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Abstract. Brain tumor segmentation methods using deep neural net-
works have recently achieved significant performance breakthroughs.
However, the existing brain tumor segmentation networks are directly
implemented on whole brain images, resulting in possibly reduced seg-
mentation performance due to the disturbance of background regions.
To solve this problem, inspired by the Mask R-CNN, a novel brain
tumor segmentation model called BrainSeg R-CNN is proposed in this
work, which classifies the brain tumor areas and boundaries based on the
detected region of interest in an end-to-end manner to achieve segmen-
tation result. Also, an effective feature extraction strategy is presented
in BrainSeg R-CNN, which in detail extracts various kinds of informa-
tion from separate channels for each modality and immediately adopts a
cross-connection operator to realize the information transmission among
different channels. Moreover, concatenation and add calculation are inte-
grated to improve the fusion efficiency of multi-scale features from brain
tumor images. Additionally, a multi-weighted and multi-task loss func-
tion which fully considers tumor size and overlap label is introduced, sig-
nificantly improving the segmentation performance. Experimental results
on BraTS 2017 dataset demonstrate that our BrainSeg R-CNN obtains
competitive performance with state-of-the-arts.
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1 Introduction

With the rapid development of deep learning in the field of medical imaging,
brain tumor segmentation task, as a key step in brain function analysis and
disease diagnosis, has also made a major breakthrough in recent years [1,2].
The initial deep segmentation networks take brain tumor segmentation as patch
classification problem, mainly employing typical convolutional neural networks
(CNN) architectures in visual classification task. Also, sliding window and post
processing are adopted to achieve the entire segmentation result. The main
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disadvantages of these methods lie in redundant calculations and global informa-
tion loss. Then, fully convolutional networks (FCNs) are introduced to provide a
pixel-to-pixel solution for brain tumor segmentation with effective expansion of
receptive fields, leading to the superior segmentation accuracy and efficient cal-
culation reduction [3,4]. Specially, an evolutionary version of FCN called UNet
[5,6], which well integrates high-level and low-level features of medical images
and achieves significant performance improvement in a variety of medical seg-
mentation tasks, gradually becomes the mainstream of brain tumor segmentation
methods. To further improve its segmentation performance, residual module [7],
attention mechanism [8] and multi-scale fusion cascade ideology [9] are injected
into the baseline model, which largely promotes the development of brain tumor
segmentation methods. Although promising segmentation performance has been
achieved, existing brain tumor segmentation networks [10–13] are directly per-
formed on whole images, resulting in possibly reduced segmentation performance
due to the disturbance of background regions.

To resolve this problem, inspired by the recent Mask R-CNN [15], a small
and flexible object instance detection network with a segmentation branch for
natural images, we propose a novel brain tumor segmentation model named
BrainSeg R-CNN in this work. BrainSeg R-CNN classifies brain tumor areas
and boundaries based on the detected region of interest (RoI) in an end-to-
end manner to achieve segmentation result, providing a new pipeline for brain
tumor segmentation. In addition, an effective feature extraction strategy is given
in BrainSeg R-CNN, and it in detail extracts various kinds of information from
separate channels for each modality with cross-connection operator to realize
the information transmission among different channels. Also, concatenation and
add calculation are integrated to improve the fusion efficiency of multi-scale fea-
tures from brain tumor images. Moreover, a multi-weighted and multi-task loss
function which fully considers tumor size and overlap label is introduced, and
it significantly improves the segmentation performance. The proposed Brain-
Seg R-CNN is extensively evaluated in the brain tumor segmentation challenge
(BraTS) [16], and experiment results illuminate that it gains competitive perfor-
mance with state-of-the-arts. Specially, it achieves the whole tumor segmentation
accuracy of 91.54% in slices with brain tumors. The overall architecture of the
proposed BrainSeg R-CNN is illustrated in Fig. 1. The main contributions of
this work are three folds: (1) A novel brain tumor segmentation network called
BrainSeg R-CNN is proposed, which significantly distinguishes from the existing
networks for this task. (2) BrainSeg R-CNN introduces effective feature extrac-
tion and fusion strategies as well as an effective loss function for brain tumor seg-
mentation, largely improving the performance of the network. (3) Experimental
results on a widely used dataset demonstrate its competitive performance with
state-of-the-arts.

