hospitalization costs) (Sindi
et al. 2020). As dairy products provide suitable conditions for the development of a
number of microorganism, including pathogens, and because contamination of those
products can occur at various production stages ensuring safety and prolonging shelf
life are essential (Delorme et al. 2020).

Due to busy and more complex lifestyle, an on-the-go eating and drinking trend is
visible even on the dairy market. Nowadays dairy packaging is very important as it is
a vehicle for product differentiation, enables communication of the content, and is a
powerful branding tool (Mania et al. 2018a; Velasco and Spence 2018; Šerešová and
Kočí 2020).

In order to adapt to these changing trends and consumer expectations, the dairy
market is forced to significantly increase the variety of products. This leads to
increase of snack-sized, resealable, portion-controlled packaging. However, single-
use packaging contributes to the increase in the amount of packaging waste
(Šerešová and Kočí 2020). On the other hand, as dairy products are highly perish-
able, food waste and food loss in the food chain are also a problem. According to
FAO as much as 1.3 billion tons of food are wasted globally each year, a 1/3 of the
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world production (Garnier et al. 2017; Bilska and Kołozyn-Krajewska 2019;
Lipińska et al. 2019). This results in up to $1 trillion of economic losses annually.
There is a difference between food loss and food waste. The first being loss occurring
during production, postharvest treatment, and storage, whereas the latter is the food
disposed of by retailers and consumers. To avoid or at least reduce food waste, the
package should be convenient for its users. It ought to be easy to handle and refill
without any mechanical damage to the product. Moreover, it should be easy to open,
resealable, and allow for maximum emptying (Mania et al. 2018a). Packaging in its
protection function can aid reduce food waste, but with novel packaging solutions it
can also help to lower food losses along production and supply chains which are in
line with the United Nations Sustainable Development goal to halve per capita
global food waste (Wikström et al. 2019).

In recent years, consumers have shown rising health awareness that is anticipated
to trigger some market trend, e.g., products with high protein content, lactose-free,
sugar-free, nondairy alternatives or fortified and functional dairy. Those trends and
growing market and consumer demand, due to changes in lifestyle and market
globalization, have forced manufacturers to seek new packaging solutions like
smart packaging (SP) (Mirza Alizadeh et al. 2020). The correlation between SP
and main packaging functions, as well as different areas active and intelligent
packaging cover is shown in Fig. 6.1.

Smart packaging combines the functions of both active and intelligent packaging.
Both systems can work separately or synergistically as smart packaging
technologies, as shown in Fig. 6.2.

Active packaging systems are developed with active components in the packaging
(e.g., antimicrobial coatings, gas emitters or scavengers, moisture absorbers) in order
to maintain or extend the product quality and shelf life, whereas intelligent packag-
ing aims at monitoring the state and quality of the product and shares information on

Fig. 6.1 Main packaging
functions (Source: Own work)

6 Packaging of Dairy Products: Emerging Strategies 129



the storing and transportation conditions throughout the distribution chain (e.g.,
indicators, sensors, and data carriers) (Drago et al. 2020). They will be discussed
in more detail further in the chapter.

Different packaging materials are being used nowadays depending on product
type, processing and storing conditions, handling requirements, and way of
use/consumption. Most often used are: glass and plastic bottles, multilayer materials
(e.g., Tetra Pak®, SIG Combibloc), pouches, plastic trays, cans, tubs, and buckets.
They have to meet some requirements like to be printable, safe for food contact,
inert, not to interact with the packed product (except for active packaging), nontoxic,
be compatible with the product, show appropriate impact resistance, have barrier
properties toward light, gases, and odor, have the right shape and size, be cost-
effective, and have marketing appeal (Ščetar et al. 2019).

6.2 Dairy Market Overview

Healthy eating habits include consumption of a wide variety of products of high
nutritional density. High-quality protein, minerals, and group B vitamins can be
found in milk and dairy products. These are essential in the diet of children, pregnant
women, and the elderly (Owusu-Kwarteng et al. 2020; Delorme et al. 2020;
Smirnova et al. 2020; Tricarico et al. 2020; Chávez-Martínez et al. 2020).

Global dairy market is estimated at over $400 billion worth, which is circa 14% of
worldwide agricultural trade, where milk is the third agri-food commodity (Tan and
Ngan 2020).

As dairy products are made from raw milk (cow, sheep, goat, buffalo, camel, and
other milking animals), it shows differences in composition due to seasonal
fluctuations, origin or rearing (Faccia et al. 2020). Commercially available milk
comes in different types such as ultra-high-temperature (UHT) milk, pasteurized

Fig. 6.2 Smart packaging
(Source: Own work)
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milk, semiskimmed milk, skimmed milk, fortified milk, standardized milk, and
reconstituted milk (Byberg and Lemming 2020; Faccia 2020a). An overview of
dairy products is shown in the Fig. 6.3.

Milk contains important micronutrients and for this reason is regarded as an
important part of a balanced diet. However, in its raw state, it is highly susceptible
to microbial and enzymatic spoilage (Odueke et al. 2016; Smirnova et al. 2020).

One of dairy products is kefir; it can be made from different types of milk, like
cow, goat, sheep, buffalo or camel during microbial fermentation. Kefir has an acidic
taste, contains many bacterial species known for their probiotic properties, and is
creamy. During storage, its sensory and microbial properties can still change
improving its shelf life. It has many health benefits and exhibits antimicrobial
activity, due to presence of lactic acid bacteria (LAB) capable of producing
bacteriocins, against for example S. aureus, E. coli, Salmonella enteritidis,
B. cereus, and L. monocytogenes (Sindi et al. 2020). Most common genera of
LAB are Lactobacillus and Bifidobacterium. They owe their biological functions
to bioactive metabolites and among health benefits anticarcinogenic, antiobesity,
antioxidant effect, and stimulation of immune response need to be mentioned
(Mohamed et al. 2020). Nevertheless, it has short shelf life and high storage and
packaging costs which have led to the trend of having dry kefir in powder form
(through freeze or spray drying) (Farag et al. 2020).

Fig. 6.3 An overview of dairy products (Source: Based on (Najib et al. 2020; Byberg and
Lemming 2020)
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Another most often consumed worldwide nutritious and healthy product is
yoghurt (Sajdakowska et al. 2020). It is a fermented dairy product originating in
the Balkans and the Middle East. Its shelf life is usually 3 weeks or less. Thanks to
presence of lactic acid bacteria, it has a probiotic effect (Odueke et al. 2016). Lactic
acid bacteria LAB are essential in production of fermented dairy products. The
quality of fermented product depends on the bacterial strain used in the process
(Mohamed et al. 2020). There are several types of yoghurts that gain in popularity
like drinkable yoghurt, spoonable, Greek-style yoghurt (Newbold and Koppel
2018).

Cheese is one of the most important dairy products that come in many varieties
(e.g., flavor, texture, size, and origin). It undergoes many changes (e.g., microbial,
biochemical) during production and ripening. The manufacturing of cheese is one of
the oldest technologies for prolonged milk nutrients consumption. It is most often
classified as hard, semihard, soft, and fresh. Although, fresh cheeses are considered
to be soft cheeses due to their high moisture content and fairly short shelf life
(Youssef et al. 2017). Cheese comes in three main types: natural cheese, powdered
cheese, and processed (melted analog) cheese. Natural cheese is prepared from
pasteurized milk and its aging continues “on the shelf”. Taking that into account,
it requires packaging with high barrier properties. Powdered cheese used mainly for
snack foods flavoring is produced by dehydration of natural cheese. Finally,
processed cheese is manufactured by melting natural cheese with additives (e.g.,
water, salt, whey, emulsifiers) to prolong its shelf life (Mania et al. 2018a).

6.3 Dairy Product Portfolios and Changing Market Demands

Milk and dairy supply chains play a significant role in world food demand. The
growing world population and the increase in wealth of people in developing
countries have a significant impact on this demand. On the other hand, markets in
developed countries seek nutritionally balanced and environmentally sustainable
products forcing manufacturers to develop product innovations such as functional
products (Faccia 2020b). Dairy supply chains are complex and difficult to model due
to high variability of raw materials supply, large variety of products, their perish-
ability, and changing demand. A simplified logistic chain is shown in Fig. 6.4. As
dairy products, especially milk and its by-products, demonstrate high nutritional
value; the use of fortifying additives to increase that value was only a matter of time
(Guarnaschelli et al. 2020).

Traditional milk preservation methods include among others pasteurization, ultra-
high-temperature, and sterilization. Table 6.1 presents heat treatment methods in the
dairy industry. Traditional dairy preservation techniques are applied to inhibit
microbial growth, increase shelf life, and maintain quality and safety. However,
they can alter organoleptic properties and decrease levels of nutrients. To avoid these
adverse effects, emerging technologies such as high hydrostatic pressure (HHP),
pulsed electric fields (PEFs), ultrasound (US), irradiation, and cold plasma (CP) are
gaining more attention. Irradiation as a nonthermal technology for food preservation
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has been utilized for many years and acknowledged by World Health Organization
(WHO) as beneficial for the provision of quality, ensuring safety and extending shelf
life. Irradiation at low doses and/or in frozen conditions can be effective in pathogens
elimination without off-flavors in the irradiated product (Odueke et al. 2016).
Another promising innovative technology with commercialization potential is ultra-
violet (UV) radiation that has shown effectiveness on microbial safety and intrinsic
quality properties of dairy products (Delorme et al. 2020).

Table 6.1 Heat treatment methods in the dairy industry

Heat treatment Temperature [�C] Time Product

Thermization 57–68 5 s–
30 min

Raw milk
Some cheeses

Pasteurization 72–80 15–30 s Drinking milk
Cheese

Pasteurized with
extended shelf life
(ESL)

125–140 1–10 s Drinking milk with ESL at chilled
conditions

Ultra-high-
temperature (UHT)

135–150 1–10 s Drinking milk with long shelf life at
ambient temperature

In-container
sterilization

110–120
125

10–20 min
5 min

Condensed milk, drinking milk with
long shelf life at ambient temperature

90–95 5–10 min Yoghurt

72–80 15–30 s Low-heat skim milk powder (SMP)

85
90
105

1 min
30 s
30 s

Medium-heat SMP
Preheating in UHT
Whole milk powder

90
120
135

5 min
1 min
30 s

High-heat SMP

>120 >40 s High-high-heat or high-high-heat-
stable SMP

Source: Based on (International Dairy Federation 2018)

Fig. 6.4 A simplified dairy logistic chain (Source: Based on (Guarnaschelli et al. 2020))
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UV light comprises the wavelengths range from 100 to 400 nm in which four
types of rays can be distinguished: UVA (315–400 nm), UVB (280–315 nm), UVC
(200–280 nm), and vacuum-UV (100–200 nm). Among those types, UVC rays are
known for their microbial elimination (e.g., bacteria, viruses, and fungi). However,
further studies are needed to optimize conditions of UV treatment of dairy products
to overcome modifications of physicochemical and sensory features (Delorme et al.
2020).

Increasingly diverse consumers’ needs regarding dairy products lead to changing
production patterns in the dairy industry. They can be described as mass customiza-
tion as manufacturers offer a wide variety of products meant for different consumers
with different needs and expectations. Products attributes regarded as most important
by consumers in relevance to ice-cream were taste, appearance, shape, texture, health
benefits, and packaging material (Wedowati et al. 2020). Although those results
were related to ice cream, but to a large extent they may also apply to other dairy
products.

6.3.1 Functional Dairy Products

Fortification traditional dairy products with active ingredients lead to functional
dairy products with enhanced nutritional value and even improved health benefits.
Functional food market has grown significantly in the last couple of decades, mostly
because of use of prebiotics and probiotics (Lai et al. 2020; Faccia 2020b). Func-
tional dairy products include:

• Low-fat dairy
• Lactose-free dairy
• Products fortified with added functional ingredients (Lai et al. 2020)

For example, addition of Chinese sweet tea extract (Rubus suavissimus S. Lee
leaves) to buffalo milk yoghurt improved the biological activity of the product
(antioxidation and antihypertensive). Another study showed that fortification of
buffalo milk yoghurt with fenugreek (Trigonella foenum-graecum) and Moringa
oleifera seed flour leads to modification of mineral compounds and showed higher
antibacterial activity against some undesired species, compared to unfortified
yoghurt (Faccia 2020b). Lai et al. (2020) reported that fortification of yoghurt with
algal oil (25% of fat content) to increase omega-3 fatty acids content did not seem to
cause an off-flavor. Moreover, addition of inulin acting as a prebiotic for the increase
of probiotic gut bacteria is another fortification example, just like the fortification
with whey protein in sheep and goat milk dairy products. Fortification may take the
form of additives constituting by-products from other food industries like vegetable,
fruit, marine or cereal. A wide range of examples were presented by Iriondo-Dehond
et al. (2018) among which authors mentioned fruit skin, peels, leaves, and pulp or
bran cereals and fish oil.
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In order to lower fat content in yoghurts, fat replacers are used. Different types of
starch (e.g., corn, sweet potato, potato, chickpea, and Turkish beans) can serve as fat
lowering agents. Moreover, functional additives can also be added to other dairy
products such as cheese. Faccia (2020b) studied kiwi juice as cheese coagulant and
although, longer coagulation and syneresis were observed, compared to calf rennet,
investigated cheese exhibited higher concentrations of polyphenols and phytosterols.
Crockett (2015) studied Allanblackia oil as a potential functional additive. It
demonstrates good storage stability characteristics and relatively high melting
point which make it a promising consistency improving agent in butter substitutes
and vegetable-based dairy products.

People suffering from lactose intolerance exhibit decrease in enzyme (-
β-galactosidase) production that is responsible for lactose hydrolyzation. This in
turn leads to gut digestion of lactose which shows unpleasant symptoms like
abdominal cramps, flatulence, and diarrhea. Around 75% of adult global population
suffers from enzyme decrease. Such state leads to increased lactose-free dairy
demand. However, milk from sheep and goat seems to be better tolerable by
lactose-intolerant consumers, there is a trend in removing lactose from this type of
milk as well like in lactose-free Ricotta cheese (Lai et al. 2020). There are also
products that contain little or no lactose like Gouda, Parmesan, Cheddar, Swiss
cheese or butter. Fresh cheese, however, can contain lactose at levels resulting in
reaction among lactose-intolerant consumers.

Among market-available lactose-free products are potable milk, UHT milk,
yoghurts, cheese, ice-cream, flavored milk, dairy powders, creams, desserts, and
Dulce de Leche (Dekker et al. 2019).

6.3.1.1 Nanoceuticals
Addition of nutraceuticals like carotenoids or lycopene, omega-3 fatty acids,
minerals, vitamin D2, phytosterols, and some probiotic bacteria species to conven-
tional dairy products can improve their bioavailability. They are also generally
recognized as safe (GRAS) by the Food and Drug Administration (FDA). They
can be incorporated into the products in a form of nanoclusters, nanocages, and
nanodrops. Compared to fortification described above, the main difference is in the
size of the bioactive compound ranging from 1 to 100 nm in length. These nanoscale
compounds show better solubility, biological activity, and bioavailability. They are
also more stable during heat processing and storage to normal-size nutraceuticals
(Kuswandi 2017; Poonia 2019).

Encapsulated edible nanoparticles containing drugs, vitamins, micronutrients
incorporated into the packaging surface could deliver those particles through con-
trolled release in the human body at targeted organs and improve health (Kuswandi
2016; Singh et al. 2019).

6.3.1.2 Novel Fermented Dairy Products
Although, probiotic bacteria (LAB) are already known in kefir and yoghurt, the
increased popularity of the probiotic concept having benefits to human health. For
this reason, an emerging trend to use them in other dairy products such as cheese,
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dairy desserts, and ice cream can be detected. Changing dietary patterns have led to
creation of a market niche for probiotic foods (Ávila et al. 2020). Addition of herb
extracts, fresh spices or fruit fibers to yoghurts can increase the phytochemicals
content and health benefits. Dimitrellou et al. (2020) investigated yoghurts
supplemented with aronia, blueberry, and grape juices to increase the amount of
phenolic compounds and antioxidant activity. Addition of investigated juices
increase red color of prepared yoghurts, but had no significant effect on physico-
chemical properties.

6.3.2 Products Beyond Dairy

Going beyond dairy is another emerging trend on the market. According to Stora
Enso Gainomaxs’ sports nutrition, UHT drinks are displayed together with other
sports nutrition products outside dairy shelf (Stora Enso n.d.). Another example is
Credition Dairy’s (Devon, UK) brand Arctic Coffee that comes in several flavors and
carton sizes of 330 mL and 1 L and gives consumers the experience of on-the-go
coffee with milk (Elopak 2020).

One of possibilities is the use of dairy products in making functional bakery
products. Graça et al. (2019) studied the addition of yoghurt and curd cheese to
wheat bread to enhance its functional and nutritional value. As dairy products can
help increase the amount of minerals like Ca and P, vitamin A and B12, as well as
protein and essential amino acids. Research showed that yoghurt addition had a
positive effect on the rheology of the dough. Both breads obtained good sensorial
acceptability with yoghurt and curd cheese additions of 50 g and 30 g, respectively.

6.3.2.1 Plant-Based Dairy Alternatives
Dairy alternatives are made from plant-based milk instead of animal milk. With
growing consumer demand, more and more such products are available on the
market. The reasons behind this trend are both health and sustainability. Global
dairy alternative market is estimated to grow to 20% of the value of the dairy milk
market in 2021. Among plant-based alternatives are soy-based drinks, almond-based
drinks, oat-based drinks, rice-based drinks, tofu spreads (Jeske et al. 2018;
Leialohilani and de Boer 2020; Paul et al. 2020). In 2020, Arla has launched a
range of dairy-free plant-based drinks in Denmark under the brand name Jörd made
from oats, barley, and hemp (Elopak 2020).

6.4 Dairy Packaging Innovations

Development of dairy packaging is a result of advances in material technologies and
consumer demands. Commonly used materials include:

• Glass [inert, recyclable, impermeable to gases and water vapor, brittle, heavy in
weight; bottles and jars]
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• Metal [recyclable, rigid, gas barrier properties, requires coatings to prevent
corrosion; cans or thin film wrappings]

• Paper/cardboard [recyclable, biodegradable, light in weight, printable, permeabil-
ity for breezing, water vapor and oxygen, susceptible to tearing; secondary
packaging, e.g., boxes, wrappings]

• Waxed papers [good resistance, good heat-sealing characteristics, low-cost,
moisture barrier properties]

• Poly(vinylidene chloride) (PVDC) [gas, water vapor, fatty and oil products
barrier properties, used in MAP]

• Cellophane [clear films, used in coatings and laminates, poor strength properties]
• Low-density polyethylene (LDPE, LD-PE, PELD, PE-LD) [recyclable, low-cost,

flexible, moisture barrier properties, resistant to most solvents, low gas barrier
properties; cups, trays, tubs]

• High-density polyethylene (HDPE, HD-PE, PEHD, PE-HD) [recyclable,
low-cost, moderately flexible, odorless, poor clarity, low oxygen and other
gases barrier properties; cups, trays, tubs]

• Poly(vinyl chloride) (PVC) [use of plasticizers, low moisture barrier properties]
• Multilayer packaging (plastic/paperboard/aluminum) [aseptic, moisture, gas,

odor, light barrier properties; pouches, sachets, cartons, bottles] (Roohi et al.
2018; Ščetar et al. 2019)

Packaging manufacturers keep on developing their products to fulfill growing
market and consumer demand. Ampacet (NY, USA) has launched their sustainable
3R solutions (Reuse, Reduce, and Recycle) to help meet sustainability goals. To give
an example Ampacet's Safari White PET masterbatch offers high level of opacity
and reduced mineral loading of less than 4%. It is suitable for ultra-high temperature
(UHT) processed milk which has an unrefrigerated shelf life of 6–9 months. Safari
PET preserves flavor and nutrients of fresh milk and protects it from light exposure
in 400–550 nm wavelength (Anonymous 2019).

Wipak (Helsinki, Finland) offers monomaterial film BIAXOP ECO 70 XX XPP
which is recyclable and has excellent transparency, with an integrated barrier layer
for an even better level of product protection and tight seal. When an easy-open
PEEL-solution for lidding filmsand flow packs is required, BIAXEN ECO 65 XX
XFP offers a wide sealing window and early sealing initiation temperature.
Polyolefin-based resealable lidding REPAK® TOP BP 70 XX and PE-based bottom
NICE ECO XX 17 are also recyclable. Wipak has also launched rPET with a high
recycled content in the semirigid MULTICLEAR-R 250 bottom film with great
optical and mechanical properties. With high-quality recycled PET granulate, the
solution allows for a high carbon footprint reduction and the material is fully
approved by the European Food Safety Authority (EFSA) for use as a food contact
material. In the area of renewable materials are PAPER TOP® PD BE 90 XX PEEL
lidding film and PAPER BTM® Q 330 XX bottom film. Wipak’s PAPER BTM®

range, provides different solutions with up to 90% paper share, all enable consumers
to separate film and paper before disposal (Wipak 2021).
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Danish organic cooperative dairy Naturmælk has introduced its vast range of
milk, yoghurt, buttermilk, and cream varieties in Pure-Pak® cartons with Natural
Brown Board, and Mini Pure-Pak® cartons from Elopak (Oslo, Norway). Moreover,
new Pure-Pak®Imagine carton is even more environmentally friendly than other
cartons as it has 10 times less plastic compared to PET bottle and 46% less plastic
than a carton with a closure. Pure-Pak®Imagine is designed with an easy-pour
opening with an easy-fold feature, no plastic screw cap, and is 100% based on
wood. This type of closure also provides maximum emptying capabilities of the
carton minimizing food waste. It has a unique top fin-guiding consumer on how to
open the carton and form an easy-pour spout which is similar to carton openings in
the 70s and 80s (Elopak 2020).

Sustainability and environment awareness of consumers force packaging devel-
opment. Another example is Chadwicks’ (Greater Manchester, UK) paper-based lids
for dairy products. Those lids are fully recyclable, offer good barrier properties
(oxygen, water vapor, aromas), and high mechanical strength and stiffness. They are
also printable and show excellent optical properties. Those paper-based lids consist
of polyethylene-coated paper with linen or pin dot emboss. The embossing includes
print, paper, and coextruded barrier polymer (Chadwicks 2021).

Among novel packaging systems, modified atmosphere packaging (MAP), edible
cheese packaging or biodegradable packaging should be mentioned which will be
described in more detail in this chapter.

6.4.1 MAP Packaging

Modified atmosphere packaging (MAP) has been previously used for fruit and
vegetables, meat fish, and bakery products. This technology is based on altering
the gaseous combination inside the packaging to extend product’s shelf life. This is
obtained by using specially composed gas mixtures of carbon dioxide, oxygen, and
nitrogen. This approach allows for decreased microbial growth and reduction of
lipids oxidation, thus prolonging shelf life and quality of dairy products. Lipid
oxidation is responsible for quality deterioration in dairy products as oxidation of
unsaturated fatty acids results in the formation of chemical compounds that give
off-flavors and affect shelf life and storage stability (Clarke et al. 2020). Addition of
CO2 to a gas barrier packaging allowed for extending shelf life of cottage cheese of
200–400% (Newbold and Koppel 2018). This technology can be applied with
success to prolong shelf life of soft cheese, semihard cheese, hard cheese, cottage
cheese, whey cheese, fresh cheese, and surface mold-ripened cheese. Depending on
the cheese type in order to inhibit the growth of anaerobic microorganism, CO2

concentrations inside the packaging ought to vary between 20 and 60%. Usually to
minimize lipids oxidation processes in MAP of dairy products, the level of O2 should
be as low as possible. In this case, combinations of CO2 and N2 should be 30/70,
40/60, 60/40, 50/50 accordingly. Although, this method allows for extending shelf
life of cheeses before choosing the right gas ratio cheese type, production process
and packaging material need to be considered (Garnier et al. 2017; Ščetar et al.
2019).
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6.4.2 Edible Coatings

To meet consumer acceptability and satisfaction, cheese requires an adequate pack-
aging to protect its quality, and safety films and coatings have been used for a long
time. Covering cheese methods before ripening or during storage can prolong shelf
life and minimize defects in the finished product. Consumer preferences regarding
appearance and sensory features of cheese make the selection of packaging and
coating an important factor in buying decisions. Moreover, environmental awareness
and sustainability are also forcing manufacturers to seek recyclable or biodegradable
packaging materials to minimize package waste. In recent years, there has been a
growing interest in edible film and coating in the dairy sector. Edible coatings/films
are thin layers of food biopolymer-based material for covering food, like cheese.
Films are prepared separately and applied in the form of a wrapping material,
whereas coatings are suspensions or emulsions applied directly and forming a film
on the surface of cheese. Some polysaccharides, lipids, and proteins have been used
as edible cheese coatings (with or without plasticizers, antimicrobial agents, and
nanoparticles) to prolong shelf life (Table 6.2). Application of a film or coating can
protect cheese from moisture losses, gas exchange, microbial and chemical deterio-
ration, and physical damage. Traditionally waxes have been used as cheese coatings;
however, a combination of waxes with emulsions based on polysaccharides and
proteins may lead to the formation of a new generation of edible coatings (Youssef
et al. 2017).

Alizadeh-Sani et al. (2019) studied storage stability of corn starch-based edible
films as a wrapping of milk cake. It is a product prepared directly from milk or from a
granular variety of khoa. During storage, it is susceptible to oxidative rancidity and
absorbs odors from its surrounding environment. Traditionally milk cake is wrapped
in butter paper and placed in paperboard secondary packaging. Compared to control,
starch-based films demonstrated slower decrease in sensory scores under refrigerated
conditions. They exhibited storage stability of 18 days without signs of spoilage. The
films thickness, water activity, moisture, water solubility, and water vapor transmis-
sion rate were significantly increase, but mechanical properties and transmittance
decreased with storage period.

6.4.3 Biodegradable Packaging

Biodegradable food packaging materials are films that after use decompose with the
help of microorganisms through composting where they are degraded into CO2,
water, methane, and biomass. Different microorganisms use such biodegradable
materials as carbon source. The biodegradation leads either to disintegration of the
polymer or its fragmentation without harmful effect on the environment. They are
obtained from renewable, abundant, and low-cost materials and can be alternative
food packaging materials (Roohi et al. 2018; Adeyeye et al. 2019; Kuswandi
and Moradi 2019). Those “natural polymers” or biopolymers are mainly of
microorganisms’ origin and are in nature carbohydrates. They create hydrophilic
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Table 6.2 Edible coating materials in dairy industry

Material/additive Compound Properties Product

Biopolymers Chitosan • Nontoxic
• Biodegradable
• Forms strong flexible films
• Shows antimicrobial activity

• Fior di latte
cheese
• Ricotta
cheese
• Ras cheese
• Saloio
semihard
cheese

Galactomannans • Controlled gas transfer
• Structural stability
• Low moisture retention
• Freeze-thaw stable (cold
water soluble gums)

Alginates • Sodium alginate forms a
fairly strong film

• Mozzarella
• Fior di latte
cheese

Carrageenans • Have different solubility in
water (depending on the degree
of sulfation: δ, ι, κ)
• Show similar puncture force
• κ gives strongest film among
all three types

Carboxy methyl
cellulose (CMC)

• Forms films with different
strength (depending on
molecular weight and degree of
substitution)
• Film strength is lower
compared to ones from
alginates at similar
concentrations

Starch and
derivatives

• Can create clear and flexible
coatings when modified
• Addition of plasticizers
improves film properties, but
reduces barrier characteristics

Proteins (e.g., whey
proteins, and zein)

• Good mechanical stability
• Excellent gas and lipid
barrier properties
• Poor water resistance
• Susceptibility to cracking

Plasticizers Glycerol, sorbitol,
ethylene glycol

• Improve the elastic modulus
and mechanical properties of
films
• Increase in resistance to
permeation of vapors and gases

Surfactants and
lipids

ND • Improve the emulsions
stability
• In coatings reduce surface
tension and improve wettability

(continued)
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films with good barrier properties to O2, CO2, and lipids. However, some
biopolymers’ performance is not yet comparable with traditional plastic materials.
They are brittle and exhibit poor gas and vapor barrier properties. These drawbacks
could be overcome through the use of nanomaterials (Adeyeye et al. 2019).

Starch-based packaging materials are biodegradable and with the use of
plasticizers (e.g., glycerol, polyethers, and urea) can create films with appropriate
for food packaging mechanical strength like tensile strength, high elongation. It can
also be extruded and formed as thermoplastic materials and by using water steam it
can be converted into foam, just like polystyrene (PS) packaging. Among
advantages of starch in edible films are preparation simplicity, low-cost, good barrier
properties to lipids and oxygen. Its drawbacks are poor water resistance and brittle-
ness (Roohi et al. 2018; Adeyeye et al. 2019; Kuswandi and Moradi 2019).

Chitosan is a biopolymer with antimicrobial properties, is insoluble in water and
soluble in acid solutions, and it also shows poor gas and water vapor barrier
properties. Chitosan is a nontoxic, biodegradable, biocompatible packaging material
(Adeyeye et al. 2019). It is mostly obtained from shrimp shells, fungi, yeast or green
microalgae (Irkin and Esmer 2015).

Table 6.2 (continued)

Material/additive Compound Properties Product

Antimicrobial
agents
Nanoparticles
Bionanocomposites

Organic acids and
their salts
– Sorbates
– Benzoates
– Propionates
– Lysozyme
Bacteriocins
– Nisin
– Natamycin
– Primaricin
Essential oils
Silver (silver zeolite)
Silver-
montmorillonite
– Embedded into
agar
– Used in MAP
– Dipped in sodium
alginate and
immersed in calcium
chloride
– Chitosan/poly
(vinyl alcohol)/
titanium
nanoparticles
– Chitosan/CMC/
zinc nanoparticles

• Antimicrobial agents against
Gram(+) and Gram(�)
microorganisms
• Antimicrobial agent against
Gram(�) microorganisms
• Antifungal agent
• Show wide spectrum effects
on harmful microorganisms
• Reduces significantly the
number of viable E. coli,
S. aureus, and A. niger after
30 min of application
• Antimicrobial activity
against three strains of
Pseudomonas spp.
• Showed shelf life extension
above 5 days
• Enhanced shelf life up to
10 days
• Good mechanical and
antimicrobial properties
• Good mechanical properties
• Good antimicrobial activity
against S. aureus,
P. aeruginosa, E. coli, and
C. albicans

• Gorgonzola
• Mozzarella
• Fior di latte
cheese
• Fior di latte
cheese
• White soft
cheese

Source: Based on (Youssef et al. 2017; Adeyeye et al. 2019)
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Curdlan is yet another polysaccharide with excellent film-forming ability, abun-
dant, nontoxic, and biodegradable. It is also water insoluble and demonstrates great
thermal characteristics which could be incorporated in multilayer packaging
materials (Adeyeye et al. 2019; Alizadeh-Sani et al. 2019).

Among biodegradable packaging materials are also ones produced using tradi-
tional chemical synthesis like polylactic acid (PLA), polyhydroxybutyrate (PHB),
and polycaprolactone. PLA is made from renewable resources (sugarcane, corn) and
has biocompatible and biodegradable properties. It requires chemical modification to
improve its mechanical and physical properties. Despite that, it has the potential to
be produced on a large scale and become an eco-friendly packaging material. PHB is
created by microorganism and is compatible to dairy products, meat, and beverages.
It is an excellent for food packaging films. Moreover, it is nontoxic, water insoluble,
and shows better physical characteristics as food packaging material compared to
polypropylene. However, due to its high degree of crystallinity, high melting
temperature is brittle. Both of those described above polymers can be used in cheese
or curdled milk packaging (Roohi et al. 2018; Adeyeye et al. 2019).

Microbial gums are nontoxic and have the potential to be produced on an
industrial scale. As packaging materials, they are used to make gels, thickening
agents, and film solutions. FDA recognized xanthan gum as food additive in 1969. It
is an anionic, water-soluble polymer, and is stable at a wide pH and temperature
range. Gellan gum is a suitable hydrocolloid for making edible films that are
transparent and show good mechanical properties. Pullan has the ability to form
colorless, transparent, odorless, and highly water permeable films. It is not used
extensively in the packaging industry because of its high cost; however, polysaccha-
ride blends with, e.g., alginate, chitosan, and starch create films easily dissolved in
water. This could be utilized in development of edible food coatings with resistance
to oxygen permeation (Alizadeh-Sani et al. 2019).

Protein-based packaging materials are also biodegradable, low-cost, and abun-
dant. For example, whey, a cheese-making by-product can be filtered and dried to
obtain pure whey protein, which can be then used to create protein-based films. Such
films can be used for layered plastic films that could form packaging materials in a
combination with recyclable plastics. After use, those layers can be chemically
separated and plastics recycled (Kuswandi and Moradi 2019). Another protein
with film-forming properties is gelatin. It is water soluble, odorless, tasteless,
colorless, and transparent and is obtained through partial collagen hydrolysis in
powdered or granulated form (Ramos et al. 2016). Due to its water solubility and
swelling in contact with high moisture products, it needs to be modified prior to use
in dairy applications.

The use of biodegradable materials in food packaging would reduce greenhouse
gas emissions and increase the use of renewable sources of raw materials for their
production (Sanyang and Sapuan 2015). However, at present, the production of this
type of packaging on an industrial scale is insufficient due to insufficient facility of
production (Roohi et al. 2018).
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6.4.4 Biomaterials

Biochemically improved packaging materials are eco-friendly, but they do not
necessarily have to be biodegradable as well. These bio-based materials use renew-
able resources as raw materials to decrease the use of traditional fossil fuels such as
crude oil. They are in general nonrecyclable materials, but can be incinerated for
energy recovery. As polyethylene terephthalate (PET) is a widely used petroleum-
based food packaging material, it can be produced with the use of renewable
resources giving rPET. Other examples of bio-based polyesters include:

• Polyethylene furanoate (PEF)
• Polytrimetylenefurandicarboxylate (PTF)

Both of them show improved barrier properties and higher mechanical strength
(Kuswandi and Moradi 2019).

6.4.5 Nanomaterials

Use of nanoparticles in changing packaging materials characteristic and developing
new materials was the result of market demand for packaging assisting in extending
shelf life. Nano-based films can have improved barrier properties (e.g., CO2, O2,
ethylene, moisture, lipids) which play a significant role in protecting food products
from oxidation and spoilage (Poonia 2019). Nano-reinforced traditional polymers
used in food packaging usually contain up to 5% w/w nanoparticles (Davarcioglu
2017; Pereda et al. 2018). Moreover, nanoparticles in the polymer matrix of common
packaging materials increase physical properties of those materials such as strength,
heat resistance, stiffness, shatterproof, and dimensional stability. In order to improve
those properties, metal oxides, nanoparticles, nanoclays, carbon nanotubes, and
metallic nanoparticles are used. Nanocomposites with nanoclays and layered
silicates have improved diffusion paths (tortuous pathways) which in turn increase
their barrier properties. However, many advantages of nanoparticles in plastic
packaging have been shown in many studies and their main drawback is the polymer
transparency reduction (Kuswandi and Moradi 2019). Amjadi et al. (2019) studied
gelatin-based nanocomposite-containing chitosan nanofiber and ZnO nanoparticles
as potential cheese wrappings. They showed significant decrease in pathogenic
bacteria growth (E. coli, S. aureus, and P. aeruginosa). Prepared films did not
alter the organoleptic properties of cheese until the end of storage that lasted 12 days.

6.5 Active Packaging for Dairy Products

The passive packaging function – protection – has been changed into an active one
with the development and application of active packaging. They can take a form
active component incorporated in the packaging material or labels, pads, sachets,
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and other forms to actively alter the conditions inside the packaging. Among active
packaging solutions are gas scavengers or emitters, gas absorbers, antimicrobial
agents, moisture control agents, antisticking films, and light absorbers (Jafarizadeh-
Malmiri et al. 2019; Ščetar et al. 2019; Kuswandi and Moradi 2019). Carbon dioxide
scavengers with iron oxide, calcium hydroxide, and activated charcoal in a form of
sachets or films can be used in cheese packaging. Also flavor or odor absorbers such
as cellulose triacetate, citric acid, ascorbate, clays, zeolites, activated carbon films
enable smell and taste preservation, off-odors removal in dairy products
(Vigneshwaran et al. 2019).

6.5.1 Active Coatings

Preparation of active coatings requires incorporation of active agents into polymer
matrix (e.g., PE, PP, LDPE, PET, PS, and PLA) through embedding, immobilization
or layer-by-layer deposition techniques. Such coatings can be either migratory or
nonmigratory. In migratory active coatings, active substances are meant to migrate
to the products for their specific function, e.g., antimicrobial, antioxidant, biocata-
lytic, nutraceutical (Irkin and Esmer 2015).

6.5.1.1 Enzymatic Coatings
The use of enzymes in active packaging solutions is predominantly used to control
the growth of spoilage and/or pathogenic microorganisms. These substances can be
incorporated into coatings by embedding and blending. Depending on the prepara-
tion technique of such active coatings (covalent immobilization, layer-by-layer
deposition, and photografting), they can form migratory or nonmigratory materials.
An LDPE film with glucose oxidase and catalase showed up to 97% activity even
after exposure to 325 �C and remained its oxygen scavenging properties
(Bastarrachea et al. 2015).

Agrillo et al. (2019) studied the antimicrobial effect of activated PET. The
activation with small synthetic peptides resulted in the growth inhibition of aerobic
plate count within first 24 h and was also effective against L. monocytogenes biofilm
formation. Also enzymes can act as antimicrobial agents and be applied to different
solid materials by means of immobilization. Mirabelli et al. (2018) used hen egg
white lysozyme and immobilized it in crystalline form on hydrogel composite
membranes (HCMs) to develop an antimicrobial biofilm. The enzyme was
crystallized by using HCMs made of poly(vinyl acetate) (PVA) and poly(ethylene
glycol) diglycidyl ether (PEGDE) as cross-linker and polypropylene membranes
sheets. Lysozyme immobilized on PVA-HCMs in the molecular form demonstrated
antimicrobial properties against Micrococcus lysodeikticus within 90-min
incubation.

6.5.1.2 Antimicrobial Nanocoatings
Intensely studied is antimicrobial packaging using such agents as essential oils,
organic acids, peptides, enzymes or biopolymers (Bastarrachea et al. 2015). The
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reason for this is that bacterial contamination can unfavorably affect the quality,
safety, and shelf life of milk and other dairy products. The chemical composition of
dairy products makes them an ideal medium for microbial growth (Hutchings et al.
2020). These antimicrobial agents such as nanoparticles of silver, magnesium oxide,
copper oxide, titanium dioxide or carbon nanotubes can be coated, laminated,
incorporated or immobilized onto polymer surface (Davarcioglu 2017; Kuswandi
and Moradi 2019; Poonia 2019). Their performance was tested on Fior di Latte, soft
cheese, soft-ripened cheese, and soft white cheese samples, as well as on milk
powder or butter (Poonia 2019). Due to antimicrobial activity, zeolite-X and silver
ions were investigated to create starch composite films by Elsherif et al. (2020).
Starch films with zeolite-X and nanosilver were investigated as active packaging
materials for pasteurized milk. Films with both zeolite and nanosilver demonstrated
good antimicrobial properties and prolonged shelf life of milk up to 15 compared
days to control. Silver nanoparticles are known for their antimicrobial activity. Their
use in nanoscale provides relatively larger surface area compared to larger particles
above 100 nm which in turn increases the antimicrobial activity at lower
concentrations. Silver particles are also capable of inhibiting growth of thermoduric
bacteria like S. thermophilus that can survive short-term heating (Basavegowda et al.
2020). Although they themselves can along with lactic acid bacteria inhibit the
growth of some pathogenic bacteria through lactic acid production that is desired
in fermented dairy products, but they can also lead to milk thickening (Braun et al.
2020). Singh et al. (2018) developed a PET packaging film with the addition of silver
nanoparticles (AgNPs). The film was obtained by extruding virgin PET with
recycled PET (waste-based in concentrations 5, 10, 15, and 20%) and then made
into pouches to protect fresh white cheese at different temperatures (6, 25, and
40 �C) for up to 30 days. The antimicrobial activity of the PET/AgNPs packaging
was tested against S. aureus, E. coli, and C. tropicalis. In this study, they also tested
PET/AgNPs film with chitosan (Cs). The obtained results confirmed antimicrobial
activity of active PET films. The PET/AgNPs/Cs film with the addition of 5%
AgNPs demonstrated antimicrobial activity of fresh white cheese within 7 days at
40 �C.

Also bimetallic and trimetallic nanoparticles (NPs) have high antimicrobial and
antioxidant properties. Intensely studied are silver and titanium dioxide (TiO2)
nanoparticles. Moreover, clay nanoparticles used in packaging materials have the
ability to protect food from moisture, CO2, and oxygen that can cause spoilage and
decrease shelf life (Ligaj et al. 2020). Jin (2017) studied polylactide (PLA) films
containing zero-valent iron nanoparticles antimicrobial properties. The obtained
films were used as coatings on a polyolefin film and used as goat cream cheese
wrappings. They were then tested against microorganisms E. coli, B. subtilis, S,
epidermis, R. rubra, and G. candidum. The addition of 3% of zero-valent iron
resulted in full microbial growth inhibition and lower concentrations showed little
antimicrobial effect. The prepared wrapping protected goat cream cheese for
6 weeks (stored at chilled temperature). Moreover, the active packaging did not
influence the natural microflora of the cheese. These findings are promising for
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active ripening and cottage cheese packaging which change their desired sensory
properties during storage.

6.5.1.3 Essential Oil Coatings
The use of essential oils (EO) as antimicrobial agents in active packaging can
prolong shelf life of dairy products. They are also generally recognized as safe
(GRAS) and show wide spectrum of pathogen inhibition. EOs are of natural plant
origin and are a mixture of volatile compounds like terpens, sesquiterpens,
polyphenols, lactones, esters, alcohol, and others (Munekata et al. 2020). In cheese
preservation, thymol and linalool essential oils have been known. Cheddar cheese
stored at 15 �C over 21-days period in films containing thymol, carvacrol, and
linalool effectively reduced the population of S. aureus (Jin 2017). Coatings with
thyme and clove essential oils in addition of 1.5% demonstrated a decrease in E. coli
O157:H7 strain in a semihard Turkish cheese (Kashar) during 60 days of chilled
storage. Similar antimicrobial properties on Kashar were reported with the use of
coatings with ginger (1.5%) EOs after 30 days of storage (Munekata et al. 2020).
Another research proved antimicrobial properties of cinnamaldehyde in inhibiting
fungi growth on white cheese samples. No fungi were present after 26 days of
storage at chilled conditions (Irkin and Esmer 2015). Studies on the addition of EOs
to dairy products have shown their antimicrobial properties. These substances could
also be used in active packaging since they were successfully used in the products.
Treating cheese with natural herbs is known in Italy (Casoperuto, Marzolino,
Romano pepato, PiacentinuEnnese), Switzerland, France, Netherlands, Egypt,
Syria, Morocco, and Turkey. For example, black cumin seed oil showed antimicro-
bial activity against pathogenic bacteria in soft cheese, whereas cayenne and green
pepper demonstrated growth inhibition toward S. aureus in Egyptian Kareish cheese.
Moreover, extracts of garlic, lemon grass, cinnamon, sage, salvia, rosemary, thyme,
basil or oregano are able to inhibit the growth of L. monocytogenes in cheese (e.g.,
feta cheese, Iranian white cheese). Essential oils can be applied to packaging
materials to extend their shelf life and to overcome the problem of defining precise
quantity to be added to dairy products (Ritota and Manzi 2020).

6.5.1.4 Bacteriocins
Most of bacteriocins are produced by lactic acid bacteria (LAB); they are thermo-
stable, hypoallergenic, and degrade in human gastrointestinal tract. They are low-
molecular-weight peptides or proteins comprised of 30–60 amino acids (Jin 2017).
One of bacteriocins is nisin, which is heat-stable, nontoxic, and exhibits a wide
spectrum of antimicrobial activity, but also has a GRAS status. It is allowed for use
in a range of dairy products like pasteurized cheese, mini red Babybel cheese, ricotta
cheese, skimmed milk, soft cheese or BlatackeZlato cheese. Nisin can be
immobilized on the surface of traditionally used polymers such as polyamide and
polyethylene and in such have the ability to reduce LAB bacteria counts on, e.g.,
sliced cheese packed in MAP and stored at refrigerated conditions (Irkin and Esmer
2015). Nisin has shown to extend shelf life of raw and pasteurized milk stored at
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chilled conditions over a 4-day period and cheddar cheese over a 12-week period at
4 �C (Youssef et al. 2017).

6.5.2 Oxygen Scavengers

There are many dairy compounds that are susceptible to oxidative degradation such
as lipids, vitamins (A, D, E, and C), carotenoids, chlorophyll, and anthocyanins. The
process leads to quality deterioration and can take place at any point of the distribu-
tion chain. Usually in order to preserve dairy products from oxidation, preservatives
are being used. However, due to health awareness and seeking for products with
clean labels (as much natural as possible) by consumers, there is a growing necessity
for development of different solutions. Antioxidant active packaging can be an
alternative to traditionally used preservatives. These are packaging materials with
incorporated antioxidants like oxygen scavengers (e.g., TiO2, ferrous compounds
metallic salts) in a form of sachets or labels (Bastarrachea et al. 2015; Kuswandi and
Moradi 2019). Their action is based on release of antioxidant compound to food and
subsequently scavenging undesired substances (Jafarizadeh-Malmiri et al. 2019).
They can act either as migratory or nonmigratory antioxidants. Migratory antioxi-
dant active coatings are designed to release the antioxidant in a controlled way
during product’s shelf life. Nonmigratory active coatings act as scavengers (e.g.,
oxygen, free radicals, and transition metals) and they do not require direct food
contact as they can remove the undesired substances from the packaging headspace
altering the conditions inside the packaging and prolonging shelf life. An advantage
of nonmigratory active coating in comparison to migratory ones is that the active
agents can be applied in lower concentrations which do not alter sensory perception
of the product (Bastarrachea et al. 2015).

Active coatings can be an alternative to traditional cheese coatings in controlling
the growth of microorganisms, loss of cheese weight, and drying of rind resulting in
poor quality and economic losses (Youssef et al. 2017).

6.6 Intelligent Packaging for Dairy Products

Intelligent packaging (IP) solutions are developed to inform retailers and/or
consumers of the quality and safety of food. They can monitor the conditions of
the packed products and give information on temperature conditions in which the
product was kept within the supply chain or the integrity of the packaging. Among
IP, there are different indicators (time-temperature, gas/integrity, and freshness),
data carriers (RFID, barcodes), and sensors (gas, temperature, biosensors, and
nanosensors) (Davarcioglu 2017; Jafarizadeh-Malmiri et al. 2019; Tichoniuk et al.
2021). Intelligent packaging can be applied on the primary, secondary or even
tertiary (transport) packaging in a form of labels or tags depending on the level at
which the product and the conditions of its storage/transport in the supply chain are
to be monitored.
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Use of intelligent packaging can also help in reducing food waste as now much of
the food wasted is due to overdue “use by” date printed on each food packaging.
Retailers and consumers depend on that printed date and dispose of food when the
date has expired. In some cases, such food can be still safe and of good quality, but in
other it can be unconsumable even before the “use by” date, especially if there was
abuse of storing or transport conditions within the supply chain, the integrity of a
packaging was breached (Maskey et al. 2020).

6.6.1 Time-Temperature Indicators

Perishable food like dairy requires temperature control to minimize microbial growth
and prolong shelf life. In retail, dairy products are usually stored at 0–4 �C and
4–10 �C at home refrigerators. These conditions, however, do not inhibit the growth
of most fungi as they are psychrotrophic in general (Eshaghi et al. 2020). Tempera-
ture abuse can occur at any point in the dairy supply chain. That is why temperature
monitoring as a quality and safety factors is crucial.

Time-temperature indicators (TTIs) are easy to read devices that are able to show
full or partial temperature history of the packed product or it is thawing in case of
frozen dairy products like ice-cream. In dairy products, TTIs can also be used in
process control of pasteurization or high-temperature short-time pasteurization,
sterilization or UHT treatments of milk to ensure that the desired temperature of
the process was achieved. These indicators are based on several mechanisms such as
mechanical, chemical, electrochemical, enzymatic or microbial irreversible
reactions. Their response is visible usually in a color change or a color dye move-
ment indicating temperature abuse above a set threshold (Tichoniuk et al. 2021).

TTIs are commercially available and well known in the US, Asia, and Australia.
Examples with thermochromic ink are OnVu® or CoolVu® that can be used in time-
temperature monitoring of dairy products (Drago et al. 2020). Their principle is
based on an ink that is photosensitive. After activation with UV light, it is in a
colored state that gradually returns to its initial colorless state at a temperature-
dependent rate. It can be set at different length and temperature sensitivity by
controlling the type of photochromic compound and UV light activation time
(Taoukis 2010). Another example of an irreversible TTI label is Smart Dot®

(Evigence, Israel) presented in Fig. 6.5.
These labels are activated upon placement at a packaging and their color changes

gradually over time. This chemical reaction is irreversible and temperature-
dependent, the higher the temperature the color changes faster (it does not change
at all if kept frozen). Smart Dot® can be calibrated to match the shelf life of a given
product in the range from hours to months.
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6.6.2 Freshness Indicators

Freshness indicators can give information on the product’s quality as they are
designed to react with microbial growth metabolites like organic acids, glucose,
volatile nitrogen compounds, carbon dioxide, ethanol, biogenic amines, and sulfuric
compounds. They detect changes in pH or gas composition (Mirza Alizadeh et al.
2020).

Eshaghi et al. (2020) used a smart label containing beetroot color and multilayers
of polystyrene (PS) for milk freshness analysis. They determined the changing label
color by calculating label color number. At the beginning of the experiment, the label
was dark red and the visible color change was observed in the fifth day of the study.
The color started to fade slowly until it turned light brown after 7 days. During the
experiment, milk pH, acidity and total bacterial count (TC) were investigated. The
label responded to bacterial activity, and changing acidity in pasteurized milk during
refrigeration storage. They found a positive correlation between the label color
changes and TC, but also pH (Roohi et al. 2018).

Mimica (London, UK) offers a temperature-sensitive indicator for food freshness
(Fig. 6.6) which monitors the temperature conditions of a product. The label feels flat
in touch when the product is stored at desired temperature, but when there is a
temperature abuse it feels bumpy when swiping finger over it. This bumpy feel
indicates that the product is no longer good for consumption.

6.6.3 Integrity Indicators

Integrity indicators are used to support aseptic or modified atmosphere packaging
(MAP) to maintain their functionality. They can be in a form of labels, tablets or
printing on the inner side of the packaging. They can either detect an undesired
gaseous component in the packaging (headspace) present as a result of leakage or as
a volatile compound of the product spoilage. Integrity indicators change color giving

Fig. 6.5 Evigence Smart
Dot® label (Source: Image
provided by Evigence (2021))
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a visible response easy to read in contact with the target gaseous compound.
Unsealing of the packaging can lead to increase of oxygen concentration inside
the packaging and as such can be detected with the use of an Ageless Eye oxygen
indicator (Tichoniuk et al. 2021). Packed dairy products are susceptible to high
oxygen levels which can contribute to product spoilage, undesired oxidation of
lipids and micronutrients, growth of aerobic microbes, and also color, flavor, and
odor changes. Maintaining low oxygen concentration in the packaging is crucial in
MAP packaging. The above-mentioned Ageless Eye oxygen indicator is a colori-
metric sensor in a form of a pink tablet that changes color to blue in the presence of
oxygen (� 0.5%) (Mirza Alizadeh et al. 2020).

6.6.4 Data Carriers

Data carriers are used in commerce and improve the purchasing process, inventory
management, and traceability. According to Article 17 of the EU Regulation No
1935/2004, the traceability of materials and articles shall be ensured at all stages in
order to facilitate control, the recall of defective products, consumer information,
and the attribution of responsibility. Among traceability basic data are: producer’s
name and address, article number, and production date/identification of the product
(Mania et al. 2018b).

6.6.4.1 Graphic Codes
This type of intelligent packaging systems includes well-known GS1 identifiers
barcodes such as EAN-8, EAN-13 or code-128 (Fig. 6.7). The use of such graphic
codes creates a standardized global data format that is readable in a product’s life
cycle (Vigneshwaran et al. 2019). They can facilitate product tracking from farm to
fork.

Quick response (QR) codes (as presented in Fig. 6.8) are in some ways better or
more advanced than traditional barcodes, as they can store mode data and can be
readable by means of smartphones or computers (Tan and Ngan 2020). Those two

Fig. 6.6 Mimica freshness label (Source: Image provided by Mimica 2021)
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dimensional (2D) codes have the ability to store more data than barcodes of up to 1.1
kilobytes (Mirza Alizadeh et al. 2020).

QR codes can encode more data thanks to different modes such as numeric,
alphanumeric, binary, and kanji (Drago et al. 2020).

6.6.4.2 Radio Frequency Identification
Radio frequency identification (RFID) systems are an invisible reading mode in
which data are decoded without human interaction (Tan and Ngan 2020). They are
active tags that transfer data from a tag attached to a packaging to automatically track
and trace it as well as identify it (Kuswandi 2016). RFID technology within the
supply chain can improve inventory control, allow shelf life monitoring, and provide
information on the temperature history of the product. RFID tags can also change the
checkout method at the retail stores; because they do not require direct scanning of a
readable barcode by a scanner. They simply need to be in the vicinity of checkout
equipped with a RFID transducer. In the dairy sector, they are usually utilized to
provide complete traceability of products (Mirza Alizadeh et al. 2020). Commercial
applications of RFID solutions are brought by CAEN RFID (Viareggio, Italy) like an
Easy2Log (A927Z), Easy2Log (RT0005) or qLog Temperature (RT0012) tags

Barcode example
794623 0372511

Fig. 6.7 An example of a Code-128 barcode (left) and EAN-13 code (right) (Source: generated at
https://www.cognex.com/resources/interactive-tools/free-barcode-generator)

Fig. 6.8 Examples of OR codes (Source: own work)
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presented in Fig. 6.9. These tags can be applied in milk-based products. The A927Z
is a low-cost, semipassive RAIN RFID logger tag with a rugged enclosure. It allows
for temperature monitoring of perishable products. The tag can be used with standard
RAIN RFID readers as it is compatible with EPCGlobal C1G2 and ISO 18000-63
standards. It can operate in the presence of strong vibrations and can store up to 8000
samples that can be preset in intervals from 8 s to 18 h. Alarms can be defined to
control the temperature regime and when temperature is below or over a set
threshold, user is informed.

The Easy2Log (RT0005) RAIN RFID tag is similar to the previously mentioned
one. However, it can store up to 3958 samples and 16 temperature ranges with
independent threshold alarms can be defined by user. It is also able to calculate the
mean kinetic temperature thus enabling remaining shelf life configuration. The qLog
Temperature tag is also applicable in milk-based products. It can store up to 4096
samples and their intervals can range from 5 s to 18 h. It has a rugged enclosure like
the A927Z tag and can be used in air shipments. Moreover, it is equipped with an
NFC interface which enables consumers to get information on the conditions of the
product via smartphone (CAEN RFID n.d.).

6.6.4.3 Near-Field Communication
Near-field communication (NFC) is a technology that allows two NFC-enabled
devices to communicate when held in close distance (ca. 4 cm). This technology
evolved from radio frequency identification; here an NFC chip operates as one part
of a wireless link. Once it is activated by another chip, small amounts of data

Fig. 6.9 Examples of CAEN RFID tags: (a) Easy2Log - A927Z, (b) Easy2Log – RT0005, and (c)
qLog Temperature (Source: Image provided by CAEN RFID (n.d.))
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between the two devices can be transferred. It does not require parring to connect the
devices as it uses chips which are more power-efficient compared to other wireless
types of communication. NFC smart packaging can be used to provide customers
personalized experiences like with product information, promotional offers, how-to-
guides, videos, and reordering reminders available with a simple tap of a
smartphone. It can enhance brand loyalty as NFC tags are placed on each item,
because they are small. This type of packaging has grown in popularity especially
within the fast-moving consumer goods (FMCG). Yeo Valley Organic has
introduced connected packaging across all products as part of the new “Put Nature
First” brand platform. Consumers will be able to use their smartphones to scan the
“Moo-R” QR codes which can be found on over 100 million products, linking to its
“Yeokens” reward program, and bringing to life ongoing nature-led initiatives.
Customers will have access to specific product information, brand content, and
future promotions (AIPA 2020).

Maskey et al. (2020) designed a time-temperature history (TTH)-based wireless
food label with an NFC antenna. The obtained label could be seamlessly integrated
to the packaging. The label was designed by bridging a single Si-chip signal
controller and transponder onto a roll-to-roll (R2R) gravure-printed antenna and
thermistor. It was able to transfer logged temperature data to a smartphone using the
ISO/IEC 15693 protocol. Such intelligent communication devices can inform
retailers and/or consumers via smartphones of the product’s quality in real-time.

6.6.4.4 Blockchain Technology
Blockchain technology is a decentralized database that allows collecting and trans-
ferring information on the Internet network with peer-to-peer architecture. It is a
distributed register of operations that are not handled by a single centralized server,
but by computers connected together in a network. Information on these operations
is stored here in batches (blocks) which are linked together by cryptography to form
a blockchain. Blockchain is not governed by top-down authority and cannot be
controlled by anyone. On the other hand, it is most often open source, which means
that all its users have free access to it. More specifically, they can view the entire
history of operations, but at the same time cannot edit any related data. What is more,
every transaction that has been saved in the blockchain stays there forever. All these
make blockchain an effective and secure way to store and transmit a variety of
information.

This technology can be implemented to improve transparency and supply chain
traceability “from farm to fork”. In other words, it can enable access to information
like origins of raw materials, finished products, the different processes it underwent
thus ensuring food safety and quality. However, there are not many dedicated
applications and to lower costs companies try to take advantage of existing
integrated enterprise information systems like ERP. The most implemented trace-
ability solutions so far are RFID and barcodes which are used for example by
Walmart, TESCO, METRO Cach&Carry (Tan and Ngan 2020).
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6.6.5 Sensors

There is a growing consumer demand for ensuring the safety of food products. They
can only rely on their sensory evaluation and “use by” date to determine the quality
of a purchased food item. Smart packaging is therefore a kind of safety indicator and
determines/monitors the quality of the product. Sensors are more sophisticated
devices than indicators as they are made of a receptor and a transducer. They should
be reversible in their action to constantly (in real-time) monitor changes within the
packaging headspace or the product itself. Sensors are able to detect, locate or
quantify target substance and describe its physical or chemical characteristics
(Park et al. 2015; Pereda et al. 2018; Tichoniuk et al. 2021). They can detect gases
released during spoiling of food, monitor pH, temperature or color of the packed
food (Kuswandi 2016; Basavegowda et al. 2020). Berna (2010) mentioned SnO2 and
other metal oxide semiconductor sensors to detect adulteration, contamination or
off-flavor in milk and dairy products. Such sensors used in electronic noses that
detect volatile compounds are also capable of determining aging/ripening or cheese
type, but also origin of milk or caseinates. Moreover, sensors can be an alternative to
traditional methods such as chromatographic techniques coupled with for example,
mass spectrometry (expensive, time- consuming, and labor intensive) (Campanella
and Tomassetti 2019).

6.6.5.1 Nanosensors
This type of sensors can be used to detect microbial contaminants, toxins, food-
borne pathogenic bacteria, and facilitate food testing. Nanosensors have the advan-
tage over traditional methods that they can rapidly detect analytes like microbes,
contaminants within minutes up to days. They can inform consumers and retailers of
the product’s temperature, light or oxygen exposure history (Jafarizadeh-Malmiri
et al. 2019; Basavegowda et al. 2020). In nanosensors, different particles in nano-
scale can be used such as carbon tubes, nanoshells, dendrimers, quantum dots,
nanorods, liposomes, and others. They are also able to detect allergens in dairy
products (optical nanosensors). In addition, these sensors are capable of detecting
gas content (oxygen, carbon dioxide) in the packaging headspace in a noninvasive
and continuous manner, which is very important in MAP packaging systems to
ensure packaging integrity (Kabariya and Ramani 2017).

6.6.5.2 Biosensors
First biosensors were designed in 1950s and since then they have been developed
into more accurate and rapid solutions for monitoring food quality and safety. Their
performance is based on their sensitivity, reproducibility, portability, high noise
ratio, appropriate storage conditions, response time, and ease of use (Kabariya and
Ramani 2017). Depending on the receptors used, there can be:

• Immunosensors
• DNA sensors
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• Microbial sensors
• Enzymatic sensors (Chauhan et al. 2019)

They are comprised of protein, enzymes, oligonucleotide, cells or tissues that are
used to generate a particular signal toward the objective analyte (Kabariya and
Ramani 2017).

In dairy products like milk or cheese to detect pathogenic microorganism, a
nanocomposite-associated smartphone-based immunosensor (pathogen—
S. enteritidis) and UCNP-conjugated antibody biosensor (pathogens—E. coli,
S. aureus) were studied. Moreover, to detect toxins in skimmed milk (botulinum
neurotoxin A), a graphene oxide-based FRET biosensor and botulinum neurotoxin
in milk and a graphene nanocomposite-based impedimetric immunosensor were
investigated. There is also a commercially available sensor like Assurance® (Neogen
Corp., USA) can detect enterohemorrhagic E. coli (EHEC) and L. monocytogenes in
liquid milk (Chauhan et al. 2019).

Commercially available biosensor assay kit for determination of lactose levels in
lactose-free or low-lactose dairy products is LactoSens®(DirectSens, Austria)
shown in Fig. 6.10.

It consists of disposable test strips with an immobilized enzyme which oxidizes
lactose in the sample and electrons are detected amperometrically by the detector as
shown in Fig. 6.11 (Halbmayr-Jech et al. 2021).

Moreover, each strip has a QR label for sample tracking and lot-specific informa-
tion. It is simple in its operation and requires only 1 mL of a liquid product sample or
a homogenized solid sample and a portion (1 mL) of a LactoSens Buffer. Then the
Reader is to be connected to a computer and a dedicated software changes the

Fig. 6.10 LactoSens® biosensor assay kit for lactose detection in dairy products (Source: Image
provided by DirectSens (2021))
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electrical signal into a lactose concentration (based on the specified calibration
curve) (Fig. 6.12) (Halbmayr-Jech et al. 2021).

LactoSens® was validated according to AOAC Standard Method Performance
Requirements (SMPR®) 2018.009 and the method was certified by NordVal in 2018.
This is a rapid and selective method for determination of lactose in dairy products
and products with dairy ingredients (Halbmayr-Jech et al. 2021).