2 Method

The BrainSeg R-CNN is mainly inspired by the Mask R-CNN to provide a
novel pipeline for brain tumor segmentation task. It adopts the similar two-stage
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Fig. 1. Overview of BrainSeg R-CNN. It is mainly comprised by feature learning,
contextual fusion and network head. It employs multi-channel and cross-modality con-
nection to extract more discriminate features, followed by an improved feature pyramid
structure for contextual fusion. An extra Dice loss is introduced on the top of network
in parallel with other losses.

procedure as Mask R-CNN. Differently, as shown in Fig. 1, our BrainSeg R-
CNN consists of three different parts, i.e., feature learning, contextual fusion
and network head, aiming at gaining superior performance for this task.

2.1 Mask R-CNN

Here, we briefly review the Mask R-CNN [15] that is highly related to our work.
Mask R-CNN takes advantage of the principle of Faster R-CNN [17] while intro-
ducing the extra mask branch so that it can predict object mask on RoI generated
by region proposal network (RPN) for fast instance segmentation. Besides, Mask
R-CNN improves the coarse spatial quantization of RoIPool in Faster R-CNN
and alternatively proposes the quantization-free layer RoIAlign for avoiding mis-
alignment. Mask R-CNN has provided strong baselines for multiple vision tasks
such as human poses estimation and instance segmentation. As such, we follow
the similar principle to deal with brain tumor segmentation task. Unfortunately,
compared to natural image tasks, medical image tasks face almost very differ-
ent situations, such as multi-modality images, fewer labeled samples as well as
various instance shapes. Therefore, Mask R-CNN cannot be directly transferred
to the brain tumor segmentation task, and we have to redesign the architecture
to fit for this task.
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2.2 BrainSeg R-CNN

Multi-path and Cross-Modality Feature Learning. Although four modal-
ities (T1, T1c, T2 and Flair) contain spatially and semantically similar informa-
tion, they describe brain tumor from different views and provides complementary
information to each other. Effective feature learning will provide better repre-
sentation of brain tumor image for following segmentation of RoI. Meanwhile,
in the family of mainstream CNN models, different convolutional layers capture
different visual features and varying scales information. The backbone models
encode the entire input or larger feature maps spatially in lower layers, thereby
harvesting finer spatial information for pixel-wise segmentation. However, due to
the local convolution with small receptive fields, lower layers have poor semantic
capturing capability. In higher layers, the stacked multiple convolutional lay-
ers progressively sense the entire input with larger receptive view and possess
strong semantic information, but the outputs of higher layers are spatially coarse
after the downsampling. Overall, the lower layers provide more accurate spatial
characteristics while the high ones predict more accurate semantic labels. To
this end, we design the effective features learning strategy from multi-path and
cross modality, combining the inherent merits of varying convolutional layers
and complementary information of four modalities.

To achieve that goal, the four modalities are separately fed into four CNN
models, shown in Fig. 1(a), from left to right are T1, T1c, T2 and Flair, respec-
tively. Motivated by the shortcut in ResNet, the features in the i-th level from T1
are combined with features in j-th (j = i+1) level from T2 though element-wise
addition. Note that the two feature maps always have different spatial size. We
conduct extra convolution with downsampling on the larger one, making them
have same size. The resulting features then pass though the next convolutional
layer. For other modalities, we repeat the similar operation. In this way, each
modality integrates features of every level from one or more adjacent modalities
except the first T1. The network not only learns features from individual CNN
model and modality, but also gets multi-scale and cross-modality features, fully
considering the interaction among modalities to obtain discriminative features of
brain tumor. Besides, all features of the i-th level of every modality are concate-
nated along the channel dimension to form a new feature map to characterize
brain tumor at i-th level, fed into next contextual fusion part.

Feature Pyramid Structure Based Contextual Fusion. To get better
global contextual information, we present an improved feature pyramid structure
to fuse features gained from feature learning period under different pyramid reso-
lutions, depicted in Fig. 1(b). After feature learning, we get concatenated feature
maps of each layer. Here the number of channels and spatial size per concate-
nated feature maps are different. The feature maps at deeper layers get more
small spatial size with more channel number. We first perform bottleneck block
on them to give them the same dimension. The UAC block is then carried out
to fuse features, which primarily involves Upsampling, Add and Concatenation
operations (UAC) as shown in Fig. 2.
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In UAC block, given two inputted feature maps from adjacent i-th and j-th
levels, denoted respectively as A and B, the low resolution feature map B is 2×
bilinear upsampled, producing feature map B*, to match the spatial size with
high resolution A followed by 1 × 1 convolutional layer. The resulting B* and
A are added in element-wise manner, obtaining feature map C = B* + A. The
added feature map C then are concatenated with feature map A, getting new
map D =