6.7 Fraud in the Dairy Sector

Nowadays there can be observed two challenges in the dairy sector such as
adulterations and counterfeit products and the second one being increasing the use
of blockchain technology and traceability (Tan and Ngan 2020). Milk adulterations
can take different forms such as addition of whey, melamine, starch, water, chlorine,
formalin or mixing milk from different species. Moreover nondeclared substances
can be added to milk and dairy products (e.g., urea, sodium bicarbonate,

Fig. 6.11 LactoSens® mode of action (Source: Image provided by DirectSens (2021))

Dilute milk product with
equal amount of
LactoSens®R Buffer

Biffer
1+1
Milk

Connect and turn on
LactoSens®R
Reader

Insert sensor Result is displayed
in 1 min

<1 min

Add 100 L sample

Fig. 6.12 LactoSens® operating procedurę step-by-step (Source: Image provided by DirectSens
(2021))
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dicyandiamide) or mislabeling of geographical origin or as an organic food (Sharma
et al. 2019; Hassoun et al. 2020).

Improved traceability and security (fraud control) of products, especially food
products can be obtained through the use of global standard like GS1. The widely
known and recognizable EAN-13 barcodes and the accompanying GTIN-13
numeric codes allow for better traceability of products in the supply chain and
verification of their authenticity. The range of use covers 150 countries and about
two million companies in the world. Each manufacturer has the rights to a specific
GTIN-13 with which they can legally code their products (their brand). Unfortu-
nately, with the growing popularity of e-commerce, the theft of these codes and
impersonation of other companies under existing brands have increased. It is,
however, possible to be picked up by GS1 and even taken to court. Therefore,
from producers’ perspective, better traceability allows for quicker response within
the supply chain and products recall, but also fraud control enables maintaining the
desired brand image, credibility in the eyes of consumers, and their safety. From
consumers’ point of view, those solutions/standards facilitate retail, especially in
self-service stores and/or with self-service checkouts. These factors have become
increasingly important in recent years (Mania et al. 2018b; Roohi et al. 2018).
Traceability is crucial among other factors in dairy sector as it supports product
quality and tacking in the entire life cycle of the product providing information even
on rearing of milking cows. However, there was a necessity to develop a regional
standard namely a Chinese Sensible Code that is adjusted to Chinese character
environment (Li et al. 2015).

Also NFC tags provide product unique IDs that prevent counterfeiting and can
support authentication of the product both by brand owner and consumer. Intelligent
packaging is often utilized as tracking devices to ensure food security and avoid fake
products (Davarcioglu 2017).

Development of tamper-evident packaging solutions is gaining speed. They are
often additional packaging materials like special bottle liners or closures or changing
color upon opening heat seals (Smirnova et al. 2020).

Among most counterfeited foods is milk, just after olive oil. This usually takes
the form composition and quality falsification. Most common is diluting milk with
water, milk whey, and addition of milk substitutes, preservatives, and N-containing
substances. Milk fat is often replaced by cheaper plant analogs (Smirnova et al.
2020). In analysis of dairy products for adulterants like starch, urea, hydrogen
peroxide, neutralizer, detergents, boric acid, melamine, mycotoxins or bacteria,
different nanosensors can be used. Traditional methods are time-consuming, expen-
sive, and require skilled personnel to conduct them. It is crucial to analyze the
presence and amounts of those adulterants in dairy products and compare those
concentrations with limits set by governmental food authorities around the world
(Berna 2010; Kabariya and Ramani 2017). Examples of adulterants detected by
means of nanosensors are presented in Table 6.3.

One of illegally added into dairy products substance is melamine which increases
protein levels in the product. It is a small organic compound that is difficult to
determine by a standard Kjeldahl method. In human bodies, melamine forms
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insoluble melamine-cyanurate crystals in their kidneys which can lead to kidney
damage or death. There was a melamine scandal in 2008 in China as it was found in
milk and lead to several infant deaths and thousands suffered from kidney failures
(Yang et al. 2018; Sharma et al. 2019; Shellaiah and Sun 2019; Montgomery et al.
2020). Melamine in raw milk can be detected by dopamine-stabilized silver
nanoparticles as a colorimetric reader. It is a one-step assay that is simple and
rapid, but also of high sensitivity (Poonia 2019). Other nanomaterial-based mela-
mine detectors like quantum dots, nanocrystals, nanorods, and nanotubes were
reviewed by Shellaiah and Sun (2019).

As an example of product authentication, it is worth mentioning cases of
counterfeiting Mozarella di Bufala Campana Protected Designation of Origin.
Novel analytical methods have been proposed to differentiate milk and cheese
product from Protected Designation Area from those produced outside of it
(Hassoun et al. 2020).

Despite development of novel adulterations detection methods, the battle against
counterfeiting of milk and dairy products is still a challenge. One of the reasons is
that there are cases where it is difficult to define the type of fraud or detect it. Aiding
the monitoring and assessment of contamination issues are various country
regulations, governing bodies, and companies that run their own tests. There are
also databases that gather and provide information on food safety like in the EU
Rapid Alert System for Food and Feed (RASFF) of Fera’sHorizonScan or the EU
Food Frau Network (FFN) (Montgomery et al. 2020).

Table 6.3 Adulterants and nanosensors used to detect them in dairy products

Dairy product
adulterant Nanosensor Detection tool/technique

Melamine Gold nanoparticle
Water-soluble CdTe quantum dots
Single-wall carbon nanotube

Colorimetric probe
Standard colorimetric card
Surface-enhanced Raman
spectroscopy
Fluorescence probe
Electrochemical luminescence

Bacterial pathogens
Salmonella
E. coli O157:H7
Staphylococcal
enterotoxin B

Carbon nanotubes
Magnetic nanoparticles and TiO2

nanocrystals
Oligonucleotide-functionalized Au
Gold nanoparticles

Electrochemical sensor
Optical nanocrystal probes
Piezoelectric biosensor
Chemiluminescence

Toxins:
Brevotoxins
Aflatoxin
Aflatoxin B1
Mycotoxin
Ochratoxin A

Au NP-PAADs
Functionalized-gold nanoparticles
Silver core and gold shell
Nanostructured zinc oxide
Single-walled carbon nanotubes

Electrochemical
immunosensor
immunoelectrode
immunodipstick assay
indium-tin-oxide glass plate
Fluorescent aptasensor

Source: Based on (Kabariya and Ramani 2017)
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6.8 Conclusions

Food waste and losses can occur at any point in the supply chain especially within
perishable goods like dairy products. Millions of tons of food waste can be avoided
through the use of proper packaging. They no longer simply protect the product, but
also can prolong its shelf life and ensure customers of the product’s quality, safety or
integrity. The use of active packaging systems offers a variety of solutions
supporting shelf life and safety. On the other hand, intelligent packaging improves
product’s traceability and provides much crucial information on the product’s
conditions or possible adulterations. Novel edible coatings allow for improved
protection of dairy products, can also act as active compounds or nutrients carriers
with controlled release. Moreover, they can be an alternative to plastic packaging
and help minimize the use of petroleum-based packaging materials. Those novel
technologies enable producers to adapt to the constantly changing requirements on
the dairy market. In addition, they can support inventory and supply chain manage-
ment, enhance traceability, as well as be environmentally friendly and contribute to
reducing food waste.

Innovations on the food packaging market and in the area of dairy products are
dictated by both the changing and constantly growing requirements of consumers,
market participants, as well as economic and environmental aspects. Growing
consumer awareness of the quality, safety, and health benefits of dairy products
drives innovation in this market segment. In turn, to meet these requirements and to
extend the shelf life of products, ensure their authenticity, and improve logistics
processes, appropriate packaging is necessary. Packaging innovation goes along
with product development and is part of the fourth industrial revolution (Industry
4.0). Novel packaging materials and solutions add value in the food supply chain. In
addition, it can help to reduce food waste and economic losses.
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Functional Packaging Materials for Fishery
Products Applications 7
C. O. Mohan, S. Remya, K. R. Sreelakshmi, and C. N. Ravishankar

Abstract

Demand for fishery products is on the rise as it is regarded as health food due to
their easily digestible protein with all the essential amino acids, essential fatty
acids, vitamins and minerals in good proportion. However, they are also highly
perishable due to their intrinsic properties apart from other external factors which
affect their quality. Suitable processing and storage will enhance the eating
quality of fish for an extended period. Processing methods adopted to preserve
the quality of fishery products have to be appropriately supplemented with the
selection of better packaging materials. Conventional packaging materials used
for food packaging offer limited advantages. Apart from this, the petroleum-
based packaging materials pose environmental problems if not properly managed.
As a result, the demand for biodegradable packaging materials is increasing
worldwide. Biomaterials from the aquatic origin are gaining increased attention
in developing biodegradable packaging materials, especially with certain func-
tionality. This chapter gives a brief note on the functional packaging materials
like oxygen scavenging film, fish freshness indicating film, thermochromatic
indicating film, antimicrobial film, antioxidant film, pathogen indicating film,
off-odour scalping, flavour emitting films, etc.
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7.1 Introduction

The demand for very good quality fresh and minimally processed products is on the
rise. Consumers do not want processing techniques adopted by the industry to affect
both the nutritional and characteristic quality of the product. This has led to the
development of minimal processing or novel food processing technologies which
minimize the changes after processing and storage. Apart from processing, wide-
spread awareness and advancements in hygienic handling, packaging and preserva-
tion have improved the quality of food products. The aim of consumer is to get best
quality product for the price paid and at the same time food manufacturers strive to
supply quality products with sustainable quality for an affordable price. Of the
variety of options available for food, fish and fishery products have special impor-
tance. Historically, fish has long been an important part of human diets, and
increasingly a major source of economic value. Globally, fish accounted 6.7% of
all protein consumed by humans, as well as offering a rich source of omega-3 fatty
acids, particularly EPA and DHA, vitamins, calcium, zinc and iron. There is a great
demand for fish and shellfishes in international market due to its proven health
benefits. Fish business not only provides foreign exchange it also helps in ensuring
nutritious food, employment to millions of people, many of whom are below the
poverty line. As per FAO (2018), the world fish production in 2016 has reached
171 million tonnes and 88% of this was used for direct human consumption. Of the
total fish produced, aquaculture represented 47%. Global sale value of fisheries in
2016 was estimated at US$ 362 billion of which US$ 232 billion was the contribu-
tion from aquaculture production. The value of global fish exports in 2017 was US$
152 billion, up from $8 billion in 1976 and 54% of this was originating from
developing countries, indicating the contribution of seafood export to the building
of nations. Nearly 57 million people are engaged in the primary fish production
sector, a third of them in aquaculture. Of all the global merchandise trade, fishery
products accounted for one per cent in terms of value, representing more than 9% of
total agricultural exports. Export of fishery product is one of the major foreign
exchange earners in developing countries which accounted to over US$ 80 billion
in 2017, providing higher net trade revenues than meat, tobacco, rice and sugar
combined. The per capita consumption during 2016 reached 20.3 kg and is expected
to increase further. On an average, fish provides nearly 6.7% of all protein consumed
by human beings. These indicate there is an ever-increasing demand for fish across
the countries, which should be met by increasing the production.

Due to ever-increasing demand for fish, global requirement is increasing steadily.
From the available data, it is observed that both fish production as well as fish
consumption increased from 1975. Till 1990s, capture fisheries was the major
contributor and later, the importance of aquaculture increased resulting in sizeable
contribution to total production. As the years pass, the fish consumption level is also
increasing. Per capita consumption was 9 kg in 1961 which increased to 17.2 kg in
2008 and further increased to 20.5 kg/year in 2018 (FAO 2020). Considering a stable
consumption at 2008 level, the fish requirement estimated as nearly 140 and 152 mil-
lion tonnes by 2025 and 2050, respectively. However, as the consumption is not
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stable and it is increasing steadily, the additional demand considering the rate of
increase in consumption between 1975 and 2008 will be 164 and 232 million tonnes
by 2025 and 2050, respectively. Meeting this huge demand is a herculin task, which
creates huge pressure on both capture production as well as on aquaculture. As it is
very important to increase the production of fish to meet the global demand, it is also
equally important for its proper utilization without wasting by adopting responsible
handling, advanced processing and packaging to reduce the post-harvest loss. It is
estimated that, nearly 18–20% of global fish production is wasted as post-harvest
loss resulting in huge loss of valuable nutrient-rich food commodity. This also
affects the economy of the country negatively. For instance, in India alone, very
huge economic loss is estimated annually, which is very huge loss to the economy as
well as loss of nutritive food commodity. Proper handling of food including fish
from its primary production centres and processing them into suitable forms, pack-
aging and storage at desirable temperature will help in reducing the post-harvest
losses. Proper handling for fishery products includes segregation of catch based on
species and size. Evisceration of large size fishes and icing of fishes with appropriate
fish to ice ratio is the first step immediately after catching fish for maintaining better
quality. Avoiding more than 3 layers of stacking of fish and ice to avoid damage to
fishes in the bottom layer is another good handling practice on board the fishing
vessel. Upon arrival at landing centres, care should be taken to unload as early as
possible. They should be placed on the raised platform/surface/floor which can be
easily cleaned and chlorinated after the auction is over. Processing factories should
receive only good quality fish which have maintained the minimum temperature of
<4 �C. Once it is processed in suitable form viz., chilling, refrigerated, freezing,
curing and drying, thermal processing, smoking, freeze-drying or developing value-
added products, they have to be properly packed and stored at the proper tempera-
ture. Packaging material should be chosen wisely so that it will complement to the
processed food product to extend the eating quality maintaining all the desirable
quality.

Food packaging in simple words is wrapping or covering or placing in sealable
materials to give protection from its external environment to preserve the quality for
an extended duration or till it is utilized by consumers. Although all the activities
including processing with advanced techniques are practised with utmost care and if
the packaging techniques and packaging materials are not selected suitably it may
not protect the food as it is expected. Hence, it assumes great importance to offer the
required characteristics to the food till the end of shelf life. Proper packaging not
only protects the food from chemical changes during storage, microbial contamina-
tion arising from its external environment but also prevents physical damage from
the wear and tear during handling, transportation and storage. If the products are not
packed properly, the packaging process can become a source of contamination. The
main purpose of packaging is to provide protection from biological hazards
(pathogens and spoilage organisms), pests, physical damage (shock or vibrations),
should act as barrier to external gases, moisture and light, and should provide
protection during storage, handing and distribution and transportation. Packaging
also provides information about the product contained with ingredients, nutritional
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information, allergens if any, manufacturer details and also manufactured date. The
concept of packaging is also fast changing as the modern packaging is also intended
to provide security against tampering, counterfeit by providing authentic seals and
helps in tracking and tracing the product.

Traditionally, food packaging is aimed for protection, communication, conve-
nience and containment (Paine 1991; Robertson 2006). Packaging material intended
to be used for food package should be able to withstand the internal pressure as in the
case of vacuum packaging and modified atmosphere packaging, should be able to
withstand the processing conditions like high temperature and pressure as in the case
of thermal processing, should be able to withstand storage conditions like normal
room temperature, chilled or refrigerated temperature, frozen temperature or ele-
vated temperature as desired to maintain its quality and shelf life, should withstand
process conditions and machinability. External factors which are considered for
protecting food include but not limited to conditions like heat, light, presence or
absence of moisture, pressure, gases, microbial contamination, etc. Convenience and
time-saving attributes and different attractive shape and size of package to contain
the products are other advantages offered by the packaging materials (Yam et al.
2005; Marsh and Bugusu 2007). The inertness of the packaging material was the key
safety objective for traditional packaging materials.

7.2 Overview of Food Packaging Industry

Packaging industry is growing rapidly due to its ever-increasing importance. Glob-
ally packaging industry accounts to 700 billion US$ excluding turn-out for
machineries. The United States of America is the major market for packaging
materials accounting nearly 24% of the global market. European Union is the second
largest market and Germany, France, Italy and UK dominate packaging industry in
Europe. Among the different packaging materials, paper and board lead the sector
with 36% of the world market followed by petroleum-based packaging materials.
World food packaging market size is to the tune of over 300 billion US$ in 2019 and
is expected to increase to more than 460 billion US$ by 2027 (https://www.
fortunebusinessinsights.com/industry-reports/food-packaging-market-101941).
Glass, metal, paper & paperboard, wood and plastic packaging materials are widely
used for a variety of food sectors like fruits and vegetables, meat, poultry and
seafood, dairy products, bakery and confectionery, sauces, dressings, condiments,
etc. Changing lifestyle, convenience, increasing purchase power, increased percent-
age of working women and crave for spending more valuable time with the family
are the factors influencing the growth of packaged food and beverages apart from
extended and stable shelf-life with improved safety and quality. Rising consumer
awareness and demand for processed food is another factor influencing the growth.
Multinational giants taking rapid strides in the food and beverages industry is
another important factor influencing the growth of food packaging industry. As a
result, the per capita consumption of packaging food is worth US$ 400, 260, 90, 46
and 9 for the USA, Europe, Latin America, Asia and India, respectively. Being one
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of the fastest-growing industries, it is expected that the food packaging industry will
grow to new heights.

7.3 Selection of Packaging Material

Appropriate packaging material should be chosen based on the composition of the
food. The use of proper packaging will ensure the safety and durability of the
product during its entire shelf life. Important aspects to be considered while selecting
packaging materials are its moisture content, sensitiveness to oxygen, acidic or
alkaline, alcohol content and fat content. A container that is appropriate for one
type of food may not be suitable for another. It is very important to choose the proper
packaging for the food intended to pack. The packaging materials/packages used in
fish industry are both modern as well as traditional types, ranging from bamboo
baskets, jute bags, leaf mats to corrugated fibre-board boxes, duplex board cartons,
metal containers of aluminium and tinplate, plastic films and their laminates,
thermoformed trays, polypropylene/high-density polythene crates, expanded poly-
styrene insulated boxes, glass bottles, etc. Each packaging material has its own
merits and demerits. Paper & paperboards are very common packaging materials
used for wide applications. These are made using pulp extracted from wood and
other non-wood sources like straw, bamboos, etc. As wood pulp is very easily
accessible, and commonly available its use is on the rise. Due to its natural and
low price, it is one of the preferred packaging materials. They are suitable for small-
scale, large-scale, retail and bulk packaging. All kinds of foods can be packed using
paper and paperboard after slight modifications. They can be used as bags, pouches,
wrapping, boxes, cartons, tetra packs, folding cartons, etc. The presence of cellulose
fibres provides them good rigidity and high shock resistance. They are also light in
weight, cheap and are widely available. However, they need to be laminated for
packing foods with moisture content. They also need external protection during
transportation to protect from damage. Apart from this, they have to be stored in
proper facility to prevent damage by rodents and insects. Another important aspect to
be considered is the selection of safe wood for the manufacturing of paper and
paperboard which comes in contact with food directly. It is common practice to use
chemical preservatives to protect wood. Care should be taken to select the preserva-
tive free wood. Due to its sustainability nature, the paperboard will be the most
prevalent and attractive packaging material in the food industry in future due to
increased investments leading to innovations in packaging design and digital
printing.
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Glass is commonly used as packaging material for a variety of foods due to its
inertness. Glass containers are manufactured by heating the mixtures like silica
(sand), calcium carbonate in the presence of sodium carbonate (melting agent) and
alumina (hardner) at very high temperatures to melt the mixture, cast them into the
mould to get suitable shape and size and finally cooling them (Keleş 1998; Marsh
and Bugusu 2007). Surface coating and oiling is done during the production process
to prevent the abrasion of the glass surface (Aday 2014). Normally soda-lime glass is
used in the packaging industry for producing transparent, transluscent or coloured
glasses. Also, to mask the colour emerging from minute quantity of impurities like
iron and sulphur compounds especially during the manufacturing of colourless glass,
nickel and cobalt are added (Keleş 1998). Glass is one of the highly preferred
materials for food packaging due to its inertness, durable, transparent, touch as it
withstands high temperature and pressure, impermeable to gas, odour, liquids and
water vapour (MEB 2011). It has a very smooth and shiny surface, it will neither
corrode nor degrade or erode over time. However, they are not devoid of drawbacks.
Major drawback is its heaviness and very fragile leading to break. It requires extra
care while transporting and distribution and hence are more costly than petroleum-
based packaging materials. Being transparent, it allows light to pass through the
glass resulting in light-induced oxidation and discolouration.

Metal is another important material for packaging applications. Unlike glass,
metals have free and mobile electrons that absorb light energy. That is why they
cannot be transparent and translucent as in the case of glass. There is a long history of
packing food products in metal containers. Mainly tin plate or aluminium or stainless
steel coated with the food-grade lacquer material is commonly used. Among these,
tin-plate containers were very commonly used for many food applications. Tin plate
was used to make containers for food over 120 years. Tin-plate containers are very
attractive and have an appealing golden colour. Tin can is made up of 98% steel and
2% tin coated on both the sides of container differentially. The surface coming in
contact with the food material is coated thicker layer of tin. Normally low carbon
steel is used in the manufacturing of this type of can. They are light in weight, rigid,
strong, corrosion-resistant and easy to handle. They are comparatively easy to
fabricate and offer more shelf life to food products compared to other metal
containers. The major drawback of this container is its limitation for packing acidic
products. In the earlier days, 3-piece cans were used soldering with a lead:tin ratio of
98:2 percentage. Some lead from this solder may migrate to food depending on the
type of product packed and on the amount of solder exposed. Apart from this, lead
contamination may also originate as impurity from the tin coating. Due to its proven
ill effects, regulatory agencies have stipulated a maximum level of 2 ppm for lead in
canned food products. Apart from this, tin may also permeate into the food and
higher levels of tin will implicate in the gastro-intestinal disturbance. A level of up to
250 ppm is generally permitted by regulatory authorities in canned foods. Invention
of 2-piece, solder-free cans reduced the problem of lead in canned foods. Canned
shrimp products from India were very well appreciated from many importing
countries and this industry was flourishing until 1980s. Later on the canned seafood
industry collapsed as it could not compete with the neighbouring countries in terms
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of its pricing. As India does not have tin resources, it has to import tin-plate for
manufacturing cans and hence it became costlier. This has resulted in search for
other alternative metal cans. Aluminium is one such metal used as an alternative to
tin-plate cans. In India and also in many parts of the world, aluminium is very
abundantly available and is light in weight. It is recognized as generally regarded as
safe (GRAS) material by the US FDA. The use of 100% aluminium for
manufacturing cans or containers results in weak material. To overcome this, small
amount of magnesium, manganese, iron, zinc, copper and silicon is added while
manufacturing. Aluminium-based containers can be used as cans for meat and fishes,
beverages and as bottle tops or closures. Aluminium is easy to fabricate and one
cannot make out the corrosion due to its colourless character. Metallic taste is not
imparted when aluminium containers are used as compared to tin cans. Requirement
of very high energy for the production, tendency to bleach with some pigmented
foods and impossibility of soldering are the drawbacks of this container. Apart from
this, aluminium is implicated in Alzheimer’s disease up on chronic exposure from
water and food. World Health Organization (WHO) has stipulated the limit of
1 mg kg�1 body weight per day. Tin-free steel is another metal container used for
a wide range of food products like fruits, vegetables, meat and seafood. TFS cans are
made by electrolytic coating of a thin layer of chromium and chromium oxide on the
steel base material. The presence of chromium helps in preventing rust formation
and corrosion. It can withstand very high internal pressure and is suitable for
attractive printing. The major problem with this container is it cannot be recycled
or reused and is not suitable for soldering or welding.

Petroleum-based plastic packaging material is another widespread material used
for many applications including food packing. Plastic is the material that is obtained
when the bonds between carbon and hydrogen, oxygen, nitrogen and other organic
or inorganic elements are broken from their simple structured molecule, known as
‘monomer’ and formed into the long and chained structure, known as ‘polymers’
(Durusoy and Karababa 2011; MEB 2011). With the help of polymer science and
engineering, many variety of plastics with varying characteristics can be
manufactured so that almost all the food products with varying processing, storage
and transportation conditions can be packed with plastic materials. Their light-
weight, transparent/translucent with low or high gas and moisture barrier properties,
requiring less storage space and easy to use, seal, open and dispose makes one of the
most preferred packaging materials for food products (Kızılırmak 1997). They can
be made either as thin films or as rigid containers depending on the requirements.
Different packaging materials with their code and applications are given in
Table 7.1. Codes from 1 to 7 are given for easy identification during its recycling.
Different types of packaging material either single-layered or multi-layered packag-
ing materials have to be selected appropriately depending on the category of food
products which is given in Table 7.2. Among the different packaging materials, not
all the materials are suitable for direct food contact application. The use of plastics
and plastic-based materials are increasing across the food industry including
fisheries.
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During the manufacturing of plastic packaging materials, along with basic poly-
mer materials, other non-polymeric compounds are added either inherent or deliber-
ately to achieve desired properties. These are categorized into three different classes
viz., polymerization residues (residual monomers, catalyst remnants, polymerization

Table 7.1 Different packaging materials and their applications

Code Name Applications

Polyethylene
terephthalate

Water and soft drink bottles

High-density
polyethylene

Bottles for milk, juice, water, yoghurt, cosmetics, shampoo,
dish and laundry detergent, bleach bottles, ice boxes

Polyvinyl
chloride (PVC)

Bottles packaging sheet, pipes and fittings from hard PVC,
wire and cable insulation, film and sheet, floor coverings
synthetic leather products, coatings, blood bags, medical
tubing etc. from soft PVC

Low-density
polyethylene

Frozen food packaging and for squeezable bottles

Polypropylene Retortable pouches

Polystyrene Lids, cups, bottles and trays, food service applications, meat
trays, egg cartons

Other Multi-layer combination, plastic baby bottles, clear plastic
“sippy” cups, sports water bottles, metal food can liners,
some juice and ketchup containers, compact discs, cell
phones, computers

172 C. O. Mohan et al.



solvent, etc.); processing aids (plasticizers, stabilizers, antioxidants, slip agents,
lubricants, antistatic agents, etc.) and end-use additives (antioxidants, brighteners,
blowing agents, mould release agents, colourants, UV stabilizers, etc.). Among
these, the polymerization residues compounds are unavoidable whereas processing
aids and end-use additives are deliberately added to the polymer either during
manufacture or subsequently to achieve the desired end properties of the finished
plastic material. If we are not adding these additives, desirable properties of the
plastic packaging materials will not be noticed in the end product. Polymers by their
nature like very high molecular weight and low solubility in both aqueous and fatty
systems may make them inert. The other additives, which are non-polymeric in
nature, are lower molecular weight which may leach out from these plastic packag-
ing materials and dissolve in the food system. These may pose threat to human health
due to their risk factor and the awareness in this matter has led the national and
international regulatory authorities in the formation of guidelines for the proper use
of plastics for food packaging application. Such guidelines are necessary to restrict

Table 7.2 Selection of packaging materials depending on the processing method for different food
category

Food categories Packaging material

Fresh chilled HDPE, PP, HM-HDPE

Fresh frozen Laminates or co-extruded pouches, LDPE, BOPP

Dried HDPE woven gusseted sack, laminates

MAP Nylon/suryln laminates, PVC moulded trays laminated with
polyethylene, polyester/LDPE film, EVOH

Thermal processed Metal cans, retort pouches, HIPP trays

Surimi LDPE/LLDPE/HMHDPE with waxed duplex carton & 5/7 ply CFB

Sausage PVDC or natural casings

Breaded & battered
products

Thermoformed trays of PVC, HIPP & HDPE

Pickles Glass bottles or PEST/LDPE-HDPE co-extruded film

Table 7.3 Limits of monomer and heavy metals in plastics

Country Monomer Heavy metals

BIS-India VCM in PVC-1 ppm; in food migration-10 ppb,
styrene in polystyrene-2000 ppm

Lead 1 ppm and others
0.01 ppm in PVC

EEC-
Europe

VCM in PVC-1 ppm Nil

EPF-UK VCM in PVC-1 ppm, styrene in PS-5000 ppm Nil

Japan VCM in PVC-1 ppm, volatile component in
polystyrene-5000 ppm
Vinylidine chloride in PVDC-6 ppm,
Caprolactum in Nylon-15 ppm

1. Lead, Cadmium & Barium
100 ppm each in PVDC
2. 0.05 ppm antimony &
0.1 ppm germanium in PET

FDA-
USA

VCM not specified styrene in PS-10000 ppm,
acrylonitrile in ABS plastics-11 ppm

Nil

VCM Vinylchloride Monomer, PVC Polyvinylchloride, PVDC Polyvinylidenechloride
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the indiscriminate use or abuse of plastics in food packaging. The residual monomer
content and heavy metal content in different plastics specified by different countries
and limits of heavy metals in colours used are presented in Tables 7.3 and 7.4
respectively. The other regulations on food packaging materials comprise of
regulations for adjuvants (antioxidants, colourants, plasticizers, etc.) used in food
packaging materials. Only permitted materials within their allowable limits can be
used in the manufacturing of plastic packaging material.

Packaging protects, but it is also a potential source of risk. Plastics, paper,
cardboard, and other packaging materials that come into contact with the food can
react with it and affect its safety. The plastic packaging material may contain
impurities such as leftover monomer residues, additives, stabilizers, odorous
adjuvants, colorants and antioxidants. At different stages of converting, preparing
and storing, chemical substances may migrate to the food. If the packaging is made
from wrong materials which include printing substrates like, inks, varnishes and all
the auxiliaries used in the printing process, it may pose a risk to the packed product,
thus to human health. In paper, the group of potential contaminants include
1,2-benzisothiazoline-3-one (BIT); 2-(thiocyanomethylthio) benzothiazole
(TCMTBT); 2,4,5,6-tetrachloro-isophthalonitrile (TPN); 2,4,6-trichlorophenol
(TCP); pentachlorophenol (PCP); 4,40-bis (dimethylamino)-benzophenone; 4,40-bis
(diethylamino)benzophenone; 4-(dimethylamino) benzophenone (DMAB) and
bisphenol A (BPA), which in chlorinated form (BPAs) may be found in effluent
from wastepaper processing plants. Sometimes even slimicides and fungicides used
in both virgin and recycled paper may pose risk to consumers. Pentachlorophenol is
used for wood conservation, therefore if the conserved wood or slimicides
containing this substance are used in paper production there is a risk of contamina-
tion of packed food. Leaching of all these chemicals from packaging material into
food affects the quality of food and increases the risk to consumer. Hence the
materials coming in contact with food product need to comply with strict regulations
in many countries. It is the manufacturer’s sole responsibility to deliver safe pack-
aging materials which comply with all legal requirements. Due to this as well as due
to the impact of these packaging materials on the environment and biota after
disposal, there is an increased priority worldwide for the development of biodegrad-
able packaging material which will not impact any health risk to consumers.

Table 7.4 Limits of heavy
metals in colours used in
plastic manufacture

Heavy metals Limit (ppm)

Lead 0.01

Arsenic 0.005

Mercury 0.005

Cadmium 0.20

Selenium 0.20

Barium 0.01
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7.4 Biodegradable Packaging Materials

Biodegradable packaging materials are the materials derived from natural biological
materials. This can be either plant- or animal-based packaging materials. The
research interest on the development of biodegradable packaging material is on the
rise constantly from 2000 onwards as indicated from the publications (Fig. 7.1). In
2000, the publications were only 1120 which have crossed 11,000 in 2020. The
growing interest is basically due to its eco-friendly, sustainable nature and will not
create any health or environmental related issues. These biodegradable packaging
materials can be either protein-based or carbohydrate-based materials in addition to a
plasticizer. They can be in the form of gels, film, bag and box. As the biodegradable
packaging materials are made using eco-friendly materials, their recycle will be
easier. They require less energy to produce and are non-toxic in nature. Their carbon
emission will be very less. Long-term and increased dependence on the biodegrad-
able packaging material may result in requirement of more plant- or animal-based
matter for their production. If any additives or petroleum-based polymers are mixed
in compounded packaging materials, they require special facility for composting.
The physical barrier properties are very poor compared to petroleum-based materials
and not all the biodegradable packaging materials are sealable. Bioactive ingredients
derived from aquatic sources which can be used for biodegradable packaging
material production are fish and shellfish proteins, protein from Surimi waste,
blanched and cooked water protein extract from heat processing, protein extract
from clam shuck water, chitosan extracted from shrimp, crab, lobster and squid pen,
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collagen and gelatin from fish scale and skin, squid and cephalopod skin and a
variety of seaweeds. Although biodegradable packaging materials have various
advantages, functionalizing these packaging materials will increase their
applications and enhance the quality of food products.

7.5 Smart Functional Packaging Materials

Globalization and dynamism in the exchange of food products, along with reduced
time for selection/cooking with fresh ingredients, and the growing interest in health
safety and environment are the main challenges which trigger the development of
new improved packaging concepts. Traditionally, the functions of the packages
include protection, containment, communication with the user, ergonomics and
marketing. However, in recent years additional functions are incorporated into the
packaging materials to meet the growing global demand on the safety of food
products. One of the main objectives of food law is the safety of the food products.
Controlling the quality and assuring the safety of the product at all the stages of food
supply is very much essential to enhance the market reach for a product. This can be
achieved by using active and intelligent packaging technology, which is also known
as smart packaging. Active packaging involves altering the surrounding environ-
ment of food suitably with favourable gases, antimicrobial and antioxidant agents,
flavour bearing compounds, etc. whereas intelligent packaging monitors interaction
between the food, the packaging, and the environment and provides information like
the conditions of the package, freshness, leakage and presence of pathogen and
informs to the manufacturer and consumer. Thus, the smart packaging provides a
specific functionality beyond function physical barrier between the food product and
the surrounding environment. Knowing information about the product quality, the
packaging or the environment establishes a bond of responsibility throughout the
food supply chain (storage, transport, distribution and sale). The global market for
active and intelligent packaging will double between 2011 and 2021, growing at an
annual rate of 8% until 2016, reaching US$ 17,230 million, and later at an annual
rate of 7, 7%, reaching US$ 24,650 million in 2021. Among the smart packaging
technologies, the development of intelligent packaging material which can detect the
presence of pathogen assumes great importance as it can assure the safe and
wholesome food to consumers without any microbial pathogen contamination. The
technology of developing smart pathogen indicating film can be used in all the food
products to monitor the quality and safety of food from the producers to
the consumers. The technology provides an on-line quality control and safety for
the consumers beyond the existing conventional technologies which are helpful for
the authorities and food producers as well.
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7.6 Active Packaging

Active packaging is an advanced concept that can be defined as ‘a type of packaging
that changes the condition of the packaging and maintains these conditions through-
out the storage period to extend shelf-life or to improve safety or sensory properties
while maintaining the quality of packaged food’ (Vermeiren et al. 1999). Unlike
other conventional packaging methods wherein packaging material or packaging
system will not alter and remain passive in nature apart from their inertness. Any
gases formed or introduced in the packaging atmosphere may escape or may enter
from external atmosphere depending on the permeability of the packaging material
resulting in alteration of the package atmosphere which affects the quality and shelf
life of the product. In the case of active packaging, the packaging provides extra
protection by interacting with the package atmosphere and modify the conditions of
the package suitably to help the retention of the quality. This can be achieved either
by removing undesirable constituents like oxygen, CO2, off-odour, ethylene or by
releasing suitable constituents like nitrogen, carbon dioxide, antimicrobials,
antioxidants, ethanol, pesticide, etc., depending on the food products. Major active
packaging techniques are concerned with substances that absorb oxygen, ethylene,
moisture, carbon dioxide, flavours/odours and those which release carbon dioxide,
antimicrobial agents, antioxidants and flavours. The most important active packag-
ing concepts for fishery products include O2 scavenging, CO2 emitters, moisture
regulators, antimicrobial packaging concepts, antioxidant release and release or
absorption of flavours and odours.

7.6.1 O2- Scavenger

Oxygen is a lifeline for all the animals when they are in living condition but becomes
detrimental as soon as life is lost leading to spoilage and decay. Many food products
including fish are highly sensitive to the presence of oxygen as it leads to the growth
of aerobic microorganisms and oxidation which causes undesirable colour changes
(e.g. discolouration of pigments such as myoglobin, carotenoids), off-odours and
flavours (e.g. rancidity as a result of lipid oxidation) and leads to loss of nutrients
(e.g. oxidation of vitamin E, β-carotene, ascorbic acid) which adversely affects the
quality. Hence control of oxygen assumes its importance to control the spoilage and
enhance the shelf life. This can be achieved by packing in high barrier films like
EVOH, polyester-laminated with aluminium foil or laminated packaging materials.
Further advanced packaging technologies like vacuum packaging and modified
atmosphere packaging may be adopted. However, these techniques may not remove
oxygen completely and there is no control on the permeation of oxygen through
packaging materials. In such cases, the use of oxygen scavenger is highly suitable
and very effective in reducing the oxygen level to very low level like less than 0.05%
within short time. O2 scavengers were first commercialized in the late 1970s by
Japan’s Mitsubishi Gas Chemical Company (Ageless®). O2 scavenging concepts are
mainly based on iron powder oxidation, ascorbic acid oxidation, photosensitive dye
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oxidation, enzymatic oxidation (e.g. glucose oxidase and alcohol oxidase), unsatu-
rated fatty acids (e.g. oleic or linolenic acid), rice extract or immobilized yeast on a
solid substrate. These oxygen scavengers are useful in preventing discolouration of
fresh and cured fish, rancidity problems, mould spoilage of intermediate and high
moisture products or oxidative flavour changes. Apart from fish, they find its
applications in most of the dried food items like grains, snacks, bakery items, fish
and meat, dry fruits, ready meal, etc.

O2-scavenging film is developed either incorporating any oxygen scavenging
systems mentioned above or by using the principle of photosensitive dye oxidation.
This involves sealing of a small coil of an ethyl cellulose film containing a dissolved
photosensitive dye and a singlet O2-acceptor in the headspace of a transparent
package. Due to illumination of the film with the light of the appropriate wavelength,
excited dye molecules sensitize O2

� molecules, which have diffused into the
polymer, to the singlet state. These singlet O2

� molecules react with acceptor
molecules and are consumed (Rooney 1985):

Photonþ dye ! Dye�
Dye � þO2 ! Dyeþ O2�

O2 � þAcceptor ! Acceptor oxide

O2� ! O2

O2 acceptors can be tetraphenyl porphine (TPP), dimethyl anthracine (DMA),
dioctyl thallate (DOT), etc. This can be used for both wet and dry fish products as it
does not require any moisture for its activation. Most O2 scavengers in commercial
use today are iron-based systems and only limited reports are available on film based
O2 scavenger.

7.6.2 Antimicrobial Packaging

Antimicrobial packaging is the second commonly used active packaging system
after oxygen scavenger. The concept of antimicrobial packaging was developed due
to increased awareness on the antimicrobial agents used directly by the food
manufacturer to retain the quality of food. As microbial spoilage is the major
cause for food deterioration, various chemicals were used for treating food to reduce
both food spoilage and pathogenic microorganisms. The classes of these antimicro-
bial agents include but not limited to alcohol (ethanol), ammonium compound
(quaternary ammonium salts), antibiotics (natamycin), antimicrobial peptides
(leucocin, sakacin, enterocin), antioxidant phenolic compounds
(butylatedhydroxyanisole (BHA), butylatedhydroxytoluene (BHT), tertiary
butylhydroquinone (TBHQ), grape seed extract, pomegranate peel and seed extract),
bacteriocin (bavaricin, lacticin, nisin, pediocin), chelators (citric acid, EDTA,
lactoferrin, polyphosphate), enzymes (chitinase, ethanol oxidase, glucose oxidase,
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glucosidase, lysozyme, lactoperoxidase, hydrolase), fatty acids (lauric acid,
palmitoleic acid), fungicide (benomyl, imazalil, sulphur dioxide), metals (copper,
silver), natural phenols (catechin, hydroquinones), organic acid (acetic acid, benzoic
acid, citric acid, lactic acid, propionic acid, sorbic acid, tartaric acid), organic acid
salt (potassium sorbate, sodium benzoate, acetic acid, propionic acid, benzoic acid,
sorbic acid, calcium sorbate, benzoic anhydride, propionic acid, propyl paraben),
paraben (ethyl, methyl and propyl paraben), plant based volatile compounds
(allylisothiocyanate, cinnamaldehyde, eugenol, terpineol, thymol), polysaccharide
(chitosan, carrageenan), etc. Recent advancements in the nanotechnology research
have expanded the list of antimicrobial compounds with silver nanoparticle as one of
the highly potential antimicrobial agents. The principle action of antimicrobial films
is based on the release of antimicrobial entities into the food which extends the lag
phase and reduces the growth phase of microorganisms in order to prolong shelf life
and to maintain product quality and safety. To confer antimicrobial activity, antimi-
crobial agents may be coated, incorporated, immobilized or surface modified onto
package materials. However, there is a growing concern both by consumers and by
the regulatory agencies on the very high levels of these antimicrobial compounds in
the food products if they are used directly to treat with these antimicrobial agents.
The residual levels will be very high leading to increased concerns which can be
overcome with the adoption of active antimicrobial packaging techniques. The
antimicrobial compound embedded into the polymer acts by two different kinds of
mechanisms. In the first method, the preservative is covalently immobilized into the
polymer matrix and acts directly from the film when the food is brought in contact
with the active material. Regarding the latter, the preservative is embedded into the
matrix in the dry state. When the active material is brought in contact with a moist
food or a liquid-like food, the preservative is released from the material and acts
directly. In both cases the aim of the system is to extend the shelf life of the packaged
foodstuff, inhibiting the microbial growth and preserving its properties. The classes
of antimicrobials listed range from acid anhydride, alcohol, bacteriocins, chelators,
enzymes, organic acids and polysaccharides. Several compounds tested for antimi-
crobial activity in food packaging including organic acids such as potassium sorbate,
sorbic acid, propionate and benzoate or their respective acid anhydrides,
bacteriocins, e.g. nisin and pediocin, enzymes such as lysozyme, metals, fungicides
such as benomyl and imazalil, Ag- zeolite. Antimicrobial agents are selected based
on their ability to withstand the processing or extrusion condition of the packaging
material and its compatibility. Ethanol is another commonly used antimicrobial
agent for surface immobilization with the polymer films. At a concentration of
60–70%, v/v, it exerts its effectiveness. Even at relatively low concentrations
(4–12%), ethanol has proved effective in controlling growth of several moulds and
bacteria (De Kruijf et al. 2002). Spraying ethanol onto fresh or dry fish prior to
packaging can be adopted, but another option is to use sachets generating ethanol
vapour. This contains food-grade ethanol embedded or absorbed or encapsulated in a
carrier material. This is meant for either slow or rapid release depending on the
requirement and is adjusted by varying permeability of the sachet material to water
vapour. Its application mainly depends on the food products intended and the
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sensitivity of the food products to ethanol. Apart from these, various plant
derivatives can be incorporated into the packaging system as antimicrobials.

7.6.3 Antioxidant Release

Antioxidants are another class of compounds used extensively in most of the
oxygen-sensitive foods to improve the oxidation stability. Fish being highly rich in
polyunsaturated fatty acid, are prone to oxidation. Common antioxidants used for
direct food applications were BHA, BHT, etc. whose use is now not permitted in
most of the food products due to its ill effects by accumulating in adipose tissue.
Incorporation of natural plant extracts are also practised however it requires to use
more quantity leading to influence the sensory properties. Direct incorporation of
antioxidants into the packaging films and use as antioxidant is gaining more attention
worldwide. However, the antioxidant compound should be able to withstand the
extrusion conditions for its applications. Vitamins E and C are the common natural
antioxidants, and their incorporation in polymer films to exert antioxidative effects is
still at the experimental stage. Vitamin E is stable under processing conditions and
has an excellent solubility in polyolefins. However, it is confirmed that, vitamin E is
a less mobile antioxidant in low-density polyethylene (LDPE) than BHT, as vitamin
E is a larger molecule (Wessling et al. 1998). Apart from these, natural antioxidants
extracted from plant and animal substances and their use as antioxidant packaging
are under experimental stages.

7.6.4 Release or Absorption of Flavours and Odours

Fish and shellfish have a typical fresh flavour, which is distinct from any food
systems. Food packaging materials, particularly some plastics, may interact with
these flavours, resulting in loss of flavour known as ‘flavour scalping’ which affects
the quality of the product. Furthermore, flavours are usually lost or degraded during
various stages of processing at different temperatures or after packaging. Therefore,
there is a need to replace the lost flavour constituents when scalping or degradation
occurs. Flavour incorporation in packaging material might be used to minimize
flavour scalping. Consumers always like to smell good flavours when they first
open a food package. The applications of suitable flavour enriched packaging
materials have the potential to improve the organoleptic quality of the product by
emitting desirable flavours into the food and to encapsulate pleasant aromas that are
released upon opening. Flavour release may also provide a means to mask off odours
coming from the fish or the packaging. It is of utmost importance that the aforemen-
tioned technology should not be misused to mask the development of microbial
off-odours thereby concealing the marketing of products that are below standard or
even dangerous for the consumer (Nielsen 1997).

Flavour scalping, i.e. sorption of food flavours by polymeric packaging materials,
may result in loss of flavour. Generally, flavour scalping is detrimental to food

180 C. O. Mohan et al.



quality, but it could be used in a positive way to selectively absorb unwanted odours
or flavours. In contrast to flavour releasing systems, flavour absorbers scavenge
undesirable flavours, aromas and odour present in the package headspace. The
formation of off-flavour and off-odour in fish products are mainly from the oxidation
of fat and oils, leading to the formation of peroxides and their decomposition
products like aldehydes, breakdown of fish proteins into amines forming alkaline
compounds. Flavour absorbing systems employ cellulose triacetate, acetylated
paper, citric acid, ferrous salt/ascorbate and activated carbon/clays/zeolites to absorb
off-odour and off-flavour. Removal of aldehydes from package headspaces can be
achieved by means of the layer Bynel IXP101 which is a HDPE master batch.
Amines can be removed by reacting with acidic compounds, e.g. citric acid
incorporated in polymers.

7.6.5 Time-Temperature Indicators

Food and pharmaceutical products are highly sensitive to the temperature of storage.
They need to be maintained at specified temperature throughout their shelf-life to
ensure its quality and safety. Frozen food products have relatively very long shelf
life ranging from 6 months to 2 years. They should be stored at�18� 2 �C from the
point of production till they are consumed. However, cold chain is broken due to
many reasons like improper cold chain facilities at all the stages of food distribution,
frequent power failure and regular opening and closure of freezer door at retail
outlets. Failure to maintain specified temperature will indirectly affect the quality
and safety of the product. It is difficult to find out whether the frozen food product
has thawed at some point and then refrozen. As there is no device/method to monitor
such temperature abuses, consumers will end up buying inferior quality products. At
the same the producers will get bad reputation due to breakdown of cold chain which
is not in their hand to maintain. The principle behind this is that as the temperature
increases, biochemical and microbial reactions take place at rapid rate leading to
deterioration of food. TTIs are based on either chemical, electrochemical, enzymatic,
microbial or mechanical reaction leading to visible response. TTIs find its
applications not only in food products, but also in pharmaceutical products to ensure
better quality product to consumers. Recent research on TTI indicates that the active
compound, sensitive to temperature fluctuation can be incorporated into the poly-
mer/biodegradable film that can change the colour as temperature is abused. Indica-
tor dyes, plant and fruit extracts containing specific pigments responsible for giving
colour change with the fluctuation in the temperature are used in this.

7.6.6 Freshness Indicators

Fish production as well as fish consumption is on the rise both in the domestic and
international market. Understanding the ever-increasing demand for fish, retail
marketing and online marketing is flourishing across India and the price of fish is
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also increasing. Due to recently reported adulteration menace, consumers are always
at doubt while purchasing fish. Fish being highly perishable, undergoes spoilage
leading to formation of various chemicals (oxidation products and amines) which
may affect the health of the consumers. The fish quality is either ensured by sensory
attributes or by analytical methods. However, the analytical methods are time
consuming, costly and are not real-time in nature. This has resulted in relying on
sensory quality assessment to judge the quality of fish being marketed. However,
sensory quality analysis is qualitative and it can be biased and hence, quality control
requires rapid methods for measuring fish freshness in real-time. An intelligent
packaging technology will be beneficial for this purpose. This can be achieved by
using freshness indicator or spoilage indicators. Commonly developed freshness
indicators are based on the reaction between the volatile compounds or other
constituents generated during the process of spoilage with the indicating material.
Freshness indicators provide direct product quality information resulting from
microbial growth or chemical changes within a food product. Microbiological
quality may be determined through reactions between indicators included within
the package and microbial growth metabolites (Smolander, 2003). Normally, the
freshness indicators are incorporated into the packaging film, which reacts with
volatile amines and other indicating agents produced during the storage of fish and
other seafoods, and the freshness is indicated by a colour change.

7.7 Studies on Functional Packaging Materials

Smart packaging includes both active and intelligent packaging systems. Active
packaging refers to alternation of package atmosphere/incorporation of suitable
compounds to enhance the quality and shelf life, whereas intelligent system monitors
the condition of packaged food to give information regarding the quality of food.
Research on development of smart packaging devices for perishables including fish
is very limited in India. Many researchers are carrying out work on various aspects of
smart functional packaging materials. Chemical combinations for O2 scavenger,
CO2 emitter is optimized using GRAS chemicals which can reduce the O2 level to
0.01% and increase the CO2 level to >80% within 24 h, respectively (Mohan 2008).
Dual-action sachet, which combines the scavenging of O2 and emits CO2, is also
developed and found to extend the shelf life of fatty fish up to 25 days (Mohan
2008). These developed active packaging systems follows first-order reaction and
extends the shelf life of fishery products significantly (Mohan 2008). Studies
indicated that O2 scavenger was very efficient in reducing oxygen concentration
by 99.58% within 24 h inside the packages and found to extend the catfish steaks
shelf-life up to 20 days, compared to 10 days in control air packs (Mohan et al.
2008). Studies on Seer fish indicated a shelf life extension of 20 days under O2

scavenger compared to only 12 days for air packs and inhibited the formation of
biogenic amines, especially histamine by inhibiting bacterial enzyme activity
(Mohan et al. 2009a). The use of O2 scavenger positively extended the shelf life
by inhibited the formation of volatile bases, inhibiting the nucleotide degradation
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resulting in delayed formation of hypoxanthine, which is associated with the spoil-
age of fish (Mohan et al. 2009b). The use of O2 scavenger improved the shelf life of
barracuda steaks by 20 days (Remya et al. 2018) and Indian oil sardine by 15 days
(Mohan et al. 2019a, b) under chilled storage. A delay in the growth of
microorganisms including specific spoilage flora like Pseudomonas spp. and H2S
forming bacteria was observed in fishes packed with O2 absorber by extending the
lag phase which is mainly due to the effect of altered atmosphere (Mohan et al.
2010a). A shelf life of 9–10 days was observed for long tail tuna (Thunnus tonggol)
packed under O2 scavenger under chilled stored (Mohan et al. 2014).

Active antimicrobial packaging films prepared using chitosan incorporating gin-
ger (Zingiber officinale) essential oil (GEO) was effective against foodborne
pathogens (Remya et al. 2016). Keeping quality of steaks of barracuda (Sphyraena
jello) fish improved significantly in the chitosan films with GEO (Remya et al.
2016). Antimicrobial packaging film incorporating silver nanoparticles synthesized
using low and high molecular weight and other chemicals can be used effectively to
control the growth of foodborne pathogens (Pankaj et al. 2017). Combination of O2

scavenger and antimicrobial film incorporating essential oil resulted in enhanced
quality retention and reduced oxidation and extended the shelf life up to 30 days in
chilled storage condition (Remya et al. 2017). Combination of curry leaf essential oil
and O2 scavenger resulted in increased lag phase and reduced oxidation in
Rachycentroncanadum and extended shelf life up to 30 days (Remya et al. 2014).
Antimicrobial coating with chitosan resulted in reduced microbial growth, volatile
formation, oxidation, drip loss and improved water holding capacity and improved
the texture of Indian oil sardine (Mohan et al. 2012; Renuka et al. 2016). The
formation of total volatile base nitrogen and trimethylamine nitrogen was less by
14.9–32.7 and 26.1–49% for different concentrations of chitosan-treated samples
(Mohan et al. 2012). Biodegradable antioxidant packaging film developed using
rosemary essential oil resulted in improved DPPH activity and total phenolic content
(Mohan et al. 2018). Moisture absorbing system developed using aquatic weed,
water hyacinth to absorb the drip formed during the storage of fish.

Similar to active packaging systems, ICAR-CIFT has also developed various
intelligent packaging systems. A simple, easy to use and cheap (Only Rs 0.4 per pack
equivalent to US$ 0.0055) freshness indicator is developed for indicating quality of
fish and shellfishes. The effectiveness of freshness indicator is evaluated with fishes
of freshwater, marine and brackish water origin and found effective, except for
freshwater fishes. Studies on nanoparticle-based intelligent packaging system to
develop temperature history sensor were developed in collaboration with University
of Wisconsin-Madison, USA (Wang et al. 2017). Nanocomposite of chitosan and
gold nanoparticles (AuNPs) was used to develop sensors that can indicate the frozen
state and thermal history of foods and other temperature-sensitive products based on
the visual colour change (Wang et al. 2017). A greener method used for the synthesis
of Gold nanoparticle using chitosan to develop temperature history indicator to
ensure the quality and safety of frozen stored perishable food and pharma products
during shipment and transportation (Mohan et al. 2019a, b). Developed and
characterized gold, silver and copper nanoparticles using different chemicals and
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biological sources of marine origin which finds application as biogenic amine and
heavy metal detecting sensor. Developed paper-based colorimetric nano-biosensor
strip for detection of foodborne pathogens including E. coli 0157:H7 and E. coli
which reduced the detection time (Nadella et al. 2019). A detailed review on active
and intelligent packaging systems is documented (Mohan et al. 2009a, b, 2010b,
2018; Biji et al. 2016).

Apart from this, the institute is also steer heading the research on developing
biodegradable smart packaging materials with improved properties. Chitosan, colla-
gen, chitosan-collagen-based films were developed for its application as wrap.
PLA-based biodegradable packaging material with improved mechanical properties
and heat sealability is developed. Seaweed based functional and edible films devel-
oped exhibited good sealing and antioxidant properties and can be used as novel
packaging material in food industry as a sachet/pouch/bag for seasoning powder for
instant noodles, instant coffee/tea, etc. Continued research and development is
needed for enhancing the efficiency of smart packaging systems developed. Collab-
oration with other research institutes is the need of the hour to fine tune and upscale
the developed smart packaging technologies, validate properties of smart packaging
devices developed in field condition and commercialization.

7.8 Conclusion

Apart from proper handling, there is a need to adopt advanced packaging
technologies, particularly cost-effective smart packaging to overcome this problem.
Although advanced packaging technologies like vacuum and modified atmosphere
packaging technologies are available, their adoption in middle- and low-income
countries are very insignificant due to its high cost and its maintenance. Apart from
reducing post-harvest losses, providing quality and safe fish products without the use
of any chemical preservative is a challenge world is facing today. Advanced,
low-cost packaging options to enhance the quality, shelf-life and safety are the
need of the hour. Advancements in the biodegradable packaging material with
functional attributes will continue to progress which brings new concepts and
opportunities to enhance the quality and safety of perishable commodities. Adoption
of these functional packaging materials will bring new avenues to entrepreneurs and
industry persons to enhance their marketing capabilities as the consumers will get the
trust on such products which use functional packaging materials to show that these
products are better compared to conventional ones.
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Abstract

Petroleum-based plastics, largely used in food packaging, have raised a great
number of health and environmental issues mainly due to their non-renewable
source. Biopolymers-based films and coatings designed to preserve the food
quality have attracted the attention of many researchers since they are made
from renewable resources, and could in addition carry bioactive compounds
like antimicrobials and antioxidants that lead to prolong the shelf life of food.
However, to be adequately used in food packaging, they must meet a certain
number of functional properties like mechanical resistance and gas permeability.
This work systematically discusses the most significant functional characteristics
of edible films and coatings like mechanical, gas barrier and water vapor perme-
ability, solubility, and organoleptic properties as well as their bioactive
characteristics. It also highlights their potential applications and limits in fruits
and vegetables, meat products, cheese, and sea foods. The challenges faced so far,
and the prospects for their progress and development are also discussed.
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8.1 Introduction

Food preservation aims to increase the storage life of food and preserve their quality.
Several methods have therefore been developed. Classical empirical techniques such
as cooking, drying, or salting, and others such as freezing, canning, pasteurization,
and packaging have been commonly used (Augusto et al. 2018). The role of food
packaging is to contain food and protect it from external contaminations. It
constitutes a physical barrier against mechanical shocks, transfers of matter and
energy, and against microorganisms (Berk 2018).

In the early twentieth century, with polyethylene’s invention, food transportation
and storage was revolutionized. Plastic packaging has since occupied an important
place in the food industry because of its practicability, low cost, and functionality.
Therefore, global production of plastic packaging exceeded 150 million in 2015
(Groh et al. 2019). However, a number of environmental concerns have been raised
regarding the continued use of plastic materials in food packaging, considering the
fact that they are non-biodegradable, almost non-recyclable, and have a very limited
shelf life, resulting in large amounts of waste that have huge environmental impacts
(Hahladakis et al. 2018). On the other side, toxic and undesirable substances such as
monomers, synthetic antioxidants, chemicals, etc., could be transmitted once in
contact with food (Bolívar-Monsalve et al. 2019). For these reasons, there is a
major interest in the development of new packaging materials, biodegradable,
non-contaminating, made from renewable and recyclable resources.

In this context, films and coatings made from biopolymers have attracted the
attention of many researchers as an alternative to petroleum-based plastics (Menezes
n.d.; Umaraw and Verma 2017; Rojas-Graü et al. 2009; Han 2005). Biodegradable
films and coatings are described as thin films or coating solutions (Fig. 8.1) made
from biopolymers (proteins, polysaccharides, etc.) and are applied as primary food
packaging providing a barrier to factors such as moisture, gases, and vapors, and
improving therefore their quality (Huber and Embuscado 2009).

In addition, these biopolymers-based films and coatings (BFC) could also carry
bioactive compounds, such as antimicrobial agents and antioxidants, contributing in
this case to improve the food shelf life (Quezada-Gallo 2009; Salgado et al. 2015;
Raybaudi-Massilia et al. 2016; Atarés and Chiralt 2016; Ganiari et al. 2017).

However, to be used effectively in food packaging, BFC must fulfill several
functional properties such as mechanical, water, and gas permeability, as well as
organoleptic and antimicrobial properties (Fig. 8.2).

This work is an overview aiming to present and analyze the main findings of
recent studies with regard to the functional properties of BFC and their potential food
applications.
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8.2 Functional Properties of Biopolymers-Based Films
and Coatings

8.2.1 Mechanical Properties

To be efficient, BFC used in food packaging must be mechanically strong enough to
protect the product from any abrasion and maintain its integrity during manipulation,
storage, and transportation (Wihodo and Moraru 2013). The mechanical resistance
of films is determined mainly by their tensile strength (TS) and elongation at break
(EB) values.

The improvement of films’ mechanical properties depends on the biopolymer
nature itself, the additional use of plasticizers, and the control of film manufacturing
parameters such as the type of process used, environmental humidity, speed, and
temperature of drying or cooling (Debeaufort et al. 1998).

According to Jiménez et al. (2012), the solvent evaporation step for films
manufactured by wet process is as important as the cooling step in the dry process.
Cho and Rhee (2002) investigated the impact of the environmental humidity on the
films’ mechanical properties and showed that hydrophilic films tend to absorb
moisture more easily, thereby increasing the plasticizing effect of water leading to
reduced TS.

Fig. 8.1 Development of biopolymers based films and coatings
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The use of plasticizers has a considerable influence on the mechanical properties
of films. The presence of a plasticizer on the film matrix increases the mobility of
polymer chains by increasing the intermolecular space, leading to higher EB and
lower TS levels (Vieira et al. 2011).

It was demonstrated that a double increase of glycerol results in a large increase of
elongation at break (76% instead of 17%) and a threefold decrease of TS values
(Butler et al. 1996). It should be noted that mechanical properties are also affected by
the type of plasticizer and molar mass modifications of biopolymers (Cao et al.
2018). Sothornvit and Krochta (2005) revealed that a decrease in molar mass creates
more terminal groups and free volumes in polymers, giving films with higher
elongation at break levels. In this sense, Aitboulahsen et al. (2020a) showed that
films made from sorbitol as a plasticizer displayed higher TS than films made from
glycerol for three different biopolymer-based films (gelatin, pectin, and starch).

Table 8.1 compares TS and EB values of films made with bio- and synthetic
polymers. Synthetic polymers have comparable TS levels to that of films made with
polysaccharides but higher values of elongation at break (up to 1000 %). However,
since many factors are involved, results cannot be compared easily.

Functional Properties

Mechanical

Gas barrier

Solubility

Organoleptic

Measured 
Parameters

- Elongation at break
- Tensile strength 

- O2/CO2 
permeabiility
- Wator vapor 
permeability

- Water solubility

- Odor
- Transmittance

Affected by

- Biopolymer nature and 
concentration

- Plastifiant nature and 
concentration

- Fabrication method
- Drying temperature and 
speed

- cooling temperature and 
speed

- Relative Humidity (RH %)
- film Thikness

- Films water content

Fig. 8.2 Functional properties of biopolymers-based films and coatings
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8.2.2 Gas Barrier and Water Vapor Properties

Oxygen fixation in food products is irreversible and may lead to oxidative rancidity;
its absence, however, could result in anaerobiosis (Yano 1990). Gas barrier
properties of BFC are therefore of great importance. They should act by protecting
the quality of food susceptible to oxidation (rancidity, loss of vitamins) and
controlling respiratory exchanges of fruits and vegetables (Zahedi 2019).

Permeability is defined as permeants transmission through materials (Han 2005).
The fundamental principle of permeation is based on the adsorption/dissolution-
diffusion/desorption mechanism.

In absence of pores, defects, and membrane perforations, the permeability P is
equal to the product of diffusion coefficient D (representing permeants mobility in
the polymer) and of solubility coefficient (representing the concentration of
permeants in the film at equilibrium with the external pressure).

P ¼ D*S (Colak 2014)
In this process, gases such as O2 and CO2 cross the biopolymer matrix and are

therefore transferred to the external environment or the reverse and lead to changes
in food safety and organoleptic characteristics of food (Han 2005).

According to Debeaufort et al. (1998), edible films made with proteins or
polysaccharides have generally good oxygen barrier properties particularly under
conditions of low humidity; nevertheless, they are often lower to those of conven-
tional synthetic films such as polyethylene.

Due to their linear structure and high percentage of amino acid groups, films
made with corn zein, wheat gluten, soy, or wheat protein are characterized with
higher permeability to oxygen than the ones made with polysaccharides (Wu et al.
2002). The same authors reported that gas permeability properties of starch or lipid
films affected the shelf life of the packed food.

Table 8.1 Mechanical properties of edible and/or biodegradable films (~25�C, 50% HR)

Polymer
Tensile strength
(MPa)

Elongation at
break (%) Reference

Cellulose 44–65 10–50 Saremnezhad et al. (2011)

Chitosan 10–100 20–80 Saremnezhad et al. (2011)

Type A gelatin 25–85 7–22 Mark (1999)

Type B gelatin 28–140 7–12 Mark (1999)

Starch 35–46 1.7–3.4 Mark (1999); Saremnezhad
et al. (2011)

Soy protein 3.7–4.5 152–160 Saremnezhad et al. (2011)

Whey protein 2.5–3 15–18 Saremnezhad et al. (2011)

Corn zein 3–4 50–120 Padua and Wang (2002)

Low-density
Polyethylene (LDPE)

9–20 100–1200 Mark (1999)

High-density
polyethylene (HDPE)

10–60 400–1800 Mark (1999)
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The plasticizer nature and concentration also affected the oxygen permeability
of BFC.