[
A, C

]
, which contains global and local information with stronger

semantic and finer spatial resolution, particularly helpful for segmentation. Sub-
sequently, the fused feature maps D are connected to one bottleneck block for
feature adaption. From the deepest layer to the shallowest layer, we keep repeat-
ing above operation progressively. The outputs of all UAC blocks hold the same
dimension but have different resolutions. We upsample all of them up to the
same resolution as the largest with different times ratio except the shallowest
one. After that, we combine them with concatenation along the channel direc-
tion. The final fused features go though vanilla RPN to generate RoI of brain
tumor, and produced each RoI is fed into the network head for bounding-box
recognition and mask prediction.

Fig. 2. The basic structure of the given UAC block. The UAC block is designed to fuse
multi-channel features, which primarily involves Upsampling, Add and Concatena-tion
operations. The outputs of UAC block holds the same dimension but has different res-
olutions. Additionally, it contains global and local information with stronger semantic
and finer spatial resolution, which will be helpful for brain tumor segmentation.
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Network Head. Our network head is similar in structure to Mask R-CNN,
focusing on the guidance of training by loss function. However, due to the
high similarity between tumors and tissues, their various shapes and small size,
the loss function employed in Mask R-CNN actually pays too less attention on
desired tumor regions, possibly resulting in poor segmentation performance and
unsuitable for brain tumor segmentation task. Therefore, following [14], Brain-
Seg R-CNN adds a multi-weighted loss function in conjunction with ones of Mask
R-CNN in parallel fashion for brain tumor segmentation (Fig. 1(c)). The total
loss is defined as following:

L = Lrpn + λ1 · Lcls + λ2 · Lmask + λ3 · Lbox + λ4 · Ldice (1)

where Lrpn, Lcls and Lbox are identical as Mask R-CNN, which are used to train
the branch of detection. Lmask means the average binary cross-entropy loss, and
Ldice is the added Dice loss to optimize segmentation branch. λi (1 ≤ i ≤ 4) is
the hyper-parameter that controls the importance of each loss.

3 Experiments

3.1 Dataset and Settings

We evaluate the proposed BrainSeg R-CNN on the commonly used BraTS 2017
dataset. For each MRI image, there are four modalities: FLAIR, T1-weighted
(T1), T1 with gadolinium enhancing contrast (T1c), and T2-weighted (T2). The
dimensions of all images are 240 × 240 × 155 voxels. The BraTS 2017 training
set is composed of 210 cases of high-grade gliomas (HGG) and 75 cases of low-
grade gliomas (LGG). Each ground-truth for brain tumors is given by experts
[18,19]. Here, we divided the original training set into three subsets for model
training, validation and testing, respectively. Figure 3 demonstrates two typical
multi-mode brain tumor image samples in BraTS 2017 dataset.

Our experiments mainly consist of two parts: (1) Compared experiments
using slices with tumors; (2) Compared experiments using all slices (whole brain
image). As the BrainSeg R-CNN is based on the detection model, which will
result in a higher level of false positive for slices without brain tumors. Therefore,
the first part of our experiments is carried out on slices which definitely contain
brain tumors to verify the effectiveness of BrainSeg R-CNN, specially to evaluate
the three designed parts, i.e., feature learning, contextual fusion and network
head. In the second experiment, we compare BrainSeg R-CNN with several state-
of-the-art methods by using whole brain image with the same protocol as [20].
Moreover, Dice score is adopted in all of the experiments.

3.2 Compared Experiments Using Slices with Tumors

Comparison with Mask R-CNN. Here, we take Mask R-CNN architecture
without multi-path and cross-modality feature (MCF), multi-scale fusion (MF)
and multi-weighted dice (MD) loss as our naive baseline. Based on the different
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Fig. 3. Typical multi-model brain tumor images in BraTS 2017 dataset

Table 1. Comparison with Mask R-CNN [15] using slices with tumors (%)