Water vapor permeability (WVP) can be defined as the rate of water vapor
transmission by unit area of a giving material with known thickness and by differ-
ence in vapor pressure between two surfaces, under known temperature and humid-
ity conditions. It is directly related to environmental conditions and to the amount
of –OH groups in the molecule (Henrique et al. 2007).

Water vapor permeability (WVP) of BFC was investigated by several authors
(Gennadios et al. 1994; Debeaufort and Voilley 1994; McHugh et al. 1994; Bertuzzi
et al. 2007; Al-Hassan and Norziah 2012; Aitboulahsen et al. 2020a). It depends on
various factors such as molecules solubility on the film matrix, hydrophobic/hydro-
philic nature of biopolymers, their structure, polymeric chain mobility, interactions
between polymers functional groups, hydrophobic/hydrophilic and crystalline/amor-
phous ratios, type and concentration of plasticizer, film thickness and ambient
conditions (temperature, relative humidity. . .) (Debeaufort and Voilley 1994;
McHugh et al. 1994; Pérez-Gago and Krochta 1999).

The addition of lipidic, hydrophobic compounds can be an effective approach to
improve WVP of BFC. The low polarity of lipids and their ability to form dense and
well-structured molecular matrices reduces water mobility (Debeaufort and Voilley
2009). Regarding the plasticizer effect, the use of polyols, especially glycerol and
sorbitol, improves films flexibility to the detriment of water vapor barrier (Haq et al.
2014). The same authors observed that WVP increases with glycerol concentration
increase for gum-based films. In contrast, sorbitol was proved better than glycerol for
obtaining less permeable films to water vapor (Razavi et al. 2015).

On the other hand, incorporation of hydrophobic substances in BFC matrix such
as essential oils (EOs) would improve water vapor barrier properties. Basil seed gum
incorporated with oregano EO allowed the decrease of WVP values due to the
interference of oil globules on the transmission of water molecules in the coating
matrix (Gahruie et al. 2017).

Table 8.2 shows gas and water vapor property values of edible and synthetic films
and coatings. Starch and protein films are generally highly permeable to water vapor
but less permeable to gases. It is therefore necessary to optimize the barrier
properties according to food product requirements (Wihodo and Moraru 2013).

8.2.3 Thickness

Mechanical and barrier properties of BFC are directly influenced by their thickness
(Zahedi 2019). Biopolymers-based films and coatings thickness depends on many
factors such as the production process and the concentration and type of
components, particularly, plasticizers (Zahedi 2019). Gheribi et al. (2018) showed
that glycerol addition as a plasticizer can absorb a great deal of water resulting in
inflated films with high thickness.

Razavi et al. (2015) observed that sage seed gum films supplemented with
sorbitol were thicker than those containing added glycerol. Density difference
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between the different phases of the films and emulsified components interactions
may modify thickness (Razavi et al. 2015).

According to Gahruie et al. (2017), thyme EO incorporation in basil seed gum
films increases thickness. This may be explained by the presence of lipid molecules
between polysaccharide chains which inhibits the development of ordered and
compact structure, dilating film matrix (Haq et al. 2016).

8.2.4 Solubility

The majority of BFC are soluble in water (Menezes n.d.). This property is of great
interest through its applicability on foodstuffs with different compositions and for
other technological purposes. Films solubility in water should be controlled
depending on food product and according to the intended technological purpose.
Indeed, ready-to-eat semi-finished food products require films with high solubility.
In contrast, for packaging of high water activity products, films should be less
soluble. Inversely, packaging that should be dissolved before product consumption
(cooking, infusion) should be highly soluble. To optimize packages' water solubility,
the use of insoluble lipids and proteins and some other hydrophobic components was
investigated in order to preserve films from inflation or disaggregation (Debeaufort
and Voilley 2007). Composite films allow better resistance to water and polymers
crosslinking. Vachon et al. (2000) have successfully reduced films solubility to more
than 75% favoring reticulation by irradiation treatment.

Rompothi et al. (2017) observed that concentration increase of plasticizer
increases solubility, whereas concentration increase of the biopolymer (starch)
decreases solubility. They also noted that glycerol gives less soluble films than
sorbitol. According to the same authors, this is due to plasticizer migration which
was difficult when film matrix was more compact with high proportion of cohesive
forces between starch chains.

Table 8.2 Water vapor and gas permeability values of some bio- and synthetic polymers (Krochta
and de Mulder-Johnson 1997; Embuscado and Huber 2009)

Materials
WVP (10�11 g/m.s. Pa)
~38 �C, 90/0% HR

PO2 (10
�17 g/m.s. Pa)

~25 �C, 0–50% HR

Methylcellulose 8.7 15–150

Starch 17.5–25.7 15–150

Gelatin 16 1.5–15

Chitosan (2%) 3.6–4.9 15–150

Zein 53-89 15–150

Gluten 0.1–10 1.5–15

Whey protein 71 1.5–15

High-density polyethylene HDPE 0.02 4

Low-density polyethylene LDPE 0.09 14.3

Polyethylene terephthalate PET 0.28 0.08
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8.2.5 Organoleptic Properties

Organoleptic neutrality is also important for BFC. Transparency/opacity, smell,
taste, brightness, etc. are important organoleptic properties that should be controlled.
Furthermore, compatibility of these properties with food matrix is a parameter that
must be taken into account (Fernández-Pan et al. 2011).

Generally, protein or polysaccharide films are more neutral than lipid ones, which
are contrarily more opaque and sliding with light wax taste (Krochta 2010).
Additives addition, especially EOs which plays a major role as antimicrobial agent
may influence significantly the smell and taste of films and consequently those of the
food (Atarés and Chiralt 2016). Khwaldia et al. (2004) showed that edible films
made with milk proteins result in a bad taste during storage due to lipid oxidation
products, Maillard reaction, and vitamins degradation.

Films' optical properties are also of paramount importance as they have direct
impact on product appearance and acceptability by the consumer (Ozdemir and
Floros 2008).

Kaya et al. (2018) have shown that incorporation of seed oil and dried fruits
extract in film matrix made with chitosan decreases film transparency.

Nisar et al. (2018) also observed a decrease in films’ transparency with clove EO
addition in pectin films and reported that this may be due to phenolic components
which can absorb light at different wavelengths with a natural yellowish color
attributed to lipids or EOs.

8.2.6 Antimicrobial Properties

Antimicrobial substances can be added to BFC to confer them antimicrobial
properties inhibiting microbes’ growth on food surfaces. These incorporated antimi-
crobial agents are released in a progressive and controlled manner maintaining low
microbial counts throughout the storage period (Bolívar-Monsalve et al. 2019;
Sánchez-González et al. 2011; Janes and Dai 2012; Espitia et al. 2016; Avila-Sosa
et al. 2016; López et al. 2007).

Table 8.3 shows the inhibitory effect of some antimicrobial films on pathogens.
Lysozyme incorporation in chitosan-based films was effective to reduce Escherichia
coli and Streptococcus faecalis growth levels (Park et al. 2004). Chitosan-based
coatings supplemented with potassium sorbate and nisin showed inhibitory action
against Escherichia coli, Staphylococcus aureus, Salmonella typhimurium, Listeria
monocytogenes, and Bacillus cereus (Pranoto et al. 2005).

Hettiarachchy and Satchithanandam (n.d.) incorporated organic acids in soy
proteins films and demonstrated their antimicrobial effect against Listeria
monocytogens, Salmonella gaminara, and Escherichia coli O157:H7.

The antimicrobial effect of BFC containing EOs was widely investigated (Avila-
Sosa et al. 2016). Rojas-Graü et al. (2007a, b) examined the antimicrobial properties
of films incorporated with various EOs. The most effective was carvacrol followed
by oregano, lemon, lemongrass, and cinnamon. Ravishankar et al. (2009) have
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shown that chicken breast fillet and ham wrapped with pectin-apple puree films
supplemented with different concentrations of cinnamaldehyde or carvacrol have
significantly reduced Salmonella enteritidis, Escherichia coli O157: H7, and
Listeria monocytogenes growth levels.

Basil seed gum films containing oregano EO produced by Gahruie et al. (2017)
showed significant antimicrobial activity against Escherichia coli, Salmonella
typhimurium, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus
cereus.

Lin and Zhao (2007) and Ozdemir and Floros (2008) showed that EOs diffusion
on films matrix is influenced by many factors such as biopolymer nature, additives,
manufacturing process, pH and water activity of the food and storage time and
temperature.

Due to its film-forming and antimicrobial properties, the chitosan effect on food
shelf life was widely investigated. Coma et al. (2002) and Ponce et al. (2008)
reported its inhibitory effect against Listeria monocytogenes and Maqbool et al.
(2011) proved the efficacy of chitosan-based coatings in slowing the growth of
Fusarium spp., Colletotrichum musae, and Lasiodiplodia theobromae when pre-
serving bananas. It has been proven that the use of these films and coatings improved
fruits and vegetables shelf life by inhibiting microorganisms’ growth, reducing

Table 8.3 Antimicrobial activity of biopolymers-based films and coatings containing antimicro-
bial agents

Composition
of the film

Antimicrobial
agent Targeted microorganisms References

Whey
proteins
isolates

Essential oils:
Oregano/rosemary/
garlic

Escherichia coli O157 : H7
Staphylococcus Aureus
Salmonella enteritidis
Listeria monocytogenes

Seydim and
Sarikus (2006)

Chitosan Nisin
Potassium sorbate

Escherichia coli
Salmonella typhimurium
Staphylococcus aureus
Bacillus cereus
Listeria monocytogenes

Pranoto et al.
(2005)

Pectin—
apple puree

Essential oils:
Oregano/
lemongrass/
cinnamon

Escherichia coli O157 : H7 Rojas-Graü
et al.
(2007a, b)

Whey
proteins
isolates

Lactoperoxidase Salmonella enterica and Escherichia
coli O157:H7

Min et al.
(2006)

Sodium
alginate

Castor oil Staphylococcus aureus Bacillus
Subtilis, Escherichia coli, and
Salmonella typhimurium

Abdel Aziz
Mohamed
et al. (2018)

Starch Methanolic
extracts of
Hibiscus
sabdariffa

Listeria monocytogenes Cruz-Gálvez
et al. (2018)
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ethylene production, increasing carbon dioxide concentration, and by reducing
oxygen levels (Geraldine et al. 2008; Lazaridou and Biliaderis 2002).

8.3 Films and Coatings Applications on Food Products

During storage and distribution, food products are subject to dynamic changes,
mainly due to interactions between them and their surrounding environment that
adversely affect their quality and lead to deterioration. Several formulations of BFC
made from different biopolymers, additives, and their mixtures have been tested and
applied to food products such as fruits and vegetables, cereals and dried fruits, meats,
poultry or seafood, cheese, fresh food, salted, frozen and processed, etc. . .

In the following section, an overview on the various applications of BFC on food
products will be addressed.

8.3.1 Applications in Fruits and Vegetables

Fruits and vegetables are usually altered after harvest, during ripening and storage
because of gas exchange, respiration, transpiration, and microorganisms’ attacks.
Edible films and coatings applied to fruit and vegetables aim to reduce the respira-
tory rate, water loss, microbial degradation, and thus help to preserve their quality
(Yousuf and Qadri 2020). Besides, the incorporation of antimicrobial agents such as
plant extracts and EOs prevents harmful microbial growth, particularly molds, and
helps improve the shelf life of fruits and vegetables (Saxena et al. 2020). In this
context, some proteins and polysaccharides-based coatings have been developed to
control the ripening of fruits and vegetables. Their selective permeability creates a
changed internal atmosphere that helps to sustain a reduced respiratory rate and thus
slows down the metabolism of fruit and vegetables after harvesting, thus enhancing
their shelf life (Yousuf and Qadri 2020). In this regard, a recent study has shown that
the application of alginate-based coating with rhubarb extract has contributed to a
substantial reduction in the respiration rate of peach fruit (Li et al. 2019). Similarly, a
polysaccharide-based coating applied to potatoes was an efficient oxygen barrier and
decreased respiration during storage (Wu 2019).

Applying films and coatings to fruit and vegetables should retain firmness after
harvesting and minimize water and weight loss. Accordingly, Correa-Pacheco et al.
(2021) were able to preserve the firmness of green pepper fruits, during 12 days of
storage at 10 � 1 �C, using chitosan nanoparticles-based coating.

Aitboulahsen et al. (2018) and Pinzon et al. (2020) also demonstrated the positive
effect of the coating on the texture of strawberries during storage, thus addressing the
problem of cell wall degradation of strawberries during storage. Kozlu and Elmacı
(2020) obtained similar results for mandarin fruits coated with a quince seed
mucilage-based coating.

The incorporation of active substances, such as antioxidants, helps to delay post-
harvest browning of fruits and vegetables, by chemical reduction of quinones to
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colorless orthodiphenol reducing agents, acting in the enzymatic browning process,
which consists of the oxidation of phenolic substrates to colored orthoquinones
(Saxena et al. 2020).

Browning can also be inhibited in an atmosphere containing less than 1 kPa of
oxygen (Gorny et al. 2002), for this, packing fresh fruits and vegetables with BFC,
whether or not containing antioxidants can be a better way to prevent oxygen
diffusion due to mechanical damage during handling, transport, or storage. These
films and coatings improve the oxygen and light barrier, prevent polyphenol oxidase
(PPO) contact with oxygen, and maintain a stable amount of ascorbic acid (Lin and
Zhao 2007).

El-Mogy et al. (2020) concluded that artichoke bottoms coated with a
Cordiamyxa gum coating incorporated with calcium dichloride (CaCl2 and ascorbic
acid prolong the shelf life of fresh artichoke bottoms by delaying their browning and
improving their texture compared to control fruits. Wang and Gao (2013) obtained
the same results on strawberries coated with chitosan. The authors reported a
decrease in the weight loss and the activity of PPO, as well as a stable content of
anthocyanins, flavonoids, and total phenolics. A recent study carried out on freshly
cut lettuce claimed that coating with chitosan is an effective method to prevent
enzymatic browning and therefore extend the shelf life of fruits and vegetables
(Li et al. 2021).

On the other hand, the damage of fruit, vegetable, or plant tissue establishes ideal
conditions for microbial growth (Chen et al. 2021). The applications of BFC
containing antimicrobial agents have been largely used to overcome this problem
(Azarakhsh et al. 2014; Shahbazi 2018; Hu et al. 2020; Meindrawan et al. 2020;
Arabpoor et al. 2021).

Maqbool et al. (2011) demonstrated that the incorporation of lemongrass and
cinnamon EO in Arabic gum-based coatings extended the banana’s shelf life up to
33 days, and allowed to control anthracnose caused by Colletotrichum spp. Fig-
ure 8.3 shows the evolution of the hygienic quality of strawberries coated with
gelatin incorporated with pennyroyal EO. In this study, Aitboulahsen et al. (2018)
showed that the bioactive coating used decreased fungal contamination of
strawberries during storage and thus increased their shelf life. Table 8.4 summarizes
the most relevant applications of BFCon fruits and vegetables.

8.3.2 Applications in Cheese

Cheese is an ancient food product that makes part of humans’ regular diet, due to its
composition characterized by high amount of protein, calcium, minerals, and
vitamins. The intensive growth of yeasts, molds, and undesirable bacteria on cheese
surfaces can considerably reduce its quality. Biopolymers-based films and coatings
have been largely used for preserving the quality of cheeses (Duan et al. 2007;
Kuorwel et al. 2013; Di Pierro et al. 2011; Cerqueira et al. 2010; Oliveira et al.
2017).
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Low moisture Mozzarella slices coated with chitosan incorporated with lysozyme
allowed a delay of microbial growth of Escherichia coli, Pseudomonas fluorescens,
and Listeria monocytogenes after 14 days of storage at 10 �C (Duan et al. 2007). For
ricotta without the rind, the coating based on whey and chitosan extended cheese
shelf life up to 30 days (Di Pierro et al. 2011). The same type of cheese was coated
with a galactomannan-based coating containing nisin and showed a significant
growth reduction of Listeria monocytogenes inoculated intentionally on the cheese
surface, compared to uncoated control (Martins et al. 2010). According to Kuorwel
et al. (2013), the starch-based coating incorporated with linalool, carvacrol, and
thymol was effective against the development of Aspergillus niger on cheddar’s
surface during storage. However, the use of EOs can produce strong odors and
aromas influencing the sensorial quality of the cheese (Yangilar 2016). More recent
studies summarized in Table 8.5 also showed the effects of bioactive films and
coatings on sensory characteristics of cheeses such as color, odor, flavor, and taste,
as well as on the development of harmful microorganisms during the ripening
process.

8.3.3 Applications in Meat

Several studies have demonstrated the effectiveness of BFC in preserving the quality
of meat and poultry products (Guo et al. 2014; Shin et al. 2017; Vital et al. 2018;
Saricaoglu et al. 2018; Souza et al. 2019; Bolívar-Monsalve et al. 2019). Gallego

Fig. 8.3 Appearance change of strawberries coated with a gelatin coating incorporated by penny-
royal essential oil (MEO) or not during 13 days of storage at 4 �C. (T1: Control; T2: Gelatin
coating + 0% MEO; T3: Gelatin Coating + 0.5% MEO; T4: Gelatin Coating + 1% MEO)
(Aitboulahsen et al. 2018)
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et al. (2020) showed that gelatin-based coating enriched with antioxidants can
reduce water loss and improve the texture of pork meat. Antimicrobial BFC has
been widely studied to extend the shelf life of meat and poultry products. They are
more efficient than EOs used alone (Cutter 2006). Potato starch-based films
incorporated with thyme EO as an antimicrobial agent applied to chilled pork meat
reduced Escherichia coli and Staphylococcus aureus growth and thus extended the
shelf life by eight days longer than unpackaged meat (Yuan et al. 2021). Naseri et al.
(2020) observed inhibition of the growth of total flora, coliforms, and Staphylococ-
cus aureus on turkey meat wrapped with composite films based on gelatin and
chitosan, incorporated with Ferulago angulate EO. Coating based on sodium algi-
nate, rosemary EO and nisin was effective in reducing the growth of Listeria
monocytogenes in poultry products during cold storage (Raeisi et al. 2016). The
incorporation of antioxidant agents such as garlic or ascorbic acid in carrageenan-
based coatings has been reported to improve the shelf life of poultry products
(Ustunol 2009).

A comparative study on the antioxidant efficacy of different antioxidant agents
(oregano and chili pepper EOs and their combination) incorporated into milk
protein-based edible films for the protection of beef slices was conducted by
Oussalah et al. (2004). Results showed that films incorporated with chili pepper
EO were more effective than oregano in inhibiting lipid oxidation. Several other
studies (Table 8.6) from different meat origins have reported the effectiveness of
films and coatings in preserving the sensory and hygienic quality, as well as
improving the shelf life of meat products.

8.3.4 Applications in Seafood

Due to their rich and complex composition, fish and seafood, in general, are highly
perishable (Tahergorabi et al. 2015). The addition of preservatives such as
phosphates is often used as a technique to increase water retention capacity, reduce
oxidation and extend the shelf life of seafood products (Gram and Huss 1996). Also,
freezing and deep-freezing remain the most widely used techniques to control or
reduce biochemical changes in seafood products (Ghaly 2010). Biopolymers-based
coatings and films have been largely used during storage to enhance the quality of
seafood (Table 8.7). Several authors developed chitosan-based films and evaluated
their effects on lipid oxidation during the storage of various seafood products (Jeon
et al. 2002; Abdollahi et al. 2014; Gómez-Estaca et al. 2010; Günlü and Koyun
2013). The results obtained by Sathivel (2005) using chitosan and soy protein
concentrate-based coating showed significant efficacy in delaying lipid oxidation
for frozen salmon fillets.

Kim et al. (2012) developed an antioxidant edible film based on defatted mustard
flour that was able to reduce lipid oxidation for smoked salmon without affecting the
sensorial quality. A coating based on gelatin and cinnamon EO was applied to fresh
rainbow trout fillets, reducing bacterial growth during 15 days of cold storage
(Andevari and Rezaei 2011). Listeria monocytogenes, considered to be among the
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bacteria of primary importance to be monitored by the seafood industry, has been
retained at low levels in cold-smoked salmon coated with chitosan film containing
sodium lactate and potassium sorbate (Jiang et al. 2011). Heydari et al. (2015) found
a 1.5 log10 CFU/g reduction in the microbial population in carp fillets packed with
sodium alginate films with mint EO. This film resulted in a considerable reduction in
total volatile basic nitrogen (TVBN) levels during the storage of the wrapped fillets
compared to the control fillets. In another study, Gómez-Estaca et al. (2010)
evaluated the antimicrobial effect of different composite films based on gelatin and
chitosan incorporated with eight EOs (clove, fennel, cypress, lavender, thyme,
verbena, pine, and rosemary) against six types of bacteria responsible for fish
spoilage. The results showed that the films incorporated with the clove EO had the
best antimicrobial activity and therefore was applied on fish fillets and monitored
during storage. The authors found that composite films containing this EO allow a
controlled release of the active substances of EO and maintain a sufficient concen-
tration over a longer period, and therefore a considerable reduction in bacterial
growth during the storage of fish fillets.

8.4 Limits of Application

Edible films and coatings are among the most promising preservation methods for
foodstuffs. Their main drawback, however, is their specificity. For instance, for fresh
or freshly cut fruits and vegetables, coatings should be optimized for each species
and each cultivar (Porta 2013). Therefore, to obtain the desired results, the biopoly-
mer type, concentration, and/or the coating formulation must be well controlled.
Besides, storage conditions could influence the behavior of packaged or coated
foods. Thick films or coatings could cause anaerobic conditions that could lead to
undesirable flavors. Films and coatings with high WVP result in weight loss and
therefore, loss of appearance and texture of the product. Conversely, films and
coatings with low gas permeability will prevent the transfer of the amount of oxygen
required for the fruit's ripening phase. Also, the risks of microbial proliferation often
increase, depending on the relative humidity of the environment, as well as the
solubility of BFC, which can dissolve during storage and promote microbial prolif-
eration (Menezes n.d.). On the other hand, food application methods for BFC must
be enhanced and adapted to industrial-scale applications and ensure homogeneous
and uniform application on the product surface with effective drying (Lin and Zhao
2007).

Several authors have focused on the constraints and limits encountered when
applying an edible and bioactive film or coating as a food packaging. Hager et al.
(2019) reported that nisin is not commonly used as an active agent in the formulation
of bioactive films, despite its proven antimicrobial effects, due to its high cost. Also,
the production and marketing of such bioactive film-coated products worldwide are
limited, due to the variety of regulations and standards that differ between countries.
Sensorial quality could also limit their application in foods in particular, for films and
coatings incorporated with EOS. In this sense, Cano Embuena et al. (2017) applied
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one, two, and three layers of coating incorporated with EOs for goat cheese preser-
vation and found that the cheese coated with a triple layer coating received the
lowest sensory scores, because the smell, flavor, and taste of cheese were affected by
the EOs.

8.5 Conclusions

The research and studies conducted on BFC have been highlighted in this chapter.
Edible films and coatings could be an important alternative method toward replacing
the unnecessary use of plastic-based, hazardous, and non-biodegradable synthetic
packaging. The various functions of BFC based on their potential applications for
food preservation were also explained. Composite films combining the use of several
biopolymers in the matrix of BFC offer numerous advantages, such as the possibility
of taking advantage of the different properties of each compound to obtain a film or
coating with the desired qualities. Moreover, the incorporation of antimicrobial
agents like EOs is an efficient way of enhancing the hygienic quality of food
products. Efforts should be made to resolve, on the one hand, the challenges of
industrial development and marketing and, on the other, the regulatory constraints of
implementation, which differ between countries.
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Role of Sensors to Improve Food/Beverage
Packaging 9
Mariusz Tichoniuk

Abstract

Traditionally, food and beverage packaging focus on the protection of its content
and information on them within the supply chain. The development of modern
packaging materials and technologies provides an opportunity to improve the
communication on the product state and its surrounding. Sensors dedicated to
food and/or beverage packaging could be simple time-temperature indicators or
chemosensors sensitive to food spoilage products. A gas indicator implemented
in the packaging could reveal its leakage or the development of undesirable
processes in the packaged product. A wide variety of electrochemical sensors
(e.g. temperature or humidity sensors) can work independently or are combined
with advanced data carriers such as radio-frequency identification (RFID) tags.
The application of sensors in various parts of the food/beverage supply chain
could improve its controllability and reduce the scale of food waste more effi-
ciently. The consumer will also appreciate a simple indicator informing about the
freshness of food or the correct temperature of the drink.
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9.1 Introduction

Food and beverages are a very diverse group of products that provide consumers
with the required nutrient compounds, biologically active components in the diet,
but also the pleasure of consuming our favourite dishes. Current trends in food and
beverage consumption are in the strong influence of customer expectation for
convenient, ready to eat and/or low processed products with unchangeable quality
and extended shelf-life (Han et al. 2018; Rai et al. 2019). Most food products are a
complex mixture of ingredients that are sensitive to external physicochemical
factors, microbial contamination and biochemical processes occurring in the
products themselves, and require protection against factors that could lower their
quality and affect safety (Fuertes et al. 2016; Sohail et al. 2018; Witjaksono et al.
2018). Food, by definition, must be safe, but consumers demand also information
about its composition, use-by date, method of preparation, and many other data
associated with food storage and consumption. Traditionally, the need for food
packaging stems from its practical applications of holding goods together and
protecting them within the supply chain until the food or beverages reaches the
end-user (Lydekaityte and Tambo 2019). According to FAO reports, about 14% of
food products are lost in the food supply chain before they reach the final consumer
(FAO 2019). In addition to the protective function, the packaging in its original use
is intended to facilitate handling the packed product in storage and transportation and
to communicate about the properties of their content (Vanderroost et al. 2014;
Müller and Schmid 2019). The protection against adverse physical conditions,
chemical and/or microbial contamination is an obvious result of the barrier
capabilities of packaging construction and materials, which is a passive, conven-
tional way of the product preservation against external factors occurring in the
supply chain (Schaefer and Cheung 2018; Drago et al. 2020). The information
contained on packaging provides important knowledge about the origin of the
product, its weight/volume, ingredients, nutritional value, expiration date,
precautions for use as well as the conditions of transport, storage and utilization, if
necessary (Fuertes et al. 2016). Packaging should improve the convenience of food
product consumption and distribution by the adaptation to customer’s lifestyle and
physiological capabilities (e.g. by the selected package size and easier food prepara-
tion) and to transportation/storage technologies (e.g. using standard packaging shape
and dimensions, introduction of useful holders and fixings) (Müller and Schmid
2019). The same is referred as to the containment of food products which should
ensure ease of their transportation and handling in the supply chain and the right
portion of products for the final consumers (Schaefer and Cheung 2018).

The development of innovative materials and packaging technologies enabled the
extension of the information functionality of conventional packaging by the intro-
duction of intelligent systems (Mustafa and Andreescu 2018). The intelligent pack-
aging for food products is recognized as material and article that monitor the
condition of packaged food or the environment surrounding it (Commision Regula-
tion 2009 (EC) No 450/2009). The intelligent food packaging systems are designed
to monitor and signalize the changes of packed products and its surrounding in the
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food supply chain, which can facilitate decision-making procedures focused on
preserving food quality, and indirectly extend its shelf life and/or improve overall
safety (Müller and Schmid 2019). The subject of the real-time monitoring can be
internal and external characteristics of the packaging environment (e.g. temperature,
humidity), food freshness or microbiological condition, the integrity of packaging or
location of the packaged product (Sohail et al. 2018; Chowdhury and Morey 2019).
The functionality of intelligent packaging is based on the recognizing element that
interacts physically and/or chemically with the monitored environment or product
and signalizes the change of observed phenomena. This mechanism relies usually on
the application of one of the specific sensors, indicators, or other data transmission
items, that enables the collection and/or transfer of information through the packag-
ing (Fig. 9.1). The upgrade of conventional packaging to the intelligent one often
relies on attaching an external recognition element (for the product surrounding
monitoring or data transmission) or internal sensor or indicator (for monitoring of
packed product condition) (Fang et al. 2017; Mustafa and Andreescu 2018). A more
detailed classification of intelligent packaging solutions is presented in Fig. 9.1, but
it should be remembered that this is not an absolute distinction of types and they may
be classified differently according to various sources. This applies in particular to the
distinction between indicators and sensors, which both recognize the target
compounds or physical phenomena, and the assignment to one or the other category
is more related to the interpretation of the results provided.

Sensors and indicators are constructed to provide information relating to the
product quality connected with the temperature measurements (time-temperature
indicator, temperature sensor) or the presence of specific chemical compounds (gas

Indicators

•Time-temperature indicators (TTI)
•Microbial growth and freshness indicators
•Integrity (gas) indicators

Sensors

•Gas sensors
•Temperature sensors
•Biosensors

Data carriers

•Barcodes, NFC communica ons
•Radio-frequency iden fica on (RFID) systems
•Sensor-enabled RFID tags

Fig. 9.1 General types of intelligent packaging systems applied for food and beverages packaging
(Source: Own work based on Ghaani et al. 2016, Sohail et al. 2018, Tichoniuk 2019, Drago et al.
2020)
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sensor/indicator, microbial growth or freshness indicators, biosensors) (Ghaani et al.
2016; Sohail et al. 2018; Tichoniuk 2019). Data carriers implemented in intelligent
packaging (barcodes, NFC communication, radio-frequency identification systems)
are designed to support the management of supply chain logistics (Tichoniuk 2019;
Drago et al. 2020) (Fig. 9.1). More reliable and effective communication can also
serve to significant improvement of product traceability in the supply chain. A
combination of RFID systems with sensors, that monitor the condition of products
and their surroundings, could influence the reduction of food waste during food
storage and distribution (Ghaani et al. 2016). Intelligent packaging with the function
of data transfer might be implemented in Automatic Data Collection (ADC) system
and support IT solutions such as Warehouse (Logistic) Management System
(Yu et al. 2020).

Sensors, indicators and/or data carriers implemented in intelligent packaging
support many aspects of food product preparation and distribution in the supply
chain. The real-time information about the packed food or beverages and its
surrounding is used to monitor and adjust the conditions within the supply chain
and to make decisions affording the extension of food shelf-life, improve safety,
ensure quality, provide information and warn against the threat for the final con-
sumer (Drago et al. 2020). Besides the identification of target compounds or physical
phenomena, intelligent packaging has the potential to support the effectiveness of
different parts of the supply chain and reduce food waste (Yu et al. 2020).

According to the Deloitte report on the market potential of smart packaging, the
innovative packaging systems could be successfully applied in three main areas
(Deloitte 2018):

1. Inventory and product life cycle management
2. Product integrity assessment
3. Supporting consumer experience

Intelligent packaging with gas sensor, food freshness indicator or adopted for this
purpose time-temperature indicator can be used by each member of food supply
chain to the estimation of real end-of-life point for food and beverage considering the
actual conditions within the distribution chain (regardless of the initially specified
product expiration date) (Müller and Schmid 2019). A widespread introduction of
intelligent systems for the supply chain would make it possible to change so-called
fixed shelf life (FSL) estimation for food and beverages product into dynamic shelf
life (DSL) attitude. The adjustable product expiration date (with DSL approach)
could reduce food waste as consumers will be able to check the actual condition of
food/beverages and their suitability to consumption (Herbon et al. 2012; Albrecht
et al. 2019).
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9.2 Sensors: Types and Construction Principles

The development of intelligent food and beverage packaging is strictly associated
with the incorporation of sensors or indicators into its construction, which enables
the assessment of packed product quality or the condition of its surrounding
(Kuswandi and Moradi 2019). The sensor interacts with an internal target
(e.g. food component, volatile metabolite in the packaging headspace) and/or exter-
nal factor (e.g. temperature, a component of the atmosphere) (Realini and Marcos
2014). The main challenge in the sensor construction is to establish a reliable
relationship between the result of the interaction and information about the state of
the packed product and/or its surrounding (Fuertes et al. 2016; Poyatos-Racionero
et al. 2018).

From the technical point of view, the sensor consists of two basic elements
(Fig. 9.2)—chemical or biological receptor, that reacts specifically with the target
analyte, and a transducer converting the analytical response into a recognizable
signal, which can provide quantitative and/or qualitative output of the sensor activity
(Nayak et al. 2009; Mustafa and Andreescu 2018). Biosensing systems rely on the
recognition systems of biomolecules like enzymes, nucleic acids, immune system
components (antigen, antibodies) or other bioactive compounds (Wang et al. 2012;
Chauhan et al. 2019). The sensor transducer can be based on many different
physicochemical and electronic solutions, which convert the observed target reaction
into a useful analytical signal. Depending on the nature of this reaction, the trans-
ducer may use colorimetric arrays (Yang et al. 2011), electrochemical (Pwavodi
et al. 2021), optical (Viter et al. 2017) or mass-based signal transmission (Debabhuti
et al. 2021). Biosensors are usually designed for use in medical research or environ-
mental protection, but the newest intelligent packaging is slowly starting to adopt
these analytical devices (Mustafa and Andreescu 2018). Biosensing devices are

Types of receptors:
1. Chemical 
2. Electromagnetic
3. Mechanic
4. Optical
5. Thermal 
6. Acoustic
7. Biologically active

(biosensors)

Types of transducers:
1. Electrochemical

(e.g. conductometric, potentiometric)
2. Optical 

(e.g. Surface Plasmon Responce, UV-Vis absorbance)
3. Thermal

(e.g. heat sensitive change in polymer film)
4. Mass-based

(e.g. piezoelectric, magnetoelastic) 

Fig. 9.2 Types of receptors and transducers in sensors construction (Source: Own work based on
Sohail et al. 2018, Chauhan et al. 2019)

9 Role of Sensors to Improve Food/Beverage Packaging 229



commonly developed in laboratories, and their creators’ aim is to achieve popularity
at least equal to biosensors used to monitor blood glucose levels (glucometers
currently account for 85% of commonly available biosensors) (Pereda et al. 2017).

A more direct assessment of the condition of the packed food or beverages is
provided by the indicators, which signalize any change in packed product or its
surrounding (e.g. pH, temperature) usually by visual changes (e.g. by changing the
colour) (Sohail et al. 2018). The indicators have usually simplified recognition and
transduction system in comparison to the sensors. Indicators provide direct and
noticeable to the naked eye change the appearance of the their distinctive elements in
the presence of the target phenomenon. The greatest challenge in the design of a
usable intelligent packaging system is the identification of a reliable relationship
between the measurable indicator and changes in food product quality and/or safety
being under observation (Müller and Schmid 2019). The most popular indicators
applied in intelligent food packaging are time-temperature indicators (TTI) mainly
because of the simplicity of its construction, low cost, ease of calibration and
interpretation of results compared to other indicators and sensors (Han et al.
2018). Packaging tightness indicators (gas indicators) and food freshness indicators
(including ripening indicators and microbial growth indicators) are also becoming
more and more popular (Drago et al. 2020).

9.3 Physical Sensors/Indicators

Temperature is one of the most important physical agents affecting the condition of
food and beverages (especially refrigerated products and frozen food) (Fuertes et al.
2016). Deviations from the determined temperature profile lead to noticeable food
changes or significantly increase the likelihood of these changes, which should be
recognized in prerequisite kinetic study and modelling of food quality loss at
different temperature levels (Kim et al. 2016). The simplest physical sensors applied
in food and beverage packaging are designed for temperature monitoring base on the
application of thermochromic inks which can change their colour as a result of
exposure to elevated temperature. The colour changes can be reversible or irrevers-
ible depending on the thermochromic ink applied. Irreversible changes remain stable
when the packed product reaches the specified temperature and the packaging
element does not revert to its previous appearance until excessive cooling or
overheating subsides (Vanderroost et al. 2014). The intelligent packaging can
indicate undesirable exposure of the packed product to too high or too low tempera-
ture, which can be a desirable application of the indicator in the food supply chain.
The reversible thermochromic inks systems are more desirable by the final food or
beverages consumers. The temperature colour-changing imprints on the packaging
may indicate the desired temperature of consumption of a given product (e.g. a
chilled drink—Fig. 9.3a) or remind about the necessity to refrigerate a product that is
sensitive to prolonged exposure to elevated temperatures (Fig. 9.3b).

The monitoring of thermal conditions of food storage and/or transportation can be
easily carried out with time-temperature indicators (TTI) (Fig. 9.4) which are the
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most popular intelligent packaging items (Müller and Schmid 2019). TTI indicators
activity relies on different types of reactions, the intensity of which is proportional to
the temperature increase above the assumed optimal value. The mechanisms can
have mechanical (e.g. 3M Monitor Mark™), chemical (e.g. On Vu™, Fresh
Check®), electrochemical (e.g. VITSLAB®), enzymatic (e.g. CheckPoint®) or
microbiological (e.g. e0®, TopCryo®) background but the main goal is to provide
irreversible and visible reaction of TTI indicator dependent on the monitored
temperature of the packed product or its environment (Pereira Jr. et al. 2015;
Wang et al. 2015). Table 9.1 presents commercially available TTI indicators and a
short description of its operation modes.

Time-temperature indicators are designed to have a convenient and simple form
of an element that can be easily inserted into conventional food packaging such as
labels or strips. TTI indicators work usually in one of three modes: indicating the
transgression of determining temperature (critical temperature indicators), measur-
ing the time of exceeding the indicated temperature (partial history indicators), or
recording the complete temperature profile in a given period (full history indicator)
(Müller and Schmid 2019). The indicator should respond when the adverse thermal

Fig. 9.3 Examples of food and beverages packaging imprinted with thermochromic ink indicating
(a) optimal cooling temperature or (b) a warning of increased temperature of the packed product
(Source: Image provided by Chromatic Technologies Inc.)

Fig. 9.4 Examples of commercially available time-temperature indicators: (a) Monitor Mark™.
(b) OnVu™ labels (Source: Images provided by 3M Company (a) and Freshpoint (b))
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condition occurs and provide information about the scale of the risk of food quality
and safety loss (Fig. 9.5).

The usefulness of colorimetric indicators for all members of the food supply chain
depends on the technological applicability of the indicator on the packaging and the
readability of its signalling (especially for the final consumer) (Schaefer and Cheung
2018). A very good example to consider these two aspects of TTI application on
food packaging is On Vu™ time-temperature indicator that can be activated by UV
radiation at any stage of the supply chain. On the other hand, its response to the
adverse thermal condition is fading the dark navy blue interior of the pictogram to
grey colouring, which gives only the approximate time of unfavourable temperature
influence on the monitored product (Branka 2012). The thermochromic inks used in
physical sensors for intelligent packaging should provide a more distinguishable
change of the indicator appearance, which will be easy to recognize in a situation
threatening food safety and quality.

Table 9.1 Commercially available time-temperature indicators applicable for food and beverages
intelligent packaging

TTI indicator (company,
country)

Type of
action

Need of
activation

Colour change
(optical
response) Application

CheckPoint® types M, L
(Vitsab Int. AB, Sweden)

Enzymatic Yes Tricolour: green
to yellow to red

Meat, fish,
dairy products

(e0)® (Cryolog, France) Microbial No Green to red Cold chain

FreshCheck®

(TEMPTIME Corp. USA)
Polymeric No Colourless to

blue
All kinds of
fresh products

On Vu™ (Freshpoint,
Switzerland)

Photochromic Yes Dark blue to
colourless

Meat, fish,
dairy products

Monitor Mark™ and
Freeze Watch (3M Comp.
USA)

Diffusion-
reaction

Yes Diffusion of
coloured path/
material

Bakery
products,
beverage, meat

Own work on the basis (Park et al. 2015; Sohail et al. 2018; Drago et al. 2020)

Fig. 9.5 CheckPoint® label L5-8 (Smart TTI Seafood Label) indicating thermal exposure over the
level recommended by U.S. Food and Drug Administration (Source: Image provided by Vitsab
International)

232 M. Tichoniuk



9.4 Chemical Sensors/Indicators

The atmosphere inside packaging has a tremendous influence on the quality of
packed food and/or beverages, and some changes in its chemical composition
indicate often undesirable processes in packed product or leakage from inside or
outside of the packaging materials (Sohail et al. 2018). The chemical sensors are
constructed to detect target analytes in the packaging atmosphere or close contact
with packed food products (Table 9.2). This mechanism of action is exploited by
integrity and food freshness indicators/sensors (Fuertes et al. 2016). The first type of
intelligent packaging is based mainly on oxygen or carbon dioxide detection. When
it is applied as an integrity indicator, it contains a dye compound that changes its
colour in case of alternation of the chemical composition inside packaging (Meng
et al. 2014).

The integrity (gas) sensor or indicator is very usable for food packaging with the
modified atmosphere inside, when the chemical content of packaged product head-
space prolongs its shelf life, and damage to the integrity of the packaging reduces the
effectiveness of the applied packaging system. One of the most popular integrity
indicators that is available on the market is Ageless Eye® label (provided by
Mitsubishi Gas Chemical company) (Fig. 9.6). The indicator enables the detection
of an oxygen level increase inside the packaging but it should be implemented
together with oxygen scavengers to prevent the influence on the reliability of the
indicator by residual oxygen, which could be present in the packaging or could be
released from the packaged product (Tichoniuk 2019).

The release of metabolites from packed food could indicate a significant decrease
in its quality and/or safety due to the development of undesirable microflora or as a
result of internal physicochemical and/or enzymatic changes in the product. Fresh-
ness indicators and sensors are designed to recognize metabolites released into the
packaging interior during food spoilage or ripening (Fig. 9.7). The target analytes in
the recognition process are usually carbon dioxide, ethyl alcohol, esters, organic
acids, sulphur derivatives or volatile nitrogen compounds (Sohail et al. 2018;
Tichoniuk 2019). The freshness indicators are usually simple colorimetric arrays

Table 9.2 Examples of target compounds and food products monitored by freshness indicators

Target compounds
(metabolites) Food product Freshness indicator/sensor

Biogenic amines Fish,
seafood,
meat

Colour-changing indicator with pH-sensitive
dye/electrochemical sensor for enzyme redox reaction

Carbon dioxide Fermented
food, meat

pH-sensitive with colorimetric response/electrochemical
sensor, e.g. with silicon-based polymer recognition layer

Glucose/ Lactic
acid

Fermented
food, meat

pH-sensitive with colorimetric response/electrochemical
sensor for redox reaction

Oxygen Meat, fruits,
vegetables

Oxygen-sensitive indicator with pH-sensitive dye/optical
sensor by fluorescence

Own work on the basis of Sohail et al. (2018)
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that change their colour in the presence of target chemical compounds and signal
change of product quality or loss of freshness (Fuertes et al. 2016).

The intelligent packaging systems able to monitor food freshness and/or ripeness
are intensively developed but some of them are already available on the market
(Table 9.3). Most of the published research results focused on the application of
freshness indicator for non-destructive monitoring of food spoilage metabolites in
the packaging headspace during the storage of packaged perishable foods

Fig. 9.6 Ageless Eye® gas (oxygen) indicator (Source: Image provided by MITSUBISHI GAS
CHEMICAL)

Fig. 9.7 RipeSense fruits ripening indicator (Source: Image provided by Ripesense Limited)
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(e.g. vegetables, fruits, seafood or meat) (Ahmed et al. 2018; Tichoniuk et al. 2021).
The colorimetric freshness indicators are very promising elements of intelligent
packaging, but their effectiveness and credibility of the information provided depend
on many factors such as positioning inside the package, indicator’s activation
procedure, the chemical content of packaging atmosphere, or temperature changes
within the whole food supply chain (Tichoniuk et al. 2017). The influence of the
above-mentioned factors has to be considered both in the laboratory study on new
freshness indicators and in the evaluation of commercially available indicators.
Table 9.3 presents the indicators dedicated to food freshness and tightness of their
packaging that are available on the market and are recognizable elements of intelli-
gent packaging. Freshness indicators could be a very good tool for the introduction
of dynamically adjustable expiration dates in the so-called dynamic shelf life (DSL)
approach in the food supply chain. However, due to technological limitations, they
give way to TTI indicators, which can be much easier implemented on a mass scale
in intelligent packaging (Herbon et al. 2012; Albrecht et al. 2019). The application of
time-temperature indicators in the food supply chain based on DSL attitude can
reduce food waste by retailers and help to maintain food quality and safety for the
final consumers (Buisman et al. 2019).

Table 9.3 Examples of commercially available chemical indicators applicable in food and
beverages intelligent packaging

Type of
indicator

Commercial
name Company (Country) Area of application

Integrity
(gas)
indicator

Ageless
Eye®

Mitsubishi Gas Chemical
(Japan)

All packed food products—specially
applicable in aseptic and modified
atmosphere packaging systems

Integrity
(gas)
indicator

Novas® Insignia Technologies
(United Kingdom)

Freshness
indicator

Fresh Tag® COX Technologies
(USA)

Perishable food products, with
volatile metabolic products,
e.g. meat, fish and seafood, dairy
products, vegetables and fruits

Freshness
indicator

Raflatac VTT and UPM Raflatac
(Finland)

Freshness
indicator

RipeSense RipeSense
(New Zealand)

Freshness
indicator

SensorQ® DSM NV and Food
Quality Sensor
International Inc.
(Denmark)

Source: own work based on (Fuertes et al. 2016; Ahmed et al. 2018; Poyatos-Racionero et al. 2018)
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9.5 Electronic Sensors and Data Carriers

Food and beverages distributors appreciate the ability to trace their products along
the supply chain thanks to intelligent packaging designed for efficient data transfer.
Data carriers are not designed to monitor the condition of a packed product (or its
surrounding), but they are intended to facilitate the flow of information in the supply
chain (Müller and Schmid 2019). This group of packaging systems includes different
variations of barcodes one-dimensional and two-dimensional (e.g. Quick Response
(QR) codes), radio-frequency identification (RFID) systems, and their combinations
with sensors such as temperature or mechanical shock sensor (Fang et al. 2017; Yu
et al. 2020). Barcodes are now the global standard for capturing and communicating
product information throughout the supply chain (GS1 2020). A typical
one-dimensional barcode consists of a set of black and white bars and a
corresponding numeric notation of encoded information. Two-dimensional
(2D) barcodes have a square or rectangular shape and contain black and white
spots creating the whole pattern and encoding required information. All these
codes are printed on the surface of the packages and are used in optical Automatic
Data Collection (ADC) systems, but intelligent packaging technology enables data
transfer without visual contact with the label using electromagnetic waves in RFID
technology (Yu et al. 2020).

Radio-frequency identification (RFID) systems are emerging intelligent packag-
ing technology usable in real-time data collecting, storage and transmission, which
do not require direct contact and visibility of carriers (labels or tags) (Poyatos-
Racionero et al. 2018). RFID systems exploit electromagnetic fields to collect and
transfer information about the packed product for its automated identification and
traceability (Abad et al. 2009; Yu et al. 2020). Radio-frequency tags can be divided
into three main groups depending on applied power supply, the ability of communi-
cation and implementation of additional features (e.g. temperature measurement).
The most advanced are active RFID systems, less developed are semi-passive or
semi-active labels, and the simplest construction have passive RFID tags (Poyatos-
Racionero et al. 2018). The radio-frequency identification tags contain an integrated
electronic circuit built into an antenna for the transmission of data stored in the chip
to a reader, which enables a different type of packaging to be monitored at the same
time and collect various information. The tag can be coupled to a primary food
packaging, box, transportation container, or pallet and therefore can be identified and
tracked (Cerqueira et al. 2018; Sohail et al. 2018). Table 9.4 presents examples of
commercially available RFID systems combined with sensing arrays designed for
food packaging. Such sensors could be used to monitor the freshness and current
state of perishable food products in the supply chain to minimize the risk of
delivering spoiled food to the final consumer.

A market simulation performed for the inventory management of perishable food
products in a dynamic pricing system and with the application of RFID tags with TTI
indicators confirmed the usability and economic justification of the application of
such intelligent packaging in the supply chain (Herbon et al. 2012). According to the
researches the introduction of RFID systems combined with the time-temperature
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sensor is profitable (at all price discrimination levels) provided the penalties for the
sale of damaged items are high and the cost of using intelligent packaging is
relatively low. On the other hand, the increase of packaging cost by over 30% of
the value of a packaged item and relatively low penalties for selling bad quality
products may make the introduction of intelligent packaging unprofitable. However,
in the market where customers’ awareness of product quality is strong, using
TTI-RFID automatic devices can be very profitable in connection with pricing
differentiation. Radio-frequency identification systems were also introduced into
food quality and safety assurance approaches, for example, for food cold chain
monitoring (Badia-Melis et al. 2015), food freshness (Eom et al. 2014), or food
product stored in modified atmosphere packaging (Martínez-Olmos et al. 2013).

The most desirable intelligent packaging for food and beverages, considered by
both consumer and supplier, includes sensors and indicators used to expand its
informative functionality of packaging (Schaefer and Cheung 2018). Figure 9.8
presents QLIKTAG project of food packaging featured with barcodes, Quick
Response (QR) codes, and authentication tags to provide all participants of the
supply chain additional information about the product. Additionally, Internet of
Thing (IOT) technologies could be also connected with intelligent packaging in
the food supply chain to support product traceability, monitoring food products’
condition, and live-sharing the collected data with the chain participants.
(Witjaksono et al. 2018). All mentioned smart technologies could include simple
indicators or sensors such as temperature or integrity ones especially usable for
monitoring product quality and safety (Fuertes et al. 2016).

9.6 Summary

Real-time control of food and beverages condition and evaluation of its surrounding
could be facilitated with intelligent packaging systems. Indicators and/or sensors,
included in this packaging group, are capable of real-time monitoring selected
parameters influencing the quality and safety of food products such as temperature

Table 9.4 Examples of commercially available RFID systems combined with sensors for food
packaging

Commercial
name Company RFID system

Easy2log® CAEN RFID Srl Time-temperature sensor tag

CS8304 Convergence Systems
Ltd.

Time-temperature sensor tag

TempTRIP TempTRIP LLC Time-temperature sensor tag

Intelligentbox MondiPlc Box with integrated time-temperature sensor
tag

Intelligentfishbox CraemerGroup GmbH Box with integrated time-temperature sensor
tag

Source: own work based on (Fuertes et al. 2016; Poyatos-Racionero et al. 2018)
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or chemical composition of the atmosphere inside the packaging. They could be also
adjusted to recognize symptoms of food ripening or spoilage, e.g. detecting pH
change or confirming the presence of volatile metabolites being the results of
undesirable changes in food and beverages quality. However, intelligent packaging
systems require validation of its signalling about the changes in monitored product
or its surrounding regarding the influence of external factors on the indicator/sensor
activity.

The electronic data carriers based on Radio Frequency Identification (RFID)
technologies are already introduced in many areas of the supply chain, which
supports the flow of information during product storage and distribution. RFID
systems could facilitate real-time product monitoring, more efficient inventory and
precise product traceability, which support the maintenance of food product quality
and safety. RFID tags combined with electronic sensors such as temperature
recorders or gas sensors could be very useful in the supply chain, especially for
perishable food products. Additionally, Internet of Thing (IOT) elements introduced

Fig. 9.8 Example of intelligent (smart) packaging designed for food products and equipped with
different identification tags and data carrier labels (Source: Image provided by Qliktag Software
Inc.)

238 M. Tichoniuk



into intelligent packaging in a form of QR codes or product authentication tags, for
example, significantly extends the possibility of obtaining additional information
about food products for all members of the food supply chain (and especially for the
final consumers).

Reviewers Mehran Moradi (Department of Food Hygiene and Quality Control,
Urmia University, Iran).

Alfredo Ernesto Di Noia (Department of Economics, Management and Terri-
tory, Universitàdeglistudi di Foggia, Italy).

Anna Masek (Institute of Polymer and Dye Technology, Lodz University of
Technology, Poland).
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Functional Nanomaterials for Food
Packaging Applications 10
Vivek Kumar, Deepika Umrao, and Anjali Srivastava

Abstract

The utilization of nanotechnology in the establishment of innovative food pack-
aging materials has had a significantly remarkable enhancement in the previous
years, and researches are expected to have an essential impact on the food
packaging market in the coming years. Nanotechnology is the emerging engi-
neering field of functional system at the molecular level and has the potential to
play a significant role in agriculture and food security, molecular and cellular
biology sensors for pathogen identification, environmental protection and allows
designers to change the packaging materials on the molecular level to enhance
their desired properties such as mechanical strength, temperature and moisture
stability, long durability, gas barrier, and flexibility. Due to the revolution in the
food packaging materials, the traditional packaging is being replaced by the
active packaging, biochemical improved packaging, physically improved and
smart packaging to enhance food quality and safety with the significant use of
nanotechnology. The focused application of nanotechnology is utilized in food
packaging because of their better balance in processing, characteristics, and
overall production cost. Nowadays the country regulations and the market are
claiming for sustainable higher performance of the food packages, such as longer
shelf life, maximum ways of preserving the food in better conditions and shows
lower environmental impact. The most promising approaches to overcome
defined problems with success have been significantly achieved by preparing
nanotechnology-based food packaging material, for instance, preparing
nanocomposites that are based on inorganic nanoparticles and polymer matrix
dispersed as reinforcement. The techniques used with high aspect ratio of
nanoparticles allow adding new functionalities to traditional packaging materials,
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for example, antimicrobial activity, control emitter substances, and enhanced gas
and water vapor barrier characteristics. The main classification of nanotechnology
packaging materials and their significant functions and applications are reviewed
in this chapter with safety concerns and future prospective.

10.1 Introduction

The major losses in the food industry are wastage of more than 1.3 billion metric tons
of consumable food every year. The more focused reason behind the loss is
low-quality post-harvesting techniques, unsuitable storage facilities, transport
facilities, and also last but not the least wastage of food in the marketplaces as
well as by consumer uses (Reynolds 2007). The food production rate is increasing on
one side but on the other side to focus on solving the problem of food crises due to
food wastage, environmental adverse conditions as well as increase in greater
population rate. Researchers and scientifically proven studies showed that food
wastage is mostly born due to microbial contamination; this will lead toward
deterioration in shelf life of food products and also increases the high risk of
foodborne diseases (Sperber 2009). The problem of food commodities storages
and decrease in shelf life of food products were minimized by the use of “nano-
packaging for food” or utilization of nanotechnology (Ekrami et al. 2014). Nano-
technology is the combination of development, fabrication, and characterization of
material or the structure measures length in the nanometers. If a macro-sized particle
lowers down to a nano-size particle, the producing nanoparticles have entirely
different chemical and physical property from the original macro-size particles
(Ravichandran 2009). Nanoparticles are the owner of unique characteristics of
physical, chemical, biological, and large surface area volume ratio. This newborn
technology helps in improving better health, quality of life, wealth as well as also
shows significantly positive impact on the environmental issues (Dasgupta et al.
2015). Besides the tremendous development of nanomaterial in the field of agro-
food, sewage treatment, medicines, and electronics, it lacks behind in the field of
food packaging. However, since various nanomaterials developed with many func-
tional properties can be used to improve the quality of food packaging, hence even in
its infancy, the nonomaterials are being developed and applied increasingly in the
food packaging industry nowadays (Kuswandi 2017).

The utilization of functional nanomaterials for food packaging could also be
helpful in developing properties which could modulate the release of antimicrobials,
antioxidants, enzymes as well as flavors nutraceuticals to enhance the shelf life and
overall quality of food (Berekaa 2015). Nanotechnology helps in manufacturing
nanomaterials in a form of film which works by refusing permeability of unwanted
gases such as carbon dioxide or oxygen, which affect the shelf life of food products
(Silvestre et al. 2011). Previously plastic polymers of non-biodegradable nature were
mostly used for food packaging but these are a threat to human beings, animals, and
the environment too. The biomaterials are edible and biodegradable in nature and
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can be used in food packaging to maintain food product freshness and food safety
during distribution, storages, and consumption period. Nanotechnology used for
food packaging is based on nanocomposite material to reduce the wastes of the
food packaging (Kuswandi 2017). The nanocomposite materials are helpful in
biodegradation film, edible, environment friendly, easy to coating, and significantly
manage freshness and shelf life of food (Sorrentino et al. 2007).

The nanotechnology sector emerges very fast but in nano-food packaging it is still
playing a role of infancy. The present chapter focuses on acknowledging the recent
methodologies in the development of nano-food packaging. Covered topics include
the functional nanomaterials used for the improvement of food packaging and
classification, physical improved packaging consists of nano coatings, nano surface
biocides, nano-laminates for enhancing physical, mechanical, barrier, and stability,
biochemical improved packaging consists of various bio-based nanomaterials for
enhancing biodegradability and eco-friendly, improved packaging with active
functions such as UV absorbing film, scavenger film to protect from oxygen,
antimicrobials, improved packaging with smart functions such as nanosensors for
freshness identification, oxygen detection, techniques to analyze functional
nanomaterials, environmental and safety concerns and the chapter ended with future
prospective and conclusion.

10.2 Classification of Nanomaterials-Based Food Packaging

The utilization of nanomaterials in food packaging is divided into two main classes:
firstly, nano-object materials and second one is nanostructured materials. The appli-
cation of nano-object materials is as fillers in the nano-plates and nanofibers, for
example: carbon nanotubes, metallic nanoparticles. In the case of nanostructured
material, the nanomaterials are utilized into matrix of polymer by the dispersion of
nanostructured materials in the form of nanocomposites as shown in Fig. 10.1.

Food packaging can be improved by incorporation of nanomaterials and they can
be categorized into four main classes on the basis of the functions of nanomaterials
(Table 10.1). Physically improved packaging; the nanomaterials improve the physi-
cal properties of packaging such as temperature and moisture stability, mechanical
strength, durability and gas barrier and flexibility properties. Biochemical improved
packaging; the biochemical characteristics of packaging such as biodegradability,
eco-friendly, edible and low waste generation. Improvement of packaging by active
functions of nanomaterials as antimicrobial properties also includes antioxidant and
UV absorbance. These properties were intentionally introduced into and show a
positive effect on the packed food regarding taste, freshness, and shelf life. Smart
functions of nanomaterials are used to improve food packaging by utilization of
nanosensors to examine and monitor the condition of the food in terms of freshness,
oxygen and pathogen level, etc.
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10.2.1 Physically Improved Nanomaterials-based Food Packaging

Incorporation of nanomaterial to enhance the physical and mechanical properties of
food packaging is known as physically improved packaging. To manufacture nano-
food packaging material, mixing of nanomaterials into the polymer matrix is an
important phenomenon and in addition aids to increase physical characteristics such
as gas barriers, temperature resistance, mechanical strength, flexibility, and humidity
resistance of food packaging (Vasile 2018). Nanotechnology methods for improving
physical and mechanical properties of food packaging are shown in Fig. 10.2.

10.2.2 Nano-Coatings

It is the most common method of application nanomaterials in the form of thin layer
or film on the food surface. Nano-coatings are measured in nanoscale thickness
ranges from less than 1–100 nm. It is used in covering the surface and also imparting
particular physical and chemical functions. Nano coating does not play a role in
improving surface topography and is not able to fill cracks or gaps in the surface like
paint. Nano coating is formulated by placing one or multiple molecular layers on the
surface of basic packaging materials such as glass, metals, ceramic, and polymer
(Brody 2006). This film coating acts as a barrier for gases, moisture, and lipids.
Edible coating films are directly applied to the food either by liquid film-forming

Fig. 10.1 Classification of nano-object materials and nanostructured materials
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solution or molten compounds (Baldwin et al. 1996). Hydrocolloids, proteins, and
lipids are commonly used as an edible coating material for films formation.

10.2.3 Nano Surface Biocide

Specifically utilize nano silver as metallic. For instance: Silver, silver nitrate, zinc
oxide, titanium oxide, magnesium oxide, etc. These nanomaterials are incorporated
with antimicrobial properties onto food packaging surfaces. They increased shelf life
of product, provide significant league quality of mechanical and machinability
characteristics. It is the most commonly used packaging for fresh foods and
fat-rich products (Guilbert et al. 1997).

10.2.4 Nano-Laminates

Layer by layer deposition of nanomaterials was significantly utilized for edible
coating. Layer by layer coating application of active agents was employed between
the layers or within the individual polyelectrolytes. Polyelectrolytes with opposite
charges interact and deposit by mutual attraction between polymeric activated
surfaces and polyelectrolytes having covalent entities. For instance,
polyelectrolytes are: bio-based polyelectrolytes (proteins, polysaccharides), lipids
(surfactants, phospholipids), colloidal particles (micelles, vesicles, droplets)
(Kuswandi and Moradi 2019). Layer by layer phenomena allow integration of active
compounds into the films (some instances of active compounds are: antimicrobials,

Nano-clays

Nano surface 
biocides

Nano-
laminates

Nano-coating

Incorporation of nano clay particle inside 
packaging materials

These nanomaterials are incorporated with 
antimicrobial properties onto food packaging 

surfaces

Nano-laminates consist of two or more layers with 
nanoparticles and linked by physical and chemical 

phenomena.

Thin layer coating on food materials to prevent the food 
from outer environment surrounding

Fig. 10.2 Nanotechnology methods for improving physical and mechanical properties of food
packaging
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anti-browning agents, enzymes, odor, and flavors) and these agents assist in enhanc-
ing shelf life and quality of laminated food commodities (Galus et al. 2020).

Nano-laminates are formulated by dipping and washing. Nano-laminate
properties depend on many features such as structure, thickness, and composition,
and in addition these characteristics also depend on total dipping steps, varieties of
absorbing agents used in dipping solutions and accounting environmental factors
which play important role in formulation of nano-laminates (for example, tempera-
ture, ionic strength, pH and dielectric constant, etc.). Covalently linked layer by layer
films enhanced the modulus and nano-films stability (Kuswandi and Moradi 2019).

10.2.5 Nano-Clays

Nano-clays are defined as clays having nano-size and are significantly employed to
enhance the physical properties of food packaging materials. It is utilized in nano-
composites (formation of layered silicates). The presence of silicates in polymer
formulation assists in improving diffusive path with the tortuosity (for a molecule to
penetrate through it and help in providing better barrier properties) (Bharadwaj
2001).

Nano-clay enhances the polymers mechanical strength and its cooperation
with biopolymers enhances the utilization of functional nanomaterial in food pack-
aging. Nano-clays are utilized in a variety of food commodities to enhance the shelf
life and stability of food packaging, some instances are processed meats, cereals, boil
in bag foods, meat, etc. (Brody 2007). Nanocomposites combine with clays leads in
the transport of diffusing molecules are blocked by impenetrable particles/clay and
due to this interfacial zones consist of different permeability characteristics as in
comparison to basic polymer formed as shown in Fig. 10.3. Consequently, the
nonlinear pathway enhances the gas diffusion length, which leads to the
prolongation of shelf life of rapidly spoiled foods (Adame and Beall 2009).