Methods Whole Core Enhance

Baseline 85.94 80.12 78.20

Baseline+MCF 86.42 82.07 80.13

Baseline+MD 87.24 82.14 80.28

Baseline+MCF+MD 87.63 82.35 80.52

Baseline+MF 88.43 83.08 80.75

Baseline+MF+MD 90.02 84.19 80.96

Baseline+MCF+MF 89.04 83.81 80.88

BrainSeg R-CNN 91.54 86.22 81.05

combinations of adding MCF, MF and MD, we conduct a series of comparative
experiments on BraTS 2017 dataset whose results are reported in Table 1. As
shown in Table 1, by introducing MCF and MF as well as the MD loss, our Brain-
Seg R-CNN achieves the optimal segmentation performance of 91.54%, 86.22%
and 81.05% on whole, core and enhance tumors, which outperforms that of Mask
R-CNN over 5.58%, 6.10% and 2.85%, respectively. In addition, following conclu-
sions can be drawn from Table 1. All of the MCF, MF and MD gain performance
improvement over the baseline. Among them, MF is superior to the others while
MCF achieves the smallest effect. Further performance improvements can be
achieved through the combination of MCF, MF and MD.

Comparison with U-Net Models. Here, we mainly compare BrainSeg R-
CNN with several typical 2D U-Net models including basic U-Net, Res-UNet and
Res-UNet with weighted-Dice (Res-UNet+WD) on BraTS 2017 dataset to give a
further evaluation, and the compared results are shown in Table 2. Table 2 illumi-
nates that BrainSeg R-CNN achieves promising performance improvement over
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Table 2. Comparison with U-Net models using slices with tumors (%). * indicates
the result of our recurrence.

Methods Whole Core Enhance

U-Net* [5] 83.41 80.38 76.08

Res-UNet* 86.32 84.96 79.27

Res-UNet+Weighted-Dice [7] 88.51 87.96 80.17

BrainSeg R-CNN(ours) 91.54 86.22 81.05

basic U-Net and Res-UNet. Compared with Res-UNet+WD, BrainSeg RCNN
respectively gains 3.03% and 0.88% performance improvement on whole and
enhance tumor segmentation results. Meanwhile, it is inferior to Res-UNet+WD
on core tumor segmentation. However, the overall experimental results demon-
strate the effectiveness of our BrainSeg R-CNN method for brain tumor segmen-
tation.

3.3 Compared Experiments Using Whole Brain Image

To further test BrainSeg R-CNN, we compare it with several state-of-the-art
methods on all slices (whole brain image) with the same setting as [20], and
experiment results on BraTS 2017 dataset are given in Table 3. Among them,
dense FCN (DFCN) employs typical 2D FCN model and introduces dense con-
nection to improve the segmentation accuracy [20]. In contrast, FCN+CRF
adopts 2D FCN model followed by conditional random field (CRF) as post
processing [12,13]. As BrainSeg R-CNN is based on detection model, it will
result in a high level of false positive for slices without brain tumors. However,
this problem can be resolved by adding a pre-classifier before feature learning.
Here, we take U-Net as the pre-classifier and denote this method as BrainSeg
R-CNN+Classifier.

Table 3. Comparison with state-of-the-art methods using whole brain image (%)

Methods Whole Core Enhance

DFCN [20] 84.00 83.00 80.00

FCN+CRF [13] 87.20 83.00 76.00

U-Net [5] 83.00 80.00 75.00

Res-UNet+WD [7] 88.13 87.36 80.12

BrainSeg R-CNN(ours) 86.54 84.88 78.49

BrainSeg R-CNN+Classifier (ours) 91.22 85.62 80.71

Table 3 illustrates that BrainSeg R-CNN overall outperforms DFCNN, FCN+
CRF and U-Net methods. Due to the high false positive on slices without tumors,
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it is inferior to the Res-UNet+WD method. However, with a simple pre-classifier
as supplement, our BrainSeg R-CNN+Classifier obtains the optimal performance
for both of whole and enhance tumor segmentation. Specially, it gains 91.22%
Dice score for whole tumor segmentation, which is significantly higher than the
others.

4 Conclusion

In this paper, inspired by Mask R-CNN, we propose a novel brain segmentation
method called BrainSeg R-CNN, which classifies brain tumor areas and bound-
aries based on the detected RoI to finish segmentation, avoiding invalid segmen-
tation calculation in the background area as well as providing a new pipeline
for this task. Additionally, three improvements are presented in BrainSeg R-
CNN to achieve better segmentation performance. Extensive experiment results
on widely used brain tumor segmentation dataset demonstrate the effectiveness
of our proposed BrainSeg R-CNN method. In the future, the more powerful
pre-classifier will be integrated into current BrainSeg R-CNN model to further
improve its performance on the entire brain image. In addition, we will extend
the proposed BrainSeg R-CNN method into 3D model, and this could further
avoid the wrong detection existing in 2D method.
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