The general goal of improved food packaging material is achieved by
incorporation of functional nanomaterials into polymer to enhance the mechanical
and physical properties. The nano-clay particles are incorporated in different
proportions into polymers to enhance the gas barrier properties of the packaging
materials for the beverages and oil industry (Table 10.2).

10.3 Biochemical Improved Nanomaterials-Based Food
Packaging

Bio-based functional nanomaterials are biodegradable films that are significantly
used in food packaging to control the moisture and oxygen transfer as a result it
enhances the shelf life, maintain the nutritional values, sensory quality, and safety of
foods (Siracusa et al. 2008). As in comparison between plastic and bio-based
nanomaterial food packaging, the bio-based nanomaterial seems to be more in
favor of eco-friendly nature and in addition to provide best protection to food from
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external environment by preventing it from microorganism growth, gas penetrations,
humidity, and to avoid further deterioration of food (Dasgupta et al. 2015).
Presenting some instances of bio-based materials that are significantly applicable
in functional nanomaterial food packaging systems. The maximum use of polyester
(PET; polyethylene terephthalate) for food packaging is prepared from bio-based
extracted raw materials (Chandra and Rustgi 1998). In the current scenario it is
formulated by using petroleum classified materials and PLA (polylactide) is also
biodegradable and its incorporation with nanomaterial enhances the mechanical and
barrier properties of food packaging. PEF (polyethylenefuroate) is formulated from
2,5-furan dicarboxylic acid (FDCA) and ethylene glycol both are derived from

Fig. 10.3 Incorporation of clay nanoparticles into a film matrix

Table 10.2 Effect of nano-clay proportions on food packaging

Nano-clay
percentage

Reduction in oxygen
permeation Remarks References

5% (w/w) Reduction of oxygen
permeation of 80–90%

The properties of the
nanocomposites films were
significantly improved as in
comparison to the material without
added clay nanoparticles

Brody
(2007)

3% (w/w) Oxygen penetration is
reduced up to 59% and
water vapor barrier by 90%

Excess clay loading in ethylene-
vinyl alcohol copolymer results in
reduction of tensile strength and
optical transparency due to clay
agglomerates formation

Kim and
Cha
(2014)

4% (w/w) Results in increase in
oxygen barrier properties

Utilization of (PS) polystyrene to
improve oxygen barrier features

Arora et al.
(2011)
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renewable resources. The (PTF; polytrimethylenefurandicarboxylate) is made from
furan dicarboxylic methyl ester (FDME) and has biodegradable properties. They are
successfully utilized for manufacturing of conventional PET, glass, and aluminum
bottles. Many of these nanomaterials are not fully eco-friendly but having best
sustainability for packaging material (Doi et al. 2002).

Bio-based nanomaterials for food packaging applications are shown in Fig. 10.4
that are easily decomposable in comparison to plastic nanomaterials. Requirement of
natural situations such as temperature, oxygen availability, moisture, and biodegra-
dation process of bio-based nanomaterials is a nontoxic phenomenon for the envi-
ronment (Bhardwaj et al. 2006).

The further classification of biodegradable plastic polymers based on their origin:
(a) Biomass-based biodegradable polymer: direct extracted from biomass
(polysaccharides, polypeptides, polynucleotide, and protein). (b) Mixed biomass
and petrochemical: fabrication of polymer with bio monomers (for instance:
polylactic acid/bio-polyester). (c) Production of polymers by microorganisms or
GMOs (genetically modified organisms): for example; bacterial cellulose, xanthane,
curdin, and pullan (Bhardwaj et al. 2006). The use of nanotechnology in the
preparation of biopolymers leads to improve physical and chemical properties of
biopolymers and also decreases the overall cost of packaging. The most common
nanomaterials used for food packaging are PLA derivates, polyhydroxybutyrate
(PHB), chitosan, protein, and cellulose.

10.3.1 Starch-Based Functional Natural Nanomaterials

The convincing characteristics of bio-nanocomposites called “starch-based” having
renewable capacity and perfectly fit in a low-cost productive process. Starch-based
food packaging can be created to manufacture a film having appropriate mechanical

Non- renewable resources

PCL (Polycaprolactone) and PVA  (poly vinyl alcohol)  

Non- biodegradable 

Biobased (PE)  polyethylene, polypropylene, polyamide, 
polyethylene terepthalate, polyethylene furonate , 

Renewable sources and biodegradable

Starch and celluose based thermoplastics, PHA  
(polyhydroxyalkonate), polylactic acid and polyester 

amide.

Fig. 10.4 Classification of bio-based material for food packaging applications
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strength. Starch is successfully utilized into a thermoplastic nanomaterial by using
extrusion and improves both mechanical and thermal power (Wang et al. 2010).
During extrusion process of thermoplastic starch production, plasticizers were
applied to lower intramolecular hydrogen bonds therefore helpful in enhancing the
stability of packaging material (Abdulmola et al. 1996). The important sources of
starch for bioplastic materials are corn, rice, barley, oat, wheat, soy, and potato
sources. Starch nature is hygroscopic, therefore their absorbent pads were signifi-
cantly applied in meat effusions (Park et al. 2002). Starch-based functional films are
employed for packaging of both perishable foods and less moisture or dry products
(Yoon and Deng 2006).

Due to the hydrophilicity nature of thermoplastic starch (TPS), sometimes it is not
appropriate because of the fluctuations in moisture content during processing (Chen
and Evans 2005). To overcome this problem nano-filler clay is recommended to
improve the TPS property and also enhance the stability of food packaging (Park
et al. 2003). The stability of TPS further improved by employing sodium montmo-
rillonite in a concentration of less than 5%. In addition to stability, it also improves
decomposition temperature, tensile strength and modulus and reduce relative diffu-
sion coefficient of water vapor (Wilhelm et al. 2003). In recent time, the most
common bio-nanocomposites used for food packaging material are starch and its
derivates, such as PLA, polyhydroxybutyrate (PHB), and aliphatic polyester,
chitosan, proteins, and cellulose.

10.3.1.1 PLA (Polylactic Acid)-Based Functional Nanomaterials
Polylactic acid is produced by chemical processes under a category of bio polyester.
PLA is a biodegradable polymer synthesis from phenomena called thermoplastic
aliphatic polyester (Chen and Evans 2005). PLA has great capacity in producing a
wide range of renewable food packaging materials. The fermentation process is
required to manufacture PLA from renewable resources (corn starch) and further
polymerization via lactic acid polymerization (Murariu et al. 2008). PLA has good
biodegradability characteristics and outstanding mechanical properties (Martino
et al. 2006).

The PLA physical and chemical characteristics are based on the ratio of L-PLA
and D-PLA. The L-PLA type consists of a high melting point and high crystalline
point but a mixture of L- and D-PLA results in an amorphous polymer for the glass
transition (Murariu et al. 2008). Some drawbacks are related to PLA, its low reactive
side chain constituents decrease its use as packaging element, slow degradation,
lower hardiness as well as hydrophobicity. To enhance the mechanical and physical
characteristics of PLA, chemical modification is applied by using clay
nanocomposite elements (Bandyopadhyay et al. 1999). The clay incorporation
with PLA to develop nano-composites of PLA/clay helps in speeding up the process
of degradation. Other nano-composites that are also blended with PLAs are silicates
(PLA mix with montmorillonites and flurocteroit clays) (Ogata et al. 1997). More-
over, PLA with polycaprolactone is also formed by melt-mixing via advanced
kaolinite. All these blended nano-composites PLA has shown significantly great
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mechanical, gas barrier, and thermal properties in comparison to other polymers
without clay (Tang et al. 2008).

PLA incorporation with zinc oxide and silver was employed in different food
simulants. Food simulants are part of food elements which reflect the characteristics
of food stuffs and in addition this will come in contact with the component of food
constituents (Maiti and Batt 2003). Six types of food stimulants are used in migration
testing. Stimulant A: 10% ethanol (v/v), Stimulant B: 3% acetic acid (w/v),
Stimulant C: 20% ethanol (v/v), Stimulant D1: 50% ethanol, Stimulant D2: Vegeta-
ble oil and Stimulant E; poly (2,6-diphenyl-p-phenylene oxide) has particle size
69–80 mesh, pore size (200 nm) (Aguzzi et al. 2007). Food stimulants A, B, and C
are utilized for food commodities that have hydrophilic properties (aqueous, alco-
holic, and acidic foods) and Stimulants D1 and D2 are employed for food that has
lipophilic properties and in addition covers both dairy products and non-dairy
products. Stimulant E was utilized for testing specific dry foods. PLA/ZnO; Cu/Ag
shows great results in antimicrobial activity in food packaging and also providing
great mechanical and thermal properties, barrier to UV rays, water vapor, carbon
dioxide, and oxygen (Cabedo et al. 2006).

10.3.1.2 PHB (Polyhydroxybutyrate)-Based Functional Nanomaterials
PHB is an eco-friendly polymeric functional material and formulated by utilizing
microorganisms (Bacillus megaterium) (Oliva et al. 2007). This functional polymer
is utilized as molecule energy storage in the microbial cellular structure. PHB has
good biodegradability and biocompatibility characteristics and this makes it fitter for
the food packaging industry (Lorz et al. 2000). It is mainly applied for perishable
food commodities like fresh meat, dairy products and beverages. In comparison to
PP (polypropylene) it has great physical properties and outstanding biodegradable
capacity for utilization in food packaging (Lenz and Marchessault 2005).

The microalga Spirulina species is involved in synthesizing PHB as a bioproduct
and has similar biodegradability rate, mechanical, and thermal characteristics
(Weber 2000). Moreover, as this is the byproduct of microalgae, phenolic
compounds have antibacterial, antioxidant, and antifungal properties. PHB
incorporated with nanofibrils has phenolic compounds and hydrophobicity
properties enable PHB nanofibrils to protect food from relative moisture from the
surrounding. These nanofibers showed an inhibitory effect on Staphylococcus
aureus with an inhibitory zone of approx. 7.5 mm. PHB nanofibers produced by
the electrospinning process have great barrier to the outer environment due to
nonmetric dimensions (Sudesh et al. 2000).

10.3.1.3 Polycaprolactone-Based Functional Nanomaterials
Polycaprolactone is a linear polymer with the semi-crystalline model and high
crystalline point and in addition low modulus and high elongation property (Lim
et al. 2003). Its biochemical properties are useful for food packaging as well as in
biomedical applications and agriculture fields. Due to low melting of
polycaprolactone, it is essential to incorporate it with other polymers to increase
its stability (Pitt et al. 1981). An incorporation of layer of silicates with the
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polycaprolactone has developed the nanocomposites which have improved physical
properties (Jha et al. 2019).

10.3.2 Cellulose-Based Functional Nanomaterials

Cellulose-based nanomaterials are obtained from lignocellulosic biomass, this has
become popular due to its biodegradable and ecological nature. The varieties of
nanocellulose materials are employed in food packaging such as cellulose
nanofibrils, cellulose nanocrystals, nanocellulose-based hybrid materials, and bacte-
rial nanocellulose. Cellulose nanomaterials had proven good results in reduction in
manufacturing costs and also lead as eco-friendly materials. Cellulose nanoparticles
are mostly used for food packaging applications, various materials such as in a
matrix of alginate, chitosan, PLA, polycaprolactone, pectin, etc. (Khalil et al. 2016).
These materials had been incorporated with cellulose nanoparticles by employing
different techniques. The nanoscale structure and high surface area of cellulose aids
in cellulosic nanocomposites having significantly high mechanical, biodegradation,
optical, and barrier characteristics. The effect of different concentration of cellulose
nanoparticles on the functionality of packaging has been shown in Table 10.3.

The films made from bacterial cellulose produced from cashew apple juice, and
added with lignin (0–15 wt%) and cellulose nanocrystals (0–8 wt%), showed
enhanced tensile properties and decreased water vapor permeability (Sa et al.
2020). In addition, cellulose nanocrystals (CNC) combined with super magnetic
iron oxide NPs (nanoparticles) were used for the production of high-performance
nanocomposites coating films. Soy protein isolate nanocomposites incorporated with
CNC and zinc oxide NPs were prepared by different methods and showed good
tensile strength, water vapor barrier, water-resistant ability, oxygen barrier, and
thermal stability (Xiao et al. 2020).

Table 10.3 Effect of concentration of cellulose nanoparticles on mechanical properties of food
packaging

Cellulose nanoparticles
concentration (% (w/w))

Mechanical
properties Function remarks References

5 Tensile
characteristics

Enhanced by 42% Qasim et al.
(2020)

5 Water vapor
permeability

Reduced by 28% Qasim et al.
(2020)

1 Oxygen
permeability

Reduced by 21% Qasim et al.
(2020)

8 Tensile and
water vapor
permeability

Tensile property increases but
water vapor permeability
decreases

Rana et al.
(2021)
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10.3.3 Chitosan-Based Functional Nanomaterials

Chitosan is the second most abundantly found polysaccharide in the world and
obtained from many renewable sources. Consequently, it is available at low cost
and more commercially feasible. The focused drawback of chitosan utilization as
packaging material as in comparison to the non-biodegradable polymers produced
from petroleum results in poor mechanical, barrier, and thermal properties (Cazón
and Vázquez 2019). The utilization of nanotechnology features aids in improving
properties of the chitosan matrix by the combination of newer formulated
nanoparticles. Chitosan films are significantly utilized for food packaging materials
to sustain the quality of preserved food commodities. Chitosan has high antimicro-
bial activity which works against a wide variety of pathogenic and food spoilage
microorganisms such as fungi, gram-positive and gram-negative bacteria (Kong
et al. 2010; Kravanja et al. 2019). The two phenomena used by the chitosan as
antimicrobial against: (a) Chitosan successfully bind to the negatively charged
bacteria cell wall and leads to the distribution of the cell membrane and also altered
the permeability and consequently, inhibiting the DNA replication that results to cell
death (Nagy et al. 2011) and (b) chitosan worked as chelating agents that have
capability to bound the trace metal and the toxins formulation resulting in inhibiting
the microbial growth (Yilmaz Atay 2020). The incorporation of other molecules into
the matrix of chitosan-based polymer is proposed for the formulation of new
composites film which has significantly high mechanical properties and improved
microbial characteristics as depicted in Table 10.4.

The major drawbacks of chitosan usage as packaging material in comparison to
other commonly used petroleum-based nonbiodegradable polymers are reflected in
its poor mechanical, thermal, and barrier properties (Radhakrishnan et al. 2015). The
functional properties of chitosan can be improved by the use of nanotechnology with
the incorporation of newer nanoparticles, carbohydrates, proteins, and other
polymers shown in Fig. 10.5 (Zubair et al. 2020). Therefore, presently, chitosan
films are increasingly used as packaging materials to maintain the quality of pre-
served foods.

10.4 Active Functions Improved Nanomaterial-Based Food
Packaging

In active function nano packaging phenomena, nanomaterials come in direct contact
with contained food to improve the environment for better protection and enhance
shelf life of food commodities (For instance: silver nanoparticles significantly works
as an antimicrobial role) (Chaudhry et al. 2008). Moreover, nano-magnesium oxide,
nano-titanium dioxide, nano-copper oxide, and carbon nanotubes are also reported
as an antimicrobial agent used in food packaging. Commercial production of
antimicrobial packaging as oxygen scavengers has been established by Kodak
Company (Asadi and Mousavi 2006). Polyethylene films with active enzymes as
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oxygen scavenging function are also reported in the literature and they showed to
inhibit microbial growth and ensures the safety of food products (Lopez-Rubio et al.
2006).

Active functional packaging has more advantages over conventional packaging,
in that nanomaterials are coated or laminated as antimicrobial agents in order to
ensure microbial safety of food products (Lotfi et al. 2018). Antimicrobial films
solve the problem of controlling unwanted microbial growth and also reduce health
threat microorganisms, mostly those causing contamination on the surface of food
products during a post-processing step. The improvement in the functional
nanomaterial in the form of active microbial inhibiting functions is a breakthrough
process in the food packaging industry for maintaining food packaging sustainability
(Kuswandi and Moradi 2019).

Table 10.4 Effect of incorporation of nanomaterials into the chitosan composites

Incorporation of nanomaterials into
the chitosan composites Function remarks References

Incorporation of titanium oxide and
silver having concentration of (0.5%)
into chitosan composites

Enhances the water solubility of the film,
highest antibacterial property and shows
the lowest light transmission of 54.6%,
tensile strength was also declined

Lin et al.
(2020)

Addition of ZnO and gallic acid into
chitosan composites films

Improve the mechanical and physical
properties of chitosan composites such as
water vapor and oxygen barrier, water
solubility, and UV-vis light transmission
and also proved to be significantly
showing best results in antibacterial and
antioxidant activity

Yadav
et al.
(2021)

Silver NPs/chitosan/PVA The composite nanolayer is significantly
utilized in packaging material for fresh
meat with enhanced bioactivity and long
shelf life of meat products. The
combination of chitosan with
nanoparticles shows antimicrobial
activity E. coli, S. entericaserovar
Typhimurium, S aureus, and Listeria
innocua

Arkoun
et al.
(2017)

ZnO NPs incorporation into the
linseed oil in chitosan/potato-based
polymer

Applicable for determination of storage
quality of fresh meat and improve the
tensile strength and transparency of the
film

Wang
et al.
(2020)

Chitosan gelatin incorporated with
nanoencapsulated tarragon essential
oil

Applicable for preserving the pork slices.
Moreover chitosan incorporation with a
variety of essential oils (cinnamomum,
assai pulp, thyme, lemon) showed
oxidation and microbial growth
retardation in a variety of food products

Zhang
et al.
(2020)
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10.4.1 Antimicrobial Active Packaging

The active antimicrobial function in the packaging mainly consists of the
incorporation of antimicrobial agents like silver nanoparticles or silver coatings
into packaging materials. These packaging films can minimize the growth of spoil-
age and pathogenic microorganism. The choice of antimicrobial agents is based on
the characteristics of microorganisms such as cell wall composition, oxygen
requirements, growth stage, acid/osmosis resistance, optimal growth temperatures,
etc. (Malhotra et al. 2015). Different species of microorganisms such as Salmonella,
Staphylococcus, Listeria, Bacillus, Escherichia, Pseudomonas, Lactobacillus, Rhi-
zopus, Aspergillus, Candida, etc. are responsible for food spoilage (Vilela et al.
2018).

The effective antibacterial characteristics are understood by many molecular
mechanisms for instance: production of ROS (reactive oxygen species) having
ability to disturb enzyme activity, disturb DNA synthesis, and damage cell
organelles as shown in Fig. 10.6. Interactions between cell membrane and
nanoparticles are carried by zeta potential present in nanoparticles and this results
in cell membrane breakdown influencing the transmission channel through plasma
membrane and finally causing cellular death (Gu et al. 2003). Surface of
nanoparticles have positive charge and bacterial cell surface comprise with negative
charge, this opposite charge responsible for an interaction between enzyme present
in bacterial cell and nanoparticles. Therefore, causes cellular death because

Fig. 10.5 Classification of chitosan-based composites
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respiratory enzyme present in bacterial cell membrane are destroyed by an efflux-
influx of ion inside the cell (Suski et al. 2012). Moreover, signaling chain activates
with the interaction of nanoparticles and bacterial cell membrane, for instance ROS
production and oxidation of respiratory enzymes that leads to damage of DNA.

The powerhouse of the cell called mitochondria, during ATP synthesis, reduction
of molecular oxygen by an ETC (electron-proton transmission cycle), leads the
formation of ROS species (superoxide’s anions free radicals, hydroxyl, hydrogen
peroxide) found to be a threat for microbial species (Yin et al. 2012). It is well
discovered that production of ROS results in per-oxidation of cell matters, oxidative
stress, disturb communication channels and also generation of protein radicals.
Many reported studies proved that nanoparticles such as titanium dioxide devastate
the growth of S. mutants due to the cohesion of nanoparticles and titanium oxide
(Rezaei et al. 2020).

Paracoccusdenitrificans: inhibited by CuO nanoparticles by hampering the
enzyme activity of nitrate and nitrite reductase (Evans et al. 2004). E coli: silver
nanoparticles hinder the E. coli growth, and furthermore ethylene decomposes by
silver nanoparticles leads to increased vegetables and fruit shelf life (Shi et al. 2004).
Silver nanoparticles are most popular for toxicity to microorganisms, having low
volatility and large temperature stability. Titanium oxide, carbon nanotubes, nisin,
and chitosan are the other common antimicrobial functional nanomaterials that are
applied in food packaging (Chiang et al. 2012).

Fig. 10.6 Antimicrobial mechanism of functional nanoparticles
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10.4.2 UV Absorbing Film

Nanomaterial film of nanocrystallineTitania (titanium oxide) utilized as UV absorb-
ing films. The absorbance of t oxide is improved by metal doping and leads to
improve its photocatalytic properties under UV radiations. Titanium oxide-coated
film treated with UV is most effective to inactivate fecal E. coli present in water
(Gelover et al. 2006). Doping of titanium oxide with silver nanoparticles and
incorporated with PVC (nanocomposites) having great antibacterial characteristics
(Cheng et al. 2006).

10.4.3 Oxygen Scavenger Film

Oxygen causes deterioration of many food commodities in a direct or indirect way as
it leads to oxidation by direct reactions. Therefore, it is responsible for browning
effect of fruits and rancidity effect in vegetable oils. The most common reason for
food degradation is indirect reaction by aerobic microorganisms. The problem of
food spoilage is solved by integrating the oxygen scavengers into the food packaging
materials. So that oxygen scavengers can reduce the oxygen availability and
enhances the shelf life of food (Kuswandi and Moradi 2019). Oxygen hunter films
are formulated by incorporation of titanium oxide into polymers. These are mainly
beneficial for more oxygen-sensitive food products (Xiao-e et al. 2004).

10.5 Smart Functions Improved Nanomaterial-Based Food
Packaging

Nanoparticles have a kind of smart functioning in detecting chemical, biochemical,
or microbial growth inside the food. Specific microbes and gases nanosensors have
been developed for detection of food spoilage (Kuswandi et al. 2011). In this
scenario, nanomaterials are employed as reactive materials in food packaging to
indicate and communicate the inner condition of packed food commodities, known
as nanosensors. Nanosensors are employed to respond as per changes in internal and
external parameters of food products and moreover to assure the quality and safety of
food (Kuswandi and Moradi 2019).Ongoing research showed that polymeric func-
tional nanomaterials significantly prove to improve the packaging with smart
functions (for instance: oxygen determining nanosensors, nanosensors to detect
freshness in food, utilization of nano-devices to track the food product and their
identification). Nanosensors are capable to detect spoilage of food by change in color
parameters due to extreme variation in temperature and humidity with time
(Bouwmeester et al. 2009). Inbuilt nanosensors in plastic packaging could detect
gases produced by spoiled food and change the package color itself as alarm to the
customer about the food quality. Food manufacturing industries predict the shelf life
of particular food commodities on the bases of calculating distribution time and
storage temperature (Liao et al. 2005). Carbon nanotubes (CNTs) are employed as
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nanosensors, making the detection process comparatively rapid and precise as
compared to the conventional detection process like high-performance liquid chro-
matography (Nachay 2007). Carbon nanotubes have high-throughput screening
capacity, are easy to handle and low cost, less consumption of power, and nice
feasibility in recycling. Multi-walled CNTs are significantly utilized in the detection
of toxic proteins, microbial growth of specific microorganisms, and food degrada-
tion. In the running research scenario, many industries (Nestle, British Airways, and
Monoprix) employ nanosensors, useful in the identification of color change under
spoilage of food products (Pehanich 2006).

10.5.1 Nanosensors for Freshness Identification

The surfaces of packaging material are laminated with nanosensors for freshness
indicator. Electrochemically polymerized conducting polymers such as
polyacetylene or polypyrrole are widely used for smart packaging due to excellent
change between oxidized over reduced form that is the basis of most of the smart
functions (Ahuja et al. 2007). Fish spoilage and microbial growth indication were
observed by use of polyaniline film as a nanosensor by color change due to volatile
amines produced during spoilage of fish (Kuswandi et al. 2012). This nanosensor
aids in indicating spoilage of fish in a constant as well as in fluctuating temperature.
The spoilage of food is also done by gas penetration and this is indicated by metal
oxides because microbial growth produces gases that are determined by metal gas
nanosensor. Nanosensors consist of polymer nanocomposites that have conducting
features and are immobilized in a polymeric matrix. Polymer nanocomposites help in
detecting gases that evolve from microbial growth (Zhang et al. 2020). The common
food-borne pathogens such as Bacillus cereus, vibrio parahaemolyticus, and Salmo-
nella species are detected by nanosensors based on nanocomposite of black carbon
and polyaniline (Arshak et al. 2007). The pattern of chicken freshness was deter-
mined by employing metal oxide sensor and responses were further analyzed using
neural network (Galdikas et al. 2000).

10.5.2 Nanosensors to Detect Oxygen

Oxygen provides favorable conditions for aerobic microorganisms to enhance their
growth and lead to spoilage of food products (Kuswandi and Moradi 2019). There-
fore, food manufacturing industries make sure the absence of oxygen in the food
package by vacuumed or degassed the package with nitrogen. Nanosensor for
oxygen-sensitive foods has been developed by nanocomposite film of titanium
oxide and methylene blue. Under ultraviolet radiation, applied nanosensors start
bleaching and finally resulted in colorlessness until oxygen is exposed and again
blue color appears (Lee et al. 2005).
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10.5.3 Nanomaterial Embedded Devices for Tracking
and Anti-counterfeiting

Smart functions of nanomaterials are significantly aid in developing tracking devices
and anti-counterfeiting to detect the safety of food. The Nanotech Corporations have
been involved in the production of nanomaterial-based tracking devices (for
instance: Bio silicon) incorporated in the food package to detect the pathogen growth
and also easy for customers to identify safe food (Scrinis and Lyons 2007). Nano
barcodes are used in each food product, and this is readable by using a microscope
for anti-counterfeiting (Roberts 2007). Nowaday’s nano barcodes are commercially
manufactured by electroplating of inert metal materials like gold, silver, and
platinum.

10.5.4 Nanomaterials for Active Tags: RFID

Radiofrequency identification (RFID) is the active electronic information-based
systems. It is working on radiofrequency, and used to transfer obtained data from
a tag (attached to a packaging material) to automatically trace and identify the object
containing particular food products. RFID improves the barcode and manual system
of tacking (Abad et al. 2007). Due to the presence of radiofrequency range, long
reading ranges have strong capacity to penetrate in adverse conditions like tempera-
ture and pressure. Nanotechnology provides nanosensors to work with cheap RFID
active tags, called nano labeled RFID tags. The characteristics of RFID tags are:
flexible, small printed on external layers of food packaging, and also support
low-cost production.

10.6 Techniques to Analyze Functional Nanomaterials

The focused characteristics of nanoparticles are size and shape. To evaluate the
surface chemistry of NPs researchers measured the size distribution, degree of
aggregation, surface area, and charge (Mourdikoudis et al. 2018). The techniques
for characterization of nanoparticles should be fully proven regarding the availabil-
ity, cost, selectivity, non-destructive nature, affinity to certain material, and simplic-
ity. Techniques needed to understand and used for characterization of NPs have been
discussed in Table 10.5. TEM (transmission electron microscopy), SEM (scanning
electron microscope), and AFM (atomic force microscopy) are the best instances of
microscopic phenomena and used to characterize nanomaterials in terms of size,
structure, shape, dispersion, and rate of coagulations state (Pitt et al. 1981). Alone,
this technique is not sufficient for complete verification of nanomaterials and it
requires other spectroscopic techniques such as X-ray diffraction (XRD) and
UV-visible spectroscopy for more accurately characterization of nanomaterials
(Jha et al. 2019). Spectroscopic techniques help in the characterization of structure
as well as in the analysis of nanomaterials. The XRD is especially employed for the
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characterization of montmorillonite exfoliation in nanomaterial used in food pack-
aging (Tortora et al. 2002). Quantification of functional nanomaterials in food
packaging is also a big evaluating question due to safety reasons. For this scenario
migrated nanoparticles can be probed by inductively coupled plasma mass spectros-
copy (ICP-MS), inductively coupled plasma atomic emission spectroscopy
(ICP-AES), and inductively coupled optical emission spectrometry (ICP-AES).

By utilizing mentioned techniques, nanoparticles up to the size of 0.1–1.0 ppm
can be detected (Huang et al. 2015). The determination of heavy metals (Pb, Cd, Cr,
Ni, Zn) in food packaging was identified by employing ICP-MS, consequently
researchers found the concentration of Pb: 0.023 μg/L, Cd: 0.030 μg/L, Cr:
0.025 μg/L, Ni: 0.012 μg/L, Zn: 0.017 μg/L (Azlin-Hasim et al. 2016). A titanium
metal was identified in food packaging by ICP-AES and the concentration was
5.0 mg/kg, the linear dynamic range 100–5000 μg/L and the recovery was
94.7–100.1% observed (Li et al. 2013).

An experiment was conducted on LDPE film coated with three layers of silver
precursor at different concentrations 0.5, 2.0, and 5% and migration of silver NPs
under different parameters were determined by ICP-AES. The results showed that
the mean migration levels ranged between 0.01 and 1.75 mg/L and further the
presence of NPs also confirmed by the SEM (Hannon et al. 2016).

10.7 Safety Aspects of Nanomaterials

Food contact articles (FCAs) is a category of functional nanomaterials used in food
packaging (Arora and Padua 2010). In FCAs all foods are touched during all stages
of production process and transportation. FCAs are combinations of FCMs (food
contact materials) such as plastics, papers, metals, board, and glass, and adhesive
materials used in ink for printing and coating and in addition functional
nanomaterials (Huang et al. 2015). Safety concerns must be fulfilled by determining

Table 10.5 Techniques for characterization of nanoparticles

Nanoparticle characteristics Techniques to characterize NPs

Shape TEM, AFM, HRTEM, FMR

Size distribution DCS, DLS, SAXS, NTA, FMR

Chemical state-oxidation state XAS, EELS, XPS

Growth kinetics SAXS, NMR, TEM, liquid TEM

Ligand XPS, FTIR, NMR, SIMS, FMR

Size TEM, XRD, NTA, SEM

Surface area, specific surface area BET, liquid NMR

Surface charge Zeta potential, EPM

Concentration ICP-MS, UV-VIS, RMM-MEMS, PTA, DCS

Agglomeration DLS, DCS, UV-VIS, SEM

Optical properties UV-VIS, NIR, EELS-STEM

Magnetic properties MFM, FMR
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all food contact chemicals (FCCs) more precisely and including functional
nanomaterials that migrate into food commodities and to which consumers are
exposed (Alexandre and Dubois 2000).

Food safety is related to human health and environmental health too. The study of
migration of nanomaterials present in packaging into food commodities is to assess
their potential hazard to environment and human (Duncan 2011). The European
legislation reported an overall migration limit of 10 mg per dm square surface area
with respect to all substances which have capacity to migrate from nano packaging
material to food products (Commission regulation (EU) No. 10/2011) (Cushen et al.
2012). Such as, 1 liter cubic food packaging material with 1 kg of food containing
product equal to a migration of 60 mg of packaging material per kg of food product.
This criterion is not the same for all food stuffs, it is varied case by case (Foschi and
Bonoli 2019). The silver nanoparticle migration from various kinds of
nanocomposites into food products has been identified by analytical techniques
(Echegoyen and Nerín 2013). In acidic rich food the level of silver migration
could happen at a high level and in addition reported that heating is favorable to
induce migration and microwave heating showed more pronounce effect on migra-
tion. The silver nanoparticle migration can occur by two different mechanisms,
firstly by silver nanomaterial getting detached from the composite material and
secondly, by silver particles undergoing an oxidation process (Cushen et al. 2013).
The silver and copper migration from functional nanomaterials that have antimicro-
bial action in food packaging is also reported (von Goetz et al. 2013).

The important parameters that would modulate the migration process are
nanofillers present in nanocomposite materials, contact time, and particle size.
Researchers are more focused on less migration of silver ions into food stuffs; this
model benefits the industry regarding decreasing cost and time in migration process
studies (Cushen et al. 2014). An incorporation of PLA (polylactic acid)
nanocomposites and organo-modified clay utilized an FCM and found that migration
of ions into water was less than 10 mg per dm square of the functional nanomaterials
(Maisanaba et al. 2014a). Moreover, rats were also exposed for 90 days to the
extracts of migration in drinking water and results showed that migration extracts
from nanoparticles did not show toxicity, for instance, inflammation or oxidative
stress. This defined evidence proved that nanomaterial migration into food stuff was
high as in comparison to migration into water (Maisanaba et al. 2014b). Functional
improved nanomaterials are needed to investigate more and make sure of the safety
of nanomaterials application in the nanoparticle-based food packaging industry
(Maisanaba et al. 2014a).

Three important regulations are undertaken to make sure that nanomaterials used
in food packaging have high standards for safety of food, safety of consumer, and
safety of environment (Jorda-Beneyto et al. 2014). Moreover, these all are essential
requirements for successful utilization of functional nanomaterial for the food
packaging industry and also having special investigation knowledge regarding;
nanomaterials toxicological effects, migration of ions into foodstuffs and their
exposure level in working place and consumers (Houtman et al. 2014). If these
three regulations were followed properly with all guidelines, nanomaterial for food
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packaging would become safer, healthier, and tastier as well as more nutritious with
eco-friendly nature (Maisanaba et al. 2014a).

10.8 Conclusion and Future Potential

The current investigation results showed that nanotechnology provides a number of
opportunities in functional nanomaterial in food packaging ranging from bio base to
smart packaging. The important beneficial parameters that make nanomaterials more
suitable for food packaging are: significantly stronger role, lighter, more durability,
and also enhances shelf life of food commodities. Moreover, positive effects on
health and low production cost. To develop new food packaging features, nanotech-
nology proves to increase food characteristics (healthier, tastier, delicious, and full
with more nutritious value). The nanosensors incorporation as intelligent packaging
provides the food state inside packaging material with visual information.
Nanosensors are advantageous to consumers by alerting them when food material
inside the packaging material is already spoiled. The conventional food packing
system is changed by smart functional nanomaterial food packaging. The future
packaging of food materials is safer, healthier, and less harmful to the environment.
Nanomaterial food packaging is beneficial for preservation of perishable food
products. By utilizing smart and active nanomaterial for food packaging, it could
support the food packaging with better mechanical properties; provide stronger
barriers from the external environment and better thermal properties. For example,
nanomaterial utilized food packaging avoids bacterial invasion and growth for safety
of food.

The conventional method of food packaging by biodegradable and natural
polymers is not sufficient to provide better safety and healthier food commodities
to the consumers due to their poor mechanical and barrier properties. Incorporation
of nanofillers (clay) into biopolymers provides a path to improve in general
performances (mechanical, thermal, and barrier properties). Despite all positives of
nanomaterial function in food packaging, their proper use for packaging may
develop safety concerns to human health due to their different physicochemical
properties from their macroscale properties. More infestations are needed to under-
stand the impact of nanomaterial or nanoparticles on human health and in addition
research should also be focused on identification, quantification, and characteriza-
tion of functional nanomaterials. Migration of nanomaterial ions into food
commodities is a crucial point to understand functional nanomaterial for food
packaging. Nanotechnology in the food packaging industry is in its infant stage,
more research and investigations are needed to make functional nanomaterial more
feasible for food packaging regarding safety, health, and environmental concerns.
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Rules and Regulations Related to Packaging 11
Amrita Bhanja and Monalisa Mishra

Abstract

There is a rapid growth in the food supply chain starting from the manufacturing
to packaging and distribution. These processes in one or the other way can
damage or hamper the product quality at any stage of handling. Therefore, proper
packaging is the right way to protect the product from different stresses that
would eventually extend the shelf life of the product satisfying the consumers
need. This chapter basically deals with the rules and regulations related to the
packaging as per the Ministry of Health and Family Welfare, regulated by the
Food Safety and Standards Authority of India (FSSAI). It briefly provides
information regarding the types of packaging materials suitable for a specific
product while packaging. Along with that, the factors responsible for affecting the
food quality and the innovative techniques of packaging are also discussed in this
chapter.

Keywords

Packaging material · FSSAI · Regulations · Food quality · Quality degradation

11.1 Introduction

The growing interest of consumers towards processed or ready-to-eat food have been
attracting the food industries and markets to produce the type of food that would
store for several days without any quality degradation and wastage. With the
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increasing demand for the processed food, it also targets the safety of the food
throughout the supply chain since the wastage and quality loss of food is a very
common and frequent problem starting from its manufacturing, transportation and
distribution process. As per the information given by Food and Agriculture Organi-
zation (FAO), around 1.3 billion tons of food approximately are found to be wasted
during the food supply process (Chen et al. 2020). Thus, to cope up with the
consumer’s demands, it is very much necessary to process and pack the food in a
way so that it gets least affected by different environmental factors, mishandling,
transportation, etc. Proper packaging not only protects the food from the outside
damage, but also it is efficient enough to retain the nutritive quality extending the
shelf life of the food. In other words, packaging is also done to neutralize the
negative reactions that might affect the stability of the packed food (Gilbert 1985).
Along with this, a proper packaging should contain all the relevant information like
the manufactured and the date of expiry, the composition, and quantity of the
contained food. Above that, it should be approved by the FSSAI (Lamberti and
Escher 2007). The type of material plays a very crucial role, when it comes to the
process of packaging. Plastic is the largely used packaging material as it not only
provides the necessary safety to the food but also can be modified and incorporated
with different other materials that would enhance the quality of the food. On the
other hand, plastics are non-biodegradable substances that have become the main
reason for the global waste problem. It has been badly affecting marine life along
with animal and human health in a large ratio which has become a great matter of
concern (Lu et al. 2019). Therefore, it is very much necessary to reduce the single
use of plastic and promote ways that would balance the utilization of plastic as a
packaging material along with its disposal measures. This chapter provides informa-
tion about the recent rules and regulations formulated by the FSSAI regarding the
packaging materials to be used for specific products (Fig. 11.1).

Fig. 11.1 Schematic diagram showing the processes of food supply chain and the factors affecting
the food quality during these processes
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11.2 External Factors Influencing the Quality of the Food

The main purpose of packaging the food is to prevent its quality from getting
deteriorated, extending its shelf-life. Proper packaging of the food helps to retain
its quality by protecting it from the outside environment which includes several
factors like biological changes (microbial contamination), damage caused from the
transportation, any sort of theft and manipulation of the product during transporta-
tion, and climatic changes that could negatively influence the compositional and
nutritional quality of the product (Yildirim et al. 2018). External factors that may
hinder the quality of the food can be categorized into chemical, biological and
physical factors.

11.2.1 Chemical Factors

Exposure to different environmental conditions, like temperature, relative humidity
and environmental gases, plays a major role in degrading the quality of the unpacked
or not properly packed food (Marsh and Bugusu 2007). Temperature plays a very
crucial role in maintaining the quality of food. The effect of factors like temperature
and relative humidity on fruit and vegetable has been explained (do Nascimento
Nunes 2008). Direct contact of unpacked fruits and vegetables with the excess
amount of atmospheric temperature may deteriorate their nutritional quality, texture
and appearance. The deterioration of the quality increases constantly by two to three
folds with the elevation of the temperature at every 10 �C (Qin et al. 2014). In order
to minimize the quality deterioration, postharvest conditions such as temperature
management, storage, along with adequate knowledge of the packaging material
have to be given priority. Like temperature, the ambient relative humidity is also a
matter of concern when it comes to the quality of unpacked food. The water vapour
pressure between the surrounding and the product is affected by the humidity along
with the temperature. To balance and minimize the level of water vapour pressure
loss, the surface humidity has to be maintained in order to prevent the loss of
moisture that takes place due to the process of transpiration. As a result, the moisture
loss can be neutralized and maintained by controlling the movement of the
surrounding air between the food and the environment by using different protective
layers or appropriate packaging. The use of proper packaging materials like glass,
plastics or film wrapping may prevent the moisture loss from the product by
increasing the surface relative humidity. The increased amount of oxygen in the
environment could damage the quality of the food by increasing the reactive oxygen
species (ROS), damaging the cytoplasm and hindering metabolic activities
(Choudhury et al. 2017). There is a high chance of rancidity (Li et al. 2014) and
colour degradation (Teixeira et al. 2016) of the fruit due to the low oxygen and high
carbon dioxide concentration respectively. Therefore, different products require
different atmospheric conditions under modified atmospheric packaging (MAP)
(Belay et al. 2019).
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11.2.2 Biological Factors

Fermented foods are becoming more prone to microbial contamination as compared
to fresh products due to mishandling, unhygienic environment and exposure to
contaminated water. These fermented foods without appropriate packaging serve
as a niche for the bacteria and fungi leading to different intoxications and foodborne
illnesses (Roy et al. 2007). As it is previously been mentioned that unpackaged food
are more affected by high temperature, likewise packaged food are highly prone to
warm temperature. Even though the food is protected by packaging, there are several
studies revealing the inefficiency of the poor quality packaging material. Protecting
and maintaining the quality of the foodstuffs for longer period of time from being
easily affected by insects, mites and microbes is a great matter of discussion as not all
packaging are safe and appropriate for the product. Packaging should be done
depending on the type and quality of food. Different products require different
packaging. Packaging material used should be capable of avoiding infestations by
mites and insects. Like unpackaged product, low-quality packaging or poor packag-
ing is equally responsible for affecting the product. A small damage in the packaging
material may allow the pest to enter the food followed by the quality deterioration. A
chemical known as pheromones released by the pest helps them to increase their rate
of population by approximately 20–30 folds every month if they get favourable
conditions. This may lead to direct rejection of the whole product raising several
legal consequences for the entire chain (Bell 2011).

11.2.3 Physical Factors

Physical factors are the damages that may take place during the handling, storing,
transportation and distribution of food products. Such damages include vibrations,
falls, bumps and compression that could take place during the process of transporta-
tion. Therefore, packaging is considered to be a very basic as well as an important
parameter for maintaining the safety of the food products (Robertson 2012a).

11.3 Impact of Packaging

Starting from the manufacturing, handlings, storing of the fresh and processed food
products till the distribution to the consumers, all the processes are carried out with
proper standard operating procedures (SOPs) from the government. There are
several amendments published by the FSSAI regarding the packaging of the specific
food products. The recent amendment that was generated by the FSSAI regarding
the rules and regulations of packaging was in the year 2018. The packaging material
is chosen depending on the type and quality of food products in order to avoid the
degradation of the food. Some of the materials that are commonly used for packag-
ing are cardboard, glass, metal, plastic, etc. (Robertson 2012b). Airtight containers
are used for packaging processed vegetables and fruits that would resist the oxygen
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transmission responsible for product spoilage due to microbial contamination and
lipid oxidation (Robertson 2009). The liquid products are packaged using glass jars
and bottles whereas the solid stuffs are usually packed by cardboards and plastics.
Almost 70% products are packed in the food industry of which around 48% of the
total packaging is made from the paperboard (Opara 2013) (Fig. 11.2).

11.4 FSSAI Regulations for Packaging

All the rules, regulations and the decisions regarding the food are implemented by
the FSSAI, Government of India. Recently the regulations vide no F.No. 1-95/Stds/
Packaging/SP(L&C/A)/FSSAI-2017 under sub-section (1) of section 92 of Food
Safety and Standards Act, 2006 (34 of 2006) regarding packaging was published and
made available for the public in the year 2018 (FSSAI 2018). Some of the important
regulations from the above-mentioned document have been mentioned here very
briefly.

General requirements that must be followed by the food business authorities
regarding the packaging material are that the packaging material should be (of):

Fig. 11.2 Schematic diagram showing the overall view of packaging
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• Food grade quality
• Suitable for the product
• Withstand mechanical, chemical and thermal stress
• Hygienic, clean and tamper-proof
• Compatible sealing material
• Not to re-use tin containers
• Printing inks (IS: 15495 conformed)
• Food products not to come in contact with the printed surface
• Not to use newspaper for storing and wrapping
• The layer in the multilayer packaging that would be coming in contact with the

food should conform to the necessary requirements of the packaging material

11.5 Packaging Materials Suggested by FSSAI to Be Used
for Specific Product

According to the rules of FSSAI vide no F.No. 1-95/Stds/Packaging/SP(L&C/A)/
FSSAI-2017 published in the year 2018 (FSSAI 2018), there has been a list of
packaging materials that are suggested to be used for specific food products. Some of
them are being mentioned here very briefly (Table 11.1).

11.6 Innovative Techniques of Packaging

The innovation of different modern techniques has made the packaging system more
valuable and informative, providing the necessary information regarding the quality
of the food in their packaged form. Such types of packaging are provided with smart
sensors and indicators to monitor the quality. Apart from this, the environment of the
packaging materials is modified and incorporated with the required edible material
coming in direct contact with the food resulting in the quality enhancement of the
product. Some of the innovative packaging techniques are discussed below.

11.6.1 Smart Packaging

Smart packaging is a broad concept and can be categorized mainly into two types of
packaging like active and intelligent packaging. The intelligent packaging works by
monitoring the external and internal alteration of the product (Vanderroost et al.
2014). The ultimate purpose of smart packaging is not only to keep up the quality
and the storage life of the food product, but also to reduce the overall food waste and
loss by using several modified techniques, detectors and hardware elements that
have been briefly described in active packaging and intelligent packaging. This
trending system of packaging is being applied and used by food and pharmaceutical
industries to improve and extend their food supply business in a convenient, safe,
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Table 11.1 FSSAI regulations regarding the use of packaging materials for specific products

Sl.
no Food products Materials used for packaging

1 Milk • Glass bottle + metal caps/plastic caps (polypropylene
(PP) or high-density polyethylene (HDPE))
• Plastic container of polyalkylene terephthalate
(PET) + PP or HDPE caps
• Plastic container of HDPE/PP/polystyrene (PS) + PP
or HDPE caps (Food Safety and Standards (Packaging)
Regulations 2018).
• Flexible plastic pouch of polyethylene (PE) or
PP-based multi-layered packaging
• Aseptic/flexible packaging material of paper board/
aluminium foil/polyethylene-based multi-layered
structure
• Container made of tin plate (Food Safety and
Standards (Packaging) Regulations 2018a)
• Plastic cups made of (PP or PS) + paper/peel-off lid
• Paper butter wrappers coated with wax
• Metal containers + plastic PP caps/metal/plastic lid
• Plastic pet container + plastic lid
• Thermoform cup/tray + paper/peel-off lids (Food
Safety and Standards (Packaging) Regultions 2018)
• Packaging material made of paper and paper board
with/without plastic film lamination, greaseproof paper
• Mud or clay pots

qx Fats, oils and fat emulsions • Container made of tin plate
• Glass bottle + metal caps /plastic caps (polypropylene
(PP) or high-density polyethylene (HDPE))
• Plastic container/jar of HDPE
• Plastic bottle/jar (PET) + plastic caps
• Plastic pouch (multi-layered laminated or co-extruded
structure
• Aseptic/flexible packaging material of paper board/
aluminium foil/polyethylene-based multi-layered
structure
• Plastic laminated pouch (Food Safety and Standards
(Packaging) Regulations 2018)
• Thermoform plastic jar + plastic caps

3 Fruit and vegetable products • Glass bottle + metal caps/plastic caps (polypropylene
(PP) or high-density polyethylene (HDPE))
• Can be made of aluminium with an easy open end
• Container made of tin plate
• Aseptic/flexible packaging material of paper board/
aluminium foil/polyethylene-based multi-layered
structure
• Plastic jar of HDPE/co-extruded with plastic
(PP/HDPE caps)
• Flexible plastic pouch of (PE/laminated structure)
• Plastic jar + metal caps
• PET/PP/PVC Punnets (Food Safety and Standards
(Packaging) Regulations 2018a)

(continued)
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Table 11.1 (continued)

Sl.
no Food products Materials used for packaging

4 Sweets and confectionary • Metal containers + plastic PP caps/metal/plastic lid
(multi-layered laminated heat sealed pouches)
• Composite containers prepared of paper board/
aluminium foil/plastic based films + plastic/metal lids
(Food Safety and Standards (Packaging) Regulations
2018a)
• Foil wrap
• Plastic film based twist wraps (PET/PP/PVC)
• Thermoformed tray/punnet + lid
• Glass bottle + metal/plastic caps
• Plastic cups + film lid

5 Cereals and cereal products • Tin container
• Aluminium foil-based laminated pouch in metal
container
• Wrapper of wax-coated paper (Food Safety and
Standards (Packaging) Regulations 2018b)
• Plastic heat-sealed multi-layered laminated pouch
• Plastic thermoform container + plastic lid
• Plastic multi-layered laminated Zipper pouch
• Thermoform trays + plastic lids/over wraps
• Glass bottle + metal caps
• PET/plastic-based rigid containers + metal/plastic
caps ((PP) or (HDPE))
• Plastic/co-extruded film/PP/PE

6 Meat/meat products/poultry
products

• Glass jars + plastic (PP)/(HDPE) caps
• Metal containers + metal lid (lacquered tin containers)
• Plastic flexible pouches in paper/paperboard carton
• Overwrapped plastic tray
• Aluminium foil wrap
• PET punnets/containers with plastic caps(Food Safety
and Standards (Packaging) Regulations 2018)

7 Fish/fish products/seafood • Glass jars + plastic caps (PP/HDPE)
• Metal containers + metal lid (lacquered tin containers)
• PET punnets/containers with plastic caps (Food
Safety and Standards (Packaging) Regulations 2018b)
• Plastic heat-sealed multi-layered laminated pouch
• Overwrapped plastic tray

8 Honey and other sweetening
agents

• Glass bottle + metal caps /plastic caps (polypropylene
(PP) or high-density polyethylene (HDPE)) (Food Safety
and Standards (Packaging) Regulations 2018)
• Plastic based thermoformed containers
• PET container + plastic caps
• Laminated tube of plastic

9 Salt/spices/condiments • Glass bottle + metal lid/plastic caps (PP + HDPE)
• Plastic container + plastic cap (PET + HDPE)
• Plastic heat-sealed multi-layered laminated pouch

10 Beverages (excluding diary/
fruits/vegetables based)

• Plastic bottles made of PET/polycarbonate
(PC) + plastic (PP/HDPE)/aluminium caps

(continued)
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and in a better way in order to minimize the large amount of loss (Janjarasskul and
Suppakul 2018; Poyatos-Racionero et al. 2018).

11.6.2 Active Packaging (AP)

Active packaging is introduced as a well-planned, effective and chemical approach
to protect and extend the quality and shelf life of the food (Qiu et al. 2019). The
chemicals used in active packaging are not added directly to the food rather they are
incorporated into the packaging materials. As per the definition given by the
European regulation (EC) No 450/2009, active packaging is the packaging that
uses “deliberately incorporate components that would release or absorb substances
into or from the packaged food or the environment surrounding the food” (Commis-
sion E 2009). This type of packaging involves the incorporation of a chemical
compound either absorbers or emitters to the packaging materials. One such example
of the chemical that is commonly used is the oxygen absorber. The former scaveng-
ing systems (absorbers) absorbs the excess or unwanted compounds like moisture,
ethylene, oxygen, carbon dioxide of the food to the environment that helps to extend
the shelf life of the product. On the other hand, the emitters or the releasing systems
help in adding the compounds like antimicrobial compounds, ethylene and
antioxidants from the environment to the food ultimately balancing the packaging
environment, extending the shelf life of the product (Yildirim et al. 2018). One such
application of active packaging is that it was used to retain the colour of the chicken
breast at 4 �C for 60 days (Stratakos et al. 2015).

11.6.3 Intelligent Packaging

As mentioned earlier, intelligent packaging is another form of smart packaging that
uses various hardware and electronic devices to monitor the internal and external
conditions of the packaged food product (Kruijf et al. 2002). It provides information
about the products during their transportation and storage (Kerry et al. 2006).
Through this system of packaging, it becomes easy to monitor the parameters like

Table 11.1 (continued)

Sl.
no Food products Materials used for packaging

• Heat-sealed plastic pouch made of PE
• Glass bottles + metal/plastic caps
• Plastic pouch made of PE in corrugated fibreboard
boxes
• Aluminium can have an easy open end
• Container made of tin plate (Food Safety and
Standards (Packaging) Regulations 2018a)
• Wooden cask (for wines)
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microbial contamination, temperature, and product purity. Along with this, it also
gives information about the changes due to the pH and enzymatic reactions through
the Vitsab time-temperature (TTI) indicator (Opara 2013). It also incorporates radio-
frequency identification (RFID) devices that would provide data about the pH, food
volatiles, gases, and conductivity with the use of chemical elements (Chen et al.
2020).

11.6.4 Modified Atmosphere Packaging (MAP)

The modified atmosphere packaging can be explained in a way where the atmo-
sphere surrounding the food inside the packaging can be altered or modified as per
the requirement so that it will not affect the shelf life along with preventing the
quality of the food. It basically works on inhibiting the microbial contamination and
stops the enzymatic spoilage. The packaging is made up of semi-permeable films in
such a way that it tends to lower the exchange of the respiratory gases inside the
package (Chitravathi et al. 2015). Along with carbon dioxide, which is known for its
antibacterial ability (Sun et al. 2017), oxygen and nitrogen are also used. Specifi-
cally, these are the three gases that are used for the packaging for extending the shelf
life of the food in MAP. The ratio and the composition of the gases completely rely
on the type of food. Every food has its own environmental stability. Nitrogen is
basically used as a filler gas. Several studies have been carried out that proved the
efficiency of MAP. This method was successfully used for packaging smoked catfish
without influencing its organoleptic qualities (Qiu et al. 2019).

11.7 Materials Used for Packaging

The selection, construction and designing of the packaging material play a key role
in maintaining the storage life of the product. The material to be used for the product
should be efficient enough to retain the quality, originality and the freshness of the
product throughout the food supply process. Paper, aluminium, glass and metal are
some of the traditionally used materials. Along with this, plastic has been the highly
used packaging material that is being used in several forms.

11.7.1 Plastic

The use of plastic as a packaging material is the most utilized and given the topmost
priority in the food industries. It is the highest utilized packaging material all over the
world. Apart from the well-known disadvantages, there are a lot of advantages that
makes it liable as a packaging material. Thermosets and thermoplastics are the two
categories of plastics used for different purposes. Amongst them, thermoplastics are
used for the packaging of food because of their flexible nature of getting easily
moulded into different shapes and sizes depending on the type of food (Marsh and
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Bugusu 2007). As compared to the other packaging materials like aluminium and
metal, plastic provides more transparency that makes them easily visible to the
consumers in spite of the packaging (Opara 2013). They are considered to be of
lightweight, chemically inert, easy to print and handle as compared to the other
packaging materials. The major concern that raises question regarding the frequent
use of plastic includes health as they contain plasticizers and stabilizers and environ-
mental problems as these are non-biodegradable substances (Marsh and Bugusu
2007). Its effective barrier property makes it microbiologically safe (Lamberti and
Escher 2007).

11.7.1.1 FSSAI Regulations Regarding Plastic as Packaging Material
Food products packed using plastic shall obey the Indian Standards specifications

• Packaging of the drinking water shall be done using transparent, tamper-proof
bottles conforming to.

• IS: 9845—migration limit (60 mg/kg or 10 mg/dm2)
• It also provides the migration limit (mg/kg) of the substances like barium, cobalt,

copper, iron, lithium, manganese and zinc from the plastic materials
• IS: 9833—for pigments to be used in plastics
• Not to use recycled plastic products for packaging, carrying and storing of food

(Table 11.2)

11.7.2 Paperboard

The recyclable, eco-friendly and inexpensive nature of cardboard makes it reliable
for using it as a packaging material. In the food industries mostly cardboards are used
in the form of cartons for packaging freshly produced fruits and vegetables. Sulphite
and sulphate are used to convert cellulose fibres obtained from wood into valuable
paper and cardboard (Robertson 2012b). Cardboards are made up of a wide range of
plain paper. A normal plain paper is not utilized for packaging purpose as they are
inefficient in preserving the food for a long time. Therefore when used for packag-
ing, it is added with some materials like resins, wax to improve its strength. As
compared to the paper, paperboard is of more strength (Marsh and Bugusu 2007).

Table 11.2 FSSAI standards for specific plastic materials

Indian Standards specifications (IS) Material

IS: 10146 Polyethylene (PE)

IS: 10151 Polyvinyl chloride (PVC)

IS: 12252 Polyalkylene terephthalate (PET)

IS: 10910 Polypropylene (PP)

IS: 14971 Food grade polycarbonate

IS: 10142 Polystyrene

11 Rules and Regulations Related to Packaging 281



11.7.2.1 FSSAI Regulations Regarding Paper and Board as Packaging
Materials

• Should maintain uniform thickness
• Free of grease marks, pinholes, cuts
• Should be contaminant free and be of food grade
• Should conform to Indian Standards Specification

11.7.3 Aluminium

Aluminium is one of the most highly available metallic constituent of the earth. It is
silvery white and malleable in nature. It is expensive and used for preparing different
seamless containers. According to Morris, 2011, it is mostly used for packaging sea
food (Morris 2011), and soft drinks (Deshwal and Panjagari 2020). Mainly alumin-
ium is used in the form of aluminium foil in the food industries for packaging as it
prevents the light to pass through it and retains the original moisture, aroma and
gases of the food. When it comes to the toxicity of aluminium, it is safe as a
packaging material. It is of lightweight and can be moulded into different shapes
as demanded by the nature of the food. The benefit of using aluminium as a
packaging material is that it is recyclable, environmental friendly and obtained in
the same quantity after being recycled(Lamberti and Escher 2007).

11.7.3.1 FSSAI Regulations Metal as Packaging Material
Containers shall be considered unfit for human consumption, when the metal
(packaging material) shows the following characteristics:

• Rusty
• Enamelled, chipped
• Not properly tinned copper or brass containers
• Should use appropriate grades of metal for packaging
• Shall conform to Indian standards specifications

11.7.4 Glass

Glass is another most frequently used packaging material. It is mostly used for
packaging soft drinks, juices, pickles and many more. It tends to be a permanent kind
of packaging material that is reusable. It is considered as a highly useful packaging
material as it is chemically inert, recyclable and easily manufactured from raw
materials (Le Bourhis 2008). Apart from the above-mentioned advantages, there is
a disadvantage of requiring a lot of raw materials for its production like silica,
dolomite, and also consumes a lot of energy (Patrascu et al. 2009; Kovacec et al.
2011).
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11.7.4.1 FSSAI Regulations Regarding Glass as Packaging Material
• Should be free from blisters, stones, chippings, mould marks and visible defects
• Should be of smooth surface without cracks, sharp edges and pinholes
• Sealing surface should be crack free

11.7.5 Incorporation of Edible Films in the Packaging Material

In order to prevent or lower the quality deterioration of fruits and vegetables caused
due to the water activity and the ambient temperature, packaging incorporated with
hydrocolloids could be a better option for using it as oxygen barriers (Robles-
Sánchez et al. 2013). The use of edible packaging was also applied on several
foods to safeguard their nutritional and organoleptic properties. These sorts of
packaging help in neutralizing the antioxidant activity along with reducing the
oxygen permeability. The use of such edible films in the food products works as
an oxygen barrier that would eventually prevent or reduce the oxidation of lipids,
flavours and colorants. Such oxygen barrier may also delay the process of respiration
in the fresh produce especially fruits and vegetables. Different types of modifications
like the use of synthetic nanofibres, carbon nanotubes and nano clays can also be
implicated in these edible films as well as coatings that would improve the oxygen
barrier properties. Polysaccharides and protein edible films can be used as good and
effective oxygen barriers as they are known to carry antioxidants that would migrate
towards the surface of the food. The oxygen permeability is influenced by different
environmental properties as well as packaging conditions like temperature, film
thickness, relative humidity and moisture content (Gómez-Estaca et al. 2009a, b).
The oxygen permeability tends to decrease with the lower humidity as the structure
of the film remains intact. There are studies showing the increase in the oxygen
permeability due to the increase of the humidity when plastic films were used to coat
the whey protein (Hong and Krochta 2006). Like humidity, increase in temperature
also leads to the increase of oxygen permeability. This may reduce the extended
shelf life of the food product. The use of antioxidants in edible coatings and film may
reduce the process of rancidity, discoloration and degradation. Natural antioxidants
extracted from the plants can also be incorporated to films that would result in the
production of biopolymers having antioxidant activity. The oxygen permeability is
directly influenced by the thickness of the film. According to (Bonilla et al. 2012),
the oxidative reactions are affected by the factors like continuity and homogeneity of
the films. Excess light exposure can lead to photo-oxidation of food. So packaging
incorporated with low light permeability film like hydroxypropyl methycellulose can
be used while packing products like fats and oils. The utilization of such films is
helpful in reducing the process of photo oxidation (Akhtar et al. 2010). Apart from
the above-mentioned coating, there are several other coatings like gellan, alginate
and pectin-based edible coatings that were used to coat fresh-cut melon. These
coatings were useful for reducing the level of dehydration. They were also effective
in preventing ethylene production resulting in the reduction of carbon dioxide along
with oxygen permeability. Using alginate and pectin coating reduced the wounding
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stress (Oms-Oliu et al. 2008). Chitin derived from the yeasts, insects, fungi and
invertebrates after deacetylation forms chitosan (Dehghani et al. 2018) that can be
used for film formation due to their unique nature of toughness and biodegradability
(Sahraee et al. 2019).

11.8 Challenges

Despite several advantages regarding the use of the packaging material especially
plastic, it has come up with a lot many challenges that are eventually and immensely
affecting the earth in some or other ways. This global problem is not only affecting
the terrestrial level but is also in a verge to deplete the marine life, rivers. The
steadinesses of the measures are being overpowered by the large amount of plastic
waste (Geyer et al. 2017). Most of the wastes are being collected from the source of
packaging. Therefore, it is very much essential to implement proper regulations
regarding its disposal that would not affect the environment and on the other hand
would find some alternatives to such problems. The innovations of social-ecological
systems might be an appropriate approach to overcome such problems (Sattlegger
et al. 2020).

11.9 Conclusion and Future Trends

Packaging being an essential part of the food system plays a very chief role in
maintaining the quality and also enhances the marketing possibility of the product.
Therefore, in order to reach the consumer’s demand, not only the organoleptic and
the nutritive quality of the product should be checked, but also the packaging of the
product must be given equal importance in order to gain the consumer’s attention.
Therefore, proper packaging protocols should be maintained. Along with the pack-
aging, proper packaging waste disposal should also be taken care. The increasing
environmental issues due to the packaging waste disposal are the biggest concerns
that are needed to be resolved through legal procedures. The problems may not be
solved by only the process of recycling or proper waste management, it might also
require the production of more and more bio-based materials for the packaging
purpose. Biodegradable packaging materials could be an alternative to the single-use
plastic packaging materials. The raw materials of such type of packaging are mostly
originated from agricultural resources that are renewable. These packaging materials
are environmental friendly and are a better option for the countries that use landfill
for managing the waste disposal. FSSAI should collaborate with different
organizations working on waste management to resolve such types of challenges
and also strictly implement and execute proper rules for disposing of the
non-biodegradable packaging materials (Petersen et al. 1999).
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